
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

SURVEILLANCE VIDEO SEARCH

VYHLEDÁVÁNÍ V ZÁZNAMECH BEZPEČNOSTNÍCH KAMER

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR LUKÁŠ PIWOWARSKI
AUTOR PRÁCE

SUPERVISOR Doc. RNDr. PAVEL SMRŽ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia
(DCGM)

Academic year 2019/2020

Bachelor's Thesis Specification

Student: Piwowarski Lukáš
Programme: Information Technology
Title: Surveillance Video Search
Category: Artificial Intelligence
Assignment:

1. Analyze existing approaches to surveillance video processing and methods for
recognizing basic characteristics of people and vehicle movements (their speed and
direction).

2. Survey relevant datasets usable for continuous testing of results.
3. Design and realize a system for efficient search in surveillance video through semantic

queries (for example, relating the trajectory to the monitored area).
4. Run and evaluate experiments on representative data.
5. Create a poster presenting your work, its goals and results.

Recommended literature:
Raval, R. M., Prajapati, H. B., & Dabhi, V. K. (2019). Survey and analysis of human
activity recognition in surveillance videos. Intelligent Decision Technologies, 13(2),
271-294.

Requirements for the first semester:
A prototype of the search system

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Smrž Pavel, doc. RNDr., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: March 31, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22439/2019/xpiwow00 Strana 1 z 1

Abstract
With the growing number of video recordings produced by security cameras, the demand for
systems that are able to search them is growing as well. This work examines such systems
and methods that are behind them.

The introduction of this thesis describes the scheme of surveillance video search systems
together with the methods that these systems use to store information they obtain during
the video analysis. Algorithms for object detection (YOLO) and object tracking (DeepSort)
are also introduced. These algorithms are then used in a system created for the practical
part of this thesis.

The end of the thesis describes the created system, which uses the trajectories of detected
objects in searched video recordings. To specify the searched events, the proposed query
language within this work is used. This language consists of so-called search blocks, the
composition of which can be used to define situations such as: "a person got out of a car"
or "a car stopped in a parking space".

Abstrakt
S rostoucím množstvím video záznamů produkovaných bezpečnostními kamerami roste pop-
távka po systémech, které jsou schopné je prohledávat. Tato práce zkoumá právě takové
systémy a metody, které za nimi stojí.

V úvodu práce je popsáno schéma systémů pro vyhledávání záznamů z bezpečnostních
kamer společně s metodami, které tyto systémy používají pro uchovávání informací, které
získávají při analýze videí. Představeny jsou také algoritmy pro trasování objektů (Deep-
Sort) a detekci objektů (YOLO), které jsou využity v systému vytvořeného v rámci této
práce.

Závěr práce je věnován vytvořenému systému, který využívá trajektorií detekovaných
objektů v prohledávaných záznamech. K specifikování hledaných událostí systém využívá
v rámci této práce navrženého dotazovacího jazyka. Tento jazyk se skládá z tzv. vyh-
ledávacích bloků, jejichž skládáním mohou být definovány situace jako: „člověk vystoupil z
auta“ nebo „auto zastavilo na parkovacím místě“.

Keywords
surveillance video search, object detection, object tracking, object trajectory-based video
search, homography

Klíčová slova
vyhledávání v záznamech bezpečnostních kamer, detekce objektů, trasování objektů, vyh-
ledávání objektů podle jejich trajektorie, homografie

Reference
PIWOWARSKI, Lukáš. Surveillance Video Search. Brno, 2020. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Doc. RNDr. Pavel
Smrž, Ph.D.

Rozšířený abstrakt
Každým rokem přibývají na světě nové bezpečnostní kamery. S tím, jak roste jejich počet,

roste také poptávka po systémech, které jsou schopné efektivně prohledávat velké množství
záznamů vyprodukované těmito kamerami. Tyto systémy jsou vyhledávány jak soukromým
sektorem, tak policejními složkami. Čas, který pak tyto systémy ušetří, může být efektivně
využíván například právě policejními složkami k vyšetření většího množství kriminálních
případů či přestupků. Text této bakalářské práce představuje právě takové systémy a jed-
notlivé části, ze kterých se skládají.

Existuje více přístupů k prohledávání kamerových záznamů, ale obecně se schéma sys-
témů pro prohledávání kamerových záznamů napříč těmito přístupy příliš neliší. Lze proto
představit tři hlavní pilíře, které se nacházejí u většiny těchto systémů. Každý z těchto
pilířů je také detailně popsán v textu této práce.

První z nich je databáze, která uchovává informace extrahované z analyzovaného videa.
Mezi takové informace lze zařadit například polohu detekovaných objektů nebo také jejich
barvu či tvar.

Další neméně důležitou části je analyzátor videa, který je zodpovědný za získávání infor-
mací, které jsou pak uchovávány v databázi. Tato práce se zaměřuje na vytvoření systémů,
který využívá informace o pohybu objektů detekovaných ve videu (člověk nebo automobil).
Proto jsou v práci popsány principy detektorů objektů a algoritmů pro trasování objektů.

Poslední klíčovou částí je uživatelské rozhraní, které uživatel využívá pro specifikování
hledaných objektů či událostí. Uživatelské rozhraní může být přizpůsobeno prostředí, pro
které byl systém vytvořen (rozhraní pro vyhledávání automobilů bude jiné než rozhraní pro
vyhledávání lidí) nebo může nabývat obecnějších rozměrů, tak aby bylo možné jeho nasazení
v různých prostředích. Narazit tak můžeme například na systém, ve kterém specifikujeme
hledanou událost pomocí kreslení čar určující pohyb hledaných objektů nebo také systémy,
ve kterých můžeme specifikovat hledanou událost za pomocí přirozeného jazyka. Způsob
prohledávání extrahovaných informací však zůstává stejný.

V druhé části práce je popsán systém, který byl implementován v rámci praktické části.
Jedná se o systém, který je schopen prohledávat kamerové záznamy. Systém je založen
na sledování trajektorií pohybu jednotlivých objektů v záznamech. Informace o polohách
detekovaných objektů v čase je uchovávána v databázi, která je pak následně prohledávána.

Pro specifikování hledaných událostí či objektů byl vytvořen jednoduchý dotazovací
jazyk, která se skládá z tzv. vyhledávacích bloků. Skládáním vyhledávacích bloků pak
uživatel může definovat události jako je například: „člověk vystoupil z automobilu”. Takový
požadavek na vyhledávání může být vytvořen složením tří bloků: „objekt”, „objevit se”,
„do vzdálenosti od objektu”. Výsledný dotaz na vyhledávání po tom, co jsou jednotlivé
vyhledávací bloky naplněny dodatečnými informacemi, vypadá takto: „Osoba se objevila
ve vzdálenosti do 3 metrů od automobilu”. Jakmile systém obdrží tento dotaz na vyhledání
jsou z databáze vybrány kandidátní objekty typu „osoba”. Tyto kandidátní objekty jsou
pak následně testovány, zda se některý z nich nenacházel ve vzdálenosti do 3 metrů od
objektu typu automobil.

Testováním bylo zjištěno, že systém je schopen kromě výše zmíněného příkladu nalézt
situace jako „automobil přijel na parkoviště” či „člověk vstoupil do budovy” nebo také „au-
tomobil zastavil na konkrétním parkovacím místě”. Jazyk pro vytváření dotazů je postaven
tak, aby bylo možné do budoucna přidávat nové vyhledávací bloky. Proto by mohly přibýt
například blok pro specifikování dominantní barvy objektu nebo případně jeho výšky a další.

Surveillance Video Search

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Doc. RNDr. Pavel Smrž, Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Lukáš Piwowarski

May 28, 2020

Acknowledgements
I would like to thank my supervisor Doc. RNDr. Pavel Smrž, Ph.D. for his guidance and
willingness. Also, I would like to thank my family and friends who supported me and helped
me to review this thesis.

Contents

1 Introduction 3

2 Surveillance video search 4
2.1 What is surveillance video search? . 4
2.2 General scheme of video surveillance systems 5
2.3 Examples of video search systems . 6

2.3.1 IMB Video Analytics . 6
2.3.2 Axxonsoft . 7
2.3.3 Camio . 8

2.4 Approaches in storing video events . 8
2.4.1 Storing events in tables . 8
2.4.2 Indexing events using spatio-temporal and-or graphs 9
2.4.3 Indexing events using feature trees 11

3 Object detection 12
3.1 Introduction to object detection . 12
3.2 Evaluating performance of an object detection algorithm 13
3.3 The Viola-Jones algorithm . 14
3.4 Histogram of Oriented Gradients based object detection 15
3.5 Scale invariant feature transform based object detection 16
3.6 Using convolutional neural network for object detection 17
3.7 You Only Look Once . 18

4 Computer vision and homography 20
4.1 Homography matrix . 20
4.2 Estimating homography matrix . 21

5 A theoretical basis for object tracking 23
5.1 Kalman filter . 23
5.2 Mahalanobis distance . 24
5.3 Cosine similarity . 25

6 Object tracking 26
6.1 What is object tracking? . 26
6.2 DeepSORT algorithm . 27
6.3 GOTURN . 28
6.4 TLD . 28

1

7 Implementation 29
7.1 Overview of the system . 30
7.2 Tools used for the implementation . 30
7.3 The architecture of the system . 32

7.3.1 The server side of the application . 32
7.4 The client-side of the application . 33
7.5 Description of the search blocks . 35
7.6 Testing the system . 36

7.6.1 Usability . 37
7.6.2 Testing the capability of the query language and its speed 37

7.7 Future development . 39

8 Conclusion 40

Bibliography 41

A Test protocol 46

B Installation 47

C Poster 48

2

Chapter 1

Introduction

Searching a large number of video recordings from security cameras that are produced
every day requires systems that are able to search them effectively. Such systems use
different methods for extracting information from a video, for storing that information and
subsequently for searching through that extracted information to retrieve searched events.
This work aims to examine these different methods and to explain processes which are
behind the surveillance video search systems.

Chapter 2 of this thesis explains what surveillance video search systems are and briefly
describes their architecture. Also, existing programs which are nowadays used for surveil-
lance video search are introduced. The end of the chapter gives insight into different
approaches that these systems use for storing extracted information from video recordings.

In the following chapter 3, the principle of operation of object detectors is explained as
they play an important role in many video search systems. Methods for object detections
such as the Viola-Jones algorithm, HOG features based object detection or object detection
using convolutional neural networks are also discussed there.

The homography matrix and its function in the calculation of object’s position in the
ground plane is explained in chapter 4. Chapter 5 gives a theoretical basis for the description
of the functioning of object tracking algorithms, especially for the DeepSort algorithm that
is used in the program created for the practical part of this thesis.

Chapter 6 describes the operation of object tracking algorithms. In the beginning of
this chapter, a basic overview of object tracking algorithms is given. The rest of the chapter
introduces the reader to object tracking algorithms such as DeepSort, TLD or GOTURN.

In the second part of the thesis, the implementation of the system for surveillance video
search is described. The system enables the user to specify searched events such as “a person
got out of a car” or “object moved with a certain speed in a certain direction”. The search
is based on the idea of basic search blocks which, when combined, enable the user to create
more complicated queries or to define their own search blocks.

3

Chapter 2

Surveillance video search

This section deals with the research of existing surveillance video search systems. At the
beginning, a brief overview of a scheme of such systems is presented. Further different
approaches in surveillance video search are presented, and the end of this chapter gives
insight into the current possibilities of existing surveillance video search systems.

