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Abstract
The main goal of this work was to use neural networks for volumetric segmentation of dental
CBCT data. As a byproducts, both new dataset including sparse and dense annotations and
automatic preprocessing pipeline were produced. Additionaly, the possibility of applying
transfer learning and multi-phase training in order to imporve segmentation results was
tested. From the various tests that were carried out, conclusion can be drawn that both
multi-phase training and transfer learning showed substantial improvement in dice score
for both sparse and dense annotations compared to the baseline method.

Abstrakt
Hlavným cieľom tejto práce bola segmentácia objemových CT dát za použitia neurónových
sietí. Ako vedľajší produkt bol vytvorený nový dataset spolu s silnými aj slabými anotáciami
a nástroj pre automatický preprocessing dát. Takisto bola overená možnosť využita transfer
learningu a viacfázového trénovania. Z mnohých vykonaných testov možno vyvodiť záver,
že aj tranfer learning aj viacfázové trénovanie mali pozitívny vplyv na vývoj dice skóre v
porovnaní so základnou použitou metódou či už pri silných, alebo slabých anotáciách.
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Rozšířený abstrakt
Počítačová tomografia (CT) sa stala od svojho vzniku v sedemdesiatych rokoch minulého
storočia neodeliteľnou súčasťou modernej medicíny. Slúži na diagnostiku širokého spek-
tra poranení či chorôb a jej základným princípom je zber a počítačové spracovanie veľkého
množstva údajov o hodnote absorbcie röntgenového žiarenia. Výsledkom počítačového spra-
covania sú 3D objemové CT dáta reprezentujúce určitú časť ľudského tela. Samotnú počí-
tačovú tomografiu je možné rozdeliť na rôzne typy, pričom jedným z najnovšých typov je
CT využívajúca kužeľovitého zväzku lúčov (CBCT), ktorý sa najčastejšie používa v zubnom
lekárstve.

Účelom tejto práce bola segmentácia zubných koreňov a koruniek z takýchto CBCT ob-
jemových dát. Z rozsiahleho spektra segmentačných metód, ktoré sa v praxi bežne použí-
vajú, bolo vybrané hlboké učenie ako metóda pre automatickú segmentáciu. Konkrétne
sa jednalo o konvolučné neurónové siete (CNN), ktoré momentálne dosahujú omnoho lep-
šie výsledky než iné segmentačné metódy. Čo sa týka samotnej architektúry konvolučnej
neurónovej siete, vzhľadom na povahu cieĺových dát bola zvolená architektúra 3D U-Net.

Momentálne neexistujú žiadne voľne dostupné zubné datasety, ani anotácie potrebné
pre trénovanie takejto neurónovej siete, preto bolo nutné získať trénovací dataset iným
spôsobm a dodatočne k nemu vyrobiť anotácie. Trénovací dataset bol napokon zložený
z 42 CT skenov zubných oblastí extrahovaných z veľkého datasetu 500 ľudských hláv a
štyroch ďaľších CBCT skenov voľne dostupných na internete. K tomuto datasetu boli
ručne vytvorené dva typy anotácií, a to slabé a silné anotácie.

Vzhľadom na to, že trénovacie dáta pochádzali z rôznych zdrojov a mali rozdielny for-
mát, bolo ich nutné pred vstupom do neurónovej siete dodatočne spracovať. Spracovanie
prebiehalo v štyroch krokoch - prevzorkovanie, normalizácia, orezávanie a vyplnenie.

Všetky trénovacie data boli prevzorkované na izotropické rozostupy voxelov o veĺkosti
0.8mm. Cieľom tohoto prevzorkovania je dosiahnuť rovnaké dimenzie pre oba typy skenov
(CT a CBCT) a zároveň zmenšenie ich celkovej veľkosti pre urýchlenie trénovania. Ďalším
krokom bolo škálovanie dát do rozsahu od 0 do 1, orezanie zubnej oblasti na základe
dopočítanej masky a pridanie dostatočného množstva výplne tak, aby koincidovali rozmery
obrázku zo vstupom akceptovaným neurónovou sieťou. Nakoniec bola na všetky dáta ap-
likovaná z-score normalizácia.

Čo sa týka samotnej stratégie trénovania, okrem konvenčného spôsobu bola pridaná
aplikácia transfer learningu, viacfázové trénovanie a augmentácia dát. Pri použití transfer
learningu boli modely určené pre segmentáciu predom natrénované na účel obnovy obrazu
buďto z veľkého množstva CT skenov hrudníka, alebo malého množstva zubných CBCT
skenov. Viacfázové trénovanie pozostávalo z prvotného trénovania na neorezaných skenoch,
následne na orezaných skenoch a nakoniec na vybranej vzorke orezaných CBCT skenov.
Jednotlivé techniky slúžiace na augmentáciu dát boli následovné: náhodné rotácie, náhodné
pretočenia, elastické deformácie, augmentácia za pomoci gamma korekcie a náhodná zmena
kontrastu.

V prvej časti experimentov bolo testovaných niekoľko parametrov trénovania za účelom
dosiahnutia čo najlepších budúcich výsledkov. Na základe nameraných výsledkov bola
zvolená optimálna veľkosť vstupu do CNN 64x64x64, rýchlosť učenia bola nastavená na
10−3 v prípade silných anotácií a 10−4 v prípade slabých anotácií. Takisto bolo dokázané,
že aplikovanie z-score normalizácie zvýšilo segmentačnú presnosť o zhruba 5%.

Ďaľšia sada experimentov testovala výsledky jednotlivých prístupov zmienených v pre-
došlých odstavcoch pri jednofázovom trénovaní. V oboch prípadoch bolo možné pozorovať
dominanciu transfer learningu nad "čistými" modelmi.



Posledná sada experimentov bola zameraná na zvýraznenie vplyvu viacfázového trénova-
nia na celkovú segmentačnú presnosť. Z výsledkov možno vydedukovať, že celkové zvýšenie
presnosti oproti jednofázovému trénovaniu sa pohybovalo okolo 10% pre slabé anotácie a
5% pre silné anotácie. Takisto si je možné všimnúť, že model predom natrénovaný na ob-
novu obrazu z CT skenov hrudníku svojimi výsledkami v oboch prípadoch predčil všetky
ostatné modely.

V konečnom dôsledku bolo vytvorených niekoľko segmentačných modelov, pričom na-
jlepší z nich dosiahol úctyhodných výsledkov na testovacej sade - 90.23%, 87.2% a 91.70%.
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Chapter 1

Introduction

Since its discovery in 1970s, Computed Tomography became inseparable part of the modern
medicine. Along with Magnetic resonance imaging (MRI) and their predecessor, X-ray, they
are being classified as medical imaging techniques, since their outcome represents either 2D
or 3D images. In medicine, their purpose lies within preventive healthcare or as a tool used
in screening for disease. Preventive healthcare, as the name might suggest, focuses on a
prevention of illness to decrease the burden of disease and associated risk factors. Although
at first glance, these techniques might seem interchangeable between each other, they do
differ in multiple areas.

Principle of magnetic resonance imaging lies within special devices, called MRI scan-
ners, generating strong magnetic fields and radio waves that bounce off the fat and water
molecules in human body. Radio waves are being transmitted to the receiver located in the
machine which further translates them into an 3D images of the organs in the body used
in medical diagnosis. Some patients with medical implants or other non-removable metal
inside their body may also be unable to undergo the examination, due to use of before-
mentioned strong magnetic fields. Images produced by technique of magnetic resonance
imaging typically achieve better results in intricate soft tissue visualization compared to
both X-ray and CT, however that comes at the cost of increased price. Therefore, MRI
is more suitable for examining soft tissue injuries, especially in tendons and ligaments, or
discovering brain tumors and spinal cord injuries.

X-rays, similarly to visible light, belong to the category of electromagnetic rays, so
they follow the rules of electromagnetic radiation. Radiograph, the outcome of the x-ray
procedure, is made by electromagnetic beams produced from x-ray source passing through
the human body. X-rays traveling through the human body get absorbed in different
amounts determined by the radiological density of the given tissue. Variously weakened
x-rays are then being recorded by the x-ray detector and sent to the machine to produce
2D scan of the patients body.

Computed Tomography, or more commonly known as CT, can be viewed as more pow-
erful, more advanced form of the x-ray procedure. It uses high performance x-ray lamp
in combination with multiple rows of detectors, which quickly rotate around the patient,
producing signals that are further being processed by a computer to produce cross-sectional

2



images also called ”slices“. These slices can be later projected into multiple planes, and
further processed to the three-dimensional images.

Medical imaging techniques, predominantly x-rays and CTs, are not foreign to the
dentistry either, since their use can be often observed in dental implant placements, treating
jaw tumors, reconstructive surgeries etc. While its not entirely uncommon to see the use
of MRI as well, for now it falls behind computed tomography due to its lesser availability,
higher price and often difficulties with metallic artifacts.

Although analysing and evaluating single x-ray scan might not be a difficult procedure,
analysing enormous amounts of raw data produced by computed tomography in short time
period may prove to be near impossible task even for experienced dental radiologist. To
shorten the time spent on analyzing such data, decrease occurrences of oversights and reduce
the number of false negatives, computer aided detection (CAD) was introduced. Although
it is impossible for computer aided detection to completely replace professionals, it allows
them to only control results of the computer’s work instead of devoting their precious time.

