
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

DETECTIONOFPRE-RECORDEDMESSAGES INSPEECH
DETEKCE PŘED-NAHRANÝCH ÚSEKŮ V ŘEČI

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DOMINIK BOBOŠ
AUTOR PRÁCE

SUPERVISOR Doc. Dr. Ing. JAN ČERNOCKÝ
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Boboš Dominik
Programme: Information Technology
Title: Detection of Pre-Recorded Messages in Speech
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with speech processing and music analysis techniques leading to the search
of identical sequences in data.

2. Create a simulated data-set from a standard speech database and real announcements from
telephone operators.

3. Design and implement a system for search of re-occurring sequences using for example
signal analysis, phoneme recognition, MIR techniques or speaker identification/diarization.

4. Evaluate on the created data, suggest improvements and implement them.
5. Create a short 30s video documenting your work.

Recommended literature:
Jansen, Aren, Kenneth Church, and Hynek Hermansky. "Towards spoken term discovery at
scale with zero resources." in Proc. Interspeech 2010.
according to supervisor's recommendation

Requirements for the first semester:
Items 1, 2 and significant advance in items 3 and 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Černocký Jan, doc. Dr. Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: May 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22504/2020/xbobos00 Page 1/1

Abstract
Recognition of pre-recorded messages in speech is useful for any follow-up speech data min-
ing. This thesis summarises the theory of searching similar utterances in speech and efficient
approaches to compare two sequences. To investigate identification of redundant informa-
tion in audio, it is necessary to have a large amount of data with the exact phrases repeated
multiple times. We generated a dataset by mixing pre-recorded messages into phone calls
with variations in speed, volume and repetitions. Our system tackles “known messages” and
“unknown messages” scenarios by using approaches like clustering or detection in chunks.
Dynamic time warping, approximate string matching and recurrent quantification analysis
are compared, and finally, all mentioned techniques are combined to obtain a precise and
efficient system.

Abstrakt
Rozpoznání před-nahraných zpráv v řeči (tzv. “plechové huby”) je užitečné pro jakékoliv
následující dolování informací v řečových datech. Tato práce shrnuje teorii hledání podob-
ných promluv v řeči a efektivní přístupy k porovnání dvou sekvencí. Ke zkoumání identi-
fikace opakujících se informací v audiu je nutné mít velké množství dat s přesně se opaku-
jícími úseky. Takovou datovou sadu jsme vygenerovali smícháním předem nahraných zpráv
s telefonními hovory se změnami rychlosti, hlasitosti a opakování. Náš systém řeší scénáře
„známých zpráv“ a „neznámých zpráv“ pomocí shlukování nebo detekce v blocích. Porov-
nali jsme techniky dynamického borcení času (DTW), přibližné shody řetězců a rekurentní
kvantifikační analýzy, a nakonec jsme všechny uvedené techniky zkombinovali a získali tak
přesný a efektivně pracující systém.

Keywords
detection of re-occurring sequences in audio, segmental dynamic time warping, recurrence
quantification analysis, fuzzy string matching, bottleneck features, phoneme posteriors,
Mel-frequency cepstral coefficients features

Klíčová slova
detekce opakujících se sekvencí v nahrávkách, segmentální dynamické borcení času, analýza
rekurentní kvantifikace, přibližná shoda řetězců, bottleneck příznaky, fonémové pravděpodob-
nosti, příznaky Mel-frekvenčních kepstrálních koeficientů

Reference
BOBOŠ, Dominik. Detection of Pre-Recorded Messages in Speech. Brno, 2020. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Doc. Dr. Ing. Jan Černocký

Detection of Pre-Recorded Messages in Speech

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Doc. Dr. Ing. Jan Černocký. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Dominik Boboš

May 9, 2021

Acknowledgements
I would like to thank my supervisor Jan Černocký for his guidance, willingness and lots of
valuable suggestions. I would also like to thank members of BUT Speech@FIT group for
sharing their know-how, models and code, which helps me throughout my work.

Contents

1 Introduction 4
1.1 Tasks . 5
1.2 Organisation . 6

2 State-of-the-art 7
2.1 Feature extraction and feature matching . 7

2.1.1 Mel-frequency Cepstral Coefficients features 7
2.1.2 DTW feature matching . 8
2.1.3 Segmental DTW . 9

2.2 Optimisation across a large dataset . 11
2.2.1 Efficient Line Segment Detection . 12
2.2.2 Recurrence quantification analysis 13
2.2.3 Two-pass approach . 14

2.3 Spoken term detection . 15
2.4 Fuzzy string matching . 16
2.5 Evaluation of detection . 17

2.5.1 DET . 17
2.5.2 ROC . 18
2.5.3 EER . 18
2.5.4 Minimum DCF . 19

2.6 Evaluation of clustering . 19
2.6.1 Purity . 20
2.6.2 Rand index . 20
2.6.3 NMI . 21

3 Dataset 22
3.1 Switchboard dataset . 22
3.2 Telephone operator pre-recorded messages 23
3.3 Mixing pre-recorded messages into Switchboard 24

4 Used tools 25
4.1 Feature extraction tools . 25
4.2 Algorithm tools . 26
4.3 Evaluation Algorithms . 27

5 Baselines 28
5.1 DTW approach . 28
5.2 RQA approach . 33

1

5.3 Fuzzy phone string matching approach . 36

6 Optimisations 39
6.1 Caching . 39
6.2 Frame averaging . 39

7 Experiments with evaluating by a list of files 41
7.1 Experiments with DTW . 41

7.1.1 DTW second pass . 41
7.1.2 S-DTW second pass . 43

7.2 Experiments with fuzzy phone string matching 45
7.2.1 Pause analysis . 45

8 Experiments with clustering 47
8.1 RQA S-DTW clustering . 47
8.2 Clustered S-DTW second pass . 49
8.3 Clusters with fuzzy phone string matching 51
8.4 Overall results . 53

9 Conclusion 54
9.1 Summary of the work performed . 54
9.2 Future directions . 54

Bibliography 56

A Contents of the included storage media 60

B Manual 61
B.1 Installation manual . 61
B.2 User manual . 61

2

List of Acronyms

DET Detection Error Trade-off

DTW Dynamic Time Warping

EER Equal Error Rate

FSM Fuzzy String Matching

LCMA Length-Constrained Minimum Average

LD Levenshtein Distance

MFCC Mel Frequency Cepstral Coefficients

MinDCF Minimum Detection Cost Function

NN Neural network

NMI Normalized Mutual Information

RI Rand Index

ROC Receiver Operating Characteristic

RQA Recurrence Quantification Analysis

S-DTW Segmental Dynamic Time Warping

STD Spoken Term Detection

QbE Query-by-Example

QbT Query-by-Text

3

Chapter 1

Introduction

Storing a large amount of speech data comes with a lot of disadvantages. On the one hand,
the low-level issues as running out of free space. On the other hand, high-level as automatic
processing or listening through unnecessary or repetitive data.

The main objective is to minimise wasting time by automatic processing or listening
to redundant information in speech data. The case of such information could be the pre-
recorded operator messages (for instance “Thank you for calling, please leave a message.”).
Detection could improve productivity for many professions, such as law enforcement agency
(LEA). For these professions, labelling the parts of speech samples as not relevant could
save their time and help to focus on more interesting data. Audio data can be analysed by
many approaches, from the most commonly used as filtering, downsampling to analysing
phoneme strings or similar advanced techniques.

For detecting similar or identical parts in a large dataset, more methods must be com-
bined. First, we need to decide whether to classify redundant data based on the previous
knowledge of pre-recorded messages or we do not have such an option. Second, it is essential
to choose the methodology for tagging found pre-recorded operator messages. Either mark
an exact time in the phone call or set binary labels whether the given recording contains
pre-recorded speech. The requirement for the system is to have a fast and accurate solution
with a minimum hardware load. The language resources play their role in the process as
well. With low-resource languages, it is not possible to use such techniques as automatic
speech recognition (ASR).

When the pre-recorded messages are known, it is possible to create a model for search-
ing similarities in the dataset. Despite having a functioning model on some data, a new
unknown message could appear at any time and get missed.

The opposite is to have zero knowledge about the messages. This method does not
require a model, makes it more versatile and removes the necessity of having a database
with operator messages. Detection of terms at scale with zero resources is dependent on the
quality of audio files in the dataset. The same message could appear in many phone calls,
but never be the same in length, volume, eventually speed or pitch. The more occurrences
of the message, the more accurate the system we will get. A disadvantage of this approach
is a zero accuracy when the message appears only once or only a few times.

4

1.1 Tasks
The main task is to classify whether a recording contains the pre-recorded message or not.
This thesis presents two main scenarios how to achieve this task:

1. Known messages scenario – This scenario is used to create reference clusters. The
cluster analysis is accomplished by provided labelled pre-recorded messages. Record-
ings are compared to reference clusters. This approach is used in experiments in
sections 8.2 and 8.3.

2. Unknown messages scenario – Here the system does not know the pre-recorded
messages and has to infer them as repeated parts of calls. This approach can be
divided into the following tasks:

a) Detection based on a recording itself – The process does not require any ad-
ditional information, and the pre-recorded message is detected in itself. This
approach is used in the system 5.2.

b) Detection based on all files – Recordings are compared to all recordings in the
set or by a chunk of the set. The new chunk is randomly chosen with every
recording. This approach is used in several systems: in sections 5.1, 5.3, and
7.2.1.

c) Detection based on a list of candidates – Audio files are compared to the list of
candidates. This approach requires an analysis to create a candidate list first.
Systems in sections 7.1.1 and 7.1.2 use this method.

d) Detection based on clusters – Recordings are compared to the created clusters.
The cluster analysis requires list of candidates. This approach is used by exper-
iments in sections 8.2 and 8.3.

Itself

The whole
set or

randomly
chosen
chunk

List of
candidates

Predicted
clusters

Reference
clusters

Unknown
messages

Known
messages

List of
labelled

pre-
recorded
messages

Cluster
analysis

of a list of
candidates

First pass
analysis
to obtain
candidates

Set

of

files

(None)

Requirements

Compared to

Scenarios

Figure 1.1: The scheme of described tasks of an evaluation process.

5

1.2 Organisation
To give an overview of current recognition systems, Chapter 2 will describe the basic theory
associated with solving similar tasks. Chapter 3 will introduce used dataset and its genera-
tion. Used methods will be covered in Chapter 4. Implementation and applied optimization
techniques will be described in chapters 5 and 6. The rest is dedicated to performed ex-
periments and their results – Chapters 7 and 8. Finally, the conclusions are drawn in
Chapter 9.

6

Chapter 2

State-of-the-art

Speech recognition has a wide range of applications in security systems, automotive, health-
care or many other fields. This chapter will introduce standard methods for speech recogni-
tion. The studies describe different views for solving similar tasks such as term recognition
or detection of identical parts in speech.

Speech is a continuously varying signal – the proper digital processing algorithm has to
be selected for the automatic speech recognition system. For isolated words detection and
continuous speech recognition, various methodologies exist which evolved over the years.
One of the most used is Hidden Markov Models (HMM) which has been used in many
systems [19]. For simple tasks, the use of standard Dynamic Time Warping is enough.
Nowadays, usage of Deep Neural Networks (DNN) or Recurrent Neural Networks (RNN)
are on a rise [24], caused by better overall performance and accuracy on even less training
data [16]. The choice of method depends on the many factors. Either the method is
language-dependent or language-independent, speaker-dependent or speaker-independent,
or there is no preliminary information. The goal is to stick to no preliminary information
techniques as much as possible – the algorithms like Dynamic Time Warping (DTW).

2.1 Feature extraction and feature matching
The following methods aim at spoken term detection with no training data or dictionaries.
To obtain the required information from the speech recording, features have to be extracted.
The feature vectors are then analysed to make a decision [1].

2.1.1 Mel-frequency Cepstral Coefficients features

Mel-frequency Cepstral Coefficients (MFCC) are based on human hearing perceptions that
is less selective for frequencies over 1KHz, thus it is more concerned with lower frequencies
and their variations. For simple isolated word detection, MFCC and DTW techniques
are satisfactory and efficient [17]. A combination of various features (such as bottleneck
features 2.3) is to be adapted for high-reliability [19]. The process of MFCC extraction
requires preprocessing the input speech to digital waveform first. The wave is segmented
into 20 – 25 ms long frames at a rate of 10 ms by a windowing function (Hamming window).
Fast Fourier Transform is then applied to the frames. Mel for a given frequency in Hertz is
calculated by:

𝐹𝑀𝐸𝐿 = 2595× log10 [1 + 𝑓/700]. (2.1)

7

Magnitudes of FFT coefficients 𝑋(𝑘) are then multiplied by triangular Mel filters as follows:

𝑠(𝑚) =
𝑃∑︁

𝑝=1

[︁
|𝑋(𝑝)|2𝐻𝑚(𝑝)

]︁
, (2.2)

where 𝑚 ∈ 1 ≤ 𝑚 ≤𝑀 and 𝑀 is total number of triangular Mel weighted filters. 𝐻𝑚(𝑝) is
the weight given to the 𝑝-th energy spectrum bin contributing to the 𝑚− 𝑡ℎ output band.
𝑃 is the number of points used to compute the FFT. Finally, the Discrete Cosine Transform
(DCT) is computed on log of filter bank energies as shown:

𝑐(𝑛) =

𝑀∑︁
𝑚=1

log
(︀
𝑠(𝑚)

)︀
𝑐𝑜𝑠

[︁
𝑛
(︁
𝑚− 1

2

)︁ 𝜋

𝑀

]︁
, (2.3)

where, 𝑐(𝑛) are the cepstral coefficients, 𝑛 = 1, 2 . . . 𝑁 (𝑁 is the number of MFCCs), 𝑠𝑚 is
weighted triangular Mel filter [1] [26].
The whole process is shown in Figure 2.1.

Speech Preprocessing Framing

Applying
Hamming
window

FFTMel frequency
wrapping

Cepstrum MFCC

Figure 2.1: MFCC flow diagram. Taken and vectorised from [1]

2.1.2 DTW feature matching

Dynamic time warping (DTW) is an algorithm used to find the shortest distance and com-
pare two time series data when the time indices are not synchronised [1]. The comparison
between linear matching and DTW distance matching is shown in Figure 2.2.

The basic DTW is calculated as follows. Assume two time series 𝑋 = [𝑥1, . . . ,𝑥𝑟] and
𝑌 = [𝑦1, . . . ,𝑦𝑡] of feature vectors of lengths 𝑟 and 𝑡. First an 𝑟-by-𝑡 local distance matrix
is constructed where each element of the matrix contains distance 𝑑(𝑥𝑖,𝑦𝑗) between the
two feature vectors 𝑥𝑖 and 𝑦𝑗 . The distance is calculated by the Euclidean distance:

𝑑(𝑥𝑖,𝑦𝑗) =

⎯⎸⎸⎷ 𝐹∑︁
𝑘=1

(𝑥𝑖(𝑘)− 𝑦𝑗(𝑘))2, (2.4)

where 𝑥𝑖(𝑘) and 𝑦𝑗(𝑘) are the corresponding elements of feature vectors 𝑥𝑖 and 𝑦𝑗 . 𝐹 is
the number of dimensions of a feature. [17].

8

Linear matching DTW matching

Figure 2.2: Comparison between linear matching and DTW matching on two speech record-
ings. Taken from [25].

The accumulated distance is computed as follow:

𝐷(𝑥𝑖,𝑦𝑗) = min

⎧⎪⎨⎪⎩
𝐷(𝑥𝑖 − 1,𝑦𝑗) + 𝑑(𝑥𝑖,𝑦𝑗)× 𝑤1,

𝐷(𝑥𝑖,𝑦𝑗 − 1) + 𝑑(𝑥𝑖,𝑦𝑗)× 𝑤1,

𝐷(𝑥𝑖 − 1,𝑦𝑗 − 1) + 𝑑(𝑥𝑖,𝑦𝑗)× 𝑤2

⎫⎪⎬⎪⎭ , (2.5)

where, 𝑖 and 𝑗 are matrix elements corresponding to the alignment between the feature
vectors 𝑥𝑖 and 𝑦𝑗 , 𝑤1 and 𝑤2 are symmetric weights, where typically 𝑤1 = 1 and 𝑤2 = 2

(or
√

2) [38]. Example of local distance and accumulated distance is shown in Figure 2.3.
As compared recordings can vary in lengths, it is important to normalise the final DTW

distance by using normalisation factor. Normalisation factor is in general computed as
𝑁𝑜𝑟𝑚 =

∑︀𝑄
𝑞=1𝑊 (𝑞), for a symmetric weight function it is 𝑁𝑜𝑟𝑚 = 𝑟 + 𝑡 [38].

