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Abstract
This thesis serves as an introduction to the topic of formal translation. The reader is

introduced to important theory and this theory is subsequently used to construct a par-
ticular translator. The first part defines the base formal languages theory. These findings
are followed upon by the second part that firstly concerns itself with bottom-up parsing in
more detail. A canonical LR(1) parser is introduced as a practical bottom-up parser. A
translator of infix mathemetical expressions to postfix is constructed as an example. The
translator core is subsequently implemented as a library that allows specifying any LR(1)
translation. The library functionality is tested by implementing the before constructed
translator and by its subsequent testing of the correctness translation outputs for various
inputs.

Abstrakt
Táto práca slúži ako úvod do problematiky formálneho prekladu. Čitateľovi predstavuje

podstatnú teóriu a následne používa jej poznatky na vytvorenie konkrétneho prekladača.
V prvej časti sú definované základy teórie formálnych jazykov. Na tieto poznatky nadväzuje
druhá časť, ktorá vo väčšej hĺbke rozoberá spracovanie zdola-hore. Je predstavený kanon-
ický LR(1) parser ako konkrétny praktický parser zdola-hore. Ako príklad je zostrojený
prekladač matematických vzorcov z infixovej na postfixovú notáciu. Jadro prekladaču je
následne implementované ako knižnica, ktorá dovoľuje špecifikovať ľubovoľný LR(1) preklad.
Funkcionalita knižnice je testovaná implementáciou predom zostrojeného prekladaču a násled-
ného testovania správnosti výsledkov prekladu rôznych vstupov.
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Chapter 0

Introduction

The field of formal language theory has had a great impact on whole computer science as
it provided a base for compilation and interpretation of higher languages, which marked a
great milestone in computer science history. One part of formal language theory – formal
translation theory – may not have recieved as much notice as some other parts of the for-
mal language theory but its importance should not be diminished, as it provides us with
the ability to translate one formal language into another. It is heavily used in compiler
construction to translate a human-readable language into a machine-readable one, to give
one example.

This thesis is written as a quick introduction to the formal translation theory and as
such provides basic theoretical knowledge required for firstly understanding basics of for-
mal language theory, which is further built upon to establish practical ways of processing
languages, as well as basic formalisms and computational models for translations. This
effort culminates in a creation and implementation of a translator on the top of a canonical
LR(1) parser. Please note that the final translator is not meant to be necessarily a generic,
industry-level solution, but rather a proof of concept, that can be read, understood, and
extended easily.

The thesis is divided into three thematically distinct parts:
Chapter 1 introduces the reader into the fundamentals of formal language theory, defin-

ing concepts of alphabets and languages. Further introduced are formal methods of practi-
cally representing languages via the means of generation by grammars, respectively. Lastly,
formalisms for translations are defined by extending the already mentioned formalisms of
language representations.

Chapter 2 delves into more practical aspects of formal languages. Firstly, two major
ways of parsing languages – top-down and bottom-up – are presented. The bottom-up
parsing is further elaborated upon, which leads up to introduction of an important class
of bottom-up parsable grammars - LR grammars, together with methods of constructing a
parser for such grammars. These are again extended to allow definition and construction
of LR translators. A proof of concept LR(1) translator for infix to postfix expression
translation is constructed as an example.

Chapter 3 considers particular implementation details and decisions of the translator
constructed in the previous chapter. The core of the parsing and translation stays common
across all LR(1) grammars, and as such is abstracted into a library, which is then used to
implement the particular translation of infix expressions to postfix. This implementation
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is then tested for correct behavior.

The reader is expected to have fundamental knowledge of mathemathical sets: what is
a set, element inclusion, subset, union, intersection, Carthesian product, etc.; knowledge of
basing data structures and their properties, such as a stack; a basic understanding of finite
state automata is assumed as well: states, transitions, finishing states, etc.. These three
are the cornerstones of formal languages theory that are mainly expanded upon. There are
also several mentions of algorithm time complexity and the Big-O notation in later places
of the thesis. While knowledge of these is not essential for understanding the topic on hand,
it provides the acknowledged reader with more insight on the final product of this thesis.

Definitions, examples, and algorithms are numbered sequentially within chapters and
are concluded using symbol �. Important terms will be emphasized by italicizing on their
first mention - usually during their definition. Please make note that phrases of latin origin,
such as et cetera or verbatim are italicized as well, as it is common practice to do so.
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Chapter 1

Preliminary theory

Before one can delve into the realm of formal language translations, he must first under-
stand the theory leading up to it. Therefore, this initial chapter is dedicated to providing
mathematical foundations for the theory that are eventually expanded upon to formalize
and construct translations.

Firstly, the reader is introduced to the fundamental building blocks of formal languages
– languages themselves and their composition.

Theory around languages is further developed by describing methods of representing
said languages in a finite manner. One such method – generation by grammars – is de-
fined and further explored. Grammars are then extended to define grammatically directed
translations.

1.1 Polish expression notations
There is a useful way of representing ordinary (infix) arithmetic expressions without using
parentheses. This notation is referred to as Polish notation1.

The preliminary text, definition and example are taken from [2, sec. 3.1.1].

Definition 1.1. Let Θ be a set of binary operators, and let Σ be a set of operands. Two
forms of Polish expression notation, prefix Polish and postfix Polish are defined recursively
as follows:

1. If an infix expression 𝐸 is a single operand 𝑎 ∈ Σ, then both the prefix Polish and
postfix Polish representation of 𝐸 is 𝑎.

2. If 𝐸1 𝜃 𝐸2 is an infix expression, where 𝜃 is an operator, and 𝐸1 and 𝐸2 are infix
expressions and operands of 𝜃, then

(a) 𝜃 𝐸′
1𝐸

′
2 is the prefix Polish representation of 𝐸1 𝜃 𝐸2, where 𝐸′

1 and 𝐸′
2 are the

prefix Polish representations of 𝐸1 and 𝐸2, respectively, and
(b) 𝐸′′

1 𝐸
′′
2 𝜃 is the portfix Polish representation of 𝐸1 𝜃 𝐸2, where 𝐸′′

1 and 𝐸′′
2 are the

postfix Polish representations of 𝐸1 and 𝐸2, respectively

3. If (𝐸) is an infix expression, then
1This notation was originally described by Polish mathematician Jan Łukasiewicz. Due to the interna-

tional public having trouble pronouncing his name, the notation is commonly called “Polish” instead.
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(a) The prefix Polish representation of (𝐸) is the prefix Polish representation of
𝐸, and

(b) The postfix Polish representation of (𝐸) is the postfix Polish representation of
𝐸

�

Example 1.2. Consider the infix expression (𝑎 + 𝑏) * 𝑐. This expression is of the form
𝐸1 * 𝐸2, where 𝐸1 = (𝑎 + 𝑏) and 𝐸2 = 𝑐. Thus, the prefix and postfix Polish expressions
for 𝐸2 are both 𝑐. The prefix expression for 𝐸1 is the same as that for 𝑎 + 𝑏, which is +𝑎𝑏.
Thus the prefix expression for (𝑎 + 𝑏) * 𝑐 is * + 𝑎𝑏𝑐.

Similarly, the postfix expression for 𝑎+ 𝑏 is 𝑎𝑏+, so the postfix expression for (𝑎+ 𝑏) * 𝑐
is 𝑎𝑏 + 𝑐*. �

Throughout the thesis, we will be omitting the word “Polish” when referring to infix and
postfix expressions.

1.2 Alphabets and languages
This section describes the bare essentials required for understanding of the subject of this
thesis and the formal language theory as a whole: laguages and their building blocks. These
theoretical cornerstones should be simple to understand, nonetheless, it is imperative that
they are fully understood, as all further concepts rely heavily upon them.

Definitions in this section are taken from [5] and [6]. Further reading on this topic can
also be conducted in [2, chap. 0], [7, chap. 1 to 3], and [4, chap. 1 to 7].

Alphabets

The fundamental building block of any formal language is a set of basic symbols called
alphabet. An alphabet contains all symbols the system is “allowed” to use. Symbols from
an alphabet can be sequentially “strung together” to form a string over said alphabet –
much like letters of english alphabet can be put together in such manner to create words.

Definition 1.3. We define an alphabet Σ as a finite non-empty set, whose members are
called symbols.