Computer aided detection is a term describing systems capable of processing raw com-
puted tomography data, further transforming them according to the specific needs of a
doctor. It combines features from artificial intelligence and computer vision with image
processing. Most frequent uses represent detection and highlighting of suspicious objects
such as tumors and transformation of two-dimensional slices into three-dimensional models
needed for surgery planning. There has been a major breakthrough in computer aided de-
tection relatively recently, due to the introduction and advancement of convolutional neural
networks. With their use, more accurate results of segmentation and classification can be
achieved, often even shortening the amount of time needed.

The purpose of this thesis will be to develop a system suitable for producing 3D segmen-
tations of teeth without the surrounding mandible and maxilla bones or any other types
of soft tissue using convolutional neural networks in combination with other known image
processing algorithms.
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Chapter 2

Image segmentation

The term ’Image Segmentation’ defines collection of methods, that firmly belong to the
field of computer vision. The basic principle of segmentation methods lays in localization
and visual separation of pixel/voxel groups, depending on the number of dimensions in
given digital image, that satisfy certain criteria set by the user or algorithm. The name
itself comes precisely from these groups of pixels/voxels, since they are often being called
segments. Outcome of such procedure is,in most cases either set of labeled segments, that
covers entirety of the image area, or set of contours, extracted from the original image
[7]. The main purpose of image segmentation is to pinpoint and label certain important
objects, such as people or animals, hence simplifying the image for further processing.
Techniques used for labeling these objects can be further divided into two separate styles.
First style, called semantic segmentation specializes in assigning the same label to the
each and every object, that is sharing similar key characteristics (shape, color etc.), therefore
having the same semantic significance. In addition to performing exactly the same task
as first style, the second one, named instance segmentation, manages to individually
segment objects, that would, with the use of semantic segmentation, belong to the same
category (instance). Example of the semantic segmentation could be segmenting tooth-like
objects from the dental scan, while instance segmentation would be taking it a step further,
assigning specialized label to every single one of them.

In modern radiology, different approaches to the segmentation of medical images can
be observed. To summarize them into the three distinct categories by their method of
execution and requirement for human interaction, scientists describe them as manual,
semi-automatic and fully automatic segmentation. Even though most of the meth-
ods belonging to these three categories are often used separately from each other, their
combination may result in higher performance and segmentation quality.

2.1 Medical images

Raw data for 3D medical segmentation come in form of computed tomography scans. Each
scan consists of exact amount of slices, 2D images representing ’slices’ or cuts of the human
body usually in horizontal, coronal or sagittal plane. Slices contains various information
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about themselves, such as slice thickness determining the scan resolution and slice incre-
ment, that refers to the distance between two neighbouring slices. Raw slices are usually
saved in either dicom format (.dcm) as individual slices, or in Nifty image format (.nii),
representing entire patient volumes.

Large collection of such data from many patients is called dataset. Datasets may or
may not contain labels, image masks that correspond with certain objects (usually organs)
located in slices. These labels are referred as ground truth or ’gold standard’ and are often
manually segmented by radiologists. They are needed for validation of machine learning
algorithms such as neural networks, either in supervised training, or inference. Efficiency of
such machine learning algorithms is determined by dice similarity coefficient, statistic
that calculates similarity between two objects, for example segmentation outputs and their
corresponding ground truth labels.

Figure 2.1: Example of slice and its respective annotation

2.2 Manual segmentation

Manual segmentation and classification is the oldest and probably still most widely spread
method for segmenting medical data to this day. The reasons for its continuous popularity
among doctors are no need for higher education in the field of information technologies,
relatively low hardware requirements and general execution simplicity, making the tech-
nique learning process fairly short. All of these aforementioned advantages come at the
cost of major drawbacks, such as inconsistencies in segmentation appearing due to the hu-
man factor (for example exhaustion) or frequent appearance of image distorting metallic
artifacts, oversights of the important disease indicators, occurrences of false positives as a
consequence of lowered image quality being produced by cheaper computed tomography
scanners. Last, but certainly not least important drawback of the manual segmentation is
its time consumption, since it requires for radiologist to segment every slice manually, while
trying to stay as precise as possible.
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The usual way manual image segmentation is performed, is with the help of the third
party programs, so called image analysis tools, such as ITK-SNAP, 3D Slicer, MedSeg, et
cetera. First step usually consists of creating labels with specific color for each area of
interest, for example different colored labels for each type of teeth, mandible and maxilla
bone. Next, radiologist locates these areas of interest on every slice, and ’colors’ them
accordingly to their labels. Coloring is done on similar basis as in other commercial graphic
editors, typically either with paint brush or with use of polygonal contours. After finishing
the initial segmentation, radiologist may choose to completely get rid of, or at least reduce
inconsistencies in between equally labeled areas on different slices. Inconsistencies usually
represent significant differences in sizes of identically labeled areas, or accidental uses of
unwanted labeling on certain areas. Not resolving these inconsistencies may result in severe
inaccuracy of the final result of segmentation. Lastly, various image analysis tools allow
displaying results of the work as 3D model, visualizing only segmented areas from slices.

Perspective usage of manual data segmentation seems to be in the development of
more complex, semi-automatic or even fully automatic segmentation methods. Clinical
data segmented manually by experienced radiologist often serve as a gold standard/ground
truth for testing, validation and quality assessment for above-mentioned methods [35].

2.3 Semi-automatic segmentation

The problem of extensive time consumption required by manual segmentation and gen-
eral coarseness of automatic segmentation algorithms before the upsurge of convolutional
neural networks led scientists to discovery of newer, more acceptable solutions. These so-
lutions were later categorized as semi-automatic (also known as interactive) segmentation
methods. They provide promising compromise between previously mentioned segmenta-
tion methods, combining processing speed of automatic algorithms and precision provided
by human touch. The human factor usually plays important role in either pre or post-
processing, where doctors supply the critical high-level instructions that are essential for
guaranteeing appropriate behaviour of interactive algorithms. Such high-level instructions
typically include setting the starting point of the algorithm, or marking areas of the image
as foreground or background [22]. Rest of the segmentation procedure is handled by these
special interactive algorithms.

In recent years, popularity of advanced interactive segmentation methods based on
using graph cuts or level-set methods increased substantially, mainly due their ability
to handle even more complex segmentation tasks, such as volumetric processing brain or
dental datasets.

2.4 Graph Cut Algorithm

The basis, on which the Graph cut algorithm is built upon originates from one of the
mathematical fields, named graph theory. There, if the partition of connected graph into
specific disjoint subsets is desired, cut is performed. Severance of the graph’s connectivity
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can be achieved with removal of various elements, such as cut vertices, cut edges or cut sets
[28]. If elimination of the single edge causes graph to be disconnected, that edge is called
cut edge, where the same principle applies for vertices as well. Cut set can be defined as
an array of edges, which deletion would cause desired effect. Every cut is defined by its
weight, representing number of edges crossing the cut in unweighted graph or total sum of
edge weights in weighted graphs. Cuts are further divided into subcategories determined
by their weight and purpose. The simplest of them are minimum cut, which seeks to find
minimal weight required for performing the cut and maximum cut[3], which does the exact
opposite.

The graph cut algorithm uses flow-networks or directed weighted graphs 𝐺 = (𝑁,𝐸),
where 𝑁 represents set of both terminal and non-terminal nodes and 𝐸 set of directed
edges connecting given nodes. Terminal nodes located in 𝑁 are called source 𝑠 and sink 𝑡.
Non-terminal nodes usually portray voxels or pixels, and terminal nodes may for example
depict labels, or simulate foreground and background. Edges 𝐸 consist of n-link and t-
link edges, where directed n-link edges usually link pairs of neighbouring pixels or voxels
{𝑝, 𝑞} and have assigned non-negative weight, also called flow 𝑤(𝑝, 𝑞), that might differ
from reverse n-link edge 𝑤(𝑞, 𝑝). T-link edges connect pixels with terminal nodes, and their
weight represents penalty for assigning specific terminal label [26].

In computer vision, graph cuts had proven to be effective tool for solving multitude
of fundamental tasks, such as image smoothing and segmentation or finding the corre-
sponding sets of points between two images in the same 3D scene. In graph cut algorithm,
N-dimensional images can be represented as graphs, and segmentation process as graph cut-
ting, where, with the optional help of the user input, algorithm divides graph into different
subsets separating background and foreground, which symbolizes desired object, by solving
max-flow min-cut problem. To accomplish this source-sink or s-t cut on such graph,
terminal nodes are required to be in different subsets. User input in graph cut algorithm
usually refers to placing initial restrictions upon image by manually assigning object label
to pixels and pixel areas, where the user is absolutely certain about them belonging into
either background or foreground. Example of such user input could be indicating focus
areas for each tooth in dental dataset segmentation.

The point of the max-flow min-cut theorem [2] is to find optimal way to perform s-t
cut in a flow network. The theorem can be further divided into two subproblems, and
that finding max-flow and min-cut on the flow-network. Max-flow can be described as
maximum flow rate that is allowed to pass directly from source whilst finishing in sink.
Loose interpretation of max-flow could be the maximum amount of water (flow rate), that
can pass through pipes (edges) from water source to the sink. Minimum-cut, in this case,
is trying to achieve minimal flow, or total sum of the weighted edges that would cross the s-t
cut separating flow network into the two subsets, each with their terminal node. According
to the theory presented by Ford and Fulkerson [6], max-flow of the given network is equal
to the minimal cut weight separating s and t, therefore resolving only one of subproblems
leads to the complete solution.

