
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

MULTIPLATFORM PHOTO ORGANIZER
MULTIPLATFORMNÍ APLIKACE PRO ORGANIZACI FOTOGRAFIÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MAGDALÉNA URMÍNOVÁ
AUTOR PRÁCE
SUPERVISOR Ing. JIŘÍ HYNEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Urmínová Magdaléna
Programme: Information Technology
Title: Multiplatform Photo Organizer
Category: Information Systems
Assignment:

1. Get acquainted with the problem of management and organization of photos. Study photo
metadata formats. Analyze the existing photo organizers.

2. Study the principles of development of multiplatform applications and design of usable user
interfaces. Find and analyze user requirements and associate the requirements with the
existing photo organizers.

3. Design a multiplatform application which can be used to organize photos. Consider the user
requirements. Focus on the analysis of duplicate photos.

4. Implement the designed application.
5. Perform usability testing, evaluate the results and propose further extensions.

Recommended literature:
Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User
Interface Design Guidelines. Morgan Kaufmann Publishers/Elsevier, 2010, ISBN:
978-0-12-375030-3.
Preece, J.: Interaction Design: Beyond Human-Computer Interaction. John Wiley & Sons,
2015, ISBN: 978-1-119-02075-2.
Electronjs.org: Electron Documentation [online]. 2019 [cit. 2019-10-13]. Available at:
https://electronjs.org/docs.

Requirements for the first semester:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Hynek Jiří, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 31, 2020
Approval date: October 23, 2019

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22592/2019/xurmin01 Page 1/1

Abstract
This bachelor’s thesis focuses on creating a multi-platform desktop application for photo
organisation and management. It analyses user requirements and explains the concept of
photography metadata. Later, it studies the principles of usable multi-platform application
design and describes three used frameworks for multi-platform development. Electron is in-
troduced, and its architecture is illustrated. The process of the application implementation
is described, along with a list of used tools and libraries. The evaluation of the application
was determined both by user testing and performance testing.

Abstrakt
Táto bakalárska práca sa zaoberá vytvorením multiplaformnej desktopovej aplikácie na or-
ganizáciu a manažment fotografií. Analyzuje požiadavky uživateľov a vysvetluje koncept
metadát fotografií. Následne študuje princípy dizajnu použiteľnej multiplatformnej apliká-
cie a popisuje tri nástroje na multiplatofrmný vyvoj. Predstavuje Electron a popisuje jeho
architektúru. Proces implementácie je vysvetlený spolu s vymenovaním použitých nástrojov
a knižníc. Vyhodnotenie aplikácie bolo určené na základe uživateľského testovania a testo-
vania výkonu.

Keywords
Electron, React, JavaScript, photography management, photography metadata, desktop
application, multi-platform application, IndexedDB

Kľúčové slová
Electron, React, JavaScript, organizácia fotografií, metadáta fotografií, desktopová apliká-
cia, multiplatformná aplikácia, IndexedDB

Reference
URMÍNOVÁ, Magdaléna. Multiplatform Photo Organizer. Brno, 2020. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Jiří
Hynek, Ph.D.

Rozšírený abstrakt
Práca sa zaoberá vývojom aplikácie na triedenie a organizovanie fotografií. Cieľom práce
je navrhnúť aplikáciu tak, aby spĺňala podmienky užívateľov a bola dostupná na čo najviac
operačných systémoch.

V prvej časti popisujem organizáciu fotiek ako takú. Zaoberám sa štatistikami z rôznych
zdrojov ohľadne najpoužívanejších formátov fotiek spolu s konceptom toho, koľko fotografií
užívatelia ročne vytvoria. Následne analyzujem možnosti úložiska týchto fotografií. Popisu-
jem výhody a nevýhody využívania virtuálnych vzdialených diskov v porovnaní s lokálnym
ukladaním. Následne hodnotím systém, ktorým užívatelia svoje fotky organizujú online či
offline spolu s vymenovaním najpoužívanejších aplikácií určených na tento účel. Rozoberám
ich silné stránky a nedostatky. V poslednej sekcii prvej kapitoly analyzujem spôsoby de-
tekcie duplikátov vo fotkách a bližšie popisujem využívané existujúce riešenia.