We define a string 𝛼 over Σ as

𝛼 = 𝑎1𝑎2𝑎3...𝑎𝑛;𝑛 ∈ N, 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖 ∈ Σ

a sequence of symbols from Σ. A special string contaning zero symbols is called an empty
string and is denoted by greek letter 𝜀2. Such string is still a string over Σ3.

We denote Σ* a set of all strings over Σ. We define Σ+ as Σ+ = Σ* − {𝜀}. �

Example 1.4. Let us define an alphabet Σ = {0, 1}. Strings ‘11011’ and ‘’ (empty string)
are both strings over Σ. String 12021 is not a string over Σ, as 2 /∈ Σ. �

2Epsilon. While various empty string representations can be found across literature, one will mostly see
either latin 𝑒 or greek 𝜀 (or its variation 𝜖) used.

3Strings are also commonly referred to as “words” of the language.
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Languages

Definition 1.5. A language 𝐿(Σ) over an alphabet Σ is a set defined as 𝐿(Σ) ⊆ Σ*. If
𝐿(Σ) is a finite set, we call it a finite language, otherwise it’s an infinite language. �

In layman’s terms, language 𝐿(Σ) is a set of words (strings) that can be formed by alphabet
Σ.

Example 1.6. Let there be an alphabet Σ = {𝑎, 𝑏}. Let us define a language 𝐿(Σ) =
{𝑎𝑛𝑏𝑛;𝑛 ∈ N}. This would create an infinite language of strings in form 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏,
etc.. This is obviosly a subset of Σ* (all strings possibly made with only 𝑎 and 𝑏), and thus
by definition, an alphabet over Σ. �

1.3 Representations of languages
With defining language 𝐿 a set of strigs over some alphabet Σ comes the problem of rep-
resenting 𝐿. While finite languages can be listed by enumeration, 𝐿 being finite is rarely
the case in practice. Obviously, it is not possible to finitely enumerate an infinite language,
therefore a different representation has to be defined.

There are two mainly used methods of finitely defining a potentially infinite language.
One of those is using a generative system called a grammar. Grammars use defined rules
to construct each sentence of a language described by said grammar. One advantage of
defining a language by a grammar is that the rules of the grammar impart structure to the
sentences defined by them, making parsing and translation easier. [2, sec. 2.1.1]

Other such method uses recognizers – finite machines that, given an input, can decide
whether that input is a sentence of the recognized language [2, sec. 2.1.4]. They provide
a model for parsing languages and usually take form of a finite automaton enhanced with
some sort or internal memory.

Definitions and observations in this section are taken from [2, chap. 2, 4] and [1, sec.
2.2]. Various observations and statements will be cited more specifically.

1.3.1 Grammars

In the field of natural languages, grammars set the rules that generate the structure of the
language: how words are formed, the word order, where the commas go, et cetera. They
do not define the meaning of said words or sentences, however. In formal languages, this
is very much same, as formal grammars lay down the rules for constructing languages. In
other words, a formal grammar generates a formal language.

A grammar for a language 𝐿 uses two finite disjoint alphabets - an alpabet of nonter-
minal symbols 𝑁 and an alphabet of terminal symbols Σ. The terminal symbols alphabet
is the alphabet over which 𝐿 is defined, while the alphabet of nonterminals is used for
generation of words in 𝐿. This will be described in detail later in this section.

The core of a grammar is a finite set 𝑃 of formation rules commonly called productions,
that describe how sentences of the language should be generated. A production is, in its
essence, a pair of strings in which the first string can be any string containing at least one
nonterminal, while the second string can be any string. [2, sec. 2.1.2]

Definition 1.7. A grammar is a 4-tuple 𝐺 = (𝑁,Σ, 𝑃, 𝑆), whose elements are defined as
follows:
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𝑁 is a finite set of nonterminals.

Σ is a finite set of terminals, such that Σ ∩𝑁 = ∅.

𝑃 is a finite subset of (𝑁 ∪ Σ)*𝑁(𝑁 ∪ Σ)* × (𝑁 ∪ Σ)*.

𝑆 is the starting nonterminal, 𝑆 ∈ 𝑁 .

An element (𝛼, 𝛽) ∈ 𝑃 will be written as 𝛼 → 𝛽 and called a production. We will call 𝛼
the “head” of the production, while 𝛽 will be called the “body”. �

Nonterminals are symbols – variables that denote sets of strings. These sets of strings help
define the generated language by imposing a hierarchical structure on the language that
is key to syntax analysis and translation. One nonterminal in a grammar in distinguished
as a starting nonterminal, and the set of strings it denotes is the language generated the
grammar. Usually, productions for the starting nonterminal are listed first.

Terminals are the basic symbols from which strings are formed. The set of a grammar’s
terminals is the alphabet of the language it generates. Another common name for a termi-
nal used throughout literature is “token”. [1, sect. 4.2.1]

A grammar defines a language in a recursive manner.

Definition 1.8. A string called sentential form of a grammar 𝐺 = (𝑁,Σ, 𝑃, 𝑆) is defined
recursively as follows:

1. 𝑆 is a sentential form.

2. If 𝛼𝛽𝛾;𝛼, 𝛽, 𝛾 ∈ (𝑁 ∪ Σ)* is a sentential form and 𝛽 → 𝛿 ∈ 𝑃 , then 𝛼𝛿𝛾 is also a
sentential form.

A sentential form of 𝐺 containing only terminals is called a sentence generated by gram-
mar 𝐺. The language generated by grammar 𝐺, denoted 𝐿(𝐺), is a set of all sentences
generated by grammar 𝐺. �

Definition 1.9. A derivation step of grammar 𝐺 is a transition ⇒ defined as follows: If
𝛼𝛽𝛾 ∈ (𝑁 ∪ Σ)* and 𝛽 → 𝛿 ∈ 𝑃 , then 𝛼𝛽𝛾 =⇒ 𝛼𝛿𝛾. This is read as “𝛼𝛽𝛾 directly derives
𝛼𝛿𝛾”.

We define a k-step derivation 𝛽
𝑘
=⇒ 𝛿 a k-fold product of the relation ⇒, such that there

is a chain of productions exactly 𝑘 number of productions resulting in 𝛽 being derived into 𝛿.

We define derivation 𝛽
*
=⇒ 𝛿 as a k-step derivation, where 𝑘 ≥ 0.

We define derivation 𝛽
+
=⇒ 𝛿 as a k-step derivation, where 𝑘 ≥ 1. �

Example 1.10. Let us define a grammar 𝐺 = ({𝑆}, {0, 1}, 𝑃, 𝑆) with productions in 𝑃
defined as follows:

𝑆 → 1𝑆1

𝑆 → 0

as well as the following derivation: 𝑆 ⇒ 1𝑆1 ⇒ 11𝑆11 ⇒ 11011. We can say that 𝑆
3
=⇒

11011, 𝑆
*
=⇒ 11011, 𝑆

+
=⇒ 11011 as well as 11011 ∈ 𝐿(𝐺). It can be seen that 𝐿(𝐺) =

{1𝑛01𝑛|𝑛 ≥ 1}. �
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For notational convenience, throughout this thesis and other literature as well, productions
with the same head nonterminal can have their bodies grouped, separated by the symbol
|, read as “or” [1, sec. 2.2.1]. In the light of this, we can rewrite previous productions as
𝑆 → 1𝑆1 | 0.

Context-free Grammars

Having provided a general definition of a grammar, it is important to note that this gen-
eral definition would make for an impractical implementation, due to minimal constraints
resulting in many edge-case scenarios. There are various classes of grammars incurring
certain restrictions to their productions. Further reading on these classes can be conducted
in [2, sec. 2.1.3]. However, one such class of restricted grammars is especially important in
formal language theory as its restrictions allow for it to effectively specify most of a pro-
gramming language’s structure, and is also used as a basis of various schemes for specifying
translations [2, sec. 2.4].

Definition 1.11. A context-free grammar 𝐺 = (𝑁,Σ, 𝑃, 𝑆) is a grammar with each pro-
duction in 𝑃 being in the form 𝐴 → 𝛼;𝐴 ∈ 𝑁,𝛼 ∈ (𝑁 ∪ Σ)*.

A language 𝐿 generated by a context-free grammar (CFG) is called a context-free lan-
guage. �

While in theory the order of nonterminals chosen for production is not relevant, it is de-
sirable to follow a certain order in practice. There are two main ways in which we can
deterministically choose which nonterminal should be used for derivation:

∙ leftmost derivation - always choosing the leftmost nonterminal for production. De-
noted 𝛽 =⇒

𝑙𝑚
𝛾. Any sentential form derived by a leftmost derivation 𝑆

*
=⇒
𝑙𝑚

𝛼 is called
a left sentential form.

