
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

REALTIMEDATAPROCESSINGWITHSTRIMZI PROJECT
ZPRACOVÁNÍ DAT V REÁLNÉM ČASE S VYUŽITÍM PROJEKTU STRIMZI

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MAROŠ ORSÁK
AUTOR PRÁCE

SUPERVISOR Doc. Mgr. ADAM ROGALEWICZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Orsák Maroš
Programme: Information Technology
Title: Real Time Data Processing with Strimzi Project
Category: Information Systems
Assignment:

1. Study principles of projects Kubernetes, Apache Kafka and Strimzi.
2. Study suitable tools and techniques for design and implementation of an application in

container environment (e.g. Quarkus, or Spring).
3. Design an application demonstrating usage of Strimzi system. Pay a special attention on its

usage for cluster processing of real-time data and presentation to an user.
4. Design a basic set of system and marathon tests covering real application deployment.
5. Implement application designed in point 3.
6. Implement the test set designed in point 4.
7. Evaluate the solution and propose possible improvements of the created application as well

as for the Strimzi system. Discuss the implementation complexity and usefulness of all
particular proposed improvements.

Recommended literature:

Strimzi documentation: https://strimzi.io/

Kubernetes documentation: https://kubernetes.io/

Apache Kafka: The Definitive Guide: https://www.confluent.io/resources/kafka-the-definitive-
guide/

Requirements for the first semester:
Items 1 to 3 of the assignement.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rogalewicz Adam, doc. Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: May 14, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22425/2019/xorsak02 Page 1/1

http://www.tcpdf.org

Abstract
Container technologies become broadly used in modern times. In prevailing, applications
made on the micro-service architecture are rising. This thesis analyzes the design of an
application that will process data in real-time. Further, the application will be built using
state-of-the-art technologies used by world companies like Netflix, Uber. They are using the
systems for real-time data processing such as Apache Kafka, and in recent times they raised
it on a higher level by encapsulating this system in the container environment, which guar-
anteeing effortless scalability. Additionally, using the latest native Kubernetes technologies
for processing dozens of data with Quarkus and Strimzi. The problem, which arises, is
that these types of real-time data processing systems encapsulated in the containers are
especially challenging to test. The main goal of this thesis is a proof-of-concept application
based on Strimzi project and also show the designed long term test of the application also
known as Marathon, which is the ideal demonstration of user conditions.

Abstrakt
Kontajnerové technológie sa v modernej dobe široko využívajú. Vo väčšine prevládajú ap-
likácie vytvorené na architektúre mikro služieb. Táto práca analyzuje návrh aplikácie, ktorá
bude spracovávať údaje v reálnom čase. Aplikácia bude ďalej budovaná pomocou najmod-
ernejších technológií používaných svetovými spoločnosťami ako Netflix, Uber. Používajú
tieto systémy na spracovanie údajov v reálnom čase, ako je Apache Kafka, a v poslednom
čase ich zavádzajú na vyššiu úroveň zapuzdrením tohto systému do kontajnerového prostre-
dia, čo zaručuje ľahkú škálovateľnosť. Okrem toho využívaju najnovšie natívne technológie
Kubernetes na spracovanie mnoho údajov pomocou programov Quarkus a Strimzi. Prob-
lém, ktorý sa objavuje, spočíva v tom, že testovanie týchto typov systémov na spracovanie
údajov v reálnom čase uzavretých v kontajneroch je obzvlášť náročné. Hlavným cieľom
práce je proof-of-concept aplikácie nad Strimzi testami. Táto práca tiež ukáže navrhnutý
dlhodobý test applikácie a systému Strimzi, tiež známy ako Marathon, ktorý je ideálnou
ukážkou užívateľských podmienok.

Keywords
Clustering, Real time data processing, Strimzi, Apache Kafka, Quarkus, Java, Kubernetes

Klíčová slova
Spracovanie dát v reálnom čase, Strimzi, Apache-Kafka, Quarkus, Java, Kubernetes, Zh-
lukovanie

Reference
ORSÁK, Maroš. Real Time Data Processing with Strimzi Project. Brno, 2020. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Doc.
Mgr. Adam Rogalewicz, Ph.D.

Rozšířený abstrakt
V dnešnej dobe sú kontajnerové technológie frekventovaným a zároveň veľmi často skloňu-
júcim slovným spojením. Aplikácie, postavené na monolitickej architektúre sa stávajú rari-
tou. Silným oponentom sa stáva už dlhoročný súper a to architektúra micro-služieb, ktoré je
známa predovšetkým svojou skáľovateľnosťou a jednoduchých rožširovaním. Každý deň sa
stretávame s datmi v podobe správ, a jeden s kľúčových atribútov je ich spoľahlivosť vďaka
systémom, ktoré sú pripravené čeliť neobvyklým situáciam a tým zaručújú ich správnosť a
odolnosť.

Cieľom tejto práce bolo vypracovať aplikáciu pomocou ktorej bude možné procesovať
v reálnom čase vzorky dát o obrovskom množstve a to i vďaka kontajnerovej technológie
Kubernetes, zaručújúcu efektívnu škáľovateľnosť. Mimo iné toto spracovanie bude prebiehať
v jadre technológie, zvanej Apache Kafka. Ak si teraz predstavíme silu technológie Apache
Kafka a zároveň k tomu pridáme vlastnosti kontajnerového orchestrálu Kubernetes vznikne
nám systém Strimzi. Posledné časti, ktoré zohrali veľkú rolu v aplikácií boli komponenty
zaručújúce zátaž na systém a zároveň zobrazovanie dát uživateľovi vo forme jednostranovej
stránky pomocou aplikačnéhó programového rozhrania google-maps.d

Hlavným prínosom navrhnutej aplikácie bude hlavne využitie v rámci veľmi požadu-
júcich záťažových testoch. Jedným z hlavných faktoroch známy je hlavne, že neexistuje
žiadny jednoduchý spôsob, ako simulovať existujúcu zátaž s projektom Strimzi. Navrhnutý
systém sa použije ako komponenta na testovanie aplikácie Strimzi v reálnych scenároch s
obrovským množstvom údajov.

Implementácia sa skladala s viacerých podčastí, kde každá mala unikátnu zodpovedanosť.
V procese vývoja si musela každá komponenta prejsť viacerými štadiami ako napríklad:
návrhom, implementáciou, spusténím komponenty pomocou sbalíku .jar, vytvorením obrazu,
pushnutia obrazu na externé registre, vytvorením Deploymentu a na konci otestovanie tejto
kompomnety v prostredí Kubernetes. Zároveň, tento proces bol zautomatizovaný a jedná
sa o klasický postup vývoja dnešných kontainerových aplikácií.

Navrhnutý externý systém verifikoval Strimzi a bol schopný ho v krátkom čase modi-
fikovať. Boli použité najmodernejšie technológie pre architektúru mikro služieb, ktorými sú
Quarkus a React. Quarkus pomocou, ktorého sme boli schopný generovať zaťaženie a vy-
plnenie týchto údajov pre Strimzi. Navyše, tieto generované data boli aggregované druhou
komponentou, ktorá vyvolala zataženie systému v inej časti. Po skončení fázy agregácie
Quarkus vystavil tieto data uživateľskému prostrediu. React je iba rozšírenie, aby bolo
pre testera viditeľné, že sa údaje menia. Hlavnou prioritou je Quarkus s odosielaním a
zhromažďovaním údajov od systému Strimzi.

Navrhnutá, aplikácia bola overená na experimentálnej časti kedy bolo možné vytvoriť
marathon test, ktorý po dobu jendého týždňa verifikoval systém, kde periodicky každých 30
minút zbieral štatistiky o jednotlivých častiach sýstémul, ktorý bol pod validáciou. Zároveň,
vďaka monitorovacím nástrojom ako Prometheus a Grafana bolo možné level výstupu pozd-
vihnúť na vyššiu úroveň. Týmto experimentom sa preukázalo, že systém Strimi je spoľahlivý
a pripravený ku používaniu na zákaznickej úrovňi.

Real Time Data Processing with Strimzi Project

Declaration
I declare that I have elaborated this Bachelor Thesis by myself under the supervision of
Doc. Adam Rogalewicz, further information was provided by Ing. Jakub Stejskal and Bc.
David Kornel . I have listed all the literary sources and publications I drew from.

. .
Maroš Orsák
May 18, 2020

Acknowledgements
I would like to thank my supervisors, Ing. Jakub Stejskal and Doc. Adam Rogalewicz, for
their time. This work is realized in cooperation with Red Hat Czech, s.r.o.

Contents

1 Introduction 3

2 Fundamentals of Kubernetes, Kafka and Strimzi 5
2.1 Kubernetes . 5

2.1.1 History . 5
2.1.2 Container orchestration . 6
2.1.3 Common objects . 8
2.1.4 Controllers . 10

2.2 Apache Kafka . 12
2.2.1 Motivation behind Kafka . 12
2.2.2 Terminology . 13
2.2.3 Publish and subscribe model . 16
2.2.4 Kafka streams . 17
2.2.5 Kafka connect . 18

2.3 Strimzi . 19
2.3.1 Custom resources definitions and custom resources 19
2.3.2 Operator pattern . 20
2.3.3 Architecture . 20
2.3.4 Cluster operator . 21
2.3.5 Topic Operator . 21
2.3.6 User Operator . 22

3 Fundamentals of Quarkus and React 24
3.1 Quarkus . 24

3.1.1 Compile options . 24
3.1.2 Lifecycle . 26
3.1.3 Semantics of annotations . 27

3.2 React . 29
3.2.1 Virtual Document Object Model . 29
3.2.2 Components . 30
3.2.3 Properties . 30
3.2.4 State . 31
3.2.5 Lifecycle . 31
3.2.6 Events . 32

4 Design of the application 33
4.1 Dataset . 33
4.2 Architecture . 33

1

5 Implementation 37
5.1 Backend components . 37
5.2 Frontend . 39
5.3 Kubernetes deployment . 39

6 Testing 42
6.1 Testing regression . 42
6.2 Marathon test . 43
6.3 Continuous Integrations . 43
6.4 Experiments . 45

7 Conclusion 50

Bibliography 51

2

Chapter 1

Introduction

In the last few years, one can see a lot of new phenomena. Clustering has become a
commonly used word, the era of containers overgrows by creating container orchestral and
in concentrates on a design of an application based on Strimzi [14] project. One have to
face to face a lot of problem. Data is all around us without noticing them. The thesis
resolves many factors, which we are currently facing. First of all, there is no simple way to
reproduce real traffic with the Strimzi project. This system will be used as a component
for testing our Strimzi application, which is created to process dozens of records in a short
space of time. Second of all, we choose a case study about air pollution because we think
that our world is not aware of how polluted our countries are. As a case study for one
proof-of-concept, we choose an air pollution application.

In recent years, every one of us has certainly seen an increasing percentage of air pol-
lution. This growth is caused by several actions invoked by humankind. One of them is
vehicle emissions, which are the primary source of outdoor air pollution. Fuel quality is not
sufficient in the last years, and the same applies to most of the vehicles. These two factors
highly increase the emission rise1. A significant proportion of Europe’s population lives
in areas, particularly in cities, where air quality standards are exceeded: ozone, nitrogen
dioxide, and particulate pollution pose a serious health risk.

Fortunately, UN Environment, the World Health Organization2 and the Climate and
Clean Air Coalition (CCAC)3, focuses on mobilizing cities to implement policies to protect
our health and the planet from the effects of air pollution.