V nasledujúcej kapitole predstavujem pojem metadáta fotografií. Stručne objasňujem
ich históriu a vývoj do dnešnej podoby. Dnes sa využívajú tri formáty metadát. Popisujem
ich štruktúru a účel spolu s príkladom, ako metadáta konkrétnej fotky môžu vyzerať.

Aby som mohla začať navrhovať danú aplikáciu, bolo potrebné stanoviť princípy návrhu
použiteľnej multiplatformnej aplikácie. Práve týmto princípom sa venujem v tretej kapi-
tole. Každý operačný systém má jedinečné vlastnosti, ktoré musí multiplatformná aplikácia
zohľadniť, napríklad práca so súborovým systémom, vzhľad aplikačného rozhrania alebo
rôzne cesty ku konfiguračným súborom. Tieto problémy je možné čiastočne alebo úplne
vyriešiť použitím nástroja na vývoj multiplatformných aplikácií. Porovnávala som výhody
a nevýhody troch – Haxe, Electron a NW.js. Zároveň som predstavila techniky, ktoré som
využila na tvorbu použiteľnej aplikácie. Ide o techniky na získavanie požiadaviek užívateľov,
vytvorenie empatie s nimi a definovanie prípadov užitia aplikácie.

Po objasnení všetkých pojmov som mohla následne vykonať analýzu celkového problému
organizácie fotiek. Požiadavky užívateľov som získala pomocou dotazníka, rozhovorov a
následného vytvorenia persony. Na základe získaných informácií som vytvorila požiadavky
na systém a porovnala ho s existujúcimi aplikáciami. Zistila som, že požiadavky užívateľov
nie sú úplne splnené, a tým sa naskytla príležitosť navrhnúť a implementovať novú aplikáciu
pre tento účel.

Vďaka všetkým získaným dátam som vytvorila návrh aplikácie, popísaný v ďalšej kapi-
tole. Aplikácia si musí uchovávať dáta o jednotlivých fotkách. Po ich analýze som navrhla
výslednú štruktúru dát, ktoré som modelovala použitím ER diagramu. Funkcie užívateľského
rozhrania som prezentovala na diagrame prípadov užitia a následne som všetky tieto funkcie
jednotlivo popísala. Aplikácia má byť zostavená zo siedmych hlavných okien, ktoré reprezen-
tujú sedem hlavných funkcionalít – import fotografií, ich zobrazenie na časovej osi, zo-
brazenie na mape, rozdelenie fotiek do albumov, správa zariadení, detekcia duplikátov a
vyhľadávanie fotiek.

V nasledujúcej kapitole popisujem proces implementovania získaného návrhu. V prvej
časti definujem architektúru projektu. Z popísaných nástrojov na tvorbu multiplatformnej
aplikácie som vybrala Electron. Vysvetľujem jeho architektúru a princíp komunikácie medzi
užívateľským rozhraním a hlavným procesom Electronu. Na implementáciu užívateľského
rozhrania som sa rozhodla použiť React, ktorý v tejto časti tiež popisujem. Súčasťou
architektúry projektu je aj výber databázy. Po preskúmaní možností bola vybraná In-
dexedDB. V druhej časti kapitoly popisujem všetky použité knižnice – spôsob extrahova-
nia metadát z fotiek, zobrazenie máp a iné knižnice použité pre užívateľské rozhranie. V
poslednej časti kapitoly popisujem implementačné detaily zaujímavých častí. Demonštru-

jem algoritmus na detekciu duplikátov a vyhľadávanie fotiek podľa užívateľom zadaných
parametrov.