∙ rightmost derivation - always choosing the rightmost nonterminal for production. De-
noted 𝛽 ==⇒

𝑟𝑚
𝛾. Any sentential form derived by a rightmost derivation 𝑆

*
==⇒
𝑟𝑚

𝛼 is
called a right sentential form.

A convenient way of visualizing derivations on CFGs are derivation trees (or parse trees).

Definition 1.12. A labeled ordered tree 𝐷 is a derivation tree (or parse tree) of a CFG
𝐺 = (𝑁,Σ, 𝑃, 𝑆) if

∙ The root of 𝐷 is 𝑆

∙ If 𝐷1, ..., 𝐷𝑛 are subtrees of the direct children of the root, and the root of 𝐷𝑖 is
labeled 𝑋𝑖 , then 𝑆 → 𝑋1, ..., 𝑋𝑛 ∈ 𝑃 . If 𝑋𝑖 is a nonterminal, 𝐷𝑖 is a derivation tree
of for 𝐺 = (𝑁,Σ, 𝑃,𝑋𝑖). If 𝑋𝑖 is a terminal, 𝐷𝑖 is a single node labeled 𝑋𝑖.

∙ If 𝐷1 is the only subtree of the root of 𝐷 and 𝐷1 = 𝜀, then 𝑆 → 𝜀

�

Example 1.13. Let us define a CFG 𝐺 = ({𝐸, 𝑇, 𝐹}, {𝑎,+, *}, 𝑃, 𝐸) with productions in
𝑃 defined as follows:
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𝐸 → 𝐸 + 𝐸 |𝐸 * 𝐸 | 𝑎

It is immediately apparent that this CFG lets us describe very simple mathematical ex-
pressions. Now let’s try to derive the string 𝑎1 + 𝑎2 * 𝑎3 by this CFG using left-most
derivations:

𝐸 =⇒
𝑙𝑚

𝐸 + 𝐸 =⇒
𝑙𝑚

𝑎1 + 𝐸 =⇒
𝑙𝑚

𝑎1 + 𝐸 * 𝐸 =⇒
𝑙𝑚

𝑎1 + 𝑎2 * 𝐸 =⇒
𝑙𝑚

𝑎1 + 𝑎2 * 𝑎3

This creates derivation tree figure 1.1a.

So far so good, but the derivation above is not the only way to derive 𝑎1 + 𝑎2 * 𝑎3 by this
CFG using left-most derivations. Another possible way to do so is:

𝐸 =⇒
𝑙𝑚

𝐸 * 𝐸 =⇒
𝑙𝑚

𝐸 + 𝐸 * 𝐸 =⇒
𝑙𝑚

𝑎1 + 𝐸 * 𝐸 =⇒
𝑙𝑚

𝑎1 + 𝑎2 * 𝑎3 =⇒
𝑙𝑚

𝑎1 + 𝑎2 * 𝑎3

This creates derivation tree figure 1.1b.

This CFG is ambiguous – meaning that it produces more than one leftmost or more than
one rightmost derivation for the same sentence [1, sec. 4.2.5]. This is also true the other
way around: if the grammar produces at most one leftmost and at most one rightmost
derivation for a single sentence, it is unambiguous. �

E

E

a + b

* c

(a)

E

a + E

b * c
(b)

Figure 1.1: Parse trees of 𝑎+𝑏*𝑐 produced by 𝐺 in example 1.13 using leftmost derivations

1.3.2 Recognizers

The second common method for finitely specifying a possible infinite language is to define a
recognizer for it. There are three main parts to a recognizer – an input tape, a finite state
control, and an auxillary memory. A recognizer operates by making a sequence of moves.
Each move consists of moving the input head one cell to the left, one cell to the right, or
not moving the head at all, reading the symbol from the input tape, storing the input into
the memory and changing the state of the control to determine its next action.

The current state of a recognizer can be described by a configuration. A configuration
contains

∙ The state of the finite control.

∙ The status of the input tape.

∙ The state of the auxillary memory.
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We assume that the input tape is read from left to right. It is said that a recognizer is
one-way if the input head cannot move to the left. Normally, it is assumed that the input
tape is read-only, meaning no changes can be made to the input by the recognizer.

It is said that a recognizer is deterministic if in each configuration there is at most
one possible move. Otherwise the recognizer is nondeterministic. While nondeterministic
recognizers are a convenient abstraction, they are often difficult to simulate in practice. [2,
sec. 2.1.4]

Finite automata

We will first introduce the finite automaton – the simplest form of recognizer. Its auxillary
memory is null. A finite automaton is a one-way recognizer that is required to move its
head on each move. It can be nondeterministic as well as deterministic, but we will consider
only deterministic finite automata for the purposes of this thesis. [2, sec. 2.2.3]

Definition 1.14. A deterministic finite automaton (FA) is a 5-tuple

𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 )

where

𝑄 is a finite set of states

Σ is a finite set of input symbols

𝛿 is a mapping (𝑄× Σ) → 𝑄, called state transition function

𝑞0 ∈ 𝑄 is the initial state of the finite state control

𝐹 ⊆ 𝑄 is the set of final states

�

Definition 1.15. We define a configuration of FA 𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹 ) a pair (𝑞, 𝑤) where
𝑞 ∈ 𝑄 is the current state of 𝑀 and 𝑤 ∈ Σ* is the remaining input.

A configuration (𝑞0, 𝑤) is called an initial configuration.

A configuration (𝑞𝐹 , 𝜀) where 𝑞𝐹 ∈ 𝐹 is called a final configuration.

A move by 𝑀 is represented by a binary relation ⊢ on configurations. If 𝛿(𝑞, 𝑎) ∋ 𝑞′, then
(𝑞, 𝑎𝑤) ⊢ (𝑞′, 𝑤). �

Although it is notable that FA are recognizers for an important class of languages called
regular languages [2, sec. 2.2], this is not important for the purposes our thesis. The FA
was defined since it’s the simplest of recognizers and all other recognizers in this thesis
“extend” this simple recognizer in one way or another.

10



Pushdown automata

We will now introduce one such extension – the pushdown automaton – a recognizer that
models context-free language parsers. The pushdown automaton is a one-way nondeter-
ministic recognizer with infinite storage that consists of a single stack (pushdown list). [2,
sec. 2.5]

Definition 1.16. A pushdown automaton (PDA) is a 7-tuple

𝑃 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 )

where items common with FA retain their meaning. Additionally

Γ is a finite pushdown alphabet

𝛿 is a state transition function 𝑄× (Σ ∪ {𝜀}) × Γ → 𝑄× Γ*

𝑍0 ∈ Γ is the initial pushdown symbol

�

Definition 1.17. We define a configuration of PDA 𝑃 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 ) a triple
(𝑞, 𝑤, 𝛼) such that 𝑞 ∈ 𝑄 is the current finite control symbol, 𝑤 ∈ Σ* is the remaining
input, and 𝛼 ∈ Γ* are the contents of the pushdown list.

Configuration (𝑞0, 𝑤, 𝑍0) is the initial configuration of PDA 𝑃 . Configuration (𝑞𝐹 , 𝜀, 𝛼)
where 𝑞𝐹 ∈ 𝐹, 𝛼 ∈ Γ* is the final configuration of PDA 𝑃 .

A move by 𝑃 is represented by a binary relation ⊢ on configurations. We write

(𝑞, 𝑎𝑤, 𝑍𝛼) ⊢ (𝑞′, 𝑤, 𝛾𝛼)

if 𝛿(𝑞, 𝑎, 𝑍) ∋ (𝑞′, 𝛾). �

1.4 Formalisms for translations
Having covered the basic representations of languages in the form of grammars and recog-
nizers, we now move onto describing basic representations of translation between languages.
We will see that these representations are extensions of the already defined language repre-
sentations – syntax-directed translation schemas extend grammars with a second set pro-
duction rule bodies representing the output grammar, while pushdown transducers extend
pushdown automata with an output tape.

These formalisms will be elaborated upon in chapter 2 to define proper translators.