The goal of this thesis is to develop an application, which will show the current user
state of air pollution in a particular region. The main attribute of this application is to be
scalable. To achieve this, we provide the Kubernetes [1] cluster, real-time data processing,
where Strimzi will be used. Easy order to handle essential data, we use REST API using
technology Quarkus [24]. Finally, the user will be available to see output data easily with
React [21]. All used components together could be used for testing of Strimzi project in
the scope of marathon tests. Load testing is a variety of performance testing that enables
system performance under real-world conditions. This kind of testing helps determine how
the application behaves when virtual users are trying to make some load for some time on
the system [18].

The thesis is divided into five chapters with the following structure. Chapter 2 contains
a general description of the Kubernetes together with the other technologies like the messag-

1The United Nations Environment Programme (UNEP) is the leading global environmental authority
2World Health Organization acting as a coordination center in international public health.
3The Climate and Clean Air Coalition is a willing partnership of governments

3

ing platform Apache Kafka and the Strimzi [14], which is an Operator for deploying Kafka
into Kubernetes cluster. Chapter 3 discusses the basics of Quarkus technology and re-
veals its perfection and comparison within the other REST API technology, such as Spring.
Additionally, in this chapter, we are discussing the chosen frontend technology, which is
React. Chapter 4 set out dataset and architecture, which is supported by UML diagrams,
designed API, and Kafka topics. Furthermore, Chapter 4 describing used third party APIs
like Google Maps and, lastly, view of the single-page website. The subsequent Chapter 5
showing the implementation of the solution provided in the previous chapter. Chapter 6
presents the testing process of the test application from units to the whole system. Finally,
Chapter 7 summarizes and concludes the obtained results.

4

Chapter 2

Fundamentals of Kubernetes,
Kafka and Strimzi

In this chapter, we take a close look at the leading technologies suitable for the distributed
real-time project. In particular, Kubernetes which taking care of splitting the load. Apache
Kafka for real-time processing data used by Strimzi to handle operations inside the Kuber-
netes cluster.

Nowadays, applications are based on a cloud environment, or we want to be as we called
a cloud-native Kafka is not an exception. We might ask what is Kafka and how to make it
cloud-native ? The answer to these questions is a system called Strimzi1.

Containers in general

The idea of the containers was published far in the past. The primary purpose of this
technology is to be platform-independent and scalable. Moreover, it is an abstraction of
the application layer. It does not create a virtual machine but uses the kernel of the physical
computer and creates virtualization for the application and library needed. Also known as
lightweight compared to the virtual machines.

2.1 Kubernetes
In recent years, we noticed that many container technologies are being used by big compa-
nies, such as Google, Microsoft, Amazon, and more. Kubernetes itself can save an enormous
amount of time with the features as e.g. self-healing, secret management, load balancing,
and more.

What makes this technology so handy and simple is the way how each Kubernetes
component is described in it is configuration file. In particular, each Kubernetes cluster
component can be described in simple YAML2 configuration file, which is pretty easy to
read.

2.1.1 History

Everything starts with the physical devices as we called computers. We change three times
how we manage applications on the top of the operating system along these lines [7]:

1Operator for deploying Kafka into Kubernetes cluster - https://strimzi.io/
2https://yaml.org/

5

https://strimzi.io/

∙ physical
∙ virtualization
∙ containerization

Physical

The opening phase of how to deploy applications was simply to execute the program on the
physical computer. Nevertheless, this proposal was not as practical as it seemed at first.
The main issues were scalability, management of servers, security, and price. Besides, you
do not want to share memory between five running applications in an identical environment.
On the other hand, you do not want to have five physical servers, which cost much money.
All of this led to the formation of the Follow-Up phase.

Virtualization

The next phase has solved problems like scalability, security, and also price. This scenario
of the applications can run a single machine without sharing memory, which means it is
isolated and encapsulated from the outside of the world. Furthermore, you can run four
of these virtual machines on the single physical server CPU, and your only limitation is
the server resources. These virtual machines are independent of each other, and therefore
security is much higher. The main complication is just that each virtual machines consist
of its operating system, which consumer some resources and which can be shared between
the application.

Containerization

In the last phase, containerization is considered as a lightweight to virtualization. The dif-
ference between these two phases is that virtualization using hypervisor3 to manage all the
virtual machines which has operation systems. The container shares the operating system
with the server. Similar to virtualization, they have their filesystem, memory, space, and
so on. What makes container technologies so colossal, that they are platform-independent
like virtualization technologies, but also without having extra operation system.

2.1.2 Container orchestration

We have containers running in our operation system, but we still do not have something
to manage it. The questions like is my application still running or how many containers
are running the system, which configuration has this container and so on. That is where
Kubernetes takes its role.

Figure 2.1: Deployment of applications
3Hypervisor - It is Software that managing virtuals, for instance, VMware or VirtualBox.

6

The Figure 2.1 illustrates and summarize phases of deploying applications which started
with physical[19], then after a few years the concept of virtualization[23] was revealed. Af-
terwards, the lightweight era comes with idea whose functionality was based on container-
ization [20] and finally we have a manager who takes care of the overall management of the
individual containers and guarantees their reliability, scales it pretty effectively and more.
This is what we call container orchestration [1]. It has following features:

∙ Management of deployments, stateful set, replica set, and custom resource definitions.

∙ Management of services and load balancing (Service discovery and load balancing).

∙ Management of storage (Storage orchestration).

∙ Management of secrets (Secret and configuration management).

Obtaining information of pods, services, storages, secrets and more

With the help of the command-line interface, the management of these features is conve-
nient. The simplest way how to get information about any type inside the Kubernetes
cluster is by command kubectl get resource-name. This approach applies to all resources.
It is essential to note that Kubernetes has a feature called Self-healing, which means that
if anything inside of the container failed, it would restart it automatically. Additionally, to
CLI, it is designed as the REST API, which supports CRUD methods.

Essential Components of Kubernetes

∙ kube-apiserver – validates and configures data for the API objects such as pods,
services, replication controllers, and more. REST operations smoothly do everything.

∙ kube-scheduler – making sure that each Pod has matched node so Kubelet can run
it. In the next subsection, we take a look at the Kubelet.

∙ kube-controller-manager – as we can see the Kubernetes controller manager is
a daemon that encloses the essence control loops shipped with Kubernetes. The
controller in Kubernetes is a control loop that follows the shared status of the clus-
ter through the API server and makes changes trying to migrate the current status
towards the desired state. For instance, we can imagine these controllers as a repli-
cation controller, endpoints controller, namespace controller finally service account
controller. [8]

Node Components of Kubernetes

∙ kubelet – this component is used as an observer

– running containers. (also called Kubernetes node agent), runs on all nodes and it
has an internal HTTP server allowing read only view on port 10255 with couple
of supported endpoints such as /healthz, /pods, /spec.

7

∙ kube-proxy – this component is used for the stream forwarding

– process that runs on all worker nodes,
– from version 1.2 kube-proxy has permmission to iptables, therefore, the ability

to delegate the actual proxy by: relegated to keeping the netfilter rules in syn.

∙ container runtime – this component provides a runtime environment for containers
in Pods.

– Examples are examples: Docker, CRI-O, Containerd, frakt, etc.

kube-scheduler kube-apiserver

Master	node

Container

Pod

Container

Pod

kube-controller-manager

Slave	node

kube-proxy

kubelet

Figure 2.2: Node and essential components inspired by [9]

The Figure 2.2 illustrate architecture, which Kubernetes is using. The master com-
ponent kube-apiserver works like the controller of API calls and communicates with the
kube-scheduler. It makes sure that every created Pod has some node assigned to run there.
Last important component in the master node is kube-controller-manager. The main task
is to observe and manage all controllers. For instance, Node controller controlling the
health-check4, as the name may suggest, also Replication controller, Endpoint Controller
and more. The worth of mention is that we also have a component called etcd, which works
as a backup for cluster data. On the other hand, slave or node components as kubelet have
taken care of containers running inside the Pod. Kube-proxy, which reflects all the services
defined in the kube-apiserver.

2.1.3 Common objects

Pod

Pod is the smallest unit that can contain application in its container, which can be deployed
inside the Kubernetes cluster. Inside a Pod, we can find one or more containers where they
share storage, network, and a specification how to run containers. It is considered as a
leading resource of the Kubernetes REST API. As an example of the Pod, we can image
Kafka running inside the Pod container, which can serve as default Kafka actions like store
messages in topics.

4Verifying lifetime of Pod over a specified period of time

8

Service – presents a way how particular components communicate

By default, a service in Kubernetes has a type of Cluster ip, which means that communica-
tion can be established only inside of the Kubernetes cluster. The way how one is able to
expose your application outside of the cluster is to use the following type of service which
Kubernetes offers:

∙ nodeport - expose the service to be accessible via node IP with a specific port. For
instance, you want to expose your HTTP server to be publicly accessible on a specific
port.

∙ load balancer - exposes the service externally using a cloud provider load balance.
The load balancer is shown in the definition. .status.loadBalancer field, where you
can find a real IP address. As an example, if your demands are high and you want an
application that requires more ports on specific IPs, then the usage of load balance is
a wise choice.

∙ ingress - the previously mentioned types of how to expose a service were service types,
but ingress is an entry point for the cluster. It lets you consolidate your routing rules
into a single resource as it can expose multiple services under the same IP address.
[12]

apiVersion: v1
kind: Service
metadata:

labels:
app: my-new-webserver

name: my-new-webserver
spec:

selector:
app: my-new-webserver

ports:
- port: 8080

protocol: TCP
targetPort: 8080

type: NodePort
status: loadBalancer: {}

Figure 2.3: Example of service definition using nodeport.

Namespace

This concept of namespaces was introduced in order to run numerous virtual clusters inside
one physical. By default, Kubernetes starts with three initial namespaces:

∙ default – the objects which do not have another namespace belongs to the default
namespace,

9

∙ kube-system – namespace for objects created by the Kubernetes system i.e pods,
kube-proxy, kube-dns. Furthermore, the service account is used to run the Kubernetes
controllers.

∙ kube-public – this namespace is created automatically and is recognizable by all users
(including those not authenticated). In other words, there is a situation we need to
have shared resources across the whole cluster; then we have to make sure that theses
resources are inside this namespace [10]

Volume – data storage

The volume is a separated object bind to a Pod. The main ideas behind volumes are
following: at first, assume scenario when your Pod crashed and all data will be lost and
one would like to retrieve it. Secondly, if one wants to share same data between more pods.
The answer to these problems is the Kubernetes Volume abstraction.

apiVersion: v1
kind: Pod
metadata:

name: name-of-the-pod
spec:

containers:
- image: docker.io/my-new-webserver

name: my-new-container
volumeMounts:
- mountPath: /test-ebs

name: my-new-volume
volumes:
- name: my-new-volume

awsElasticBlockStore:
volumeID: <volume-id>
fsType: ext4

Figure 2.4: Example definition of the Pod, which is using the volume

2.1.4 Controllers

Deployment

Simply said, deployments act as managers, which take care of identical pods. For this
reason, they are known as controllers. Without having deployments, it would be tough to
manage many pods. As an example, we can imagine the following scenario: The applica-
tion is released, so with that, we assume that the new image will be available. Only one
responsibility would just change the image name inside the deployment file and just confirm
that with kubectl apply -f deployment-definition.yaml. It triggers the rolling update, and
your application is upgraded from one version to another without the user having any clue
that something behind the scene is changing. The precondition is that you have at least
two replicas of your application running.

