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Abstract
This thesis deals with the automatic extraction of processor architecture information from
the CodAL language. Extracted information is used as the base for a cost model of the
optimizer in the LLVM compiler. In this thesis, a new system was implemented, that creates
the cost model, transforms it into a C++ code and compiles it into a dynamic library. This
library is loaded at run-time by the compiler and used for better decision-making during
the optimization process. The system achieves an average reduction in program code size
of 14% and up to 68% improvement in the performance of the generated code.

Abstrakt
Tato práce se zabývá automatickou extrakcí informací o architektuře procesoru z jazyka
CodAL. Získané informace jsou využity jako základ pro cenový model optimalizátoru
překladače LLVM. V rámci práce vznikl nový systém, který vytváří cenový model, převádí
jej do C++ kódu a sestavuje do dynamické knihovny. Tato knihovna je za běhu načtena
překladačem a využita pro přesnější rozhodování o přínosech jednotlivých optimalizací.
Výsledkem práce je průměrné 14% snížení velikosti strojového kódu programů a až 68%
zlepšení výkonu generovaného kódu.
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Rozšířený abstrakt
Tato práce se zabývá poskytováním informací o procesorové architektuře překladači LLVM.
Překladač převádí zdrojový kód do vlastní reprezentace, nad kterou provádí optimalizace,
jež mají za cíl zefektivnit výsledný strojový kód z hlediska výkonu či velikosti. Některé op-
timalizace lze aplikovat bez ohledu na cílovou platformu, pro kterou je kód určený. Většina
optimalizací ale zpravidla benefituje z detailní znalosti cílového procesoru. Cílem této práce
bylo vytvoření automatizovaného systému pro dodávání potřebných informací o procesoru
do překladače jazyků C a C++ založeného na LLVM infrastruktuře.

Teoretická část práce se zabývá úvodem do typického procesu návrhu procesorů od
prvotní analýzy požadavků až po verifikaci syntetizovaného hardware. Čtenáři je před-
staven způsob automatizace této nákladné činnosti pomocí jazyků pro popis architektury.
Následně je popsáno prostředí Codasip Studio pro vývoj procesorů spolu s ukázkami modelu
procesoru zapsaného v jazyce CodAL. Teoretickou část uzavírá přehled překladačové infras-
truktury LLVM a její integrace do nástroje Codasip Studio. Tento nástroj do překladače
LLVM automatizovaným způsobem přidává podporu pro modelovaný procesor.

V rámci praktické části diplomové práce byl analyzován optimalizátor v LLVM a jeho
interakce s cenovým modelem cílového procesoru. Výsledkem analýzy je zjištění, že infor-
mace o architektuře jsou nejlépe využité při vektorizaci smyček a lineárního kódu. Také byly
identifikovány nejčastěji využívané informace o architektuře: počet a šířka registrů, velikost
instrukcí, cena operací a preference pro optimalizace inlining, unrolling, interleaving.

Na základě poznatků o chování optimalizátoru byl vytvořen nový nástroj integrovaný
do prostředí Codasip Studio, jež analyzuje model procesoru, implementované instrukce
a extrahuje užitečné informace. Z těchto informací o procesoru nástroj sestavuje cenový
model a serializuje jej do C++ kódu použitelného v LLVM. Vygenerovaný kód je sestaven
do dynamické knihovny obsahující kompletní cenový model. Do překladače jazyků C a C++
distribuovaného spolu s nástrojem Codasip Studio byla přidána funkcionalita tuto knihovnu
za běhu načíst a využít její obsah pro zlepšení kvality optimalizací.

Nový systém byl otestovaný na dvou procesorech firmy Codasip: uRISC a Codix Berke-
lium. Pro testování byla využita sada reprezentativních programů i standardních syntetic-
kých benchmarků. V případě procesoru uRISC s podporou SIMD operací došlo ke zmenšení
výsledných programů v průměru o 14 %, v jednom programu ke zrychlení o 68 % a v dalším
ke 36% zpomalení. S procesorem Berkelium postaveném na instrukční sadě RISC-V bylo
dosaženo průměrného 8% zmenšení napříč základními programy a 12% zrychlení programu
porovnávajícího řetězce.

Výsledkem diplomové práce je tedy systém, který má pozitivní dopad především na
velikost programů, což je jedna z klíčových metrik při vývoji vestavěných systémů. Imple-
mentovaný systém má praktické využití a bude součástí další hlavní verze nástroje Codasip
Studio pro vývoj procesorů.
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Chapter 1

Introduction

During the last decade, the annual growth of CPU performance has slowed down to around
3.5% – a sharp decline from the yearly 52% improvements we have seen since the 1980s
until the early 2000s [9]. To overcome the stagnation, various companies have started to
develop application-specific processors tailored to perform well when running a particular
type of workload. For example, Google recently developed a tensor processing unit (TPU)
to accelerate machine learning workflows [8].

The manual development of such processors is labour-intensive, which gave rise to elec-
tronic design automation (EDA) tools such as Codasip Studio. Codasip Studio is an inte-
grated development environment (IDE) for modelling custom application-specific processors
through the CodAL language. The environment can automatically generate a synthesizable
hardware description of the processor, and development tools (i.e. verification testbench,
simulator, assembler, C/C++ compiler and more).

To take advantage of new capabilities offered by application-specific processors, com-
pilers of high-level languages need to adapt. Compilers need to have an intimate knowl-
edge of the target architecture specifics to choose suitable optimizations and generate well-
performing machine code. Currently, the optimizer in the C/C++ compiler generated by
Codasip Studio is not provided with all the necessary architecture information to make
informed decisions while optimizing code.

This thesis aims to design and implement a mechanism for providing architecture infor-
mation to the LLVM optimizer used in the Codasip compiler. The information should be
deduced from the CodAL processor model and manually editable by the processor engineers.

Chapter 2 contains an overview of the general processor design workflow. Then, Chap-
ter 3 talks about how Codasip Studio and the CodAL language help to speed up the process.
Chapter 4 is dedicated to an introduction of the LLVM compiler infrastructure and its us-
age within Codasip Studio. Chapter 5 proposes a mechanism for integrating the necessary
architecture information into the optimizer used by the Codasip compiler. In Chapter 6,
the implementation details of the integration are described. Next, Chapter 7 focuses on us-
ing the new infrastructure to improve the quality of code generated for Codasip processors.
Finally, Chapter 8 sums up the key takeaways of this thesis and proposes steps that can be
taken to improve the optimizer further.
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Chapter 2

Processor Design

Nowadays, processors can be found in many kinds of systems scattered throughout our
environment – in cities (cameras, traffic control), homes (appliances, security systems),
offices (printers, networks), vehicles (driving assistance, navigation) or personal devices
(smartphones, computers). Embedded systems play a critical role in our society. As the
number of embedded systems and our dependence on them increases, the demands on the
processors powering them grow as well.

Companies building embedded systems typically reach for an existing processor model
offered by an established vendor (e.g. ARM). However, there are cases where the require-
ments on power, performance, or chip area are so specific they cannot be satisfied by
an off-the-shelf solution. In situations like these, a custom-made processor designed from
scratch might be the only way to build the system.

This chapter presents a brief overview of a typical processor design workflow to provide
the context necessary for understanding Chapter 3 that introduces the CodAL language for
describing processors and the Codasip Studio IDE.

2.1 Manual Process
In this section, we outline the manual approach to processor design. This description should
act as a motivational piece that explains the desire for more automation of the workflow
and foreshadows the benefits of development tools such as Codasip Studio.

2.1.1 Requirements

The design process typically starts by capturing the functional and non-functional require-
ments for the processor [19]. The functional requirements can be determined by finding
a representative set of algorithms that are eventually going to be executed by the processor,
and analyzing the instructions necessary for supporting an effective execution of such algo-
rithms (e.g. through profiling on existing platforms). Additional functional requirements
on frequency, throughput or latency may be imposed by the operating system, memory
subsystem, the input/output devices attached to the processor and other aspects of the
environment.

The processor design is usually further constrained by non-functional requirements such
as power consumption, manufacturing cost, or electromagnetic compatibility (EMC). An-
other aspect to be considered is extensibility – for example even application-specific pro-
cessors may benefit from general-purpose characteristics to allow for future modifications.
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2.1.2 Instruction Encoding & Architecture

After finding the required operations, data types and addressing modes, designers create the
instruction encoding scheme (i.e. the binary representation of instructions) [16]. There are
different trade-offs to be considered when designing the encoding: maximal utilization of
instruction-level parallelism can increase the performance but requires longer instructions
to encode all of the operations, whereas short instructions may lead to smaller program
size but restrict the possible combinations of resources. Variable instruction length allows
for both short memory-efficient instructions and longer parallelism-enabling instruction but
also complicates the logic of decoding and consequently, greater chip area.

Instruction encoding has a significant effect on the architecture organization, as operand
access and operations require a specific type and number of registers, data transfer mech-
anisms, control structures and arithmetic/logic units. The initial architecture is usually
dictated by the instruction set itself, and what follows is an exploration of alternative vari-
ations, typically guided by a performance analysis (e.g. calculating cycle counts and code
size of the predefined set of algorithms). This iterative process is repeated until a solution
without any critical bottlenecks reaching the desired cycle time is found.

2.1.3 Hardware & Verification

When the final architecture is decided, the processor can be implemented in a hardware
description language (HDL) such as Verilog or VHDL. HDLs model the behavior and struc-
ture of hardware, which can be synthesized into a circuit and simulated [17]. Listing 2.1
shows an example of a simple hardware block described in VHDL.

entity mux is port(
in1 : in std_logic_vector(2 downto 0);
in2 : in std_logic_vector(2 downto 0);
in3 : in std_logic_vector(2 downto 0);
in4 : in std_logic_vector(2 downto 0);
addr : in std_logic_vector(1 downto 0);
res : out std_logic_vector(2 downto 0));

end mux;

architecture rtl of mux4 is begin
res <= in1 when (sel = "00") else

in2 when (sel = "01") else
in3 when (sel = "10") else
in4;

end rtl;

Listing 2.1: A multiplexer implemented in the VHDL language.

Since processors are often being deployed in safety-critical applications, the correctness
of the implementation must be thoroughly verified. Verification efforts can make up to 80%
of the total design cost, and there are three general approaches being employed today [10]:

1. Functional verification via simulation is the most commonly used verification tech-
nique that simulates the processor in software for some amount of clock cycles. Given
an input program, the simulation produces a result which is then compared with the
result produced by the golden model (an implementation considered to be correct).
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The simulation is usually quick but not very thorough, as it only checks a single sce-
nario in one run. The testing scenarios can be generated by hand, randomly or using
techniques such as random pattern simulation, which allows to specify patterns that
ought to appear more frequently in the randomly generated programs [1].

2. Formal verification encapsulates techniques that mathematically prove the functional
correctness of a design. These are the most reliable verification methods, but also
the most computationally intensive. The typical example of this category is model
checking, which explores all reachable states of the processor and checks that a desired
property always holds (e.g. an output signal is only set when a register contains a
specific value).

3. Semi-formal is the intersection of simulation and formal techniques. A good example
of the semi-formal approach is symbolic simulation, where some parts of the testing
input are concrete values while others are variables. This makes one simulation run
representative of many runs of pure simulation.

2.1.4 Software Tools

Besides the verified model of the processor hardware, a set of software tools is necessary for
the actual application development. The instruction set simulator was already mentioned
in previous sections, but other tools such as assembler, disassembler, linker and compiler
of a high-level language (e.g. C/C++) must also be developed.