1.4.1 Syntax-Directed Translation Schema

A syntax-directed translation schema is essentially a grammar with translation elements
provided with each rule. Every time a certain rule is used in the input derivation step,
the translation element is used to determine a part of the output associated with the input
generated by that rule. They are often times also called translation grammars, but we will
use the term syntax-directed translation schema in this thesis.
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All definitions, examples and statements are taken from [2, sec. 3.1.2].

There are several desirable features in translation definitions, two of them being:

1. It should be easy to determine the translation pairs.

2. It should be possible to construct a translator directly from the definition using an
algorithm.

As with translation definitions, there are some particular features that are desirable in
translators. Some of them are:

1. Time efficiency - their time to process string of length 𝑛 should be 𝑂(𝑛).

2. Small size.

3. Ability to create small finite test such that if the translator passes this test, it would
guarantee correct working on all inputs.

While there may be several ways to formally describe translations, in this thesis we will
only consider syntax-directed translation schemata and pushdown transducers as means of
doing so.

Definition 1.18. A syntax-directed translation schema (SDTS for short) is a 6-tuple

𝑇 = (𝑁,Σ,∆, 𝑅, 𝑆)

where

1. 𝑁 is a finite set of nonterminal symbols

2. Σ is a finite input alphabet

3. ∆ is a finite output alphabet

4. 𝑅 is a finite set of rules of the form 𝐴 → 𝛼, 𝛽, where 𝛼 ∈ (𝑁 ∪ Σ)*, 𝛽 ∈ (𝑁 ∪ ∆)*,
and the nonterminals in 𝛽 are a permutation of the nonterminals in 𝛼

5. 𝑆 is the starting nonterminal, 𝑆 ∈ 𝑁

�

Let 𝐴 → 𝛼, 𝛽 be a rule. To each nonterminal of 𝛼 there is associated an identical nonter-
minal of 𝛽. If a nonterminal 𝐵 appears only once in 𝛼 and 𝛽, the association is obvious.
If 𝐵 appears more than once, we use integer superscripts to indicate the association. This
association is an intimate part of the rule.

A SDTS defines a translation in a recursive manner.

Definition 1.19. A pair called translation form of a SDTS 𝑇 = (𝑄,Σ,∆, 𝑅, 𝑆) is defined
recursively as follows:

1. (𝑆, 𝑆) is a translation form and the two 𝑆’s are said to be associated.
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2. If (𝛼𝐴𝛽, 𝛼′𝐴𝛽′) is a translation form, in which the two explicit instances of 𝐴 are
associated, and if 𝐴 → 𝛾, 𝛾′ ∈ 𝑅, then (𝛼𝛾𝛽, 𝛼′𝛾′𝛽′) is a translation form. The
nonterminals of 𝛾 and 𝛾′ are associated in the translation form exactly as they are
associated in the rule.

If the forms (𝛼𝐴𝛽, 𝛼′𝐴𝛽′) and (𝛼𝛾𝛽, 𝛼′𝛾′𝛽′), together with their associations, are re-
lated as above, then we write (𝛼𝐴𝛽, 𝛼′𝐴𝛽′) =⇒ (𝛼𝛾𝛽, 𝛼′𝛾′𝛽′). We then define 𝑘

=⇒, *
=⇒, +

=⇒
similarly as in definition 1.9.

The translation defined by 𝑇 , denoted 𝜏(𝑇 ) is the set of translation forms such that

{(𝑥, 𝑦) | (𝑆, 𝑆)
*
=⇒ (𝑥, 𝑦), 𝑥 ∈ Σ*, 𝑦 ∈ ∆*}

�

As we can see from the definitions, a SDTS structurally very similar to a CFG, with the
exception that every rule now has two bodies - first one representing the input grammar
rule body and the second one representing the ouput grammar rule body.

For further formal needs, we will also define input and output grammar.

Definition 1.20. Define a SDTS 𝑇 = (𝑁,Σ,∆, 𝑅, 𝑆). The grammar

𝐺𝑖 = (𝑁,Σ, 𝑃, 𝑆)

where 𝑃 = {𝐴 → 𝛼 |𝐴 → 𝛼, 𝛽 ∈ 𝑅} is called underlying (or input) grammar of 𝑇 . The
grammar

𝐺𝑜 = (𝑁,Σ, 𝑃 ′, 𝑆)

where 𝑃 ′ = {𝐴 → 𝛽 |𝐴 → 𝛼, 𝛽 ∈ 𝑅} is called the output grammar of 𝑇 . �

Definition 1.21. A SDTS 𝑇 = (𝑁,Σ,∆, 𝑅, 𝑆) such that in each rule 𝐴 → 𝛼, 𝛽 ∈ 𝑅,
associated nonterminals occur in the same order in 𝛼 and 𝛽 is called a simple SDTS. The
translation defined by a simple SDTS is called a simple syntax-directed translation (simple
SDT). �

The simple SDTs are important because for each simple SDT we can easily construct a
translator consisting of a PDT 1.23. Many, but not all, useful translations can be described
as a simple SDT.

Example 1.22. Let there be a SDTS 𝑇 = ({𝐸}, {+, *, 𝑎}, {+, *, 𝑎}, 𝑅,𝐸), with 𝑅 contain-
ing following rules:

𝐸 → 𝐸1 + 𝐸2, 𝐸1𝐸2+

𝐸 → 𝐸1 * 𝐸2, 𝐸1𝐸2*

𝐸 → (𝐸), 𝐸

𝐸 → 𝑎, 𝑎
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We can see from definition that the underlying grammar defines infix expressions over alpha-
bet {+, *, 𝑎}, while the output grammar defines postfix expressions over the same alphabet.
By definition 1.21, 𝑇 is a simple SDTS.

Consider the following derivation of expression 𝑎1 *𝑎2 +𝑎3. Terminals 𝑎 have been indexed
with a subscript to show their order after translation.

(𝐸,𝐸) ⇒ (𝐸1 + 𝐸2, 𝐸1𝐸2+)

⇒ (𝐸1 * 𝐸2 + 𝐸3, 𝐸1𝐸2 * 𝐸3+)

⇒ (𝑎1 * 𝐸1 + 𝐸2, 𝑎1𝐸
2 * 𝐸2+)

⇒ (𝑎1 * 𝑎2 + 𝐸, 𝑎1𝑎2 * 𝐸+)

⇒ (𝑎1 * 𝑎2 + 𝑎3, 𝑎1𝑎2 * 𝑎3+)

We see that the infix expression 𝑎1 * 𝑎2 + 𝑎3 has been translated to a posfix expression
𝑎1𝑎2 * 𝑎3+. As per definition 1.1, we can see that this translation is correct. �

1.4.2 Pushdown transducers

We will now introduce an important class of translators called pushdown transducers. Push-
down transducer are obtained by providing a pushdown automaton with an output, that is,
on each step the automaton is allowed to emit a finite-length output string. All definitions,
statements, and examples are taken from [2, sec. 3.1.4].

Definition 1.23. A pushdown transducer (PDT) 𝑃 is an 8-tuple

𝑃 = (𝑄,Σ,Γ,∆, 𝛿, 𝑞0, 𝑍0, 𝐹 )

where all symbols have the same meaning as for a pushdown automaton, except that ∆
is an outptut alphabet and 𝛿 is now mapping from 𝑄 × (Σ ∪ {𝜀}) × Γ to finite subsets of
𝑄× Γ* × ∆*. �

The configuration and transition is defined similarily to a pushdown automaton, although
with the difference of adding the current state of the output.

Definition 1.24. We define a configuration of 𝑃 as a 4-tuple (𝑞, 𝑤, 𝛾, 𝑦), where 𝑞, 𝑤,
and 𝛾 are the same as for a PDA and 𝑦 is the output string emmited to this point. If
𝛿(𝑞, 𝑥, 𝑍) ∋ (𝑟, 𝛼, 𝑧), then we write (𝑞, 𝑎𝑤, 𝑍𝛾, 𝑦) ⊢ (𝑟, 𝑤, 𝛼𝛾, 𝑦𝑧) for all 𝑤 ∈ Σ*, 𝛾 ∈ Γ*, and
𝑦 ∈ ∆*.

We say that 𝑦 is an output for 𝑤 if (𝑞0, 𝑤, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝛼, 𝑦) for some 𝑞 ∈ 𝐹 and
𝛼 ∈ Γ*. The translation defined by P , denoted 𝜏(𝑃 ), is

{(𝑥, 𝑦) | (𝑞0, 𝑤, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝛼, 𝑦), 𝑞 ∈ 𝑄,𝛼 ∈ Γ*}.