Application of graph cut algorithm, typically in combination with other techniques is
not foreign to the segmentation of clinical dental data either. As presented in study by T.
Evain et al [5], use of the graph-cut in connection with statistical shape analysis and user
interaction achieved almost state of the art results, with average Dice coefficient above 0.95.
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Figure 2.2: Illustration of a graph cut

Even though high Dice coefficient was achieved, authors themselves reported appearance
of false edges in presence of metallic artefacts, that might severely impact segmentation
results.

Another example of integration of graph-cut based approach into segmentation of dental
datasets is in pairing with Hidden Markov fields [12]. By using 3D Hidden Markov fields
as tool for interpreting 3D volumetric data, solid segmentation results were achieved with
graph-cuts. Authors achieved average dice similarity coefficient of 0.89, while attempting
to segment individual teeth from dental scans. No training or testing datasets including
metallic artifacts were documented, so no definite conclusion can be drawn about their
effect on accuracy of the results.

2.5 Level-set methods

For many years, level-set methods became most studied and widely used methods for med-
ical image segmentation. They can be regarded as an effective conceptual framework uti-
lizing level-sets for numerical representation of contours and surfaces. Their advantage lies
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in portraying such objects implicitly as functions in Cartesian grid, without any need to
explicitly parameterize them [32].

Initial thought behind introducing level-sets to image segmentation was to process con-
stantly changing contours and surfaces of desired objects, with occurrence of their topology
changes, development of sharp edges and peaks. Its not uncommon that the initial starting
point of level-set method is vastly different from its point of convergence in the final result,
since contours and surfaces can merge together, split apart or develop holes in the process.
This modality of level-set based approach allows it to be effective in processing objects
without any prior knowledge about their shape.

Largest obstacle in development of such level-set method is definition of the right speed
function. Speed function is used for determining the new position of each point on curve/-
surface when level-set method reaches next state. The most common speed functions are
typically based on gradients, edge strength and region density, which are sufficient for
solving less complex segmentation problems, but might sometimes prove unsatisfactory for
segmentation of difficult clinical data.

Typical example of aforementioned hard-to segment data are teeth datasets, since facial
region is known to be one of the most frequent regions for the occurrence of foreign particles
in form of dental implants. Dental implants, also known as fixtures are used to fixate dental
prostheses such as crowns, bridges and dentures to the mandibular/maxillary bone. And
since material used for creation of such fixture is, in the most cases, of metallic origin, teeth
projection in the CT scans often differs from reality. That may lead to unwanted changes in
shape of surface / curve representing tooth. Secondly, crown areas of the individual neigh-
bouring teeth may touch each other, therefore making the localization of teeth boundaries
much harder. Another problem lies in occurring image noise and similar pixel intensities
between root area of the teeth and alveolar bone surrounding it.

One of the possible approaches on how to tackle these problems might be with the use
of advanced form of level-set methods called hybrid level-set model [8]. Hybrid level-set
model is segmentation method that combines three different variations of basic level-set
methods used in medical segmentation with addition of user input in form of selection
of starting segmentation slice that will set the direction of level set methods. Previously
mentioned three level-set methods used in hybrid model are edge-based models, global
region-based models and local region-based models. Edge-based models are efficient
in detection of object boundaries, therefore stopping the curve evolution, but fall short in
presence of image noise and weak edges that occur exactly when the neighbouring crowns
touch each other. Principle of global region-based models lies in approximation of statistical
pixel intensities on whole image plane, hence separating image to the background and
foreground. That increases the overall tolerance to image noise and initial conditions, but
suffers greatly from similar neighbouring intensity statistics such as alveolar bone and tooth
roots. Last method operates on the similar principle as previous one, but instead of focusing
on global intensity statistics it uses local intensity with reliance on initial condition, solving
both problem with weak edges and problem with similar neighbouring intensities. Every
single one of these methods has its own drawbacks, but when used in conjunction, they do
complement each other fairly well.
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Even though this method solves many complications linked with the segmentation of
dental computed tomography images, while still reaching higher average dice than previous
attempts on teeth segmentation using level-sets, it imposes specific requirements on patients
to stay in open-bite position while being scanned, since closed bite would result in contour
connection between upper and lower teeth line. Also, the image degradation caused by
metallic artifacts such as dental implants proves to be limiter even for current version of
hybrid level-set method.

2.6 Automatic segmentation

Thresholding

Thresholding could be considered as probably the simplest automatic segmentation method
that exists. It performs a binary segmentation of an original image into an image with only
two colors (usually black and white) based on specific criterion called threshold, that is set
beforehand. Image intensity contained in each pixel from original image is compared to
the threshold and based on the result of the comparison gets assigned its new binary value.
Thresholding is usually performed on images with single channel, for example images con-
verted to grayscale, but its principle could be applied to any arbitrary number of channels,
as long as sufficient thresholds are supplied.

The use of thresholding as primary segmentation method in medicine is limited, since
any image noise, overlap of multiple different tissue intensities in one pixel or presence of
metallic artifacts may completely invalidate the result of segmentation. Its more commonly
used as a complementary method, for example to separate specific label from ground truth
images with multiple labels, in input image pre-processing or as a part of more sophisticated
methods.

Snakes

Snakes, also known as active contour model could be defined as one of the many tools
in computer vision to detect and segment objects, whose approximate boundary region is
already known. It functions on opposite basis compared to level-set methods, since snakes
are parametric representations of curves instead of their representation as functions on
the Cartesian grid. The segmentation process with snakes itself is iterative, where initial
contour/s move closer to the desired object boundaries in each iteration, until they tightly
wrap around the object boundaries, hence the name ”Snakes“. The strength of such method
lies in fast adaptation to differences between input images, finding objects in noisy images
or in creation of missing boundaries in incomplete objects. To compute new position of
contours in every iteration, active contour model uses energy function.

The evolution of active contours in each step is done by reducing and possibly mini-
mizing the ”energy“ required to maintain contour in each step. Energy of the curve can
be calculated via energy function, consisting of its internal and external components.
Internal energy component focuses only on the curve shape (smoothness) regardless of the
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original image, while external energy component calculates how well does the contour fit ob-
ject boundaries. To achieve the most accurate results, parameter representing importance
factor can be placed upon both of these components.

Except for its frequent use in graphic editors such as Adobe Photoshop, snakes are
extremely popular in medical imaging as well due to their applicability on often noisy and
generally low quality images produced by cheaper CT scanners [21].

2.7 Deep learning in medical imaging

The original attempt at using deep learning for image classification and segmentation was
the concept of artificial neural networks. Concept of artificial neural networks (ANN), as
one of the of machine learning algorithms, was inspired by the central nervous system in
human bodies, by connecting layers with artificial neurons [17]. But due to lack of learning
data, insufficient computing power artificial neural networks often suffered from overfitting
and vanishing gradient problems [13]. These problems resulted in scientists prioritising
other, more reliable algorithms for solving segmentation tasks.

But relatively recently, computer hardware advancements and availability of larger
datasets made a substantial contribution to deep learning in a form of convolutional neural
networks achieving groundbreaking results in variety of fields, including image segmentation
and classification, where it broke long-standing all-time records [36].

Convolutional neural networks

Convolutional neural networks (CNNs) share many similarities with ANNs [37], including
components, such as neurons, synapses, weights, biases and functions. Main difference
between them is that convolutional neural networks are spatially invariant, so there is no
need to pay extra attention on location of desired segmentation objects. As the name

”convolutional“ implies, CNNs take advantage of an mathematical operation called convo-
lution instead of general matrix multiplication, at least in some of the layers [10]. CNNs
have been applied to huge variety of different tasks, with some notable ones being image
classification and segmentation, noise reduction, quality improvement or generating new
data. Some of the most common architectures include ResNet[11], VGG[31], GoogleNet[33]
and finally U-Net[27].

U-Net Architecture

Architecture of general convolutional neural network can be described as stack of hidden
layers with addition of input and output layer, that gradually transform input image into an
desired output. In case of fully convolutional network architecture U-Net, hidden layers are
sorted into contractive path, or encoder that is meant to capture the context of the image
and relatively symmetrical expansive path, or decoder ensuring the its precise localization.
In order to localize, high resolution features coming from contracting path are combined
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with the upsampled output from appropriate level of expansive path. Followed by successive
convolution layer, network can then construct more accurate output based on aforesaid
information. While different architectures work with different types of hidden layers, those
of generic unet include pooling layers in contractive path, de-convolution or up-sampling
layers in expansive path and convolutional layers in both paths.

Figure 2.3: Generic 3D U-Net convolutional neural network architecture meant for volu-
metric segmentation. Contractive path in left side of the model, expansive in the right.
Source [42]

Convolution layer, as the name implies, is one of the most important building blocks
of CNN. Key characteristic of convolution layer is a set of learnable filters (or kernels)
of much smaller size and usually matching number of dimensions compared to the input
volume. During the forward pass, each kernel is convolved across every dimension of input,
whilst computing the dot product on them, resulting in n-dimensional activation map of
each given filter. This allows network to learn such types of filters that will activate upon
detection of features specific to target task of neural network at any spatial position in the
input [9].