2.1 What is surveillance video search?
As every day the number of newly installed security cameras grows so does the amount
of created video recordings by these cameras and demand for systems that would be able
to search through this vast number of recordings. Such systems are sought by both police
and private sector with the main goal of saving time spent by people searching through
recordings from security cameras. This time can be used more effectively and in the case
of the police, this may lead to solving more crimes in a shorter time [2].

Systems for surveillance video search differ in the way in which they work and complexity
of queries they allow. Therefore, we can find systems that are only capable of finding
anomalies, such as motion in an area was detected but the type of the object remains
unknown, through systems that are capable of finding situations when a person moved
from place A to place B to the most complex ones which are capable of finding a person
with red t-shirt who ran in a specific area with a specific direction of movement [11] [33] [18].

It is obvious that user requirements differ by the type of recordings they want to analyze.
For example, a user with recordings from a highway will look for a different system than
a person who is interested in analyzing video recordings from a mall. In the case of these
two users, an interface of the system which they use is the thing that differs, but the way
in which the information extracted from the recordings are saved is same for both systems.
When it comes to the highway recordings, a colour of cars, license plate or potentially the
type of car could be the main objects of the search. On the contrary, when it comes to
the mall recordings, a person’s height, age or sex could be the main objects of the search.
Therefore the database of these different systems will contain different information, but the
search method remains the same.

We can say that systems for surveillance video search are such systems which enable
extraction of information from video recordings, storing it in a database and allowing the
user to search through the database effectively to find events or objects of interest.

4

2.2 General scheme of video surveillance systems
There are several types of systems for surveillance video search, but their topology does
not vary dramatically. Therefore it is possible to present one general system which would
represent all of them (figure 2.1). Such a system would contain these parts:

∙ Camera

∙ Video analyzer

∙ Database of extracted information

∙ Video database

∙ Interface for searching

Camera is the most crucial element because the quality of the camera recordings we can
give to our system influences the final functioning of the system. The higher the quality,
the more information can be extracted from the video. The quality of the recording is
determined by its resolution, whether the footage is grey-scale or colourful. A codec used by
the camera also plays a significat role [29]. Because the amount of produced recordings can
be high, a balance between the compression ratio of the codec and the resulting recording
quality must be found. Today the H.264 codec is used by the majority of cameras [34].

A Video analyzer is another element which can be found in surveillance video search
systems. Its primary purpose is to extract information from the recordings. It may be an
object detector (chapter 3) together with an object tracker (chapter 6). When an object
detector detects an object other features of the object might be extracted such as its colour
or shape. This extracted information is then stored in a database of extracted information.
It is also possible that while the recording is being analyzed the events of interest might be
detected during this process and stored in the database, too.

Figure 2.1: General scheme of surveillance video search systems.

We can divide surveillance video search systems according to the approach which they
use during the analysis of a video into two main groups. The first group includes systems
that detect events in a short time after their formation. This requires the user to specify
events of interest before the start of the analysis and speed of analysis of each video frame
under 1/𝑓𝑝𝑠. This is often called a real-time alerting [26]. Systems which need more time
to analyze a video belong to the other group. These systems might be slower but on the
other hand, they may provide a more in-depth analysis of the recording.

5

There is a wide variety of databases that are used for storing extracted infor-
mation from the recordings. The database used for the storing of extracted information
reflects the approach that is used for searching through the database. We can come across
systems which use a relational database [26] but also a simple plain text file [14].

Video database is used for storing video recordings, which are referred to by detected
events or objects stored in the database of extracted information. When searched event
or object is found in the database of extracted information, then the video containing the
searched event or object is retrieved from the video database and presented to the user.

Interface for the search is used for specifying events or objects which the user wants
to find. Interface may take various forms depending on the use case of the system. We
can find systems where the user specifies the searched event using a query language [33].
However, there are also systems where the user draws lines to the video frame to specify
searched event or object [5].

2.3 Examples of video search systems
In this section existing surveillance video search systems are presented.

2.3.1 IMB Video Analytics

IBM Video Analytics [16] offers offline video search but also real-time event detection. In
the case of offline video search, it offers a search of people or cars. It is possible to specify
different attributes of the searched objects such as colour, age of a person, the colour of
skin, or whether a person is wearing glasses or not. As an example, a situation when the
user tries to search for a person wearing a red t-shirt may be used. All that must be done
is to specify object type, which is in this case person and then the dominant colour of the
upper part of the person’s body, which is red. When the search button is pressed a set of
video recordings is displayed sorted by the probability of satisfaction of the query.

As mentioned above, it is also possible to specify rules for real-time event detection.
When the rule is satisfied, then the user is alerted that it happened so. For example, if
a user wants to be warned about a big number of people piling up in a specific area, the
following steps should be made:

1. New rule must be created.

2. Camera capturing the event must be specified.

3. Region of interest must be selected.

4. Constant called Motion area must be set.

The constant Motion area specifies the number of pixels in the region of interest at which
a motion is detected (figure 2.2). This way of definition is used because it is more effective
when it comes to videos with lower resolution. Also, it does not require such computational
power to detect motion at pixel as it does to detect a person.

In a similar way as in the previous two examples, it is possible to define rules for the
detection of long lines at a cashier or analyse traffic on a highway.

6

Figure 2.2: Crowd search in IBM Video Analytics. [40]

2.3.2 Axxonsoft

Axxonsoft [5] is a system which offers real-time detection of events specified by the user and
offline video search. An example of using this system is a search when we try to find a car
leaving a parking lot. If we have one exit from the parking lot, as it is shown in figure 2.3,
then we need to specify a line and direction that determines in what way the object (car)
should cross the line. Similarly, the system offers a search of parts of the videos in which
a certain amount of people is located in a specific area or parts of the videos in which an
object moved from place X to place Y.

Noteworthy is also a feature that cleverly allows the user to show in one video all moving
objects which were recorded at different times. When the user clicks on a specific object,
the part of the video with the object is then presented.

Another capability which this system offers is to search for a person by face. If a user
owns a picture with the searched person, then all that must be done to find the person is
to upload the image to the system, and after that, videos containing the person are listed.

In the case of real-time event detection, the user can specify situations such as:

1. Object entered into an area

2. Object crossed over a line

3. Lingering object

4. Left luggage

7

Figure 2.3: Search of a car leaving or entering a parking lot. [4]

2.3.3 Camio

Camio [10] differs from the two systems mentioned above. It is unique with its user interface
and its simplicity of usage, which may reduce the time needed for learning how to work
with such a system but at the cost of reducing the space of possible queries. To start to
use this system, the user must connect a camera to the software produced by the company,
which then sends video footage to the cloud for analysis if a camera captures a movement.

To search for an event, the user writes a sentence containing the specifics they are
looking for. For example, the system allows the following query: “people in red or blue
Liverpool”. This query lists all videos in which a person wearing red or blue clothes was
captured on camera which the user named Liverpool.

Camio system also enables detection of situations called tailgating. It is a situation
when two people enter a guarded building or room of which only one uses a security card
for opening a door. For this purpose, ground plane homography is calculated for tracking
people in 3D space. If two people appear nearby the door, move away from it, and at the
same time, one security card is used, then tailgating is detected, and an owner of the system
is alerted.

2.4 Approaches in storing video events
In this section, three different approaches in storing found events in videos are presented.

2.4.1 Storing events in tables

One of the most straightforward approaches in storing events extracted from videos is
to store them in a table. For this purpose, relational databases can be used together with
existing popular query languages. However, there are also query languages specially created
for surveillance video search.

For example, the system mentioned in work of Hampapur et al. [26] is based on obtaining
an object’s position from an object detector and object tracker. When a new object is
detected, then its location is tracked across the frames, and along with it other features of

8

the object are calculated such as colour, size or speed. Then when the object disappears
from the field of view, a new record in the database is created (figure 2.4).

Figure 2.4: Example of an object record in a database. [26]

Later when a user wants to search for a specific part of the video they can search for it
using a query that is similar to the following one:

FIND ALL, Object Type="VEHICLE", Object Size > X1 Object Size < X2,
Object Color=Yellow, Object Speed > S1

Such a query searches for all vehicles whose size is in the range (𝑥1, 𝑥2), have a yellow
colour and speed higher than 𝑆1.

Another way of storing events and objects captured in a video is to use two tables,
one for events and another one for objects, as shown in [33]. Each event is defined by id,
name, contained objects, and time interval. An object is defined by id, type, position and
bounding box sizes. For the video retrieval SQL like language is used (VSQL) which is
demonstrated in the following two examples:

SELECT video-frames FROM * WHERE ((p: PERSON) AND (i: SubImage) AND
(i color-similarity p))

This query would return parts of videos in which a person was captured and whose
colour histogram is similar to a colour histogram of a given image (SubImage).

SELECT video-frames FROM Video-Database WHERE ((e: Events) AND
(e’s Name = "Close-to-gate"))

would return parts of videos from video database named ”Video-database“ where objects
appeared nearby a gate.

2.4.2 Indexing events using spatio-temporal and-or graphs

Approach described in this section is inspired by the article “Semantic video event search
for surveillance video” by Tae Eu Choe et al. [14]. It is based on searching through spatio-
temporal and-or graphs produced for each analyzed video.

A few steps are involved before the production of the graph. First primitive data – set
of records of detected objects, are obtained from a video analyzer. Each record contains
the location of an object, size of the bounding box and other. These data are passed to
the semantic analyzer whose main purpose is to detect primitive events associated with an
object such as:

9

∙ Object stopped

∙ Object started to move

∙ Object accelerated/decelerated

Objects and events obtained from the semantic and the video analyzer are then arranged
into spatio-temporal and-or-graph (figure 2.5). A spatio-temporal graph is a graph with
nodes whose location in space takes on meaning [17]. If we let 𝐺 = (𝑉,𝐸) be a graph
where 𝑉 is set of vertices and 𝐸 be set of edges then we can define a spatio-temporal graph
as 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠) where 𝐸𝑠 is set of edges and 𝑉𝑠 be set of triads (𝑥𝑛, 𝑥𝑡, 𝑥𝑠) where 𝑥𝑛 is
notation of a node, 𝑥𝑡 are temporal coordinates of the node and 𝑥𝑠 are spatial coordinates
of the node.

As shown in the simplified figure 2.5 where x-axis would denote temporal coordinates
and y-axis would denote space coordinates. Human disappeared event is within the time
close to the vehicle start-to-move event. On the contrary, vehicle stopped event is within
the time far from the vehicle start-to-move event.

Such a graph is then used for the creation of a graph that encompasses relationships
between nodes in the spatio-temporal and-or graph. The nodes of this graph represent
events and objects and vertices define the relationship between them. If we want later to
find an event in the video, we have to find a matching graph for this event in our database.
That is if we want to find an event in the database, we have to first transform the query
from its original form to the graph and then find matching one in our database.

The problem of finding the graph in the database is solved as follows. The graph which
is produced from the spatio-temporal and-or graph is divided into set of subgraphs that
are stored in a lookup table. When a new query is created, then a graph representing this
query is created together with the subgraphs of which it is composed. These subgraphs are
then used for searching in the lookup table.

Figure 2.5: Example of a spatio-temporal and-or graph. [14]

10

2.4.3 Indexing events using feature trees

This section introduces a search approach for the videos mentioned in [11]. The approach
is based on so-called feature trees that are created for each part of an analyzed video. The
analyzed video is divided into a series of blocks called documents where each document
can contain from 30 to 100 frames of the recording. Each such a block is subdivided into
other sub-blocks called atoms from which the features of interest are extracted (figure 2.6).
Feature of interest can be colour, direction of movement, shape and other.