�
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As with pushdown automata we can say that 𝑦 is an output for 𝑥 by empty pushdown list
if (𝑞0, 𝑥, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝜀, 𝑦), 𝑞 ∈ 𝑄. The translation defined by P by empty pushdown list is

{(𝑥, 𝑦) | (𝑞0, 𝑤, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝜀, 𝑦), 𝑞 ∈ 𝐹}.

Example 1.25. Let there be a PDT 𝑃 = ({𝑞}, {𝑎,+, *}, {+, *, 𝐸}, {𝑎,+, *}, 𝛿, 𝑞, 𝐸, {𝑞})
with 𝛿 defined as follows:

𝛿(𝑞, 𝑎, 𝐸) = {(𝑞, 𝜀, 𝑎)}

𝛿(𝑞,+, 𝐸) = {(𝑞, 𝐸𝐸+, 𝜀)}

𝛿(𝑞, *, 𝐸) = {(𝑞, 𝐸𝐸*, 𝜀)}

𝛿(𝑞, 𝜀,+) = {(𝑞, 𝜀,+)}

𝛿(𝑞, 𝜀, *) = {(𝑞, 𝜀, *)}

With the input + * 𝑎𝑎𝑎, 𝑃 makes the following sequence of moves:

(𝑞,+ * 𝑎𝑎𝑎,𝐸, 𝜀) ⊢ (𝑞, *𝑎𝑎𝑎,𝐸𝐸+, 𝜀)

⊢ (𝑞, 𝑎𝑎𝑎,𝐸𝐸 * 𝐸+, 𝜀)

⊢ (𝑞, 𝑎𝑎,𝐸 * 𝐸+, 𝑎)

⊢ (𝑞, 𝑎, *𝐸+, 𝑎𝑎)

⊢ (𝑞, 𝑎, 𝐸+, 𝑎𝑎*)

⊢ (𝑞, 𝜀,+, 𝑎𝑎 * 𝑎)

⊢ (𝑞, 𝜀, 𝜀, 𝑎𝑎 * 𝑎+)

Thus a translation by empty pushdown list of + *𝑎𝑎𝑎 is 𝑎𝑎 *𝑎+. It can be verified that
𝜏𝜀(𝑃 ) is the set:

{(𝑥,𝑦) |𝑥 is a prefix arithmetic expression over {+, *, 𝑎}
and 𝑦 is the corresponding postfix expression}

�
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Chapter 2

Parsing and translation

Having introduced fundamentals of formal languages, their representations and transla-
tion formalisms, we will now be presenting practical methods of language recognition via
grammatical parsers, and translation.

Firstly we define two main approaches to practically parsing grammars – top-down
and bottom-up. Top-down parsing is only briefly mentioned as it’s not the focus of this
thesis. On the other hand, bottom-up parsing is explored more deeply. This culminates in
definition of a special class of bottom-up parsable grammars – the LR grammars.

LR grammars are further explored and a method of creating an LR grammar parser is
defined. This LR parser construction process is then expanded to allow for creation of LR
translators.

In the last part of this chapter we formally construct a particular LR translator that
translates infix expressions into postfix, step by step. This constructed parser, will be then
implemented in chapter 3.

2.1 Parsing methods
In compiler design, parsing is often referred to as “syntax analysis”. This means that the
parser is fed tokens – terminals from the input and tries to construct a parse tree of the
input. If the input is well formed according to the parsed language grammar, a parse tree
is successfuly constructed by the parser. While this parse tree can be actually “physically”
constructed in the parser’s memory, most of the time its construction is only simulated. [2,
sec. 3.4.1]

Firstly, the top-down method is briefly explained, as to give the reader at least an
idea of it. We stop at that, since its deeper understanding is not necessary for this thesis.
Then the bottom-up method is explored more in depth, since we are more interested in the
bottom-up methods for reasons that will become clear later on.

2.1.1 Top-down parsing

Top-down parsing can be viewed as finding a leftmost derivation for an input string. Equiv-
alently, we can look at top-down parsing as the problem of constructing a parse tree for
the input string, starting from the root and creating the parse tree nodes in a depth-first
manner [1, sec. 4.4]. For this short overview, however, we will only consider the first way
of understanding top-down parsing.
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There exists a class of grammars that can be naturally parsed in a top-down fashion. They
are called LL(k) grammars, meaning that they scan the input from left to right producing
a left parse, using 𝑘 symbols of lookahead at each step to make parsing action decisions.

The class of LL(1) grammars is rich enough to cover most programming constructs,
although consideration is required for writing a proper LL(1), or any LL(k) grammar, since
the grammar must be unambiguous and not left-recursive to be parsed naturally by a LL(k)
parser.

The topic of LL(k) grammars will not be discussed further in this thesis, since it would be
unnecessary to introduce them more formally and rigorously because we will not be using
them further down the line. Further reading on these, however, can be conducted in [2,
sec. 3.4.2] and [1, sec. 4.4.3], which is also the source of claims and “definitions” in this
subsection.

2.1.2 Bottom-up parsing

As opposed to top-down parsing where inputs are parsed by conducting leftmost derivations,
or by creating parse trees from their roots; bottom-up parsers work in a fundamentally
opposite manner. Bottom-up parser conduct rightmost derivations, creating a right parse,
and contruct parse trees from leaves, working their way up to the root.

We will now define a PDT which implements a SDTS 𝑇𝑟 which maps words from lan-
guage 𝐿 to their right parses. We shall define an extended PDT, which will serve as a model
for bottom-up parsers.

Definition 2.1. An extended PDT (EPDT) is an 8-tuple 𝑃 = (𝑄,Σ,Γ,∆, 𝛿, 𝑞0, 𝑍0, 𝐹 )
where all symbols retain their meaning from the definition of PDT, with the exception of 𝛿
which now maps a finite subset of 𝑄× (Σ ∪ {𝜀}) × Γ* to the finite subsets of 𝑄× Γ* × ∆*.
Configurations are defined as before, but with the pushdown top on the right, and we say
that (𝑞, 𝑎𝑤, 𝛽𝛼, 𝑥) ⊢ (𝑝, 𝑤, 𝛽𝛾, 𝑥𝑦) ⇐⇒ 𝛿(𝑞, 𝑎, 𝛼) ∋ (𝑝, 𝛾, 𝑦).

The EPDT 𝑃 is deterministic if:

1. ∀𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ {𝜀}, 𝛼 ∈ Γ* : |𝛿(𝑞, 𝑎, 𝛼)| ≤ 1, and

2. 𝛿(𝑞, 𝑎, 𝛼) ̸= ∅ ∧ 𝛿(𝑞, 𝑏, 𝛽) ̸= ∅, with 𝑏 = 𝑎∨ 𝑏 = 𝜀, then neither of 𝛼 and 𝛽 is a suffix of
the other.

�

Definition 2.2. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a CFG. Let 𝑀𝐺
𝑟 be the nondeterministic EPDT

({𝑞},Σ, 𝑁 ∪Σ∪{$}, {1, ..., 𝑝}, 𝛿, 𝑞, $, ∅). The pushdown top is on the right, and 𝛿 is defined
as follows:

1. 𝛿(𝑞, 𝜀, 𝛼) ∋ (𝑞, 𝐴, 𝑖) if production 𝑖 in 𝑃 is 𝐴 → 𝛼.

2. 𝛿(𝑞, 𝑎, 𝜀) = {(𝑞, 𝑎, 𝜀)},∀𝑎 ∈ Σ.

3. 𝛿(𝑞, 𝜀, $𝑆) = {(𝑞, 𝜀, 𝜀)}.

This EPDT embodies the elements of what is known as a shift-reduce parsing algorithm.
Under rule 2, 𝑀𝑟 shifts input symbols onto the top of the pushdown list. Whenever a
handle appears on top of the pushdown, 𝑀𝑟 can reduce the handle under rule 1 and emit
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the number of the production used to reduce the handle. 𝑀𝑟 may then shift more input
symbols onto the pushdown, until the next handle appears on top of it. The handle can
then be reduced and the production number emitted, et cetera. 𝑀𝑟 continues to operate in
this fashion until the pushdown contains only the nonterminal on top the end of pushdown
marker. Unde rule 3 𝑀𝑟 can then enter a configuration in which the pushdown is empty.
�

Example 2.3. Let there be a CFG 𝐺𝑖𝑓 = ({𝐸, 𝑇, 𝐹}, {+, *, 𝑎, (, )}, 𝑃, 𝐸) where 𝑃 contain-
ing following rules

(1) 𝐸 → 𝐸 + 𝑇

(2) 𝐸 → 𝑇

(3) 𝑇 → 𝑇 * 𝐹

(4) 𝑇 → 𝐹

(5) 𝐹 → (𝐸)

(6) 𝐹 → 𝑎

This grammar denotes infix expressions with addition, multiplication and parentheses.