The main function of Pooling layers is to lessen the number of feature map dimensions
generated by outputs of neuron clusters in previous layer into single neuron in next one.
The reason for such layers is to reduce the time and computing power required for such
network and to create invariance to small shifts and distortions [40]. There are usually
two types of pooling layers, respectively local pooling layers that combine small groups of
clusters and global pooling layers, that combine all neurons on corresponding layer. Most
popular pooling operations include:

∙ Max pooling - extracts only the highest value from each of cluster neurons at previous
layer
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∙ Average pooling - computes average value from each of the cluster neurons at previous
layer

Deconvolution layers, also knowns as transposed convolution layers are one of the
options for upsampling, or decompressing and reconstructing the abstract representations
of volumes (feature maps) after passing through contractive path into more desirable out-
come. Contrary to other up-sampling techniques such as bilinear or bicubic interpolation,
transposed convolution layer allows for interpolation without losing sense of detail, since it
uses set of weights learnt during the training process instead of surrounding pixel values.

Learning

Training of neural networks and also many other machine learning algorithms can be ap-
proached multitude of different ways depending on the task at hand, but most common
concepts are supervised learning, unsupervised learning and semi-supervised learning.

The use of the supervised learning can be observed in most of the machine learning
algorithms. To be able to train neural network under a supervision, training dataset has to
contain two different types of information. Firstly, it contains data that could be considered
as input into the CNN, and additionally, the full set of data (also called dense annota-
tions) that could be interpreted as an ideal outcome from the neural network architecture.
The goal then is, with use of CNN, to approximate function mapping inputs to outputs as
precisely as possible, for achieving high accuracy in actual field of use. Method is called
supervised because algorithm attempts to make iterative predictions under supervision of
a ”teacher“, who corrects the mistakes made by algorithm based on supplied labeled data.

Unsupervised learning does not require data to also have their respective annotations
prepared, thus neural network is handed dataset without any prior instructions about de-
sired outcome or correct answer. Model then attempts to automatically learn the different
patterns and structures present in training data.

Semi-supervised learning is, as its name might suggest, combination of both ap-
proaches mentioned above. Typical training datasets used along with semi-supervised
learning involve both labeled and unlabeled data. This method is especially useful, when
extraction of relevant information from the data proves to be difficult task, or creating
dense annotations on entirety of the training dataset consumes too much time. Common
field that takes advantage of this kind of learning is field of medical imaging, where radiol-
ogists go through the entire CT scans and annotate only small subset of slices that usually
holds the most important bits of information, producing so called sparse annotations.
Networks can then use these small subsets to improve their accuracy in comparison with
fully unsupervised models.
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Chapter 3

Methodology

This chapter serves as an detailed description of methods used for conducting experiments
illustrated in chapter 5. It consists of brief information about nature of the datasets used
in this work and the process of annotating them, about the training strategy picked for
achieving results presented in 5, and about preprocessing pipeline used for shaping the
diverse data spectrum into uniform format.

3.1 Prior problems

In addition to segmentation task, I had to deal with unexpected problems that surfaced
before I began the development of segmentation method, which lead to possible decrease
of overall accuracy of aforementioned method. These problems were:

∙ Lack of dental datasets

∙ Lack of labels

Lack of dental datasets

Generally, datasets used for training of neural networks contain thousands upon thousands
of training samples. Unfortunately for field of medical imaging, training datasets of such
sizes are often unattainable. The reasons behind shortage of training data lies in the
amount of time needed for experts to segment labels, unavailability of patient data due to
the legal reasons, specificity of segmented objects and possible health implications linked
with computed tomography. Usage of smaller sized dataset inclines to overfitting, thus
resulting in loss of generalization capability on other than the training data.

Sensitivity of dental records adds up to the already large pool of constraints limiting
the number of publicly available training samples. At the time of writing, there still does
not exist unrestricted collection of dental volumes [14] and to make matters even worse, the
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possibility of extracting acceptable data from other datasets is generally underwhelming,
mainly due to the often appearing teeth censoring or unsatisfactory quality of dental regions
present in such datasets.

Lack of annotations

Lack of training samples usually leads to even higher lack of annotations for such data.

In attempt to obtain datasets with labels included, I asked various research paper au-
thors [19][4][5][16][39][20][23], if it was possible for them to provide me with some of the data
used in their publications. Unfortunately, since every single research group used in-house
data in their paper, almost nobody was able to fulfill my request.

3.2 Datasets

This section describes modalities, obtaining process and labeling of different data samples
that were used in training datasets.

CT-ORG dataset
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Figure 3.1: Example of volume and its annotations
from CT-ORG dataset viewed in sagittal plane

CT-ORG dataset [1] is a collec-
tion of 140 computed tomography
scans acquired from various pa-
tients and machines. Every scan
comes with its respective set of
mutual 3D organ labels, precisely
bones and lungs. Some label files
are enhanced by additional sets
of organ labels, such as bladder,
liver, kidneys or brain.

As mentioned above, due to
the multiple origins of gathered
data, dosage, contrast and even
actual content varies from scan to
scan. By dosage, images may be
classified based on actual number of slices contained in each image as low-dose (usually
50-200 slices) or high-dose (200+ slices). Content variance comes in form of area covered
by computed tomography machine, ranging from human torso scans up to scans of entire
human body. Every image comes in NifTI format and shares the same constant width and
height (512x512) with alternating depth based on the slice count.

15



The data are split between testing set containing first 21 CT scans and training set
remaining 119. For the testing set, bones were manually segmented by experts, where for
training set automatic segmentation via morphological image processing was performed.

As the aim with this dataset was to train convolutional neural network for bone seg-
mentation, additional labels were removed via thresholding.

CQ500 dataset

CQ500 is a large collection of head computed tomography scans from 491 different patients.
For every patient, usually multiple CT scans with different attributes were provided. Main
differences were slice thickness, contrast, dosage and area of focus.

Since purpose of this thesis was to segment only the dental area, I manually reviewed
entire dataset and selected only scans that included area of interest based on these condi-
tions:

1. Slice thickness had to be lower than 2mm.

2. Teeth had to be present in at least 25 slices.

3. The number of consecutive slices where dental region was severely distorted by ap-
pearance of metallic artifacts could not exceed 5.

Dental CT scans produced by CBCT scanners usually come in high resolution, which
leads to volumes with high level of detail in oral region. To simulate that level of detail with
CQ500 CT scans, the first and second condition were applied. Last condition was set due
to the method which I used to create ground truths of slices affected by metallic artifacts.

After the initial selection resulting in reduction of dataset size from 491 to 42, every
volume was manually cropped in 𝑌 and 𝑍 axis, to reduce the data size as much as possible
while preserving the region of interest.

Dental dataset

Dental dataset is combination of 9 CT and CBCT scans , that I have collected from various
sources throughout the internet.

Dental dataset
Source Num. of scans File format Ground truth
Github1 3 .png Yes
Dental CBCT scanner ZCB1002 4 .raw No
Incisix 3 1 .dcm No
Undisclosed 1 .nii Yes

Table 3.1: Collection of CT/CBCT data aquired from different sources.
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Since data coming from the first source were stored as .png images, which meant that
they were already processed and scaled to grayscale, therefore resulting in loss of pixel
accuracy in representing different types of body tissue. Similar problem occured with
volumes coming from second source, where no header file was present, thus conversion to
Hounsfield units or obtaining information about voxel spacing was impossible. To offset this
lack of information about .raw files, other CBCT scans were used as reference for setting
voxel spacings and pixel intensities were scaled to range between 0 and 1, as mentioned in
3.4.

Annotations

Annotated dataset
Source Index
CQ500 1-42
Incisix 43
Dental CBCT scanner ZCB100 44-47
Undisclosed 48

Table 3.2: Brief overview of training dataset
with annotations.

To be able to train neural network for
aforementioned segmentation task, since
I had no prior annotated data, I had
to manually segment dental crowns and
roots by myself. Annotations were
created from selected pieces of dataset
CQ500 and for whole Dental dataset.

Segmentation was done with help
of open-source dedicated program itk-
SNAP1. For the comparison between re-
sults of network trained on sparsely an-
notated data versus dense annotations, both versions were made.

Sparse annotations were created by manually selecting and segmenting one slice per
every 16 from original volume, where slices containing either mandible or maxilla bone had
extra priority.

In case of dense annotations, every fifth slice from volume was annotated manually,
while the remaining slices had their annotations interpolated in axial plane from already la-
beled slices. After that, manual correction of significant interpolation errors was performed.
To segment dental tissue that was affected by distortion caused by metallic artifacts, I have
used previous or subsequent slices to guess its rough shape.

As a result, dental dataset containing 48 training samples with their respective annota-
tions stored in NifTI format was produced.

1https://github.com/kaiwenzha/3D-Teeth-Reconstruction-from-CT-Scans
2https://figshare.com/articles/dataset/Data1_492_492_303_uchar_raw/3403489
3https://www.osirix-viewer.com/resources/dicom-image-library/
1http://www.itksnap.org/pmwiki/pmwiki.php
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3.3 Training strategy

In pursuit of achieving the best possible segmentation results, the original approach of
learning from scratch on target data was extended by addition of augmentations, transfer
learning [34] and multi-phase training.