Final normalised DTW distance 𝐷𝑖𝑠𝑡(𝑋,𝑌) is described as:

𝐷𝑖𝑠𝑡(𝑋,𝑌) =
1

𝑁𝑜𝑟𝑚
𝐷(𝑥𝑟,𝑦𝑡). (2.6)

Optimal alignment path can be obtained by backtracking – choose path with minimum
distances in the accumulated distance matrix, starting from the 𝐷(𝑥𝑟,𝑦𝑡) and ending in
𝐷(𝑥1,𝑦1).

2.1.3 Segmental DTW

One of the solutions is the S-DTW (Segmental DTW) algorithm. The global DTW optimal
alignment is a suitable way to measure similarity when the compared utterances are isolated
words. However, if the utterances happen to consist of multiple sequences, the distances
and path may not be useful [10].

The SDTW modification of the base DTW helps to prevent overall distortion of the
warping path. Consider two utterances, i) “Brno University of Technology is located

9

4 3 2

2 3 1

4 2 3

0 1 1

d

4

0 1

D

10 9 7

6 6 5

3 5

2

0

X X

Y Y
t

r

0 t

r

Figure 2.3: Example of two sequences 𝑋 and 𝑌 . The local distance matrix d and accumu-
lated distance matrix D. DTW distance 𝐷𝑖𝑠𝑡(𝑋,𝑌) = 1

3+47 = 1. DTW alignment path is
obtained by backtracking – 𝑥(𝑘) = [1 2 2 3 3], 𝑦(𝑘) = [1 1 2 3 4]. Taken from: [38].

strategically close to the three capital cities.”, ii) “One of the best technology for speaker
diarisation is developed by the team at Brno University of Technology.”. Both share the
same phrase “Brno University of Technology” but its position differs– this leads to a chaotic
DTW warping path and unsatisfactory results as standard DTW is searching only for
optimal global alignment.

The principle of the S-DTW algorithm is to use other diagonals of an optimal align-
ment path for searching than the main diagonal. It consists of two main components: i)
setting global constraints to restrict space a warping path can take and producing multiple
alignment paths by changing starting and ending points in the same two input sequences,
and ii) path trimming procedure which excludes largely distorted regions of an alignment
path by length-constrained minimum average LCMA [21].

In the first step, it is important to set global constraint. The tighter is the allowed
space, the more accurate result we can get, but at the price of higher computational cost.
Consider two sequences 𝑋 and 𝑌 and the corresponding warp path 𝑃𝑛. The criterion for
𝑃𝑛 to accomplish the restriction is to satisfy condition:

|(𝑖𝑘 − 𝑖1)− (𝑗𝑘 − 𝑗1)| ≤ 𝑅, (2.7)

where 𝑅 is the maximum allowed de-synchronisation, (𝑖1, 𝑗1) is the origin of the path, and
(𝑖𝑘, 𝑗𝑘) is the 𝑘-th point of the path. From equation 2.7 results the width 2𝑅+1. Depending
on the size of sequences 𝑋 and 𝑌 as well as the size of 𝑅, the ending point may not reach
the ending point of 𝑋 or 𝑌 .

This restriction determines the total number of diagonal regions. Each neighbour diag-
onal is overlapped by 50% as they are moved by 𝑅 and the width is 2𝑅 + 1. An example
of the constraint on the warping path is shown in Figure 2.4.

The second step – path refinement is to select the best part from the warping paths from
the first step. The task is to refine the warp by excluding the parts with high distortion.
For this purpose, length-constrained minimum average (LCMA) is used first, followed by
extension of the path fragment to include thresholded neighbouring points.

Let 𝑆 be a sequence of positive real numbers 𝑆 = ⟨𝑠1, . . . , 𝑠𝑁 ⟩ and 𝐿 a length constraint
parameter. Then the LCMA subsequence – LCMA(S, L) is a consecutive subsequence of

10

Figure 2.4: S-DTW warping paths for sequences 𝑋 and 𝑌 and the maximum allowed de-
synchronisation 𝑅 = 1. The starting point is marked with a red dot, and for each warping
path from the grid, the corresponding alignment is shown. Source: [21].

𝑆 with a length bigger than 𝐿 that is minimising the average of the values of 𝑆 [21]. The
constraint 𝐿 helps in computing the minimum average subsequence – without it, the result
would be just the smallest single elements in the sequence. Thus, the bigger the size of 𝐿,
the longer sequences SDTW will return. Small values lead to finding shorter sub-words in
the sequence, while longer return words or even phrases. The final result of SDTW for two
utterances is shown in Figure 2.5.

2.2 Optimisation across a large dataset
According to Aren Jansen’s work, the hardest task is to similarities across a large dataset in
an effective and fast way. The search for repeated parts across a large dataset is inherently
an 𝑂(𝑛2) problem [10].

While the S-DTW algorithm is an effective way to find repeated intervals, it is still using
a lot of the processing time. Thanks to the implementation of a coarse first-pass that relies

11

0 1 2 3 4 5 6
File 2 Time [s]

0

1

2

3

4

5

6

7

Fi
le

 1
 T

im
e
 [

s]

DTW distance: 61.257470

Optimal path

20000

40000

60000

80000

100000

d
is

ta
n
ce

 c
o
st

0 1 2 3 4 5 6
File 2 Time [s]

0

1

2

3

4

5

6

7

Fi
le

 1
 T

im
e
 [

s]

SDTW distance: 23.534170

Optimal path

20000

40000

60000

80000

100000

d
is

ta
n
ce

 c
o
st

Figure 2.5: Alignment path of the two utterances. Base DTW warping path on the left,
S-DTW modification on the right. File 1 represents sentence “One of the best technology
for speaker diarisation is developed by the team at Brno University of Technology.”, file 2
“Brno University of Technology is located strategically close to the three capital cities.”.
The pattern “Brno University of Technology” is found via S-DTW and thus results in a
small distance compared to base DTW. Euclidean distance and standard MFCC acoustic
features are used.

on representational and dot-plot sparsity, the constants improve significantly. By limiting
the ultimate S-DTW search space, an orders-of-magnitude speedup is achieved [10].

2.2.1 Efficient Line Segment Detection

The solution to this optimisation problem is based on a graphical method of dotplots for
comparing sequences. To obtain a dotplot for audio, the audio signals must be represented
by acoustic feature vector (or phoneme posteriors) time series and a real-valued similarity
between pairs of feature vectors must be used. For the given time series, the Gram matrix
may be defined. The matrix is a symmetric similarity function between feature vectors
from the time series. The cosine similarity is used in the matrix:

𝐾(𝑥,𝑦) =
1

2

[︁
1 +

⟨𝑥,𝑦⟩
||𝑥|| ||𝑦||

]︁
, (2.8)

where, 𝐾(𝑥,𝑦) is the element of the Gram matrix, where 𝑥 and 𝑦 are its feature vectors.
Thus a value of 1 occurs when 𝑥 and 𝑦 are in the same direction, 0.5 when they are
orthogonal [10]. The example of a dotplot computed as above is shown in Figure 2.6.

Aren Jansen’s work [10] presents five steps to detect diagonal lines segments efficiently:

1. Create binary matrix 𝐺′ from the dotplot matrix 𝐺 by applying a similarity threshold
𝛿, where 𝐺(𝑖, 𝑗) = 1 if 𝐺(𝑖, 𝑗) > 𝛿, 𝐺(𝑖, 𝑗) = 0 if 𝐺(𝑖, 𝑗) < 𝛿.

2. Apply to 𝐺′ a diagonal 𝜇-percentile filter of length ∆ with 45∘ orientation relative to
the x-axis, thus only diagonal line segments of suitable length and density will pass.

12

0
2.10901

4.21803
6.32704

8.43606

Time [s]

0

2.10901

4.21803

6.32704

8.43606

Ti
m

e
[s

]

K(x, y)
Self-similarity

0.6

0.7

0.8

0.9

Gr
am

 m
at

rix
 v

al
ue

s

Figure 2.6: Posteriogram dotplot computed on the telephone operator file “If You would
like to make a call please hang up and try again” which is repeated 2.88 times, thus it is a
10.06 seconds long recording.

3. Apply to 𝐺′ a Gaussian filter of width 𝜎 with orientation orthogonal to the 45∘ line
segments, thus 45∘ lines relative to the x-axis of the image. This operation provides
variation in speaking rate thanks to allowing deviation from the target similarity lines.
The results after these three steps are shown in Figure 2.7

4. Apply to a filtered 𝐺′ a one-dimensional Hough transform, where 𝑟 is varied and 𝜃 is
−45∘. This step creates a projection onto the line 𝑦 = −𝑥.

5. Define rays from the created peaks from step 4 to search for line segments. Since
the peak in the middle corresponds to self-similarity and the Hough transform is
symmetric, only peaks on the left from the self-similarity peak are considered.

Using the steps above, the 𝑂(𝑛2) space constraints are decreased, since the thresholded
dotplots tend to be exceedingly sparse. However, this approach is not sufficient as a natural
prosodic variation of the same term among repeated utterances can break our assumption
of the line segment [10]. However, in re-occurring sequences like pre-recorded messages, the
prosodic variation stays the same – the messages differ only in speed. S-DTW algorithm
from [20] was designed for a more intensive search for curves in dotplots.

2.2.2 Recurrence quantification analysis

Recurrence quantification analysis (RQA) is a method of nonlinear data analysis. RQA cal-
culate the value of path alignments by dynamic programming [30]. RQA provides objective
quantification of important aspects revealed by the plot – recurrence matrix (RM). Points
in a RM that form diagonal line segments are considered to be deterministic (apart from
the isolated points) [37]. The method is similar to DTW. However, instead of finding the
minimised alignment path, in the RQA analysis, the longest alignment paths are selected.

13

0
2.10901

4.21803
6.32704

8.43606

Time [s]

0

2.10901

4.21803

6.32704

8.43606

Ti
m

e
[s

]

Figure 2.7: Dotplot from 2.6 after steps 1-3 are applied. The constants were set to: 𝛿 = 0.7,
𝜇 = 70, ∆ = 100, 𝜎 = 5.

As mentioned in [12], RQA quantifies the structure of RM by several metrics:

• Recurrence Rate – provides the ratio of the number of recurrent points to the square
of the length of the time series.

• Determinism – gives the percentage of recurrent points that fall on diagonal lines,
while ignoring the main diagonal.

• Number of Lines – count of the sequences of length at least 2.

• Average Line Length – measures the average length found in RM.

• Maximum Line Length – captures the length of the longest diagonal sequence detected
in RM. This measure provides information about the stability and a theoretical con-
nection to the larger dynamical systems literature.

• Entropy – presents a measure of the stability of the structures in RM. In the case of
a completely ordered system, entropy reaches its minimum (maximum in the case of
randomness).

2.2.3 Two-pass approach

If the curve is acceptably similar to a diagonal, repeated spoken utterances are identified
by S-DTW even though the spoken terms have different speaking rates and stress patterns.
However, this bigger accuracy comes at a significant computational cost. The solution is to
use a two-pass approach. This strategy includes using the optimised image filter method
first and then application of S-DTW for each detected line segment [10]. The second pass
strategy includes additional S-DTW parameters as follows:

14

• Set the highest allowed deviation 𝑅 of the optimal warp path from the diagonal line.

• Take into account the first-pass line segment as the optimal warp path passes through
it. Start from the segment midpoint and compute S-DTW both forward and backward
in time. Stop growing the match when the path integral of

[︀
1−𝐾(𝑥𝑖,𝑥𝑗)

]︀
exceeds a

given dissimilarity threshold 𝐵.

• Remove all initial or final points in the optimal warp path that have lower similarity
than given threshold 𝑇 .

In [10], the target term is chosen by using the transcription of the speech recordings. The
system achieves the following ROC curve for the set variables as in Figure 2.8. The two-pass
approach clearly shows improved performance.

Figure 2.8: Parameter values a) used for the single-pass and two-pass versions of the dis-
covery. ROC curves b) for the development (Switchboard data) and test (Fisher English
corpus) tasks. Taken from [10].

2.3 Spoken term detection
Spoken term detection (STD) is a common approach to speech search systems. STD can
be described as a search of a given phrase in speech data and showing the list of detections
with timestamps.

STD is a similar task as searching the re-occurring pre-recorded messages. They both
search for occurrences of queries in speech. However, the difference between the tasks is
that the same pre-recorded message preserves same prosodic features everywhere, it varies
in speed only, what is not the case in STD. Additionally, in the unknown messages scenario,
the pre-recorded message – query is not given and must be identified first.

The query can be entered either by text (Query-by-Text, QbT STD) or by spoken term
(Query-by-Example, QbE STD). QbT systems require lots of resources like transcribed
data, phone sets or additional linguistic resources. Thus it is language-dependent and
available only for the most widespread languages. On contrary, QbE STD systems can be
language-independent as the query input is in the spoken form. So it is a viable option

15

for low-resource languages. QbE STD systems search in phone posteriors or any suitable
features [5].

For searching the pre-recorded operator message occurrences in a large dataset, the QbE
STD approach is obviously more appropriate.

Both techniques can be combined together. The scenario consists of entering the text
query first by QbT STD system and as the searching goes, the detected hits are used as
queries for the QbE STD systems. The lists of detections from both systems are then
merged, bringing new detections or more precise hits of already searched terms. The shown
technique is known as relevance-feedback mentioned in [3].

Fapso’s work [5] mentioned three main methods of matching techniques for QbE STD:

• Template matching of features by using dynamic time warping (DTW)

• Sequential statistical modeling of features by using Gaussian mixture model (GMM)
and Hidden Markov model (HMM)

• Lattice matching by using weighted finite state transducers (WFST)

Audio Pre-processing. Audio pre-processing is an essential step for decent features.
For processing the digital signal, voice activity detection (VAD) is applied in the first place.
VAD is used to remove non-speech parts in given audio to get a proper estimation of the
speaker normalisation parameter in the following step.

Next, vocal tract length normalisation and speaker mean normalisation are applied to
the speech recordings. Finally, the features are extracted from the processed audio. We
can choose either 3-state phone posteriors or bottleneck features, which is the last hidden
compression layer of a neural network (NN) trained for phone recognition [5].

Template Matching of features. Distance matrix of given metrics is computed between
query and utterance feature vectors. Afterwards, the shortest DTW paths crossing the
whole query and any part of an utterance are chosen from the distance matrix [8].

Sequential statistical modelling. By using the HMM/GMM techniques, the query
model is trained on query features, while the background model is trained on features of
all terms in the dataset. Utterance features and their likelihood ratio in each frame are
matched against the created query model and the background model which returns the
confidence score of the query in the frame [33].

Lattice matching. Previous techniques used just phone posteriors features when search-
ing for query hits. For lattice matching, phone lattices or phone confusion networks are
created from the phone posteriors.

2.4 Fuzzy string matching
Fuzzy string matching (FSM) is an important scientific task that has attracted much interest
as key information can be expressed by symbolic sequences. When comparing two strings, it
is usually straightforward – comparing character by character and declaring them as equal
or not. However, a small spelling mistake could ruin the search. There are many use cases
when it is desirable to know how similar one string is to another, such as text retrieval,

16

signal processing, and computational biology. For instance, “I ate a fresh green apple.” is
similar to “He eats fresh green apples.” at the first sight, but not for the computer.

Levenshtein distance

The decent solution for quantifying the similarity is the Levenshtein Distance (LD) (also
known as “edit distance”). It compares strings by several edit operations, such as deletion,
insertion, and substitution of individual symbols. LD can be defined as the minimum cost
of converting one string into another by using a sequence of edit operations [36].

The edits could be described as transmission errors. Assume a string 𝑋𝑠 ∈ 𝐻 is the
input to a noisy channel and 𝑌 is the output string. The transmission errors is described
as follows:

• 𝑌 has a substitution error if 𝑋𝑠 = 𝛼𝑎𝛽 and 𝑌 = 𝛼𝑏𝛽.