Testovanie aplikácie som rozdelila na dve časti. Prvou je testovanie výkonu aplikácie
a analýza časovo náročných procesov. Pri importovaní fotiek som merala čas potrebný
na čítanie metadát, vytvorenie miniatúry fotky a jej následné uloženie v databáze. Pri
vyhľadávaní duplikátov som sledovala závislosť medzi počtom fotiek v knižnici a časom
potrebným na detekciu duplicitných fotiek. Pri hľadaní fotiek podľa zadaných parametrov
som sledovala závislosť počtu fotiek v knižnici s počtom zadaných parametrov a výsledným
časom potreným na operáciu. Aplikácia bola zároveň testovaná na viacerých operačných
systémoch. Druhou časťou testovania je užívateľské testovanie. Prebiehalo formou plnenia
úloh a následnými rozhovormi o vykonaných akciách. Sledovala som hlavne jasnosť a in-
tuitívnosť užívateľského rozhrania spolu s použiteľnosťou aplikácie. Pripomienky a nápady
užívateľov boli zhodnotené a pridané k ďalšiemu vývoju.

Budúci vývoj aplikácie môže zahŕňať automatickú detekciu tvárí z fotiek, detekciu
podobných fotiek na základe viacerých kritérií alebo prispôsobiteľnú farebnú tému uží-
vateľského rozhrania.

Multiplatform Photo Organizer

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the academic supervision of Ing. Jiří Hynek, Ph.D. All the relevant sources, which were
used during the preparation of this thesis, are properly cited and included in the list of
references.

. .
Magdaléna Urmínová

July 30, 2020

Acknowledgements
I would like to thank my supervisor Ing. Jiří Hynek, Ph.D. for all his patience and guidance,
which he always provided me with. Also big thanks to my little sister, who helped me with
choosing the right name for the final application.

Contents

1 Introduction 3

2 Photography management 5
2.1 Photo storage . 6

2.1.1 Online storage . 6
2.1.2 Offline storage . 7

2.2 Organisation of photos . 7
2.2.1 Managing photos offline . 7
2.2.2 Managing photos online . 8
2.2.3 Photo organising applications . 8

2.3 Detection of photo duplicates . 13
2.3.1 Tools for duplicate detection . 13
2.3.2 Photo management with duplicate detection 14

3 Photography metadata 15
3.1 History of photography management and metadata 15
3.2 Metadata today . 15

3.2.1 Metadata formats . 16
3.2.2 Metadata properties . 17

4 Principles of usable multi-platform application design 19
4.1 Principles of multi-platform development . 19
4.2 Development of multi-platform applications 20

4.2.1 Software platform possibilities . 20
4.3 Design of usable application . 22

4.3.1 Terminology . 22
4.3.2 Used techniques . 22

5 Problem analysis 25
5.1 User requirements . 25

5.1.1 Question form . 25
5.1.2 Interviews . 26
5.1.3 Personas . 27
5.1.4 System requirements . 28

5.2 Existing solutions . 29
5.3 Summary . 30

1

6 Solution design 31
6.1 Data structure design . 31

6.1.1 Data analysis . 31
6.1.2 Final data structure . 31

6.2 UI design . 32
6.2.1 Use-case diagram . 32
6.2.2 Structure of the application UI . 33

7 Implementation 39
7.1 Project architecture . 39

7.1.1 Electron . 39
7.1.2 React . 40
7.1.3 Data storage . 40

7.2 Used libraries . 41
7.2.1 Leaflet . 41
7.2.2 Exiftool . 41
7.2.3 Jimp and ImageMagick . 42
7.2.4 Semantic and Material-UI . 42
7.2.5 Timeline component . 42

7.3 Implementation details . 42
7.3.1 Working with metadata . 42
7.3.2 Duplicate detection . 43
7.3.3 Device management . 45
7.3.4 Searching . 45

7.4 Packaging and used developer tools . 46
7.4.1 Developer tools . 46

8 Testing 47
8.1 Performance testing . 47

8.1.1 Import . 47
8.1.2 Duplicate detection . 48
8.1.3 Search . 48
8.1.4 Multiplatform testing . 49

8.2 User testing . 49
8.2.1 Clarity of the user interface . 49
8.2.2 Application usability . 49

9 Conclusion 50

Bibliography 51

A Questionnaire 53

B CD content 55

2

Chapter 1

Introduction

Taking photos has never been easier. Nowadays, everyone carries a camera in their pocket.
It is not rare that people take many photos and never even look at them. When the time
comes, and space on their phone storage or memory card is running out, they just move
them to their laptop or external hard drive and take more and more photos with their
phone or camera. It is really easy to get lost in the photos when they are all over the
place, not sorted, just recklessly stored where they fit. The problem starts when a person
such as one mentioned above, is trying to find one particular photo. Alternatively, when
something inconvenient happens, and suddenly lots of pictures are stored many times in
different locations under various names, and the duplicates are just too much to manage
manually.