The atoms of each document are sorted into a tree structure in which each node has
four children. The value stored in a non-leaf node is the result of the aggregated values
of its children. We can write that the value of a non-leaf node is given by the aggregate
function:

�⃗�
(𝑖)
𝑓 = 𝜓𝑓

(︂
�⃗�
(1)
𝑓 , �⃗�

(2)
𝑓 , �⃗�

(3)
𝑓 , �⃗�

(4)
𝑓

)︂
, (2.1)

where 𝜓𝑓 is an aggregate function and �⃗�(𝑛)𝑓 are either vectors of extracted features or already
aggregated vectors from the previous level of the tree. The resulting tree is then saved to
the database and index of feature trees using locality sensitive hashing is created. Locality
sensitive hashing (LSH) is similar to standard hashing, except that with standard hashing,
values that are close to each other before hashing may get assigned hash values that are
far apart. Using LSH it holds that if we have two keys 𝑘1 and 𝑘2 whose similarity is high
and 𝐻(𝑘1) and 𝐻(𝑘2) are their hash values then |𝐻(𝑘1) −𝐻(𝑘2)| is low and vice versa if
the similarity of the keys 𝑘1 and 𝑘2 is very low then |𝐻(𝑘1)−𝐻(𝑘2)| is high [25].

When searching for events, the user specifies a region and features it should contain.
From the user query, an empty document is then created, which is filled with searched
features. It is then converted to a tree using the aggregate function. For that tree, a hash
value is calculated using LSH, which points to the part of the database in which similar
trees are found. This space of the database is finally searched for resulting videos.

Figure 2.6: Example of storing extracted features from a video into a feature tree. [11]

11

Chapter 3

Object detection

This section explains what object detection is and gives an overview of the basic object
detection approaches.

3.1 Introduction to object detection
Object detection is a process of finding objects in an image belonging to some class 𝐶 [23].
The system that performs detection usually scans the image first and proposes candidate
regions in which the searched objects could be located. These regions can be found by
various methods. For example, a simple sliding window algorithm can be used when we
move rectangles of different sizes across the image. This is of course enormously time-
consuming therefore different methods are used such as selective search that iteratively
groups together regions with similar features (colour, texture, size) [46]. For each proposed
region, the system for object detection checks whether it contains the object of class 𝐶 or
not (image classification).

The image classification can be done by extracting some features (colour, shape, ...)
from the proposed region. Using these features, the probability that the region contains
an object belonging to searched class C is calculated. The resulting probability is compared
to a threshold. If it is higher than the threshold, then the detection is evaluated as successful.
The system for image classification needs to be trained to be able to find a boundary between
objects belonging to class C and objects which do not.

The training data is needed for training the system. It consists of a set of training
images 𝐼 containing two sub-sets. The 𝑂𝑐 set that contains training data containing objects
from the class we want to detect and the 𝑂𝑤 set, which is the complement of 𝑂𝑐.

Then we try to detect objects from class 𝐶 in training images 𝐼. Based on the results
of the detection, the system may be modified to minimize false-positive errors and false-
negative errors. False-positive error is an error when the detected object 𝑜 /∈ 𝐶 and vice
versa false-negative error is an error when the rejected object 𝑜 ∈ 𝐶 (figure 3.1). It may
be useful to minimize different types of errors for different uses. For example, for weapon
detection at an airport, we will prefer greater false-positive error than false-negative error.

12

Figure 3.1: Error types.

Finally, when we have trained a classifier which meets our requirements, we can use it
to detect objects in an image.

3.2 Evaluating performance of an object detection algorithm
An object detector’s output is a position of an object in an analyzed image. The output may
take various forms. We can come across polygon bounding box or, most often, a rectangular
bounding box that is defined by the coordinates of its two corners.

When working with detectors, it is necessary to evaluate how well the detection system
works. To evaluate how accurately an object is detected, IOU is used, which stands for
Intersection Over Union and can be calculated as follows:

𝐼𝑂𝑈 =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
, (3.1)

where the area of overlap is an area of overlap of the bounding box obtained from the
object detector with the bounding box from the training data and area of union is a unified
area of both the bounding box from the detector and the bounding box from the training
data [23].

If we want to have a more global view of how good an object detector is, we look at
a metric called mAP (mean Average Precision) [28]. To calculate mAP we need to know
how the precision and recall values for given object detector are calculated:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(3.2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(3.3)

The mAP is then calculated by testing our system with data from a training set, where
the detection success is defined according to some IOU threshold, e.g., 0.5. We will sort the
detections according to their confidence level. For each record in the table, we calculate
the precision and recall values similarly, as shown in figure 3.2. If we plot the table into
a graph and calculate integral for such a graph, we get AP@0.5. For calculation of mAP
we calculate an average of APs for different IOU levels [28].

13

Figure 3.2: Example of calculation of AP for object detection algorithm. [28]

3.3 The Viola-Jones algorithm
This section introduces the Viola-Jones algorithm [47]. It was the first algorithm which in
its time was capable of detecting faces in videos with relatively reasonable speed of 15 fps. It
is possible to use the algorithm to detect any object, but it is mostly used for face detection.

The algorithm is based on the idea that some parts of a face are lighter than others. If
we learn which areas of the face are lighter or darker during the training of a system for
face detection, then we can use this knowledge later to find faces in images. The algorithm
looks for Haar-like features. These are found by placing rectangles from figure 3.3 on the
analyzed image. After the rectangle is placed, values of pixels under the white area are
added together and subtracted from the values of pixels under the black area. Depending on
the resulting value, we then decide whether the feature is in the image or not. Calculating
values for a large number of Haar-like features in this way is unnecessarily computationally
expensive. Therefore, an integral-image is introduced (figure 3.3).

Figure 3.3: Example of integral image calculation (𝑖𝑖(𝑥, 𝑦) =
∑︀

𝑥′<𝑥,𝑦′<𝑦 𝑖(𝑥, 𝑦)) and Haar-
like features.

Using the integral image, it is necessary to add or subtract a maximum of four numbers
to calculate the sum of any area in the analyzed image. This greatly speeds up the process
of detecting Haar-like features.

Thus, in order to detect faces, we need to find a set of Haar-like features that is present
in the majority of faces, and that best separates images with faces from images without
faces. To obtain such a set, the AdaBoost algorithm is utilized.

The AdaBoost algorithm works so that each image from the training set receives a weight
𝑤𝑖. Subsequently, so-called weak classifiers are trained on the training set for each possible
Haar-like feature. From all the trained classifiers, one with the lowest error rate is selected.

14

The error rate is calculated as:

𝑒 =
∑︁
𝑖

𝑤𝑖|ℎ(𝑥)− 𝑐𝑖| (3.4)

Where 𝑤𝑖 is a weight of an image, ℎ(𝑥) is the result of weak classifiers which ranges from
0 to 1, and 𝑐𝑖 is 1 if the image contains a face or 0 if the image does not contain a face.
Then the weights of the images are adjusted so that the weights of images that the selected
classifier detects poorly are increased, and the weights of images that the selected classifier
detects correctly are decreased. We repeat this process until we have enough classifiers
(weak classifiers). From these weak classifiers, we then assemble a strong classifier.

Face detection is performed by passing an image through a series of strong classifiers.
If all of them confirm that the image contains a face, then the detection is successful.

3.4 Histogram of Oriented Gradients based object detection
Histogram of Oriented Gradients (HOG) is a feature descriptor that represents an image
as a vector using its colours of pixels. The vector can be then passed to a classifier, which
decides whether the image contains an object or not. The following section introduces how
this vector is extracted from a grayscale image and outlines the operation of a support
vector machine (SVM) that uses the HOG feature to determine whether or not the image
contains an object.

Histogram of Oriented Gradients splits the image into 8 x 8 blocks. For each pixel
in the block, two values are calculated - direction and magnitude. To calculate these values
it is necessary to know the concept of pixel gradient. The gradient together with direction
and magnitude, is calculated as follows:

∇𝑔(𝑥, 𝑦) =
[︂
𝑔𝑥
𝑔𝑦

]︂
=

[︂
𝑓(𝑥+ 1, 𝑦)− 𝑓(𝑥− 1, 𝑦)
𝑓(𝑥, 𝑦 + 1)− 𝑓(𝑥, 𝑦 − 1)

]︂
(3.5)

𝑚(𝑥, 𝑦) =
√︁
𝑔2𝑥 + 𝑔2𝑦 (3.6)

𝑑(𝑥, 𝑦) = 𝑡𝑎𝑛−1(
𝑔𝑦
𝑔𝑥

) (3.7)

Where ∇𝑔(𝑥, 𝑦) is the gradient, 𝑚(𝑥, 𝑦) is the magnitude and 𝑑(𝑥, 𝑦) is the direction of
a pixel. After calculating the direction and magnitude for each pixel in the 8 x 8 block, we
get the matrix of directions and magnitudes for given block. The block is then represented
by one vector, which is created by summing the magnitudes of all pixels with a direction
in a certain range. This means adding up all the magnitudes separately for pixels with
a direction in the range of 0 - 20 degrees, 20 - 30 degrees,. . . , 160 - 180 degrees1 [39]. These
vectors for each block are then combined into a single vector that represents the entire
image.

A trained Support Vector Machine takes the acquired HOG feature vector and
decides whether or not the object is in the image. Training of SVM starts by obtaining
HOG vectors for images from the training data set. These are projected into space, in which
we try to find a hyperplane that separates vectors that represent images with the object we
want to detect from vectors that do not represent images with the object we want to detect.

1when we calculate HOG feature, we want to have a direction in the range of 0-180 degrees, therefore
the direction is calculated with values (|𝑔𝑦| a |𝑔𝑥|)

15

The resulting hyperplane must separate the data so that the margin that is displayed in
figure 3.4 is as large as possible [13].

Figure 3.4: Example of Support Vector Machine and HOG features. [3]

3.5 Scale invariant feature transform based object detection
HOG features from section 3.4 have an issue with detection of objects at different angles
and objects that are scaled differently. This problem can be solved by using so-called scale-
invariant features [44], which are, as the name suggests, scale-invariant and also rotation
invariant. For finding these features SIFT is utilized.

The main idea of SIFT is finding so-called keypoints. Each keypoint is represented
as a vector in such a way that when detecting an object with the same keypoint but at
a different angle or different scale, we get the same vector.

The first step of calculating a feature for an image using SIFT is, therefore, finding
candidate keypoints. For this purpose, the image is blurred several times using Gaussian
function each time with different variance. Then we create an image which is half of the
size of the previous image, and the process of blurring is repeated (this happens several
times). The result of this process is scale space. Using pictures from this space, difference
of Gaussian (DOG) images are created. The images are created by subtracting from each
other two adjacent images (with different blurring but same sizes) in the scale space. In
search of the keypoints, these DOG images are utilized.

Figure 3.5: Example of keypoint (red dot) with its surrounding (green dots) and Gaussian
blur.

16

Candidate keypoints are found among DOG images by evaluating each pixel in the DOG
image. If a pixel is evaluated as a pixel with the lowest or highest value in its vicinity, then
it is selected as a candidate keypoint. Vicinity of a pixel is defined as the unification of
three areas - an area defined by 3 x 3 square surrounding the evaluated pixel in given DOG
image and two areas defined by 3 x 3 squares that are located on the same positions but in
the adjacent DOG images (figure 3.5).

Found candidate keypoints then go through the process of elimination in which keypoints
whose absolute value is lower than a selected threshold are discarded. So are keypoints that
are not located in the “corner”. A point is considered to be in a corner if gradients 𝑔𝑥 and
𝑔𝑦 of this point are high.