10

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 3
template:

metadata:
app: nginx

selector:
matchLabels:

app: nginx
template:

metadata:
labels:

app: nginx
spec:

containers:
- name: nginx

image: nginx:1.7.9
ports:
- containerPort: 80

Figure 2.5: Example definition of the Deployment

ReplicaSet

This type of controller has to manage the number of pod replicas. Moreover, it ensures that
the concrete number of pod replicas is running at whichever time. If we compare ReplicaSet
with deployment, the deployment is higher in the hierarchy where it manages ReplicaSet
and maintains declarative updates to Pods, which conveys it’s better to use deployment
instead of ReplicaSet unless you need custom update orchestration on your own. You don’t
want to update at all. The following Figure 2.6 shows the described hierarchy.

Container

Pod

Container

Pod

ReplicaSet

Deployment

as

Container

Pod

Figure 2.6: Hierarchy of Deployment, ReplicaSet and Pod

11

StatefulSet

The last notable controller is StatefulSet. The main task of this controller is to provide a
unique identity to Pods, for instance, guarantees the order of deployments, scaling which
deployment does not offer.

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: my-web-application
spec:

serviceName: my-web-application-service
replicas: 3

spec:
terminationGracePeriodSeconds: 5
containers:
- name: my-web-application

image: docker.io/nginx:latest
ports:
- containerPort: 80

name: web
volumeClaimTemplates:
- metadata:

name: www
spec:

accessModes: ["ReadWriteOnce"]
resources:

requests:
storage: 2Gi

Figure 2.7: Example of StatefulSet definition

2.2 Apache Kafka
Apache Kafka is a streaming platform that offers many features like high performance,
distribution, commit log service, and more. It publishes and subscribes to record streams
that are similar to a message queue or enterprise messaging system. Moreover, it stores
record streams in a robust, fault-tolerant way. Kafka also creates real-time data flows
that reliably capture data transferred between systems or applications it can be also used
for real-time streaming applications that transform to data streams or response on them.
Additionally, widely used by many big companies like LinkedIn, Spotify, Uber, and more.

2.2.1 Motivation behind Kafka

In the past, one had applications or systems that share many data. Moreover, the appli-
cation was able to provide some useful information to another application. So, there was

12

SS1 SS2 SS3 SS4 SS5

TS1 TS2 TS3 TS4 TS5

(a) Source and Target systems without Kafka

SS1 SS2 SS3 SS4 SS5

TS1 TS2 TS3 TS4 TS5

Kafka
broker 1

Kafka
broker 2

Kafka
broker 3

Kafka cluster

(b) Source and Target systems with Kafka

Figure 2.8: Kafka reduce dependencies

one source system and one target system. But what about adding some more source and
target systems? Assume an example, where one have five source systems and five target
systems. Each source system needs something from each particular target system. There-
fore has twenty-five links, which is not effective i.e 2.8 (quadratic complexity). That’s why
Kafka was born. Let illustrate the same example with ten systems and Kafka is serving as
Middleware 5, which placed as the in the middle of these systems. In that case, each source
system is bind to the Kafka broker, and all data is delivered by a single link. The following
figure 2.8 illustrating described idea.

2.2.2 Terminology

In this section, we take a look at particular Kafka features.

Producer

We can understand producer as application, which publishes messages into Kafka broker.
Moreover, his responsibilities are to make sure that he binds to the correct topic on the
specific partition. Known, techniques, of publishing are round-robin, where the producer is
sending messages to a partition, which is not so active or it is by some self partition method
based on the hash table algorithm.

Consumer

The analogy on a producer is a consumer. It is an application, which subscribes to Kafka
broker with a specific topic and receives all relevant data from it. The method that con-
sumers use is called polling6. In most of cases, data is read from each partition. For more
information about the topic and partitions, see the section 2.2.2 and section 2.2.2

Kafka broker

Also called as Kafka server and Kafka node. All of these names refer to the same concept.
Kafka broker is a server application, which takes care of all the data that was published into

5Middleware – Software, that acts as the middle man between two systems and guarantees interoperability
between the systems.

6Periodic querying to the server in that case, to the Kafka broker

13

the Kafka cluster. By contrast to Kafka broker, consumers can fetch data from a specific
topics. Only Kafka broker can be scaled to more that one computation unit, which are
encapsulated in the so called Kafka cluster.

Kafka cluster

Kafka cluster is a collection of Kafka brokers. Therefore it is fault-tolerant. Brokers share
all the data, and if some of them crash, the data will be available because other broker will
be running. In the case of all the brokers are down, the data will be lost, but that is so
doubtful.

Topic

Kafka topic is equivalent to database table as one can see in figure 2.9. It is not possible
to change or to update data if it has already been published. Messages are being stored on
a specific topic.

Database table

ID MESSAGE_CONTENT

0

1

2

3

msg1

msg2

msg3

msg0

Topic
Partition

off
se
t0

off
se
t1

off
se
t2

off
se
t3

ms
g0

ms
g1 ms

g2
ms
g3

Figure 2.9: Equivalence of Kafka topic and database table

Replication factor

The replication factor is as a number, which defines how many times is the topic replicated
to other Kafka brokers. Let us consider the following scenario. We have the Kafka cluster,
where we have three Kafka brokers. We create a new topic with an unique name. We have
two approaches to how we can create it in Kafka. The first is to create a topic with the
command-line application. Secondly, we can create the new topic with applying custom
resource definitions 2.3.1. The question can be what happens if we set higher replication
factor then we have available Kafka brokers. Simply, we are notified that the topic can not
be created because we do not have enough accessible Kafka brokers. More about this in
2.3.5.

Partitions

Partitions are as a feature that splits your topic into separate parts. It means that in each
partition, we have different data, using this feature we allow an to consumer to fetch data

14

in a concurrent7 way. A partition contains offset which serves as an id for the detailed
message. In figure 2.10, we can see one topic, which consists of three partitions.

Topic

msg0
msg1

msg0
msg1

msg2

Partition 1

Partition 2

Partition 3

msg0
msg1

msg2
msg3

Figure 2.10: Topic with three partitions

Offset

It is an integer value assigned to each consumer indicating the next message, which will
be read. Consider the scenario when we have one Kafka broker and one topic with 100
messages. According to offset implementation, it means, that maximum offset value if 100,
because it reflects the position of the last message in the topic. If we configure consumers
to subscribe to that topic, it uses the polling method and starts with offset e.g. one to
zero. The first poll gets twenty messages, so offset move on nineteen and so on. The Figure
illustrate this scenario 2.11. In general, we can understand offset as the message index.

`

ms
g0

ms
g1

ms
g2

ms
g3 . . .

ms
g19

ms
g20 . . .

offset	0 offset	2 offset	19 offset	99

ms
g99

ms
g10

0

Figure 2.11: Partition offset

We know two types of offsets as follows:

∙ current - id of the current position of the consumer,
∙ committed - id of the last successfully saved message

We may also thing another about partition rebalancing. New consumers assigned to the
partition should ask a question like Where to start? What is already processed offset by the
previous owner? Answer on these questions is fairly easy. The consumer use committed
offset as the starting point. Its use and starts from the committed offset. Kafka consumer
offers two types of how to commit processed message:

7Consumes more than one message at the specific period.

15

∙ auto commit - Enabled by default. Auto commit move offset automatically after
a specific period. What is deserving to mentioned is that if we configure our con-
sumer, do a pool request every ten seconds, and our consumer property is set as
follows auto.commit.interval.ms = 11000(ms). After the first poll call, we are unable
to commit the offset because our auto-commit interval was higher than our poll re-
quest, which was only ten seconds. It generally means that if partition rebalancing
is triggered, then different consumers must read the same data twice. For instance,
when the consumer joins the consumer group, the partition rebalancing is triggered,
and the load is reassigned to members of this group. The solution to this problem
brings manual commit.

∙ manual commit - As the name suggests, all workloads for management offset is
added to the developer’s responsibility to take care. This type of commit can be
divided into two parts:

– synchronous approach is straight forward and reliable method, which blocks calls
for completing commit operation. Moreover, retry the call if some recovery errors
occurred.

– asynchronous by contrast, we send the request, and it continues executing. The
important note is that this type not retry if some failures occurred. You may
ask why we do not retry? It has some purpose, which we describe in the fol-
lowing sentences. Assume, following scenario. We have one Kafka broker, one
configured consumer. Consumers processed one-hundred records, and it wants
to commit the offset asynchronously. However, something went wrong and failed
for some recovery reasons, and we want to retry after a few seconds. At that
time, we are waiting for one-hundred records to confirm. Furthermore, in these
few seconds, another call with the consumer is committed with the value of two
hundred records, and it is successful while commit one-hundred is still waiting
for a retry. In that type of situation, you unquestionably do not want to commit
one-hundred but two-hundred, and that is why we are not retrying if something
went wrong.

Consumer group

The consumer group behaves as an individual logical unit. Kafka does not support reading
from one specific partition with two or more consumers simultaneously. The reason why this
concept was created is based on straightforward questions. How are we able to consumes
data concurrently? Likewise, what is worth mentioning is that we can not have more
consumers than partitions because, in that type of example, some of them are inactive.
This concept differs from other messaging solutions and describing why Kafka is so flexible
in comparing with the existing messaging like RabbitMQ.

2.2.3 Publish and subscribe model

Sometimes also called an Observer8 design pattern. General speaking, pub-sub messaging
can be divided into these steps:

1. Kafka producers periodically send messages to the Kafka broker into to specific topic.
8More detailed about design pattern here https://refactoring.guru/design-patterns/observer

16

https://refactoring.guru/design-patterns/observer

2. Kafka broker stores the messages and assigns to the particular partitions configured
for that specific topic,

3. Along with that, Kafka consumers subscribe to a particular topic.
4. Kafka consumer periodically requests for new messages.
5. Kafka forward messages to the consumers,
6. Kafka consumer processes this data and return the acknowledgment of the message,

which he processed with the updated offset.
7. this process repeats until we terminate.

Queuing and Publish & Subscribe model

If we imagine the situation where we have all consumers in the same consumer group, the
topic messages are load-balanced between consumers. On the other hand, if every single
consumer has a different consumer group, messages will be read by every client. The first
approach is called the Queuing model, while the second one is named publish and subscribe
model. We can experiment with these two types and design our applications for our needs.
The following Figure 2.12[5] illustrating the whole subject of course, neglect the producers,
which are producing that data into this topic.

Kafka cluster

Kafka broker 1 Kafka broker 2

P0 P3 P1 P2

C1 C2 C3 C4 C5 C6

Consumer Group A Consumer Group B

Figure 2.12: Queuing and P & S model

2.2.4 Kafka streams

We can imagine the following problem that you want to filter some data. So far, with
current knowledge and understanding of Kafka, you can use Producer & Consumer to filter
it. Higher abstraction is Kafka streams, which encapsulating consumers and producers into
one unit to reduce time. It is a java application that is highly scalable, fault-tolerant, and
so on. Moreover, we do not need to run it on a separate cluster. Usage of this high-level
API can be any like Monitoring, Data transformation, and much more. The following figure
2.13 showing whole idea.

17

Kafka broker 1

Kafka broker 2

Kafka cluster

Kafka streams

Figure 2.13: Kafka streams

2.2.5 Kafka connect

The essential purpose of Kafka Connect communication with external data sources such as
Databases, FileSource, FileSink, ElasticSearch, which is the type of database using CRUD
methods instead of the standard SQL language. The connector is an abstraction to a defined
unit, which processes data. For instance, the FileSource connector acts as a poll method
that if any change happened in the file, it would be automatically pushed to the specified
topic in Kafka broker. With the help of the REST interface, it is not so complicated to
manage connectors. The offset is managed by Kafka connect, and there is no need to
have an additional implementation. Kafka Connect is an abstraction of the consumer and
producer API. It has two different implementations, which have many alternatives on how
to use it. These APIs are very handy, and usage is straightforward even when you are a
beginner. Questions like How do we pull my data from the data source to my Kafka or How
do we synchronize data with my source file. Answers on these questions has Kafka connect
sink 2.14 and Kafka connect source 2.15.