That is why people use many applications to make the process easier. To manage photos
taken using various devices, they usually use a cloud service that provides the advantage of
real-time synchronisation and access to everything they have taken so far, mostly sorted.
However, these services come with two main disadvantages.

First, accessing a photo stored in the Cloud requires a connection to the internet.
Additionally, quality photos can take up much space. A cloud service can compress user’s
photos, or a lot of data will be spent to load or download the photos from the virtual
storage.

The other disadvantage of using cloud services is that people are not often familiar with
privacy issues. Many cloud services (mostly those that are “free”) use the users’ stored
data for machine learning or advertisements. Those clouds that provide secured services
are usually quite expensive.

The purpose of this paper is to analyse users’ needs and requirements in terms of
photo management and organisation, cover existing solutions and their main advantages
and disadvantages, and design and implement a free and private solution that is easy to use
and understand, and functional on many platforms. Based on user requirements analysis, I
will attempt to show that there is a need for an application just like this one among users.

Chapter 2 describes photography management as a process of storing and organising
photos and identifies different options of storage. In addition, existing solutions for photo
management are listed and described. Lastly, the analysis of photo duplicates detection is
defined, and available tools for duplicate detection are listed.

Chapter 3 is focused on defining the term photography metadata and explains the his-
tory of photo management, which led to metadata attributes that are used nowadays.
Moreover, the existing metadata formats are described.

3

In Chapter 4, the principles of developing and designing a usable multi-platform appli-
cation are described. The possible software frameworks and tools used for multi-platform
development are compared. In the last section, the principles for developing a usable ap-
plication are explained, and the used techniques are listed.

In Chapter 5, the problems concerning photo management are analysed in depth.
The first section is focused on understanding user requirements based on questionnaire
and interviews. Based on the collected data, two personas are created. In the second sec-
tion, the existing solutions described in Chapter 2 are compared with user requirements and
their advantages and disadvantages are named. In the last section, the final requirements
for a new application are presented.

Based on Chapter 5, the design of the new application is described in Chapter 6. It
contains a design of the data structure and the user interface design of the final application.

In Chapter 7, the process of implementation is described. It demonstrates application
architecture and description of used technologies and libraries. Additionally, it explains the
selected parts of the implementation.

Finally, the last Chapter 8 is focused on the evaluation process and testing – both
performance and user testing.

4

Chapter 2

Photography management

Not only professional photographers, but many ordinary people or amateurs in photography
struggle with the process of photo management: the number of digital photographs they
possess and choosing the right software with the possibility to invest in more advanced
tools. Moreover, some struggle with the preference of privacy and easy access—whether
to keep their images private and offline or to synchronise all their devices using an online
tool and share one library or the Cloud. The list of possible software options is filled with
applications of various kinds.

Before phones had built-in cameras, or even before owning a film camera became pop-
ular, people did not own many photographs. The ones they had, they stored in boxes or
sorted in photo albums. A small amount of photos is quite easily manageable. However,
with the process of digitalisation, the number of photos increased gradually. Nowadays, as
presented in Figure 2.1, the number of digital photos in the world is counted in trillions.

660

810

1000

1100

1200

0

200

400

600

800

1000

1200

1400

2013 2014 2015 2016 2017

B
IL

LI
O

N
S

Figure 2.1: The number of photos taken worldwide each year 2013-2017, redrawn from
online source2.