If a keypoint passes through the previous step, then it is transformed into a vector.
The resulting vector holds information about keypoint’s surrounding. To create the vector,
magnitudes and directions of surrounding pixels are calculated similarly as in the calculation
of HOG feature (section 3.4). However, before the calculated directions and magnitudes
are put into the resulting vector, keypoint’s direction is subtracted from each calculated
direction to make the resulting vector invariant to rotation.

Thus obtained vectors are used for object detection. If we then later encounter an object
with keypoints that are represented by a similar vector, we can say that the object we
detected is the searched object.

3.6 Using convolutional neural network for object detection
In this section, neural networks and their subclass convolutional neural networks are in-
troduced. For an informal description of neural networks, a scheme similar to the one
in figure 3.6 is often used. A neural network consists of so-called neurons which are also
depicted in figure 3.6. Each neuron has several inputs 𝑎𝑖 with weights 𝑤𝑖, output 𝑦 and
bias 𝑏. The output of a neuron can be calculated with these parameters as follows2 [30]:

𝑦 = 𝜎(𝐴𝑇𝑊 +𝐵), 𝐴 =
[︀
𝑎1 𝑎2 ... 𝑎𝑛

]︀
,𝑊 =

[︀
𝑤1 𝑤2 ... 𝑤𝑛

]︀
. (3.8)

𝜎 is an activation function, which may be different for various types of neural networks. For
example, it is possible to encounter a sigmoid function. If we pass a vector 𝑋 to a neural
network, we then expect the neural network to output another vector or scalar 𝑌 . Training
of neural network then consists of the modification of weights 𝑤𝑖 in such a way that the
output 𝑌 of the neural network is as close as possible to our expected output for any given
input 𝑋.

Figure 3.6: Interconnected neurons form a neural network.
2Biases can be treated as special neurons with output value 1.

17

Convolutional neural networks (CNN) are neural networks that have at least one
layer which performs convolution (figure 3.7). CNN for object detection takes an tensor
as an input which represents the image and outputs a vector. This vector may contain,
for example, probabilities of detection of different types of objects. As already indicated,
training of a neural network consists of adjusting the values of weights 𝑤𝑖. The weights are
set to a random value at the beginning of the training of CNN. When the CNN returns
a vector for an image from a training set, we calculate the error for this output using loss
function 𝐿. Using the error, the weights are adjusted in such a way that the loss function
𝐿 approaches zero. Formally we can write this as:

𝑊𝑖+1 =𝑊𝑖 − 𝜂∇𝐿(𝑊),∇𝐿(𝑊) =
𝜕𝐿

𝜕𝑊
, (3.9)

where 𝜂 is the learning rate and ∇𝐿(𝑊) is the gradient of 𝐿(𝑊) [24]. Learning rate should
be set so that it is neither too high nor too low. If 𝜂 is too big, it is possible that during
the training of neural network we would miss the minimum of function 𝐿(𝑊), on the other
hand, if 𝜂 is too small, it could take too long to approach the minimum of 𝐿(𝑊) [9].

The trained CNN can be used in combination with object proposal algorithm which
proposes regions in an image where potential objects of interest may be located, and the
CNN then checks whether the region contains an object of interest or not.

Figure 3.7: Calculation of convolution by placing convolution kernel on an image.

3.7 You Only Look Once
In this section, the YOLO convolutional neural network is discussed [43]. The approach
of YOLO differs from the approaches mentioned in the previous sections. The previous
approaches searched for potential regions of interest and then ran object classifier, which
would decide whether the proposed region contains the searched object or not. YOLO, on
the other hand, looks at the whole image at once. Hence the name You Only Look Once is
used. This enables an increase of speed for object detection.

YOLO divides the analysed image into 𝑆 * 𝑆 grid. Then for each box of the grid,
𝐵 bounding boxes are predicted with confidence scores 𝑃 . Where 𝑃 denotes the proba-
bility that the object is contained within the bounding box. The goal is 𝑃 to be equal
to 𝑃 (𝑂𝑏𝑗𝑒𝑐𝑡) * 𝐼𝑂𝑈 . If the bounding box does not contain an object, the 𝑃 should be
equal to zero; otherwise, it should be equal to IOU of the ground truth and the detected
bounding box. Also, vector 𝐶 is assigned to each grid cell which contains probabilities of

18

occurrence of different types of objects in the bounding box (dog, car, ...). If we combine
all the outputs, we conclude that the final output of the CNN is 𝑆 *𝑆 * (𝐵 * 5+𝐶) tensor3.

Because the number of bounding boxes which proposes the CNN is very high and many
of them overlap, it is necessary to remove duplicate bounding boxes. For this, the non-
max suppression algorithm is used (algorithm 1). Resulting bounding boxes of non-max
suppression are then considered as detected objects whose type is selected from the vector
C.

Initialise list 𝐿;
Remove all bounding boxes with probability 𝑝𝑐 lower than threshold 𝑡;
while there are any unprocessed bounding boxes do

𝐵 = bounding box with the highest value 𝑝𝑐;
Put 𝐵 to list 𝐿;
Remove all bounding boxes that have IOU >= 0.5 with bounding box 𝐵;

end
Algorithm 1: Non-max suppression

During the training of the neural network, a fairly complicated lost function is used.
However, it can be broken down into smaller, simpler sections. Each such a section, simply
said, calculates the sum-squared error for each output of the CNN (height, width, coordi-
nates, ...). Sum-squared error is calculated as follows:

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝑐)
2 (3.10)

where in our case 𝑥𝑖 is the output of the CNN (e.g., height of the bounding box) and 𝑥𝑐 is
the ground truth (the correct height according to the ground truth). If the neural network
returned wrong height, the sum would be some high number which we would try to lower
in the next round of the training.

If we look for an object detector which is fast and quite accurate then YOLO is a good
choice. On the contrary, if we do not mind the object detector to take more time to detect
an object, then it might be useful to look somewhere else, as the YOLO may have for
example issue with detecting small objects.

3The prediction of the bounding boxes has five components: coordinates (x,y), width and height (w,h),
and confidence score.

19

Chapter 4

Computer vision and homography

In this section homography matrix and its usage is explained.

4.1 Homography matrix
When tracking objects, we get (𝑥, 𝑦) coordinates of objects on the computer screen (image
plane). Following the trajectory of the object’s movement using only such points would
neglect the perspective, therefore it is necessary to transfer the points to a plane that
follows the plane on which the objects move (ground plane) - figure 4.1.

Figure 4.1: Transformation of coordinates from an image plane to a ground plane.

For the transformation from image plane to ground plane a matrix must be found. The
matrix which needs to be found is called homography matrix. If there is a square in the
image plane, then the homography matrix allows us to map it to any quadrilateral located
in the ground plane [38].

The equation for the transformation from an image plane to a ground plane can be
written as: ⎡⎣𝑥′𝑦′

𝑧′

⎤⎦ = 𝐻

⎡⎣𝑥𝑦
𝑧

⎤⎦ , 𝐻 =

⎡⎣ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

⎤⎦ , (4.1)

20

where
[︀
𝑥′ 𝑦′ 𝑧′

]︀𝑇 are homogeneous coordinates in ground plane and
[︀
𝑥 𝑦 𝑧

]︀𝑇 are homo-
geneous coordinates in image plane. Thus, for successful remapping we have to find matrix
𝐻.

The following equations (4.2, 4.3) apply to the conversion of homogeneous coordinates
into Cartesian coordinates: 𝑥𝑐 = 𝑥/𝑧 and 𝑦𝑐 = 𝑦/𝑧. Also we can assume that 𝑧 is equal to
one. Therefore we can calculate ground plane coordinates for any point with coordinates
𝑥𝑛 and 𝑦𝑛 in an image plane as follows [32]:

𝑥′𝑛 =
ℎ11𝑥𝑛 + ℎ12𝑦𝑛 + ℎ13
ℎ31𝑥𝑛 + ℎ32𝑦𝑛 + ℎ33

⇒ 𝑥′𝑛(ℎ31𝑥𝑛 + ℎ32𝑦𝑛 + ℎ33) = ℎ11𝑥𝑛 + ℎ12𝑦𝑛 + ℎ12 (4.2)

𝑦′𝑛 =
ℎ21𝑥𝑛 + ℎ22𝑦𝑛 + ℎ23
ℎ31𝑥𝑛 + ℎ32𝑦𝑛 + ℎ33

⇒ 𝑦′𝑛(ℎ31𝑥1 + ℎ32𝑦1 + ℎ33) = ℎ21𝑥1 + ℎ22𝑦1 + ℎ23 (4.3)

𝐻 is generally normalized with ℎ33 = 1 [45]. Therefore this equation must be solved to
get 𝐻 for specific transformation.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 𝑦1 1 0 0 0 −𝑥′1𝑥1 −𝑥′1𝑦1 −𝑥′1
0 0 0 𝑥1 𝑦1 1 −𝑥1𝑦′1 −𝑦1𝑦′1 −𝑦′1
...

...
...

...
...

...
...

...
...

𝑥4 𝑦4 1 0 0 0 −𝑥′4𝑥4 −𝑥′4𝑦4 −𝑥′4
0 0 0 𝑥4 𝑦4 1 −𝑥4𝑦′4 −𝑦4𝑦′4 −𝑦′4
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32
ℎ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣0...
0

⎤⎥⎦ (4.4)

For finding the solution we must specify eight points (four points that are in the image
plane and four points that are their images in the ground plane). If we have more matching
points from ground plane and image plane, we can use the least-squares method [32]. If we
rewrite the previous equation as:

𝐴ℎ = 0, (4.5)

then we would try to find 𝑚𝑖𝑛||𝐴ℎ− 0||2. If we want even more precise and stable method,
the RANSAC can be used, which eliminates anomalies between picked points for homogra-
phy estimation [19].

4.2 Estimating homography matrix
We need at least eight points to derive the homography matrix, as shown in the previous
section. Ideally, to get these eight points, we would use a reference object placed on the
ground plane. Knowing the shape or dimensions of the object, we would then get four points
in the image plane and four corresponding points in the ground plane. If the coordinates
of the blue square in figure 4.1 were 𝑥1 = (100, 100), 𝑥2 = (150, 100), 𝑥3 = (100, 50),
𝑥4 = (150, 50), then we would determine ground plane coordinates from the knowledge of
shape of a square as 𝑥′1 = (0, 0), 𝑥′2 = (1, 0), 𝑥′3 = (0,−1), 𝑥′4 = (1,−1) [1]. However, we
often do not have such a possibility and therefore it is necessary to use other methods.

21

Figure 4.2: Example of vanishing points and vanishing line.

Such methods will vary depending on the use case. For example, if we want to find a ho-
mography matrix for cars that move along the highway, we can find two so-called vanishing
points (figure 4.2) and use a similar method to the one mentioned in [20]. A vanishing
point is a point in the image plane where two lines that are parallel to each other in the
ground plane meet in the image plane. Assuming that vehicles move in one direction (i.e.
along parallel lines), we can find a vanishing point as the intersection of lines along which
analysed vehicles move. The second vanishing point can be found as the intersection of
lines perpendicular to the lines on which the vehicles move. The points thus obtained are
placed on a line called vanishing line.

Using vanishing points, we find such points 𝑥1, 𝑥2, 𝑥3, 𝑥4, which will be reflected in
the ground plane as a square. Knowing the average size of a car, we can then rescale the
homography matrix so that the coordinates in the ground plane correspond to the metric
system (this can be used for example for calculating the speed of movement of the cars).

22

Chapter 5

A theoretical basis for object
tracking

In this chapter, the theoretical foundations necessary for the explanation of object tracking
algorithms (chapter 6) are introduced. Primarily this information is required for explanation
of DeepSORT algorithm.