The right parser for 𝐺𝑖𝑓 would be

𝑀
𝐺𝑖𝑓
𝑟 = ({𝑞},Σ, 𝑁 ∪ Σ ∪ {$}, {1, ..., |𝑃 |}, 𝛿, 𝑞, $, ∅)

where

𝛿(𝑞, 𝜀, 𝐸 + 𝑇 ) = {(𝑞, 𝐸, 1)}
𝛿(𝑞, 𝜀, 𝑇 ) = {(𝑞, 𝐸, 2)}

𝛿(𝑞, 𝜀, 𝑇 * 𝐹 ) = {(𝑞, 𝑇, 3)}
𝛿(𝑞, 𝜀, 𝐹 ) = {(𝑞, 𝑇, 4)}

𝛿(𝑞, 𝜀, (𝐸)) = {(𝑞, 𝐹, 5)}
𝛿(𝑞, 𝜀, 𝑎) = {(𝑞, 𝐹, 6)}
𝛿(𝑞, 𝑡, 𝜀) = {(𝑞, 𝑡, 𝜀)};∀𝑡 ∈ Σ

𝛿(𝑞, 𝜀, $𝐸) = {(𝑞, 𝜀, 𝜀)}
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With input 𝑎1 + 𝑎2 * 𝑎3, 𝑀
𝐺𝑖𝑓
𝑟 could make the following sequence of moves, among

others:

(𝑞, 𝑎1 + 𝑎2 * 𝑎3, $, 𝜀) ⊢ (𝑞,+𝑎2 * 𝑎3, $𝑎1, 𝜀)
⊢ (𝑞,+𝑎2 * 𝑎3, $𝐹, 6)

⊢ (𝑞,+𝑎2 * 𝑎3, $𝑇, 64)

⊢ (𝑞,+𝑎2 * 𝑎3, $𝐸, 642)

⊢ (𝑞, 𝑎2 * 𝑎3, $𝐸+, 642)

⊢ (𝑞, *𝑎3, $𝐸 + 𝑎2, 642)

⊢ (𝑞, *𝑎3, $𝐸 + 𝐹, 6426)

⊢ (𝑞, *𝑎3, $𝐸 + 𝑇, 64264)

⊢ (𝑞, 𝑎3, $𝐸 + 𝑇*, 64264)

⊢ (𝑞, 𝜀, $𝐸 + 𝑇 * 𝑎3, 64264)

⊢ (𝑞, 𝜀, $𝐸 + 𝑇 * 𝐹, 642646)

⊢ (𝑞, 𝜀, $𝐸 + 𝑇, 6426463)

⊢ (𝑞, 𝜀, $𝐸, 64264631)

⊢ (𝑞, 𝜀, 𝜀, 64264631)

Thus, 𝑀𝐺𝑖𝑓
𝑟 would produce the right parse 64264631 for the input string 𝑎1 +𝑎2 *𝑎3. �

Definition 2.4. A SDTS is semantically unambiguous if there are no two distinct rules of
the form 𝐴 → 𝛼, 𝛽 and 𝐴 → 𝛼, 𝛾. �

A semantically unambiguous SDTS has exactly one translation element for each pro-
duction of the underlying grammar.

The definitions and examples in this subsections were taken from [2, sec. 3.4.3].

2.2 LR(k) parsing and translation
The previous section we saw definition for general bottom-up parsing that serves as a more
accurate model of the workings of a bottom-up parser, more precisely an undeterministic
shift-reduce parser. Moving on into more practical circumstances, only deterministic parsers
will be of interest to us.

Just as LL(k) is a class of CFGs that was mentioned to be deterministically parsable
by top-down parsers in subsection 2.1.1, there exists a similar class of grammars that is
deterministically parsable reading the input left to right, producing rightmost derivations,
called LR(k) grammars. As was the case with LL(k), 𝑘 is the number of lookahead symbols
required to make parsing action decisions.

We will cover mainly the most robust type of LR(k) parsers, so-called canonical LR(k)
parsers. Simpler and in turn, weaker types or LR(k) parsers – SLR and LALR will be
mentioned as well.

Definitions, statements and examples from this preliminary text as well as the following
subsections were taken mostly from [1, sec. 4.6, 4.7] and some from [2, sec. 5.2].
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2.2.1 LR(k) grammars

In this subsection we will define a large class of grammars for which we can always construct
deterministic right parsers. These grammars are the LR(k) grammars.

Informally, we say that a grammar is LR(k) if given a rightmost derivation, we can iso-
late the handle of each right-sentential form and determine which nonterminal is to replace
the handle by scanning the remaining input from left to right, but only going at most 𝑘
symbols into the remaining input.

Before we define the term LR(k) grammar, let us introduce the simple concept of an aug-
mented grammar.

Definition 2.5. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a CFG. We define the augmented grammar derived
from 𝐺 as 𝐺′ = (𝑁 ∪ {𝑆′},Σ, 𝑃 ∪ {𝑆′ → 𝑆}, 𝑆′). The augmented grammar 𝐺′ is merely
𝐺 with a new starting production 𝑆′ → 𝑆, where 𝑆′ /∈ 𝑁 is a new start symbol. We
assume that 𝑆′ → 𝑆 is the zeroth production in 𝐺′ and that the other productions of 𝐺 are
numbered 1, 2, ..., 𝑝. We add the starting production so that when a reduction using the
zeroth production is called for, we can interpret this “reduction” as a signal to accept. �

We shall now give a precise definition of an LR(k) grammar.

Definition 2.6. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a CFG and let 𝐺′ = (𝑁 ′,Σ, 𝑃 ′, 𝑆′) be its aug-
mented grammar. We say that 𝐺 is LR(𝑘), 𝑘 > 0, if the three conditions

1. 𝑆′ *
===⇒
𝐺′ 𝑟𝑚

𝛼𝐴𝑤 ===⇒
𝐺′ 𝑟𝑚

𝛼𝛽𝑤,

2. 𝑆′ *
===⇒
𝐺′ 𝑟𝑚

𝛾𝐵𝑦 ===⇒
𝐺′ 𝑟𝑚

𝛾𝛽𝑥, and

3. FIRST𝑘(𝑤) = FIRST𝑘(𝑦)

imply that 𝛼𝐴𝑦 = 𝛾𝐵𝑥, meaning that 𝛼 = 𝛾, 𝐴 = 𝐵, and 𝑥 = 𝑦.
A grammar is LR if it is LR(𝑘) for some 𝑘. �

This definition says that if 𝛼𝛽𝑤 and 𝛼𝛽𝑦 are right-sentential forms of the augmented
grammar with FIRST𝑘(𝑤) = FIRST𝑘(𝑦) and if 𝐴 → 𝛽 is the last production used to derive
𝛼𝛽𝑤 in a rightmost derivation, then 𝐴 → 𝛽 must also be used to reduce 𝛼𝛽𝑦 to 𝛼𝐴𝑦 in
a right parse. Since 𝐴 can derive 𝛽 independently of 𝑤, the LR(𝑘) conditions says that
there is sufficient information in FIRST𝑘(𝑤) to determine that 𝛼𝛽 was derived from 𝛼𝐴.
Thus there can never be any confusion about how to reduce any right-sentential form of the
augmented grammar. In addition, with an LR(𝑘) grammar we will always know whether
we should accept the present input string, or continue parsing. If the start symbol doesn’t
appear in the body of any production, we can alternatively defina an LR(𝑘) grammar
𝐺 = (𝑁,Σ, 𝑃, 𝑆) as one in which the three conditions

1. 𝑆
*

===⇒
𝐺′ 𝑟𝑚

𝛼𝐴𝑤 ===⇒
𝐺′ 𝑟𝑚

𝛼𝛽𝑤,

2. 𝑆
*

===⇒
𝐺′ 𝑟𝑚

𝛾𝐵𝑦 ===⇒
𝐺′ 𝑟𝑚

𝛾𝛽𝑥, and

3. FIRST𝑘(𝑤) = FIRST𝑘(𝑦)
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imply that 𝛼𝐴𝑦 = 𝛾𝐵𝑥.
The reason we cannot always use this definition is that if the start symbol appears in

the body of some production we may not be able to determine whether we have reached
the end of the input string and should accept or whether we should continue parsing.

