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Abstract
A four-year-old bug in official Firefox’s Bugzilla reported that the Content-Security-Policy
response header affects the behavior of browser extensions. The goal of this thesis is to test
and analyze all of Firefox’s extensions in the official extensions store to learn how many of
them are affected by the bug. The work has four phases: download all extensions from the
store, create usable web GUI, implement the testing application, execute tests, and evaluate
the results. We show that the application of CSP header on a web site may influence about
10% of Firefox web extensions and 29% of extensions recommended by Firefox. The total
number of users of all influenced recommended extensions is 11 650 730. Hopefully, this
research highlights the problem and pushes Firefox developers to fix the bug.

Abstrakt
Čtyři roky starý bug v oficiální Bugzille prohlížeče Firefox hlásí, že hlavička Content-
Security-Policy ovlivňuje chování rozšíření prohlížeče. Cílem této práce je otestovat a an-
alyzovat všechna rozšíření Firefoxu z oficiálního uložiště rozšíření a zjistit, kolik z nich
je ovlivněno bugem. Práce má čtyři fáze: stáhnout všechna rozšíření z uložiště, vytvořit
použitelné webové GUI, implementovat testovací aplikaci, provést testy a vyhodnotit výsledky.
V rámci práce jsme zjistili, že aplikace hlavičky CSP na webu může ovlivnit přibližně 8%
rozšíření Firefoxu a 21% rozšíření doporučených Firefoxem. Celkový počet uživatelů všech
ovlivněných doporučených rozšíření je 11 650 730. Tento výzkum upozorňuje na problém a
nutit tvůrce prohlížeče, aby jej vyřešili a ukazuje jeho rozměr.

Keywords
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error, CSP reports, Selenium extensions testing.
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Rozšířený abstrakt
Prohlížeč Mozilla Firefox obsahuje chybu, která byla nahlášena před čtyřmi lety. Tato
chyba ovlivňuje chování rozšíření prohlížeče. Hlavička CSP zapnuta na webu může zakázat
vkládání skriptů pomocí rozšíření. Pokud content script rozšíření vytvoří element skriptu
a poté ho vloží do DOM webové stránky, CSP tuto akci zakáže a způsobí CSP report.

Bakalářská práce si klade za cíl otestovat a analyzovat všechna rozšíření Firefoxu v ofi-
ciálním úložišti rozšíření Addons.mozilla.org (AMO) a zjistit kolik z nich je chybou ovlivněno.

Tato práce má širokou cílovou skupinu. Nejprve to jsou vývojáři Firefoxu. Chyba
v prohlížeči byla nahlášena před čtyřmi lety a během těchto let to způsobovalo bug reporty
o problému v oficiálních bugtrackerech různých webových rozšíření. Všechny tyto reporty
vedly dlouhé diskuse o tom, co se děje a jak tento bug obejít. Lidí, kteří tyto reporty
vytvořili neví zda se jedna o chybu rozšíření nebo prohlížeče. Řešení nebo obcházení chyby
vyžaduje čas a peníze.

Tento výzkum je dále užitečný pro vývojáře webových stránek, kteří chtějí zapnout
jejich ochranu pomoci CSP. CSP reporty, způsobené injekcemi skriptů rozšíření způsobují
zbytečný šum do webového logů. Tato práce prokázala, že některá rozšíření spouští více
než 10 CSP reportů pro každé načtení webové stránky každého návštěvníka. V kontextu
webových stránek s miliony návštěvníky, jako je YouTube, je to významné. Každý report
navíc vyžaduje šetření správce, což také vyžaduje čas a peníze.

Tato práce se zabývá studiem útoků typu Cross-Site Scripting, jejich hlavními principy
a metodami ochrany proti ní. Teoretická část studuje základní metody vývoje rozšíření
prohlížeče a reprodukuje popsanou chybu implementací jednoduchého rozšíření, které se
snaží vložit skript do testovací webové stránky která je zabezpečena pomoci CSP.

Protože práce musí zajistit testování všech rozšíření z AMO, byl studován automatický
testovací nástroj Selenium.

Pro dosažení konečného cílu byl implementován automaticky testovací framework. Pro-
tože výzkum má širokou cílovou skupinu, nástroj vyžaduje snadné a srozumitelné uživatelské
rozhraní. Framework má dvě hlavní části: webovou aplikaci (GUI) a backendovou aplikaci.
Tyto části spolu komunikují prostřednictvím API.

GUI má snadné rozhraní, které lze použít k výběru sady rozšíření a spuštění testů pro
ně. Má také funkci reprezentovat výsledky testování pomocí grafů. Tato část frameworku
navíc obsahuje skripty, které mají za cíl stáhnout všechny rozšíření z AMO a nahrát je
do Amazon Web Services S3 úložiště.

Účelem backend aplikace je obdržet sadu poslaných z GUI rozšíření, stáhnout jejich
zdrojové kódy z úložiště, provést testy a vrátit výsledky zpět do GUI.

Tato práce má implementace několika scénářů testování. Všechna rozšíření mají soubor
s názvem manifest.json obsahující všechna jejich metadata. Nejdůležitějším parametrem
v metadatech pro tuto práci je content_scripts klič, který obsahuje všechny content
skripty rozšíření. Content skripty mohou provádět vkládání zdrojů do webové stránky.
Prvním scénářem je provést statickou analýzu content skriptů uvedených v manifest.json,
aby se našli některé přiznaky vkládání kódu, například některé metody, které vkládají
skripty do DOM webové stránky. Druhý testovací scénář provádí Selenium testy na všech
rozšířeních z AMO, aby bylo možné detekovat tyto rozšíření které dělají injekce skriptů do
webových stránek.

Pomocí frameworku byly provedeny testy na všechna rozšíření z AMO a vyhodnoceny
výsledky. Výsledky ukazují, že kolem 10% všech rozšíření má přiznaky injekce skriptu. Fire-
fox má navíc doporučený program rozšíření. Statická analýza ukázala, že 29% doporučených
rozšíření má tyto přiznaky. Simulační testy, které instalují rozšíření do instance prohlížeče



a testují jejich chování na webových stránkách zabezpečených pomocí CSP, ukázaly, že 1%
všech rozšíření vkládá skripty před načtením webové stránky, bez jakékoliv uživatelských
akcí, napřiklad, stisknutí tlačítek nebo vyplnění formuláře. U doporučených rozšíření se
tato hodnota zvyšuje na 11%.

Během práce bylo zjištěno, že chyba Firefoxu může majitelům webových stránek po-
moct “fingerprintovat” uživatele. Každé rozšíření, které provádí injekce skriptu na webové
stránky zabezpečené pomocí CSP, zanechá svůj otisk. Protože všechny reporty přicházejí
do webových logů, mohou je vývojáři webových stránek analyzovat a zjistit, jaká rozšíření
používají jejich návštěvníci. Tato práce studovala tento problém podrobněji a provedla
několik manuálních experimentů s populárními rozšířeními. Výsledkem je, že tato rozšíření
lze rozpoznat z CSP reportů, které byli nimi spouštěné.

Byli navrhnute některá budoucí vylepšení k analýze problému “fingerprintovani”. Kromě
toho, pracé navrhuje zlepšení stávajícího frameworku, zejména zvýšení jeho výkonu, použitel-
nosti a přesnosti testování.
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Chapter 1

Introduction

Nowadays, every modern web browser supports extensions. An extension is a small embed-
ded software (plugin) that brings new features to a browser. Extensions can do different
actions, e.g., modify web pages, block advertisements, automatize some manual work on a
web site. Many extensions put some resources inside a web page. It can be images, CSS
stylesheets, and also a JavaScript code. For example, that hides HTML elements, clicks on
the buttons, or does some dynamic interaction with a web page.

Injecting resources such as scripts inside of a browsing web page may be potentially
dangerous. Script injection may perform some unexpected actions like stealing user’s data,
showing spam adds, or others. These vulnerabilities, called Cross-site scripting (XSS), are
often used by hackers. All modern browsers support mechanism called Content Security
Policy (CSP) to protect their users against such attacks. The CSP protection can be set
on a web server by web site owners.

So, two mechanisms (resource injecting by extensions and protection against injections)
are opposite to each other. The first one uses resource injecting into a web page, but
the second one fights against those actions. The CSP should not influence actions perform-
ing by an extension to save its behavior. Every extension can be installed only by a user,
and every extension asks about permissions that a user has to give before the installation.
The user has to agree with the permissions and confirm the installation.

An extension is not an attacker in the CSP model, and the CSP header should not in-
fluence extensions functionality. But it is not how the Mozilla Firefox web browser behaves.
The browser supports both mechanisms, but it causes the conflict described in the previous
paragraph. The CSP header blocks the extension’s scripts injection into a web page.

This research tests all extensions from the Addons.mozilla.org (AMO) and tests how
CSP headers influence their behavior.

The results are useful for different categories of users. First of all, the work is valuable
for people that develop the Mozilla Firefox web browser. The report for the bug was opened
four years ago, and it is still open. Some extensions such as “Privacy Badger” or “uBlock
Origin” have bug reports opened by developers who think it is an extension’s issue, but it
is not. These reports have long discussions and workarounds on how to solve or bypass the
bug.

Secondly, web site developers can use this work to see how enabled CSP header can
make noise to security alert logs and be prepared to it.

Further, if extension developers have found the solution to the problem, they can use
this work to compare their extensions with concurrent ones and use the comparison in
marketing purposes.
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Finally, the bug in Firefox may cause some data protection problems like fingerprinting
of users. The research may be useful for people who care about privacy and data protection.
After study the thesis, they might decide not to use the Firefox web browser or turn CSP
protection off. Section 2.3 of Chapter 2 describes more information about fingerprinting
and defines the target audience of this work.