2https://focus.mylio.com/tech-today/heres-how-many-digital-photos-will-be-taken-in-2017-
repost-oct

5

https://focus.mylio.com/tech-today/heres-how-many-digital-photos-will-be-taken-in-2017-repost-oct
https://focus.mylio.com/tech-today/heres-how-many-digital-photos-will-be-taken-in-2017-repost-oct

Based on statistics [4] from 2018, a representative person captured 20.2 photos per day
in the United States, on average. In contrast, Europe was in last place, with 4.9 photos per
day. It is not just the number of photos people deal with, but also the increasing file size.
With the always improving quality of cameras, one image captured by a high-resolution
camera in the RAW format can take up to 60 MB of space. However, average photo
size varies usually between 3 to 15 MB, depending on resolution, format and compression.
Based on the survey [10] from 2018, people store their photo and video data in units of
terabytes. With the ever-growing library of pictures, if they are not sorted regularly, people
eventually run out of storage. That is why the question of where and how to store our data
is fundamental. The most common image file type is JPEG. Other widely used formats are
PNG, TIFF, GIF and RAW formats. In article [12], Jeff Kabachinski describes formats of
pictures in more detail.

2.1 Photo storage
The most significant question users ask before choosing their right way of managing photos
is whether to store the data locally or to use a cloud service. The main advantages and
disadvantages are presented in the following paragraphs.

2.1.1 Online storage

Probably the biggest downside of using online storage for practically any data is the ne-
cessity of internet connection to import and access the files. Digital photos can take up
much space. Uploading quality photos to the Cloud takes much time, especially when the
internet connection is slow. Moreover, accessing or migrating remotely stored data in the
future would require downloading them. However, pictures that are already online are
more comfortable to share with other users on social media. Although, the requirement of
constant internet connection is not an issue for some users.

The pertinent reason for people to use cloud storage for storing their photo is multi-
device synchronisation and often automatic backups. As long as they are connected, the li-
brary of photos is accessible from phones, laptops, tablets, and any other device the user
chooses and signs in on.

One of the disadvantages might be the lack of control over the user’s data. Since the data
is held offsite by a company which users do not control, they sometimes lack the ability to
customise their storage. However, it is not an issue for moderate cloud costumer.

Unlike customisation, security and privacy have been an important factor for users.
Cloud storage means handing over the control of confidential information to a third party
company. There were some affairs concerning cloud companies in the past—for instance,
in June 2011, TechCrunch reported that all Dropbox accounts could be accessed without
password for four hours3. Another example is an incident called “Celebgate”, occurred
during 2014 when a hacker leaked celebrities’ photos from Apple’s iCloud service. Apple
later reported that the victims’ iCloud account information was obtained using “a very
targeted attack on user names, passwords and security questions”, such as phishing and
brute-force attack guessing4.

3https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-
four-hours/

4https://www.theverge.com/2014/9/2/6098107/apple-denies-icloud-breach-celebrity-nude-
photo-hack

6

https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://www.theverge.com/2014/9/2/6098107/apple-denies-icloud-breach-celebrity-nude-photo-hack
https://www.theverge.com/2014/9/2/6098107/apple-denies-icloud-breach-celebrity-nude-photo-hack

There are many cloud services on the market. Some of them provide free limited storage.
Many cloud services claiming to be free use their customers’ data for training their ma-
chine learning models and personalised advertisements. Security and privacy are provided
usually by more expensive clouds. If the user interface of a cloud application is unclear,
occasionally, some customers can get confused in the automatic synchronisation process
and create duplicates by mistake.

2.1.2 Offline storage

Whereas using cloud service may evoke a lack of control, storing data locally is the opposite.
Data stored in local storage are always accessible, even without an internet connection.
Photos can be easily transferred between devices without necessity to download them first.
The data are not shared with any third party, which imply total privacy. Only individual
users are responsible for their data.

There are two primary options for storing photos offline: keeping the data on the phone
or laptop or using external storage. While keeping all the data in the phone’s or laptop’s
hard drive means immediate access, storing photos may take up too much space on a single
device. At some point, the device will reach its maximum space. Taking many quality pho-
tos requires much space. Secondly, losing a phone or having a laptop stolen would result
in the loss of all the precious data. Furthermore, users do not usually require immediate
access to older photos. That is why many people tend to use external storage for pho-
tographs to archive them. However, the maintenance of multiple external storage devices
can get complicated. Users should keep track of which devices are used for what type of
data. Typically used are external hard drives, SD memory cards and USB flash drives.
Less frequent are CDs/DVDs and NAS (Network-attached storage).