2.2 Architecture Description Languages
Creating a new processor architecture is a labour-intensive process that requires cooperation
between the teams responsible for specification, hardware design, verification, simulation
and software support. With strict time-to-market requirements, the opportunity to explore
many architecture alternatives is limited, often leading to sub-optimal solutions. More-
over, the manual nature of the work is error-prone and can cause issues such as subtle
inconsistencies between the hardware and software representations.

To overcome the drawbacks of the manual approach to processor design, architecture
description languages (ADLs) were developed [16]. Such languages allow designers to specify
some aspects of the processor like its instruction set or the architectural details, and then
automatically generate the HDL code, verification environment, compiler, assembler or
other software tools. This eliminates the need for cooperation of multiple teams, removes
the possibility of inconsistencies between different processor representations and allows for
faster and easier exploration of alternative designs.

There are two main categories of ADLs based on the aspect of processor architecture
they capture: structural and architectural [2]. The structural languages such as MIMOLA
focus on the components in the architecture and the connectivity between them, which
makes them suitable for RTL generation and validation. On the other side, behavioral
languages such as ISDL deal with the behavior of the processors’ instruction set, and are
geared towards simulation and compilation.

Languages that combine both of the above are referred to as mixed ADLs [15]. They
capture both behavioral and structural aspects of the processor and can be used to support
the use cases of both. Examples of such languages are EXPRESSION, LISA or CodAL.
The next Chapter 3 contains a brief introduction to the CodAL language.
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Chapter 3

Codasip Studio

Codasip Studio is an integrated development environment (IDE) that covers all aspects of
application-specific instruction set processor (ASIP) design. Based on the processor model,
it can generate a register transfer level (RTL) description of the architecture, an environ-
ment for its functional verification, and a software development kit (SDK). Information in
Section 3.1 is taken from Codasip user manuals [4] and [6], while Section 3.2 draws from
the Codasip SDK guide [7].

3.1 CodAL Language
CodAL is a description language syntactically similar to C, that is used in Codasip Studio
for designing processors and expressing their properties:

∙ architectural resources: program counter and registers,

∙ instruction set: the names of instructions, operands and their binary coding,

∙ semantics: the description of how each instruction affects architectural resources,

∙ implementation: the micro-architectural details such as timing or resources.

The processor model is divided into two sub-models. The instruction-accurate (IA)
model describes the architectural properties: resources, instruction set and semantics,
whereas the cycle-accurate (CA) model describes the implementation details of a partic-
ular micro-architecture. Since the SDK is currently being generated from the IA model
alone, the following sections focus on its essential elements while omitting the CA model
altogether.

3.1.1 Elements & Sets

Both architectural resources and the instruction set are described through CodAL’s element
and set constructs. Elements describe instructions and their operands, while sets group
multiple elements under one name. Each element consists of several sections and each of
them defines one property of the particular instruction set component:

∙ use section declares instances of other elements referenced in the following sections,

∙ assembly section specifies the representation in textual assembly code,

7



∙ binary section defines the element’s binary representation,

∙ semantics section specifies the instruction semantics via C code,

∙ return section contains the value that will represent the element after its instantiation
in a use section.

3.1.2 Architectural Resources

The architectural resources that can be described in a CodAL IA model include registers,
register files, address spaces, ports and interfaces. This section briefly shows and explains
the example definitions of the above.

Interfaces

Interfaces are used for connections between memory and bus. Listing 3.1 below is an
example of an interface to memory containing the program code.

interface if_fetch {
bits = { 32, 32, 8 };
type = AHB3_LITE:MASTER;
flag = R;
endianness = BIG;
alignment = {

address = 32;
data = { 32 };

};
};

Listing 3.1: Example of an interface specified in the CodAL language.

The bits attribute specifies the address bus width in bits, word width, and size of the
least addressable unit—byte. The type field specifies the interface protocol; flag marks the
interface read-only, and endianness can be either BIG or LITTLE. The alignment attribute
then specifies the alignment of addresses and the data itself.

Address Space

The address space is an abstract model of the memory available to a processor. Most
of today’s processors have only one address space, but some architectures have separate
address spaces for program code and data (e.g. the family of Harvard architectures). CodAL
supports multiple address spaces. The example in Listing 3.2 below shows an example of
an address space of a Von Neumann architecture that unifies the program code and data.

address_space as_all {
bits = { 32, 32, 8 };
interfaces = { PROGRAM : if_fetch, DATA : if_ldst };
type = ALL;
endianness = BIG;

};

Listing 3.2: CodAL definition of an address space of a Von Neumann architecture.

8



The bits and endianness attributes have the same semantics as in interface definitions
above. The interfaces attribute specifies which interfaces are to be used for accessing the
program code and data. The type field then again specifies if the address space can be
used for accessing both parts of the memory (value ALL), program code only (PROGRAM), or
data only (DATA).

Register Files

Listing 3.3 shows the definition of a register file named rf_gpr. It is an architectural register
file (i.e. guaranteed to be implemented in hardware and visible to the compiler), contains
four 32-bit registers, and has two read data-ports and single write data-ports.

arch register_file bit[32] rf_gpr {
size = 4;
dataport r0, r1 { flag = R; };
dataport w0 { flag = W; };

};

// gpr_0, gpr_1, gpr_2 ...

element gpr_3 {
assembly { "r3" };
binary { 3:bit[2] };
return { 3 };

};

set gpr_all : register_class(rf_gpr);
set gpr_all = gpr_0, gpr_1, gpr_2, gpr_3;

Listing 3.3: CodAL description of an architectural register file named rf_gpr.

The definition of one register belonging to the register file is shown: it consists of the
textual assembly representation, two-bit binary representation and a return value. All four
registers are then grouped into a single set named gpr_all that can be used, for example,
as operand of an instruction.

3.1.3 Instruction Set

Instruction set definition builds on the principles introduced in the preceding sections.
Listing 3.4 shows an example of an operation code for a comparison instruction: it specifies
the opcode type with two members, creates an element for each of them and joins them
both in a set called opc_cmp, which can be used by an instruction.

Finally, the comparison instruction i_cmp is declared in Listing 3.5. The instruc-
tion works on four operands: the operation code opc and three general-purpose registers
gpr_src1, gpr_src2 and gpr_dst. The element also specified the form of the assembly
code, e.g. r0 = eq r1, r2 for the equals operation.
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enum opcode : uint8 {
OPC_EQ,
OPC_ULT,

};

element opc_eq {
assembly { "eq" };
binary { OPC_EQ };
return { OPC_EQ };

};

element opc_ult {
assembly { "ult" };
binary { OPC_ULT };
return { OPC_ULT };

};

set opc_cmp = opc_eq, opc_ult;

Listing 3.4: CodAL description of two operation codes.

element i_cmp {
use opc_cmp as opc;
use gpr_all as gpr_dst, gpr_src1, gpr_src2;

assembly { gpr_dst "=" opc gpr_src1 "," gpr_src2 };
binary { opc gpr_dst gpr_src1 gpr_src2 };

semantics {
uint32 src1, src2;

src1 = rf_gpr[gpr_src1];
src2 = rf_gpr[gpr_src2];

switch (opc) {
case OPC_EQ: rf_gpr[gpr_dst] = src1 == src2; break;
case OPC_ULT: rf_gpr[gpr_dst] = src1 < src2; break;

}
};

};

Listing 3.5: CodAL declaration of an i_cmp instruction for performing comparisons.

Code in the semantics section may contain only a restricted subset of ANSI C that
forbids the use of pointers, structures, goto directives and statements that combine variable
declaration and initialization. The contents of registers are manipulated through array-like
operations on the register file.
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3.2 Development Tools
The Codasip Studio IDE can generate a full SDK just from the processor model specified
in the CodAL language. As discussed in the previous chapter, this fact eliminates the need
for multiple separate teams, significantly reduces the development time, and avoids possible
inconsistencies between the software tools and the hardware caused by human error. The
SDK is composed of the following tools:

∙ Assembler converts the textual human-readable assembly code into a binary object
file. The Codasip assembler is based on the LLVM compiler infrastructure.

∙ Linker combines multiple object files into a binary file that can be executed by the
processor. Codasip Studio uses a GNU linker.

∙ Disassembler reads the executable file generated by assembler or linker and transforms
it back into the original assembly code. This tool is again built on top of LLVM.

∙ Simulator mimics the behaviour of the processor – it fetches, decodes and executes
instructions stored in the memory. Codasip SDK contains two interpreting simulators:
the instruction-accurate (IA) and cycle-accurate (CA).

∙ Debugger allows developers to inspect the current state of the simulator. The Codasip
debugger is a modified version of the LLDB debugger.

∙ Profiler collects data during the simulation and provides insights such as the number
of clock cycles spent in each function and the number of instruction executions.

∙ Compiler converts code written in a high-level language into an executable binary file.
The C/C++ Codasip compiler is a modified version of the Clang compiler – a part of
the LLVM infrastructure.

∙ Standard libraries provide a common set of data structures and algorithms that can
be used in C or C++ code to develop applications for the processor.

The rest of this thesis focuses on the compiler and the optimizations it performs. The
basic structure of an LLVM-based compiler is described in Chapter 4 along with the compiler
generation feature of Codasip Studio.
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Chapter 4

The LLVM Compiler
Infrastructure

The LLVM compiler infrastructure is an open-source set of modular and reusable compiler
and toolchain technologies initially developed by Chris Lattner as a research project at the
University of Illinois [11]. It includes tools such as optimizer, code generator, assembler,
disassembler, linker, debugger and others.

LLVM builds on the idea of a three-phase pipeline architecture consisting of the front-
end, the optimizer and the back-end [3]. All compilation phases work with the LLVM
intermediate representation (IR), a generic assembly language described in Section 4.1.

The role of the front-end is to parse and analyse the source program and generate
semantically equivalent IR. The optimizer then performs a sequence of optimizations on
the IR that are driven by information about the target architecture, but still produce
a target-independent IR. (Improving the quality of architecture information is the goal of
this thesis.) The back-end then takes the optimized IR and emits the final target code.
This process is illustrated in Figure 4.1 and Section 4.2 explains it in more detail.

Front-ends Back-ends

clangC/C++

rustcRust

swiftcSwift

Optimizer

...

...

...

x86

ARM

Wasm

Figure 4.1: The three-phase architecture of LLVM’s pipeline decouples language front-ends
and architecture back-ends from the generic optimizer.

The translation phases are independent of each other, which enables compiler developers
to easily add support for new processor architectures or to create new languages that can
take advantages of existing optimizations and architecture support. LLVM is used in many
compilers including Clang (C/C++), Swift, Rust, GHC (Haskell) or Flang (Fortran) and
supports a wide variety of architectures: x86, ARM, WebAssembly, AMD GPU and more.
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4.1 Intermediate Representation
The LLVM IR is a generic assembly language in SSA form [13]. It is designed to be generic
with respect to the source programming language and the target processor architecture,
but extensible (typically via metadata or target data layout). The SSA (static single as-
signment) form ensures that each variable is assigned exactly once and defined before its
use, which simplifies and improves the results of a variety of optimizations [18]. The IR
has three equivalent representations: as an in-memory data structure, as a bitcode stored
on a disk, or as a human-readable assembly language.

int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++)

result *= i;
return result;

}

Listing 4.1: Example of an iterative factorial computation written in the C language.