Kafka broker 1

Kafka broker 2

Kafka cluster

Kafka connect sink
MySQL

External

{ "name" : "connector-name",
 "config" : "{
 "connector.class" : "JDBCSinkConnector",
 "tasks.max" : "1",
 "connection.url" : "jdbc:mysql:test.db",
 "auto.create" : "true"
 "topics" : "my-topic-name"}"}

REST API

Figure 2.14: Kafka connect sink with database example

18

Kafka cluster

Kafka broker 1

Kafka broker 2

Kafka cluster

Kafka connect source
MySQL

External

{ "name" : "connector-name",
 "config" : "{
 "connector.class" : "JDBCSourceConnector",
 "tasks.max" : "1",
 "connection.url" : "jdbc:mysql:test.db",
 "auto.create" : "true"
 "topics" : "my-topic-name"}"}

REST API

Figure 2.15: Kafka connect source with database example

This figure describes the whole workflow of Kafka connect sink and source. Firstly, if
you want to read from the database, you need to use Kafka Connect to sink. I will briefly
in points write approach on how to achieve it:

1. setup Kafka brokers,
2. setup Kafka connect,
3. create Sink or Source Connector using Kafka connect REST API,
4. database is automatically created with specified property auto.create = true.

Analogically, approach when one needs to write data into a database or any type of
storage. Instead of creating a sink connector, you need to create a source.

2.3 Strimzi
All of the learned concepts in the previous sections 2.1 and 2.2 were necessarily known for
a simple reason. Let us imagine the power of Kafka within a bare-metal server together
with the attributes of the Kubernetes container Orchestral. This provides us an ability to
build an application called Strimzi.

In the rest of the section, we first introduce the Kubernetes operator pattern in common
associated with the Custom resources. Second we introduce, Strimzi three main operators:
Cluster Operator, Topic Operator and User operator (Sections 2.3.4, 2.3.5, 2.3.6).

2.3.1 Custom resources definitions and custom resources

In general, custom resources are the extension of the Kubernetes API. Simply imaginable
as many defined objects that serve to our application using CRUD rules. The definition of
these objects is captured by stateless YAML files. For instance, we can define our custom
resources (called CRDs), (Custom resource definitions). As an administrator of the cluster,
one can apply these configuration files to enable CRDs in your Kubernetes cluster. In

19

 apiVersion: "apiextensions.k8s.io/v1beta1"
 kind: "CustomResourceDefinition"
 metadata:
 name: "sslconfigs.example.com"
 spec:
 group: "example.com"
 version: "v1alpha1"
 scope: "Namespaced"
 names:
 plural: "sslconfigs"
 singular: "sslconfig"
 kind: "SslConfig"
 validation:
 openAPIV3Schema:
 required: ["spec"]
 properties:
 spec:
 required: ["cert","key","domain"]
 properties:
 cert:
 type: "string"
 minimum: 1
 key:
 type: "string"
 minimum: 1
 domain:
 type: "string"
 minimum: 1

(a) Example of Custom resource definition [6]

 apiVersion: "example.com/v1alpha1"
 kind: "SslConfig"
 metadata:
 name: "sslconfig-example.com"
 spec:
 cert: "my cert file"
 key : "my private key"
 domain: "*.example.com"
 provider: "digicert"

(b) Example of Custom resource [6]

Figure 2.16: CRDs and CR

the following figure 2.3.1, one can see definition of Custom resource definition with type
SslConfig and afterward definition of Object SslConfig using CRUD method (kubectl apply
-f file-name-of-crds.yaml). In this time, one can define your object by CRDs. E.g. a
Deployment or Pod is defined as a Custom Resource by Kubernetes developers.

2.3.2 Operator pattern

Another extension to the Kubernetes is a possibility to create your Operators to manage
all defined custom resource definitions. Operators provide automation to operations, which
your application need to do in a periodical time, such as:

∙ deploying an application,
∙ managing backups of the databases,
∙ selecting a leader for distributed applications without an internal member election

process [11].

2.3.3 Architecture

The whole concept of Strimzi is designed by Operators, which we describe in the following
subsections. Each Operator has his custom resources definitions used to handle objects cre-
ated by custom resources. In figure 2.17, one can see that Cluster Operator communicates
with Entity Operator and also with the Kafka and Zookeeper clusters. Its fundamental
responsibility is to take care of the application. Entity Operator just encapsulates two
essential operators, which manages topics and users inside the Kubernetes.

20

Kafka
broker 1

Kafka
broker 2

Kafka cluster

Cluster
Operator

Zookeeper
node 1

Zookeeper
node 2

Zookeeper cluster

Kafka
custom

resources

Topic
Operator

User
Operator

Entity Operator

Kafka User
custom

resources

Kafka Topic
custom

resources

Figure 2.17: Strimzi architecture based on the three operators

2.3.4 Cluster operator

The Hearth of the Strimzi application is the Cluster Operator. Its primary responsibilities
are to deploy and manage Kafka clusters within a Kubernetes cluster. Moreover, it can also
deploy the topic and User Operator encapsulated in the entity operator9. More specifically,
it manages and deploys Kafka, Kafka Connect, Kafka bridge 10 and more. It also, manages
secrets for encrypted communication using TLS protocol, persistent volume claims, and
stateful sets. It is written in Java using Vert.x11 and Fabric8 Kubernetes client12.

Architecture

In figure 2.18, we can see Cluster Operator, which takes care of defined Custom resources.
In particular, Kafka resources. Additionally, two separate components of Kafka cluster and
the Zookeeper cluster are communicating between each other. Firstly, the Cluster Operator
creates Kafka custom resource definitions and, after that, applies Kafka custom resources.
Furthermore, all of this is wrapped inside the Kubernetes cluster.

2.3.5 Topic Operator

Another essential part of Strimzi is the Topic Operator. It manages creation, deletion,
updates, and getting the topic resources. Before these operation can be executed, we have

9Operator, which encapsulates the topic and User Operator in one pod.
10Proxy server for Strimzi, which provides REST API interface managing Kafka topics, and users.
11Open source and event-driven application framework using asynchronous logic more details here https:

//vertx.io/.
12Java client, providing Kubernetes REST API with DSL. In the case of interest https://github.com/

fabric8io/kubernetes-client

21

https://vertx.io/
https://vertx.io/
https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/kubernetes-client

Cluster
Operator

Kafka
custom

resources

Kafka
broker 1

Kafka
broker 2

Kafka cluster

Zookeeper
node 1

Zookeeper
node 2

Zookeeper cluster

Figure 2.18: Cluster Operator architecture in the Kubernetes cluster

to applied topic resource definitions. Kubernetes resources describing Kafka topics in-sync
with corresponding Kafka topics [13]. The three basic scenarios are as follows:

∙ If an user wants to create Kafka topic then the Topic Operator creates it.
∙ If the user wants to delete Kafka topic then the Topic Operator deletes it.
∙ If the user wants to change existing Kafka topic then the Topic Operator updates it.

To create or change topic properties, one can hit some problems of the following. For
instance, assume the scenario where the user changes different topic property in Kubernetes
but simultaneously in the Kafka itself. Moreover, if the same topic of property is changed
at the same time. The first action is considered as allowed, and the solution for this is 3-way
diff (more about this method in section 2.19). In general, this method constructs the union
of these two differences and find out where the intersection is not empty. The second one
is treated as incompatible change. It must deterministically select by some winner policy
implemented inside Topic Operator.

The worth of mention is that you cannot change the topic name afterward. In the next
sentences, we describe a way of creating a topic using KafkaTopic resources. By default,
we can create a topic inside standalone Kafka using command bin/kafka-topics.sh –create
–bootstrap-server localhost:9092 –replication-factor 5 –partitions 5 –topic my-example-topic-
name. Another approach is by means of the defined custom resources. In figure 2.19, we
can see the final topic of the custom resource, which has 12 partitions and 1 replica. Let
us note that replica cannot be changed afterward. By contrast, changing the partitions is
fully supported.

2.3.6 User Operator

The last and significant part of Strimzi is a User Operator. Its principal responsibility
is to take care of Kafka users by watching user custom resources and ensure that they

22

 apiVersion:
 topic.kafka.strimzi.io/v1alpha1
 kind: Topic
 metadata:
 name: my-topic
 replicas: 1
 partitions: 12
 config:
 retention.ms: 1200000
 segment.bytes: 1073741824

 apiVersion:
 topic.kafka.strimzi.io/v1alpha1
 kind: Topic
 metadata:
 name: my-topic
 replicas: 3
 partitions: 18
 config:
 retention.ms: 2400000
 segment.bytes: 1073741824

 apiVersion:
 topic.kafka.strimzi.io/v1alpha1
 kind: Topic
 metadata:
 name: my-topic
 replicas: 1
 partitions: 12
 config:
 retention.ms: 2400000
 segment.bytes: 1073741824

Figure 2.19: 3-way diff method

are configured correctly. Moreover, if the Kafka user is created then the operator creates
credentials and store it to the Kubernetes secret. These credentials are then used in the
authentication process to consume or produce messages. There are three types how the
User Operator can cause trigger some action:

∙ by the creation of Kafka user, the User Operator creates the user
∙ by deletion of Kafka user, the User Operator, deletes the user
∙ by the change of Kafka user, the User Operator, changes the user

23

Chapter 3

Fundamentals of Quarkus and
React

3.1 Quarkus
Quarkus is a framework encapsulating implementation of java. The main goal is to allow,
(i) fast boot of application, (ii) native code generation using GraalVM1. GraalVM is de-
signed to build native image2. Furthermore, it unifies reactive and imperative programming
models. Reactive systems, for instance, Vert.x and Apache Kafka. Back in times, the boot-
cycle of the application did not matter. It was one physical machine, where we have some
applications to serve clients. Redeploying was not so frequent until the era of microservices
architecture come. Quarkus was created because with the big bang of cloud-native applica-
tions and microservices architecture, where start up time of the application, memory, and
CPU consumption matters. All these aspects are essential, and that is why this technology
was made to replace old Java. Framework with name Quarkus.

3.1.1 Compile options

The compilation consists of the following phases: (i) scans of keywords, (ii) static and (iii)
dynamic analysis. In Java, a compiler named Javac3 will within the compilation create
bytecode for the next usage. At the run time, JVM loads the class files, and determines
the semantics of each bytecode. Thern JIT4 compiler will scan the loaded bytecodes and
process some optimization (e.g. reduce redundancy or ,dead variables). It is worth to
mention that each option has its own advantages and disadvantages. Different compiler
option will be used for long-term running application and diffrent ones for microservices.
In the case of microservices, where the application is placed in the container environment,
the AOT5 compilation with Graal VM is technology what one need because of many benefits
like faster startup time or speed of response. In the following subsections, we will discuss
two alternatives of how Quarkus code can be compiled.

1GraalVM is a virtual machine that can be run by many programming languages like Java, Javascript,
Python, and so on.

2Native image is an executable file that is more efficient and faster to run the application for the first
time and simultaneously with a low memory footprint compared to classic jar files.