2.2 Organisation of photos
The process of organisation and management of photos varies. The main difference is
the storage choice—whether the data is stored online or offline.

2.2.1 Managing photos offline

The way data is distributed throughout devices matters. Splitting data into folders is a good
way to keep things organised. However, it is not always the best approach, especially
for photos. Some images may fall into more than one category, which makes the folder
system ineffective. Furthermore, a person can easily get lost in folders of multiple devices.
Operating systems’ default applications usually do not offer a view of data simultaneously
from more than one device (in one window), which means that the content of every device
can be managed only separately. There are applications available for a better way of
displaying data on multiple devices, but they do not provide methods for sorting and
organising photos.

Default tools of the operating system usually do not offer features such as editing pho-
tograph’s metadata, adding tags to photos or filtering photos based on various criteria.
For this reason, users tend to use third party photo organisation software. Offline applica-
tions differ based on which operating systems they are available for.

7

2.2.2 Managing photos online

It is not only important where the data is stored, but also how the images are organised
within the Cloud and whether the customer can quickly sort and filter their photos. Some
cloud services offer built-in image recognition and face recognition, which can speed up
the search time for a specific photograph. The particular services are named and described
in the following section.

2.2.3 Photo organising applications

Before looking for suitable software, the user should consider many criteria. Whether
they are willing to invest, or they prefer free applications. Whether they are looking for
something easy to use or more complex because sometimes they can unintentionally delete
some photos without even realising, so they have to consider their computer skills. They
should also take into consideration the amount of data that they have and plan to generate.
Another important factor is how often they need to access their data.

Google Photos

The best known online photo manager and organiser is Google Photos5. It offers unlimited
storage as long as uploaded photos do not exceed 16 megapixels resolution and videos are
reduced to 1080p quality. If the conditions are not met, the storage is restricted to 15GB. It
automatically uploads and backups every photo on a device when connected to the internet.
It also supports image recognition, face recognition and sorting based on dates and places
they were taken. Google Photos includes several editing options, such as colour adjustment,
cropping, resizing and more. Customers can also create albums that can be shared publicly
or privately with specific Google users. The storage can be extended up to 30 TB of data.

While many customers are satisfied with Google’s services, many question their privacy
policy6:

“...We also collect the content that you create, upload or receive from others
when using our services. This includes things such as email you write and
receive, photos and videos that you save, docs and spreadsheets you create and
comments that you make on YouTube videos.”

However, Google has already stated that they will not use their users’ photos for com-
mercial or promotional purposes without obtaining explicit permission7. The user interface
(first picture in Figure 2.2) has an intuitive timeline of photos on the right side and photos
are sorted by the date by default. On the left side, there is the main menu, that does
not take too much space, which means the focus is primarily on the photos in the middle.
Pictures can be easily added to albums with a customisable name.

iCloud

iCloud Photos8 is an application designed for Apple devices. It has a shared library for all
Apple devices synchronised with one account. It provides content recognition and organises

5https://www.google.com/photos/about/
6cited from https://policies.google.com/privacy
7https://www.businessinsider.com.au/google-photos-privacy-2015-5
8https://support.apple.com/en-us/HT204264

8

https://www.google.com/photos/about/
https://policies.google.com/privacy
https://www.businessinsider.com.au/google-photos-privacy-2015-5
https://support.apple.com/en-us/HT204264

photos and videos into years, months and days. The photo collection is uploaded using Wi-
Fi or cellular data. After signing up, the user automatically gains 5GB of free storage.
There is also a possibility to buy more storage. It keeps all photos and videos in their
original, high-resolution version.