5.1 Kalman filter
The Kalman filter is an efficient algorithm that enables more precise estimation of some
unknown variable X based on the knowledge of the measured value of X (𝑀) and the
estimated value of X (𝐸). 𝑋, 𝑀 , and 𝐸 are defined as:

𝑋 ∼ 𝒩 (𝜇𝑡, 𝜎
2
𝑡) (5.1)

𝑀 ∼ 𝒩 (𝜇𝑚, 𝜎
2
𝑚) (5.2)

𝐸 ∼ 𝒩 (𝜇𝑒, 𝜎
2
𝑒) (5.3)

How the filter works can be shown in an example of estimation of the position of a moving
vehicle (figure 5.1). In this example, we know the location of the vehicle 𝑋𝑡, and we try to
estimate its new location 𝑋𝑡+1 using:

∙ Estimation (𝐸) of the current position of the vehicle using its speed and direction
of movement, which we know from the onboard computer.

∙ Measured (𝑀) position of the vehicle using GPS.

Knowing 𝐸 and 𝑀 , we can calculate a new estimate of the position (𝑋𝑡+1) of the car
as follows [6]:

𝑋𝑡+1 ∼ 𝒩 (𝜇𝑡+1, 𝜎
2
𝑡+1) (5.4)

𝜇𝑡+1 = 𝜇𝑒 +𝐾𝑔(𝜇𝑚 − 𝜇𝑒) (5.5)

𝜎2𝑡+1 = (1−𝐾𝑔)𝜎
2
𝑡 (5.6)

𝐾𝑔 =
𝜎2𝑒

𝜎2𝑒 + 𝜎2𝑚
(5.7)

23

Notice that 𝜇𝑡+1 will be located somewhere between values 𝜇𝑒 and 𝜇𝑚. 𝐾𝑔, therefore,
defines whether 𝜇𝑡+1 is closer to 𝜇𝑒 or 𝜇𝑚. If both values 𝑀 and 𝐸 have the same error 𝜎2
then the resulting 𝑋𝑡+1 with 𝜇1+1 is located exactly in the middle of 𝜇𝑚 and 𝜇𝑒.

Newly calculated 𝑋𝑡+1 is used for estimation of the car’s position (𝜇𝑡+1). If the vehicle
moves again, then 𝑋𝑡+1 will become 𝑋𝑡 and the process repeats.

Figure 5.1: Estimation of the car’s position in one dimension using Kalman filter.

The Kalman filter is widely used. It can be found in the already mentioned GPS.
However, it is also used for an error correction when tracking objects. If we have an object’s
motion history, then we can predict its future location (𝐸). Then if later an object detector
detects the object (𝑀), we can use the Kalman filter to calculate more precise position of
the object.

5.2 Mahalanobis distance
The use of Mahalanobis distance can be explained on a problem which arises when we try
to measure the distance between a normal distribution and some point 𝑥 [42]. The first
possibility is to measure the distance from the mean of the normal distribution to the point
𝑥. If we look at the picture in figure 5.2 we can notice that Euclidean distance for point 𝑥1
and point 𝑥2 from the mean of the distribution would be the same. It does not take into
consideration how the distribution is spread out.

Figure 5.2: Graph of normal distribution and highlighted eigenvectors (red and blue) of its
covariance matrix. [15]

In some cases, the Euclidean distance would be enough, but there are some situations
in which we would like to take into consideration how the normal distribution is spread

24

out. The “shape” of a normal distribution is defined by the covariance matrix. We can
use the eigenvalues and eigenvectors of the covariance matrix as visualized in figure 5.2 to
find direction in which there is the most significant variance. Eigenvalues define how much
spread out the distribution is along the eigenvector. If we use the eigenvectors as the axes
of a new coordinate system (eigenvalues would define how much the axis is shrunken or
stretched), then we can measure the distance of the point from the normal distribution
using this new coordinate system. This is the idea behind the Mahalanobis distance.

For its calculation we can use following formula:

𝐷(𝑚, 𝑣) =
√︁
(𝑚− 𝑣)𝑇𝑆−1(𝑚− 𝑣) (5.8)

Where 𝑚 is the mean of the normal distribution and 𝑣 is the point whose distance from
the distribution we want to calculate, and 𝑆−1 is the inverse covariance matrix.

5.3 Cosine similarity
Feature vectors were introduced in chapter 3 alongside with various methods for obtaining
such a vector. If we detect a different object in the future, and we would like to know how
similar it is to the previously detected object, then we need some metric to measure the
similarity between the vectors. For that, the cosine similarity can be used.

Figure 5.3: Example of cosine distance and Euclidean distance.[36]

The cosine similarity calculates the cosine of an angle between two vectors (figure 5.3).
We can calculate it as follows:

𝑆(𝐴,𝐵) =
𝐴 ·𝐵

||𝐴|| · ||𝐵||
(5.9)

Such a metric is particularly useful if we measure the distance between two unnormalized
vectors. If we use Euclidean distance to measure the similarity between the vectors, then
it may happen that the vectors point in the same direction, but the distance between them
is large [21]. This might not be useful for some systems, including some systems for object
detection and tracking.

It is possible to come across a term cosine distance. Cosine distance is basically the
same thing as cosine similarity except that cosine distance is calculated as:

𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1− 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

25

Chapter 6

Object tracking

Following chapter explains the term object tracking and introduces some algorithms, which
implement object tracking such as DeepSort or GOTURN.

6.1 What is object tracking?
Object detectors introduced in chapter 3 enable us to detect the position of some object in
an image. However, if we want to track the same object across many consecutive frames,
the need for another type of algorithms, called object tracking algorithms, arises.

Object tracking algorithms assign a unique identifier to the detected object, which is
then associated with it for the whole time of its detection (figure 6.1). Their principle of
operation can be based on the extraction of features from the detected object whose value
is then compared to a newly detected object. If the values are similar, then the conclusion
that it is the same object is made.

Figure 6.1: Person is being tracked across multiple video frames.

Also, it is possible to encounter more straightforward methods—for example, a method
based on measuring the Euclidean distance between two detected objects. If a detected
object is at a certain distance from a previously detected object, then it is likely it is the
same object. Similarly, there are methods based on measuring IOU of two consecutive
detected objects. Again, if the IOU is higher than the selected threshold, then it may be
the same object. Such methods, of course, encounter problems when there is a large number
of objects of the same type at a short distance from each other (e.g. crowded square).

26

Object trackers can also be viewed based on what information they use to track ob-
jects [37]:

∙ Online trackers must be able to track objects based only on the information obtained
from the frames that are located before the currently analyzed image.

∙ Offline trackers can use information from frames that are located after the currently
analyzed frame.

Each type of tracker encounters different kinds of problems. One of the most frequent
problems is occlusion which happens when an object disappears for a few frames. The object
may be occluded only partially or in some cases the object may completely disappear. In
such situation methods based on Kalman filter may be used to predict the motion of the
object using a history of the object’s movement [35].

6.2 DeepSORT algorithm
DeepSORT is an effective algorithm for object tracking [48]. It is based on its successor -
SORT (Simple Online Realtime Tracking) [7]. It uses the Kalman filter in combination with
feature vectors to track the detected objects. For each newly detected object a structure
(track) containing the following information is created and stored in a list L:

∙ location of the centre of the bounding box (𝑢,𝑣),

∙ aspect ratio of the bounding box (𝑎),

∙ height of the bounding box (ℎ),

∙ velocities of 𝑢,𝑣,𝑎 and ℎ (velocities are defined as derivatives of 𝑢,𝑣,𝑎 and ℎ with
respect to time).

When DeepSORT recieves a newly detected object O it tries to assign it to some object
which is already contained in the list L. The process of assigning the detected object to the
object in the list L can be broken down into four steps.

In the first step, the Kalman filter is used to predict the positions 𝑙𝑖 of the objects in
the list L. For this calculation, the velocities stored in L for each object are used.

In the second step distance of the newly detected object O from each object contained
in L is calculated. The distance can be calculated as follows:

𝐷 = 𝜆 *𝐷𝑚 + (1− 𝜆) *𝐷𝑐, (6.1)

where 𝜆 is the weighting factor, 𝐷𝑚 is the Mahalanobis distance between the newly detected
object O and the predicted location 𝑙𝑖 and 𝐷𝑐 is cosine distance between the feature vector
of the object O and the feature vector of the object from the list L.

In the third step, the object O is assigned to the object in L whose distance D is the
lowest. If the distance is higher than some threshold for each object in L then structure
(track) representing the object is created and stored in L. However, in reality, more than
one objects at the same time would be detected. In such a case the Hungarian algorithm
is used for assigning the detected objects to objects in L using the distances D.

In the fourth step, the information about the detected objects is stored in L. If some
object was not updated for a longer period of time, meaning there was no detected object
associated with it, then it is discarded. Also, information about the objects in the list L is
updated using Kalman filter.

27

6.3 GOTURN
A different approach of object tracking offers the GOTURN algorithm, which is based on
a different idea than the previously mentioned DeepSORT [27]. GOTURN uses pre-trained
CNN (section 3.6) to predict bounding boxes of moving objects. Using such a CNN we can
track the object with speed up to 100 fps.

Figure 6.2: Object tracking using GOTURN. [27]

The input of the pre-trained CNN is a tuple of pictures (figure 6.2). The first picture
is a cut region from the frame of the analyzed video at a time 𝑇 with the tracked object
in its centre. The width and the height of the cut region are scaled with respect to the
width and height of the bounding box of the tracked object (𝑘1 * ℎ, 𝑘2 *𝑤). The constants
𝑘1 and 𝑘2 may be set to different values depending on how fast the tracked objects move.
The second picture is the same cut area, but this time at time 𝑇 + 1. The output of the
network is then coordinates of the detected object at time 𝑇 + 1.

6.4 TLD
Another approach offers TLD algorithm [31]. The TLD stands for Training, Learning and
Detection. The algorithm is based on the idea that both the detector and the tracker may
collaborate together to improve its performance. The collaboration is ensured by a newly
introduced component of the tracker. The component takes as input results of the tracker
and detector. Then based on these inputs it tries to detect false positive and false negative
errors of the detector. Using the knowledge about the errors the component then offers to
the detector new learning data which should help the detector to improve its performance
and to avoid making similar mistakes in the future.

28

Chapter 7

Implementation

In this section, the program which was created as a practical part of the thesis is described.
It is a program that enables the user to search through video recordings from surveillance
video cameras. The goal was to create a system which would be able to search through the
recordings effectively and also a system that is easy to use.

The system is focused on offline search. When the user uploads a video to the system, the
objects in it are detected, and their trajectories are stored to the database. Because object
detection and object tracking are computationally expensive, the system is implemented as
a web application. All the computation is then done on a server which the user selects and
the system can be accessed immediately from anywhere.

Figure 7.1: Use case diagram of the implemented program.

Before it is possible to search or upload a video to the system, a camera must be
registered (figure 7.1). For successful completion of the registration, a homography matrix
is needed, which converts the coordinates from image plane to the metric ground-plane
coordinate system.

When the camera is registered, and a video is uploaded to the system, then the video
search is possible. The video search is based on simple custom query language which uses
predefined blocks:

∙ object moved in a direction,

∙ object was in a certain area,

∙ object moved from point A to point B,

∙ object appeared at a certain distance from an object.

29

These building blocks can be used to build more complicated queries such as: “person
got out of the car” or “car entered a parking lot”.

7.1 Overview of the system
As already indicated, the system is divided into two main parts: client-side and server-side.
The client-side is responsible for accepting queries from the user and displaying responses
from the server. The server is responsible for storing the analysed videos and retrieving
videos which contain searched events or objects.