3Javac is a compiler, which includes the best-known toolkit JDK for Java.
4JIT, in other words, is a Just in time compiler, which improves the performance of Java programs by

compiling bytecode into native machine code in the run time phase.
5Ahead of time compilation that translates Java code to native in other words binary code.

24

Quarkus + OpenJDK Hotspot

Open Java Development Kit [3] is an open-sourced platform project, which implementing
Java standard editions. When the code is ready for the customer, it is crucial to create a
single executable file. This file, called Java archive in short .jar is used to aggregate many
java classes in one space. The problems that arise with this process are the following: First
problem is the file size, which sometimes is very high. Second problem is a slow boot-
cycle of the application, which is connected to the response of the first request invoked
by the client. Following figure 3.1 illustrating the process of making and running typical
application using OpenJDK.

Source code
(*.java)

JIT
compiler

Class file
(*.class)

Native
code

Javac
Compiler

Run time Compile time

Figure 3.1: Process of making classic java application

Quarkus + Graal VM

An alternative to the Javac compiler is Graal VM [2]. It is designed to compile all types of
languages, such as Java, Scala, Python, and C / C++. What makes Graal VM so elegant
and different from the classic compilation of java is the option to create a native image.
The start of the application, as well as memory utilization, is perfectly optimized with the
creation of that image. On the other hand, the time spent on building this image takes
much more time than creating a classic jar file. Figure 3.2 illustrates the compilation into
the binary code. There is still an occurrence of the JIT compiler used for of the code ,
which are not executed quite often.

Source code
(*.java)

JIT
compiler

Class file
(*.class)

Native codeJavac
Compiler

Run time Compile time

Jaot
compiler

(AOT)

Figure 3.2: Process of making GraalVM java application

JIT vs AOT compilation

In the following figure 3.3, one case see the benefits of Ahead of time and Just in time
compilation. The benefits of using a native image, which is based on AOT compilation,
is critical for Microservices architecture. Startup speed, low memory footprint and small
packaging are mandatory for a container environment, where every other matter. On the
other hand, for long term applications, which are not designed as Microservices and require
latency and high throughput, then using class JIT compilation is the option.

25

Reduced Max
Latency

Small Packaging

Peak ThoughputLow Memory
Footprint

Startup speed

JIT

AOT

Figure 3.3: Ahead of time and Just in time compilation

3.1.2 Lifecycle

Quarkus is a full-stack framework, designed to run cloud-native applications inside container
orchestral. The main idea behind Quarkus is that it starts at the build time instead of run
time. Quarkus use context dependency injection as a component model. The procedure for
running the application is as follows:

The first phase is compiling all classes using the javac compiler. Quarkus supports
Maven and Gradle build systems. If one use Maven, then the application will be compiled by
maven-compiler-plugin. Afterward comes the quarkus, respectively quarkus-maven-plugin.
Quarkus first analyzes pom.xml 6 to find out on what extensions your application depends
as well as loading all configuration files. Once the quarkus has all extensions ready then
the ”augmentation phase“ will start. Different classes are generated during augmenta-
tion. Classes can represents the applications with the help of annotation of @Application-
Scoped, which Quarkus provides. CDI bean dependencies are resolved in the Wiring phase.

”Assemble“ because it creates a special spring that contains all generated and transformed
classes, including classes that define main and many applications. To be more specific,
we will describe each of these subsets of wiring and assemble the part. Firstly, everything
starts with the load of configuration files in order to get definitions of storages like MySQL,
Postgres, Apache Kafka, and more. Moreover, in these files, we can find custom properties
for our application. For instance a name of a topic or specific serializer and deserializer
class. In the next step, the framework will scan all classes. This means that we will collect
all Annotations like @Inject, @Entity, @Incoming, and @Outcoming. Similarly, like Spring
7, Quarkus is considered to be an Annotation Driven Framework. Furthermore, checking
getters and setters with related classes are also included. After this process is finished, it
will build metadata objects. Like in Hibernate creating with @Entity annotation, we are

6pom.xml is a maven definition of the project object model, which specifies all dependencies, versions,
names, and other main attributes of the application.

7Spring is popular open-sourced Java Framework for developing Java Enterprise Edition applications.

26

creating table representation of the database. Lastly, the Quarkus prepare reflection and
build proxies. In summary, the build process can be split into four points:

1. load configuration files,
2. scan classes as normal annotation driven framework,
3. build metadata objects,
4. prepare reflection.

After this phase, we can choose between JDK or Native mode. Choosing a native image
will cost more build time, but on the other hand the application will have, a quick start and
low memory consumption. In the case of JDK mode, there are advantages e.g. a better
garbage collector, higher peak throughput, Therefore JDK is better option in the case,
where your application will be running for a long period. Conclusion of the whole work is
illustrated in figure 3.4 and the main steps are briefly summarized as follows:

1. javac compiler (using maven/gradle-compiler-plugin),
2. analyze of dependencies (quarkus-maven-plugin),
3. augmentation & wiring phase,
4. JDK mode or AOT compilation,
5. native mode.

Javac
Compiler

Fetching
dependencies

Wiring &
Assemble JDK mode

Jaotc
compiler
(AOT)

Native mode

Figure 3.4: Quarkus in steps

3.1.3 Semantics of annotations

Annotations are part of almost every full-stack java framework. In this section, we focus on
the semantics of the most important anotations that need to be recognized in the case of this
thesis. Many of them are related to Contexts and Dependency Injection, which allows us to
manage the lifecycle of stateful components via domain-specific lifecycle contexts and inject
components (services) into client objects in a type-safe way [4]. Most of the annotations
come from Java EE specification and its possibly implementation (JPA, JAX-RS, CDI).
Moreover, some annotations are part of the Quarkus API. In Quarkus, we have the only
subset of the CDI rules.

@ApplicationScoped

This type of annotation will cause that object defined as @ApplicationScoped is created
only once per application cycle. The context is shared between all requests and service
invocations. You can also observe the context of the application using onStart and onStop
events.

27

@QuarkusTest & @SubstrateTest

Ideally, these two annotations are nearly analogous. @QuarkusTest is a class annota-
tion, specified on the top of the class as well as @SubstrateTest. The main idea is that
@QuarkusTest invoke application on the specific port 9001 before all tests are executed.
There is an option that we can randomly generate this port with assigning value 0 to the
property. The app will be using classic JDK jar. By contrast, @SubstrateTest is testing
the native image of the application.

@Path

@Path applies to class or as method annotation, which has an individual parameter. This
parameter maps the path of the endpoint. If we specified @Path(”/something“) to the class
and then also @Path(”/more“) to the method, then calling will be delegated from class to
@Path(”/something/more“) endpoint.

@PathParam

Parametrized annotation, which creating variability on user input. @PathParm(”isbn“)
String id, will search in the database or some type of storage for specific ISBN, which the
user will need.

@GET, @POST, @DELETE, @PUT

Represents all CRUD methods, which can be seen in every modern RESP API application.
Briefly description, @GET annotation for fetching content. @POST annotation for creating
a new object. @DELETE annotation for the deletion of an existing object and finally @PUT
annotation for the update.

28

3.2 React
React was created by the Facebook community mainly by software engineer Jordan Walke.
It is written in Javascript language. It is a Javascript library, superset for the Javascript. It’s
main purpose is developing Single page applications. In the following subsections, we will
describe the essential features of React. Traditionally, every web application user interface
is created by templates from previously mentioned languages and also HTML directives.
React has differentiated from this approach simple by breaking each logical unit, called
components. This provides advantages like easy to extend and maintain the pages due to
the unification of markup with related view logic. Moreover, javascript can create build
abstraction and use basic Object-oriented principles such as abstraction, encapsulation,
inheritance, and polymorphism. Additionally, what is worth to mention is that React
creates JSX, which stands for Javascript XML. JSX makes React more elegant and readable
in both ways. In the following figure 3.5 there is two options how you can define HTML
code in your application. My inspiration for this section was mainly from documentation
[22] and also w3school web page [15].

const	reactElement	=	

React.createElement('p',

		{className:	'farewell'},
		'Have	a	nice	day!'

);

(a) Example of React code without using JSX

const	reactElement	=	(

		<p	className="farewell">
				Have	a	nice	day!

		</p>

);

(b) Example of React code with using JSX

Figure 3.5: Javascript XML extension

3.2.1 Virtual Document Object Model

The main feature differentiates Reacts from others, such as Angular, vanilla Javascript,
and more template type languages is virtual Domain object model. This means that React
creates in-memory own Document Object model kept synchronize with a real web browser.
This process is called reconciliation. An important component is the render() function.
Every change of state of props in reacts component will trigger changes in react tree of
elements. His role is mainly reordered virtual DOM to match browser DOM. We know two
ways how to implement it. The first approach is to use state of the art algorithms, which
has complexity 𝑂(𝑛3), where n is the count of all elements in the react tree of components,
which is unacceptable in large applications. The second approach uses a heuristic algorithm
based on two rules :

∙ Two elements of different types will produce different trees. [22]
∙ The developer can hint which child elements may be stable across different renders

with a key prop. [22]

29

3.2.2 Components

Components can be described as functions that return HTML elements. Its main role is to
keep User interface independent and also keep each logical unit in isolation. We know two
types of components as follows:

Function components

When one defines the javascript function, be already creates components inside React.
The typical behavior of the function is to take props which stands for properties. The
function returns Object React element, called function components. Following piece of
code illustrating an example of functional components as Javascript function. What is
worth to mentioning is that the definition of the element must start with an upper case
letter.

function FunctionComponent(props) {
return <p>Common sentense with defined property - {props.name}</p>;

}

Class components

Another alternative to define components is by using ECMAScript6 syntax. The advantages
of class components compared to function components are as follows. Firstly, the class
has its own state and constructor, which is executed in the instantiated phase when the
object is creating. Secondly, it creates an abstraction in an object-oriented way, using OOP
principles. The following code shows the definition of the class component matching the
previous description of the functional element.

class ClassComponent extends React.Component {
render() {

return <p>Common sentense with defined property - {this.props.name}</p>;
}

}

Both ways of implementation of components has one rendering function. We can show this
content to user by calling this function as follows:

ReactDOM.render(<FunctionComponent />, document.getElementById(’root’));

3.2.3 Properties

React Props, which stands for properties in the long term, are arguments of the function and
attributes in HTML. Their role is to allow generic and flexible usage of creating customized
components. Previous examples illustrated that React has two types of passing properties
via functional and class components. Moreover, if we have a class component, where it is
explicitly defined constructor, we must make sure that properties are pass to the inherited
object via super(props) keyword.

30

3.2.4 State

React state can be seen as properties bound to one particular object created. We know
two types of data control in components. The first one consist of properties that are fixed
to the parent and the whole lifetime of the object. The second one consist of states, which
are used for dynamically changing attributes over a while. When the attribute state is
changed, then render function is triggered, and the user can also see the change of HTML
code. Example of Clock class component.

class Clock extends React.Component {
constructor(props) {

super(props);
this.state = {currentTime: new Date()};

}

render() {
return (

<div>
<h1>Current time is:</h1>
<h3>It is {this.state.currentTime.toLocaleTimeString()}.</h3>

</div>
);

}
}

ReactDOM.render(
<Clock />,
document.getElementById(’root’)

);

3.2.5 Lifecycle

All Components in React has a feature called lifecycle. The lifecycle can be divided into
three phases:

Mount

First part of mounting phase is contructor(), which is called when the object is instantiated.
What is worth to mention is that we need to pass properties to the parent via reference
using the super keyword. Second, is a function called getDerivedStateFromProps(). It
is a convention, where we set state object based on fundamental properties defined in
the contructor. The next part is the rendering phase, where all defined HTML codes
is printed to the web site. The final part of mounting is after rendering, in case you
need to modify something after the component is rendered. This is defined by function
componentDidMount().