• 𝑌 has a deletion error if 𝑋𝑠 = 𝛼𝑎𝛽 and 𝑌 = 𝛼𝛽.

• 𝑌 has an insertion error if 𝑋𝑠 = 𝛼𝛽 and 𝑌 = 𝛼𝑎𝛽 [11].

The Levenshtein distance 𝐿𝐷(𝑋,𝑌) between two strings 𝑋, 𝑌 , each of length |𝑋| and
|𝑌 | is defined as:

𝐿𝐷(𝑋,𝑌) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|𝑋| if |𝑌 | = 0,

|𝑌 | if |𝑋| = 0,

𝐿𝐷(𝑡𝑎𝑖𝑙(𝑋), 𝑡𝑎𝑖𝑙(𝑌)) if 𝑋[0] = 𝑌 [0],

1 + min

⎧⎪⎨⎪⎩
𝐿𝐷(𝑡𝑎𝑖𝑙(𝑋),𝑌),

𝐿𝐷(𝑋, 𝑡𝑎𝑖𝑙(𝑌)),

𝐿𝐷(𝑡𝑎𝑖𝑙(𝑋), 𝑡𝑎𝑖𝑙(𝑌))

⎫⎪⎬⎪⎭ otherwise,

(2.9)

where the 𝑡𝑎𝑖𝑙 of string 𝑋 or 𝑌 includes all characters except the first one. The First
element is the minimum corresponding to deletion edit, the second corresponds to insertion
and the last one to substitution [9].

2.5 Evaluation of detection
The choice of the right evaluation metric is the key to get a reliable system. We present
several metrics for STD and hence pre-recorded message detection. A detection list with a
confidence score, start time and end time provided by the system is needed for evaluation
and computing the given metrics.

Several scenarios happen in the decision making process of the system. The system
marks the given segment as containing the pre-recorded telephone operator message or not.
This may lead to either right decision or not. When the recording with the message is
marked by the system correctly, we talk about “hit”, in the opposite scenario it is called
“miss”. The system may mark the recording without the operator message incorrectly, in
this case it is a“false alarm”. Figure 2.9 shows the cases mentioned above.

2.5.1 DET

Detection error trade-off (DET) is a common technique to show system performances for
various operating points. Miss probability 𝑃𝑀 and false alarm probability 𝑃𝐹𝐴 are shown

17

Containing message

Containing message

No message, just speech

System decision:

Have message
-> Hit

Have message
-> False alarm

No message
-> Miss

Figure 2.9: Three possible system decisions.

on axes in the DET curve, which provides information on both error types. The used scale
for both axes is normal deviate scale so that the DET curves are linear for most detection
systems. The closer the DET curve is to the lower bottom corner, the better performance
the system provides [14].

For a given threshold 𝜃 DET is defined as a dependency of miss probability 𝑝𝑀 (𝜃) and
false alarm probability 𝑝𝐹𝐴(𝜃). DET curve does not give a single value, but provides a
more complex graph of system’s performance for various operating points [5]. The DET
scheme is shown in Figure 2.10.

2.5.2 ROC

A receiver operating characteristic (ROC) curve is a graphical plot similar to the DET curve
showing the diagnostic ability of a binary classifier system as discrimination threshold is
changing. An ideal cut-off value is almost always a trade-off between hits and false alarms.

The ROC curve shows a graphical illustration of trade-offs at each cut-off for any diag-
nostic test that uses a threshold or any continuous variable. The better system performance
is reflected in the ROC curve by getting it closer to the top left corner. The area under the
ROC curve (AUC) is calculated to measure the system performance, where 𝐴𝑈𝐶 ∈ [0, 1],
𝐴𝑈𝐶 ∈ R. Thus, the best cut-off value provides both the highest hits score (to 100%) and
the lowest false alarms score (to 0%) [4]. The ROC scheme is shown in Figure 2.10.

2.5.3 EER

Equal error rate (EER) represents the percentage for the given threshold 𝜃𝐸𝐸𝑅 where the
number of missed detections are equal to the same amount of false alarms. The lower the
equal error rate value is, the higher the accuracy of the system [5].

As the EER is a pooled metric, just one global threshold is applied for all queries. The
metric is defined as:

18

𝐸𝐸𝑅 =

∑︀
𝑄∈Δ𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑄)−𝑁ℎ𝑖𝑡(𝑄, 𝜃𝐸𝐸𝑅)∑︀

𝑄∈Δ𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑄)
, (2.10)

where 𝑄 is the query and ∆ is the set of all queries. The number of false alarms is given by
expression

∑︀
𝑄∈Δ𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑄)−𝑁ℎ𝑖𝑡(𝑄, 𝜃𝐸𝐸𝑅). The scheme depicting the ERR line is shown

in Figure 2.10.

Figure 2.10: Scheme of DET (left) and ROC (right) curves showing the ideal systems as
well as EER line. Taken and vectorised from [27].

2.5.4 Minimum DCF

Minimum detection cost function 𝑀𝑖𝑛𝐶𝑑𝑒𝑡 is a metric similar to equal error rate (EER).
𝑀𝑖𝑛𝐶𝑑𝑒𝑡 is not a measure of calibration, but of discrimination. It is defined as a weighted
sum of the probabilities of miss 𝛼(𝜃) and false alarm 𝛽(𝜃) at a given threshold 𝜃 [18]:

𝐶𝐹𝑑𝑒𝑡(𝑡) = 𝐶𝑚𝑖𝑠𝑠 × 𝛼(𝜃)× 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 + 𝐶𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 × 𝛽(𝜃)× (1− 𝑃𝑡𝑎𝑟𝑔𝑒𝑡), (2.11)

The parameters 𝐶𝑚𝑖𝑠𝑠 and 𝐶𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 are the relative costs of detection errors, and the
parameter 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 is the a-priori probability of the specified model speaker [35]. Unlike EER
it is dependent on the particular application-dependent parameters of 𝐶𝑑𝑒𝑡. In the means
of the NIST Speaker Recognition Evaluation, it is usual to indicate 𝐶𝑚𝑖𝑛

𝑑𝑒𝑡 on DET-curves
[32].

2.6 Evaluation of clustering
Clusters are necessary components in the classification process, and thence an evaluation
of clustering is essential to obtain better performance. In this section, a few evaluation
metrics of clustering are presented. In external evaluation, clustering results are evaluated
based on known class labels – known as reference clustering. For example, let assume the
predicted cluster 𝑃 = [0, 0, 1, 2, 2, 0]. To evaluate the performance of 𝑃 , we use reference
clustering 𝑅 = [0, 0, 1, 1, 2, 2]. Several measures are adapted from variants used to evaluate

19

classification tasks. Instead of counting how many times a class is correctly assigned to a
single data point – hits, metrics for pair counting assess whether each pair of data points
that is truly in the same cluster is predicted to be in the same cluster [23].

Purity (Section 2.6.1) is a simple and transparent evaluation measure. The Rand index
(Section 2.6.2) penalises both false positive and false negative decisions during clustering.
Normalised mutual information (Section 2.6.3) can be information-theoretically interpreted
[13].

2.6.1 Purity

Purity is a measure showing “pureness” of the dominant class in the cluster in proportion
to the other classes. To compute purity, let Ω = 𝜔1, 𝜔2, . . . , 𝜔𝑘 be the set of clusters and
𝐶 = 𝑐1, 𝑐2, . . . , 𝑐𝑗 be the set of all classes. For each cluster of Ω a class from 𝐶, which is the
most frequent in the cluster, is assigned. Then the accuracy is computed by counting the
number of correctly assigned classes and dividing by the total number 𝑁 of all data points
[13]:

𝑝𝑢𝑟𝑖𝑡𝑦(Ω, 𝐶) =
1

𝑁

∑︁
𝑘

max
𝑗
|𝜔𝑘 ∩ 𝑐𝑗 |. (2.12)

The main drawback of purity is giving a high score even for poor clusters, as purity
does not penalise having more clusters. Score of one can be accomplished by putting each
data point into its own cluster. Using purity is not suitable to trade-off the quality of the
clustering against the number of clusters. A measure that allows us to monitor this trade-
off is normalised mutual information (NMI) (Section 2.6.3). A trivial example of purity is
presented in Figure 2.11. The Purity score of one represents the best performance, zero the
worst.

x

o

x x

x

x

o

x

o

o ⋄
o x

⋄ ⋄

⋄

x

cluster 1 cluster 2 cluster 3

Figure 2.11: Purity – a measure scoring cleanliness of the clusters. For the given clusters,
purity is computed as (1/17)× (5 + 4 + 3) ≈ 0.71. Taken from [13].

2.6.2 Rand index

Rand index (RI) shows a similarity between the reference clusters and the clusters returned
from the algorithm. Two cases are measured: i) a true positive (TP) decision assigns two
similar data points to the same cluster and ii) a true negative (TN) decision assigns two
different data point to different clusters. Thus, two types of errors can occur: i) a false
positive (FP) decision assigns two different data points to the same cluster, ii) a false
negative (FN) decision assigns two similar data points to two different clusters. The result
of Rand index is the percentage of correct decisions. Rand index score of one represents
the best performance, zero the worst.

20

Rand index is computed as follows:

𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
, (2.13)

where 𝑇𝑃 is the count of true positive cases, 𝑇𝑁 is the true negative cases, 𝐹𝑃 is the
number of the false positive cases and 𝐹𝑁 is the false negative cases. For the example in
Figure 2.11 the RI is computed as (20+72)/(20+20+24+72) ≈ 0.68. The main drawback
of Rand index is that FP and FN are weighted equally.

2.6.3 NMI

Normalised mutual information (NMI) solves the main drawback of the purity measure.
NMI quantifies how much information is shared between the reference clustering and the
predicted clusters, and has a reduced bias for varying cluster numbers [13]. Let Ω =
𝜔1, 𝜔2, . . . , 𝜔𝑘 be the set of clusters and 𝐶 = 𝑐1, 𝑐2, . . . , 𝑐𝑗 be the set of all classes, then NMI
is computed as:

𝑁𝑀𝐼(Ω, 𝐶) =
𝑀𝐼(Ω, 𝐶)

1
2

(︀
𝐻(Ω) + 𝐻(𝐶)

)︀ , (2.14)

where 𝑀𝐼 is mutual information calculated from equation 2.15 and 𝐻 is an entropy com-
puted from equation 2.16.

Mutual information is calculating the probability of being in a cluster 𝜔𝑘, class 𝑐𝑗 and
its intersection for each data point, where 𝑁 is the total count of all data points:

𝑀𝐼(Ω, 𝐶) =
∑︁
𝑘

∑︁
𝑗

|𝜔𝑘 ∩ 𝑐𝑗 |
𝑁

log
𝑁 |𝜔𝑘 ∩ 𝑐𝑗 |
|𝜔𝑘||𝑐𝑗 |

. (2.15)

Let 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑖 be the set of the monitored phenomenon, and 𝑁 is the total
count of points in 𝑋, then entropy 𝐻 is computed as:

𝐻(𝑋) = −
∑︁
𝑖

|𝑥𝑖|
𝑁

𝑙𝑜𝑔
|𝑥𝑖|
𝑁

. (2.16)

Without normalising NMI by the entropy in the denominator, the mutual information
has the same drawback as purity – it does not penalise large cardinalities. As NMI is a
normalised measure, it is possible to compare clusters with different cluster count [13]. NMI
score of one represents the best performance, zero the worst.

21

Chapter 3

Dataset

This chapter will describe the dataset used to evaluate the implemented methods. The
dataset that completely fits our needs was not found, and it is hard or nearly impossible to
obtain real, either from the investigator team or commercial data. Therefore, the goal is
to get as close as possible to a real situation. I accomplished that by mixing the collected
pre-recorded telephone operator messages into standard publicly available phone calls.

3.1 Switchboard dataset
DARPA Switchboard Telephone Conversation corpus – the second release from August
1997 is used as a base for the simulated dataset. The Switchboard-1 Telephone Speech
Corpus was originally collected by Texas Instruments in 1990-1, under DARPA sponsorship.
The first release of the corpus was published by the National Institute of Standards and
Technology (NIST) and distributed by the Linguistic Data Consortium (LDC) in 1992-3.
In the second release, assembled and published by the LDC, all known errors affecting the
original publication of speech files have been corrected1.

The total duration of the telephone conversations is 517.13 hours with a total of 4870
conversations. The files are in 16-bit wave format with a sample rate of 8000 Hz. Duration
of a call is from 5 to 10 minutes. length. The recorded phone calls are mono, each file has
channel A from the called person perspective and channel B from the caller side, both
with the same duration. This approach explains why the silent part occurs in the recorded
conversation – a person from the opposite side is always quiet. This approach makes a more
significant impact on the recogniser because of existing deviations in the recordings2. Each
file is labelled as follows: swXXXXX-Y where XXXXX is the record ID and Y is either A or B,
which labels different speaker. The same labels go for the corresponding transcription of
the conversation.

As the recordings are longer than the typical average call length, the files are trimmed
into smaller parts. For that purposes, the open-source Python library Pydub3 is used. The
recordings were cut as shown in table 3.1. The goal was to cut them equally in the sense of
the duration – each category, is in terms of the total length, approximately 60 hours long.

This process extends the original labelling of the file, as it adds information about the
length and the part corresponding to the original recording. This changed the original

1LDC Switchboard-1 Release 2: https://catalog.ldc.upenn.edu/LDC97S62
2However, a phenomenon like cross-talks can occur
3Pydub (used under MIT license): https://github.com/jiaaro/pydub

22

https://catalog.ldc.upenn.edu/LDC97S62
https://github.com/jiaaro/pydub

swXXXXX-Y format to swXXXXX-Y_Z_D, where Z is the part of the original XXXXX-Y and
D is the duration of the trimmed recording in seconds – the 180-second-long recording
trimmed to 3 parts will be labelled as follows: sw00000-A_1_60, sw00000-A_2_60 and
sw00000-A_3_60.

files length [s] count
180 1,409
120 2,476
90 3,391
60 3,532
45 4,639
30 5,940
20 10,843
15 10,120

<15 (leftovers) 4,870
total 47,220

Table 3.1: The lengths and the total counts of the files from the Switchboard corpus after
trimming.

3.2 Telephone operator pre-recorded messages
To create a simulated dataset for this thesis, the telephone operator pre-recorded messages
were collected first: a total of 26 unique recordings either downloaded from the internet
or recorded from real telephone conversations. The messages in English (15 in total) are
downloaded from Soundsnap4 under Soundsnap license, or Storyblocks5 under Royalty-Free
license agreement. The messages (in both English and Czech or English and Slovak – 11
in total) were recorded from the actual calls via Cube ACR6 app using Nokia 7.2 with
Android 10. The pre-recorded messages were split into three categories:

• Samples of category A are messages that should appear only at the beginning of the
call. (example: “Thank you for calling, please leave a message”).

• Category B messages could appear anywhere through the call. (example: “Please
hold for a very important message”).

• Category C messages should appear both at the beginning and the end of the call.
(example: “Sorry the number you are calling just not answer at the moment, please
try again later”).

Messages are spoken by male or female speakers. Some of the messages carry the same
content but differ in gender. The initial silence is removed by open source software Audacity7

and messages are normalised to same volume as the phone calls from the Switchboard
corpus. The message is labelled in the following format: XYZ, where X is the category (A,
B or C), Y stands for language (0 – English, 1 – Czech+English, 2 – Slovak+English) and
“Z” is the number (0 – 9) of the file.

4Soundsnap license: https://www.soundsnap.com/licence
5Royalty-Free license agreement: https://www.soundsnap.com/licence
6Cube ACR on Google Play: https://play.google.com/store/apps/details?id=com.catalinagroup.callrecorder
7Audacity: https://www.audacityteam.org/

23

https://www.soundsnap.com/licence
https://www.storyblocks.com/license
https://play.google.com/store/apps/details?id=com.catalinagroup.callrecorder
https://www.audacityteam.org/

3.3 Mixing pre-recorded messages into Switchboard
The next step is to mix the telephone operator messages with the phone calls from the
Switchboard corpus. First, approximately 10% of the trimmed phone calls were chosen –
4260 calls. Also, 200 recordings of zero length calls were chosen – in total 4460 calls.