Listing 4.1 shows an example of an iterative factorial function written in the C language.
Listing 4.2 then contains the equivalent LLVM IR code that has been translated and slightly
optimized by the Clang compiler. The following sections will refer back to this example to
describe individual features of the intermediate representation.

define i32 @factorial(i32 %n) {
entry:

br label %for.cond
for.cond:

%result = phi i32 [ 1, %entry ], [ %mul, %for.inc ]
%i = phi i32 [ 1, %entry ], [ %inc, %for.inc ]
%cmp = icmp sle i32 %i, %n
br i1 %cmp, label %for.body, label %for.end

for.body:
%mul = mul nsw i32 %result, %i
br label %for.inc

for.inc:
%inc = add nsw i32 %i, 1
br label %for.cond

for.end:
ret i32 %result

}

Listing 4.2: The LLVM IR representation of the code from Listing 4.1.

The LLVM IR code can also be visualized as a control flow graph (CFG) – a graphical
representation of the program that groups blocks of code into a directed graph showing the
flow of the computation. This form makes it easier for compiler developers to see the effects
of non-trivial transformations. The CFG for the LLVM IR code from Listing 4.2 is shown
in Figure 4.2.
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entry:
 br label %for.cond

for.cond:
 %result = phi i32 [ 1, %entry ], [ %mul, %for.inc ]
 %i = phi i32 [ 1, %entry ], [ %inc, %for.inc ]
 %cmp = icmp sle i32 %i, %n
 br i1 %cmp, label %for.body, label %for.end

T F

for.body:
 %mul = mul nsw i32 %result, %i
 br label %for.inc

for.end:
 ret i32 %result

for.inc:
 %inc = add nsw i32 %i, 1
 br label %for.cond

Figure 4.2: The control flow graph of the IR code from Listing 4.2.

4.1.1 Identifiers

Identifiers in the IR are of two kinds: global and local. Global identifiers such as functions
or global variables are prefixed with @ (@factorial) and local ones start with % (%result).
The prefixes help to distinguish names from reserved words such as types (i32, void),
opcodes (add, ret) or constants (false, 42).

4.1.2 Structure

Programs in intermediate representation are structured into several basic components. The
following sections explain their purpose and the relationships between them.

Modules

Modules are the top-level containers of the IR. Each module contains a list of global vari-
ables, functions, symbol table, target information (triple, data layout) and references to
other modules it depends on. The scope of modules varies between compilers. In Clang,
each translation unit (a single source file with all of the included headers) lives in its own
module, while the Rust compiler compiles the whole library into a single module [20].
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Functions

Declarations and definitions of functions in LLVM IR consist of the declare or define
keywords, function name, its return type and a list of parameters. Also, several attributes
can be associated with the function: linkage type, visibility style, calling convention, inlining
preferences and more. The function parameters may also be tagged with various attributes,
e.g. alignment, aliasing, non-null. The function definition contains a list of basic blocks,
described in the following section.

Basic Blocks

A basic block is the longest sequence of instructions that are always executed in order.
They have exactly one entry point and one exit point. Due to these restrictions, jump
instructions can only occur at the end of a basic block, and their destination is always the
first instruction of a basic block.

Basic blocks form the control flow graph (CFG) of functions and as such, are convenient
for program optimizations. In LLVM, a basic block starts with a label and holds a list of
instructions that end with a terminator instruction.

Instructions

The LLVM IR instruction set is a low-level representation of an abstract virtual machine
that expresses the key operations of ordinary processors [11]. The instruction set operates on
an infinite set of typed virtual registers that can hold values of primitive types. Instructions
in the IR are polymorphic, which means that a single instruction can operate on several
types of operands.

4.1.3 Instruction Types

The instruction set of LLVM IR can be divided into several parts. The following sections
describe simple versions of the essential instructions used in code samples in later chapters.

Terminator Instructions

Terminator instructions always appear at the end of a basic block and cause a transfer of
the control flow. Two essential instructions are the following:

∙ ret: return the control flow from a callee function to the caller. There are two
versions of the instruction: ret void is used to return from a void function, whereas
ret <type> <value> returns a value from a non-void function.

∙ br: transfer the control flow from one basic block to another one in the same function.
br label <dest> performs an unconditional jump to the specified destination and
br i1 <cond>, label <then>, label <else> performs a conditional jump to one
of the two labels based on the condition value.

The remaining instructions in this category include switch, indirectbr or unreachable
and instructions necessary for exception handling.
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Binary Instructions

Binary instructions execute an operation on two operands of the same type and produce
a single value of the same type. They can be divided into two basic categories:

∙ arithmetic instructions (e.g. add, sub, mul, floating-point fmul, . . . ),

∙ bitwise operations (e.g. and, or, shl, . . . ).

Memory Instructions

The SSA representation in LLVM does not model memory [11] – IR instructions treat
memory as a single mutable object. There are just a few instructions in LLVM IR that
interact with memory:

∙ alloca: allocates memory on the stack frame of the current function and return its
address. Memory allocated by this instruction is uninitialized and gets automatically
released when the function returns. It may also specify the number of elements to
allocate, explicit alignment and address space.
<ptr> = alloca <type>

∙ load: reads from memory at the specified address.
<val> = load <type>, <ptr_type>* <ptr>

∙ store: writes a value to a memory with the specified address.
store <type> <val>, <ptr_type>* <ptr>

∙ getelementptr: calculates the address of a subelement of an aggregate type – an
array or a structure.
<ptr> = getelementptr <type>, <ptr_type>* <ptr> <el_type> <el_id>

Aggregate Operations

Aggregate operations work with aggregate types – arrays and structures:

∙ extractvalue: extracts a value at specified index from an aggregate type. It is
similar to getelementptr, but works on values instead of pointers, and indices are
required to be in bounds.
<el> = extractvalue <aggregate type> <val>, <el_id>

∙ insertvalue: inserts a value into a member field of an aggregate type and return the
modified aggregate type.
<res> = insertvalue <aggregate type> <val>, <el_ty> <el>, <el_id>

Vector Instructions

LLVM IR supports vector instructions that may get translated into SIMD operations on
targets with such feature. Vector types are supported by many instructions thanks to their
polymorphic nature and are written in the form <N x <type>>. There are a few operations
specific to vectors:

∙ extractelement: extracts a scalar element at the specified index in a vector
<el> = extractelement <N x <type>> <vec>, <el_type> <id>
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∙ insertelement: inserts a scalar element at the specified index in a vector
<vec> = insertelement <N x <ty>> <vec>, <el_ty> <el>, <id_ty> <id>

∙ shufflevector: combines two vectors of the same type and length 𝑁 . Elements of
the first vector are indexed from 0 to 𝑁 − 1 and elements of the second vector from
𝑁 to 2𝑁 − 1. The mask is a vector of length 𝑀 with i32 indices. The result of
this instruction is the mask with each index replaced with the value from one of the
vectors.
<r> = shufflevector <N x <ty>> <v1>, <N x <ty>> <v2>, <M x i32> <mask>

Other Instructions

Other frequently used instructions include:

∙ icmp: returns a boolean result of the specified operation applied to two operands of
the same type. The condition operation can be for example eq (equal), ugt (unsigned
greater than), slt (signed less than) and other.
<result> = icmp <cond> <type> <op1>, <op2>

∙ phi: the 𝜑 node in SSA representation. From a list of incoming values takes the one
coming from the basic block that executed prior to the current basic block.
<result> = phi <type> [<val>, <label>]*

∙ select: chooses one value based on a condition.
<result> = select <type> <cond>, <type1> <value1>, <type2> <value2>

∙ call: calls a function with the specified arguments.
<result> = call <fn> (<args>)

4.1.4 Intrinsic Functions

LLVM IR also supports intrinsic functions. Their semantics is built directly into LLVM,
and their name starts with the llvm. prefix. Intrinsic functions can serve as a customization
point for new front-ends and back-ends alike – adding new intrinsic functions is significantly
easier then extending the IR instruction set. [12]

The intermediate representation has already many target-specific and target-independent
intrinsic functions built-in, e.g.: garbage collection intrinsics, intrinsics for standard C li-
brary functions, bit manipulation, arithmetic with overflow, vector and matrix operations
and many more.

4.2 Compilation Phases
This section follows the compilation process of an LLVM-based compiler and explains how
code written a high-level language gets transformed into executable binary code.

4.2.1 Front-End

LLVM front-ends usually start the compilation process by parsing the input source file and
analysing its semantics. If the input is deemed to be valid, the output of this phase is an
abstract syntax tree (AST).
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Some compilers (including Clang) build the LLVM IR by recursively visiting the AST
nodes and emitting the corresponding instructions through LLVM’s IR builder. Other
compilers first transform the tree into a custom intermediate representation (MIR in Rust
or SIL in Swift) designed to enable language-specific analyses and optimizations. Some of
those could not be performed directly on LLVM IR due to its generic/abstract nature. The
language-specific intermediate representation is then mapped onto regular LLVM IR.

4.2.2 Optimizer

The LLVM optimizer consumes the IR generated by a front-end and produces its optimized
version. The goal of optimizations is typically to improve the run-time performance of the
given code or to reduce its size. The optimizer achieves that by running a sequence of
so-called passes, which are of two kinds:

∙ analysis passes deduce some properties of the IR code without modifying it,

∙ transformation passes use the information provided by analysis passes to transform
the IR code into equivalent IR code that meets the optimizer’s goal.

Each pass in the LLVM optimizer runs over a particular unit of the IR: the whole module,
a strongly connected component of its call graph, single function, or a loop.

LLVM’s optimizer is capable of a wide range of transformations including constant
propagation, constant hoisting, loop optimizations (fusion, rotation, unrolling, unswitching,
vectorization, . . . ), inter-procedural optimizations (inlining, dead argument elimination,
devirtualization, hot/cold splitting, . . . ), instruction combining, CFG simplification, and
many more.

Pass Manager

The pass manager orchestrates and executes the transformation passes. Pass manager
receives a sequence of the desired transformation passes, typically specified by the compiler
front-end and customizable via command-line flags (e.g. -O3 or -Os in Clang).

A transformation pass can request analysis results for the processed IR unit through
the analysis manager. The analysis and pass managers work together to avoid recomput-
ing analyses results in situations where an earlier result is still valid. This lazy behaviour
is possible since transformation passes report which analyses are invalidated by the per-
formed IR transformations. When a transformation pass reports it invalidated the result
of a particular analysis, that analysis pass is not run until another pass requests its result.

One analysis pass may fetch the result of another analysis and, therefore, potentially
invoke its evaluation. Transformation passes, on the other hand, cannot invoke other trans-
formation passes. Their ordering is orchestrated exclusively by the pass manager.

Target Information

In generating high-performance code, the optimizer needs to make informed decisions based
on the properties of the target architecture. In LLVM, transformation passes may use the
target transform info (TTI) interface to query information such as:

∙ cost of instructions, memory operations, intrinsics, function calls, immediate values,

∙ legality of addressing modes, immediates, masked operations, vector instructions,
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∙ loop unrolling preferences,

∙ width of vector registers,

∙ other capabilities of the architecutre.

One example of such transformation pass is loop unrolling, which queries the target
transform info for detailed preferences regarding this optimization. The target may specify
parameters including but not limited to cost threshold (the maximum allowed cumulative
cost of instructions in the unrolled loop body), unrolling factor (the maximum number
of body copies), flags that signify whether a loop remainder is allowed, or disable the
optimization for loops with a dynamic number of iterations. Choice of the parameters may
depend on the relative cost of jump/division instructions, cache behaviour or the memory
constrains.