This work requires some information to study the main principles of extensions devel-
opment and study mechanisms for web site security. Further, this thesis needs to study
and reproduce the bug in more detail. Chapter 2 summarize all of the mentioned things
and gives theoretical information about web GUI development and Selenium testing.

Chapter 3 describes the design of the final application. It defines all needed pieces of the
application and how they need to be related to each other. Besides, it defines what exactly
all pieces should do to get to the final goal.

Chapter 4 contains all information about the implementation of the application, and
Chapter 5 evaluates the result of the implemented tests on all extensions in the AMO. It
shows how many extensions are influenced by the bug.

At last, Chapter 6 studies the problem of how web site owners can fingerprint visitors
using the bug in Firefox. Further, it describes some future improvements of this work to
increase the application performance and testing accuracy.

3



Chapter 2

Theory

This research includes work with different tools related to developing and testing browser
extensions. Further, it concerns the security of web pages and problems occurring in the
Mozilla Firefox browser.

Since different user categories can use this work, for example, extension developers,
Firefox developers, or ordinary users, it is essential that the final application needs to be
easy to use and easy to deploy. It is necessary to know how to implement a web application
GUI, databases, and communication between services with minimum user interaction.

The research requires some theoretical and practical knowledge to get to the final goal.
This chapter takes care of the first category and describes things needed to learn to under-
stand the main problems of this work and investigate them.

The subsection 2.1 explains what are XSS attacks, and methods that browsers use to
protect web pages against them. Then, the subsection 2.2 describes the core of this research,
the bug that needs to be studied and analyzed to understand how many Firefox’s extensions
are prone to it.

This chapter also concerns theoretical knowledge about the tools used in this work, such
as Docker Containerization technology and Selenium.

2.1 Browser Security Defenses
The problem of this work is related to the security of web pages, and the main things needed
to know are: what are XSS attacks, how hackers can use web site vulnerabilities to inject
malicious resources, and which modern methods help to restrict or eliminate them?

2.1.1 Same-Origin Policy

The Same-Origin Policy (SOP) is a browser security restriction that controls scripts
from one web page to access data of other web pages. By this policy, JavaScript code
can read only the properties of windows and documents that have the same origin as the
document that contains the script [3].

Web pages are in the same origin when they have the same protocol, host, and port.
Based on that, different web sites (with different URI), have different origins. For example,
site.com and site.org are under different ones. Moreover, a document loaded via the HTTP
protocol has a different origin to a document loaded via the HTTPS protocol, even if they
come from the same web server [3]. At last, if one host has two different ports, for example,

4



80 and 81, containing some resources, loading of the resources between services on that
ports is prohibited by SOP because of different origins.

A web browser applies SOP only for scripts from different origins, but not for images,
videos, or audio [4]. It is because browsers have a cross-origin concept to let developers use
specific resources from different origins. There are three mechanisms to realize this: Cross-
origin writes lets using of links to another origins, form submissions, redirections, Cross-
origin reads allowing the reading of dimensions of an embedded image, actions of an
embedded script, and Cross-origin embedding letting embedding such resources like
<img>, CSS stylesheets, <video> or <audio>, and others1. JavaScript, embedded to a web
page by the <script> tag and src attribute, works as well.

For some reason, web sites may need to somehow bypass SOP. For example, giant
billboard web sites containing many advertisements for job search, houses rents, discussing
forums might have multiple subdomains for each service. It may need to communicate
between those subdomains by JavaScript, for example, in the browser’s windows. But these
actions are restricted by SOP. A web site can change its origin by changing of a subdomain
to its superdomain2.

Further, a server response header may influence and weaken the SOP policy from
the server-side. It can be provided by activating Cross-Origin Resource Sharing (CORS)
that brings the possibility to define whitelisted domains permitted to read data from the
site and bypass the SOP. CORS can be set over Access-Control-Allow-Origin HTTP header
by writing domains separated by space.

The Same-Origin Policy is a necessary mechanism that prevents stealing sensitive data
or injecting malicious content into a web page. But the weakness of the SOP, especially
resources that are allowed by SOP to write data into a page (<img>, <video>, <iframe>,
stylesheets), might do actions causing XSS security problems. The next section describes
that problems. Moreover, the enabled CORS may let attackers access and read data from
a site. The Content Security Policy solves the mentioned problems. Section 2.1.3
explains the CSP in more detail.

2.1.2 XSS Attacks

XSS attacks (Cross-site scripting) are a type of injection or computer security vulnerability
that allows attackers to inject malicious HTML or JavaScript code into a web site. XSS
may occur when an application stores untrusted data into its storage without proper val-
idation and escaping (data sanitizing). By this attack, a malefactor can access browser’s
cookies, session tokens, steal sensitive user data like authorization credentials, provide site
defacement, or distribute malware.

For example, consider that a web page has a form to leave a comment below the article.
This form has a field author, and it does not have any “sanitizing” of input data. All
comments are public to all users, and anyone can see it in a web browser. If an attacker
comes to a web page and wants to provide an attack, he may write malicious JavaScript
code into that field. Code snippet 2.1 shows an example script that may be injected by
an attacker. The website stores this script into its database and injects it into the DOM
every time an ordinary user comes to the page. It causes an alert message to him.

1https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
2https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin
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<script>alert("I am an attacker");</script>

Code snippet 2.1: The snippet shows an example script that might be stored into the web
site’s database by an attacker. This code causes an alert message in the browser whenever
a user comes to the web page.

It is a general and not dangerous example, but instead of this, it can be any script that
can do anything. For example, it may steal a user’s cookies or capture keystrokes on the
login page and then send login credentials to the hacker.

XSS may occur in the following types:

∙ DOM-based XSS - Those types of attacks do actions entirely on the client-side,
without the server [5].

∙ Stored XSS (persistent) - It is the most dangerous type of XSS attack. It may occur
when a system stores malicious code on a web server. The injected code is executing
when a user requests an origin web page where the code exists.

∙ Reflected XSS (non-persistent) - The most popular XSS attack. An attacker embeds
a malicious code into a web page by injecting it typically in the URL of the web page.
It may occur when web-client sends malicious data to the server, especially in HTTP
parameters or HTML forms. Reflected XSS attacks can be carried out by sending
spam emails to users that click on prepared by hacker link with the script in the HTTP
parameters.

Cross-site scripting is one of the typical computer security problems. XSS attacks take
7th place in the top 10 application security risks [7].

2.1.3 Content Security Policy

HTTP Content-Security-Policy (CSP)3 response header is an additional layer of security
for web pages. It helps to detect, prevent, and report XSS and other code injection attacks.

Through CSP header, a web server can prohibit scripts execution from untrusted sources
by specifying the domains and ports from which those scripts can come and execute. Ap-
plied CSP can restrict resources such as media files, fonts, web workers, images, videos,
Java applets, and others.

CSP prohibits resource injection into a web page, but it goes against many of extensions
behavior. There are extensions created to modify content of web pages, e.g., add buttons,
remove advertisement banners, hide sensitive content. This extension’s behavior should
not be restricted. Policy enforced on a resource should not interfere with the operation
of user-agent features like addons, extensions, or bookmarklets. These kinds of features
generally advance the user’s priority over page authors [10].

CSP mechanism is still developing. Nowadays, it has two versions: v24 (Recommended)
and v35 (Working draft). All modern browsers almost fully support the second version of
the mechanism. Only Firefox supports it partially. The third version is partially supported
in Chrome, Firefox and Edge6.

3https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
4https://www.w3.org/TR/CSP2/
5https://www.w3.org/TR/CSP3/
6https://content-security-policy.com/
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The CSP header’s value contains a list of directives that describes the policy applying
for resources and sources those resources are coming from. Some of the essential directives
are listed below:

∙ image-src - specifies the policy for images that are loading on a web site.

∙ script-src - specifies the policy for JavaScript code. It also can prevent the executing
of inline scripts.

∙ style-src - specifies the policy for CSS styles loading on a web site.

∙ default-src - fallback directive for other *-src directives.

∙ report-uri - instructs the user agent to report attempts to violate the Content Se-
curity Policy.

One of the significant features of CSP is reporting. All CSP errors triggered on a web
page may be reported to web site report logs. It helps to fast react to the malicious actions
provided on the web site. CSP header has a directive called report-uri. It contains a
URL of reporting servers to which all CSP reports come via HTTP POST in JSON format.
Code snippet 2.2 shows an example of CSP report sent with help of report-uri directive.

{
"csp-report": {

"document-uri": "https://example.com/page/with/csp",
"referrer": "https://www.test.com/",
"violated-directive": "default-src self",
"original-policy": "default-src self; report-uri https://report.com/store-report",
"blocked-uri": "http://maliciousscript.com"

}
}

Code snippet 2.2: Example of CSP report in JSON format sent with help of report-uri
directive.

If a specific line or a specific file can be identified as the cause of the violation (for
example, script execution that violates the script-src directive), the user agent may add
the following keys and values to the violation [11]:

∙ source-file - The URL of the resource where the violation occurred,

∙ line-number - The line number in source-file on which the violation occurred.

∙ column-number - The column number in source-file on which the violation oc-
curred.

The keys above are optional for a browser only in CSP 2 mechanism. The CSP 3 makes
them required7.

The source-file is a URL of the resource where the violation occurred. If a violation
has occurred on Chrome’s or Firefox’s extension, the URL has the following structure:

7https://www.w3.org/TR/CSP3/#framework-violation
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<browserName>-extension://<extensionUID>/<pathToResource>

Property <browserName> can be “chrome” for Chrome or “moz” for Firefox.
The next property <extensionUID> is 288 bit unique identifier of installed extension.

Each installed or reinstalled extension has its UID. The uniqueness of <extensionUID> is
needed to avoid user fingerprinting.

All resources of an extension such as scripts, images have their path in the directory
structure of the extension. It is located in the <pathToResource> parameter of the URL.