Network architecture

As the choice of neural network architecture best suited for the problem task defined by this
thesis, standard 3D U-Net architecture proposed by Ö. Çiçek et al [42] was chosen, since it
generally outperforms any other architectures when it comes to fast and precise volumetric
segmentation. For the implementation of 3D U-net, version provided by Z. Zhou et al [41]
was used. Since the task of segmenting teeth from other body tissues can be classified as
a binary task, sigmoid [24] had been utilized as a final activation function and for the
network optimisation algorithm, Adam [18] optimizer was selected. Regarding the format
of input data, network had been trained on single-channel 3D images divided into smaller
patches of equal shape. The shape of single-channel output from the network was identical
to its input, and the each of the pixel values present in output represented its probability
of belonging to the tooth area.

Data Augmentation

To prevent the overfitting that tends to appear when training large neural networks such
as U-Net used in this thesis on limited training data, utilization of data augmentations [30]
had to be taken into consideration. The following data augmentation techniques were ap-
plied on the fly during training: random 90∘ rotations, random flipping, random elastic
deformations, random contrast transformations and gamma correction augmen-
tation.

Multi-phase training

From observations made on training dataset, it is clear that tooth voxels take only small
percentage of the entire CT/CBCT volume. That may result in slower convergence of
network during training. One of the conventional approaches to this problem is to crop
only the tooth region from whole volume. However, this approach might on the other
hand result in appearance of false positives in non-tooth regions. To possibly solve both
of the aforesaid obstacles, multi-phase training as proposed by S. Lee et al [20] was used.
Although instead of three training phases where data consisted of full CBCT volumes,
teeth-containing slices and teeth sub-volumes, only two training phases with full volumes
and their respective cropped versions were applied.
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Transfer learning

As mentioned in 3.3, taking advantage of transfer learning by fine-tuning already pre-
trained neural network on different task might improve the accuracy of segmentation results
compared to training for segmentation task from beginning. To test this possibility, two
different models were prepared.

First model restTeeth, had learned to to restore distorted dental scans to their original
form. As for training dataset for such task, 15 different CBCT scans were used. Entire
learning process is further described in section 3.3. Second model restChest, had been
taken from original publication [41] and serves as indication of how large of an impact would
use of model trained on solely small dental dataset have on transfer learning applicability
compared to the model trained on substantially larger sample of chest CT scans.

Additionally, to test the extent of transfer learning applicability of model trained for
bone segmentation task of full body CT scans on segmentation of dental areas from high
resolution CBCT scans, 3D full resolution model nnUNet had been arranged. Entirety of
model’s preprocessing and training had been handled by self-configuring method developed
by F. Isensee, et al [15]. To enhance the final results, cross-validation method on 5 separately
trained folds was performed. Training period for each of the respective folds was ~6 days
on dual GPU setup.

Models
Name Description
nnUNet U-Net architecture trained on various bones in

human body.
restTeeth Model pretrained for image restoration on small

sample of dental CBCT scans.
restChest Model pretrained for image restoration on large

sample of chest CT scans.

Table 3.3: Brief summary of prepared models for testing the applicability of transfer learning
on segmentation task.

Image restoration

For the image restoration task, the model was pre-trained in the same way as it was done
by authors of the original paper [41]. Contrary to classical method of supervised learning,
the pair image - ground truth is replaced by corrupted image serving as network input and
its original as ground truth. By applying this principle, model will eventually be able to
restore images to the shape similar to their original, while learning important parameters
from training samples, such as their appearance, texture, context etc. Even though model
trained on image restoration task cannot be applied to other tasks directly, it can be fine-
tuned for specific task. These models may then outperform models trained completely from
scratch, due to the preserved parameters learned from image restoration.
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The image ”corruption“ is done by transforming the image by applying various methods,
which were also adopted and implemented in similar way to the original publication [41].
These methods are local pixel shuffling, non-linear transformation, out-painting and in-
painting. Gradual application of these methods is performed automatically on already
pre-processed patches in the similar way as any other type of augmentation. By doing this
way, entire training process can become fully self-supervised. Few of the many application
of image distortions can be seen in 3.2a - nonlinear transformation and out-painting, 3.2b -
local pixel shuffling and in-painting, 3.2c - local pixel shuffling and nonlinear transformation.
Above-mentioned methods were executed in following order:

1. To synthetically increase the amount of training data, patches were augmented by
applying mirroring transformation with 50% chance of execution.

2. First deformation method applied was local pixel shuffling. It consists of shuffling
the order of pixels present in patch resulting in transformed patch. Similarly to
mirroring, local pixel shuffling applied also with 50% chance.

3. Next in line was nonlinear transformation. The main principle behind it is to
change patch intensities whilst preserving the original intensity distribution. Appli-
cation rate of nonlinear transformation was 90%.

4. Last data operation was in-painting and out-painting. It generates arbitrary num-
ber of windows of various sizes and places them on top of each other, resulting in a
window of complex shape. Then, random pixel intensity value is assigned to the area
outside of the window. The general chance for application of both methods is 80%,
while in-painting gets applied in 20:80 ratio compared to the out-painting.
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Figure 3.2: Three distinct applications of deformation methods on training images intended
for image restoration task

For the process of training the model for image restoration task, mean squared error
𝐿2𝑛𝑜𝑟𝑚 and Adam optimizer with learning rate 0.001 was chosen.

Similarly to the every training process in this thesis, after each epoch, if model reached
new all time low average epoch validation loss, its checkpoint was saved. The training
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itself was eliminated after 24h (time limit for multi-GPU training) of training on 2 GPUs
and iterated over 400 epochs (1 epoch = entire dataset). The lowest measured average
validation loss reached 𝐿2𝑛𝑜𝑟𝑚 = 0.0016.

3.4 Preprocessing

Before the data were passed through the neural network architecture, they had to be prepro-
cessed, since they came in different file formats (.nii, .dcm, .raw, .png, ...), hence resulting
in different pixel intensities, endianness and libraries required for manipulating with such
data. Additional reason for preprocessing was to further increase time efficiency and seg-
mentation accuracy of CNN. The whole process can be divided into four following steps:

∙ Resampling

∙ Normalization

∙ Cropping

∙ Padding

Resampling

To achieve isotropic voxel spacing in CT images and to match the large CBCT volumes with
small voxel sizes and smaller CT volumes with larger voxel sizes, entire training dataset was
resampled to 0.8mm isotropic voxel spacing. In case of sparse annotations, Z-dimension
representing depth was excluded from resampling procedure, since it sometimes destroyed
annotated slices.

Normalization

Contrary to CT scanners, which generally use the same quantitative scale in Hounsfield units
for setting pixel intensities, quantitative scales used in CBCT scanners, most commonly used
scanners in field of dentistry do differ depending on the specific manufacturer. To offset
these inconsistencies between volumes, firstly I calculated their respective pixel intensities
in Hounsfield units (or similar scale provided by manufacturer) 𝑥ℎ𝑢 as follows:

𝑥ℎ𝑢 = 𝑥𝑜𝑟𝑖𝑔 * 𝑠𝑙𝑜𝑝𝑒+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡.

Where 𝑥𝑜𝑟𝑖𝑔 represents original intensity of the pixel and 𝑠𝑙𝑜𝑝𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 are dicom tags
provided by manufacturer that specify the linear transformation from pixels stored on the
disk to their in memory representation. The difference in memory/disk representation is
caused by data being usually stored as unsigned integers to occupy as little disk space as
possible while avoiding quantization errors. Since pixels may have large range of values,
possibly even negative, this form of transformation is needed.
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Since not every volume had their slope/intercept present and some of them were even in
completely different ranges not even comparable to Hounsfield units, I had to additionally
perform min-max scaling to the range between 0 and 1 with use of formula:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑥ℎ𝑢 − 𝑥𝑚𝑖𝑛)/𝑥𝑟𝑎𝑛𝑔𝑒.

Where 𝑥ℎ𝑢 can be substituted for 𝑥𝑜𝑟𝑖𝑔 when different quantitative scales such as grayscale
are present in volumes. 𝑥𝑚𝑖𝑛 is a minimum pixel intensity value in data, almost always
representing air and 𝑥𝑟𝑎𝑛𝑔𝑒 is range of values present in volume and can be calculated as
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛, where 𝑥𝑚𝑎𝑥 is the maximum pixel intensity value often being bone or metallic
artifact.

After scaling each volume to the same range, entire dataset was clipped to the [0.5,
99.5] percentiles of these intensity values, followed by a z-score normalisation formula:

𝑥𝑛𝑜𝑟𝑚 = (𝑥𝑠𝑐𝑎𝑙𝑒𝑑 − 𝜇)/𝜎.

Where mean 𝜇 and standard deviation 𝜎 were calculated from each volume separately
based on provided individual annotation masks.

Cropping

Cropping can be defined as act of removal of unwanted outer areas from images. In medical
imaging, its common practice to reduce the size of the area outside the scanned body
parts as much as possible. In addition to cropping aforesaid areas from medical images,
I attempted to create fairly simple method that extracts only the dental region from the
entire volume.