We will now show for each LR(𝑘) grammar 𝐺 = (𝑁,Σ, 𝑃, 𝑆) we can construct a determin-
istic right parser which behaves in the following manner.

First of all, the parser will be constructed from the augmented grammar 𝐺′. The parser
will behave very much like the shift-reduce parser introduced in example 2.3, except that the
LR(𝑘) parser will put special information symbols, called LR(𝑘) tables, on the pushdown
list above each grammar symbol on the pushdown list. These LR(𝑘) tables will determine
whether a shift move or a reduce move is to be made and, in the case of a reduce move,
which production is to be used.

An LR(𝑘) parser for a CFG 𝐺 is nothing more than a set of rows in a large table, where
each row is called an “LR(𝑘) table”. One row is distinguished as the initial LR(𝑘) table.
Each LR(𝑘) table consists of two functions – a parsing action function 𝑓 and a goto function
𝑔:

1. A parsing action function 𝑓 takes a string 𝑢 ∈ Σ*𝑘 as argument (this string is called
the lookahead string), and the value of 𝑓(𝑢) is either shift t, reduce i, error, or
accept.

2. A goto function 𝑔 takes a symbol 𝑋 ∈ 𝑁 as argument and has as value either the
name of another LR(𝑘) table, or error.

Construction of LR(𝑘) tables will be explained further down the line.
The LR parser behaves as a shift-reduce parsing algorithm, using a pushdown list, an

input tape, and an output buffer. At the start, the pushdown list contains the initial LR(𝑘)
table 𝑇0 and nothing else. The input tape contains the word to be parsed, and the output
buffer is initially empty. If we assume that the input word to be parsed is 𝑎𝑎𝑏𝑏, then the
parser would initially be in configuration

(𝑇0, 𝑎𝑎𝑏𝑏, 𝜀)

Parsing then proceeds by performing the following algorithm:

Algorithm 2.7. LR(𝑘) parsing algorithm.
Input: A set ℑ of LR(𝑘) tables for an LR(𝑘) grammar 𝐺 = (𝑁,Σ, 𝑃, 𝑆), with 𝑇0 ∈ ℑ

designated as the initial table, and an input string 𝑧 ∈ Σ*, which is to be parsed.

Output: If 𝑧 ∈ 𝐿(𝐺), the right parse of 𝐺. Otherwise, an error indication.

Method: Perform steps 1 and 2 until acceptance occurs or an error is encountered. If
acceptance occurs, the string in the output buffer is the right parse of 𝑧.

1. The lookahead string 𝑢, consisting of the next 𝑘 input symbols is determined.

2. The parsing action function 𝑓 of the table on the top of the pushdown list is applied
to the lookahead string 𝑢.
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(a) If 𝑓(𝑢) = shift i, then the next input symbol, say 𝑎, is removed from the input
and shifted onto the pushdown list. Then, the argument 𝑖 determines which new
table should be placed on top of the pushdown list. We then return to step 1.
If there is no next input symbol, halt and declare error.

(b) If 𝑓(𝑢) = reduce i and production i is 𝐴 → 𝛼, then 2|𝛼| symbols1are removed
from the top of the pushdown list, and production number 𝑖 is placed in the
output buffer. A new table 𝑇 ′ is then exposed as the top table of the pushdown
list, and the goto function of 𝑇 ′ is applied to 𝐴 to determine the next table to
be placed on top of the pushdown list. We place A and this new table on top of
the pushdown list and return to step 1.

(c) If 𝑓(𝑢) = error, we halt parsing.
(d) If 𝑓(𝑢) = accept, we halt and declare the string in the output buffer to be the

the right parse of the original input string.

�

We shall now develop the theory necessary to construct LR(𝑘) parsers.

Definition 2.8. Suppose that 𝑆
*

==⇒
𝑟𝑚

𝛼𝐴𝑤 ==⇒
𝑟𝑚

𝛼𝛽𝑤 is a rightmost derivation in grammar
𝐺. We say that a string 𝛾 is a viable prefix of 𝐺 if 𝛾 is a viable prefix of 𝛼𝛽. That is, 𝛾 is
a string which is a prefix of some right-sentential form but which does not extend past the
right end of the handle of that right-sentential form.

Definition 2.9. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a CFG. We say that [𝐴 → 𝛽1 ∙ 𝛽2, 𝑢] is an
LR(𝑘) item (for 𝑘 and 𝐺, but we usually omit reference to these parameters when they are
understood) if 𝐴 → 𝛽1𝛽2 ∈ 𝑃 and 𝑢 ∈ Σ*𝑘. We say that LR(𝑘) item [𝐴 → 𝛽1 ∙ 𝛽2, 𝑢] is
valid for 𝛼𝛽1, a viable prefix of 𝐺, if there is a derivation 𝑆

*
==⇒
𝑟𝑚

𝛼𝐴𝑤 ==⇒
𝑟𝑚

𝛼𝛽1𝛽2 such that
𝑢 = FIRST𝑘(𝑤). Note that fix may be 𝜀 and that every viable prefix has at least one valid
LR(𝑘) item. �

The LR(𝑘) items associated with the viable prefixes of a grammar are the key to un-
derstanding how a deterministic right parser for an LR(𝑘) grammar works. In a sense we
are primarily interested in LR(𝑘) items of the form [𝐴 → 𝛽∙, 𝑢], where the dot is at the
right end of the production. These items indicate which productions can be used to reduce
right-sentential forms. The next definition and theorem are at the heart of LR(𝑘) parsing.

Definition 2.10. We define the 𝜀-free first function, EFF𝐺
𝑘 (𝛼) as follows (we shall delete

the 𝑘 and/or 𝐺 when clear):

1. If 𝛼 begins with a terminal, then EFF𝑘(𝛼) = FIRST𝑘(𝛼).

2. If 𝛼 begins with a nonterminal, then

EFF𝑘(𝛼) = {𝑤 | ∃𝛼 *
==⇒
𝑟𝑚

𝛽 ==⇒
𝑟𝑚

𝑤𝑥,∀𝐴 ∈ 𝑁 : 𝛽 ̸= 𝐴𝑤𝑥}, and 𝑤 = FIRST𝑘(𝑤𝑥)

�
1If 𝛼 → 𝑋𝑚, ..., 𝑋𝑟, at this point the top of the pushdown list will be of the form 𝑇0𝑋1𝑇1...𝑋𝑟, 𝑇𝑟.

Removing 2|𝛼| symbols removes the handle from the top of the pushdown list along with any intervening
LR tables
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Thus, EFF𝑘(𝛼) captures all members of FIRST𝑘(𝛼) whose derivation does not involve
replacing a leading nonterminal by 𝜀 (equivalently, whose rightmost derivation does not use
an 𝜀-production at the last step, when 𝛼 begins with a nonterminal).

LR(𝑘) parsing techniques are based on the following theorem.

Theorem 2.11. A grammar 𝐺 = (𝑁,Σ, 𝑃, 𝑆) is LR(𝑘) if and only if the following condition
holds for each 𝑢 ∈ Σ*𝑘. Let 𝛼𝛽 be a viable prefix of a right-sentential form 𝛼𝛽𝑤 of the
augmented grammar 𝐺’. If LR(𝑘) item [𝐴 → 𝛽∙, 𝑢] is valid for 𝛼𝛽, then there is no other
LR(𝑘) item [𝐴𝑖 → 𝛽1 ∙ 𝛽2, 𝑣] which is valid for 𝛼𝛽 with 𝑢 ∈ EFF𝑘(𝛽2𝑣). (Note that 𝛽2 may
be 𝜀.) �

The proof of this theorem can be found in [2, Theorem 5.9].

The construction of a deterministic right parser for an LR(𝑘) grammar requires knowing
how to find all valid LR(𝑘) items for each viable prefix of a right-sentential form.

Definition 2.12. Let 𝐺 be a CFG and 𝛾 a viable prefix of 𝐺. We define 𝑉 𝐺
𝑘 (𝛾) to be

the set of LR(𝑘) items valid for 𝛾, with respect to 𝑘 and 𝐺. We again delete 𝑘 and/or 𝐺
if understood. We define 𝑆𝑉 as the collection of the sets of valid LR(𝑘) items for 𝐺. 𝑆𝑉

contains all sets of LR(𝑘) items which are valid for some viable prefix of 𝐺.