After the user uploads a video to the system, an object detector (YOLO - chapter 3)
together with object tracker (DeepSort - chapter 6) extracts information about objects in
the video. Every second frame of the video is analysed, and the result of the analysis is
stored in the database (for each detected object is created a record in the database).

Figure 7.2: Overview of the system.

The database is later searched when the user specifies searched object using predefined
search blocks mentioned in previous section 7. From the database, candidate objects are
then retrieved, which are tested whether they meet the requirements which the user specified
in the query. If an object satisfies all the requirements, then the corresponding video with
the object in it is retrieved from a video database. The video is cut so that it only contains
the part with the searched object and stored to the temporary video database. From the
temporary database, the video is then downloaded by the client-side (figure 7.2).

7.2 Tools used for the implementation
A programming language chosen for the implementation of the server part of the system
is Python. The language was selected especially because of the framework Flask, which
was created for this language and for its simplicity to add libraries necessary for the im-

30

plementation of other parts of the system. For example, a library for communication with
time-series database InfluxDB.

The InfluxDB time-series database is used for storing the location of detected objects.
A time-series database differs from a relational database in the way of indexing stored
data. The time-series databases focus on the processing of the time-stamped data, on the
other hand, the relational databases are more general-purpose, and therefore they do not
guarantee such quick processing of time-stamped data as time-series databases do.

For communication between the GUI and the server-side of the system, framework Flask
is used. Flask enables us, among other things, to define endpoints of the server-side of the
system which are used to obtain the state of the running processes in the background of
the system and to obtain the HTML pages together with JavaScript code from the server.
How does the framework works can be explained by a code sample in figure 7.3.

@app.route("/foo")
def foo():

return render_template("foo.html")

Figure 7.3: Creation of endpoint in Flask framework. When the webpage /foo is requested,
an HTML page is rendered using Jinja2 language and sent to the client-side.

Library OpenCV is also used in the application. OpenCV is a library which offers
a wide variety of preprogrammed functions for video and image analysis. In the created
application, it is used especially for obtaining information about the analysed video such as
its resolution or length. But the library offers many more functions. For example functions
implementing object tracking algorithms like GOTURN (section 6.3) or TLD (section 6.4)
can be found in the library too.

The library mentioned above is also used by the implementation of object tracker,
which is used for tracking objects in analysed videos1. The implementation uses YOLO
algorithm (section 3.7) for object detection, which passes its output to DeepSort algorithm
(section 6.2). Together these two algorithms are able to track position of objects with speed
up to ~15 fps. This speed has been reached when tested on NVidia2080TI graphic card
and when the analysed video contained no more than ten objects to track simultaneously.

Figure 7.4: Example of sending request to a server using AJAX.

1https://github.com/ZQPei/deep_sort_pytorch

31

https://github.com/ZQPei/deep_sort_pytorch

The GUI is created using JavaScript together with HTML and CSS. The GUI commu-
nicates with the server-side of the application using AJAX, which enables to retrieve new
information from the server-side and update the GUI without the need of reloading the
whole website (figure 7.4).

7.3 The architecture of the system
This section contains the description of the architecture of the server-side and the client-side
of the application.

7.3.1 The server side of the application

The server part of the system can be divided into four main parts: part for handling incom-
ing messages from the client-side, database (contains extracted information from videos,
defined blocks by the user and video recordings), part for analysis of uploaded videos and
part responsible for searching through video recordings.

The first part which is responsible for handling incoming messages and communication
with the client-side has several predefined endpoints:

∙ /add_camera and /delete_camera add cameras to the system and delete them. For
the creation of the camera homography matrix and name of the camera is needed.

∙ /get_cameras and /get_cameras_frame return information about already existing
cameras and pictures containing view from specific cameras.

∙ /search_request accepts user requests to search for an object or an event.

∙ /add_object, /get_objects and /delete_object are used for creation, retrieval and
deletion of defined search blocks by the user.

∙ /upload_video accepts uploaded video by the user. After the video is uploaded to
the video database of the system, it is passed to the part of the application that is
responsible for its analysis.

During the analysis of each video, each frame of the recording is analyzed, and the
positions of the objects together with their identifiers, which are obtained from the object
tracker, are stored in the database. Each record in the database contains:

∙ normalized position of the centre of the bounding box in the ground plane,

∙ normalized height and width of the bounding box,

∙ position of the centre of the bounding box in the image plane,

∙ unique identifier of the detected object within the analyzed video,

∙ UUID of the video that is assigned to it when uploaded to the system,

∙ name of the camera that captured the video,

∙ date and time of the moment when the object was captured by the camera.

32

User-defined blocks are stored in a database that consists of JSON files. Each file
contains a description of the block, which consists of its name and the parameters of the
sub-blocks that define the given block.

When a search request arrives at the system, objects are created that represent all
potential searched objects (SearchBlobs). Subsequently, a list of objects (search blocks –
section 7.5) is created in which each object is responsible for analyzing a SearchBlob and
deciding whether the SearchBlob satisfies the query sent by the user or not.

Each SearchBlob is passed to every search block in the list. If a search block in the list
evaluates the SearchBlob as an object that does not match to the query sent by the user,
then the SearchBlob is discarded. SearchBlobs that pass this process of elimination are
passed to the part of the system that is responsible for cutting out the parts of the video
that contain searched event.

Figure 7.5: Scheme of the search process.

Sometimes the same part of the video may be presented to the user several times. This
can happen, when resulting SearchBlobs are within time close to each other. To prevent
this from happening, at least partly, a cluster analysis is performed, which tries to merge
these SearchBlobs into one. After the cluster analysis, the SearchBlobs are sent to a video
cutting section of the application, which prepares videos containing the searched event.
The video is then stored in the temporal video database, from which it is deleted after one
hour, and sent to the client-side (figure 7.5).

7.4 The client-side of the application
The search for events in the records in the database is performed, as already indicated in
the section 7, using predefined blocks. These blocks are divided into three main categories:

∙ Object block defines type of the searched object (car or person).

∙ Action blocks define actions which the object performs (appear, disappear, moved
from X to Y, moved in direction, stopped).

∙ Condition blocks put additional constraints on the searched event (date and time,
speed of movement, distance from an object, camera, in an area).

Each block is part of the language that is described by a finite state machine in figure 7.6.

33

Figure 7.6: The finite state machine describing the query language. (a = action block,
b = condition block, u = custom block, o = object block)

The search section of the GUI consists of a search bar and help section, which proposes
to the user blocks that they can use for the search. When the user clicks on the proposed
block, a new object is created that represents it and is stored in a list in the background
(figure 7.8). Also, when the user selects one of the proposed blocks, the state of the finite
state machine is changed, based on which the help section is updated for the user. After
the user clicks the search button then all objects in the list are checked whether all the
necessary information is defined for each search block. If not, then the user is prompted to
complete the necessary information.

Once all the necessary information for executing the query is available, then the query
is converted to JSON format (figure 7.7)2.

{
"request": [

...
{

’name’: ’DATE_TIME’,
’block_description’: ’Date and time’,
’params’: {

’from_timestamp_mili’: ’1577836800000’,
’to_timestamp_mili’: ’1609459200000’,
...

}
},
...

]
}

Figure 7.7: Example of search request containing DateTime search block.
2If the query contains a user-defined block, then the parameters for the given block are added on the

server-side.

34

The serialized query is then sent to the server, where a search is performed, the results
of which are then sent back. The results, among other things, contain paths to videos that
contain the events the user is looking for. These are then displayed to the user.

A similar process is followed when creating user-defined blocks. Except that, after the
user selects the blocks to form the new block, and it is checked that all the necessary
information is filled in, the definition of the new block is sent to /create_block.

To upload new videos for analysis, the user selects a video in the upload section and
writes the time when the video was taken. After pressing the upload button, the video is
uploaded to the server, where it is analyzed. The status bar informs the user about the sta-
tus of the performed analysis, which every second asks at the endpoint /analysis_progres
what proportion of the video has already been analyzed and whether any error occurred
during the analysis.

Figure 7.8: Class diagram of the client-side.

7.5 Description of the search blocks
This section describes the search blocks which test data stored in SearchBlobs (section 7.3.1)
whether it meets the conditions specified by the query. Each SearchBlob stores inside
records from the database describing the position across time of the object it represents.
This data is stored in two variables, db_data and db_data_processed. Db_data stores
the original data from the database and db_data_processed the original data filtered by
individual search blocks (figure 7.9).

Figure 7.9: Example of a query. Each SearchBlob is analyzed sequentially by the search
blocks as they appear in the query.

If the query contains multiple action blocks with constraints, then the records in
db_data_processed are restored from db_data each time SearchBlob is processed by new
action block.

35

The first simplest search blocks are appear and disappear blocks. These blocks works
on a simple principle. They take data from db_data and insert the last or the first record
into db_data_processed variable.

Figure 7.10: Filter points (𝑃𝑡,𝑃𝑡+1) by the angle that the vector defined by these points
makes with the vector defined by the user. (u = user-defined vector, p = vector defined by
the points from the database, D = minimal distance, L = acceptance limit)

Another action block is moved from X to Y block. This block searches for an object
that has moved from the location with coordinates X in the image plane to the location
with coordinates Y. For this purpose, the records in the db_data_processed variable are
checked. If the block encounters a record with a position near point with X coordinates,
then it starts searching for a record with coordinates near point with coordinates Y. If it
finds such two records, then all records which are not timewise between these two records
are deleted from db_data_processed variable.

The moved in direction block searches for the parts of the object trajectory where the
object moves in the user-selected direction. It sequentially goes through the records in
SearchBlob, looking for pairs of points whose spatial distance is greater than the specified
limit, and which indicate that the object was moving in a direction similar to the direction
defined by the user (figure 7.10).

The stopped block works in a similar manner. If there are two points in
db_data_processed which are spatially close to each other but timewise are more than
1 second apart then these points are considered to represent part of the object’s trajectory
on which the object was not moving.

The approach of other blocks which were not mentioned here does not differ a lot.
Thanks to the architecture which is based on the search blocks it should not be difficult to
add new search blocks to the language in the future, if needed.

7.6 Testing the system
Three aspects of the system were tested. The first was the usability of the system, especially
how difficult it is for a new user to learn to work with it. Usability was tested on six people
who were given a series of task focusing on creating queries and using the system.

Another aspect that has been tested was the ability of the system to find in the videos
the basic situations as: “a person got out of/in a car”, “a person entered the building” or
“a car arrived in the parking lot”.

36

The last but not least of the important aspects is the speed with which search blocks
process individual SearchBlobs.

When testing the system, a 10-minute recording from the VIRAT video dataset was
used, which contains enough different events necessary for testing the system [41]. The
videos from this dataset were used mainly because, together with the videos, it also offers
homography matrices for each video. However, when creating the system and especially
when testing object tracking and object detection algorithms, such dataset as [12] or [22]
were also used.

7.6.1 Usability

The usability testing of the system was performed with the help of six people3. It was
explained to each person how the system works. In particular, it was necessary to explain
what is homography detectormatrix and how object detector and object tracker work. The
tested users were also shown a video that contained the detected objects to give them
a better idea of what principle the system works on.

After the brief explanation, it was tested how intuitive the application is. The tested
users were asked questions such as: “If you had to upload a video to the system, how would
you do it?” or “If you had to register a new camera, where and how would you do it?”. The
full questionnaire and the described testing procedure are available in appendix A.

Subsequently, on the example of the query “a person came out of the building”, users
were introduced to the search part of the system and the query language. The knowledge
from this example was then used for creating a new queries such as “a person got out of
the car at 5 o’clock.”