Another example is hot/cold splitting, where a sequence of instructions is outlined into
a separate function only if their cumulative size cost reaches a certain threshold. There
are also cases where target transform info prevents optimizations that would cause issues
during later stages of the compilation process. For example, vectorizing loops naturally
does not benefit targets with no vector registers – an information that is again exposed by
the TTI interface.

While this part of the optimizer might seem to conflict with the three-phase architecture
introduced in the beginning of this chapter, it is essential to note that the optimized code is
still valid and generic IR. The optimizer does not produce a target-specific representation
of the program and can work in the absence of target information.

4.2.3 Back-End

The LLVM back-end lowers optimized IR into native code. The back-end is similar to
the optimizer in that it uses generic algorithms that query a set of interfaces to obtain
information about the target. The primary interface is target machine1 which consists of
several parts [14]:

∙ data layout specifies memory layout, alignment requirements, pointer size, endianness,

∙ target lowering describes how IR should be transformed into low-level representation,
particular registers required by instructions, or natively supported operations,

∙ target register info defines the register file and interactions between registers,

∙ target instruction info describes the target’s machine instructions,

∙ target frame lowering exposes details about the stack frame layout,

∙ target subtarget specifies the micro-architectural details of the processor: supported
instructions, their latencies, and scheduling details,

∙ target JIT info provides information necessary for enabling just-in-time compilation.
1The target machine interface is usually also used by the target transform info interface in the optimizer.
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Code Generation Process

The code generation process lowers the target-independent LLVM IR into target machine
code and consists of several phases:

1. In the instruction selection phase, the program in LLVM IR is converted into target-
independent selection DAG (directed acyclic graph). The DAG is subsequently trans-
formed to only use types and operations supported by the target.
The selection DAG is then matched against a specified set of graph patterns. Each
matched subgraph is replaced by another subgraph containing target-specific opera-
tions that can use physical registers. Both the patterns and the target-specific graphs
are small instances of selection DAG themselves. Therefore the central part of code
generation reduces to matching and replacing pieces of the program’s selection DAG.
Pattern graphs and target-specific graphs are defined in a meta-language TableGen.
The definitions get transpiled into a table-like structure in C++ used by the LLVM’s
matching algorithm.

2. During scheduling and formation, the DAG nodes are reordered to minimize register
pressure and align instruction latencies. The DAG is then transformed into a list of
machine instructions.

3. Machine instructions then undergo SSA-based machine code optimizations. The opti-
mizations are usually target-specific, however, some target-independent optimizations
such as loop invariant code motion or duplicate instruction elimination are also run.

4. The register allocation phase maps remaining virtual registers onto physical ones.

5. Next, the prologue and epilogue code for function calls and stack frame management
is inserted and optimized.

6. Late machine code optimizations like peephole optimizations and register spill code
scheduling form the final version of the machine instructions code.

7. Finally, the result is emitted either as machine code or assembly.

Figure 4.3 depicts the selection DAG of the for.body basic block from Listing 4.2. The
DAG already underwent the instruction selection phase – the generic mul instruction was
replaced by IMUL32rr specific to the x86 architecture.
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Figure 4.3: Selection DAG of the code from Listing 4.2 after instruction selection.

4.3 LLVM in Codasip Studio
Chapter 3 listed the tools contained in the SDK generated from the CodAL description
of a processor. Among other tools, the SDK includes a C/C++ compiler Clang based on
the LLVM compiler infrastructure introduced in previous sections. The rest of this chapter
briefly explains the process of compiler generation – a prerequisite for Chapter 5 that
describes the proposed system for providing architecture information to the optimizer.

4.3.1 Back-end Generation

The compiler generation process is depicted in Figure 4.4 and begins with semantic extrac-
tor pre-processing the CodAL model. The output from the extractor is then consumed by
the back-end generator that creates C++, and TableGen source files specific to the target
architecture. These files are translated by the LLVM build system into the llc back-end
executable. Later, during the compilation of a C/C++ source code for the target architec-
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ture, llc is invoked by the clang driver and outputs the machine code for architecture
described through the CodAL model [5].

SDK generation

Compilation

clang

C/C++
sources

Semantic
extractor

CodAL 
 IA model Back-end

generator

Instruction
semantics C/C++

compiler

Back-end
sources

llcoptLLVM IR LLVM IR Assembly

Figure 4.4: Besides other things, the SDK generation process generates the llc executable
that is later used to compile C/C++ code.

Internally, the semantics of each instruction get translated into LLVM IR and subse-
quently into a selection DAG. The selection DAG can be used by the LLVM’s instruction
selector to match patterns in the selection DAG of the program [6] and replaced by the
target’s binary representation of the instruction. Therefore, the DAGs get serialized into a
TableGen file and compiled with the rest of the target-specific source files into a complete
LLVM back-end as described earlier in this chapter.

4.3.2 Front-end Arguments

The specifications of both the C and C++ languages depend on the target architecture –
the pointer size, the width of fundamental types and the required/preferred alignment is
derived from the target’s data layout. Thus, generating only the compiler back-end is not
enough to create a fully working compiler. Therefore, the Codasip back-end generator also
emits a list of command-line arguments that are applied to each invocation of the compiler
and specify the processor’s data layout.

4.3.3 Optimizer Hints

Moreover, the back-end also generates a simd_info.txt file. The file contains the number
and width of registers, legal data types and a matrix of operations and data types (supported
combinations of types and operations are denoted by 1, unsupported combinations with -1).
An excerpt from the file with optimizer hints is shown in Listing 4.3. This file is loaded by
the TargetMachine class in the compiler and mapped onto the TTI interface.
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processor codix_berkelium.ia
widest_scalar_registers 31:32
widest_vector_registers 0:0
legal_types i32

EntryToken i256:1 i512:1 i1024:1 i2048:1 v2i128:1 v256i1:1 ...
TokenFactor i256:1 i512:1 i1024:1 i2048:1 v2i128:1 v256i1:1 ...
...
add Other:-1 i1:-1 i8:-1 i16:-1 i32:1 i64:-1 i128:-1 f16:-1 f32:-1 f64:-1 ...
sub Other:-1 i1:-1 i8:-1 i16:-1 i32:1 i64:-1 i128:-1 f16:-1 f32:-1 f64:-1 ...
mul Other:-1 i1:-1 i8:-1 i16:-1 i32:1 i64:-1 i128:-1 f16:-1 f32:-1 f64:-1 ...
...
fadd Other:-1 i1:-1 i8:-1 i16:-1 i32:-1 i64:-1 i128:-1 f16:-1 f32:-1 f64:-1 ...

Listing 4.3: Excerpt from the simd_info.txt file with optimizer hints.

While this amount of information can improve a handful of optimizations (e.g. simple
vectorization), it is far from ideal. The optimizer often asks complex questions (e.g. whether
it is viable to unroll some particular loop) that cannot be answered based on the provided
information. Moreover, users of Codasip Studio do not have the option to hand-tune the
generated information or add their own logic for helping the optimizer make good decisions.
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Chapter 5

Design of Architecture Information
Integration

In Chapter 4, the importance of architecture information for the LLVM optimizer has been
established. Without detailed information about the target, the optimizer cannot make
sensible decisions, and the quality of the generated code can be far from optimal. This
leads to worse characteristics of the resulting system – slower execution speed, greater code
size and higher resource usage.

The goal of this thesis is to design a mechanism for providing architecture information to
Clang (the LLVM-based compiler used for application development within Codasip Studio)
and its optimizer. Most of the information should be automatically extracted from the
CodAL processor model. However, users of Studio should have the possibility to fine-tune
the information and extend it with their knowledge of the platform at hand.

5.1 Integration into Codasip Studio
Section 4.3 described the compiler generation process in Codasip Studio. The back-end
source files are generated from the CodAL model and compiled into the llc executable,
as shown in Figure 4.4. The back-end generator also emits a text file that is dynamically
processed by the compiler driver and provides the essential target information to the front-
end and optimizer.

I decided to follow the principles behind the back-end generator in order to achieve the
desired level of customizability. First, the SDK generation inside Codasip Studio needs
to be extended with a new subprocess for analysing the CodAL model and deducing the
architecture information relevant for optimizations. Second, the architecture information
should be emitted as a set of C++ source files to allow arbitrary modifications of the logic
driving LLVM optimizations. Finally, the source files should be compiled and used within
the LLVM optimizer.

However, re-linking the whole compiler front-end and optimizer each time the CodAL
model changes would be inefficient and time-consuming. Therefore, the architecture infor-
mation shall be compiled into a lightweight shared library and dynamically loaded by the
custom version of Clang that ships with Codasip Studio.

The shared library shall export the implementation of the target transform info (TTI)
interface – the main customization point of LLVM’s optimizer described in Chapter 4. The
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proposed new part of the SDK generation process and its interaction with the compilation
pipeline is depicted in Figure 5.1.
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Figure 5.1: The SDK generation process produces a shared library of the TTI implemen-
tation that is loaded and queried by the optimizer.

Several steps need to be carried out to implement the proposed solution:

1. Analyze LLVM’s TTI interface and its usage within the optimizer. The number of
functions exposed by the interface is substantial, but not all of them are necessarily
relevant for the processors and applications of a typical Codasip Studio user. Finding
a set of functions that have the greatest impact on the quality of generated code
can be achieved by statically analysing the optimizer source code, studying estab-
lished architectures within LLVM and their TTI customizations, or monitoring most
frequently used TTI functions during the compilation of a representative application.

2. Create a new tool for the automatic extraction of the information deemed useful from
the processor CodAL model. This should build on the infrastructure already present
in the Codasip Studio codebase. The information may include various aspects of the
processor such as the number and size of registers, natively supported operations,
latency and size of instructions and more.

3. Generate C++ code that exposes the extracted architecture information through the
TTI interface and make it easily editable by processor designers.

4. Compile the code into a shared library that exposes a simple interface. Seamlessly
integrate the build process into the Codasip Studio IDE.

5. Customize the Clang compiler so that it locates the shared TTI library, loads the
generated TTI implementation and uses it in the optimizer.

The details of the above steps are elaborated in Chapter 6. Chapter 7 tests the infrastructure
by fine-tuning the TTI code generated for specific processors and evaluates the impact of
better architecture information on code size and performance.
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Chapter 6

Implementation of the TTI
Generator

This chapter describes the integration of processor architecture information into the Codasip
compiler. In the first part, the usage of the target transform info (TTI) interface by the
LLVM optimizer is analysed. Next, the extraction of useful processor properties from the
CodAL model is outlined. Later, the generation of C++ source files of TTI is described.
The following section deals with compiling the shared TTI library and loading it in the
compiler, and finally, the integration of the solution into the Codasip Studio IDE is dealt
with.

6.1 TTI Usage Within the LLVM Optimizer
The TTI interface was introduced in LLVM 3.21 (released in early 2013) and originally
consisted of only seven functions deciding the legality of immediate operands, addressing
modes, types, and reporting the size and alignment of the jump buffer. Over the years,
many more functions were added to support new kinds of optimizations on new target
architectures. The TTI interface in LLVM 9.0 (used by the Codasip compiler) contains
over 120 functions providing target information to the optimizer. A deeper analysis is
necessary to identify what parts of the interface are relevant for most of the optimizations
and processor architectures.

6.1.1 Source Code Analysis

To gain a basic insight into the usage of TTI inside the optimizer, the LLVM source code
was analysed. Overall, the LLVM cost model interface is queried from 260 distinct source
code locations across 43 transformation and analysis passes.