Browsers use these unique resource URLs for accessing them in the filesystem. For
example, browsers use this URL structure also for displaying the logo of an extension.
Further, after the installation of “Privacy Badger” extensions into Firefox, the browser
opens the extension’s home page. This homepage is located on the client’s local machine.
Since the extension has its unique identifier, the browser uses it and gets the following URL
to the page:

moz-extension://45cbd003-0307-7f44-ab34-1cfd4df2e5a8/skin/firstRun.html

The mentioned URL structure can be used for user fingerprinting. Web sites can detect
the presence of a particular extension in visitor’s web browser thanks to web accessible
resources8. By accessing particular URLs, they can know if an extension is installed or
not [6]. Sjösten et al. studied this problem. As a result of the study, around 28% (12154
out of 43429) of all Chrome’s extensions and around 7% (1003 out of 14896) of Firefox’s
extensions have accessible resources and are detectable by the users fingerprinting method
studied by Sjösten [9].

All modern browsers support the report-uri directive. But it is deprecated in CSP 2.
CSP 3 replaces it with a directive called report-to. As CSP 3 is partially implemented
in modern browsers, only Chrome and Edge now support the report-to mechanism. The
difference between report-uri and report-to is that the second one allows set multiple
groups with multiple endpoints. It means that CSP reports can have different groups.
For example, CSP group that reports CSP errors or network group that reports network
errors9. It also brings priorities of endpoints to distribute the load of servers. After detect-
ing violating behavior, CSP can also trigger SecurityPolicyViolationEvent event over the
report-to directive. An event handler may do anything a developer needs. It can send
JSON to a given API or flush cookies and immediately log out the user.

Since Firefox supports only CSP 2 mechanism, this work uses only a report-uri direc-
tive for extensions analysis and testing.

Further, browser extensions use CSP, and all of them have it set by default. More
information about using the CSP in browser extension development describes section 2.4.

2.2 Page CSP Influences Firefox Webextensions
Content Security Policy, described in the previous section, is a secure and flexible config-
urable layer of additional security for web pages. This section describes what is going wrong
with the popular web browser because of CSP and how it restricts extensions developers

8https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/
web_accessible_resources

9https://www.yld.io/blog/security-trivia-series-understanding-csps-reporting/

8

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://www.yld.io/blog/security-trivia-series-understanding-csps-reporting/


from using some needed functionality. Important to mention that this concerns only CSP
header specified on a server-side of a web page, but not extension’s CSP.

How Server Specified CSP Header Influences Extension’s Behavior in
Mozilla Firefox Browser

As was specified in the previous section, CSP header returned by a web server in the HTTP
protocol secures users against malicious executing of JavaScript by an attacker. The CSP
header must contain a list of the allowed sources for all scripts loading on a web page.

Based on the CSP’s official documentation, it can be applied only for resources and
scripts on a web site’s side, and should not concern scripts executing in browser’s exten-
sions. It affects scripts injected by an extension into the web page’s DOM by, for example,
document.createElement(’script’) JavaScript construction. The scripts have to be ex-
ecuted immediately after the injection10, regardless of the CSP policy specified by a web
server.

Even though the behavior described above is the right one, based on the CSP official
documentation, Mozilla Firefox does it in another way. If an extension uses an execution
of its content scripts into a web site that uses CSP header to deny all incoming scripts,
the header rejects it. It triggers an error. And it is a browser’s bug, which this work
explores. The bug affects all Firefox’s extensions that interact with web pages and use the
execution of inline scripts into the DOM.

It causes problems and makes extension development more complicated. It also makes
troubles with browser compatibility, and developers need to do overhead work to bypass
the bug in Firefox.

The CSP header has the report-uri directive. Consider a web server with this option
set on its web pages, and the server records all CSP errors to the server’s alert log. Then,
every user who has installed an extension that injects scripts into a web page triggers
a false-positive CSP report or more reports. These reports may make noise to alert logs
and spam reporting servers.

This bug was reported several times in official Firefox’s Bugzilla and on official ex-
tension’s issue trackers. Section 2.3 lists some examples of bug reports which give more
information about the bug.

Bug Reproduction

This subsection describes the practical reproduction of this bug in Mozilla Firefox. It also
explores how Google Chrome behaves in the same situation.

A part of the research is to create a simple web application and Firefox extension to show
how CSP on the web page influences the extension.

The testing web site is expanded on an NGINX server combined with PHP-FPM and
wrapped into a Docker container. It has one page with some text content on a white
background. The HTTP response from the webserver returns the CSP header after a user
requests the page. Setting up the header can be done by configuring the default.conf

10https://developer.chrome.com/extensions/contentSecurityPolicy#interactions
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file. The server has the CSP configuration to prohibit all scripts, including inline scripts,
by declaring an add_header property. Code snippet 2.3 shows how the configuration looks.

add_header "Content-Security-Policy" "script-src ’none’";

Code snippet 2.3: This snippet shows the server setting that configures the NGINX web
server to send the Content Security Policy HTTP response header. The CSP is set to deny
all script injections.

The main goal of the developed extension is to change the white background on the test-
ing web page to green by clicking on a button inside of the popup window in the extension.

The extension creates a <script> node through the createElement() method of the
document object. Through setting up the innerHTML property, extension sets the JavaScript
code into the node and then appends the node into the <body> element of the testing web
page.

As a result, Google Chrome behaves in the right way. If a user clicks on the button in
the extension, white background changes the color, and the browser’s console not prints
any CSP errors. The reverse situation is in Mozilla Firefox. Something blocks changing of
the background and console prints following error triggered in file content.js on line 4:

Content Security Policy: The page’s setting blocked the loading of
a resource at inline ("script=src")

Based on the test described above, Google Chrome and Mozilla Firefox behave in dif-
ferent ways with the same browser extension installed. As said in the previous section, the
right way is Chrome’s one. And Firefox extensions need additional workarounds to bypass
the bug.

2.3 The Target Audience of This Work
As was said in the introduction part, this research may be useful for different categories of
users.

The main category is Firefox developers. The bug described above was reported in
Firefox’s Bugzilla several times, but the main one is report number 12670275 opened four
years ago. It has long discussion about the problem and consolidates all information from
other reports. But except issues in the Bugzilla, there are reports for this problem in official
extension’s GitHub repositories. These reports have long discussions and workarounds on
how to solve or bypass the bug. For example, issue number 179311 on the GitHub repository
of the “Privacy Badger” (PB) extension has a conversation about it. PB is a popular anti-
tracking extension that helps to block invisible tracking, for example, trackers on links in
social networks.

Moreover, the problem has triggered additional work on services not related to Firefox.
The PB’s issue has a comment by a developer of the “Report URI”12 service, which is a
monitoring system of CSP and other security features. He has reported: “Right now on
https://report-uri.com we’re constantly adapting our core filter set to remove reports like
these so our customers see less noise, but overall it would be better to neutralise this at
the source.”13. Consequently, the bug caused much overhead work for extensions developers

11https://github.com/EFForg/privacybadger/issues/1793
12https://report-uri.com/
13https://github.com/EFForg/privacybadger/issues/1793#issuecomment-401279014
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and other services that are not directly related to the browser. It takes time and money to
bypass or adapt to this.

Web site developers may also find a piece of useful information in this research. The
CSP header sends a CSP report to the site’s statistics by using the report-uri directive
if web page gets unexpected resource injecting. These false-positive reports caused by the
Firefox bug may require excess administration or investigations, which also takes money
and time.

Further, the work might be useful for extensions developers. They can use the testing
application implemented in this research to compare extensions to identify and highlight
differences in behavior between concurrent ones. It might be used for marketing purposes
if one of the extensions found the solution to the problem and bypassed the bug.

Ordinary Firefox users can use this work to test an extension they want to install. The
problem is that users may install an extension and not figure out that the bug influences it
because most web sites do not have the CSP header set. The GUI developed in this work
can help them to find needed extension and check if it has problems in the Firefox.

This research may be significant for Firefox users who care about privacy and data
protection. Web site owners may use the bug in the browser for fingerprinting of site
visitors. Section 6.1 gives more information about the study of this problem and description
of some conducted experiments.

2.4 Extension’s Manifest.json File
All extensions in Mozilla Firefox contain a file with metadata for the extension. This
file is called Manifest.json14. It is a JSON file holding information about extension’s
version, author, description, browser action, default locale, content scripts, and many more
properties. This section describes most related to this work ones.

Content Scripts

The most important key in a Manifest.json, related to this work, is the content_scripts
key containing all of the extension’s content scripts. Content scripts are files that run in
the context of a web page to read information from the page or somehow changing it. They
are using the Document Object Model (DOM) to do that [8].

The restriction of content scripts is that they can not access all of the WebExtension
API because their purpose is to run in the context of a web page. They can send messages
to extension’s background scripts via messaging APIs to let them communicate with the
rest of the extension. Since content scripts can communicate with the rest of the scripts in
the extension, they may indirectly access full WebExtension API15.

The key content_scripts is a type of array, and each item in the array is an object.
Each object has required key matches containing a list of URL patterns. Besides, there
are two not required keys on the same level as matches: css and js. They are a type of
array containing a list of extension’s CSS styles or JavaScript content scripts. When a user
with installed extension comes on a web site, the extension can inject a content script only
if the URL of the web site matches with at least one URL pattern from the matches array.
Moreover, it can inject only scripts or CSS styles located in css or js arrays on the same
level of matches containing the matched URL pattern.

14https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json
15https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts
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Further, the object content_scripts might contain the key run_at. It has a type of
string and can be one of the following: document_start, document_end, or document_idle.
Those options correspond with the list of document.readyState (loading, interactive, and
complete, respectively). The option run_at specifies when an extension injects scripts
from the array js.

Content Security Policy

The CSP policy also exists on the extension’s side to eliminate potential cross-site scripting
issues. It does not connect to the CSP on the server-side described in the previous section.