The results of testing the usability of the application are as follows. Users usually
did not have major reservations about the user interface. The only reservation that users
mentioned was the inability to delete individual search blocks using backspace. On average,
the tested users rated the UI with a mark of 1.83 (1 – good, 1 – bad). When testing the
query language, it turned out that users usually need to try to create from two to three
search queries with different search blocks to understand how the query language works.
Therefore, when testing, users often tried more queries than are found in the test protocol
in appendix A. Users rated the difficulty of learning the language on average by number 2.5
(1 – good, 1 – bad). The most common opinions about the language that appeared were:

∙ The language can be understood. However, it is necessary to understand what the
individual blocks do. I was not sure how does the “distance from” block works.

∙ If I take time to understand what each block does, then using the language is quite
easy.

7.6.2 Testing the capability of the query language and its speed

A total of four different queries were selected to test the ability of the query language to
find searched events. These queries were chosen to show the capabilities of individual search
blocks. Along with testing the language’s capability to find specific situations, the speed of
finding the searched events was also measured4.

3Tested users: three men (20 y.o. - advanced computer skills, 24 y.o. - advanced computer skills, 19 y.o.
- advanced computer skills), three women (47 y.o. - basic computer skills, 23 y.o. - intermediate computer
skills, 18 y.o. - advanced computer skills)

4tested on Intel (R) Core (TM) i5-825OU CPU @ 1.60Hz

37

The first query looks for situations in which a person got out of a car (figure 7.11).

Figure 7.11: A query that looks for situations in which a person gets out of a car.

The result of this query was three recordings. The system discovered all parts of the
video used for testing in which a person got out of the car.

In figure 7.12 is query which searches for situations where a car arrived at a certain
speed in the parking lot.

Figure 7.12: A query that looks for situations in which a car arrived in a parking lot with
a certain speed of movement.

For this query, the system discovered the searched car that arrived in the parking lot
with the specified speed.

And finally the last query (figure 7.13) was used to find the situation when the car
stopped in a specific parking space.

Figure 7.13: A query that looks for situations in which a car stopped in a certain area.

For this query, the system successfully discovered the one situation in which a car
stopped in a parking space.

Looking at the times in figures 7.11, 7.12 and 7.13, it is clear that a large proportion of
the search time takes the time required for cutting out the parts of videos which contain
the searched event.

38

7.7 Future development
In order to improve the resulting system, I suggest omitting the option of adding a homog-
raphy matrix when registering a new camera. When uploading a new video, the user would
only choose the name of the already registered camera, and subsequently, if a video was
loaded into the system, the homography matrix would be calculated similarly as in [8].

To reduce the error rate when tracking objects, it would also be useful to try to cre-
ate a custom object detector and object tracker, as the system is built so that they are
easily replaceable. The currently used combination of object tracker and object detector
sometimes mark the same object with different id, because of that, the system treats some
objects as several separate objects.

And finally, the current version of the system also converts the uploaded video to .𝑤𝑒𝑏𝑚
format to make it possible to display it in most web browsers. This conversion increases the
time needed by the system to analyse the video. Therefore, it would be useful to convert
the video in the background after the end of the video analysis.

39

Chapter 8

Conclusion

One of the main goals of this work was to find out the principle on which surveillance video
search systems are based. This question was answered at the beginning of this work, where
a general scheme of such systems was presented, together with ways of storing information
extracted from the videos to be searched.

This work also aimed to create a system that will be able to search for objects in video
recordings based on their trajectory and speed. Therefore, it was necessary to find out how
the homography works and how we can calculate it.

To track the trajectory of objects in video recording, it is necessary to find objects in
video recordings. For this reason, algorithms for object detection were introduced.

The chapter on object detectors was followed by a chapter on object trackers, which
were necessary for tracking objects across consecutive frames. The most important thing
was to explain the DeepSort algorithm, that was used in the implementation of the resulting
system.

In the second part of the work, the theoretical knowledge gained from the previous
part was used to implement a system that is able to search records based on the trajectory
of movements of objects detected in the records. This system is based on a simple query
language, which builds on so-called search blocks, with which the user specifies the searched
event or object. During testing, it was found that the system is able to detect simple
situations, such as “a person got out of the car“ or “the car stopped in a particular parking
place“. This system is not perfect, but by using more accurate methods for object tracking,
it is possible to achieve better results. In the future, it is also possible to expand the system
with new search blocks. For example, a search block to specify the colour of a searched
object can be added, or an option that would enable specification of the number of searched
objects can be added – such option would allow us to create a queries like: “three people
have moved from place A to place B“.

40

Bibliography

[1] Anon.. Tutorial Camera Calibration, 24. january 2020. Available at:
https://boofcv.org/index.php?title=Tutorial_Camera_Calibration.

[2] Ashby, M. The Value of CCTV Surveillance Cameras as an Investigative Tool: An
Empirical Analysis. European Journal on Criminal Policy and Research [online].
september 2017, vol. 23, p. 441–459, [cit. 2020-04-29]. DOI:
https://doi.org/10.1007/s10610-017-9341-6. Available at:
https://link.springer.com/article/10.1007/s10610-017-9341-6.

[3] Authors, T. V. Basic HOG computation. VLFeat.org [online]. 2007. Available at:
https://www.vlfeat.org/overview/hog.html.

[4] AxxonSoft, I. MomentQuest [online]. 2019 [cit. 2020-04-04]. Available at:
https://www.youtube.com/watch?v=__x-Da7bfdc.

[5] AxxonSoft, I. AxxonSoft [online]. 2020 [cit. 2020-04-01]. Available at:
https://www.axxonsoft.com/.

[6] Becker, A. Kalman Filter [online]. 2020 [cit. 2020-04-20]. Available at:
https://www.kalmanfilter.net/default.aspx.

[7] Bewley, A., Ge, Z., Ott, L., Ramos, F. and Upcroft, B. Simple online and
realtime tracking. In: 2016 IEEE International Conference on Image Processing
(ICIP) [online]. Phoenix, AZ, USA: IEEE, September 2016, p. 3464–3468 [cit.
2020-04-17]. ISBN 978-1-4673-9961-6. Available at:
https://ieeexplore.ieee.org/document/7533003.

[8] Brouwers, G., Zwemer, M., Wijnhoven, R., With, P. de, Gang, H. et al.
Automatic calibration of stationary surveillance cameras in the wild. 2016. ISSN
0302-9743.

[9] Brownlee, J. How to Configure the Learning Rate When Training Deep Learning
Neural Networks. Machine Learning Mastery [online], 23. january 2019. Available at:
https:
//machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks.

[10] Camiolog, I. Camio [online]. 2020 [cit. 2020-04-01]. Available at:
https://www.camio.com/.

[11] Castañón, G., Saligrama, V., Caron, A. L. and Jodoin, P. Real-Time Activity
Search of Surveillance Video. In: 2012 IEEE Ninth International Conference on
Advanced Video and Signal-Based Surveillance [online]. Beijing, China: IEEE,

41

https://boofcv.org/index.php?title=Tutorial_Camera_Calibration
https://link.springer.com/article/10.1007/s10610-017-9341-6
https://www.vlfeat.org/overview/hog.html
https://www.youtube.com/watch?v=__x-Da7bfdc
https://www.axxonsoft.com/
https://www.kalmanfilter.net/default.aspx
https://ieeexplore.ieee.org/document/7533003
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks
https://www.camio.com/

September 2012, p. 246–251 [cit. 2020-04-04]. ISBN 978-0-7695-4797-8. Available at:
https://ieeexplore.ieee.org/document/6328024.

[12] Chavdarova, T., Baqué, P., Bouquet, S., Maksai, A., Jose, C. et al.
WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian
Detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition [online]. IEEE, 2018, p. 5030–5039 [cit. 2020-05-05]. Available at:
https://ieeexplore.ieee.org/document/8578626.

[13] Chen, L. The simplistic illustration of basic concepts in Support Vector Machine.
Support Vector Machine — Simply Explained [online], 6. january 2019. Available at:
https:
//towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496.

[14] Choe, T. E., Lee, M. W., Guo, F., Taylor, G., Yu, L. et al. Semantic video event
search for surveillance video. In: 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops) [online]. Barcelona, Spain: IEEE, November
2011, p. 1963–1970 [cit. 2020-04-01]. ISBN 978-1-4673-0063-6. Available at:
https://ieeexplore.ieee.org/document/6130489.

[15] Clapham, M. E. 23: Mahalanobis distance [online]. [cit. 2020-04-20]. Available at:
https://www.youtube.com/watch?v=spNpfmWZBmg.

[16] Corporation, I. IBM Video Analytics: AI-infused video can increase the
effectiveness and speed at which businesses communicate and operate [online]. The
Weather Company, an IBM Business1 New Orchard RoadArmonk, NY 10504: IBM
Corporation, july 2019 [cit. 2020-04-01]. Available at:
https://www.ibm.com/downloads/cas/2KDPOBLP.

[17] Dale, M. R. Graphs as Structure in the Ecological Context. In: Applying Graph
Theory in Ecological Research. Cambridge University Press, 2017, p. 1–36. DOI:
10.1017/9781316105450.002.

[18] Dasig, S. Introducing MV32, Motion Search 2.0, and Motion Recap [online]. 2019
[cit. 2020-04-29]. Available at: https://meraki.cisco.com/blog/2019/04/introducing-
mv32-motion-search-2-0-and-motion-recap/.

[19] Derpanis, K. G. Overview of the RANSAC Algorithm. [online]. 1.2. may 2013, [cit.
2020-04-29]. Available at:
http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf.

[20] Dubská, M., Sochor, J. and Herout, A. Automatic Camera Calibration for
Traffic Understanding. In: Proceedings of BMVC 2014 [online]. The British Machine
Vision Association and Society for Pattern Recognition, 2014, p. 1–10 [cit.
2020-04-29]. ISBN 1-901725-52-9. Available at:
https://www.fit.vut.cz/research/publication/10682.

[21] Emmery, C. Euclidean vs. Cosine Distance [online]. 2017 [cit. 2020-04-29]. Available
at: https://cmry.github.io/notes/euclidean-v-cosine.

[22] Fleuret, F., Berclaz, J., Lengagne, R. and Fua, P. Multicamera People
Tracking with a Probabilistic Occupancy Map. IEEE Transactions on Pattern

42

https://ieeexplore.ieee.org/document/6328024
https://ieeexplore.ieee.org/document/8578626
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
https://ieeexplore.ieee.org/document/6130489
https://www.youtube.com/watch?v=spNpfmWZBmg
https://www.ibm.com/downloads/cas/2KDPOBLP
https://meraki.cisco.com/blog/2019/04/introducing-mv32-motion-search-2-0-and-motion-recap/
https://meraki.cisco.com/blog/2019/04/introducing-mv32-motion-search-2-0-and-motion-recap/
http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf
https://www.fit.vut.cz/research/publication/10682
https://cmry.github.io/notes/euclidean-v-cosine

Analysis and Machine Intelligence [online]. IEEE. 2008, vol. 30, no. 2, p. 267–282,
[cit. 2020-05-05]. DOI: 10.1109/TPAMI.2007.1174. ISSN 1939-3539. Available at:
https://ieeexplore.ieee.org/document/4359319.

[23] Ganesh, P. Object Detection : Simplified, 12. august 2019. Available at:
https://towardsdatascience.com/object-detection-simplified-e07aa3830954.

[24] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning [online]. 1st ed.
MIT Press, 2016 [cit. 2020-04-14]. Available at: http://www.deeplearningbook.org.