To get close to realistic data, each pre-recorded message is mixed into calls with varying
speed, volume gain and varied repetition. The task is accomplished using Pydub library.
Based on the advice of my supervisor, I selected the length of a mixed pre-recorded message
to be around one minute. The changes of mixed pre-recorded messages are: in gain between
-6dB – +6dB, speed between 0.9 – 1.1 of the original speed, repetition between 0.8 – 30.0.
The position of the mixed message in the phone call depends on the category of the pre-
recorded message. Type A is at the beginning of the Switchboard recording, B is somewhere
in the middle and type C is at the end and the beginning of the conversation.

The total count of the mixed pre-recorded messages is 4460 files of a total length of
150.66 hours (of which 99.23 hours is the length of clear messages without the phone calls
conversation). Mixed recordings use extended labelling with info as follows:

swXXXXX-Y_Z_W__AAA_ST(BB.BB)L(CC.CC)G(DD.DD)R(EE.EE)S(FF.FF), where

• Part before two underscores is the voice call recording where the pre-recorded message
is mixed.

• AAA – ID of the used pre-recorded message.

• ST(BB.BB) – BB.BB marks position where the message starts in the file in seconds.

• L(CC.CC) – CC.CC is the length of the message in seconds.

• G(DD.DD) – (-)DD.DD is the volume gain [dB] – values can be negative.

• R(EE.EE) – EE.EE represents how many times the message is repeated.

• S(FF.FF) – FF.FF is the speed of the message compared to the original.

The prepared recordings were split into training and evaluation sets and their subsets
used for development – total numbers are presented in table 3.2. Each of the sets contains
representatives of every pre-recorded telephone operator message – just in a different ratio.
With intention of creating a universal dataset for varied techniques of machine learning
(like training a NN), “Train” and “Sub train” sets are created but not used in evaluations.

Database
Raw

phone calls
[hours]

Mixed calls
with messages

[hours]

Total
[hours]

Total
(raw + mixed)

[count]
Train 339.31 117.63 456.94 32377+3576=35953
Eval 126.62 37.10 163.72 10583+884=11467
Sub train 16.83 30.62 47.45 697+697=1394
Sub eval 4.31 6.48 10.79 187+187=374

Table 3.2: Total lengths [hours] and counts of audio files in individual sets.

24

Chapter 4

Used tools

All the created systems and additional scripts were written in Python 3.8 with Numpy
1.20.1 [7] and SciPy 1.4.1 [34] on a machine running Ubuntu 20.04 LTS with 16 GB of
RAM and Intel Core i7-8565U CPU. All of the graphic content of the code output is done
by Matplotlib 3.3.2 [2].

4.1 Feature extraction tools
Feature extraction is essential for speech processing. For the work, I used standard MFCC
features, phoneme posteriors and bottleneck features.

Phoneme recogniser

Phoneme recogniser based on long temporal context [29] developed at Brno University of
Technology (BUT)1 is used for extracting 3-state phoneme posteriors from audio wave file
and producing phoneme strings (and phoneme lattices via an additional script). I used
PHN_CZ_SPDAT_LCRC_N1500 system (Czech 8 kHz models), the phoneme recogniser
works with 25 ms frames with 10 ms shifting and provides 138 dimensions array – 3 states
for each of the 46 classes. Its core is written in C language, using mathematical library
ATLAS/BLAS. Each audio wave file is first processed, and the posterior feature vector is
then saved in HTK file format or to a text file in case of phoneme string.

Bottleneck feature extractor

For extracting bottleneck feature vectors, we used the BUT/Phonexia Python package2

[6]. The script extracts bottleneck features and phoneme posteriors from audio files. From
three possible choices of the pre-trained neural networks, the one trained on Fisher English
– “FisherMono” was chosen. The extracted bottleneck feature vector is 80-dimensional.
The processed array is stored in HTK file format.

1Phoneme recogniser based on long temporal context: https://speech.fit.vutbr.cz/software/phoneme-
recognizer-based-long-temporal-context

2BUT/Phonexia Bottleneck feature extractor: https://speech.fit.vutbr.cz/software/but-phonexia-
bottleneck-feature-extractor

25

https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
https://speech.fit.vutbr.cz/software/but-phonexia-bottleneck-feature-extractor
https://speech.fit.vutbr.cz/software/but-phonexia-bottleneck-feature-extractor

MFCC feature extractor

The standard 13 MFCC features are extracted from an audio wave file, with the default
settings – 25 ms window frames with 10 ms shifting and with 512 being the size of FFT.
Extraction is done by using python_speech_features3 package in version 0.6.

4.2 Algorithm tools

Fast DTW

The dynamic time warping algorithm is used for template matching of two time series of
feature vectors. As the standard DTW comes with a higher computational cost, Fast-DTW
[28] with available Python package FastDTW 0.3.44 provides a decent solution.

By using FastDTW, faster computation is achieved as well as less demand on the system
resources. The longer the time series, the faster the calculation is compared to basic DTW.
However, on shorter time series, the standard DTW provides faster and more accurate
computation. Thus, it is necessary to decide which approach is more suitable for the given
task.

Librosa library

Librosa is a Python package for music and audio analysis. It provides the essential building
blocks to create audio information retrieval systems [15]. For the thesis, Librosa in version
0.8.05 is used. The library is used for loading an audio file, computing recurrence matrix
and RQA analysis (in Section 2.2.2). Because of the limitations of Fast DTW on shorter
sequences, Librosa is chosen for calculating DTW distance and alignment path, as it has
better performance and more accurate results on shorter time series.

FuzzyWuzzy

FuzzyWuzzy6 is a Python package used for approximate string matching, also known as
fuzzy string matching. This tool uses Levenshtein distance to calculate the differences
between sequences while providing a simple-to-use interface. The implementation offers
several types of string comparison, such as partial ratio, which finds similarities in sub-
strings.

S-DTW

Segmental DTW is a modification of a standard DTW as explained in 2.1.3. An imple-
mentation according to [21] is available on GitHub7. I have edited the code to work with
different distance metrics, and the output of the script is modified to return also a warping
path.

3Python package python_speech_features: https://python-speech-features.readthedocs.io/en/latest/
4FastDTW on PyPI: https://pypi.org/project/fastdtw/
5Librosa 0.8.0 on Zenodo: https://zenodo.org/badge/6309729.svg
6FuzzyWuzzy 0.18.0 on PyPI: https://pypi.org/project/fuzzywuzzy/
7S-DTW implementation by gray0302 on GitHub: https://github.com/gray0302/seg-dtw

26

https://python-speech-features.readthedocs.io/en/latest/
https://pypi.org/project/fastdtw/
https://zenodo.org/badge/6309729.svg
https://pypi.org/project/fuzzywuzzy/
https://github.com/gray0302/seg-dtw

VAD

Voice activation detection (VAD) is used to classify whether a given piece of audio data is
active or inactive. The used py-webrtcvad8 for VAD developed by Google for the WebRTC
project is reportedly one of the best available VADs, being fast and free. The input for VAD
is an audio wave file with at least of 8000 Hz sample rate. The utility is set to recommended
options with “aggressiveness” of level 2 and frame size of 10ms.

4.3 Evaluation Algorithms
Evaluation metrics are used to compare performance of different systems and its compo-
nents. Existing tools were used:

Scikit-learn

Scikit-learn9 provides simple and efficient tools for predictive data analysis. It is an open
source project built on NumPy, SciPy, and matplotlib10 (used for visualising) [22]. This
package is used for computing clustering purity, Rand index, normalised mutual informa-
tion, and for finding the best threshold of the created systems.

Pytel

Pytel is a Python package written by BUT Speech@FIT group members. Pytel is used to
comparing the performance of created systems by using DET curves, EER and MinDCF.
The package is chosen because of its simplicity and intuitiveness.

8py-webrtcvad on GitHub (used under MIT license): https://github.com/wiseman/py-webrtcvad
9Scikit-learn 0.24.1 on PyPI: https://pypi.org/project/scikit-learn/

10Matplotlib 3.3.2 on Zenodo: https://zenodo.org/record/4030140#.YHjTH1XaiV4

27

https://github.com/wiseman/py-webrtcvad
https://pypi.org/project/scikit-learn/
https://zenodo.org/record/4030140#.YHjTH1XaiV4

Chapter 5

Baselines

This chapter provides details about the baselines systems used for detecting the pre-recorded
messages. Evaluation techniques use two approaches:

• Evaluation by a recording itself – described in Section 1.2.a). This method is used in
RQA approach 5.2.

• Evaluation by all files from the set or random chunks of the set – described in Section
1.2.b). This method is used in DTW 5.1 and FSM approaches 5.3.

The results provide binary decision only – either the audio contains the message or not.
Evaluation of the systems is not compared to any existing solution as no public system

is known for such a topic.

5.1 DTW approach
DTW aims at is based on finding the similarity between two time series of feature vectors
by using the optimal warping path and the DTW distance, more in subsection 2.1.2. DTW
gives optimal results when comparing similarly long time series with isolated words. How-
ever, in our case, the conditions are not that ideal. The recordings are of various lengths.
Also, the similar parts are repeated unevenly, and the position of a pre-recorded message
could be anywhere in the file. It follows that the first important step is to find those can-
didates and compare them. Thus, using the raw DTW distance as the decision-makers will
not provide satisfying results. Librosa DTW is not suitable for long time series, therefore
FastDTW is used for computing DTW distance and alignment path.

Searching for candidates

To find the candidates for determining similarity, the DTW warping path is computed first
and then analysed. The algorithm finds the similarities by looking back to the previous
steps the warping path has taken. In a DTW warping path, 3 moves are possible: i)
diagonal, ii) horizontal and iii) vertical.

Three types of moves that a two-step pair can get:

• The “good trend” (GT) type happens when the current step is in diagonal direction.
The direction of the previous step does not matter in this case.

28

• The “false trend” (FT) type happens when the two-step pair consists of two horizontal
moves or two vertical moves.

• The “neutral trend” (NT) type happens when the two-step pair consists of one vertical
and one horizontal moves or one is in the diagonal direction.

The explanation of the moves type is shown in Figure 5.1.

a) b) c)

Figure 5.1: Three possible types of a two-step pair in the DTW warping path. Type a)
represents a good trend – the current step is diagonal, thus all the green pairs are considered
a good trend. Type b) represents the neutral trend – the red and blue pairs are going in
both horizontal and vertical direction and the black pairs are of the neutral trend type
as well. Type c) represents two possible options of the false trend – either two horizontal
moves (red) or two vertical moves (blue).

The idea of the experimental function for finding candidates is to start detecting the sim-
ilarity when the diagonal move occurs. Then each step is evaluated and the corresponding
point is added to the list.

FT type increments the false-trend variable and the constant false trend variable. GT
type increments the good-trend variable and resets the variable responsible for monitoring
the constant false-trend types. NT type resets only the constant false-trend variable.

The detection ends when the constant false trend is larger than the given threshold 𝜎.
Then the quality of the detected part of a sequence is evaluated. First, the length of the list
needs to be longer than 𝛿 frames, which means 𝛿/100 seconds. The sequences longer than
𝛿 are scored by the ratio of the triangle created by the warping path, y-axis and x-axis.
If the ratio falls in the given interval 𝜏 , the detected line is a good candidate. The whole
process repeats until the end of the warping path. Figure 5.2 shows ratio computing. In
the presented baseline system, the variables are set accordingly: 𝜎 = 25, 𝛿 = 200, and
𝜏 ∈ ⟨0.9, 1.1⟩. Formal description of searching for candidates is presented in algorithm 5.1.

Classifying the recordings

The proposed solution for the baseline DTW system is to compare every feature vector
with all others. By using a brute-force approach, it is immediately an 𝑂(𝑛2) problem.
However, a little trick is performed to get a better constant. The optimisation is achieved
by comparing the currently processed file with the number of all recordings reduced by 1/8.
For every next file, a new shuffled 1/8 bunch of all files is used. For example, let assume a
set of 2000 files. With every evaluated file, a new chunk of 250 files is randomly chosen from

29

Algorithm 5.1: Formal description of searching for candidates.
Input: DTW alignment path
Result: List of candidates in alignment path
previous_point ← None
direction, previous_direction ← None
candidates_list, temp_list ← empty.List()
/* gt=good trend, ft=false trend, cf=constant false */
gt, ft, cf ← 0
for point 𝑖𝑛 DTW alignment path do

if previous_point 𝑖𝑠 𝑛𝑜𝑡𝑁𝑜𝑛𝑒 then
direction ← getDirection(previous_point, point)

if temp_list 𝑖𝑠𝐸𝑚𝑝𝑡𝑦 𝑎𝑛𝑑 direction 𝑖𝑠 DIAGONAL then
if gt > 5 then temp_list.append(point)
gt++
cf, ft ← 0

if temp_list 𝑖𝑠 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦 then
trend ← getTrend(previous_direction, direction)
if trend 𝑖𝑠 GOOD TREND then gt++ cf ← 0
if trend 𝑖𝑠 NEUTRAL TREND then cf ← 0
if trend 𝑖𝑠 FALSE TREND then cf++ ft++
temp_list.append(point)

if cf ≥ 𝜎 then
if length(temp_list) ≥ 𝛿 then

if countRatio(temp_list) 𝑖𝑛 𝜏 then candidates_list.append(temp_list)
gf, ft, cf ← 0
temp_list.clear()

previous_direction ← direction
previous_point ← point

if length(temp_list) ≥ 𝛿 then
if countRatio(temp_list) 𝑖𝑛 𝜏 then candidates_list.append(temp_list)

the whole set. As the idea of detecting the pre-recorded messages is to find parts repeated
several times, at least one should appear in the reduced bunch. This helps to reduce the
processing time by almost 87.5%.

The algorithm runs in two loops – the main loop contains files for classification, – the
nested loop compares all the files from the reduced bunch to the one in the main loop. First,
a DTW is computed for the raw time series. The warping path is analysed afterwards. The
candidates are compared by DTW again. The pair with the minimum DTW distance is
compared to threshold 𝜑, and the final decision is made. In the case of an empty list from
the warping path analysis function, the original DTW distance is compared to threshold 𝜑
to produce a hard decision. A Euclidean distance is used as a distance matrix for creating
a DTW matrix, due to more sparse values, which helps to create a smoother threshold.
Standard multiplicative weights for moves are used –

√
2 for a diagonal direction and 1 for

both vertical and horizontal directions. Formal description of the process of evaluation is
presented in algorithm 5.2.

30

0

2

4

6

5

y

x

}}

10

}f

[s]

[s]

Figure 5.2: The candidate detected on a warping path. First, the number of points in the
list – 𝑓 , must be at least 𝛿 points, which represents 𝛿/100 seconds. To confirm 𝑓 frames are
a candidate, a ratio is calculated. 𝑅𝑎𝑡𝑖𝑜 = 𝑦/𝑥 must be in interval 𝜏 , where 𝜏 ∈ ⟨1−𝑎, 1+𝑎⟩.

Algorithm 5.2: Formal description of DTW classification process.
Input: unprocessed files
Result: text file with evaluations
results ← textFile.empty()
for file 𝑖𝑛 unprocessed_files do

feature_vector ← load(file) if not in cache
cache.add(feature_vector)
shuffled_set ← shuffle(unprocessed_files)
index ← 0
have_hit ← False
for nested_file 𝑖𝑛 shuffled_set do

index++
nested_feature_vector ← load(nested_file) if not in cache

cache.add(nested_feature_vector)
alignment_path, DTW_distance ← DTW(feature_vector,
nested_feature_vector)

candidates_list ← getCandidates(alignment_path)
if candidates_list 𝑖𝑠𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦 then

DTW_distance ← findMinimumDtwDistance(feature_vector,
nested_feature_vector, candidates_list)

if DTW_distance < Φ then
have_hit ← True
results.append(file, DTW_distance, “have pre-recorded message”)
break

if index > 1/8 𝑐𝑜𝑢𝑛𝑡(𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑_𝑠𝑒𝑡) then break

if have_hit 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒 then
results.append(file, DTW_distance, “no pre-recorded message”)

31

0 5 10 15 20 25 30 35
File 2 Time [s]

0

2

4

6

8

10

Fi
le

 1
 T

im
e
 [

s]

0 20 40 60 80 100 120 140 160
File 2 Time [s]

0

10

20

30

40

F
ile

 1
 T

im
e
 [

s]

DTW distance: 0.577564

Optimal path

similarity

similarity

similarity

2500

5000

7500

10000

12500

15000

17500

d
is

ta
n
ce

 c
o
st

DTW distance: 0.537740

Optimal path

similarity

500

1000

1500

2000

2500

3000

d
is

ta
n
ce

 c
o
st

Figure 5.3: DTW distance of two pairs of time series. The top one with one candidate,
which is later classified as a hit. The bottom alignment obtains several candidates, but
none of them resulted in a hit.