TTI Usage in Passes

Table 6.1 shows an overview of the most frequent users of the interface, of which the most
prominent ones are the loop and SLP2 vectorizers. This suggests that the vectorization
passes could benefit the most from an accurate cost model.

1https://github.com/llvm/llvm-project/commit/e10328737
2SLP (superword-level parallelism) vectorizer merges consequent scalar operations into vector operations.
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LLVM pass Queries
Loop vectorization 68
SLP vectorization 51
Loop strength reduction 31
Load/store vectorization 13
Function inlining 12
Phi speculation 9
Constant hoisting 7
CFG simplification 6
Loop data prefetching 5
. . . . . .

Table 6.1: Number of cost model queries in the source code of LLVM passes.

TTI Function Queries

Table 6.2 then lists the TTI functions that are referenced most frequently across all passes.
The names of shown functions usually capture the basic idea behind their semantics: the
cost of an IR construct (user) is reported by the getUserCost function, other functions
report the costs of arithmetic instructions, vector shuffle operations, memory operations,
specific vector instructions, type conversions, compare and select operations, or the cost of
an integer immediate value.

TTI function Queries
getUserCost 14
getArithmeticInstrCost 13
getShuffleCost 11
getMemoryOpCost 9
getVectorInstrCost 9
getCastInstrCost 8
getCmpSelInstrCost 7
getInstructionCost 7
getIntImmCost 7
. . . . . .

Table 6.2: Number of calls to TTI functions in the source code of LLVM passes.

Types of Cost Models

All of the listed TTI functions represent the cost of an operation as a single unsigned integer.
In reality, however, the cost of an operation highly depends on the optimization goal. If the
goal is code size reduction, long instructions should have a greater cost than short ones. On
the other hand, when optimizing for run-time performance, the cost of operations should
be based on properties such as the instruction latency.

While LLVM 9.0 does understand the concept of different cost model types (i.e. code
size, latency, and reciprocal throughput), it is mainly used to choose one from several
preconfigured optimization pipelines. In TTI, it is only used to parametrize a single function
(getInstructionCost) that is used in four optimization passes. The rest of the TTI
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interface tries to express the different costs of operations as a single number. This is clearly
an aspect of the optimizer and cost model that should be corrected. In April 2020, an
RFC3 (request for comments) was submitted to the LLVM-dev mailing list proposing being
explicit regarding the used cost model in the TTI interface.

6.1.2 Case Study: Commonly Customized TTI Functions

In finding what TTI functions should be customized for improving the cost model accu-
racy, two well-developed target architectures were analyzed: x86 and 64-bit ARM. The
TTI behaviour is not customizable directly in the TargetTransformInfo class, and target
implementers are encouraged to create a new class inheriting from BasicTTIImplBase<T>
instead. This class (along with its base classes TargetTransformInfoImplCRTPBase<T>
and TargetTransformInfoImplBase) provides the default cost model and ability to guess
the cost of a complex operation by splitting it into more basic operations whose cost is
known. The main TTI interface stores an instance of this class hierarchy and forwards all
queries. The UML diagram for the TTI infrastructure of x86 architecture is depicted in
Figure 6.1 below.

X86TTIImpl

BasicTTIImplBase<X86TTIImpl>

TargetTransformInfoImplCRTPBase<X86TTIImpl>

TargetTransformInfoImplBase

TargetTransformInfo

Figure 6.1: The UML diagram of the x86 TargetTransformInfo hierarchy.

Both targets customize the functions listed in Table 6.2 and some of their dependen-
cies. In addition, they tweak the interleaving decisions, provide costs of intrinsics, address
computation, arithmetic reduction, and report the level of popcount support: whether it is
implemented in hardware or needs to be emulated by software.

It is worth noting that most of the customization logic deals with vector capabilities of
both respective architectures. For the 64-bit ARM TTI, this means the NEON extension.
On the x86 side, extensions like AVX512, AVX2, SSE2 are handled in addition to various
micro-architectural specifics. These findings fall in line with results from the previous chap-
ter: the TTI interface in LLVM 9.0 serves mainly the needs of loop, and SLP vectorization
passes.

3http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
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6.1.3 Dynamic Analysis

Previous sections inspected optimizer’s usage of the TTI interface by analysing the LLVM
source code. I have looked into the optimizer run-time behaviour to confirm the most viable
customization points in the TTI interface. A logging system for the TTI was developed
(described in following Section 6.3) to capture which functions are being called, what are
the arguments and return values, and what transformation passes made the calls. This
mechanism was applied to functions customized by either the x86 or ARM target. Three
sets of programs were tested:

∙ Basic: a battery of basic algorithms: bitcount, CRC, Dhrystone, Dijkstra’s algorithm,
square root calculation, quicksort, SHA, string comparison, and Pratt-Boyer-Moore
string search.

∙ Dhrystone: a widely-used synthetic benchmark focused on measuring processors’ in-
teger performance.

∙ CoreMark: another synthetic integer benchmark. Unlike with Dhrystone, the work
in CoreMark cannot be optimized away by the compiler.

Table 6.3 shows the number of calls to each TTI function during optimization of a pro-
gram set with different optimization goals (-O3 for performance, -Os for size). The de-
fault LLVM TTI implementation was used. The most frequently called function is by far
getUserCost, which internally falls back on getOperationCost during non-trivial queries
(i.e. not a phi node, alloca instruction or similar). This function is also used for query-
ing the size cost of an operation from getInstructionCost. Less frequently used hooks
deal with target memory intrinsics, the unrolling of loops, inlining of functions, memory
interleaving, popcount support, arithmetic instruction cost and the number of registers.

TTI function Basic CoreMark Dhrystone
-O3 -Os -O3 -Os -O3 -Os

getUserCost 21939 16276 47271 22745 2619 2186
getOperationCost 8786 7122 20323 12254 1249 940
getTgtMemIntrinsic 2690 2473 3605 2299 428 417
getUnrollingPreferences 190 202 376 234 26 28
getNumberOfRegisters 114 112 152 152 56 56
getMaxInterleaveFactor 57 56 76 76 28 28
areInlineCompatible 53 48 100 108 17 19
getInliningThresholdMultiplier 41 36 106 120 17 19
getPopcntSupport 35 25 92 48 8 8
getArithmeticInstrCost 2 2 40 36 4 4

Table 6.3: Number of cost model queries performed during optimization with the default
TTI implementation in LLVM.

6.2 Extracting CodAL Model Properties
The Codasip Studio codebase includes semantic extractor – a tool for working with the in-
struction semantics. Semantic extractor analyses the instruction element and its semantics
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(written in simplified ANSI C), generates multiple specializations if the instruction uses
a set (e.g. an operation code), and converts the results into the LLVM selection DAG rep-
resentation. The output of semantic extractor can be traversed via provided tree visitation
facilities.

To derive the cost model from the CodAL processor model, the output of semantic
extractor is analysed with the help of the provided infrastructure. The tree data structure
is traversed, and the following information is extracted:

∙ number and width of scalar/vector registers,

∙ cost of scalar/vector memory access,

∙ cost of scalar/vector arithmetic/logic binary operations,

∙ cost of scalar/vector comparison operations,

∙ support & cost of vector shuffle operations.

Register Information

The number and width of registers is extracted from the list of processor’s register classes
through the semantic extractor interface. An example of a register class was shown back
in Chapter 3. However, register classes do not directly declare what data types they store.
This is necessary for deciding whether the registers are scalar or vector and satisfying the
TTI interface.

In instruction semantics, the type of each register is implicitly scalar. If the designers
want to treat it as a vector type, they need to cast their contents into a vector type
explicitly. The TTI generator leverages this to identify register classes. For each code
fragment matching the pattern in Listing 6.1, it marks the register class of reg as a vector
class.

%1 = v4i32 regop(reg);

Listing 6.1: The pattern for matching vector register operands.

Memory Access

The cost of memory access can differ a lot between different platforms due to the memory
type, bus speed and latency, used protocol, misalignment penalties, and more. To find out
what data types can be loaded from and stored to the memory, the instruction semantics
are searched for the patterns in Listings 6.2 and 6.3.

%x = i32 regop(reg);
store(i32 %x, i32 %y, 0);

Listing 6.2: The pattern for matching store operations.

%x = i32 load(i32 %y, 0);
regop(reg) = i32 %x;

Listing 6.3: The pattern for matching load operations.
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Processor designers should explicitly specify the latency of memory operations to keep
the IA model consistent with the CA model. If the latency is missing, it is implicitly set to
1 clock cycle. In the generated cost model, the cost of load/store operation is the same as
the instruction latency.

Arithmetic/Logic Operations

Arithmetic/logic binary operations implemented by the processor can be discovered by
visiting all binary operations where the left operand is a register, and the right operand is a
register or an immediate value. Listing 6.4 shows the pattern for matching arithmetic/logic
operations with two register operands.

%x = i32 regop(reg_1);
%y = i32 regop(reg_2);
%z = i32 <op>(i32 %x, i32 %y);
regop(reg_0) = i32 %z;

Listing 6.4: The pattern for matching arithmetic/logic operations with register operands.

Comparison Operations

The selection DAG representation of comparison operators is distinct from that of arith-
metic/logic binary operations and are therefore handled separately. Comparison operations
are typically cheap, and are thus implicitly assigned the cost of 1. The pattern for matching
comparison operations with two registers is shown in Listing 6.5.

%a = i32 regop(reg_2);
%b = i32 regop(reg_1);
%c = i1 <op>(i32 %a, i32 %b);
%d = i32 zero_extend(i1 %c);
regop(reg_0) = i32 %d;

Listing 6.5: The pattern for matching comparison operations with two register operands.

Vector Shuffles

The support of the shuffle operation is essential for any processor with support for vector
data types: it allows changing the order of vector elements in place. The LLVM loop
vectorizer checks the cost of the reverse shuffle operation when analysing a loop that iterates
in reverse order. When the target does not support the reverse shuffle, the vectorization
may fail due to the high cost of scalarization of the operation. The extractor looks for the
pattern in Listing 6.6 and assigns a low cost to the shuffle operation when found to prevent
such failures.

%a = v4i32 BUILD_VECTOR(3, 2, 1, 0);
%d = v4i32 shuffle(v4i32 %b, v4i32 %c, v4i32 %a);

Listing 6.6: The pattern for matching shuffle operations.
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6.3 Generating TTI Source Code
As outlined in Chapter 5, the intermediate output of the newly developed system should
be a set of C++ files customizing the TTI interface. This allows engineers working with
a CodAL model to hand-tune the cost model logic through a language they are most likely
already familiar with. The generation of C++ source code in the Codasip Studio tools is
usually achieved in one of two ways:

∙ The templgen tool consumes a file written in a templating language where regular
C++ code can be enriched by a markup that gets expanded based on the provided
data.

∙ The ocstream library provides an interface to declare a class (its name, member at-
tributes and functions, included header files) and define the functions via output
streams. The library then generates the header and implementation files.

The TTI source code generation is handled by the ocstream library, as it offers a higher
degree of flexibility compared to templgen.