All extensions have the CSP policy set by default. Code snippet 2.4 shows it.

"content_security_policy": "script-src ’self’; object-src ’self’;"

Code snippet 2.4: The default CSP header for all Firefox extensions.

This policy eliminates evaluating of strings as JavaScripts, for example, the function
eval(). Moreover, all inline scripts in tags <script> are not executed as well as event
handlers like onclick, onchange, onmouseover, and others. At last, the default policy
prohibits loading resources like <script> and <object> from sources that are not local to
the extension. Developers need to specify the extension’s own content_security_policy
option in the manifest.json file to allow using all of the mentioned things.

2.5 Containerization
A big part of this work implements communication between processes and API calls. Be-
cause of that, the practical part of work intensively uses containerization technology pro-
vided by Docker16.

Docker is an open-source containerization technology that allows automation of ap-
plication deployment. Containerization is a form of operating system virtualization that
enables the kernel of an operating system to support isolated instances of user space called
container. Containers may look like OS inside of another OS. They allow deploying ap-
plications in a package with all needed dependencies and resources. From an application’s
point of view, a container is a real operating system, and all resources from the OS can be
used (CPU, folders, networks, and others).

Unlike virtualization technology, containers use the host’s kernel of operating systems.
Based on that, all containers have to have the same OS kernel like on the host’s machine.
It can be an advantage because containers need to use fewer resources for running, unlike
virtual machines, and also have shortened time for deployment.

By writing simple Dockerfile with instructions to execute, Docker can easily install
most of the operating systems inside of a container. Besides, the same Dockerfile can have
a configuration to install all needed dependencies, and the system can run any of shell
commands as well.

This work uses more than one docker container because the application needs at least
one docker container for webserver with web application and one with application to run
Selenium scripts. There is a tool called Compose17 for defining multiple Docker contain-

16https://www.docker.com/why-docker
17https://docs.docker.com/compose/
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ers at the same time. It has the main configuration file called docker-composer.yaml
defining all services needed to run. Compose builds and runs the services with one single
command docker-compose up. The docker-composer.yaml file does not need to de-
fine all instructions to build single containers. It can refer to a Dockerfile which has all
the needed commands.

Besides running multiple containers, Compose can keep a cache of built containers and
use the cache when run rebuild command. Thanks to this, Compose rebuilds only containers
with provided changes in the configuration. The rest of the data it takes from the cache.
It also brings variables and extending of Compose files.

For example, consider a web application that has a web server (Nginx, Apache, Windows
server, or others), cache system for its API (Redis, Memcached), and database as persistent
data storage (MySql, Postgres, or others). Compose can manage all of these services. It
builds each service based on one configuration file docker-compose.yaml. The Figure 2.1
visualizes the structure of that example application.

Database

Port: 3306

Cache

Port: 6379

Web server
Port: 80

Compose

docker-compose.yml

Figure 2.1: Docker Compose architecture of simple example application having a Web
server, database, and cache system. All services defined in one docker-composer.yaml
file.

2.6 Selenium
The main point of this work is to test as many as possible Firefox extensions that might
be influenced by the bug described in the previous chapter. Since Mozilla Firefox currently
has over 18 000 extensions available in the AMO18, the problem is to automate that testing.
This work is using Selenium Web Browser Automation Project.

Selenium is a tool which provides automation of web browser actions and emulates user-
browser interaction. It uses the WebDriver interface to execute an action. The interface
communicates with browser automation API. Selenium packs standard browser functions
and hides their details into a “black box” to allow programmers to write code in a high
level without performing complicated workflows.

18https://addons.mozilla.org/en-US/firefox/search/?type=extension
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Selenium creates and sends a single HTTP request for each Selenium command19. Web
driver uses HTTP server to get requests from a user and determines flow needed to execute
commands in a browser.

The HTTP server listens for requests such as GET, POST, and DELETE [1]. GET
requests are useful to get information from a browser. For example, getting text from
<input> field. On the other hand, it needs POST requests to manipulate with something
on the page. The automation of clicking on a button on a web page is a common example.

Usually, Selenium tests contain several commands needed to perform to test a single use-
case on the page. Selenium uses sessions to perform stable and persistent communication.
Executing of first Selenium command in script generates new session ID related to a single
instance of a browser. Then, all commands in the same automation script sending the same
session ID in their HTTP requests.

Selenium has the functionality to install an extension into a WebDriver instance by
calling the method install_addon(path/to/addon.xpi). This method has the parameter
path containing the path to the archived source code of an extension. Section 4.4 gives
more information about automatic extension installation.

19https://seleniumjava.com/2015/09/13/how-does-selenium-webdriver-work/
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Chapter 3

Design of Extension Tester
Framework

The goal of this work is to study and analyze all of the extensions in the Firefox browser.
Since AMO contains over 18000 extensions, the research requires an automatic testing
tool. This tool has to be a flexible framework that does everything from data collection to
statistic presentation. It has to be able to download all extensions from the AMO, save it
in a database, provide tests, analyze results, and show the final statistics.

This chapter takes care of the design of the framework used in this work. It also de-
scribes the needed architecture of microservices and the relation between small parts of the
application. Further, it describes the database design and relations between all tables in
the database.

3.1 Testing Scenarios Design
Mozilla Firefox has many extensions that do different things and work in different ways.
Some do interaction with DOM before onload event, but some do it after particular action
or user interaction. Moreover, some extensions work only for specific web pages and web
sites.

There are different testing scenarios created to test all of the extensions in the AMO.
This section describes the purpose and design of every scenario.

Manifest.json Analysis

Every extension needs to have a manifest.json file containing all necessary information
and metadata for the extension. As describes section 2.4, the file contains information
about extension’s content scripts if the extension has any. The analysis may be used to
retrieve content scripts and provide a detailed investigation to detect which extensions use
script injection into the DOM of web pages.

Code analysis searches signs of script injecting into the DOM of a web page. The
developed application has to get a path of a script, open it, and find signs. It could be, for
example, the construction document.createElement(’script’). A list of all strings that
the framework tries to find in a content script is located in Appendix A.

The analysis helps to recognize those extensions, that may have potential risks to be
influenced by the CSP. It may be useful for extensions developers, so they might decide not
to use specific construction or bypass it somehow.
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on_start_test

The described manifest.json analysis may find signs of script injection, but it can not
prove the injection. This work needs to have the possibility to provide real tests and get
real CSP reports.

This testing scenario is named on_start_test. It handles a set of extensions that
inject scripts into a web page before the onload event occurs. In other words, before a web
page finishes loading. Those extensions usually are from the category of hiding advertising
banners (“AdBlocker Ultimate”) or blocking invisible tracking (“Privacy Badger”).

An example can be “AdBlocker Ultimate”. This extension removes advertisement ban-
ners from the visited web page. If the CSP header denies an injection of the extension’s con-
tent scripts, Firefox triggers two CSP errors right after the browser gets the response from
the server. “AdBlocker Ultimate” of version 2.411 triggers errors in the file preload.js on
line 169. From the annotation of the function, which does this execution: “Execute scripts
in a page context and cleanup itself when execution completes,” it becomes clear that the
extension tries to execute content script into the DOM by creating <script> HTML node.
In this case, Firefox triggers a false-positive error, which sends a CSP report.

The on_start_test works only on the prepared testing web page that has CSP header
set to deny script injecting. Selenium tests should navigate browser instance to this web
page. Then, the web page generates CSP reports which are stored in the database.

The proposed test handles only general extensions working on all web sites on the Inter-
net. Based on the description of content_scripts key in manifest.json, it contains the
array matches holding a list of URLs on which content scripts should work. It means that
there are extensions that work only on specific web sites, such as “YouTube AdBlocker” that
works only on YouTube. The application needs to make an extension think that browser
navigates to a specific web site, but in reality, it still accesses the testing web page. Todo
so, the test needs to change the DNS configuration. For example, the application executes
YouTube testing by running on-start-test-youtube as well as on-start-test-twitter for
Twitter.

3.2 Design of The Main Parts of The Framework
Since the framework needs to do different things (collecting data, user interaction, data
analysis, presentation), the development of the whole application as one service brings a
problem with maintaining. This work uses a decomposition technique that facilitates the
development and deployment of the whole application.

The application structure has two significant components that communicate with each
other over the REST API: front-end (GUI) and back-end. The first one does everything
connected with user interaction and graphical interface. Users of the framework could have
technical knowledge (extensions developers, Firefox developers) as well as ordinary users
without technical knowledge, who only want to see the statistic of influences extensions and
decide to install it or not. Because of that, it is essential to make the GUI as friendly as pos-
sible to the second category of users. On the other hand, the backend does all data analysis
and provides testing processes with Selenium. The described decomposition brings the pos-
sibility to divide user interaction with a web application on front-end and handling Firefox
error logic on back-end onto separate and independent smaller applications. It brings a

1https://addons.mozilla.org/en-US/firefox/addon/adblocker-ultimate/versions/
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possibility to develop each part independently. Frontend and backend are also divided into
several smaller ones, which are described in the next sections.

Front-End (GUI)

The first component is a web interface. The idea for the web GUI is to give a user the pos-
sibility to run testing scenarios for a selected set of extensions. Besides, web application
shows up users statistics after testing.

The application needs to download the most important extension’s information and
source code before a user can select it in the GUI and run tests. Since the AMO contains over
18000 extensions, an automatic process is needed to download all of them. The framework
has some instruments to it. Scripts go through the AMO and download extensions one by
one. The source code of an extension is packed into an archive and stored in data storage.

Local machine is not a good idea to store extensions files. The framework is located
inside of a Docker container with the idea to deploy it on any machine. Pulling of about
10GB data every time Docker builds the application is an incorrect way because of possible
poor internet connection or memory limit for Docker on the local machine.