Update

The update is triggered when the state of properties are changed. React has the following
methods, called in the update phase. The first one is called getDerivedStateFromProps()

31

(same as in the previous phase). This place is to set the state object based on properties.
The next one is shouldComponentUpdate, where one can create an algorithm, which will
decide when your object must update. Default return value of this method is true. The
third method is called shouldComponentUpdate, returns true and triggers rendering part.
The React then has to re-render HTML to the Document Object Model. The called get-
SnapshotBeforeUpdate(), allows to you have access to old properties and states, in order
to check that the update was correctly done. The last part in the update phases is us-
ing method componentDidUpdate(), which is executed after the component updates in the
DOM.

Unmount

The lowest lifecycle for the component is unmounting. Essentially, this is triggered when
the component is removed from the Document Object Model using some deletion operation.
Method, which is triggered is called componentWillUnmount().

3.2.6 Events

In every event-driven system, we are dependent on client inputs. React is not an excep-
tion, and it is not so provides all event-driven methods as HTML has. For instance click
or mouse-hover. All react events are needs to be written in camelCase format and bor-
dered by curly braces like onClick={makeSomeCallMethod()} instead of class HTML call-
ing onclick=”makeSomeCallMethod()“. We have two approaches on how to invoke events
that bind this keyword or without binding. What is worth to mention is that without the
binding, this keyword would return undefined.

// Binding explicitly in the contructor

class Football extends React.Component {
constructor(props) {

super(props)
this.shoot = this.shoot.bind(this)

}
shoot() {

alert(this);
}

}

// Binding explicitly in the lambda function

class Football extends React.Component {
shoot = () => {

alert(this);
}

}

32

Chapter 4

Design of the application

In this chapter, we cover architecture, dataset, which has been used, along with the design
of significant components within Apache Kafka, Kubernetes, and the design of the REST
API. Besides, we will describe the frontend of the application that will be accessible to the
user. Finally, in the context of Kafka, we will use the Strimzi project inside the Kubernetes
cluster to handle operations efficiently using Operators, provided by Strimzi.

4.1 Dataset
The dataset was recommended to this project Simon Woodman, a manager of the engineer-
ing team leading the Strimzi project. These, data are known to be the most significant set
available in the United Kingdom. They are provided via https://urbanobservatory.ac.uk
in various formats such as CSV, JSON for free. This data are free to use. Unfortunately,
this set was not enough, and we were forced to create our generator and synthesize more
records to simulate a heavy load to the Strimzi system.

The datsa are organized as follows. Each record has a sensor name, name of the gas
with related concentration gas value in concrete units, and also a current time when the
record was created. Furthermore, longitude and latitude of the sensor position is attached.

4.2 Architecture
The whole concept of this application is to have separated logical units, which will commu-
nicate over services. Also known as Microservice architecture. Technologies like Quarkus
and Kubernetes are a clear example, where it is mandatory to use this type of architecture.
In this section, we will describe how each technology will be involved in the final applica-
tion. This approach is from the backend side of the application to the frontend and user
view,for the designed application.

Build system

Maven is a building system that is among the best alongside Ant and Gradle. Ant applica-
tions began early, and after a while, most applications turned to the maven and immediately
at the foot of the Gradle. In my opinion, maven is the most stable and straightforward
build system that a developer can currently use in terms of configuration and extension.
The backend part of the application is using the maven build system. On the other hand,
for frontend application is used node package manager.

33

https://urbanobservatory.ac.uk

Application

Kubernetes cluster is holding every single logical unit inside. This cluster will encapsulate
the whole application with the integration of Strimzi, Quarkus, and React apps.

Backend

There is several applications within the backend. The first application, which will be
deployed is Strimzi. The main responsibility is to have all data always backed up in case
that system went down or any issues like an upgrade of the next version of the application.
Kubernetes solves all these needs by increasing the number of pods of the application, which
will provide fault-tolerance of the system. Moreover, Strimzi provides high performance,
distribution, and commit log service. Additionally, it will simulate the fast transfer of each
message, which is provided by smallrye-kafka 1 the connector from the Quarkus. Concisely
said, this extension wraps all configuration of producer and consumer console application
behavior. Inside the Quarkus application, we need to change application.properties to
create a topic with specific commands.

In the following Figure 4.1, one see the whole backend application with three core units.

slStrimzi
serviceLoad

Generator
service

NO2
NO

CO2

Exposer

Figure 4.1: Backend architecture of the application

The next unit inside the Kubernetes cluster will be already mentioned application
based on Quarkus. It will periodically query on http://uoweb3.ncl.ac.uk with a specific
endpoint. If necessary, it will parse the data set provided by the endpoint, modify then for
our purposes and also remove duplicates. Moreover, this customized data will be sent to
Kafka and later on retrieve for the aggregation phase. We need only few attributes from
the data set, which is the position of sensor expressed by longitude and latitude and the
type of gas together with related concentration value.

Aggregated data will be exposed to the particular endpoint and accessed in http://ip-
address:8080/name-of-the-endpoint by default in 8080 port. These two mentioned tech-
nologies make the core application backend.

Frontend

The subsequent frontend unit inside Kubernetes is React. Based on its role will consist
of few parts. First, its main responsibility is that data, which will flow from Quarkus
to Strimzi, will be after that process aggregated and exposed by Quarkus on a specific
endpoint. Furthermore, React will use the Google API 2 to get maps with related sensors

1Smallryle Kafka is a connector with which it is possible to communicate between Quarkus and Kafka
with the help of channel streams implemented in Quarkus extension. In the case of interest more can be
found here https://smallrye.io/smallrye-reactive-messaging/#_interacting_with_apache_kafka

2Google Map API - https://developers.google.com/maps/documentation/javascript/tutorial

34

http://uoweb3.ncl.ac.uk
https://smallrye.io/smallrye-reactive-messaging/#_interacting_with_apache_kafka

and a specific concentration of gasses. The single-page application, also known as SPA,
wraps all that we mentioned. The following figure 4.3 shows backend units Quarkus and
Strmzi with related communication between Quarkus and React.

In the following figure 4.2, we can see the frontend of the application.

Frontend

User

Figure 4.2: Frontend architecture of the application

The last important component of the application is the Google Maps API. It
provides the ability to mark each sensor as one unit with some area. This area will represent
air pollution across a few meters. Further, we are able to show to users everything that
changes in our data with a form of markers. These markers will have precise info about the
concentration of specific gasses done by an uncomplicated info window.

The following figure 4.3 summarizes all the logical units, which I mentioned. Every single
circle represents pod, which from the Kubernetes chapter, is the smallest unit, deployable
inside the Kubernetes cluster. These pods are communicating through external or internal
Kubernetes services.

slStrimzi
serviceLoad

Generator

Frontend

User

service

service

NO2
NO

CO2

Exposer

Figure 4.3: Final architecture of the application

Deployment of application

Before we start with deploying an application, there are few things to be done. First, we
need images. The image in this context means a unit that encapsulates all dependencies
with the build application to be ready in the next phase. After the building phase, we have
images ready to be deployed in any container environment such as Kubernetes or Docker.

35

These local build images are pushed to the external registry quay.io 3 The following stage in
the deployment of the application is to pull these images from an external registry and apply
it to our container environment, which can be done, for instance, by Kubernetes controller
Deployment, where inside his definition, we specify the particular image. Prerequisite to
be able to pull images from the external registry is to be login by docker client to specified
URI. Eventually, when we have all these things ready with related YAML files specifying
images, it is just about command kubectl apply -f deployment-of-application.yaml. The goal
is to have fully automated earlier discussed stages. Done by Makefile 4 file. Everything is
shown in the following picture 4.4.

Registry Quay.io

React source
code with

dependencies

Quarkus source
code with

dependencies

image

image

react
.yaml

load
generator

.yaml

Kubernetes
cluster

exposer
.yaml

Figure 4.4: Application process

3Registry is a server-side application, which can store all kind of Docker images, which leads to a better
consistency of using only one space.

4Build system Makefile - https://www.gnu.org/software/make/manual/html_node/Introduction.html

36

Chapter 5

Implementation

This chapter contains a description of each particular component in a more detailed way.
First of all, we take a look at Quarkus modules, which are Load Generator, Exposer, and
their responsibility to ensure that data is correctly generated, aggregated, and successfully
exposed to REST API. Moreover, we take a close look at how Strimzi is contributing to
this application. Then, we take a close look at the Frontend of the app, where all data is
shown to an user. Lastly, each component will need some configuration to run, which is
provided by the Kubernetes cluster. What needs to be mentioned is mainly a change of
design during implementation. I found that the data provided would not be very usable
within the marathon testing and the load on the system would be almost zero. It was
necessary to synthesize the data and create another component called a load-generator.

Prerequisites

Java or GraalVM, if we want native images. Java-script by for those dependencies are
to take care of the React npm module. Moreover, the next reliance is Docker, where all
images are built and then pushed to the external registry. To be able anyhow to push
images, we also need some account, in that case, quay.io. Additionally, to adapt to the
Kubernetes environment, we need to create Deployment files to our application, where we
specify path to the pushed images at the external registry. Finally, we need somehow be
able to communicate across the cluster, and even with manual testing, we need to expose
to be accessible from outside of the world. Kubernetes service, solves this problem and for
this we can use for instance Nodeport.

5.1 Backend components

Load Generator

It is the first module, a component of the application. As previously mentioned, the pri-
mary responsibility of Load Generator is to guarantee that receives all data from the Load
Generator . We used the data provided by Bsc. Simon Woodman PhD., and with that,
we are able to synthesize addtional data in similar format to simulate a heavy load to the
Strimzi system. What gives us the advantage to be dependent on external data is the
variability to generate data in any way. In general, we can simulate real traffic and use
this advantage to create stress tests where the load will sequentially grow, and our only
limitation is hardware. In the following Figure 5.1, one can see how the data are structured.

37

sensorName: iotSensor1
date: 10:11:01T2019.10.01
longitude: -41.23213211131
latitude: 12.1231213213
gasses: [CO2 : 113.12231, ...]

Figure 5.1: Message structure with specific attributes

To be more exact, for the transfer of this kind of data, we used the channels provided
by the Smallrye connector 1. The essential to do is the configuration part, which consists of
specifying of which connector should be used, to which topic we need to produce data, and
lastly, which serializer class we want to use. For clarity, properties can be seen in Figure
5.2.

mp.messaging.outgoing.channel-name.connector=smallrye-kafka
mp.messaging.outgoing.channel-name.topic=topic-name
mp.messaging.outgoing.channel-name.value.serializer=serializer-class

Figure 5.2: Connector properties of Kafka connect

In Figure 5.3, we can see pseudo code for generation messages in the Load Generator
component. The speed of generating of messages depends on GENERATION_INTERVAL.
Moreover, in each tick we randomly create instance of message with longitude and latitude
regarding on the Newcastle location.

@Outgoing(channel-name)
public String generate() {

Generator.interval(GENERATION_INTERVAL).tick -> {
recordEntity = new RecordEntity(

sensorNameRandom,
randomBetween(longitudeMin, longitudeMax),
randomBetween(latitudeMin, latitudeMax)

);

recordEntity.setGassesArray(gasses);

return recordEntity.toString();
}

}

Figure 5.3: Pseudo code - Generation of messages in asynchronous way

1Kafka connect connector, used for communication with the Apache Kafka, https://smallrye.io/smallrye-
reactive-messaging/#_integrating_with_apache_camel

38

Exposer
The goal of the Exposer is to merge all messages, which is pushed to the Kafka by Load
Generator, extract them all, and subsequently aggregated it. Simple as it sounds.