Cost Tables

The generated functions returning costs of operations use an internal cost table to answer
queries, same as the TTI customizations of upstream targets. In case the function receives
a query referring to an operation or a data type not supported by the processor, the query
is forwarded to the basic TTI implementation, and its result is made more expensive. This
should make the optimizer avoid placing such operation/type into the program. The back-
end then has a more straightforward job lowering and legalizing the code, and the output
should be of higher quality. An example of a TTI function implemented using an internal
cost table is shown in Listing 6.7.

unsigned CodasipTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, ...) {
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);

static const CostTblEntry CostTable[] = {
{ ISD::ADD, MVT::i32, 1 },
{ ISD::SUB, MVT::i32, 1 },
{ ISD::MUL, MVT::i32, 2 },
{ ISD::SDIV, MVT::i32, 32 },
// ...

};

if (const auto *Entry = CostTableLookup(CostTable, ISD, LT.second))
return LT.first * Entry->Cost;

return 4 * BaseT::getArithmeticInstrCost(Opcode, Ty, ...);
}

Listing 6.7: Code generated by the TTIGen tool.
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Besides the natively supported types (i32 in the case above), the cost table holds entries
for narrower types (i16 and i8). The reason for that is the fact that the narrower types are,
in many cases, extended to the natively supported type without any performance penalties.
This aspect of cost modelling is usually encoded in the target lowering info (TLI), which
allows querying the cost of type legalization. This aspect of the target definition is beyond
the planned scope of the implementation, and is thus solved through larger cost tables. The
call to getTypeLegalizationCost of the default TLI always returns the cost of 1 and does
no legalizations on the provided type.

Logging

To analyse the run-time behaviour of the optimizer and its TTI usage, a logging system was
developed. It provides an insight into what TTI functions are being called, their arguments,
return values and even the calling transformation pass. This can be enabled by building
the TTI generator in a special mode, which makes it generate code that uses the unwind
library to retrieve the stack trace and extract the calling transformation pass and prints it
to a file along with the arguments and return value of the original code.

The TTI code generated for the Codasip uRISC processor is shown in Appendix B.

6.4 Compiling the TTI Library
In line with the integration design proposed in the previous chapter, the generated TTI code
is compiled into a shared library and linked dynamically at the run-time of the Codasip
compiler. That preserves the ability to ship the complete compiler binary and only compile
the small amount of TTI code for a CodAL processor model.

C++ compiler implementations are allowed to change symbol names through a process
called name mangling. Mangling may cause that the symbol representing the generated
TTI constructor in the shared library to change based on the used compiler. To provide
a stable interface, the shared TTI library exposes a single C function shown in Listing 6.8
that instantiates the class implementing the TTI interface.

extern "C" EXPORT_API
TargetTransformInfo TTIConstructor(const TargetMachine* TM, const Function& F) {

return TargetTransformInfo(CodasipTTIImpl(TM, F));
}

Listing 6.8: Call to the TTI constructor wrapped in a C API.

The CMake build script producing the shared library uses the add_library function
with the SHARED specifier. The list of compiled source files contains only the C interface
from Listing 6.8 and the generated TTI implementation. Definitions of other LLVM func-
tions called from the implementation are not included, as they are already present in the
compiler binary executable. The dynamic linker will still be able to find their definitions,
which enables the library itself to be very small. For the tested processor models, the TTI
library has around 120 kB in size, depending on the model complexity and the number of
instructions.
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6.5 Codasip Studio Integration
Within Codasip Studio, users have the ability to generate the C/C++ compiler by clicking
a button. Internally, two Python scripts are run: one that launches the back-end generator
tool and the other to copy C++ headers provided with the Studio installation into the
appropriate SDK directory. Several steps need to be carried out to generate and compile
the TTI C++ sources into a shared library that can be loaded by the compiler.

Working Directory & Static Assets

First, a working directory is created in the file system. The directory is going to store
all intermediate output from the library generation process. Next, the working directory
is populated with static assets shipped as part of the Codasip Studio installation: the
CMakeLists.txt file containing the build script and the CodasipTTI.cpp source file with
the definition of the C function acting as the library interface.

Source Generator

In the following step, the integration script runs the TTI generator tool, which produces
the llvm_CodasipTTIImpl.cpp and llvm_CodasipTTIImpl.h files that contain the TTI
customizations and puts them in the working directory. A complete manual for the tool
can be found in Appendix A.

Source Customization

Codasip Studio users should be able to customize the generated TTI implementation. This
is possible by copying the generated files from the working directory into a directory in the
model sources (model/ia/optimizer/CodasipTTI). These files will not be overwritten by
the SDK build, unlike the volatile work directory. If the user did create some custom files,
they are copied into the work directory, and the name of the original generated TTI source
files will gain the .generated extension. This allows users to quickly compare the original
code with their custom implementation.

Compilation & Library Naming

Finally, the source files present in the working directory are compiled via the CMake build
tool with the same compiler and linker flags used for the rest of the SDK. The last step copies
the resulting dynamic library into the bin SDK directory, where it can be automatically
located by the customized Clang compiler. The final name of the library follows the naming
scheme of other binaries: {prefix}{processorModel}-{binaryName}.{suffix}. In this
particular case, binaryName is CodasipTTI, while prefix and suffix follow the platform
naming scheme for shared libraries. (This means lib prefix and .so suffix for Unix systems,
.dll for Windows systems.)

6.6 Using the TTI Library
The Clang compiler must load the compiled dynamic library, locate the TTIConstructor
function, instantiate the TTI and provide the instance to the optimizer. In the compiler, the
TargetTransformInfo class is always instantiated through the TargetMachine instance,
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which encompasses all aspects of the target architecture. This makes it a suitable place for
loading the library.

Path Deduction

In the TargetMachine constructor, the shared library is loaded from the file system and
dynamically linked to the compiler executable. The first task is to locate the library on
the file system. The compiler gained a new command-line argument that allows developers
to specify the absolute path pointing to the library located anywhere in the file system.
However, by default, the Studio IDE invokes the compiler without explicitly defining the
path, meaning the compiler needs to be able to deduce it on its own.

In the previous section, the last integration step copied the library alongside the compiler
binary in the bin directory. This is deduced from the compiler executable path by replacing
the tool name with the CodasipTTI library name and appropriate platform prefix and suffix.
For working with the platform information, LLVM’s Triple utility was used – it encodes
the processor architecture, sub-architecture, vendor, operating system and ABI.

Library Usage

Working with the dynamic library is handled by LLVM’s sys::DynamicLibrary module
with multi-platform support. The library is loaded by the LoadLibraryPermanently func-
tion, and the exported function is located via the SearchForAddressOfSymbol function.
The result is a void pointer that is treated as a function returning the TargetTransformInfo
instance and taking a pointer to the TargetMachine instance and reference to a Function.

The function pointer is stored as an attribute of the CodasipTargetMachine class and
used whenever a call to the getTargetTransformInfo method occurs.

6.7 Summary
In this chapter, the details of the implementation system were described. First, the current
state of the cost model usage in the optimizer was analysed. Based on the analysis, I have
developed a command-line tool for analysing important characteristics of CodAL processor
models. The tool generates a C++ code that implements the cost model (i.e. the TTI
interface) used by the LLVM optimizer. The code is compiled into a shared library, auto-
matically loaded by a modified Clang compiler and used during the compilation process.
All of the above was integrated into the Codasip Studio IDE.
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Chapter 7

Testing Generated TTI

In this chapter, the implementation of the proposed system is tested. The criteria for
evaluating the effectiveness of the optimizer with the new cost model are the number of
clock cycles spent by the computation and the application code size. The number of spent
clock cycles is determined by running an application in the CA-accurate simulator generated
by Codasip Studio, while the code size is the number of bytes occupied by the resulting
binary. The metrics were evaluated on tests from the previous chapter: the battery of basic
programs, CoreMark and Dhrystone benchmarks. Processors used for the tests are Codasip
uRISC and a processor from the Codix Berkelium family.

7.1 Codasip uRISC
Codasip uRISC is a custom 32-bit core with support for integer operations, including di-
vision, and basic vector processing capabilities. The processor supports a custom RISC
ISA and has a 4-stage single-issue in-order pipeline. It is used for internal testing of new
Codasip Studio features and in the hands-on examples in Codasip user manuals.

The benchmarks were run with the default LLVM cost model containing no architecture
information at all, and with a cost model generated by the new tool and further hand-tuned
to reach better results. The tweaked cost model assigns the cost of 4 to multiplication and
the branch instruction instead of the default cost 1, and also enables interleaved vectoriza-
tion with the factor of 2.

Figure 7.1 shows a graph comparing the program code size achieved when using the
two cost model setups with the -Os compiler flag to optimize for code size. The Empty
program containing only prologue and epiloque of the standard C library is 34.17% smaller
with the new cost model. The rest of the basic programs show between 26.28% reduction
and a 0.9% increase in code size. On average, the battery of basic programs sees a code
size reduction of 13.63%.

Figure 7.2 depicts the impact of the new cost model on clock cycles. For most programs,
the difference is lower than 1%. However, the string comparison benchmark consumed
36.16% more clock cycles when compiled with the new cost model, due to a missed loop
unrolling opportunity. This was most likely caused by the conflation of instruction code size
and latency into a single cost model. On the other side of the spectrum is the string search
benchmark, where the new cost model achieved a 67.64% reduction in clock cycles. With
the architecture information on various vector operations, the optimizer was able to decide

36



that vectorization of two hot loops inside the algorithm will be beneficial. The measured
values can be seen in their completeness in Table 7.1.
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Figure 7.1: Relative code size when using no cost model and the new cost model on the
Codasip uRISC processor.
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Figure 7.2: Relative clock cycles when using no cost model and the new cost model on the
Codasip uRISC processor.
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Program Code size (-Os) Clock cycles (-O3)
None New Diff % None New Diff %

Empty 960 632 -34.17 84 83 -1.19
Bit count 2140 1812 -15.33 547979 547978 0.00
Blowfish 83124 83868 +0.90 17170785 17122599 -0.28
CRC 2280 1952 -14.39 3300109 3300108 0.00
Dijkstra 1432 1104 -22.91 922466 922465 0.00
Quicksort 1412 1268 -10.20 3184380 3182898 -0.05
SHA 2060 2060 0.00 7140 7140 0.00
Square root 1248 920 -26.28 717102 717101 0.00
String compare 5052 4724 -6.49 2713 3694 +36.16
String search 4004 3708 -7.39 1238969 400879 -67.64
CoreMark 8404 8372 -0.38 30833551 30648618 -0.60
Dhrystone 9052 9008 -0.49 758561 759091 +0.07

Table 7.1: Comparison of the improved cost model (new) and the default (none) on the
Codasip uRISC processor.

To sum up the results, the optimizer was able to leverage the provided uRISC ar-
chitecture information mainly when optimizing for size. The average code size reduction
of 13.63% is a great result in the context of compiler optimizations, where even 1% im-
provements are considered a moderate success. As for performance, the loop vectorization
optimization makes excellent use of the cost model, causing a 67.64% faster execution of
the string search benchmark by employing the vector instructions. This seems to be in line
with the hypothesis from the previous section, which argued that vectorization passes make
the best use of the TTI interface.

7.2 Codix Berkelium
Codix Berkelium is a family of single-core processors with 5-stage single-issue in-order
pipeline built on the open RISC-V architecture.1 The Bk5-series cores come in 32-bit and
64-bit variants with optional support for multiple extensions. The tests were run on the
32-bit version (RV32I) of Bk5 supporting integer multiplication and division (RISC-V M
extension) and 16-bit compressed instructions (RISC-V C extension).