The initial step from general cropping process in this thesis starts with finding the slice
with most of the tissue present. Its done by calculating pixel intensity means for every
slice in volume and subsequently finding the slice with highest value. The idea behind
using pixel intensity mean originates from the characteristics of the volumes intended for
segmentation.
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Figure 3.3: Four types of volume pixel intensity histograms with their corresponding slice
images (Orange: histogram, Blue: soft tissue peak, Red: computed threshold)

Volumes usually depict human heads or its sections, and pixel intensity value of air in
previously scaled data is 0, illustrated as a spike in histogram in 3.3, whilst tissue values
are ranging between 0.1-1.0, so the slice with the most tissue will then logically have the
least air pixels, thus resulting in highest pixel intensity mean.

Next, 2D array was made marking all pixels where 𝑥𝑛𝑜𝑟𝑚 was equal to 0 from the slice
with highest mean. This array was used as a mask for calculating the coordinates of a
initial cropping window. Since all of the patches have to be same size and I wanted to avoid
adding any additional padding as much as possible, the shape of the cropping window was
further adjusted to match closest shape that could be divided into equally cut patches.

For extracting only the dental region from entire volume, I first had to compute thresh-
old that separated air, water and soft tissue from bone tissue. Since the volumes had
different quantitative scales, threshold could not be a fixed value, but it had to adapt to
characteristics of a specific volume. To achieve these thresholds 𝑥𝑡ℎ𝑟𝑒𝑠ℎ, I used slightly
modified version of formula proposed by S. Lee et al [20], which goes as follows:
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𝑥𝑡ℎ𝑟𝑒𝑠ℎ = 𝑥𝑠,𝑝𝑒𝑎𝑘 + 𝑑

The soft tissue peak 𝑥𝑠,𝑝𝑒𝑎𝑘 was calculated from volume histogram shown in figure 3.3,
and constant 𝑑 represents distance between bone and soft tissue. Even though distance
from soft tissue to bone tissue may vary from volume to volume, I observed that 𝑑 = 0.15
generally worked for every volume I used.
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Figure 3.4: Highest mean slices with rectangles marking cropped areas in the first row,
cropped images in the second (Red: basic method, Blue: advanced method)

Similarly to basic cropping process used in this thesis, slice with the highest pixel
intensity mean had to be found. The difference is that mean was calculated only from bone
tissue, rest was ignored. Since pixel intensities of enamel in HU scale are typically higher
than intensities of other bones [29], slice with the highest teeth to other bone ratio would
be selected.

To create the mask needed for coordinate computation, threshold was again applied to
the selected slice, and everything outside bone tissue was set to 0. Rest of the process was
identical in both alternatives.

As it is clearly visualized in figure 3.4, even the ”advanced“ cropping method managed to
incorrectly crop the dental area in volume (𝑎), since the vertebrae mislead the algorithm to
arbitrarily inflate the size of bounding rectangle. Although some inconsistencies appeared,
the overall dental region detection was solid in most volumes, leading to reducing the patch
number needed for coverage of entire volume, thus decreasing the neural network training
time.
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To prevent any inconsistencies in-between labels and CT data, the same bounding rect-
angle that I used to crop the CT data was also used to crop volumes containing labels.
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Figure 3.5: Volumes padded with air in the
first row, interpolated in the second.

In some cases, it was not possible to make
such correction of the cropping window to
be able to reach the desired uniformity
of patch sizes. I had to artificially alter
shape of the volume to achieve desired out-
come. Since the further size reduction could
lead to damaging the important informa-
tion stored in volume, volumes were cen-
tered and expanded, or ”padded“ equally in
every direction. As for value used in filling
the padded area, two different approaches
were chosen:

∙ Air-fill

∙ Interpolation

Air-fill is probably the most common
approach, where selected area is filled with
pixel representation of air, which is in this
case 0. This leads to faster pre-processing,
but results in unnatural borders in outer-
most patches, which may affect the segmentation accuracy.

Another option is to estimate the pixel intensity value of newly added pixels based on
the already existing ones, therefore creating more natural borders in outermost patches.
For interpolating the CT volumes, third order b-spline interpolation[38] was applied,
while the volumes containing annotations were interpolated by nearest-neighbour inter-
polation[25].

The clear demonstration between these two approaches can be observed in volume (𝑐)
in figure 3.5, where interpolated borders in second row appear more natural compared to
sharp cuts in the first one.
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Chapter 4

Implementation

The scripts needed for production of various models described in section 3.3 were imple-
mented in scripting language Python 3.8.5, with support of open source machine learning
framework Pytorch1, version 1.8.1. All models were trained on computing grid Metacen-
trum, with minimal GPU Cuda compute capability of 6.1. To improve the training speed,
both training and validation datasets have been fully loaded to the memory, thus resulting
in higher RAM requirements for training.

Implemented scripts can be divided into three distinct categories - training/validation
scripts handling the training, fine-tuning and validation process, data manipulation scripts
handling preprocessing, postprocessing and dataloading, while the last category consists
of ”control“ scripts that accept command line parameters and serve as launcher for other
mentioned scripts.

4.1 Data manipulation

Preprocessing

Since the data format of CT scan may vary from one to another, they had to be united
into one, shared data format before the start of every training cycle. To serve that purpose,
class Preprocessor, located in preprocessor.py was developed. Preprocessor accepts
scans, preferably in .dcm, .nii and .png formats, but can also handle reading of .raw files,
with some limitations. It also implements dataloading, resampling (only for .nii images),
normalization, cropping and padding operations, as described in section 3.4. With regard
to tasks with different learning approaches used in this thesis, PreprocessorSupervised
and PreprocessorSelfSupervised were created as extensions of the original class. The
main difference between both classes can be deduced from their respective names, where
PreprocessorSupervised also processes labels, while the other one does not. After suc-
cessful pre-processing, all scans are randomly split into training and validation sets with
ratio of 3:1 in favor of training set, while the information about split is saved along with

1https://pytorch.org/
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the type of supervision and augmentation methods in settings.json in the same folder
as processed data.

Data-loading

Data-loading before the beginning of every training cycle was handled in same manner as
in the preprocessing, with classes TeethSupervised and TeethSelfSupervised derived
from the parent class Teeth, with their respective implementations located in the script
dataloader.py. Information about the validation/training split, augmentations and cor-
rect data-loader class is extracted from settings.json file prepared beforehand by pre-
processor. Full pre-processed volumes are then loaded into the memory and sliced by
sliding-window approach for generation of overlapping patches. The size of each patch is
equal in each dimension with equally large stride in every direction.

In case when sparse annotations are used, TeethSupervised computes weight masks,
where zero weight is set for all unannotated slices. Weight masks are then taken into the
account when calculating both training and validation losses and evaluation metrics.

Augmentation

Instead of augmenting entire volumes, patch-wise augmentation is applied on the fly, during
the training process resulting in relatively unique patch in every iteration. For the specific
implementation of each augmentation operations located in transforms.py, mirroring and
gamma transformations were adopted from the implementation of nnUNet paper[15] while
implementations of rotation, contrast transformation or elastic deformation are taken from
pytorch-3dunet2 repository created by Adrian Wolny on github. To line up with the patch
orientation and dynamic of the training process in used this thesis, slight alterations on the
original implementations were performed.

Above-mentioned scripts along with various miscellaneous utility functions from utils.py
are located in dataset subfolder.

4.2 Training and validation

Training

The main component of both validation and training processes is a script trainer.py imple-
menting class UNetTrainer. This class consists of fit function, that accepts Dataloader3

objects and iterates over them for exact number of epochs set beforehand by launching
script. For each epoch, fit calls train function that performs batch-wise training over en-
tire course of the training subset and validate function that evaluates the current results

2https://github.com/wolny/pytorch-3dunet
3https://pytorch.org/docs/stable/data.html
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of the training process on validation subset. Additionally, these functions send periodical
updates with average batch loss and dice to the Logger.

Logging
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Figure 4.1: Graph tracking the
training progress (Blue - training
loss, red - validation loss, green -
evaluation metric)

For the purpose of efficient network training progress
tracking, especially on remote Metacentrum comput-
ing grid, Logger was implemented. At the end of
each epoch, Logger calculates average training/vali-
dation loss and dice from the periodical updates re-
cieved by UNetTrainer, along with the epoch time
and saves them as an update to both correspond-
ing progress graph and plain text log file located in
pretrained_weights\logs. Furthermore, it imple-
ments the checkpoint saving mechanism, where the
current model state is saved in pretrained_weights
only if average loss measured in the current epoch
improves compared to the previously measured best
loss. If no advancement is being made in past 100
epochs, it is assumed that there wont be any sub-
stantial future network improvements, thus signal is
sent to UNetTrainer to prematurely terminate the
training process.

Loss and evaluation

Loss function used in this thesis is an combination of soft dice loss and cross entropy.
Implementation of soft dice loss was adopted from the authors of nnUNet paper [15] and
modified to include weight masks in its calculation. Since the main idea was to train
network for binary segmentation task, binary cross entropy provided by pytorch library4

was sufficient enough. As the evaluation metric, modified version of DiceCoefficient by
weight mask application originally from pytorch-3dunet repository was used.

4.3 Launching scripts

The main launching scripts, each for its respective task, are preprocess.py, train.py
and predict.py. All of them accept different command line parameters, that along with
various .json files are meant to limit the scale in which scripts have to be modified to
prepare different training environments.

4https://pytorch.org/docs/stable/nn.functional.html
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Chapter 5

Experiments

This chapter serves as a summary of all experiments that were carried out on the basis of
different approaches to segmentation task described in section 3.3.