The script stores all compressed extensions on Amazon Simple Storage Service (Amazon
S3) in the bucket called firefox-addons-tester.

The web interface has to be easy and comfortable for users. The GUI should have
a selectable list of downloaded extensions and a simple control panel to do actions for
the extension. Users should be able to select a specific extension, or set of extensions, run
tests, and see the structured result. Since there are a large number of extensions, the web
application has to have pagination for all of them.

Database Design

The application does many tests and stores results in the database. This subsection de-
scribes the database structure and relation between its entities. Entity Relationship Dia-
gram, which represents the structure of the database, is shown on the Figure 3.1.

The addons table is the central table in the database. It contains information about
all extensions from the AMO. All rows in the table have properties such as the name of an
extension, count of users using the extension, path to the extension’s logo to render in the
GUI. The firefox_recommend property has boolean value and contains information about
Firefox’s recommendation for the extension. If the value is true, Firefox recommends it.

The addons table has One to Many relation with a table called csp_reports contain-
ing all CSP reports triggered for specific extension after Selenium tests. The field test_type
contains string value representing a type of test (on_start_test, on_start_test_youtube
and others).

Further, the table addons has Many to Many relation with the table sites containing
a list of sites that are used in statistics for representing on which sites a specific extension
has potential CSP report because of the Firefox bug. The pivot table called addon_site
helps to realize the relation. It also contains additional information about the relation
between an extension and a site. The column content_scripts_count has information
about count of content scripts, declared in extension’s manifest.json for a specific web
site. The next column, called content_scripts_count_with_signs, contains the count
of content scripts that have signs of script injection in the code. It may mean that the
analyzed script injects a script directly into the web page of a specific web site. All signs
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Figure 3.1: Entity Relationship Diagram representing the structure of the database con-
taining information about all extensions, CSP reports, and web sites on which tests should
be executed.

are listed in Appendix A. The implementation part of the work gives more information
about the analysis.

The last needed table called addon_tests. It contains information about the provided
tests. The table is connected to the specific extension and has a type of provided test and
the column failed_test. This column stores boolean information and says if the test was
successful or not. It is like a cache that improves performance by not repeating already
provided tests.

Testing Backend

The second part of the application is named backend. It is an application without
a graphical interface. The role of the backend is to get requests from the web application
(frontend), provide Selenium tests or extension’s code analysis, and return the result to
the GUI.

Testing backend performs all testing scenarios introduced in Section 3.1. Firstly, the
manifest.json analysis. The backend has to download needed extensions from stor-
age, unpack them, do some preparation with the files and then provide the analysis of
the manifest.json. Furthermore, it has to find signs of content script injection in exten-
sion’s content scripts.

Moreover, the backend takes care of the execution of Selenium tests. After the backend
gets a request for testing from the GUI, it has to download an extension and then run
a Selenium test, which installs the extensions into the browser instance and provides needed
testing actions. The DNS faking mechanism, described in section 3.1, also should be realized
in the backend.
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Chapter 4

Implementation of Extension
Analyzer Framework

This chapter explains the implementation part of this work. It concerns architecture things
with Docker containerization, explains the way how exactly single services communicate
with each other via API, and also, most importantly, how exactly the application manages
the testing process in the code.

4.1 Data Collecting
Almost every work related to testing, comparing, and data analysis requires some training
or testing dataset. Since this work does not have any relation to machine learning, it does
not need to generate or collect as various as possible data set for neural network training.
But it requires a fixed set of downloaded extensions from the AMO. All extensions have
to be present before the test started. Real-time downloading, when a test already started,
is not the correct way because many changes can be submitted to the AMO by extension
developers, and many extensions releases can appear during the test. It usually mixes
AMO’s items, and if an extension is on the 100th page, it can be, for example, on the
102nd page in an hour. It can cause not correct results for every test execution.

This work contains the creating of an automatic extension downloader. The parser is
written in PHP language and uses a Simple HTML DOM Parser library1 for web page
scraping. It can extract HTML2 from a web page and gives an interface to access single
tags or elements in HTML by using CSS selectors3. It also can manipulate HTML in various
ways, such as changing the content or moving DOM elements.

The web application in this work is created on the PHP framework Laravel. The section
4.3 describes the GUI implementation and using Laravel frameworks in more detail. Laravel
has a tool named Artisan to write its command scripts. It is a command-line interface

1Simple HTML DOM Parser library https://simplehtmldom.sourceforge.io/
2Hypertext Markup Language (HTML) - https://html.spec.whatwg.org/multipage/
3https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors
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that helps writing CLI commands. It supports arguments, help section, description of the
command, and other functions. Code snippet 4.1 lists two commands for the AMO parsing.

php artisan downloader:addons-info
php artisan downloader:addons-files

Code snippet 4.1: CLI commands that could be run for parsing the addons.mozilla.org.
The first command extracts the primary information about an extension (name, image,
and other). The second command only downloads the archived extension’s source code.

The first command is going through all pages on the AMO and extracts information
about every extension (name, link, users count). It can use parameters like --start-page
and --final-page that define a specific range of pages needed to parse. The script also
supports parameter --download-file, which triggers the downloading of source files (com-
pressed to .XPI format) for each extension.

The second command is only responsible for downloading source files for an extension,
which is already scrapped and stored in the database. It is going through the addons
database table, and based on the link of the extension, downloads the file.

There is a pagination block that paginates all extensions on the AMO by 25 extensions
per page. This <div> block is placed on the bottom of a page. The script parses this pagi-
nation block and extracts the last page number. Then it goes page by page and extracts the
most important information for every extension: name of the extension, link to extension’s
main page on the AMO, icon, count of users using it.

Firefox has a set of extensions that are recommended by the browser. As writes the offi-
cial Firefox web site, all extensions selected to participate in the Recommended Extensions
program4 are subject to ongoing re-evaluations to ensure they are functionally extremely
well, safe, secure, and provide a delightful experience5. Every recommended extension has
a mark “Recommended”.

The script tries to find the mark on an extension’s <div> block and extracts this infor-
mation for every single one (1 - recommended, 0 - no information).

Firefox supports few ways how to install an extension from source files on a local machine.
The first way to install an extension from files is to install a temporary extension6 by

loading source code or .zip archive. The extension installed in this way is ready to use until
the browser works and not restarted, or a user keeps it. This way is not suitable because
finding the source files for every extension on the AMO is complicated for the amount of
18 000 extensions. It can be located on GitHub, on an extension’s web site, and other
resources.

The second way solves the problem described above. Firefox supports the installation
of extensions from a .xpi file7. This file is a compressed installation archive which Mozilla
uses in various applications such as Firefox, SeaMonkey or Thunderbird. Firefox uses
a component named XPInstall8 to install extensions archived into .xpi archive. Selenium
supports it to do it automatically.

An essential part of scrapping from the AMO is to download the extension’s source
code. The scrapper needs a link to an extension to download it. This link can be easily

4https://support.mozilla.org/en-US/kb/recommended-extensions-program
5https://blog.mozilla.org/firefox/firefox-recommended-extensions/
6https://blog.mozilla.org/addons/2015/12/23/loading-temporary-add-ons/
7https://fileinfo.com/extension/xpi
8https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XPInstall/Reference
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Figure 4.1: Left (green button) - The button that appears on the extension’s page in the
addons.mozilla.org when a user uses a browser other than Firefox. Right (blue button) -
The button that appears on the extension’s page in the addons.mozilla.org when a user
uses Firefox browser.

copied manually from the “Add to Firefox” button, but it is not that easy for the automatic
process. Firefox renders two buttons: for Firefox users and non-Firefox users. The Figure
4.1 shows how the buttons look. The green button does not have a link to the .xpi file.
Otherwise, the blue one has. The problem is that the green button is the default, and the
Simple HTML DOM library cannot define the current browser type when parsing the page.

The script needs to somehow “trick” the Firefox webserver to get the correct button. If
the server shows the button depends on the browser type, it needs to know that request
was sent from Firefox. Code snippet 4.2 contains the header that should be sent by parser’s
CURL request to force Mozilla’s web site to show proper button on extension’s page.

User-Agent: Mozilla/5.0 (Macintosh; Intel...) Gecko/20100101 Firefox/75.0

Code snippet 4.2: An HTTP header that should be sent to the web server of ad-
dons.mozilla.org to force him showing “Add to Firefox” button when using extensions
parser.

The scraper generates the name of a file from the name of extension with replacing all
unsupported characters. Then, it concatenates string with a hashed link of the addon. It is
needed in case if some extensions have the same name. The script uploads file into Simple
Storage Service (Amazon S3) into a bucket. The last step is to store the extension’s data
into the database.

4.2 Docker Containerization and Architecture of Services
This work uses containerization technology with Docker to make deployment more comfort-
able and more flexible. It gives the possibility to separate logic parts of the application into
isolated user spaces (containers). The application uses a tool named Docker Compose to
define and run multiple containers that communicate with each other. Theoretical informa-
tion about Docker and Compose and how containerization works is written in section 2.5.

The entry point is to define services is the docker-compose.yml file located in the root
folder of the project. It is a configuration file that Compose uses to configure and describe
how single services work, which resources they use, and how they relate to each other.

The web application uses PHP language in cooperation with the NGINX9 web server.
For handling dynamic requests on NGINX, the server communicates with PHP-FPM10. Fur-
ther, the application uses a separate container with a tool for compiling CSS and JavaScript.
The section 4.3 gives more information about the implementation of the web GUI.

9https://www.nginx.com/
10https://www.php.net/manual/en/install.fpm.php
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Python application, which runs Selenium and test scenarios, is moved to a separate
container called backend. Implementation of it is described in the section 4.4.