The cost model in the generated TTI implementation was slightly modified. The cost
of division operations was halved from 32 to 16. The original value was extracted from
the instruction latency in the CodAL specification, which describes the worst case, but the
division usually consumes fewer clock cycles depending on the divisor. As with the uRISC
processor, the cost of a jump was set to 4. The cost of vector operations queried through the
getVectorInstrCost, and getShuffleCost TTI functions was made extremely expensive,
as the Berkelium processor does not support them. Surprisingly, enabling interleaving with
factor 2 appeared to be beneficial during testing.

The comparison of code size achieved with the new hand-tuned cost model, and none
cost model is shown in Figure 7.3. The greatest difference can once again be observed in
the Empty program, where the code size decreased by 15.61%, while the average was an
8.08% decrease in code size.

1More information on the RISC-V ISA can be found at https://riscv.org/.
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Figure 7.3: Relative code size when using no cost model and the new cost model on the
32-bit Codix Berkelium processor.
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Figure 7.4: Relative clock cycles when using no cost model and the new cost model on the
32-bit Codix Berkelium processor.

Similar to the uRISC results, the majority of the clock cycle results in Figure 7.4 show
a small change under 1% or none at all. A notable exception is the string comparison

39



benchmark, which consumed 11.78% fewer clock cycles compared to the default LLVM cost
model after unrolling two hot loops. The empty program required an additional 2.76% of
clock cycles with the new cost model due to worse optimization decisions made in the exit
procedure of newlib, the minimal C library linked by Codasip Studio.

Program Code size (-Os) Clock cycles (-O3)
None New Diff % None New Diff %

Empty 948 800 -15.61 1194 1227 +2.76
Bit count 2076 1928 -7.13 395535 395566 +0.01
Blowfish 54724 53860 -1.58 14394695 14396499 +0.01
CRC 2172 2024 -6.81 3101786 3101824 0.00
Dijkstra 1260 1112 -11.75 661131 661245 +0.02
Quicksort 1376 1228 -10.76 1975863 1975853 0.00
SHA 2060 1912 -7.18 8475 8441 -0.40
Square root 1144 996 -12.94 612361 612361 0.00
String compare 4824 4676 -3.07 5287 4664 -11.78
String search 3780 3632 -3.92 771671 771615 -0.01
CoreMark 7008 7008 0.00 26426841 26472556 +0.17
Dhrystone 7224 7220 -0.06 441300 441981 +0.15

Table 7.2: Comparison of the improved cost model (new) and the default (none) on the
32-bit Codix Berkelium processor.

The complete results are presented in Table 7.2. Results of additional benchmarks
tested on both Codasip uRISC and Codix Berkelium are located in Appendix C.

7.3 Summary
In conclusion, the testing suggests that the LLVM optimizer is able to leverage the architec-
ture information primarily when optimizing for code size – tests on Codasip uRISC show an
average improvement of 13.63% and 8.08% on Codix Berkelium. The code size reductions
were most likely caused by the frequent usage of the TTI function responsible for reporting
operation size, as observed in Chapter 6.

As for performance, the greatest improvement was seen with the architecture supporting
vector operations – the string search benchmark was sped up by 67.64% on Codasip uRISC
thanks to the auto-vectorization feature of the optimizer. This finding is in line with the
fact that the TTI implementations of the most prominent targets analysed in previous
chapter focus on customizing the cost of vector instructions. Overall, the cost model in
LLVM’s optimizer seems to benefit processors with more complex instruction sets which
allow greater flexibility during code transformations.

After testing many versions of cost models, it has been observed that changes to code
size are usually uniform and consistent between tested programs, whereas a change leading
to a performance improvement in one benchmark usually causes a regression in another.
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Chapter 8

Conclusion

This thesis focused on improving compiler optimizations through better cost modelling of
custom processors. The importance of bespoke processors was explained along with the typ-
ical design workflow. Codasip Studio and the CodAL language were introduced as examples
of tools automating the manual design process. The necessity of good optimizing compil-
ers was argued, and the industry-standard LLVM compiler infrastructure was described,
including details on its intermediate language, compilation pipeline and optimizations.

We have analysed the usage of the cost model in the LLVM optimizer and found that
the most critical information is the number and size of registers, the cost of ordinary
arithmetic, logic and comparison operations, and the support of vector operations. Based
on these findings, a new system was proposed to automatically extract the architecture
information from a CodAL processor model.

A new tool was developed to analyse the CodAL processor model, extract the informa-
tion and transform it into a C++ code. The code implements the LLVM cost model interface
(target transform info) and gets compiled into a small shared library. We have modified the
Codasip compiler to automatically locate and load the library at run-time and use the cost
model in the optimizer. The whole system was seamlessly integrated into Codasip Studio.

The implemented system was tested on two processors: Codasip uRISC with a SIMD
support and Codix Berkelium 5 built on the 32-bit RISC-V architecture. We have further
hand-tuned the generated cost model for each processor and measured the difference be-
tween the default LLVM cost model. We have seen an improvement in code size across all
tested programs. On uRISC, the average reduction in code size was 13.63%, and for the
Berkelium processor, 8.08%. The measured results are substantial, as even a 1% improve-
ment is considered a good result in the context of compiler optimizations.

The performance of the new cost model was determined by running cycle-accurate
simulations of both processors and measuring the number of spent clock cycles. In most
testing programs, the new cost model did not have any effect. Notable exceptions are the
36.16% increase in clock cycles on uRISC due to failed loop unrolling, 67.64% reduction due
to vectorization, and 11.78% reduction for Berkelium thanks to better unrolling decision.

Overall, the implemented systems works well, has a positive impact on code size, and it
is going to be used in the industry when it gets shipped as a part of the next major release
of Codasip Studio.
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8.1 Future Work
There are a few aspects of the system that could be improved in the future. The fact that
the created TTI generator tool works only with the instruction-accurate processor model
limits the quality of the deduced information. If the tool had access to the cycle-accurate
model, it could use the simulator to determine the latency of each instruction with different
operands and produce more accurate cost model.

The target transform info interface within LLVM should be simplified and the docu-
mentation improved, as there are multiple functions seemingly serving the same purpose.
Furthermore, the API should be explicit about the optimization goal, as the current imple-
mentations are often forced to conflate the latency, size and reciprocal throughput charac-
teristics into a single number.

Another idea worth expanding on is the separation of LLVM target information into
dynamically linkable libraries. During our work, the dynamic library approach allowed us to
reduce the build time of the compiler for the end-users. Outside of Codasip, this approach
could prove useful when distributing the compiler: the package maintainers would not have
to choose which target architectures to support and link into a single binary. Instead, they
could separately compile the base compiler, shared libraries of all targets and distribute
them as distinct packages. The end-users then could choose which architecture they need
to (cross-)compile for and download only the necessary targets, saving disk space and
connection bandwidth.
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Appendix A

TTI Generator Manual

The TTI generator is a command-line tool integrated in the Codasip Studio IDE. Its purpose
is to analyse the processor model, extract architecture information useful for the LLVM cost
model, and output a set of C++ source files implementing the LLVM TTI interface. The
inputs are the XML file containing the CodAL model, and the output of the semantics
extractor. The tool places a file named llvm_CodasipTTIImpl.cpp and corresponding
header file into the specified output directory. The usage manual is shown in Listing A.1.

$ ttigen --help
Copyright (C) 2020 Codasip s.r.o.

Generate TargetTransformInfo implementation.

USAGE:

-o <directory> -m <file> -s <file> [--] [--version] [-h]

Where:

-o <directory>, --output <directory>
(required) Output directory for TTI source files.

-m <file>, --model <file>
(required) Path to the ASIP XML model.

-s <file>, --semantics <file>
(required) Path to the instruction semantics file.

--, --ignore_rest
Ignores the rest of the labeled arguments following this flag.

--version
Displays version information and exits.

-h, --help
Displays usage information and exits.

Listing A.1: Usage of the new TTI generator tool.
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Appendix B

Generated TTI Code

Listing B.1 shows the code produced by the TTI generator for the Codasip uRISC processor.

CodasipTTIImpl::CodasipTTIImpl(const TargetMachine *TM, const Function &F)
: BaseT(TM, TM->getDataLayout()) {

ST = TM->getSubtargetImpl(F);
TLI = ST->getTargetLowering();

}
unsigned CodasipTTIImpl::getNumberOfRegisters(bool Vector) {

return Vector ? 16 : 32;
}
unsigned CodasipTTIImpl::getRegisterBitWidth(bool Vector) const {

return Vector ? 128 : 32;
}
unsigned CodasipTTIImpl::getArithmeticInstrCost(

unsigned Opcode, Type *Ty, TargetTransformInfo::OperandValueKind Opd1Info,
TargetTransformInfo::OperandValueKind Opd2Info,
TargetTransformInfo::OperandValueProperties Opd1PropInfo,
TargetTransformInfo::OperandValueProperties Opd2PropInfo,
ArrayRef<const Value *> Args) {

std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);

static const CostTblEntry CostTable[] = {
{ISD::ADD, MVT::i32, 1}, {ISD::ADD, MVT::i16, 1},
{ISD::ADD, MVT::i8, 1}, {ISD::ADD, MVT::i1, 1},
{ISD::ADD, MVT::v4i32, 1}, {ISD::SUB, MVT::i32, 1},
{ISD::SUB, MVT::i16, 1}, {ISD::SUB, MVT::i8, 1},
{ISD::SUB, MVT::i1, 1}, {ISD::SUB, MVT::v4i32, 1},
{ISD::MUL, MVT::i32, 1}, {ISD::MUL, MVT::i16, 1},
{ISD::MUL, MVT::i8, 1}, {ISD::MUL, MVT::i1, 1},
{ISD::MUL, MVT::v4i32, 1}, {ISD::AND, MVT::i32, 1},
{ISD::AND, MVT::i16, 1}, {ISD::AND, MVT::i8, 1},
{ISD::AND, MVT::i1, 1}, {ISD::AND, MVT::v4i32, 1},
{ISD::OR, MVT::i32, 1}, {ISD::OR, MVT::i16, 1},
{ISD::OR, MVT::i8, 1}, {ISD::OR, MVT::i1, 1},
{ISD::OR, MVT::v4i32, 1}, {ISD::XOR, MVT::i32, 1},
{ISD::XOR, MVT::i16, 1}, {ISD::XOR, MVT::i8, 1},
{ISD::XOR, MVT::i1, 1}, {ISD::XOR, MVT::v4i32, 1},
{ISD::SHL, MVT::i32, 1}, {ISD::SHL, MVT::i16, 1},
{ISD::SHL, MVT::i8, 1}, {ISD::SHL, MVT::i1, 1},
{ISD::SHL, MVT::v4i32, 1}, {ISD::SRA, MVT::i32, 1},
{ISD::SRA, MVT::i16, 1}, {ISD::SRA, MVT::i8, 1},
{ISD::SRA, MVT::i1, 1}, {ISD::SRA, MVT::v4i32, 1},
{ISD::SRL, MVT::i32, 1}, {ISD::SRL, MVT::i16, 1},
{ISD::SRL, MVT::i8, 1}, {ISD::SRL, MVT::i1, 1},
{ISD::SRL, MVT::v4i32, 1},

};
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if (const auto *Entry = CostTableLookup(CostTable, ISD, LT.second))
return LT.first * Entry->Cost;

return 4 * BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args);

}
unsigned CodasipTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,

unsigned Alignment,
unsigned AddressSpace,
const Instruction *I) {

std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
int ISD = TLI->InstructionOpcodeToISD(Opcode);