As a first step, the appropriate network learning rate and most effective patch size
had to be determined. Secondly, various approaches to teeth segmentation were compared
between each other on single-phased training including both dense and sparse annotations.
Lastly, it was tested if the effects of multi-phased training had any additional impact on
quality of segmentation results.

Segmentation results were evaluated by three different metrics, that were collected both
throughout and after the training process. First metric used for evaluating the training pro-
cess was combined loss function that served as main driver for minimizing the segmentation
errors produced by network. Along with loss function, average dice score was calculated
both for training and validation subset which served as another marker for measuring
the network convergence speed or if model was possibly over/underfitting. As a second
evaluation metric, again dice score, but this time measured on segmentations provided by
final checkpoints of trained models was used on 2 testing CBCT scans, further referenced as
CBCT#1 and CBCT#2, that were manually segmented with dense annotations, as described
in 3.2, along with another scan CBCT#3, segmented by experts that was also used as part
of validation subset. Evaluating on testing data provides more objective view for compar-
ing different models, instead of only using evaluations obtained from the validation subset
during training process. Third and last evaluation metric is based on visual resemblance
between the network outputs and ground truth annotations.

5.1 Determining the best training parameters

The first step towards development of segmentation model was to determine the right patch
sizes and most efficient network learning rate. Model for every experiment was trained from
scratch, with no prior learned context and training lasted for 200 epochs at maximum.
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Since U-net architecture used in this thesis had four 2x2 max-pooling layers, patches
had to have shape in multiples of 16. Another constraint proved to be GPU memory, since
not many modern GPUs can handle patch sizes above 128x128x128 without being forced
to apply distributed parallelism across multiple GPUs.

Starting from the smallest patch size that captured enough desired context - 32x32x32,
patch size was gradually increased in increments of 32 (except for 96) up until the largest
possible size of 128x128x128. Reasoning behind equal sizes in each dimension originated
from the isotropic voxel spacings of resampled data.
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Figure 5.1: Impact of different patch sizes on validation dice score (Light blue - evalua-
tion metric gathered from training samples, Dark blue - evaluation metric calculated from
gathered samples)

Graphs portrayed in figure 5.1, show that patch size of 64x64x64 had proven to be most
suitable size for capturing enough context necessary for network learning process, while also
limiting the amount of volume reshaping needed for extraction equally sized patches from
it. Largest patches 128x128x128, although probably also capturing enough context, forced
preprocessor to perform extensive reshaping via extrapolation due to their large size and
relatively low average volume depth (or slice count) in training dataset. That might have
caused enough data deformation to decrease the network’s ability to learn, resulting in
decrease in segmentation accuracy. On the other hand, patches of size 32x32x32 failed to
encompass enough information for model to be capable of generalization on validation data,
as depicted in 5.1b.

To find the learning rate most suitable for training on both sparse and dense annotations,
four different learning rates [10−2, 10−3, 10−4, 10−5] were tested for sparse annotations and
three different learning rates [10−2, 10−3, 10−4] were used for training with dense annota-
tions. Experimentation with learning rates started on 10−2 in both cases, and learning rate
was gradually decreased, up until validation score stopped showing signs of improvement
compared to learning rates tested previously.
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Figure 5.2: Effects of different network learning rates on evaluation metric

Even though experiments in 5.1 had shown that training performance on both sparse
and dense annotations was best with the same patch size 64x64x64, it was not the case for
learning rates. As depicted in figure 5.2, which shows performance comparison in-between
different learning rates, training on dense annotations performed the best with learning rate
of 10−3, while the ability to learn dense volumetric segmentation from sparse annotations
had been the highest with learning rate of 10−4. The cause behind this difference might
be possibly originating from the limited amount of annotated slices that make the training
more vulnerable to undesirable divergent behavior in loss function, so the more careful
approach with lower learning rate results in better performance.

After experimenting with various patch sizes and different learning rates, conclusion
can be drawn that patch size of 64x64x64 with learning rates of 10−3/10−4 each for its
respective task suited the training dataset the most.
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Figure 5.3: Influence of applying z-score normalization on network performance

Figure 5.3 displays effects of normalizing the training dataset on validation dice score for
each epoch. It shows its clear improvement compared to the only min-max scaled dataset,
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even though z-score normalization caused greater validation dice disparities between each
epochs in case of sparse annotations for models trained purely from scratch.

5.2 Single-phase training

The first proper experiment had been the comparison between various different training
approaches and baseline segmentation model that was learned from scratch on training
dataset. The main idea behind such experiment was to determine if the use of transfer
learning had any positive effect on segmentation of dental roots and crowns from CBCT
images. To achieve best possible results, learning rates of 10−3 for dense and 10−4 for
sparse annotations were used and patch size was set to 64x64x64. The training of each
segmentation neural network was stopped at 200 epochs, if not sooner due to the lack of
improvement persisting for more than 100 epochs. All scans were automatically cropped
by preprocessor (crop parameter was set to 2).
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Figure 5.4: Evolution of validation dice score in various models throughout the training
process. Numbers behind model names indicate size of training sample

Dense annotations

In case of densely annotated data, six different models were prepared. First, serving as a
baseline, was model clean trained on full sample of 47 CT/CBCT scans. Models ranging
from second to fifth were previously trained for purpose of image restoration task from
small sample of 15 dental CBCT scans restTeeth and large sample of chest CT scans
restChest. They were then additionaly trained for segmentation task with either full
sample of 47 scans, or fine-tuned on limited sample of only 7 CBCT scans. In addition
to aforementioned models, last prepared model had been learned to segment various bones
in human body. CT-ORG dataset was chosen as training dataset and 3D full resolution
self-configuring method nnUNet [15] handled both preprocessing and training.
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Segmentation results
Model Sample size Accuracy CBCT#1 CBCT#2 CBCT#3
clean 47 86.74% 87.17% 76.72% 87.74%
restChest 47 87.39% 89.11% 82.66% 89.89%
restChest 7 83.97% 77.21% 70.60% 74.43%
restTeeth 47 86.75% 85.48% 69.64% 83.32%
restTeeth 7 82.58% 86.89% 84.08% 87.47%
nnUNet 140 91.38% 64.83% 5.44% 73.9%

Table 5.1: Table displaying model accuracy on validation subset and dice scores measured
on testing CBCT scans segmented by different models with various dense training sample
sizes

From the dice scores shown in table 5.1 or from the segmentation results displayed in
figure 5.5, conclusion can be drawn that using models such as restChest pre-trained on
image restoration tasks with large medical datasets as a base for segmentation task yields,

clean

CBCT #1 CBCT #2
CBCT #3

restChest

restTeeth

Ground truth

Figure 5.5: Image showing 46-th slice from the CBCT test volumes segmented by models
learned with densely annotated data, respectively: clean, restChest trained with 47 scans,
restTeeth trained with 7 scans and ground truth labels.
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at least in case of CT-dominant dental training datasets, towards slightly better results
compared to models such as clean trained from scratch. Another benefit of using such
pre-trained models instead of randomly initialized models is faster network convergence, as
portrayed in figure 5.4.

restTeeth trained on full training sample had shown clear decrease in segmentation
accuracy compared to the other model pretrained on image restoration task. The cause
behind this phenomenon is probably originating from the nature of training dataset, since
the model had originally learned to restore images from full CBCT scans, while for seg-
mentation task the amount of CT scans outweighed the CBCT scans present in training
set (although the relatively short training time and small training dataset that had been
used in pre-training the restTeeth model might have had an effect as well). The oppo-
site can be observed in case of fine-tuning the pretrained models with CBCT data, where
restTeeth heavily outperformed restChest and achieved similar results as models trained
on full training dataset.

Even though fine-tuning the had shown solid results in terms of dice score, it had
produced many false positives in non-dental areas as portrayed in figure 5.5 in both CBCT#1
and CBCT#2.

Suprisingly, nnUNet model completely failed to segment CBCT#2 and in case of CBCT#1
and CBCT#3, segmentations included both mandible and maxilla bone.

Sparse annotations

For sparsely annotated scans five separate models were prepared. First model, serving
yet again as a baseline was model clean, trained on full sample of 47 sparsely annotated
CT/CBCT scans. Rest of the models were previously trained for purpose of image restora-
tion task from small sample of 15 dental CBCT scans restTeeth, and large sample of chest
CT scans restChest. They were then additionaly trained for segmentation task with either
full sample of 47 scans, or fine-tuned on limited sample of only 6 CBCT scans .

Segmentation results
Model Sample size Accuracy CBCT #1 CBCT #2 CBCT #3
clean 47 70.30% 64.51% 59.45% 74.91%
restChest 47 69.78% 67.86% 72.49% 75.43%
restChest 6 75.71% 65.11% 71.98% 74.00%
restTeeth 47 63.95% 70.25% 67.22% 80.26%
restTeeth 6 67.13% 65.93% 61.26% 78.36%

Table 5.2: Table displaying model accuracy on validation subset dice scores measured on
testing CBCT scans segmented by different models with various sparse training sample
sizes

In general, all models succeeded in separating teeth from surrounding mandible and
maxilla bones, thus already outperforming the nnUNet model, but failed to properly recog-
nize the shape of individual teeth or suppress the false positives appearing in spots blind
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to the loss function. As shown in figrue 5.6, not a single one of presented models succeeded
in properly segmenting the frontal teeth from CBCT#2 scan. Closest visual resemblance to
the ground truth was achieved by clean model, but it also had the highest amount of false
positives in non-tooth areas, which had reflected on low dice score in 5.2. Closest numerical
resemblance, on the other hand, was measured by restChest trained with full training
sample.
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restChest

restTeeth

Ground truth

Figure 5.6: Image showing 46-th slice from the CBCT test volumes segmented by models
learned on sparsely annotated data, respectively: clean, restChest trained with 6 scans,
restTeeth trained with 47 scans and ground truth labels.