As a result, the whole program, including all smaller parts, is located in one reposi-
tory. This repository managed by one docker-compose.yml file and products six docker
containers communicating between each other under one shared network bridge:

∙ nginx - Web server

∙ app - PHP-FPM

∙ db - MySQL database

∙ redis - Caching software

∙ backend - Python application for running testing scenarios

∙ css-watcher - JS/CSS Compiler

Figure 4.2 visualizes all of the docker containers, and the structure of Docker Compose
used in this work. The instances inside of the “Docker engine” block are single containers
listed above, and arrows between them show their relation. For better maintenance of the
building, some of the services have definitions in separate Dockerfiles, which the Figure
below represents.

Database
docker-compose.ymlDefines

PHP-FPM

Web Server

JS/CSS Compiler

Dockerfile

Dockerfile

Python Backend

tester-backend/docker/
backend/Dockerfile

tester-gui/docker/
nginx/Dockerfile

Dockerfile

tester-gui/docker/
app/Dockerfile

Defines

Defines

Defines Dockerfile
Defines

tester-gui/docker/
css-watcher/Dockerfile

Docker engine

Figure 4.2: Blocks inside of the “Docker engine” represent application components (con-
tainers). Arrows show the relation and data flow between them. The Figure also shows
which configuration file defines a component.

The next two sections of this chapter handle writing Dockerfiles, building scenarios, and
relations between microservices.

4.3 Web Application
As was said before, the web application divides into four Docker containers. The main
two of them are NGINX and PHP-FPM. NGINX is a web server that processes incoming
HTTP requests.
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Since this work concerns testing and processing large amounts of data, the application
has to be able to handle a large number of incoming HTTP requests. A complication can
be that number of extensions in the AMO is more massive every day.

The web server in this work handles two types of incoming HTTP requests. The first
type is HTTP requests, which NGINX obtains to render web page resources like icons for
every extension, CSS styles, and JavaScript scripts. Those requests are requests for static
data. Another type of request is requests for dynamic data handling. It can be a request
for storing a CSP report when it comes to CSP policy errors in Firefox. The Web server
handles each report and stores it in the database. It requires specific dynamic handling by
PHP.

Even when a client sends a dynamic request to a server running PHP, it is not the first
point that contacts with the request. The first point is an HTTP web server. The server has
to decide which way to use PHP to handle the request. Whenever the request was received,
the web server creates a new process with PHP executed. NGINX can use PHP-FPM via
the FastCGI protocol for that case. It means that NGINX does not need to know where
PHP is on the server. In that case, PHP is encapsulated to another container with another
environment, and the server uses it only for running scripts to handle the incoming dynamic
requests.

With using of PHP-FPM, NGINX can handle static HTTP requests (CSS, JavaScript,
images) by itself. It raises the speed performance of a web server. PHP-FPM processes
only dynamic requests.

The Figure 4.3 visualizes how PHP-FPM works in combination with NGINX.

Client

PHP-FPM

Docker

NGINX

app containernginx container

app-network

1. HTTP request 2. FastCGI (Execute PHP scripts)

3. FastCGI (response)4. HTTP response

Figure 4.3: The relation between NGINX web server and PHP-FPM encapsulated into
separate Docker containers.

The web site has over 18 000 addons stored in the database, and it is not an excellent
way to show them all on one page, because of performance issues. A pagination feature
can handle it. It is configured value how many addons to be shown on each page. This
decision may cause an issue when a user selects addon by clicking on the checkbox and lose
it after switching between pages. The application uses the browser’s session storage11 to
solve this problem. It saves information about already checked extension, and JavaScript

11https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
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fires an event after the extension is checked or unchecked. Then it adds or removes the
item from the session storage.

The web application uses a MySQL database to store all the needed data. It is served in
a separate docker container with name ”db“. The section 3.2 explains the database design
and the relation between single tables more detailed.

The figure 4.4 shows the main page of the web application.

Figure 4.4: The screenshot shows the main page of the web application, which holds all
selectable extensions. At the top of the page is located the control panel of the application.
The control panel gives access to provide different actions with extensions such as filtering,
running testing scenarios, or generating reports based on the tests.

Laravel Mix

The GUI uses SASS language to code CSS styles. SASS is a CSS preprocessor that helps to
write complex and robust CSS stylesheets. It gives the possibility to use variables, selectors
nesting, and other features. In the end, the SASS file compiles to a standard CSS file to
use it in the application.

The web application uses a tool called Laravel Mix12 to compile SASS files and
JavaScript. The tool is part of the Laravel PHP framework, and it is a layer on top of
Webpack. It gives a simple API for defining Webpack building flow and asset pipeline to
compile javascript and SASS.

A part of this work is to create a simple Laravel Mix application. It is moved to
a separate Docker container called css-watcher. The application requires the installation of
NodeJS and NPM. By running the command npm run watch after installation in Dockerfile,
Webpack watches for defined SASS and JavaScript files and recompile them whenever they
are changed and saved.

12https://laravel-mix.com/docs/4.0/basic-example
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4.4 Backend Testing Application
The backend service executes and runs testing scenarios that a user triggers through the
web application. It is a separate application moved to a separate docker container called
backend.

The backend is written in Python using the Flask13 web application framework, a pop-
ular Python framework for creating services based on API or for web site development.

The advantage of Flask is that it is a lightweight web framework that allows the creation
of APIs for HTTP communication without any additional installations or maintenance. The
goal of the backend is to get the request for a testing scenario, run a Selenium test, and
return a response.

There is a Dockerfile created to build the container, which hosts the application. It uses
an ubuntu:bionic Docker image from Docker Hub to install the operating system first.
After that, Dockerfile defines some applications to install, like Python, PIP, curl, wget, and
others.

Selenium uses the geckodriver and Firefox of the latest version to run testing scenarios.
The driver and browsers are downloaded by using of wget application in the Dockerfile.

The application uses the requirements.txt file to define all dependencies needed by
application in a single .txt file, which was created and copied to docker container and im-
mediately parsed by PIP14 while the build is going through all commands in the Dockerfile.
This process installs Flask and Selenium into the container.

The last step is to set some environment variables and run the server in the container.

4.5 Implementation of Testing Scenarios
This section describes the implementation of all of the testing scenarios, which are proposed
in Section 3.1. Each scenario has different implementation and different relation between
web application and backend, which runs Selenium tests.

The application stores every incoming report into the database in the table csp_reports,
and it has a relation with the addon from the addons table. Information about the type
of scenario for each extension is saved in the column test_type.

on_start_test

This type of test tries to handle and collect extensions that trigger the CSP report before
the onload event occurs.

All that is needed to provide this test is to run Selenium tests with pre-installed exten-
sion and store triggered CSP report if it appears. Otherwise, if no error is triggered, the
extension does not have a related CSP report in the csp_reports table, and the extension
is considered as correctly working.

A user has to do one of the following to start this test:

∙ select an extension by marking checkbox −→ navigate to control panel on the top of
the web GUI −→ click on the button “Test selected” −→ choose the test name in the
dropdown menu

13https://palletsprojects.com/p/flask/
14https://pypi.org/project/pip/
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∙ navigate to needed extension −→ click on the button “Test extension” −→ click on the
on_start_test in the dropdown list.

The following explanation considers using the first way from the item list above.
The first point of the implementation is to send a request for testing from the web

application to the backend by using JavaScript with AJAX (Asynchronous JavaScript and
XML)15. When a user clicks onto the on_start_test button, JavaScript gets selected
extensions from session storage. Then it iterates through all of them. For each item,
JavaScripts creates AJAX request to the backend. The requests for testing carry some
needed parameters such as the name of extension’s file, extension’s identifier, extension’s
name. These parameters are needed to execute tests on the backend side.

A CSP report, generated by the browser, does not support using custom parameters
and does not have any information to tie up the report with the running test. That means
that there is no way to figure out from the report what extension is in the testing process
when it triggers an error.

All requests for testing on_start_test comes to the /test/on-start-test endpoint
on the backend. After request comes, backend extracts extension’s information, especially
file name, and then call function on_start_test_run(). First of all, the function downloads
the extension’s file from the AWS S3 bucket and stores it on a local machine. On the next
step, it creates a Selenium WebDriver instance that runs a browser on the background
and then calls the Selenium function install_addon() to install the extension from the
downloaded file into the browser. After that, by calling the function get(), Selenium
navigates the browser to a prepared web page, which has CSP policy set to decline injecting
of content scripts into DOM. This may trigger a on_start_test CSP report. After the
page is loaded, Selenium closes the browser. The backend server returns a positive response
to the web application.

The prepared web page for testing is located on the NGINX server and has its endpoint
and controller that renders it. The backend sends two parameters to render the testing
web page: test_type and addon_id. Those parameters are handled and validated by the
controller, which then generates an HTTP CSP header before the rendering of the page.
The controller places the parameters into the URL of the report-uri directive to tie up
the running test with the report.

All CSP reports from the testing web page described above come back to the web
application, which has prepared the /api/store-csp-reports/{test_type}/{addon_id}
API endpoint to accept them. All incoming reports are handled by the application and
saved into the database.

If everything is good, the application moves to the processing of the next extension.
The full process is visualized on sequence diagram on the Figure 4.5.

DNS Faking

As was said in Section 3.1, there are extensions that work only on specific web sites. This
work aims at testing the on_start_test on popular webs on the Internet. So, an extension
for a specific web site needs to determine that the browser navigates to the web site where
the extension works. But in reality, it still goes to the prepared testing web page. The test
script has to change the DNS configuration to do this.

The testing web page is located on the web server in the nginx container. When
Selenium navigates the browser instance, for example, to www.youtube.com, the HTTP

15https://api.jquery.com/jquery.ajax/
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Figure 4.5: Sequence diagram of the on_start_test testing scenario. It visualizes data
and request from between different actors of the application (User, GUI, backend, database).

request goes to the NGINX. DNS is mapping into the /etc/hosts file on the backend.
After running Docker containers, a shell script gets NGINX’s IP address and writes the
mapping into the /etc/hosts file. Code snippet 4.3 demonstrates an example of domain
mapping.