Results

The baseline DTW system provides better results than just random guessing, but its error
rate is too high to use in a practical system. The system produces only binary decision
without exact timing. The processing time is also higher above the acceptable limit. Due
to high processing time, the system is not tested on “Eval” dataset as it would take months
on a standard machine. The advantage of this approach is simple parallelisation, and the
system uses the unknown messages method. The results on different features as input is
shown in table 5.1 and corresponding DET curve in Figure 5.4.

Features
Average time

of one file
[seconds]

CPU-core time
[hours] EER MinDCF The best

threshold

MFCC 244.39 8.46 41.17% 0.61 43.28
Phoneme
posteriors 284.30 9.79 30.48% 0.42 3.96

Bottleneck* 477.49 16.53 29.41% 0.50 1.14

Table 5.1: The results of the baseline DTW system on “Sub eval” dataset. The total
run-time would be approximately three times longer – the evaluation was split to three
CPU threads. *Run with bottleneck features uses chunks of 1/4 instead of 1/8. The best
threshold corresponds to get the EER result. MinDCF parameter is set to 0.5, as “Sub
eval” has an equal proportion of target and non-target files.

32

0.55 2 6 15 30 50 65 85 92.5
FA [%]

0.55

1.5

5

10

20

35

55

70

85

92.5

M
iss

 [%
]

BaseDTW_unknown_mfcc
minDCF = 0.609626
BaseDTW_unknown_posteriors
minDCF = 0.417112
BaseDTW_unknown_bottleneck
minDCF = 0.497326

Figure 5.4: DET curve of the baseline system by using MFCC, phoneme posteriors and
bottleneck features. “Sub eval” dataset is used.

5.2 RQA approach
Recurrence quantification analysis (RQA) analyses recurrence matrix for diagonal segments
2.2.2.

The RQA approach is based on Aren Jansen’s work [10] described in Section 2.2. RQA
analysis expects the similarity matrix at the input. The steps of creating such a matrix are
presented in 2.2.1. The self-similarity diagonal is removed. The recurrence matrix creation
from the Librosa library 4.2 is chosen as my implementation of the first three steps is twice
as slow. A cosine distance is used for creating a recurrence matrix, as it is faster and used
in various papers as in [5] or [31] as a suitable distance metric. Affinity mode1 is chosen as
it preserves the most information and the number of nearest-neighbours for each file is set
to 1/10 of the total frames count.

Classifying the recordings

As the telephone operator messages are often repeated several times within the recording,
the recurrence matrix is computed for one file at a time only. This approach allows working
in linear time-space of 𝑂(𝑛) as each file is analysed only once. Samples shorter than 3
seconds are not included, as short speech conversation should not be present in the analysis
for correct computation. Shorter recordings are evaluated with a high penalty score.

Next, the heuristic to filter out false alarms from RQA analysis is to accept the best
alignment sequence longer than 𝛿 only. Such a heuristic, of 𝛿 = 2.5 seconds, helps to reduce
false alarms, as those alignment paths usually happen to be only a word or a short inactive
part. An unsatisfactory result is evaluated with a large score.

The suitable alignment path from RQA analysis is scored by the sum of the points in
the result, divided by the length of the path. Scores below the threshold 𝜑 are marked as

1Affinity mode measures how similar the frames are. Affinity is also known as a self-similarity matrix.

33

a hit. Threshold 𝜑 is varied based on features.

To speed up the calculation, frame averaging is performed in the input array as described
in Section 6.2. The performance of varied frame averaging values can be seen in table 5.2
and in Figure 5.5.

The lost accuracy is partly solved by using “knight moves” – as in the chess piece. Such
a modification allows more possibilities to get a longer alignment path than strict diagonal
moves only.

Frame
reduction 1 5 10 20 30 40

Average time
[seconds] 18.28 1.34 0.56 0.32 0.23 0.19

Table 5.2: Computation run-time after 100 repetitions of the whole process of RQA analysis,
with different frame averaging optimisation. The input array contains phoneme posteriors,
which represents a 37-second recording, or 3733 frames in total.

Results

The optimal balance between processing time and accuracy is achieved by using five frames
for frame averaging, as DET curves reveal in Figure 5.6 and table 5.3. The system pro-
duces only binary decision without exact timing and the system uses the unknown messages
method.

The advantage of this approach is fast processing as it is 𝑂(𝑛) time-space. The process
can be parallelised. However, in that case, it is not possible to serialise the output list with
saved candidates and their frames and scores. The serialised persistent list is later used for
further processing.

Average time
[seconds]

Total time
[minutes]

EER
[%] MinDCF

Features M PP BN M PP BN M PP BN M PP BNDataset
Sub eval
FR=5 2.06 2.56 3.08 12.84 16.95 19.20 1.60% 15.50% 16.04% 0.02 0.24 0.27

Sub eval
FR=10 1.61 2.36 2.11 10.03 14.72 13.17 12.30% 20.86% 22.99% 0.13 0.36 0.38

Sub eval
FR=20 1.05 1.68 1.55 6.52 10.45 9.65 32.62% 28.88% 27.81% 0.45 0.49 0.49

Eval
FR=5 1.92 2.17 2.91 365.73 412.84 544.65 1.34% 6.68% 10.38% 0.16 0.73 0.93

Table 5.3: Processing time and evaluation results of RQA systems with different settings.
Tested on “Sub eval” and “Eval” database. FR is acronym for frame reduction, M means
MFCC features, PP means phoneme posteriors, BN stands for bottleneck features.

34

0 10 20 30
Time [s]

0

5

10

15

20

25

30

35

T
im

e
 [

s]

Recurrence matrix

0 10 20 30
Time [s]

RQA analysis

Optimal path

Original frames count:3733
Reduced frames count:3733

0 10 20 30
Time [s]

0

5

10

15

20

25

30

35

T
im

e
 [

s]

Recurrence matrix

0 10 20 30
Time [s]

RQA analysis

Optimal path

Original frames count:3733
Reduced frames count:746

0 10 20 30
Time [s]

0

5

10

15

20

25

30

35

T
im

e
 [

s]

Recurrence matrix

0 10 20 30
Time [s]

RQA analysis

Optimal path

Original frames count:3733
Reduced frames count:373

0 10 20 30
Time [s]

0

5

10

15

20

25

30

35

T
im

e
 [

s]

Recurrence matrix

0 10 20 30
Time [s]

RQA analysis

Optimal path

Original frames count:3733
Reduced frames count:186

0 7.5 15 22.5 30
Time [s]

0

6

12

18

24

30

36

T
im

e
[s

]

Recurrence matrix

0 7.5 15 22.5 30
Time [s]

RQA analysis

Optimal path

Original frames count:3733
Reduced frames count:124

0 8 16 24 32
Time [s]

0

8

16

24

32

T
im

e
 [

s]

Recurrence matrix

0 8 16 24 32
Time [s]

RQA analysis

Optimal path

Original frames count:3733
Reduced frames count:93

a) b)

c) d)

e) f)

Figure 5.5: Recurrence matrix and RQA analysis visualisation for a 37-second long phoneme
posteriors array. The pre-recorded message is in the first 7.36 seconds of the telephone con-
versation (file: sw03720-B_5_30__A02_ST(0.00)L(7.36)G(-0.61)R(2.26)S(1.04)). For
each run, different value of frame averaging is used. No reduction for a), frame reduction
five for b), c)=10, d)=20, e)=30, f)=40. At first glance, even 40 frames averaging looks ac-
curate and usable, however in a real system, an acceptable frame reduction value is around
five frames.

35

0.55 1.5 3 5.5 10 15 25 40 50

FA [%]

0.55

2

5.5

15

25

45

60

80

90

95.5

M
is

s
[%

]

mfcc EER = 1.60%
minDCF = 0.0213904

posteriors EER = 15.50%
minDCF = 0.240642

bottleneck EER = 16.04%
minDCF = 0.278075

Sub eval
frame reduction = 5

a)

Sub eval
frame reduction = 10

Sub eval
frame reduction = 20

Eval
frame reduction = 5

b)

d)c)

0.0095 0.09 0.6 3 9.5 25 45 70 85

FA [%]

0.9

4.5

15

35

65

85

95.5

99.1

M
is

s
[%

]

mfcc EER = 1.34%

minDCF = 0.160509

posteriors EER = 6.68%

minDCF = 0.726113

bottleneck EER = 10.38%

minDCF = 0.928417

0.55 1 2 3.5 6 10 15 20 30

FA [%]

6.5

15

25

35

50

65

80

90

94

M
is

s
[%

]

mfcc EER = 12.30%

minDCF = 0.128342

posteriors EER = 20.86%

minDCF = 0.363636

bottleneck EER = 22.99%

minDCF = 0.379679

0.55 1.5 2.5 5.5 9.5 15 25 35 50 60

FA [%]

7.5

15

35

50

70

85

94

98

99.45

M
is

s
[%

]

mfcc EER = 32.62%

minDCF = 0.454545

posteriors EER = 28.88%

minDCF = 0.486631

bottleneck EER = 27.81%

minDCF = 0.491979

Figure 5.6: DET curves of RQA system with different settings. Both the a) (Sub eval
dataset) and b) (Eval dataset) used frame reduction by five. In c) frame reduction by ten
and d) frame reduction by twenty. MinDCF weights for Sub eval is 0.5, for Eval 0.08.

5.3 Fuzzy phone string matching approach
Fuzzy string matching (FSM), also known as approximate string matching is the technique
of finding strings that do not match exactly, but only approximately. The approach is based
on Levenshtein distance described in Section 2.4.

Classifying the recordings

First, the text file is imported and parsed accordingly:

• First element in the list represents the list of intervals, where each element in the
list of intervals is the timestamp of the corresponding phoneme on that index. The
interval corresponds to the original framed waveform (10 ms overlapping windows).
For example, let assume a half second long phoneme “a” at the beginning of the speech
recording. In this case, the first element in the list of intervals contains interval 0 –
50.

36

• Second element in the list depicts the list of phoneme durations (in hundredths of
seconds) of the corresponding phoneme on the index.

• Third element represents the list of phonemes. Thus, each index in the parsed list
represents one phoneme.

• The last element is the string to compare, where all “pau” phonemes are converted
to spaces.

Such a parsing allows to convert between features and to return just needed parts of a string.

The comparison is processed by FuzzyWuzzy package, described in Section 4.2. The main
advantage is the partial ratio function, which finds the best score in substrings. Apart from
the raw ratio score, this ability to search substrings is more suitable for the given task but
also makes it slower.

For example, let assume a pair of strings: i) “Thank you for calling, now leave a message.”
and ii) “Thank you for calling, please leave a message. Thank you for calling, please leave
a message.”. The ratio function returns score 60%, while partial ratio returns 84%. In such
an ideal scenario, it works flawlessly as both the strings contain a message, and the results
are reasonable.

The problem appears when a short string is compared to longer. For example, assume
a pair of strings: i) “Thank you.” and ii) “Thank you for calling, please leave a message.”.
The ratio function returns a score of 36%, while the partial ratio returns 90%. Even more
extreme case is when the short string is just “you”. In this scenario, the partial ratio
returns a score of 100%. This can be fixed by applying brute force – ignore 100% scores,
as it is almost certain that it is showed case. It is important to realise that even the same
telephone operator messages will not probably return a score of 100%. Each message is
repeated various times, changed in speed and volume, which causes the phoneme recogniser
to act a bit different to each scenario and return a bit different best phoneme string.

The algorithm of this approach is based on comparing each string to another. Similar
to the baseline DTW approach, it is in an 𝑂(𝑛2) time-space. Accordingly, it is optimised by
reducing the amount of data to compare to a single file, but in this case, it is a 1/4 bunch
that is shuffled. The 1/4 chunks are provided only when the amount of data exceeds 2000
files. For example, let assume a set of 2000 files. With every evaluated file, a new chunk of
500 files is randomly chosen from the whole set.

Results

The system provides binary classification without the exact timing of the found message,
and the system does not know the messages. The processing can be parallelised. The main
drawback, as shown in DET curves 5.7, is the high false alarm rate – the main reason is
the phenomenon mentioned in subsection 5.3. Several cases of false alarms occurred with
mainly shorter recordings. The average time of processing is shown in the table 5.4.

37

Dataset Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold
Sub eval 29.57 3.07 18.18% 0.24 60.0
Eval 37.14 102.53 33.14% 0.97 65.0

Table 5.4: Processing time and evaluation results of baseline fuzzy string matching system.
Tested on “Sub eval” and “Eval” sets. The best threshold corresponds to get the EER
result. The evaluation on “Eval” dataset was parallelised to 6 CPU threads, thus the CPU-
core computation time is around 17 hours. It is relevant to mention that the Eval dataset
is unweighted – only 8% of the files contain the pre-recorded message, which results in a
significant change in minDCF (minDCF parameter for Sub eval is 0.5, for Eval 0.08).

0.0095 0.09 0.6 3 10 25 50 70 90

FA [%]

0.7

3.5

10

25

50

70

90

96.5

99.2

M
is

s
[%

]

(Sub eval) BaseFuzzy

minDCF = 0.240642

(Eval) BaseFuzzy

minDCF = 0.972901

Figure 5.7: DET curves of baseline fuzzy phone string matching system. The accuracy
drops almost twice on the Eval dataset.

38

Chapter 6

Optimisations

This chapter describes steps undertaken to optimise the implementation. The goal is to
minimise files loading, performing redundant loops or use effective and necessary-only vari-
ables.

6.1 Caching
Caching is the process of storing copies of files in a temporary storage location so that
they can be accessed more quickly and do not need to be loaded again. Each file is loaded
to array and parsed in the beginning, and it is ready in cache for next use. A cache is a
dictionary – the key is the file name, and the value is the list with all components needed
for the present system for further processing. This simple improvement helps to reduce
time by almost 80% in some cases, more in the table 6.1.

System (Sub eval) Average time
[seconds]

Average time
cached

[seconds]

Improvement
[%]

SDTW clustering (FR=20, MFCC) 53.58 10.96 80%
SDTW clustering (FR=20, PPost) 131.09 38.02 71%
SDTW clustering (FR=20, BNF) 53.58 10.96 27%
RQA clusters + SDTW (MFCC) 21.07 9.39 55%
RQA clusters + SDTW (PPost) 46.71 15.25 67%
RQA clusters + SDTW (BNF) 43.21 22.67 52%
Base fuzzy string matching 39.00 29.57 43%

Table 6.1: Processing time with and without caching on various evaluation systems.

6.2 Frame averaging
Frame averaging, or reduction is a process of reducing the size of the feature vector resulting
in faster computation.

39

Dimensions reduction

The dimension of the array depends on the current type of feature, MFCC features are a
13-dimensional array, phoneme posteriors a 138-dimensional array, and bottleneck features
are an 80-dimensional array.

As each dimension preserves some relevant information, dimension reduction is not the
right way to go – except for phoneme posteriors. The posteriors feature vector represents
three states for each one of the 46 classes. To reduce computation time, posteriors of triplets
of states are added to create posterior of one phoneme class. Thus, the array is reduced by
three and this setting is used implicitly.

Reduction in a time axis

The array can be reduced in the time axis as well. Each second in an array is represented
by a hundred of 10 ms frames. The idea is to get a mean value of 𝑛 frames to minimise
computation time while preserving as much information as possible.

The ratio differs from system to system, for example, the RQA analysis frame averaging
by five is chosen to be the best, as table 5.3 shows. Frame reduction by five means that
each second consists of 20 frames. For S-DTW clustering, the frame reduction is settled
around 𝑛 = 20 – five frames represents one second, for more details why the best value is
𝑛 = 20 see table 8.1.