[25] Gupta, S. An effective way of reducing the dimensionality of your data. Locality
Sensitive Hashing [online], 29. june 2018 [cit. 2020-04-04]. Available at: https:
//towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134.

[26] Hampapur, A., Brown, L., Feris, R., Senior, A., Chiao-Fe Shu et al. Searching
surveillance video. In: 2007 IEEE Conference on Advanced Video and Signal Based
Surveillance [online]. London, UK: IEEE, September 2007, p. 75–80 [cit. 2020-04-01].
ISBN 978-1-4244-1695-0. Available at:
https://ieeexplore.ieee.org/document/4425289.

[27] Held, D., Thrun, S. and Savarese, S. Learning to Track at 100 FPS with Deep
Regression Networks. In: Leibe, B., Matas, J., Sebe, N. and Welling, M.,
ed. Computer Vision – ECCV 2016 [online]. Cham: Springer International
Publishing, September 2016, p. 749–765 [cit. 2020-04-19]. ISBN 978-3-319-46448-0.
Available at: https://link.springer.com/chapter/10.1007/978-3-319-46448-0_45.

[28] Hui, J. MAP (mean Average Precision) for Object Detection [online], 7. march 2018.
Available at: https://medium.com/@jonathan_hui/map-mean-average-precision-for-
object-detection-45c121a31173.

[29] Iqbal, A., Arif, F. and Minallah, N. Analyzing impact of video codec,
encapsulation methods and streaming protocols on the quality of video streaming.
In: Eighth International Conference on Digital Information Management (ICDIM
2013) [online]. Islamabad, Pakistan: IEEE, September 2013, p. 182–186 [cit.
2020-04-29]. Available at: https://ieeexplore.ieee.org/document/6693983.

[30] Jordan, J. Neural networks: representation., 28. june 2017. Available at:
https://www.jeremyjordan.me/intro-to-neural-networks/.

[31] Kalal, Z., Mikolajczyk, K. and Matas, J. Tracking-Learning-Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence [online]. IEEE. December
2012, vol. 34, no. 7, p. 1409–1422, [cit. 2020-04-19]. DOI: 10.1109/TPAMI.2011.239.
ISSN 1939-3539. Available at: https://ieeexplore.ieee.org/document/6104061.

[32] Kriegman, D. Homography Estimation [online]. San Diego, USA: UC San Diego
[cit. 2020-04-07]. Available at: https://cseweb.ucsd.edu/classes/wi07/cse252a/
homography_estimation/homography_estimation.pdf.

[33] Le, T.-L., Thonnat, M., Boucher, A. and Brémond, F. A Query Language
Combining Object Features and Semantic Events for Surveillance Video Retrieval.
In: Satoh, S., Nack, F. and Etoh, M., ed. Advances in Multimedia Modeling
[online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, p. 307–317 [cit.

43

https://ieeexplore.ieee.org/document/4359319
https://towardsdatascience.com/object-detection-simplified-e07aa3830954
http://www.deeplearningbook.org
https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134
https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134
https://ieeexplore.ieee.org/document/4425289
https://link.springer.com/chapter/10.1007/978-3-319-46448-0_45
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://ieeexplore.ieee.org/document/6693983
https://www.jeremyjordan.me/intro-to-neural-networks/
https://ieeexplore.ieee.org/document/6104061
https://cseweb.ucsd.edu/classes/wi07/cse252a/homography_estimation/homography_estimation.pdf
https://cseweb.ucsd.edu/classes/wi07/cse252a/homography_estimation/homography_estimation.pdf

2020-04-01]. ISBN 978-3-540-77409-9. Available at:
https://link.springer.com/chapter/10.1007/978-3-540-77409-9_29.

[34] Leavitt, A. Why Use The H.265 Video Codec For Surveillance Systems? [online].
2018 [cit. 2020-04-29]. Available at:
https://getsafeandsound.com/2018/06/h-265-video-codec/.

[35] Lee, B. Y., Liew, L. H., Cheah, W. S. and Wang, Y. C. Occlusion handling in
videos object tracking: A survey. IOP Conference Series: Earth and Environmental
Science [online]. IOP Publishing. February 2014, vol. 18, [cit. 2020-04-16]. DOI:
10.1088/1755-1315/18/1/012020. Available at:
https://doi.org/10.1088%2F1755-1315%2F18%2F1%2F012020.

[36] Leilei Wang, J. W. The difference between Euclidean distance and cosine
similarity. Available at: https://www.researchgate.net/figure/The-difference-
between-Euclidean-distance-and-cosine-similarity_fig2_320914786.

[37] Luo, W., Zhao, X. and Kim, T. Multiple Object Tracking: A Review. CoRR
[online]. may 2014, abs/1409.7618, [cit. 2020-04-29]. Available at:
http://arxiv.org/abs/1409.7618.

[38] Mallick, S. Image Alignment (ECC) in OpenCV (C++ / Python). Learn
OpenCV [online], 1. june 2015. Available at:
https://www.learnopencv.com/image-alignment-ecc-in-opencv-c-python/.

[39] Mallick, S. Histogram of Oriented Gradients. Learn OpenCV [online], 6. december
2016. Available at:
https://www.learnopencv.com/histogram-of-oriented-gradients/.

[40] Niessen, M. How to Perform Crowd Alerting with IBM Video Analytics [online]. [cit.
2020-04-01]. Available at: https://www.youtube.com/watch?v=YA1Eja7M7qQ.

[41] Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.-C. et al. A large-scale
benchmark dataset for event recognition in surveillance video. In: CVPR 2011. IEEE,
2011, p. 3153–3160. ISBN 9781457703942. Available at: https://viratdata.org/.

[42] Prabhakaran, S. Mahalonobis Distance – Understanding the math with examples
(python) [online]. 2019 [cit. 2020-04-29]. Available at:
https://www.machinelearningplus.com/statistics/mahalanobis-distance/.

[43] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. You Only Look Once:
Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) [online]. Las Vegas, NV, USA: IEEE, June
2016, p. 779–788 [cit. 2020-04-14]. ISBN 978-1-4673-8851-1. Available at:
https://ieeexplore.ieee.org/document/7780460.

[44] Sinha, U. SIFT: Theory and Practice. SIFT [online]. Available at: https:
//aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/.

[45] team, O. Basic concepts of the homography explained with code [online]. OpenCV
team, april 2020 [cit. 2020-04-07]. Available at:
https://docs.opencv.org/master/d9/dab/tutorial_homography.html#lecture_16.

44

https://link.springer.com/chapter/10.1007/978-3-540-77409-9_29
https://getsafeandsound.com/2018/06/h-265-video-codec/
https://doi.org/10.1088%2F1755-1315%2F18%2F1%2F012020
https://www.researchgate.net/figure/The-difference-between-Euclidean-distance-and-cosine-similarity_fig2_320914786
https://www.researchgate.net/figure/The-difference-between-Euclidean-distance-and-cosine-similarity_fig2_320914786
http://arxiv.org/abs/1409.7618
https://www.learnopencv.com/image-alignment-ecc-in-opencv-c-python/
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.youtube.com/watch?v=YA1Eja7M7qQ
https://viratdata.org/
https://www.machinelearningplus.com/statistics/mahalanobis-distance/
https://ieeexplore.ieee.org/document/7780460
https://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/
https://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/
https://docs.opencv.org/master/d9/dab/tutorial_homography.html#lecture_16

[46] Uijlings, J., Sande, K. van de, Gevers, T. and Smeulders, A. Selective Search
for Object Recognition. International Journal of Computer Vision [online]. Boston:
Springer US. 2013, vol. 104, no. 2, p. 154–171, [cit. 2020-04-11]. ISSN 0920-5691.
Available at: https://link.springer.com/article/10.1007/s11263-013-0620-5.

[47] Viola, P. and Jones, M. Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001 [online]. Kauai, HI, USA,
USA: IEEE, December 2001, p. I–I [cit. 2020-04-11]. ISBN 0-7695-1272-0. Available
at: https://ieeexplore.ieee.org/document/990517.

[48] Wojke, N., Bewley, A. and Paulus, D. Simple Online and Realtime Tracking with
a Deep Association Metric. CoRR [online]. Cornell University. March 2017,
abs/1703.07402, [cit. 2020-04-17]. Available at: http://arxiv.org/abs/1703.07402.

45

https://link.springer.com/article/10.1007/s11263-013-0620-5
https://ieeexplore.ieee.org/document/990517
http://arxiv.org/abs/1703.07402

Appendix A

Test protocol

� Get the following information about the tested person:

� Age
� Level of computer skills (basic - intermediate - advanced)

� Explain the theory behind the system.

� What is object detection?
� What is object tracking?
� What is a bounding box?
� What is a homography matrix?

� Show the system and let the tested person use it for 5 minutes.

� Give the tested person following tasks and mark whether they completed
them or not.

� Try to register a new camera. (YES - NO)
� Try to upload a video. (YES - NO)
� Try to delete the registered camera. (YES - NO)

� Test the usability of the query language.

� Show the tested person the query which searches for a person who came out of
a building.

� Let user make query which searches for: ”a person got into a car at HH:MM on
YYYY-MM-DD“. (YES - NO)

� Let user make query which searches for: ”a car which arrived in a parking lot“.
(YES - NO)

� Make the tested user rate the system.

� It was difficult for me to find things in the UI. (1 - easy, 10 - very difficult)
� Using the UI was a pleasant experience. (1 - agree, 10 - disagree)
� It was difficult for me to understand how does the query language work.

(1 - agree, 10 - disagree)
� Is there something you would like to add?

46

Appendix B

Installation

Requirements:

∙ The application was tested on Fedora OS (version 30) and ManjaroLinux (version
19.0.2), but it should work on most Linux distributions.

∙ docker and docker-compose for quick preparation of InfluxDB database.

∙ python 3.6.9

∙ python package virtualenv

Installation steps:

1. Change the directory to the root directory of the project.

2. Create a virtual environment and install requirements
(virtualenv .venv &&
. .venv/bin/activate && pip install -r requirements.txt)

3. Change the directory to docker_influxdb directory (cd docker_influxdb)

4. Run container with InfluxDB database (docker-compoe up)

5. Change the directory to surveillance_video_search directory
(cd ../surveillance_video_search/)

6. Run the flask application
(flask run or flask run --host=<ip_address> --port=<port_number>)

7. The application can be viewed with any web browser at 127.0.0.1:5000 or at the
IP address and port defined in the previous step.

47

Appendix C

Poster

Figure C.1: The poster presenting this thesis (in full resolution on the enclosed sd card)

48

	Introduction
	Surveillance video search
	What is surveillance video search?
	General scheme of video surveillance systems
	Examples of video search systems
	IMB Video Analytics
	Axxonsoft
	Camio

	Approaches in storing video events
	Storing events in tables
	Indexing events using spatio-temporal and-or graphs
	Indexing events using feature trees

	Object detection
	Introduction to object detection
	Evaluating performance of an object detection algorithm
	The Viola-Jones algorithm
	Histogram of Oriented Gradients based object detection
	Scale invariant feature transform based object detection
	Using convolutional neural network for object detection
	You Only Look Once

	Computer vision and homography
	Homography matrix
	Estimating homography matrix

	A theoretical basis for object tracking
	Kalman filter
	Mahalanobis distance
	Cosine similarity

	Object tracking
	What is object tracking?
	DeepSORT algorithm
	GOTURN
	TLD

	Implementation
	Overview of the system
	Tools used for the implementation
	The architecture of the system
	The server side of the application

	The client-side of the application
	Description of the search blocks
	Testing the system
	Usability
	Testing the capability of the query language and its speed

	Future development

	Conclusion
	Bibliography
	Test protocol
	Installation
	Poster