Overall, the flow of the components can be depicted in the following Figure 5.4. Where
firstly, Load Generator, through the channel pushing data to the Kafka connect the source
and the Kafka, will actualize data in a particular topic whenever the generator pushes new
data. On the other hand, Exposer will grab all the data and then aggregated it. Lastly, this
aggregated data is exposed by REST API at the particular endpoint with the media-type
text/event-stream 2, which behaves like an endless loop, periodically pushing new changes
to the specific parameter.

Kafka
Connect
Source

Kafka

Kafka
Connect
Sink

Load
Generator

NO2
NO CO2

@outcoming Exposer@incoming

Figure 5.4: Quarkus components in more detail

5.2 Frontend
The frontend side of the application is built by the technology called React. Few interesting
things are worth mentioning. Mainly, it is about parsing the data from Exposer 5.1 with
the help of the event-source interface, which creates a data tunnel between these points and
only ensures that one connection is allocated. Furthermore, what is worth mentioning is
the heap-map provided by google-api, which servers and shows a gas concentration of each
sensor. Lastly, the location of each sensor is represented by the Marker provided also by
google-api.

5.3 Kubernetes deployment
In order to have everything working inside some container orchestral, we need firstly resolve
two problems. The first that we need our components encapsulated in the docker images.
Secondly, we need these images encapsulate inside the Kubernetes deployments. Once you
build the docker images, you can not change it or modify it. Images are defined by a

2Event based feature, an alternative to web-sockets more https://developer.mozilla.org/en-
US/docs/Web/API/Server-sent_events/Using_server-sent_events

39

file called Dockerfile 3, where we specify all the dependencies with additional steps for the
instance entry point. In other words, what should be executed after the Deployment of the
image is done. When we are done with the building phase, we need to tag each docker image
as follows. Conventionally it is registry-name/organization-name/image-name. The next
step is to make sure that these images are pushed to the external registry, and ultimately, we
have defined Kubernetes deployments and services for the communication. In the Figure
5.5, we can see an example of the Deployment of my application. I comment on a few
attributes to add clarity to the Figure 5.5:

1. identifying object or controllers inside the Kubernetes domain.
2. metadata for the Deployment of Load-generator, its name to identify the Deployment.
3. replication factor of the pod in this case only one,
4. name of the container running inside the pod,
5. name of the image, which will be executed inside the container.

apiVersion: apps/v1
kind: Deployment (1)
metadata:

name: my-quarkus-load-generator (2)
spec:

selector:
matchLabels:

run: my-quarkus-load-generator
replicas: 1 (3)
template:

metadata:
labels:

run: my-quarkus-load-generator
spec:

containers:
- name: my-quarkus-load-generator (4)

image: quay.io/seequick/bachelor-thesis-quarkus (5)
command: ["java"]
args: ["-jar", "load-generator/target/load-generator-0.1.0-runner.jar"]
ports:
- containerPort: 8081

Figure 5.5: Deployment of the Load-generator component

Same applied for the Kubernetes services I comment on a few attributes to add clarity
to the Figure 5.6:

1. identifying object or controllers inside the Kubernetes domain
2. type of external service for more information see, 2.1
3. port where application is accessible inside running, container
3Definition of the image https://docs.docker.com/engine/reference/builder/

40

4. port where application is accessible from Service,
5. port where application is accessible from external Service.

apiVersion: v1
kind: Service (1)
metadata:

name: my-quarkus-load-generator
spec:

type: NodePort (3)
ports:
- port: 8081 (4)

targetPort: 8081 (5)
protocol: TCP
name: http
nodePort: 30002 (6)

Figure 5.6: Service of the Load-generator component

41

Chapter 6

Testing

The application has been tested in various ways at different levels. Starting from the lowest
level of unit tests guaranteeing functionality and stability. Moreover, detecting of errors
immediately though to system tests. Finally, a combination of created applications with
the system Strimzi was tested by a marathon test. In other to be able to extend the app
effectively without any errors, I have implemented a continues-integration pipeline, which
checks essential dependencies and runs smoke tests.

6.1 Testing regression
Units of this system are considered, for instance, objects that are representing the whole
record. In our case, it is the air-pollution object. The correct approach on how to achieve
the state when we can claim that class has a 100% of method covered by tests is as follows.
Firstly, we need to make sure that every value attribute is tested after the assignment.
Additionally, we need to take care of arrangements and try every path that can be reachable
in our code.

In our case, we need to test the behaviour of each component. This is considered as a
module test of the specific component. We are testing how it reacts to the messages that we
are sending. Unfortunately, two components can be tested in this way because the Exposer
is strictly dependent on data, which are produced by Load-Generator and without them is
not able to process it and do aggregation part. The Load-generator has two types of tests:

∙ Module level – we can imagine it as a test that will check the whole behaviour of
class itself. In other words, in the test case, we create the object representation of the
class and invoke a specific method.

∙ System level – in this case, we need to consider part to create the whole system with
the Kafka cluster, zookeeper and the instance of Load-Generator, which uses streams
with the specific name of the name using @Outcoming(”x“), where the x is the name
of the stream. Here, we have a few dependencies to our system, for instance:

– Debezium implementation of in-memory Apache Kafka cluster with the zookeeper
for processing and elegant usage. Encapsulation of the complex system and cre-
ate a simple interface, which can be described by two words as a Facade pattern.
[16]

42

– Smallrye channels - used for catching the messages from the specific stream
invoked by the Load-Generator. 1

Furthermore, previously described stuff can be applied to other components. What is
an exception is that on the system level, we are not able to verify it. I have discovered that
if I want to test two components because the Exposer can not be tested as one unit on the
System level. This is from a simple problem, because Exposer needs data from the Load
Generator, and if the Load Generator does not exist, it is impossible to test it.

Last, the component is the React frontend application, and there is the smoke test,
which just checks that the app can deploy, and we do not have a white screen. It is just
starter before, verifying that google-api works and more.

6.2 Marathon test
The verification phase of this system is a little bit complicated. The first idea can be to
check each message that is sent to the Strimzi and every single message that is retrieved.
But we will simulate load equal to one hundred thousand records per second, therefore
checking each particular message is impossible. The different ideas could be to check logs
and the status of the whole application. In the Kubernetes world, we will just check pod,
custom resource statuses, and metrics exported by Kafka. This approach can be effortlessly
delivered compared to the first scenario.

Moreover, we need to take into consideration the following steps to create a pipeline
with the following stages:

∙ automation – point can be covered by Junit5 framework
∙ kubernetes client – creating abstract Kubernetes client, which will encapsulate CLI

client commands to use it in java code
∙ reporting – to be able to access this logs via top-level with the help of Jenkins 2 tool

Furthermore, we designed system tests from the perspective of marathon tests. The
goal of these types of tests is found bugs in the product that can only be found in long term
testing. One of the test cases is that we deploy a whole application with the Strimzi and
periodically every 30 minutes check the status of all pods together with additional detailed
information about Kafka resources. A load of generating messages can be parametrized by
environment variables inside the load generator container. In general, these tests should
run around one week to have some impact and informal value. Following figure 6.1 shows
these steps.

6.3 Continuous Integrations
Martin Fowler, once said that is a software development practise where members of a
team unite their work regularly, typically, each person integrates at least daily - leading to
multiple integrations per day. Each sequence is verified by an automated build (including
test) to detect integration errors as quickly as possible. Many companies find that this
approach leads to significantly decreased integration difficulties and allows a team to develop
cohesive software more swiftly.[17]

1Smallrye channels - https://smallrye.io/smallrye-reactive-messaging/#_channel
2CI/CD tool https://jenkins.io/

43

https://junit.org/junit5/

Junit5Kubernetes
client

wait x
minutes/hoursSystem test

External
system

Kubernetes cluster

Strimzi

verification
of pods & CR

statuses

Jenkins (CI/CD)

Figure 6.1: Process of the designed marathon test

Continuous Integration is considered as an essential part of the whole system for future
work and the smooth development of new features. In my case, I have implemented con-
tinuous integration with the Github actions. The definition of the pipeline can be seen
in the following Figure 6.2.

In this case, we can see that this is just pipeline that verify that application can be built
with all type of dependencies with also transitive one. We can some of these attributes
described in points to make it more clear:

1. name of the pipeline
2. triggers CI on every push or pull-request by some contributor. In other words, if we

do some change to the Github repository, it will start the verification phase of the
whole application

3. selected image, where the whole application will be tested. In different statements,
an environment is selected for the testing; in this case, it is ubuntu-latest, which is
the Debian distribution of the Linux.

4. Lastly, we have the steps, which must be in all the pipelines. In these steps, we
sequentially write all tasks that have to be one like in this case, we installing needed
dependencies, and finally, we build the projects Quarkus and then React.

44

name: simple-continous-integration (1)
on: [push, pull_request] (2)
jobs:

build:
runs-on: ubuntu-latest (3)
steps: (4)

- uses: actions/checkout@v1
- name: Install Java Development Kit Version 11

uses: actions/setup-java@v1
with:
java-version: 11.0.2

- name: Install Maven
run: sudo apt install maven

- name: Build the Quarkus
working-directory: ./Quarkus
run: |

mvn clean install -DskipTests
- name: Install Nodejs & Npm

run: |
sudo apt install nodejs -y
sudo apt install npm -y
sudo npm install npm@latest -g
sudo npm install nodejs@latest -g
sudo nodejs -v
sudo npm -v

- name: Install & Build the React
working-directory: ./React
run: |

sudo npm install -g
sudo npm run-script build

Figure 6.2: Service of the Load-generator component

6.4 Experiments
The main aim of these experiments was to obtain information about the reliability of the
system for specific purposes. What’s more, due to the data provided by the load-generator.
I have used few open-sourced tools as follows:

∙ The Prometheus 3 monitoring tool designed for the Kubernetes environment. Its
main responsibility is to take all the metrics from the Kafka cluster and provide it to
the Grafana.

∙ The Grafana 4 is a visualisation tool taking the data from the Prometheus we are
able to see it an abstract way in the form of dashboards.

3Alerting toolkit provides data - https://prometheus.io/docs/introduction/overview/
4Monitoring tool, known for their beautiful dashboards - https://grafana.com/

45

In our case, we decided to do two types of testing. Firstly, we focused on the low load
and deployment with one Kafka cluster, which contains three nodes of Kafka and three
nodes of Zookeeper.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Hour 00 Hour 02 Hour 04 Hour 06 Hour 08 Hour 10 Hour 12 Hour 14

M
e
m
o
ry

 U
s
a
g
e

 [
G
iB
]

Time [date]

my-cluster-kafka-2
my-cluster-kafka-0
my-cluster-kafka-1

Figure 6.3: First Marathon test - metrics (memory-usage)

 0

 1

 2

Hour 00 Hour 02 Hour 04 Hour 06 Hour 08 Hour 10 Hour 12 Hour 14

C
P
U

 U
s
a
g
e

 [
c
o
re
s
]

Time [date]

my-cluster-kafka-2
my-cluster-kafka-0
my-cluster-kafka-1

Figure 6.4: First Marathon test - metrics (cpu-usage)

46

 0

 2000

 4000

 6000

 8000

 10000

Hour 00 Hour 02 Hour 04 Hour 06 Hour 08 Hour 10 Hour 12 Hour 14

M
e
s
s
a
g
e

 C
o
u
n
t
[M
P
S
]

Time [date]

message per second

Figure 6.5: First Marathon test - metrics (message-per-second)

The test lasted approximately 16 hours, and it was found that there was no error in
the system. We generate approximately five thousand messages per second, where each
message has around 500 bytes. What was interesting to observe that after a while ratio of
messages was at the lowest point about two thousand messages.