<nginx IP address> www.youtube.com
<nginx IP address> twitter.com
<nginx IP address> www.amazon.com

Code snippet 4.3: An example of mapping domain names on the right to IP addresses on
the left defined in OS’s /etc/hosts file.

When Selenium goes to www.youtube.com, the /etc/hosts configuration redirects it
to <nginx IP address>, but an extension still performs actions accordingly to YouTube.
For example, injects custom scripts.

Analysis of Manifest.json File

The processing of the manifest.json file is another type of extension analysis. The
file contains information about the extension’s content scripts. More information about
manifest.json is described in the section 2.4.

A user of the web application can run the analysis for every extension from the list.
Since all content scripts in a manifest.json file have to be related to a specific web site
patterns (key matches), a user has to choose a web site for which he wants to provide
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the analysis. The database table sites holds all web site URLs. Before a user starts the
analysis, he has to choose web sites from the list on which the analysis provides.

The application takes all extensions and checked web sites from the session storage.
Then, for each extension, it sends an HTTP request to AjaxController that converts data
to a proper format and sends a request to the backend. On the backend’s side, there is an
/test/content-scripts-analysis API endpoint responsible for accepting such requests.
After that, the backend downloads extension’s file from the S3 bucket and unzips it. Then,
it opens the Manifest.json file and reads the content via the json.load() function.

After analyses for all extensions were provided, there were many errors logged to the
application’s error log. These errors occur because of not supported by JSON specific
symbols in Manifest.json. In the majority, it is “/” symbols at the start of the line. But
commentaries with using slashes are not allowed in JSON format [2]. The application
preprocesses the file before the opening to solve the problem. If the file still causes errors,
the application skips the analysis of the addon.

One of the parameters coming to the backend is sites_matching. It contains a set of
web sites for matching with the array matches in a manifest.json. The backend iterates
through all sites in a loop, and for each one searches content_scripts item with at least
one matching URL. The matching provides by using the fnmatch16 Python library. It
provides support for Unix shell-style wildcards.

The next step is to provide a code analysis for each content script separately. Then, the
application iterates through all scripts from the js array and opens every file. It reads each
line in the file and tries to find any signs of script injecting into a DOM. For example, it
reads a line of code as a string and searches a .createElement(’script’) substring.

The backend returns all extracted information like count of content scripts, script in-
jection signs back to the web application in JSON format. The web application converts
it to the proper format and writes into the database in the table addon_site. So, the
table contains rows with a paired web site and extension, and additional information about
content scripts.

16https://docs.python.org/3/library/fnmatch.html
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Chapter 5

Testing and Evaluation

This work aims to test all extensions from the AMO to detect how the CSP header influences
the extension’s behavior. The CSP header needs to deny the injecting of content scripts
into the page.

This chapter explains the result of the provided tests. At the end of the chapter, there
is a section that suggests and explains possible future improvements of the research, such
as new test types, new GUI futures, performance raising.

5.1 Results of the Provided Tests and Analysis
This section shows and describes the result of the tests.

First of all, it is important to run the manifest.json analysis to mark extensions that
may be influenced by the bug. The analysis processes the code of extension’s content scripts
and tries to find signs of script injection into a web page. Besides, it checks on which web
sites there is the most significant number of influenced extensions.

Then, the top web sites from the list are subject to additional testing that discovers how
many extensions trigger real CSP errors on a specific web site.

This section evaluates the results and represents them on graphs.

Manifest.json Analysis

This analysis is important to detect extensions that might have potential problems with
Firefox’s bug. Section 3.1 explains its purpose and design, and section 4.5 describes its
implementation.

The manifest.json analysis was executed for all extensions from the addons database
table and for all sites stored in the sites table. Figure 5.1 shows its result on a graph
representing how many extensions have signs of script injection into the DOM of a web
page. The graph shows a list of popular web sites listed on the Y-axis. Each tested web
site has its value written in the middle of the related bar. This value means the lower
bound of the count of extensions that would trigger false CSP reports if the CSP header
was enabled on the web site. Almost all web sites were taken from the list of top 100 most
visited websites by search traffic (as of 2020)1.

It is important to mention that values from Figure 5.1, representing a count of extensions,
are related only for the exact URL (protocol, port, domain) on the left side. For example,

1https://ahrefs.com/blog/most-visited-websites/
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Figure 5.1: The lower bound of count of extensions that have content scripts injection signs
in their source code. Each value on the middle of each bar represents the count for the
URL, written on the left side, on which the manifest.json analysis for all extensions was
executed.

the statistic does not contain extensions that work only on a specific YouTube channel that
has a specific URL or only on the .cz domain. Therefore, any other URLs require separate
analysis and may have a different result.

Some extensions are created for general purposes and do their job for all web pages on
the Internet. For example, URL https://espn.com/ from the graph on Figure 5.1 is a web
site of popular cable sports channel ESPN. There are some extensions on the AMO that
are created to work only on ESPN’s web site, but no one of them triggers CSP error on
the testing web page. Therefore, the value 1384 from the graph represents the only count
of general extensions working on all web sites.

Each value on the graph consists of two parts: count of general extensions and count of
specific extensions working only on the particular URL on the left side of the graph. Figure
5.2 shows a graph that represents the same statistics as on Figure 5.1, but only contains
count of specific extensions. Based on the statistic, most of the extensions are developed
specifically for YouTube. They can be different advertisements blockers, YouTube themes,
or site transformation extensions. Facebook and Twitter take the second and third places,
respectively. Since these three sites have more influenced extensions than all of the other
tested ones, they need more deeply testing, separately.

In summary, 1384 extensions inject scripts to all web pages, and 490 extensions inject
scripts to specific web pages. Hence, 1870 extensions (about 10% of all extensions) in the
AMO are influenced by the bug.

As was said in section 4.1, Firefox has a set of recommended by the browser extensions.
Figure 5.3 shows the same statistic as in Figure 5.1, but only for recommended extensions.

Based on the provided analysis for recommended extensions, 21 extensions are general,
5 are only for YouTube, and 3 for Google. Hence, together it is 29 extensions. Since the
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Figure 5.2: The lower bound of count of extensions that have content scripts injection signs
in their source code. Each value on the middle of each bar represents the count for the
URL, written on the left side, on which the manifest.json analysis for all extensions was
executed. All general extensions that work on all web sites on the Internet are filtered out.

AMO has 100 recommended extensions, 29% of them have script injection signs and are
potentially influenced by the bug. All of them are on the first four pages of the AMO.

on_start_test

This test carries out real experiments on installed extensions and tries to find a set of
extensions that inject scripts and trigger CSP error before the onload event.

The manifest.json analysis has shown that 1380 general extensions in the AMO have
signs of content script injection into a web page. These extensions are for general purposes
and perform actions for all web sites on the Internet.

But there are extensions intended only for particular sites. They inject code only if
the user’s browsing web site URL matches with the extension’s preconfigured URL pattern
where the extensions should do its work. The analysis has shown that 158 extensions have
signs of scripts injecting into YouTube, 70 into Facebook, 41 into Twitter. As was previously
said, those extensions require more in-depth analysis.

This test explores extensions for general purposes as well as extensions for specific web
sites. Based on the manifest.json analysis, there are 3 websites with more influenced
extensions than other web sites from the list in the previous section: YouTube, Facebook,
and Twitter. The test explores extensions only for these 3 categories and for a general one.

The test does not include extensions that inject a script only after some action on the
page. It tests those that do it before the onload event. For example, it does not detect an
extension that changes the background color of a page after a user clicks on a button.

Figure 5.4 shows the result of the test. After the test, it becomes clear that the result
follows the order of web sites shown in Figure 5.2. Most extensions on the AMO trigger
CSP errors on YouTube. There are 199 extensions that will cause CSP reports if YouTube
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Figure 5.3: The lower bound of count of recommended by Mozilla Firefox extensions that
have content scripts injection signs in their source code. Each value on the middle of each
bar represents the count for the URL, written on the left side, on which the manifest.json
analysis for all extensions was executed.

will decide to protect its web site against content script injecting by enabling the CSP.
Facebook and Twitter have 194 and 184 extensions, respectively.

Summarizing all unique extensions created for specific web sites and all general exten-
sions, there are 213 (1%) of them that trigger CSP errors passively (not doing any actions
on a web site) on all web sites that have CSP protection enabled.

Moreover, every extension may trigger more than one CSP report. For example, the
extension “LastPass Password Manager” triggers one report, but the extension “Emoji by
TunisieSMS R○” causes 18 reports after the browser navigates to the testing page. It means
that every user that has “Emoji by TunisieSMS R○” installed triggers 18 false-positive CSP
reports, which make excess noise to the reporting log of a web site that has CSP protection
enabled. On average, each influenced extension in the AMO causes two reports.

Figure 5.5 shows the same statistic but only for extensions recommended by Firefox.
The report shows that the website order is the same as for all extensions, but the count
of on-start-test-twitter is the same as on-start-test and equals 8. It means that all
8 extensions are general. Therefore, AMO does not store recommended extensions that
do code injection at the start of page loading only for Twitter. The result represented on
Figure 5.5 shows that 11 (11%) of recommended extensions passively trigger CSP errors
after testing general ones and extensions created for YouTube, Facebook and Twitter.
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Figure 5.4: Count of Firefox extensions that trigger CSP errors after a browser navigates
to a web page with enabled CSP protection. Tested for YouTube, Facebook, Twitter, and
also general extensions that work on all web sites on the Internet.