40

Chapter 7

Experiments with evaluating by a
list of files

This chapter follows unknown-messages scenario outlined in Section 1.2. The experiments
use evaluation by a random chunk of a set (experiment 7.2.1) or a list of candidates (ex-
periments 7.1.1 and 7.1.2).

7.1 Experiments with DTW
This section describes experiments with DTW and its modification – S-DTW. The experi-
ments are based on the second pass approach as outlined in Section 2.2.3 and it is similar
to relevance-feedback mentioned in Section 2.3. The idea is to process files twice. The first
pass RQA analysis detects candidates and the second pass compare all files again but just
to the candidates. The goal is to improve the performance of the baseline systems – to
bring higher accuracy and faster processing time. The advantage of this approach is that
the RQA first-pass is processed only once, and the second-pass is independent of the used
first-pass.

The experiments are divided into two subsections: i) DTW second-pass, ii) S-DTW
second-pass.

7.1.1 DTW second pass

In this experiment, DTW is used as a technique for the second pass. The main difference
to the baseline DTW system is that each file is not compared to all files but just to the
candidates from the RQA analysis from the first pass. This method is described in Section
1.2.c).

In Aren Jansen’s work [10] only S-DTW is used for the second pass. However, standard
DTW is chosen for its faster computation time as it is searching for only one global optimal
alignment. DTW is almost 90-times faster than S-DTW, as shown in table 7.1.

Preparation

To speed up the process, frame averaging is used. As shown in table 8.1, the best count
of averaged frames is twenty. Twenty frames averaged into one frame represent 200 ms of
information. Because of reducing the feature vector significantly, only recordings longer
than 3 seconds are used in classification.

41

Features MFCC Phoneme
posteriors Bottleneck Average

Samples lengths
[seconds] 30 30 30 30 30 30

DTW time
[seconds] 0.008 0.180 0.011 0.204 0.014 0.313

S-DTW time
[seconds] 0.739 17.601 0.810 19.985 1.130 26.012

Ratio of DTW
and S-DTW speeds 96.15 97.90 73.03 97.80 79.98 83.105 87.99

Table 7.1: Comparison of Librosa DTW and S-DTW implementation by gray0302. The
results are an average of a hundred runs for each comparison. The feature vectors are not
frame averaged – original size is used. The conclusion is that SDTW is ≈ 88 times slower.

To get as relevant candidates as possible from the RQA first pass, the candidates are
filtered to files longer than 4.5 seconds only. The threshold 4.5 seconds is chosen as this
value eliminates most of the false alarms. It also helps to reduce the number of files to
compare, and only the most relevant stay in the chunk.

Librosa DTW is used for computing as it is more suitable for shorter sequences than
FastDTW as mentioned in Section 4.2. The settings for DTW are the same for Librosa
DTW as for FastDTW – same distance metric, same multiplicative weights. The threshold
varies depending on used features. For the MFCC features, the threshold is in general
higher than for bottleneck features or phoneme posteriors.

Results

The goal was to reduce processing time and to achieve higher accuracy. Even though the
processing time of a single file is reduced remarkably, it is still high enough to test the
system on a larger evaluation dataset. The comparison to baseline DTW is presented in
table 7.2, and the DET curve of the RQA + DTW second-pass system is shown in Figure
7.1. The system performs binary classification of files without the exact timestamp of
a detected message and works entirely without known messages. The processing can be
parallelised.

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold

System Base
DTW

DTW
second

pass

Change
[%]

Base
DTW

DTW
second

pass

Base
DTW

DTW
second

pass

Change
[%]

Base
DTW

DTW
second

pass

DTW
second

pass

MFCC
features 244.39 24.90 89.81% 25.38 2.59 41.17% 42.78% -3.76% 0.61 0.80 78.59

Phoneme
posteriors 284.30 47.58 83.26% 29.37 4.94 30.48% 22.99% 24.57% 0.42 0.33 9.78

Bottleneck
features 477.49 37.28 92.19% 49.59 3.87 29.41% 32.62% -9.84% 0.50 0.65 2.97

Table 7.2: Comparison of baseline DTW system to RQA+DTW second-pass system. The
second pass approach is 90% faster – the duration of the first pass of RQA analysis is
excluded. Accuracy is about the same as baseline.

42

0.55 2 7 15 35 55 75 90 96
FA [%]

0.55

2

7

15

35

55

75

90

96

M
iss

 [%
]

RQA_DTW_unknown_mfcc
minDCF = 0.796791
RQA_DTW_unknown_posteriors
minDCF = 0.331551
RQA_DTW_unknown_bottleneck
minDCF = 0.647059

Figure 7.1: DET curve of RQA + DTW system. The accuracy is almost the same as the
baseline DTW system. Evaluated on Sub eval dataset.

7.1.2 S-DTW second pass

Segmental DTW (S-DTW) is a modification of the DTW algorithm, which search for an
optimal path everywhere, not on the main diagonal, more in subsection 2.1.3. This method
is described in Section 1.2.c).

The approach should bring higher accuracy and reduced calculation time. Thanks to
SDTW, the system specifies the exact position of the detected message in the audio.

Preparation

Preparation is the same as in DTW second pass approach. The same frame reduction of
size 20 is used, and also we retain only files longer than 3 seconds for classification. The
same filter selects recordings from RQA first-pass analysis – longer than 4.5 seconds only.

For computing, S-DTW by gray0302 is used. The width 𝑅 to restrict search space is
set to five, as designed by the author. The length 𝐿 is set to 300 hundred frames as the
average duration of one repetition of operator message is 3 seconds. To be more precise,
the constraint 𝐿 is divided by the size frame reduction to preserve the length of 3 seconds.
The cosine distance metric is used.

Results

A faster processing time is achieved compared to the baseline system, although, it is slower
than DTW second-pass approach. Unexpectedly, the accuracy is not higher compared to
both baseline and DTW second-pass systems. Thus, it is still not fast enough to test the
system on a larger evaluation dataset. The comparison to baseline DTW is presented in

43

table 7.3, and the DET curve of the RQA + SDTW second-pass system is shown in Figure
7.2.

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold

System Base
DTW

SDTW
second

pass

Change
[%]

Base
DTW

SDTW
second

pass

Base
DTW

SDTW
second

pass

Change
[%]

Base
DTW

SDTW
second

pass

SDTW
second

pass

MFCC
features 244.39 90.81 62.84% 25.38 9.30 41.17% 37.39% 9.18% 0.61 0.61 0.0039

Phoneme
posteriors 284.30 71.41 74.88% 29.37 7.32 30.48% 35.77% -14.79% 0.42 0.47 0.0449

Bottleneck
features 477.49 193.82 59.41% 49.59 19.87 29.41% 31.98% 9.84% 0.50 0.56 0.4832

Table 7.3: The table presents a comparison of the baseline DTW system to the
RQA+SDTW second-pass system. The second pass approach is 65% faster – the dura-
tion of the first pass of RQA analysis is excluded. Accuracy is about the same as baseline.

4.5 10 25 40 55 75 85 94
FA [%]

0.55

2

7

15

35

55

75

90

96

M
iss

 [%
]

RQA_SDTW_unknown_mfcc
minDCF = 0.61274
RQA_SDTW_unknown_posteriors
minDCF = 0.465241
RQA_SDTW_unknown_bottleneck
minDCF = 0.556473

Figure 7.2: DET curve of RQA+SDTW system. The accuracy is almost the same as
the baseline DTW system. The system was evaluated on Sub eval dataset. Added value
compared to the base DTW system and RQA+DTW system is that RQA-SDTW indexes
the position of the detected message.

The system performs binary classification with the exact timestamp of a detected mes-
sage and works entirely without known messages. However, the timestamps are not indexing
the entire position of the message but rather bring an idea of where the message is. Such
issue happens as SDTW searches for paths longer than parameter 𝐿, however, SDTW does
not maximise the search length entirely – the searching ends as 𝐿 is satisfied with minimum
final distance and does not search for longer sequences. Thus, to get an entire timestamp

44

of a message, further analysis is necessary (e.g. speaker diarisation). The processing can
be parallelised.

7.2 Experiments with fuzzy phone string matching
The baseline fuzzy phone string matching system showed viability, though the system comes
with drawbacks. The main goal of the following experiment is to minimise the errors and
to try to increase the speed of the classification.

7.2.1 Pause analysis

The pause-analysis modification of the baseline fuzzy string matching system aims to solve
the main issue with the baseline system by segmenting the recordings by longer pauses.

Preparation

After the phoneme strings are loaded, the files are processed by pause analysis. The idea
is to exclude all parts which are not relevant for further classification.

All silent parts longer than 2 seconds are declared as dividing points. Two seconds is an
optimal trade-off between segmenting every pause and being still sensitive to silent parts.
The 2-second-long pause is longer than the typical pause between the words and the usual
pause between the repetitions of the pre-recorded messages.

Then the length of the segmented lists is checked. If the segment is shorter than 50
elements of the list – it contains less than 50 phonemes, the segmented part is removed
from the candidates. The reason is that the relevant length of the message is more than 50
phonemes – if fewer phonemes are present in the segment, it does not carry the pre-recorded
message.

Three possible options of the analysis may occur: i) nothing happened – no signifi-
cant silence detected, ii) occurrence of segmented parts but none removed, and iii) the
segmented parts are present, but some may be removed.

The pause analysis process decreases the cause of errors.

Results

The simple pause analysis helps to improve accuracy and achieve faster processing. The
results are better in the small Sub eval dataset than in the larger Eval dataset. The
improvement is only in faster processing. The reason is probably due to the disproportion
of the target and non-target files. The comparison to the baseline fuzzy system is in table
7.4 and figure 7.3.

The system provides information about the position of the detected message. However,
it is only indicative and inaccurate information, as it depends solely on the pause analysis
segments.

The process can be parallelised, and it uses an unknown messages approach.

45

(Sub eval dataset) Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold
baseline
FSM 29.57 3.07 18.18% 0.24 60.0

pause analysis
FSM 19.10 1.98 12.83% 0.15 68.0

(Eval dataset) Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold
baseline
FSM 37.14 118.03 33.14% 0.97 65.0

pause analysis
FSM 24.44 77.54 31.56% 0.98 72.0

Table 7.4: Performance of the baseline fuzzy phone string matching system and the pause
analysis modification.

0.0095 0.09 0.6 3 10 25 50 70 90

FA [%]

0.75

3.5

10

25

50

75

90

97

99.3

M
is

s
[%

]

(Eval) BaseFuzzy

minDCF = 0.973521

(Sub eval) BaseFuzzy

minDCF = 0.240642

(Eval) FuzzyPauAnalysis

minDCF = 0.981314

(Sub eval) FuzzyPauAnalysis

minDCF = 0.149733

Figure 7.3: DET curves of the base fuzzy string matching system and the pause analysis
modification. The accuracy is about the same for both systems, the pause analysis systems
provide faster processing time.

46

Chapter 8

Experiments with clustering

In this chapter, we present the results of experiments performed with evaluation by clus-
tering. Two types of clusters are used in evaluation: i) reference cluster – created by
labelled pre-recorded messages (known-messages scenario, described in Section 1.1) and ii)
predicted cluster – created by list of candidates from RQA analysis (unknown-messages
scenario, described in Section 1.2.d))

8.1 RQA S-DTW clustering
To reduce the processing time of one file significantly more, it is necessary not to com-
pare a file to every candidate. Clustering helps to divide candidates into groups – classes.
Clustering adds another layer to the classification process, mainly aimed to decrease time
complexity and to increase accuracy.

The clustering process consists of two steps: i) VAD detection and filtering and ii)
dividing candidates into classes by using SDTW.

VAD detection

First, every relevant element from the RQA analysis is sent to VAD analysis. Relevant
elements are those, having a non-empty list of frames from RQA analysis. These frames
are sent to VAD, and the active parts are kept.

SDTW clustering

Second, filtered files from VAD are compared to each other by SDTW. To be more sensitive
to any similarity, the length constraint 𝐿 is set to register at least 200/𝑓𝑟𝑎𝑚𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛-
long frames. The comparison works similarly to any other mentioned systems. However,
the list is gradually decreased as the files are divided into classes with every loop.

It follows that the first file is going through all of the filtered chunks, 𝑛 files of the bunch
are grouped by the smallest distance, then the next loop cycle, the chunk is smaller by the
𝑛 files and so on. Thence, in every cycle, a new cluster class is created. Every cluster is
sorted by the lengths of the files – the shortest recordings are at the top.

47

After the comparison, some files were not grouped anywhere. These “singles” are not
automatically false alarms – they may not have “luck” to be compared to the most similar
recordings to them. Thence, a second run is performed.

In the second run, the “singles” are compared to the first three recordings from each
created cluster from the first run. If there are any “singles” left after the second run, then
they are excluded.

The clusters are stored persistently by Pickle utility for further use. The processing
cannot be parallelised. The advantage of the approach is that every file can be added to
one of the cluster classes at any time. Formal description of clustering process is presented
in algorithm 8.1.

Algorithm 8.1: Formal description of clustering process.
Input: list_of_candidates
Result: clusters
class_index ← 0
clusters ← list.empty()
filtered_candidates ← VAD(list_of_candidates)
for file 𝑖𝑛 filtered_candidates do

feature_vector ← loadPartOfInterests(file) if not in cache
if feature_vector 𝑖𝑛 clusters then

continue // already in clusters – it is not processed again
cache.add(feature_vector)
clusters ← list.add(new_cluster) // new cluster in each run
clusters[class_index].append(feature_vector)
for nested_file 𝑖𝑛 filtered_candidates do

nested_feature_vector ← loadPartOfInterests(nested_file) if not in cache
cache.add(nested_feature_vector)
if nested_feature_vector 𝑖𝑛 clusters then

continue
SDTW_distance ← SDTW(L, R, nested_feature_vector, feature_vector)
if SDTW_distance < threshold then

clusters[class_index].append(nested_feature_vector)
clusters[cluster_index].sortByDuration()
class_index++

singles_list ← findClusterOfSizeOne(clusters)
for file 𝑖𝑛 singles_list do

feature_vector ← cache.get(file)
class_index ← 0
for cluster 𝑖𝑛 clusters do

for the first 3 files 𝑖𝑛 cluster do
SDTW_distance ← SDTW(L, R, nested_feature_vector,
feature_vector)

if SDTW_distance < threshold then
clusters[class_index].append(feature_vector)

class_index++
removeClusterOfSizeOne(clusters)

48

Clustering evaluation

Clustering performance evaluation is necessary to ascertain the best settings and to select
the best cluster among others. To evaluate created clusters, a reference clustering is created
first.

The creation of the reference clusters is based on known messages and their labels. The
filename provides information about the message ID, the start and end of the message. Ev-
ery message ID represents one class – one cluster (of the total of 25 clusters). The clusters
are sorted by the lengths of the files – the same way as in the SDTW clustering.

Clustering performance evaluation metrics are presented in Section 2.6. In table 8.1,
clusters with different frame reduction size and various features are used. As seen in the
table, the best speed-accuracy trade-off is achieved by using frame reduction of size 20.

Some errors in clustering are not relevant – several messages are the same in content,
but the speakers differ in gender. Nevertheless, in reference clusters, this case has separate
clusters for the messages. Thence, it is marked as an error in predicted clustering. However,
some existing errors are not penalised. Predicted clustering by a list of candidates have a
chance of getting false alarms in a cluster. This behaviour is not marked as an error, as the
reference clusters do not contain any false alarms.

Metric Purity Rand Index NMI Total Time
[minutes]

Features M PP BN M PP BN M PP BN M PP BN
Sub eval
FR = 10 0.877 0.865 0.816 0.986 0.983 0.976 0.932 0.918 0.922 18.30 141.04 288.90

Sub eval
FR = 20 0.657 0.676 0.805 0.931 0.960 0.978 0.817 0.801 0.916 4.93 28.51 58.20

Sub eval
FR = 30 0.431 0.425 0.796 0.897 0.855 0.977 0.682 0.561 0.917 2.20 8.67 17.93

Sub eval
FR = 40 0.309 0.328 0.769 0.829 0.748 0.970 0.542 0.448 0.897 1.76 6.52 11.15

Eval
FR = 20 0.554 0.659 0.772 0.875 0.954 0.969 0.743 0.751 0.870 183.57 237.97 217.63

Table 8.1: The table shows clustering performance evaluation by several metrics as Purity,
Rand Index and NMI. The evaluation runs on different features like MFCC features (M),
phoneme posteriors (PP), and bottleneck features (BN) with various settings of frame
reduction (FR). The best speed-accuracy trade-off is with the 𝐹𝑅 = 20.