Due to lack of time, this section was not finished. If it were, however, it would continue
defining algorithms for construction of LR(𝑘) parsers from [2, sec. 5.2], which would be used
in section section 2.3 to show a step-by-step construction of LR(1) parser as an example
and a testament to the complexity of constructing one.

2.2.2 LR(k) translation

Due to lack of time, this section could not even be started. If there was enough time for it,
however, it would contain definitions from [3, sec. 9.2.1, sec. 9.2.3] describing translators
with underlying LR(𝑘) grammars and their construction. These, together with definitions
and algorithms from 2.2.1 would be used to implement robust translation part of the output
library implemented in 3.

2.3 Infix to postfix translator
This sections was supposed to show a step-by-step creation of LR(𝑘) parser and translator
from underlying SDTS for translation of infix expressions to postfix, to provide basis for
an implementable example in the next chapter. Unfortunately, due to lack of time to finish
the thesis, you will only see its extremely abridged version: the definition of the underlying
SDTS and the final LR(1) parse tables.

This section will see the definition of a SDTS for translation of simplified methematical
expressions from infix to postfix and LR(1) parsing table resulting from the underlying
grammar of the SDTS.
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The SDTS for translation of infix expression to postfix is

𝑇𝑖𝑓2𝑝𝑓 = ({𝑆,𝐸, 𝑇, 𝐹}, {𝑖𝑑,+, *, (, )}, {𝑖𝑑,+, *, (, )}, 𝑅, 𝑆)

with 𝑅 defined as:

𝑆 → 𝐸, 𝜀

𝐸 → 𝐸 + 𝑇,+

𝐸 → 𝑇, 𝜀

𝑇 → 𝑇 * 𝐹, *
𝑇 → 𝐹, 𝜀

𝐹 → (𝐸), 𝜀

𝐹 → 𝑖𝑑, 𝑖𝑑

where translation production bodies specify outputted terminals, as the current implenta-
tion only supports terminal outputting after the production had been applied.

Following the algorithms in section 2.2.1, a set of LR(1) tables was created for 𝑇𝑖𝑓2𝑝𝑓 .

ACTION GOTO
+ * ( ) id $ S E T F

T0 s4 s5 1 2 3
T1 s6 acc
T2 r2 s7 r4 8 9 10
T3 r4 r4 r4
T4 s11 s12 8 9 10
T5 r6 r6 r6
T6 s4 s5 13 3
T7 s4 s5 14
T8 s16 s15
T9 r2 s17 r2
T10 r4 r4 r4
T11 s11 s12 18 9 10
T12 r6 r6 r6
T13 r1 s7 r1
T14 r3 r3 r3
T15 r5 r5 r5
T16 s11 s12 19 10
T17 s11 s12 20
T18 s16 s21
T19 r1 s17 r1
T20 r3 r3 r3
T21 r5 r5 r5

Table 2.1: LR(1) tables of our infix grammar parsing
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Chapter 3

Translator implementation

3.1 ptlib

The most important output of this thesis is parsing and translation library – ptlib. It was
implemented in C++, mainly for performance reasons, but also due to author’s personal
preference.

The library has 3 main components - the lexer which reads tokens defined by regular
expressions from the input, the parser that implements an LR(1) parser which uses these
tokens to decide what move to take. Lastly, there is the translation part that executes
translation actions on parser’s reduction moves.

Unfortunately, as I ran out of time to finish the thesis (as you’ve probably read several
times at this point), I will be omitting more detailed description of the ptlib components.
If there was time to finish it, each previously described component would be described
from its “grand scheme” standpoint, together with more detailed explanations of particular
implementation details.

3.2 if2pf

3.2.1 Implementation

The LR(1) parser constructed in section 2.3 was implemented by providing constructed
LR(1) tables, input, and output grammar productions to the classes implemented by ptlib.
Due to the library hiding all the parsing logic behind a few setup calls and a single function
call for translation, and as such there is not much to talk about here.

3.2.2 Testing

The if2pf program was tested first manually on some inputs, and eventually a bash script
was created together with a file containing a list of inputs as well as expected program
outputs and it would automatically run all these tests and check results. Test cases started
from simple and progressed to more and more complex. However, there is only so much
complexity one can get from addition, multiplication and parentheses in mathematical
expressions.
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Chapter 4

Conclusion

In this thesis, the reader was introduced to the basic theory of formal languages and trans-
lations. We have defined formalisms for parsing and introduced LR(k) parsers to implement
deterministic bottom-up parsing and translation with. We have then constructed a canoni-
cal LR(1) translator for translation of infix expressions to postfix. ptlib – a LR(1) parsing
framework had been implemented in C++ and this infix to postfix translation had been
realized within said framework, which was then tested with various inputs for correctness
of its output.

Creating a canonical LR(1) translator is a daunting task due to the massive amount of
required theory and a vast amount of steps necessary to create all facilities for the parser
and translator to work properly – which was further deepened by time constraints of the
author. The biggest thing ptlib fails to do is to take this work is to unload this tedious
parser construction work from the user and requires already constructed parse tables to be
operating properly. Construction of these is algorithmized, and while it is not necessarily
straightforward to implement, it is possible to do so. This would be the first and most
improvement ptlib should receive.

Another possible improvement on the translating side of things is to make the defini-
tion of translations more powerful as of now it only allows outputting terminal strings on
reductions. This can be improved into output grammar parse tree simulation, or actual
in-memory parse tree construction and traversal.

The lexer can be improved by ditching sets of C++ regexes and constructing a single
robust regular automaton from defined regular expressions for reading tokens from input.

The entire library can further be made more robust by ditching the loading of production
rules etc. via means of formatted strings, and have it done by definition of specific object
classes, so that C++ compilers could further optimize the parsing and translation by taking
care of its definition during compile time.

Overall, there is even more to improve on this translation library, which was unfortu-
nately not possible at the time of writing due to various time constraints weighing down
the author.

I find it most unfortunate that I ran out of time to finish this thesis properly, but that
is the consequence of grossly overestimating my capabilities and working speed – deciding
to take on such a massive task of recreating an entire brand new bachelor’s thesis in little
over a month, especially since I work full time as well. Initially, the estimated changes and
fixes to the old thesis looked managable, but the more I delved into the formal language
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translation again, the more I saw the fundamental error in the old thesis, and decided to
change the entire idea of it.
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Appendix A

Attachments

Contents
This thesis includes a memory medium (an SD card) which holds this thesis in PDF format,
its LATEX sources, as well as the created translation framework ptlib together with its
example usage program if2pf.

src contains ptlib source file, as well as the source file and Makefile of the if2pf program
and its Linux executable.

doc contains HTML documentation for ptlib created by Doxygen.

thesis contains source files of this thesis, as well as the thesis in PDF format.

if2pf manual
The folder src

¯
contains four files in total: translator.hh which containst ptlib imple-

mentaton; if2pf.cc which is its source code; Makefile used to build the program; and
finally if2pf which is a Linux executable built using GNU G++ compiler.

Installation

All that is required to build the program is to navigate into its folder in your CLI of
choice and run command make. By invoking command make clean you delete the built
executable. Alternatively, you could just invoke command g++ -Wall –std=c++17 -O3
if2pf.cc -o if2pf; the warning and optimization flags being optional. Please note that
if2pf requires C++17 compatible compiler to build correctly. As if2pf does not use any
platform-specific libraries or function calls, it is fully portable across all platforms that have
C++17 compatible compilers. After the executable is created the program is ready for use.

Usage

The program is invoked by command ./if2pf with one parameter - the string to translate.

Examples. These few examples show the functionality on three simple examples: first
two providing a correct input, while the thirt once provides an incorrect input by adding a
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whitespace into it. The first row of each example shows invokation of the program; the sec-
ond row is the input provided by the user and the third one is the ouput provided by if2pf.

> ./if2pf ’var1 + var2’
> var1 var2 +

> ./if2pf ’a1+(a2*a3)’
> a1 a2 a3 * +

> ./if2pf ’var2 ()’
> ERROR: parsing failed

There is not much more to it, as if2pf is quite a bare-bones tool, but provides great
extensibility and moddability in return.
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