Also, we must take into consideration that message is a representation of the air pollution
object, which is then shown to the user. This is the baseline experiment shows that the
Strimzi can handle this load simultaneously for some period of time. The figure 6.3, shows
that the system was ready for that load and nothing special happened.

Moreover, it was interesting to observe that we only produce and consume roughly from
five thousand to ten thousand messages per second even when we set the counter of an
environment variable to generate about one-hundred thousand messages per second. This
situation could happen for various causes. For instance the network restriction, Quarkus
Kafka client limitation and more.

The second and the heaviest were past about 14 hours with a load of sending and
receiving ten-thousand messages. In the Figures 6.6, 6.7, 6.8 to compare with the result
from previous experiment 6.3, 6.4, 6.5 are values more than doubled. The main reason
for this is that Kafka saves records for one week by default, but the latest one Kafka
saves in-memory to quick processing and immediate response. We have also checked other
parameters as follows:

∙ Network processor average idle in percentage – does not goes below 90% for
all previously mentioned experiments

∙ Request handler average idle in percentage – does not goes below 90% for all
previously mentioned experiments

47

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

Hour 02 Hour 04 Hour 06 Hour 08 Hour 10 Hour 12

M
e
m
o
ry

 U
s
a
g
e

 [
G
iB
]

Time [date]

my-cluster-kafka-2
my-cluster-kafka-0
my-cluster-kafka-1

Figure 6.6: Second Marathon test - metrics (memory-usage)

∙ Producer request rate – always matched with the messages per second generated
by Load-generator

∙ Fetch request rate – request rate, depends on the the Exposer, which consuming
the messages

∙ Byte rate – calculated by the formula message count * message size
∙ JVM 5 memory used
∙ CPU usage

Furthermore, what is worth to mention that we also experiment with the count of the
Load-generator and Exposer replicas, instances. For instance, we have deployed like
fifty Pods of that application where all data were generated to the Kafka cluster and most
of the time the whole cluster died cause of memory and CPU was not ready for such a load.

Based on the performed experiments, we have found that the Strimzi system is reliable.
Meaning of reliability, in this case, means that the Strimzi was able to respond to client
requests in the quick period of time, and there was also no critical error that would cause
the system to be shuted down.

5Java virtual machine - https://www.geeksforgeeks.org/jvm-works-jvm-architecture/

48

 0

 1

 2

Hour 02 Hour 04 Hour 06 Hour 08 Hour 10 Hour 12

C
P
U

 U
s
a
g
e

 [
c
o
re
s
]

Time [date]

my-cluster-kafka-2
my-cluster-kafka-0
my-cluster-kafka-1

Figure 6.7: Second Marathon test - metrics (cpu-usage)

 0

 2000

 4000

 6000

 8000

 10000

Hour 02 Hour 04 Hour 06 Hour 08 Hour 10 Hour 12

M
e
s
s
a
g
e

 C
o
u
n
t
[M
P
S
]

Time [date]

message per second

Figure 6.8: Second Marathon test - metrics (message-per-second)

49

Chapter 7

Conclusion

This thesis aimed to design, implement, and test the application, which demonstrates the
user conditions. Moreover, the created app claims that the system Strimzi is reliable.
We mainly focus on the backend of the created application based on the sub-atomic java
Quarkus. Furthermore, we have focused on the clustering side, which was supported by
the Kubernetes. Besides, we have learned and described the necessary technologies for the
creation of this application.

Based on this knowledge, We have implemented the external system, which is used
as a separate component in our project Strimzi for the load-testing more specifically for
the long-term tests. What is worth to mentioning is that we also consulted the designed
components with the Quarkus developers from the Redhat. Moreover, we have introduced
the designed marathon test, as a is the verification of the system Strizmi. The designed
application was tested on various levels. Starting from the units test, module test to the
system level, where we have experimented with the marathon testing. In the end, we have
also created a simple continuous integration by Github actions, which serves as a starting
point to be able quickly to extend the application with quickly finding the bugs and detect
bugs.

This work was shown at the community-central summit1 at the RedHat, where presen-
tation was performed. Secondly, we have created another presentation for the Open-house
2 event, which is organized every year for sharing of hot themes, cutting-edge technolo-
gies and more. Additionally, the article3 was written to the Excel@FIT20204, which, in a
nutshell, summarized all the substantial parts written in this work.

We probably all know the quote: ”There is always room for improvement.“ My work is
not an exception. I see the areas where it can be useful, for instance, in integration tests
or marathon testing. We can actually characterize this practice as a pioneer in long-term
testing. Fortunately, this work has a future in terms of extension, when we plan to use
it and after that modify and extend it. For instance, to create a better and sophisticated
verification of the system itself.

1In case of interest more can be found https://www.redhat.com/en/summit
2Redhat event, where are shown all hot themes - https://openhouse.redhat.com/cz/
3https://github.com/Godzillah/excel-article/blob/master/2020-DataProcessingWithStrimzi.pdf
4http://excel.fit.vutbr.cz/

50

Bibliography

[1] authors, K. Kubernetes [online]. 2019 [cit. 2019-11-10]. Available at:
https://mapr.com/products/kubernetes/assets/k8s-logo.png.

[2] authors, O. Graal Virtual Machine [online]. 2020 [cit. 2020-04-20]. Available at:
https://www.graalvm.org/.

[3] authors, O. Open Java Development Kit system [online]. 2020 [cit. 2020-04-20].
Available at: https://openjdk.java.net/.

[4] Authors, T. B. CDI description [online]. 2019 [cit. 2019-12-04]. Available at:
https://www.baeldung.com/java-ee-cdi#overview.

[5] Authors, T. K. Queuing and publish & subscribe model [online]. 2019 [cit.
2019-16-10]. Available at:
http://kafka.apache.org/documentation.html#intro_consumers.

[6] Authors, T. K. Custom resource [online]. 2019 [cit. 2019-11-24]. Available at:
https://medium.com/velotio-perspectives/extending-kubernetes-apis-with-
custom-resource-definitions-crds-139c99ed3477.

[7] Authors, T. K. History [online]. 2019 [cit. 2019-11-24]. Available at: https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time.

[8] Authors, T. K. Kube-controller-manager [online]. 2019 [cit. 2019-11-09]. Available at:
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-
controller-manager/.

[9] Authors, T. K. Kubernetes components [online]. 2019 [cit. 2019-12-06]. Available at:
https://kubernetes.io/docs/concepts/overview/components/.

[10] Authors, T. K. Namespaces [online]. 2019 [cit. 2019-11-10]. Available at:
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/.

[11] Authors, T. K. Operator [online]. 2019 [cit. 2019-11-24]. Available at:
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/.

[12] Authors, T. K. Service [online]. 2019 [cit. 2019-11-10]. Available at:
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-
services-service-types.

[13] Authors, T. S. Topic operator [online]. 2019 [cit. 2019-11-24]. Available at:
https://strimzi.io/docs/latest/.

51

https://mapr.com/products/kubernetes/assets/k8s-logo.png
https://www.graalvm.org/
https://openjdk.java.net/
https://www.baeldung.com/java-ee-cdi#overview
http://kafka.apache.org/documentation.html#intro_consumers
https://medium.com/velotio-perspectives/extending-kubernetes-apis-with-custom-resource-definitions-crds-139c99ed3477
https://medium.com/velotio-perspectives/extending-kubernetes-apis-with-custom-resource-definitions-crds-139c99ed3477
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://strimzi.io/docs/latest/

[14] Authors, T. S. Strimzi system [online]. 2020 [cit. 2020-03-20]. Available at:
https://strimzi.io/.

[15] authors w3schools. Basic concepts of React javascript library [online]. 2017 [cit.
2019-12-23]. Available at: https://www.w3schools.com/react/react_lifecycle.asp.

[16] Community, D. Debezium [online]. 2020 [cit. 2020-02-14]. Available at:
https://debezium.io/.

[17] Fowler, M. Continuos Integration [online]. 2020 [cit. 2020-02-16]. Available at:
https://martinfowler.com/articles/continuousIntegration.html.

[18] Guru99. Load Testing Tutorial: What is? How to? (with Examples) [online]. 2019
[cit. 2019-11-09]. Available at: https://www.guru99.com/load-testing-tutorial.html.

[19] IconArchive.com. Computer [online]. 2019 [cit. 2019-11-10]. Available at:
http://www.iconarchive.com/show/3d-bluefx-desktop-icons-by-wallpaperfx/
Monitor-icon.html.

[20] Inc., D. Docker [online]. 2016 [cit. 2019-11-10]. Available at:
https://s3-us-west-2.amazonaws.com/com-netuitive-app-usw2-public/wp-content/
uploads/2016/06/small_v-trans.png.

[21] Inc, F. React – A JavaScript library for building user interfaces [online]. [Online;
visited 2019/11/03]. Available at: https://reactjs.org/docs/getting-started.html.

[22] Inc., F. Fundamentals of React [online]. 2017 [cit. 2019-12-23]. Available at:
https://reactjs.org/docs/.

[23] MimasTech. KVM [online]. 2016 [cit. 2019-11-10]. Available at:
http://www.mimastech.com/wp-content/uploads/2016/03/kvm-logo.png.

[24] Redhat. Quarkus, Supersonic & Subatomic java [online]. [Online; visited 2019/09/15].
Available at: https://quarkus.io/guides/.

52

https://strimzi.io/
https://www.w3schools.com/react/react_lifecycle.asp
https://debezium.io/
https://martinfowler.com/articles/continuousIntegration.html
https://www.guru99.com/load-testing-tutorial.html
http://www.iconarchive.com/show/3d-bluefx-desktop-icons-by-wallpaperfx/Monitor-icon.html
http://www.iconarchive.com/show/3d-bluefx-desktop-icons-by-wallpaperfx/Monitor-icon.html
https://s3-us-west-2.amazonaws.com/com-netuitive-app-usw2-public/wp-content/uploads/2016/06/small_v-trans.png
https://s3-us-west-2.amazonaws.com/com-netuitive-app-usw2-public/wp-content/uploads/2016/06/small_v-trans.png
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/
http://www.mimastech.com/wp-content/uploads/2016/03/kvm-logo.png
https://quarkus.io/guides/

	Introduction
	Fundamentals of Kubernetes, Kafka and Strimzi
	Kubernetes
	History
	Container orchestration
	Common objects
	Controllers

	Apache Kafka
	Motivation behind Kafka
	Terminology
	Publish and subscribe model
	Kafka streams
	Kafka connect

	Strimzi
	Custom resources definitions and custom resources
	Operator pattern
	Architecture
	Cluster operator
	Topic Operator
	User Operator

	Fundamentals of Quarkus and React
	Quarkus
	Compile options
	Lifecycle
	Semantics of annotations

	React
	Virtual Document Object Model
	Components
	Properties
	State
	Lifecycle
	Events

	Design of the application
	Dataset
	Architecture

	Implementation
	Backend components
	Frontend
	Kubernetes deployment

	Testing
	Testing regression
	Marathon test
	Continuous Integrations
	Experiments

	Conclusion
	Bibliography