8.2 Clustered S-DTW second pass
This experiment uses both reference clusters and clusters created by a list of candidates
from RQA analysis (described in Section 8.1).

Preparation

The algorithm is the same as other DTW, SDTW methods. The only difference is that each
file is not compared to every relevant candidate from first-pass, but only to two files from
every cluster class. All parameters are the same – frame reduction = 20, distance metric =
cosine, parameter R = 5, and L = 300. While processing, the data points classified as hits,
can be added to the existing cluster. However, the option is turned off by default.

49

Results

The results depend on the quality of given cluster. The system works in two modes: i)
usage of the reference clusters, thence the messages are known and ii) usage of the created
clusters by clustering algorithm, thus the messages are unknown.

The system provides information about the position of the detected message, though
the same drawback is still present – as mentioned in SDTW second pass before. The system
is fast enough to be evaluated on bigger datasets, what makes it the main advantage of the
used DTW/SDTW systems. The processing can be parallelised.

The results of the systems are presented in table 8.2 and in Figure 8.1. The comparison
between the baseline DTW and the clustered version of SDTW is presented in table 8.3.

Reference
clusters

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF

Features M PP BN M PP BN M PP BN M PP BN
Sub eval
[known] 8.25 10.89 21.88 0.85 1.12 2.24 11.11% 19.78% 4.88% 0.21 0.39 0.09

Eval
[known] 17.35 12.06 19.78 9.12 6.30 10.15 15.59% 28.84% 3.05% 0.39 0.90 0.08

SDTW
clusters

Average time
[seconds]

Total time
[hours] EER[%] MinDCF

Features M PP BN M PP BN M PP BN M PP BN
Sub eval
[unknown] 9.39 15.25 22.67 0.96 1.56 2.32 12.74% 19.78% 13.82% 0.25 0.34 0.24

Eval
[unknown] 7.93 5.03 17.74 4.12 2.64 9.19 39.92% 42.13% 26.59% 0.99 1.00 0.80

Eval
(Sub eval
BNF cluster)
[unknown]

- - 22.07 - - 11.33 - - 13.80% - - 0.41

Table 8.2: Performance of the clustered SDTW second pass system. The used features
represent both used for clustering and classifying. All runs on the Eval dataset were paral-
lelised to 6 threads. The best results on the Eval dataset is achieved by Sub eval’s bottleneck
feature cluster. The cluster is chosen because of the best NMI score and the small count of
false alarms.

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold

System Base
DTW

clustered
SDTW
second

pass

Change
[%]

Base
DTW

clustered
SDTW
second

pass

Base
DTW

clustered
SDTW
second

pass

Change
[%]

Base
DTW

clustered
SDTW
second

pass

clustered
SDTW
second

pass
Sub eval

(unknown
FR= 20)

Sub eval
(unknown
FR= 20)

Sub eval
(unknown
FR= 20)

Sub eval
(unknown
FR= 20)

Sub eval
(unknown
FR= 20)

MFCC
features 244.39 9.39 96.16% 25.38 0.96 41.17% 12.74% 69.06% 0.61 0.25 0.0029

Phoneme
posteriors 284.30 15.25 94.64% 29.37 1.56 30.48% 19.78% 35.10% 0.42 0.34 0.2845

Bottleneck
features 477.49 22.67 95.25% 49.59 2.32 29.41% 13.82% 53.01% 0.50 0.24 0.2095

Table 8.3: Comparison of baseline DTW system to RQA + SDTW clustering + SDTW
second-pass system. The second pass approach is about 95% faster – the duration of the
RQA analysis and clustering is excluded. Evaluated on “Sub eval” dataset.

Notice that in the case of using the reference clusters, DET curves are showing the per-
formance of the used features because of no bias of better or worse starting point depending

50

on the used cluster. Thence, bottleneck features is the best choice for the system, which
the previous DTW/SDTW systems’ results confirm as well. Many errors are caused by the
infiltrated non-message recordings into the clusters, as they then classify other non-message
recordings as hits.

0.55 1.5 4 9 20 30 45 60 75 85

FA [%]

0.55

1.5

4

8.5

15

30

45

60

75

M
is

s
[%

]

SDTW_Cluster_unknown_mfcc

minDCF = 0.249662

SDTW_Cluster_unknown_posteriors

minDCF = 0.337574

SDTW_Cluster_unknown_bottleneck

minDCF = 0.236322

0.55 1.5 4.5 10 20 30 50 65 80

FA [%]

0.55

1.5

3.5

7

15

20

35

50

60

M
is

s
[%

]

Ref_Cluster_known_mfcc

minDCF = 0.21076
Ref_Cluster_known_posteriors

minDCF = 0.390169

Ref_Cluster_known_bottleneck

minDCF = 0.0870306

0.07 0.4 2 6 15 30 55 75

FA [%]

0.55

2

7

15

30

55

70

85

M
is

s
[%

]

Ref_Cluster_known_mfcc

minDCF = 0.394568

Ref_Cluster_known_posteriors

minDCF = 0.904424

Ref_Cluster_known_bottleneck

minDCF = 0.0768871

0.1 0.8 4 15 35 60 80 94 98.5

FA [%]

0.9

4.5

15

35

65

85

95.5

99.1

M
is

s
[%

]

SDTW_Cluster_unknown_mfcc

minDCF = 0.999975

SDTW_Cluster_unknown_posteriors

minDCF = 1

SDTW_Cluster_unknown_bottleneck

minDCF = 0.804254

SubEvalBNF_SDTW_Cluster_unknown_bottleneck

minDCF = 0.405917

a) Sub eval (known) b) Eval (known)

c) Sub eval (unknown) d) Eval (unknown)

Figure 8.1: DET curves of the clustered SDTW second pass system.

8.3 Clusters with fuzzy phone string matching
The system combines all created systems to get the best performance. This experiment
uses both reference clusters and clusters created by a list of candidates from RQA analysis
(described in Section 8.1).

Preparation. This approach uses clusters explained in subsection 8.1, where frame re-
duction 𝐹𝑅 = 20 and clusters of all features are used, and reference clusters are used too.
For the phoneme strings, pause analysis is applied. While classifying, each file is compared
to first three elements from each cluster.

Results. From all presented systems, RQA first pass + SDTW clustering + fuzzy phone
string matching obtained the best overall results and the fastest processing time. The
system works both with known and unknown messages clusters and the system provides

51

info about the detected message – only indicative and inaccurate timestamp information.
The comparison between baseline fuzzy phone string matching (FSM) system and SDTW
cluster FSM is shown in table 8.5. The results are presented in table 8.4 and figure 8.2.

0.0095 0.08 0.5 2.5 8 20 40 65 80 93

FA [%]

0.5

2

5.5

15

30

45

65

80

91.5

M
is

s
[%

]

Ref_cluster_FuzzyMatch_mfcc

minDCF = 0.393483

Ref_cluster_FuzzyMatch_posteriors

minDCF = 0.393483

Ref_cluster_FuzzyMatch_bottleneck

minDCF = 0.393876

b) Eval (known)a) Sub eval (known)

a) Sub eval (unknown)

0.55 1.5 4 9 15 30 45 60 75 85

FA [%]

0.55

1

2.5

4.5

7.5

15

20

30

40

M
is

s
[%

]

Ref_cluster_FuzzyMatch_mfcc

minDCF = 0.026738

Ref_cluster_FuzzyMatch_posteriors

minDCF = 0.026738

Ref_cluster_FuzzyMatch_bottleneck

minDCF = 0.026738

0.0095 0.095 0.65 3 10 25 50 75 90 96.5

FA [%]

0.6

2.5

7.5

20

35

55

75

90

96

M
is

s
[%

]

SDTW_cluster_FuzzyMatch_mfcc

minDCF = 0.659117

SDTW_cluster_FuzzyMatch_posteriors

minDCF = 0.464603

SDTW_cluster_FuzzyMatch_bottleneck

minDCF = 0.472325

0.55 2 6 15 30 50 70 85 93.5

FA [%]

0.55

1.5

3

6.5

10

20

30

45

55

M
is

s
[%

]

SDTW_cluster_FuzzyMatch_mfcc

minDCF = 0.240642

SDTW_cluster_FuzzyMatch_posteriors

minDCF = 0.0427807

SDTW_cluster_FuzzyMatch_bottleneck

minDCF = 0.112299

d) Eval (unknown)

Figure 8.2: DET curves of the SDTW cluster + fuzzy string matching system. Used SDTW
clusters are created from the Eval dataset from all available features. The system works
with both known messages a), b) and unknown messages c), d).

Ref
cluster

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF

Features M PP BN M PP BN M PP BN M PP BN
Sub eval 6.68 5.98 5.96 0.69 0.62 0.62 1.60% 1.60% 1.60% 0.03 0.03 0.03
Eval 17.35 12.06 19.78 9.12 6.30 10.15 4.28% 4.28% 4.30% 0.39 0.39 0.39
SDTW
cluster

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF

Features M PP BN M PP BN M PP BN M PP BN
Sub eval 0.79 3.91 3.73 0.08 0.41 0.39 13.90% 2.14% 6.41% 0.24 0.04 0.11
Eval 1.57 1.57 1.43 4.99 6.39 4.54 20.48% 6.34% 5.77% 0.66 0.46 0.47

Table 8.4: Results of SDTW clustered FSM system. Evaluated on both the Sub eval
and Eval datasets. The system works with both known messages (reference cluster) and
unknown messages (SDTW cluster).

52

(Sub eval
dataset)

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold

System *Base
FSM

clustered
FSM

Change
[%]

*Base
FSM

clustered
FSM

*Base
FSM

clustered
FSM

Change
[%]

*Base
FSM

clustered
FSM

clustered
FSM

MFCC
features 29.57 0.79 97.32% 3.07 0.08 18.18% 13.90% 23.54% 0.24 0.24 51.0

Phoneme
posteriors 29.57 3.91 86.78% 3.07 0.41 18.18% 2.14% 88.23% 0.24 0.04 51.0

Bottleneck
features 29.57 3.73 87.39% 3.07 0.39 18.18% 6.41% 64.74% 0.24 0.11 51.0

(Eval
dataset)

Average time
[seconds]

Total time
[hours]

EER
[%] MinDCF The best

threshold

System *Base
FSM

clustered
FSM

Change
[%]

*Base
FSM

clustered
FSM

*Base
FSM

clustered
FSM

Change
[%]

*Base
FSM

clustered
FSM

clustered
FSM

MFCC
features 37.14 1.57 95.77% 118.03 4.99 33.14% 20.48% 38.20% 0.97 0.66 45.0

Phoneme
posteriors 37.14 2.01 95.59% 118.03 6.39 33.14% 6.34% 80.87% 0.97 0.46 51.0

Bottleneck
features 37.14 1.43 96.15% 118.03 4.54 33.14% 5.77% 82.59% 0.97 0.47 48.0

Table 8.5: Comparison between baseline fuzzy phone string matching and SDTW clustered
FSM. Evaluated on both the Sub eval and Eval datasets. *Base FSM does use only phoneme
strings for the classification process none of the MFCC, posteriors, bottleneck features are
used – that is the reason behind the same values in the corresponding columns.

8.4 Overall results
The performance varies depending on many aspects. The most evident parameters are the
used features, where bottleneck features provide overall the best performance, followed by
phoneme posteriors. Even though the MFCC features are not the best in accuracy, they
provide the fastest processing time, and they are completely language independent.

The accuracy increased with every new experiment compared to baselines, while the
processing time gradually decreased with every new approach.

However, there is still space to increase accuracy and effectiveness. Many shorter files
cause errors, especially those containing shorter phrases resulting in good scores. I glimpsed
several cases when an error was caused by imperfection of the dataset – e.g. in case of strong
cross-talk between speaker A and speaker B channels, thence, when comparing these two
sequences, the parts were correctly marked as similar. Such a difference in accuracy between
“Sub eval” and “Eval” datasets may be caused by the percentage of recordings with messages
in all files, which, in the Sub eval dataset, is 50% (half of the files is the goal data points),
and in the Eval dataset, the data points with messages are around 8% of all files.

The best approach in any means is to use known-messages (for reference clustering). If
such an option is not possible, then perform the RQA analysis first, followed by the SDTW
bottleneck feature clustering, and finally use the fuzzy string matching approach.

53

Chapter 9

Conclusion

9.1 Summary of the work performed
In this thesis, we have presented the methods for detecting re-occurring sequences across
audio data. More precisely, we focused on searching for pre-recorded telephone operator
messages in speech conversations.

We took a deeper look at three techniques: Dynamic time warping, recurrent quantifica-
tion analysis and fuzzy string matching. The main idea was to choose the most accurate and
fastest approach. Particularly, we aimed to find a suitable combination of the techniques
while the system runs without the knowledge of the messages.

To determine which system is the best, it was essential to simulate a proper dataset.
We accomplished that by mixing the operator messages into the Switchboard corpus. The
methods were evaluated on the derivatives of this simulated dataset. The results show the
necessity of a combination of various procedures. We found out that RQA provides the best
performance among the three baseline methods. We showed that the bottleneck features
bring the highest accuracy and MFCC features the fastest processing time. To speed up
the detection, caching and frame averaging significantly reduced the computation time.

In the end, we observed that the best solution is to use all techniques combined. First,
we provide RQA analysis to get a list of candidates. Second, we perform SDTW clustering
from the RQA list, and finally, we classify the speech conversation recordings by fuzzy
string matching. The results are twice as good when using reference clusters.

9.2 Future directions
We did not cover some other aspects, which could increase accuracy and reliability. In
general, the enhanced performance of the systems can be achieved by tuning the parameters
in VAD or tweaking SDTW.

RQA second pass

The obtained results could be improved by performing RQA second pass instead of SDTW
or FSM classification. The performance of RQA is proven to be fast and accurate. The
possibility to compare all representatives of cluster classes to a file at once may improve
the speed significantly while preserving high accuracy.

54

Speaker diarisation techniques

The problem of providing reliable timestamps of detected messages can be solved by speaker
diarisation (SD) systems. SD systems mark the position of the message accurately, as the
whole message is recorded by the same person. Another usage of SD systems could be to
save the voiceprint of a speaker of a detected message. The saved voiceprint may help in
the detection process.

55

Bibliography

[1] B, J. and Babu.N, R. Speech recognition using MFCC and DTW. In: 2014
International Conference on Advances in Electrical Engineering (ICAEE). January
2014, p. 4. DOI: 10.1109/ICAEE.2014.6838564.

[2] Caswell, T. A., Droettboom, M., Lee, A., Hunter, J., Andrade, E. S. de et al.
Matplotlib/matplotlib: REL: v3.3.2. Zenodo, september 2020. Available at:
https://doi.org/10.5281/zenodo.4030140.

[3] Chen, Y., Chen, K., Wang, H. and Chen, B. Effective pseudo-relevance feedback
for spoken document retrieval. In: 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. 2013, p. 8535–8539. DOI:
10.1109/ICASSP.2013.6639331.

[4] Fan, J., Upadhye, S. and Worster, A. Understanding receiver operating
characteristic (ROC) curves. Canadian Journal of Emergency Medicine. Cambridge
University Press. 2006, vol. 8, no. 1, p. 19–20. DOI: 10.1017/S1481803500013336.

[5] Fapšo, M. Query-by-Example Spoken Term Detection. Brno, CZ, 2014. Ph.D. thesis.
Brno University of Technology, Faculty of Information Technology. Available at:
https://www.fit.vut.cz/study/phd-thesis/282/.

[6] Fér, R., Matějka, P., Grézl, F., Plchot, O., Veselý, K. et al. Multilingually
Trained Bottleneck Features in Spoken Language Recognition. Computer Speech &
Language. november 2017, vol. 46, p. 252–267. DOI: 10.1016/j.csl.2017.06.008.