Figure 5.5: Count of recommended by Mozilla Firefox extensions that trigger CSP errors
after a browser navigates to a web page with enabled CSP protection. Tested for YouTube,
Facebook, Twitter, and also general extensions that work on all web sites on the Internet.
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Chapter 6

Future Improvements of the
Research

This chapter describes future improvements of this work suggested in Section 6.2. Some of
them are improvements of the existing application, but some are additional testings that are
needed to find influenced by the bug extensions that did not occur in existed tests. Besides,
Section 6.1 describes how the bug in Firefox may be used to fingerprint site visitors and
how this work may study it in the future.

6.1 Fingerprinting Problem
This research may be significant for Firefox users who care about privacy and data protec-
tion. Besides excess false-positive CSP reports, broken functionality of extensions, the bug
in Firefox brings a problem with fingerprinting of web site visitors. If a web site has a CSP
protection enabled to deny scripts injecting by extensions, triggered CSP reports may help
web site developers to know which extensions site’s visitors have installed.

As mentioned in Section 2.1.3, each CSP report generated by the report-to CSP directive
provides the server the following:

∙ source-file containing the identifier of the web extension (EUID) and the path of the
script in the extension’s file hierarchy,

∙ line-number and column-number: identifying the position of code violating the
CSP in the extension’s source code.

Consequently, the bug in Firefox brings new possibilities to users fingerprinting. The
UID allows cross-site tracking by designing CSP policy in a way that extensions are inserting
script to web pages causing CSP violations. Extension’s UID is unique for each extension
installation, i.e., every installed extension instance has different EUID. Moreover, the UID
changes when the extension is reinstalled. It means that a user with at least 2 web extensions
causing CSP reports provides a long-term unique identifier because the tracker can learn
that UID of an updated extension changed, and other extensions do not change their UID.
As users usually do not update multiple extensions at the same time, the identifier is long-
term.

A column-number key is a type of non-negative integer number containing information
about the column’s index in a code that violates the page CSP. It is the position in the code
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where JavaScript calls a function that causes the violation. For example, most of the exten-
sions inject scripts into the DOM of a web page using an element.appendChild(script)
JavaScript construction. A column-number of this violation points to the “.” symbol.

Table 6.1 contains source-file, line-number and column-number values extracted
from CSP reports triggered by some popular Firefox web extensions.

source-file line-number column-number
Privacy Badger .../js/contentscripts/utils.js 35 9
LastPass Password Manager .../onloadwff.js 71 798728
AdGuard AdBlocker .../lib/content-script/preload.js 136 15

Table 6.1: Values of some CSP report keys by which extensions on the left side of the table
may be identified. Each extension leave a unique imprint in CSP report by these three
keys.

The source code of these extensions was manually studied to find violation constructions
on the exact line and column of code. The constructions are listed below:

∙ Privacy Badger - parent.insertBefore(script, parent.firstChild);,

∙ LastPass Password Manager - n.appendChild(t),

∙ AdBlocker Ultimate - parent.appendChild(scriptTag);

Some extensions use a unique naming structure. So, they are directly identifiable by the
path of the script. But many extensions copy or follow some already existing conventions of
file structure or file naming. Therefore, multiple extensions share the same script name and
path. Many web extensions minify the JavaScript code into one line without whitespaces.
As a result, key line-number has a value of “1” on all CSP reports caused by extensions
with minified JavaScript code. There is a small chance that column-number values are the
same for the extensions with minified code. Hence, the violating script’s path, line-number,
and column-number, in combination, is in practice unique for each extension. A tracker
that fingerprint web site visitors can learn the values by monitoring AMO and triggering
the violation. The database needs to be updated because the triple can change with a
new version of an extension. One of the future improvements of this research is to create
that tracker tool and try to identify extensions based on CSP reports in the csp_reports
database table.

Fingerprinting over CSP reports does not need to use JavaScript like the fingerprinting
based on web accessible resources described in Section 2.1.3. Hence, security extensions
like “NoScript” do not protect the user from being fingerprinted.

6.2 Other Improvements
This section suggests a few new features that can be added to this work to improve the
user experience or raise the accuracy of tests.

Copy of a Testing Web Site

This work uses DNS faking to provide simulate tests on web sites like YouTube, Facebook,
or Twitter. Using this method, an extension behaves like the browser has navigated to one
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of the mentioned websites, so it performs scrip injecting. But in reality, the DNS redirects
the browser to the testing web page. It handles those extensions that inject content scripts
without looking to the content of web site.

But some extensions inject resources depending on the content of the page. They may
need not only a specific web page for code injection but also a specific content on the page.
The content on the faked testing web page, currently used in the test, is different from the
original web page. Because of that, an extension might not try an injection. For example,
an extension injects a content script only if a web page contains a <video> element.

This improvement suggests to fake the content of YouTube, Facebook, or Twitter, or
whatever site on which a user wants to provide a test. It can be done by saving the HTML
code of a real web site and paste it into the testing web page. It may help to discover more
extensions influenced by the bug.

Monkey Testing

The “on-start-test” test found 199 extensions that trigger CSP reports on YouTube. But
the static manifest.json analysis has detected 1538 extensions. Even if an extension has
code injection signs, it does not mean that it injects a content script on the start of the
page loading. It may perform an injection after some action that a user does on a web
page. For example, after the user clicks on some button.

A monkey test can partially solve the problem. This test can perform chaotic actions
on a web site and wait for the right one that triggers a content script injection. Since
extensions work on a specific web site, the testing web page should have the right content.
So, this improvement requires the implementation of the previous one (Copy of a testing
web site).

Improvements of Static Analysis and Application Performance

There are some possible technical improvements to the existed functionality. A big deal
while the implementation was to provide parallel testing. It is normal to send from the
frontend to the backend of 2-4 asynchronous requests to install and test an extension. But
sending more requests causes errors or a very long time to finish the testing. The application
needs to deal with it by implementing a cache system and getting more resources on a Docker
Machine (RAM, CPU).

Moreover, it is possible to increase the success rate of manifest.json analysis. Now,
the analyzer simply tries to find a substring in the script’s code. But the code can be
minified so that all values can be set to variables with one-letter naming. For example, the
compressor may link the “document” object to a variable named “d”. It is possible to use
some existing interpreters and use semantic analysis of the code to discover that links.
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Chapter 7

Conclusion

This bachelor thesis has a goal to test all extensions from the addons.mozilla.org (AMO) and
show to extension and web site developers possible problems with the Firefox web browser.
Firefox developers have to pay attention to this problem. Since this bug is reported four
years ago in official Bugzilla, it caused many related bug reports in extensions issue trackers.
These reports have long discussions about what is going on, and reports creators think it
is a bug in the extension. But it is not.

First of all, this work requires to study the main principles of browser extension devel-
opment. As the research is related to the CSP protection, information about it is studied
to understand how the CSP works and which attacks it denies. Since this work can be
used by ordinary users who want to check an extension they want to install, the application
needs to have a simple and understandable user interface that requires additional study of
GUI development and communication between services via API.

The design of the application requires to know how to build an application structure
and how to design communication between microservices. Further, the work needs to
design the testing process. Two main processes were designed. The first process is to do
manifest.json analysis for all extensions in the AMO. It has to show top popular web sites
on which most of the extensions trigger CSP errors. The second process is to execute real
tests on previously-detected websites by using the Selenium tool. The work has designed
a test type named “on-start-test” and derivative test for a specific web site such as on-start-
test-youtube or on-start-test-twitter. These tests should detect those extensions that
trigger CSP errors before the onload event occurs.

The implementation part of the work starts with the collection of needed data. It is re-
quired to create a Mozilla Firefox parser that goes through all pages on the AMO, extracts
information about each extension, and then stores it into the database. It also downloads
the compressed source code of an extension and uploads it into the AWS S3 bucket. The
designed decomposition by microservices was practically realized by using the Docker Com-
pose tool. As a result, the application has two main components that produce five Docker
containers. Further, the implementation follows the designed approach of testing processes.
Using web GUI, it is possible to run manifest.json analysis and “on-start-test” test for
a selected set of extensions.

At last and most important, testing and evaluating processes were managed. Firstly,
the manifest.json analysis was executed on over 18000 extensions. It showed that 1380
extensions have signs of content script execution. These extensions are from the “general”
category, which means that they work on all websites on the Internet. Summarizing general
extensions and extensions working on specific web sites, the analysis has detected 1870 ones
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that have code injection signs in their source code, which is about 10% of all extensions in
the AMO. As was investigated, the success of the analysis is 94%.

Further, the analysis showed that YouTube, Facebook, and Twitter are the most popular
web sites where most of the extensions trigger CSP errors, more popular than all other 19
tested web sites. These three web sites were tested deeply by the “on-start-test” test. It
showed that 199 extensions trigger CSP errors on YouTube, 194 on Facebook, and 184 on
Twitter.
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Appendix A

List of Script Injection Signs

This appendix contain a list of script injection signs that the static manifest.json analysis
tries to find in the extension’s source code.

∙ injectScript(

∙ insertScript(

∙ appendScript(

∙ insertBefore(script

∙ insertBefore(scrpt

∙ insertBefore( script

∙ insertBefore( scrpt

∙ appendChild(script

∙ appendChild(scrpt

∙ appendChild( script

∙ appendChild( scrpt

∙ .createElement(’script’)

∙ .createElement("script")

∙ .createElement(script)

∙ .createElement(scrpt)

∙ .createElement( ’script’ )

∙ .createElement( "script" )

∙ .createElement( script )

∙ .createElement( scrpt )
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Appendix B

Content of Media

B.1 Source Code
∙ tester-backend/ – Python Backend of the application,

∙ tester-gui/ – Laravel web application (GUI),

∙ test-extension/ – Simple testing extension to reproduce the Firefox’s bug,

∙ docker-compose.yml – Configuration file to build all Docker containers,

∙ run_clear_app.sh – Script to build and run the application without data in the
database,

∙ run_final_app.sh – Script to build and run the application with all data after tests,

∙ mysqldump.sql – Dump of the database. Used in run_final_app.sh script.
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