// Make vector reads/writes with unsupported alignment extremely expensive.
if (Src->isVectorTy() && Alignment % DL.getABITypeAlignment(Src) != 0)

return LT.first * 1000 * Src->getVectorNumElements();

static const CostTblEntry CostTable[] = {
{ISD::LOAD, MVT::i32, 2}, {ISD::LOAD, MVT::i16, 2},
{ISD::LOAD, MVT::i8, 2}, {ISD::LOAD, MVT::i1, 2},
{ISD::LOAD, MVT::v4i32, 4}, {ISD::STORE, MVT::i32, 1},
{ISD::STORE, MVT::i16, 1}, {ISD::STORE, MVT::i8, 1},
{ISD::STORE, MVT::i1, 1}, {ISD::STORE, MVT::v4i32, 4},

};

if (const auto *Entry = CostTableLookup(CostTable, ISD, LT.second))
return LT.first * Entry->Cost;

return 4 * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
}
unsigned CodasipTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,

Type *CondTy,
const Instruction *I) {

std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
int ISD = TLI->InstructionOpcodeToISD(Opcode);

static const CostTblEntry CostTable[] = {
{ISD::SETCC, MVT::i32, 1}, {ISD::SETCC, MVT::i16, 1},
{ISD::SETCC, MVT::i8, 1}, {ISD::SETCC, MVT::i1, 1},
{ISD::SETCC, MVT::v4i32, 1}, {ISD::SELECT, MVT::i32, 1},
{ISD::SELECT, MVT::i16, 1}, {ISD::SELECT, MVT::i8, 1},
{ISD::SELECT, MVT::i1, 1}, {ISD::SELECT, MVT::v4i32, 1},

};

if (const auto *Entry = CostTableLookup(CostTable, ISD, LT.second))
return LT.first * Entry->Cost;

return 4 * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}
unsigned CodasipTTIImpl::getOperationCost(unsigned Opcode, Type *Ty,

Type *OpTy) {
if (llvm::EVT::getEVT(Ty, /*HandleUnknown=*/true) == llvm::MVT::Other)

return BaseT::getOperationCost(Opcode, Ty, OpTy);

if (Opcode == Instruction::Br)
return 1;

std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);

static const CostTblEntry CostTable[] = {
{ISD::ADD, MVT::i32, 1}, {ISD::ADD, MVT::i16, 1},
{ISD::ADD, MVT::i8, 1}, {ISD::ADD, MVT::i1, 1},
{ISD::ADD, MVT::v4i32, 1}, {ISD::SUB, MVT::i32, 1},
{ISD::SUB, MVT::i16, 1}, {ISD::SUB, MVT::i8, 1},
{ISD::SUB, MVT::i1, 1}, {ISD::SUB, MVT::v4i32, 1},
{ISD::MUL, MVT::i32, 1}, {ISD::MUL, MVT::i16, 1},
{ISD::MUL, MVT::i8, 1}, {ISD::MUL, MVT::i1, 1},
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{ISD::MUL, MVT::v4i32, 1}, {ISD::AND, MVT::i32, 1},
{ISD::AND, MVT::i16, 1}, {ISD::AND, MVT::i8, 1},
{ISD::AND, MVT::i1, 1}, {ISD::AND, MVT::v4i32, 1},
{ISD::OR, MVT::i32, 1}, {ISD::OR, MVT::i16, 1},
{ISD::OR, MVT::i8, 1}, {ISD::OR, MVT::i1, 1},
{ISD::OR, MVT::v4i32, 1}, {ISD::XOR, MVT::i32, 1},
{ISD::XOR, MVT::i16, 1}, {ISD::XOR, MVT::i8, 1},
{ISD::XOR, MVT::i1, 1}, {ISD::XOR, MVT::v4i32, 1},
{ISD::SHL, MVT::i32, 1}, {ISD::SHL, MVT::i16, 1},
{ISD::SHL, MVT::i8, 1}, {ISD::SHL, MVT::i1, 1},
{ISD::SHL, MVT::v4i32, 1}, {ISD::SRA, MVT::i32, 1},
{ISD::SRA, MVT::i16, 1}, {ISD::SRA, MVT::i8, 1},
{ISD::SRA, MVT::i1, 1}, {ISD::SRA, MVT::v4i32, 1},
{ISD::SRL, MVT::i32, 1}, {ISD::SRL, MVT::i16, 1},
{ISD::SRL, MVT::i8, 1}, {ISD::SRL, MVT::i1, 1},
{ISD::SRL, MVT::v4i32, 1}, {ISD::SETCC, MVT::i32, 1},
{ISD::SETCC, MVT::i16, 1}, {ISD::SETCC, MVT::i8, 1},
{ISD::SETCC, MVT::i1, 1}, {ISD::SETCC, MVT::v4i32, 1},
{ISD::SELECT, MVT::i32, 1}, {ISD::SELECT, MVT::i16, 1},
{ISD::SELECT, MVT::i8, 1}, {ISD::SELECT, MVT::i1, 1},
{ISD::SELECT, MVT::v4i32, 1}, {ISD::LOAD, MVT::i32, 2},
{ISD::LOAD, MVT::i16, 2}, {ISD::LOAD, MVT::i8, 2},
{ISD::LOAD, MVT::i1, 2}, {ISD::LOAD, MVT::v4i32, 4},
{ISD::LOAD, MVT::isVoid, 4}, {ISD::STORE, MVT::i32, 1},
{ISD::STORE, MVT::i16, 1}, {ISD::STORE, MVT::i8, 1},
{ISD::STORE, MVT::i1, 1}, {ISD::STORE, MVT::v4i32, 4},
{ISD::STORE, MVT::isVoid, 4}, {ISD::TRUNCATE, MVT::i32, 0},
{ISD::TRUNCATE, MVT::i16, 0}, {ISD::TRUNCATE, MVT::i8, 0},
{ISD::TRUNCATE, MVT::i1, 0},

};

if (const auto *Entry = CostTableLookup(CostTable, ISD, LT.second))
return LT.first * Entry->Cost;

return 4 * BaseT::getOperationCost(Opcode, Ty, OpTy);
}
unsigned CodasipTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,

const Instruction *I) {
return BaseT::getCastInstrCost(Opcode, Dst, Src, I);

}
bool CodasipTTIImpl::areInlineCompatible(const Function *Caller,

const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const FeatureBitset &CallerBits =

TM.getSubtargetImpl(*Caller)->getFeatureBits();
const FeatureBitset &CalleeBits =

TM.getSubtargetImpl(*Callee)->getFeatureBits();
return (CallerBits & CalleeBits) == CalleeBits;

}
unsigned CodasipTTIImpl::getInliningThresholdMultiplier() {

return BaseT::getInliningThresholdMultiplier();
}
unsigned CodasipTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,

unsigned Index) {
return BaseT::getVectorInstrCost(Opcode, Val, Index);

}
unsigned CodasipTTIImpl::getShuffleCost(TargetTransformInfo::ShuffleKind Kind,

Type *Tp, int Index, Type *SubTp) {
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);

}
bool CodasipTTIImpl::enableInterleavedAccessVectorization() {

return BaseT::enableInterleavedAccessVectorization();
}
unsigned CodasipTTIImpl::getMaxInterleaveFactor(unsigned VF) {

return BaseT::getMaxInterleaveFactor(VF);
}

Listing B.1: The TTI implementation generated for the Codasip uRISC processor.
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Appendix C

Additional Cost Model Tests

Tables C.1 and C.2 show the test results for an additional set of programs. With the
Codasip uRISC processor, we can see the same behaviour as in Chapter 7 – the code size
dropped significantly across all test cases, whereas the performance changed only for some
programs.

Program Code size (-Os) Clock cycles (-O3)
None New Diff % None New Diff %

McGill/exptree 109408 108896 -0.47 17764 16756 -5.67
McGill/queens 121568 119552 -1.66 201687883 201685972 0.00
MiBench/stringsearch 20112 20128 0.08 2898307 967002 -66.64
Misc/lowercase 960 632 -34.17 84 83 -1.19
Misc/richards 7360 7004 -4.84 29622671 29622670 0.00
Misc/salsa20 2360 2268 -3.90 96231298 96231297 0.00
Shootout/fib2 1052 724 -31.18 84 83 -1.19
Shootout/lists 7796 7440 -4.57 98470346 98450345 -0.02
Shootout/methcall 7124 6768 -5.00 61000608 61000607 0.00
Shootout/nestedloop 960 632 -34.17 84 83 -1.19
Shootout/objinst 4644 4288 -7.67 566 567 0.18
Shootout/sieve 3640 3448 -5.27 56877605 56881354 0.01
Stanford/bubblesort 1364 1036 -24.05 132550216 132550215 0.00
Stanford/int-mm 2016 2100 4.17 11792168 12858075 9.04
Stanford/perm 1460 1132 -22.47 174937194 174937193 0.00
Stanford/puzzle 3200 3204 0.12 79724198 78344957 -1.73
Stanford/queens 1648 1320 -19.90 116496301 116496300 0.00
Stanford/quicksort 1560 1232 -21.03 108815712 108815711 0.00
Stanford/towers 1968 1640 -16.67 142436588 142460811 0.02
Trimaran/enc-md5 8708 8568 -1.61 83408855 83411067 0.00
Trimaran/enc-pc1 5820 5680 -2.41 17459439 17459438 0.00

Table C.1: Comparison of the improved cost model (new) and the default (none) on the
Codasip uRISC processor.
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The results for Codix Berkelium are in general worse with the new cost model. The
degradation in performance and code size is most likely a manifestation of the issue discussed
in the thesis: the conflation of multiple cost model dimensions into a single number. This
also shows that a cost model tuned to give good results for one set of programs does not
necesserily perform well on another set.

Program Code size (-Os) Clock cycles (-O3)
None New Diff % None New Diff %

McGill/exptree 66704 67464 +1.14 17451 17177 -1.57
McGill/queens 74840 74728 -0.15 172128609 172128229 0.00
MiBench/stringsearch 15396 15604 +1.35 1826589 1494372 -18.19
Misc/lowercase 948 948 0.00 1194 1194 0.00
Misc/richards 5044 5044 0.00 21730518 21730518 0.00
Misc/salsa20 2120 2120 0.00 91460758 91460758 0.00
Shootout/fib2 1004 1004 0.00 1183 1183 0.00
Shootout/lists 5356 5356 0.00 74634889 74635079 0.00
Shootout/methcall 5016 5016 0.00 33669203 33669203 0.00
Shootout/nestedloop 948 948 0.00 1194 1194 0.00
Shootout/objinst 3296 3296 0.00 2412 2412 0.00
Shootout/sieve 2836 3044 +7.33 37209023 39855486 +7.11
Stanford/bubblesort 1268 1268 0.00 106422073 106422073 0.00
Stanford/int-mm 1380 1528 +10.72 3915182 6508691 +66.24
Stanford/perm 1268 1268 0.00 155760029 155760029 0.00
Stanford/puzzle 2456 2664 +8.47 69534542 64912523 -6.65
Stanford/queens 1392 1392 0.00 103794254 103794254 0.00
Stanford/quicksort 1384 1384 0.00 89392557 89392557 0.00
Stanford/towers 1588 1588 0.00 120733302 120729420 0.00
Trimaran/enc-md5 6900 6900 0.00 77148849 77148849 0.00
Trimaran/enc-pc1 4140 4140 0.00 17002800 17002775 0.00

Table C.2: Comparison of the improved cost model (new) and the default (none) on the
32-bit Codix Berkelium processor.
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