5.3 Multi-phase training

Another set of experiments was prepared to determine if multi-phased training had any
positive effect on reduction of false positives and overall network performance. Multi-
phase training consisted of training on fully sized data without any cropping performed
by preprocessor (crop parameter was set to 0) in a first phase and second phase, where
network learned from automatically cropped data by preprocessor (crop parameter was set
to 2). To achieve best possible results, learning rates of 10−3 for dense and 10−4 for sparse
annotations were used and patch size was set to 64x64x64. The training of segmentation
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neural network in each phase was stopped at 200 epochs, if not sooner due to the lack of
improvement persisting for more than 100 epochs.
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Figure 5.7: Evolution of best validation dice score in various models throughout the multi-
phase training process

Since the original representation of all validation dice scores throughout the 400 training
epochs resulted in almost unreadable graphs, only the all-time best dice scores that had
been measured for each epoch were displayed in figure 5.7. In case of dense annotations,
the transition between phases can be clearly noticed by sudden jump in dice score around
epoch num. 200, whereas the transitions made by networks trained on sparsely annotated
data were much smoother. Even though the transitions differed in both circumstances, they
both show a positive trend, thus showing the improvement in network performance with
multi-phase training.

For the both sparsely and densely annotated data, only full training sample was used
in multi-phase training. To analyze the effects of multi-phase training on overall model
accuracy, three separate models were prepared. The model setup was almost identical to
the models prepared in single phase experiments 5.2, with omission of fine-tuning.

Segmentation results
Model Type Accuracy CBCT#1 CBCT#2 CBCT#3
clean Dense 87.78% 87.09% 85.82% 89.68%
restChest Dense 88.09% 89.22% 87.06% 91.05%
restTeeth Dense 87.56% 84.17% 80.60% 87.17%
clean Sparse 74.63% 75.72% 69.85% 85.36%
restChest Sparse 73.45% 78.90% 73.56% 82.50%
restTeeth Sparse 66.50% 68.02% 69.20% 78.56%

Table 5.3: Table displaying model accuracy on validation subset and dice scores measured
on testing CBCT scans segmented by different models after passing through the two phases
of training
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The extension of training process by new phase lead to notable improvements in seg-
mentation accuracy for both types of training data. For the sparse annotations, ~10%
increase in dice score measured on testing data can be observed, while in case of densely
annotated data the change appeared to be slightly lower, but still positive nonetheless.
These results, along with visual representations in 5.5 indicate that multi-stage training pro-
vided new perspective on training data for neural network, allowing it to learn additional
information.

As a rebuttal of claim that the longer training time might have been the main driving
factor affecting changes in accuracy instead of multi-stage approach, the graph 5.7 tracking
the training progress for both types of annotations can be used, where all models failed to
improve after 150 epochs up until the deployment of another phase.

Additional phase

As it can be observed in figure 5.7, networks started to struggle in making new break-
throughs towards the end of second phase. To see, if it was possible for models to improve
any further, additional phase was added on top of the multi-phase training. The new phase
consisted of reducing the training sample from original CT-dominant dataset with 47 scans
to only 6 CBCT scans in case of sparse annotated data and 7 CBCT scans for dense an-
notations, while also decreasing the learning rate by tenfold. All scans were automatically
cropped by preprocessor and fine-tuning lasted for additional 200 epochs, if not terminated
earlier due to the lack of improvement.

Segmentation results
Model Type Accuracy CBCT#1 CBCT#2 CBCT#3
clean Dense 87.78% 87.09% 85.82% 89.68%
restChest Dense 88.41% 90.23% 87.26% 91.70%
restTeeth Dense 87.66% 87.87% 80.27% 88.40%
clean Sparse 76.32% 78.54% 75.64% 85.59%
restChest Sparse 64.27% 80.17% 76.16% 84.87%
restTeeth Sparse 67.87% 71.55% 72.43% 84.35%

Table 5.4: Table displaying model accuracy on validation subset and dice scores measured
on testing CBCT scans segmented by different models after passing through the three
phases of training

The table 5.4 shows that the addition of next phase improves segmentation accuracy
of testing samples by ~2% in comparison with only two training phases. Again, the best
possible results for both annotation types were achieved by restChest, concluding that
models with prior knowledge about medical images tend to outperform the approach of
learning from zero.

In the end, even the final version of restChest trained on sparsely annotated data
failed to recognize the relatively peculiar tooth shapes appearing in CBCT#2 as portrayed
in 5.5. As for the other, more conventional testing samples, results show somewhat solid
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tooth segmentation, and persisting failure in distinguishing the non-dental areas in blind
spots.

restChest trained with dense annotations demonstrated comparatively better results
to the variant with sparse annotations, where in some cases, such as CBCT#1, the output
from network had arguably even higher level of precision compared to its ground truth
representation.

Type CBCT#1 CBCT#2 CBCT#3

Dense

Sparse

Ground truth

Table 5.5: Final segmentation results by restChest model along with ground truth for visual
comparison.
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Chapter 6

Conclusion

The main goal of this thesis was to deliver method for volumetric segmentation of dental
CBCT scans. After evaluation of pros and cons of different segmentation methods, deep
learning approach was chosen. All produced models were trained on two segmentation
tasks - creating dense segmentations from sparsely annotated data and much more common
approach of creating dense segmentations from densely annotated data. In an attempt to
enhance the network performance, multi-phase training approach and transfer learning had
been applied to both tasks.

Since no such data were publicly available, new dataset consisting of 42 dental areas ex-
tracted from CQ500 dataset and 5 CBCT scans was composed. Dataset was then manually
annotated with both sparse and dense annotations.

First set of experiments concluded that the best patch size for both of the tasks had been
64x64x64, that the learning rates varied from task to task and that the addition of z-score
normalization to dataset showed substantial improvement of model accuracy. Second set
of experiments proved that transfer learning is indeed applicable to the both segmentation
tasks and in some cases it even outperforms the so called ”clean“ models.

Third experiment group had shown the difference between single-phased and two-phased
training, with the latter one pulling ahead in terms of overall segmentation dice score. It
had also demonstrated that adding an additional phase with decreased learning rate and
smaller more precise dataset forced the stagnating models to learn new parameters. The
best results for both tasks were produced by their respective restChest models with ~89%
average accuracy for task using densely annotated data, and average precision of ~78% for
task using sparsely annotated data.

In order to further improve the segmentation results of models trained on sparsely
annotated data, multi-channel patches with added posterior probability maps of voxels
beloning to the tooth regions instead of single-channel inputs might decrease the amount of
false positives, while the larger sample of CBCT scans could perhaps improve the networks
ability to recognize various tooth shapes.
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Appendix A

Contents of the included storage
media

∙ Directory source includes all launching scripts along with sub-directories source/unet
with all training scripts and source/datset where all data manipulation scripts are
located.

∙ Directory latex_src contains latex source files for thesis text generation.

∙ File requirements.txt specifying the python packages required for successful run of
the scripts included in source.

∙ File thesis.pdf contains the text of the bachelor thesis.

∙ Directory pretrained_weights contains all models that were used in the experi-
ments. Best models have BEST prefix in their file name.

∙ File README.md containing additional information about the scripts - their command
line parameters, limitations etc.

Datasets were not included as a part of the storage media. With the execution of
launching scripts, additional directories preprocessed and pretrained_weights/logs will
be generated. Detailed description of the dataset can be found in appendix B.
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Appendix B

Dataset

Dataset
Index Modality Slice count Annotations Description
01, 02, 05, 06,
08, 10, 14, 19,
21, 22, 25, 30,
35, 39, 41

CT 64 sparse/dense upper teeth row

03, 04, 13, 15,
16, 17, 18, 23,
36, 42

CT 128 sparse/dense entire dental region

07, 09, 24, 26,
27, 31, 33, 38,
40,

CT 32 sparse/dense upper teeth row

11, 12, 20, 28 CT 64 sparse/dense entire dental region
29 CT 32 sparse/dense entire dental region
32 CT 32 sparse/dense upper teeth row with

high frequency of metal-
lic artifact appearance

34 CT 32 sparse/dense upper teeth row with
high frequency of metal-
lic artifact appearance

37 CT 128 sparse/dense entire dental region
with high frequency
of metallic artifact
appearance

43 CT 166 sparse/dense entire dental region
44 CBCT 244 sparse/dense entire dental region
45 CBCT 230 sparse/dense entire dental region
46 CBCT 273 sparse/dense entire dental region
47 CBCT 303 sparse/dense entire dental region
48 CBCT 204 dense entire dental region

Table B.1: Detailed list providing information about slice count, modality, type of anno-
tation and short description of every scan included in training dataset.
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