[7] Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P.
et al. Array programming with NumPy. Nature. Springer Science and Business
Media LLC. september 2020, vol. 585, no. 7825, p. 357–362. DOI:
10.1038/s41586-020-2649-2. Available at:
https://doi.org/10.1038/s41586-020-2649-2.

[8] Hazen, T. J., Shen, W. and White, C. Query-by-example spoken term detection
using phonetic posteriorgram templates. In: 2009 IEEE Workshop on Automatic
Speech Recognition Understanding. 2009, p. 421–426. DOI:
10.1109/ASRU.2009.5372889.

[9] Ho, T., Oh, S.-R. and Kim, H. A parallel approximate string matching under
Levenshtein distance on graphics processing units using warp-shuffle operations.
PLOS ONE. Public Library of Science. october 2017, vol. 12, p. 1–15. DOI:
10.1371/journal.pone.0186251. Available at:
https://doi.org/10.1371/journal.pone.0186251.

56

https://doi.org/10.5281/zenodo.4030140
https://www.fit.vut.cz/study/phd-thesis/282/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1371/journal.pone.0186251

[10] Jansen, A., Church, K. and Hermansky, H. Towards spoken term discovery at
scale with zero resources. In:. January 2010, p. 1676–1679.

[11] Kashyap, R. and Oommen, B. An effective algorithm for string correction using
generalized edit distances—I. Description of the algorithm and its optimality.
Information Sciences. 1981, vol. 23, no. 2, p. 123–142. DOI:
https://doi.org/10.1016/0020-0255(81)90052-9. ISSN 0020-0255. Available at:
https://www.sciencedirect.com/science/article/pii/0020025581900529.

[12] Likens, A. D., McCarthy, K. S., Allen, L. K. and McNamara, D. S. Recurrence
Quantification Analysis as a Method for Studying Text Comprehension Dynamics.
In: Proceedings of the 8th International Conference on Learning Analytics and
Knowledge. New York, NY, USA: Association for Computing Machinery, 2018,
p. 111–120. LAK ’18. DOI: 10.1145/3170358.3170407. ISBN 9781450364003.
Available at: https://doi.org/10.1145/3170358.3170407.

[13] Manning, C. D. Introduction to Information Retrieval. Cambridge University Press,
jul 2008. 356-359 p. ISBN 0521865719. Available at:
https://www.xarg.org/ref/a/0521865719/.

[14] Martin, A., Doddington, G., Kamm, T., Ordowski, M. and Przybocki, M. A.
The DET curve in assessment of detection task performance. In: EUROSPEECH.
1997.

[15] McFee, B., Lostanlen, V., Metsai, A., McVicar, M., Balke, S. et al.
Librosa/librosa: 0.8.0. Zenodo, july 2020. Available at:
https://doi.org/10.5281/zenodo.3955228.

[16] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J. and Khudanpur, S.
Recurrent neural network based language model. In: Kobayashi, T., Hirose, K.
and Nakamura, S., ed. INTERSPEECH. ISCA, 2010, p. 1045–1048. Available at:
http:
//dblp.uni-trier.de/db/conf/interspeech/interspeech2010.html#MikolovKBCK10.

[17] Muda, L., Begam, M. and Elamvazuthi, I. Voice Recognition Algorithms using
Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW)
Techniques. J Comput. march 2010, vol. 2, p. 138–143.

[18] Nosratighods, M., Ambikairajah, E., Epps, J. and Carey, M. Score weighting in
speaker verification systems. In: 2007 6th International Conference on Information,
Communications Signal Processing. 2007, p. 1–4. DOI: 10.1109/ICICS.2007.4449714.

[19] Parekh, R. and Das, B. 2012 : Recognition of Isolated Words using Features based
on LPC, MFCC, ZCR and STE, with Neural Network Classifiers. International
Journal of Modern Engineering Research. january 2012, vol. 2, p. 854–858.

[20] Park, A. and Glass, J. Unsupervised Pattern Discovery in Speech. Audio, Speech,
and Language Processing, IEEE Transactions on. february 2008, vol. 16, p. 186 –
197. DOI: 10.1109/TASL.2007.909282.

[21] Park, A. S. Unsupervised pattern discovery in speech: Applications to word
acquisition and speaker segmentation. 2006. 46-53 p. Dissertation. Massachusetts
Institute of Technology.

57

https://www.sciencedirect.com/science/article/pii/0020025581900529
https://doi.org/10.1145/3170358.3170407
https://www.xarg.org/ref/a/0521865719/
https://doi.org/10.5281/zenodo.3955228
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2010.html#MikolovKBCK10
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2010.html#MikolovKBCK10

[22] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B. et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011, vol. 12, p. 2825–2830.

[23] Pfitzner, D., Leibbrandt, R. and Powers, D. Characterization and evaluation of
similarity measures for pairs of clusterings. Knowl. Inf. Syst. june 2009, vol. 19,
p. 361–394. DOI: 10.1007/s10115-008-0150-6.

[24] Picheny, M., Nahamoo, D., Goel, V., Kingsbury, B., Ramabhadran, B. et al.
Trends and advances in speech recognition. IBM Journal of Research and
Development. 2011, vol. 55, no. 5, p. 2:1–2:18. DOI: 10.1147/JRD.2011.2163277.

[25] Portilla, R., Heintz, B. and Lee, D. Understanding Dynamic Time Warping -
The Databricks Blog [https://databricks.com/blog/2019/04/30/understanding-
dynamic-time-warping.html]. April 2019. (Accessed on 01/26/2021).

[26] Rao, K. and e, M. k. Speech Recognition Using Articulatory and Excitation Source
Features. January 2017. ISBN 978-3-319-49219-3.

[27] Saenz Lechon, N., llorente, J. godino, Osma Ruiz, V. and Gomez, P.
Methodological issues in the development of automatic systems for voice pathology
detection. Biomedical Signal Processing and Control. april 2006, vol. 1, p. 120–128.
DOI: 10.1016/j.bspc.2006.06.003.

[28] Salvador, S. and Chan, P. Toward Accurate Dynamic Time Warping in Linear
Time and Space. Intelligent Data Analysis. january 2004, vol. 11, p. 70–80.

[29] Schwarz, P. Phoneme recognition based on long temporal context. Brno, CZ, 2009.
Disertační práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
Available at: https://www.fit.vut.cz/study/phd-thesis/109/.

[30] Serrà, J., Serra, X. and Andrzejak, R. Cross recurrence quantification for cover
song identification. New Journal of Physics. september 2009, vol. 11, p. 093017.
DOI: 10.1088/1367-2630/11/9/093017.

[31] Tejedor, J., Fapšo, M., Szöke, I., Černocký, J. u. and Grézl, F. Comparison of
Methods for Language-Dependent and Language-Independent Query-by-Example
Spoken Term Detection. New York, NY, USA: Association for Computing
Machinery. 2012, vol. 30, no. 3. DOI: 10.1145/2328967.2328971. ISSN 1046-8188.
Available at: https://doi.org/10.1145/2328967.2328971.

[32] Van Leeuwen, D. and Brummer, N. An Introduction to Application-Independent
Evaluation of Speaker Recognition Systems. In:. January 2007, vol. 4343, p. 330–353.
DOI: 10.1007/978-3-540-74200-5_19. ISBN 978-3-540-74186-2.

[33] Velivelli, A., ChengXiang Zhai and Huang, T. S. Audio segment retrieval using
a short duration example query. 2004, vol. 3, p. 1603–1606 Vol.3. DOI:
10.1109/ICME.2004.1394556.

[34] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T. et al.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods. 2020, vol. 17, p. 261–272. DOI: 10.1038/s41592-019-0686-2.

58

https://databricks.com/blog/2019/04/30/understanding-dynamic-time-warping.html
https://databricks.com/blog/2019/04/30/understanding-dynamic-time-warping.html
https://www.fit.vut.cz/study/phd-thesis/109/
https://doi.org/10.1145/2328967.2328971

[35] Wu, J., Martin, A., Greenberg, C. S. and Kacker, R. The Impact of Data
Dependence on Speaker Recognition Evaluation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing. 2017, vol. 25, p. 5–18.

[36] Yujian, L. and Bo, L. A Normalized Levenshtein Distance Metric. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2007, vol. 29, no. 6,
p. 1091–1095. DOI: 10.1109/TPAMI.2007.1078.

[37] Zbilut, J. P. and Webber Jr., C. L. Recurrence Quantification Analysis. In: Wiley
Encyclopedia of Biomedical Engineering. American Cancer Society, 2006. DOI:
https://doi.org/10.1002/9780471740360.ebs1355. ISBN 9780471740360. Available at:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780471740360.ebs1355.

[38] Černocký, J. Zpracování řečových signálů — studijní opora
[http://www.fit.vutbr.cz/study/courses/ZRE/public/opora/zre_opora.pdf].
Brno University of Technology, december 2006. 100-108 p. (Accessed on 01/27/2021).

59

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780471740360.ebs1355
http://www.fit.vutbr.cz/study/courses/ZRE/public/opora/zre_opora.pdf

Appendix A

Contents of the included storage
media

This appendix lists contents of the attached CD:

• sub_eval.zip – Zip file with the “sub_eval” dataset used in the experiments. Con-
tains eval_clear – wav audio data without pre-recorded messages and eval_goal –
wav audio data with mixed pre-recorded messages. The subfolders include processed
phoneme posteriors, bottleneck features in htk format, and phoneme strings in txt
format.

• messages/ – Original unmixed messages with transcription.

• scripts/ – Created and used source codes.
The folder scripts/ contains these subdirectiories:

– scripts/evaluations/ – The scores, processing time and created objects (per-
sistent Python objects (RQA list, cluster analysis) in pkl format) from the ex-
periments.

– scripts/third_party_scripts/ – The folder contains third party source codes.

• text/ – LATEXsource codes of the thesis. The PDF can be created with the command
make pdf.

• xbobos00.pdf – This thesis in the PDF format.

60

Appendix B

Manual

This appendix describes installation process and user manual. The setup is tested, and it
is working on Ubuntu 20.04 machines.

B.1 Installation manual
To have properly working scripts, it is necessary to install Python dependencies. Installation
can be done using the following commands:

cd scripts/
pip install -r requirements.txt

Scripts for editing audio files need ffmpeg utility. This dependency can be installed by
sudo apt-get install ffmpeg.

Additionally, in the case of creating phoneme posteriors, it is necessary to install the
phoneme recogniser, from https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-
long-temporal-context. After successful installation, change path to installed phoneme
recogniser in script /scripts/set_phnrec.

B.2 User manual

Creation of a simulated dataset

The creation of a simulated dataset is accomplished by two scripts split.py and mix.py.

Script split.py

Python script split.py is responsible for cutting phone calls into smaller parts.
There are many arguments to specify wanted result:

• --sec – Sets the length of the cut part (in seconds).

• --src – Path to source directory containing the uncut phone calls.

• --dst – Path to destination directory where the cut phone calls will be saved.

• --lt, --st – Will cut longer/shorter recordings than specified (in seconds).

61

https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context

• --rm – Remove original file after splitting.

• --stats – Shows statistics about the files from given source.

• --move, --copy, --count – Will move/copy “count” recording.

Example command for splitting files to 180-second-long segments:

python3 split.py --src=/source_folder/ --dst=/destination_folder/ --sec=180
--lt=100 --st=500 --rm

Script mix.py

Python script mix.py is responsible for mixing pre-recorded telephone operator messages
into phone calls.

First, the given message is edited in repetitions, speed, volume, and afterwards, it is
inserted into the phone calls. Arguments to specify wanted result include:

• -m, --mode – Specifies, which type of pre-recorded message you want to use (possible
values are: A, B, C).

• --mpath – Path to the directory with the pre-recorded messages.

• --spath – Path to the directory with the speech .wav files.

• --export – Path to the directory to export the mixed audio files.

• --lt, --st – Will use longer/shorter recordings than specified (in seconds).

• -g, -s, -r – Change volume/speed/repetitions of the pre-recorded messages.

• --random – severity of randomness. Possible values are:

– 0 – no random values, use the original values of the pre-recorded message
– 1 – low differences (gain between -3dB+3dB, speed 0.95-1.05, repeat 1-10.0)
– 2 – optimal differences (gain between -6dB+6dB, speed 0.9-1.1, repeat 0.8-30.0)
– 3 – high differences (gain between -10dB+6dB, speed 0.85-1.15, repeat 0.7-40.0)

• --onlymodify – Will modify the operator message only, without mixing into phone
calls.

• –stats – shows statistics about the files from given source

Example command for mixing pre-recorded messages of type A to audio recordings:

python3 mix.py --mpath=/messages/ --spath=/telephone_conversations/
--export=/mixed_conversations/ -m=A --lt=100 --st=150 --random=2 -g -s -r

62

Experiments

This section provides detailed instructions on how to obtain the results presented in Chap-
ters 5, 7 and 8. The process can be described as follows:

To start the classification process, it is necessary to set a source directory containing
goal (with mixed messages) and clear (pure phone calls) data. This is accomplished by
--src argument.

It is necessary to specify the system to classification by the --system argument. The
options are as follows:

• Baseline DTW system (in 5.1) – --system=basedtw

• Baseline RQA system (in 5.2) – --system=rqa_unknown

• Baseline FSM system (in 5.3) – --system=fuzzy_match_base

• RQA+DTW system (in 7.1.1) – --system=rqa_dtw_unknown

• RQA+SDTW system (in 7.1.2) – --system=rqa_sdtw_unknown

• FSM pause analysis system (in 7.2.1) – --system=fuzzy_match_pau_analysis

• RQA+SDTW clustering+SDTW system (in 8.2)

– unknown messages scenario: --system=rqacluster_sdtw_unknown

– known messages scenario: --system=cluster_sdtw_known

• RQA+SDTW clustering+FSM system (in 8.3)

– unknown messages scenario: --system=rqacluster_fuzzy_match_unknown

– known messages scenario: --system=rqacluster_fuzzy_match_known

To be clear, all systems using the RQA list of candidates search for the file evaluation-
s/objects/rqa_list_FEAT.pkl, where “FEAT” is the one specified in --feature argument.
If the file is not present, the system will create one. The same applies to other sys-
tems using SDTW clusters, where the system looks for the file evaluations/objects/clus-
ter_rqa_list_CLUSTFEAT.pkl, where “CLUSTFEAT” is the feature specified by --cluster-
feature. It is required to specify used type of feature arrays:

• RQA, DTW/SDTW system –
--feature=mfcc/posteriors/bottleneck

• FSM system –
--feature=string

• Systems using SDTW clusters need additional parameter –
--cluster-feature=mfcc/posteriors/bottleneck

The systems using frame averaging are specified with --frame-reduction=NUM.
Parallelisation is accomplished by --parallelize-from and --parallelize-to parame-
ters. The parameters specify which files are processed by the system.
The example command can be as follows:
python3 main.py --src=../sub_eval/ --system=rqacluster_fuzzy_match_unknown
--feature=string --cluster-feature=bottleneck --parallelize-to=200

63

	Introduction
	Tasks
	Organisation

	State-of-the-art
	Feature extraction and feature matching
	Mel-frequency Cepstral Coefficients features
	DTW feature matching
	Segmental DTW

	Optimisation across a large dataset
	Efficient Line Segment Detection
	Recurrence quantification analysis
	Two-pass approach

	Spoken term detection
	Fuzzy string matching
	Evaluation of detection
	DET
	ROC
	EER
	Minimum DCF

	Evaluation of clustering
	Purity
	Rand index
	NMI

	Dataset
	Switchboard dataset
	Telephone operator pre-recorded messages
	Mixing pre-recorded messages into Switchboard

	Used tools
	Feature extraction tools
	Algorithm tools
	Evaluation Algorithms

	Baselines
	DTW approach
	RQA approach
	Fuzzy phone string matching approach

	Optimisations
	Caching
	Frame averaging

	Experiments with evaluating by a list of files
	Experiments with DTW
	DTW second pass
	S-DTW second pass

	Experiments with fuzzy phone string matching
	Pause analysis

	Experiments with clustering
	RQA S-DTW clustering
	Clustered S-DTW second pass
	Clusters with fuzzy phone string matching
	Overall results

	Conclusion
	Summary of the work performed
	Future directions

	Bibliography
	Contents of the included storage media
	Manual
	Installation manual
	User manual