Mylio

Mylio9 is an offline photo organiser and manager which integrates user’s devices (both
desktop and mobile) and online sources into one catalogue of photos. Mylio helps to manage
and organise photos without any remote servers, thus ensuring privacy. As long as all
devices are using the same Wi-Fi network and Mylio is running on all of them, photos
are synchronised across all signed devices. Mylio does not display pictures on a timeline,
like Google Photos. Instead, it displays a grid calendar with photos assigned to it. It offers
a world map with markers on locations where imported photos were taken. Example of
the user interface is in Figure 2.2 (the second picture). There is a free and paid version
for Mac, Windows, iOS, and Android. The free version provides import of 25.000 photos
to Mylio library and synchronisation between up to 3 devices. The paid version offers
an unlimited amount of photos and devices and RAW photos editing for a subscription fee
of $10 a month.

Flickr

Flickr10 is an online photo management and sharing application with two main goals:
to make content available to people of user’s choosing, and to organise photos and videos.
It is often used as a photography portfolio or as a blog because photos stored there can
be marked as public as well. Example of the user interface is in Figure 2.2 (last picture).
Under the image, there are views and comments on the left side and the image metadata
on the right side. The EXIF data are displayed very clearly and attractively.

Free and the pro version is available. The free version is limited to 1.000 uploaded
pictures. Pro version is $5 per month and offers unlimited storage, advanced statistics and
other features. One of the disadvantages is a collection of user’s information (location,
photo metadata (EXIF), device information, log information).

9www.mylio.com
10www.flickr.com

9

www.mylio.com
www.flickr.com

Figure 2.2: Examples of user interfaces of Google Photos(1), Mylio(2) and Flickr(3).
10

MAGIX Photo Manager

MAGIX11 is a desktop application that allows users to browse and sort photos and videos
easily. It supports a wide range of formats, filtering by tags, location, date, categories
and rating. It sorts out poor shots, duplicates and blurry photos. It offers a light and
dark theme and a possibility to create a travel route animation to show the most important
highlights of the vacation. However, the process of creating a travel route is manual.
The user interface is shown in the first picture of Figure 2.3. MAGIX is only available for
Windows. It offers a free version with limited functions and paid full version for $50.

Phototheca

Phototheca12 is a photo organising, editing, and sharing software for a computer. This
photo management software makes it easy to view, sort, organise, edit, and share thousands
of digital photos and videos. Users can import from cameras, memory cards, hard drives,
network shares and even iOS devices. Tag photos and videos with keywords, arrange them
into albums, remove duplicates. Phototheca automatically recognises people and cats and
gathers all photos of the same person into an album with a name. It supports duplicate
detection and colour correction tools. However, it is only available for Windows. The user
interface is usually considered outdated. An example is in Figure 2.3, picture in the middle.
It comes in a free and paid version.

ACDSee Photo Studio

ACDSee is a desktop application for editing and management with face detection and
facial recognition. Managing, labelling and organising of photos is mostly manual, and
the application is available for Windows only. However, it offers many features, including
photo editing. Example of the user interface is on the bottom picture in Figure 2.3.

Lightroom

Adobe’s Lightroom13 is a professional photo editor that offers some organising features.
It can modify metadata, work with RAW images, edit pictures, give them tags, ratings,
labels and more. Unfortunately, there is no free plan—the application has a subscription
fee of $10 for a month.

11https://www.magix.com/us/free-download/photo-manager/
12www.lunarship.com
13https://www.adobe.com/products/photoshop-lightroom.html

11

https://www.magix.com/us/free-download/photo-manager/
www.lunarship.com
https://www.adobe.com/products/photoshop-lightroom.html

Figure 2.3: Examples of user interfaces of MAGIX Photo Manager (1), Phototheca (2) and
ACDSee Photo Studio (3). 12

2.3 Detection of photo duplicates
When it comes to photos, a definition of word duplicate varies. Two images can be iden-
tical pixel-by-pixel, or one of them might have been resized, cropped, or colour-corrected.
Furthermore, many cameras support multi-shot mode that can take bursts of images that
are not identical, but very similar, all taken within a few seconds on the same location.
It could be relatively easy to identify such ”duplicates“ manually and delete them one by
one when there are only a few of them in the library. But it is more common for people to
have multiple copies of image folders across their devices, and to find and delete duplicates
manually, in this case, would be most certainly very time-consuming and overwhelming.

To automatise this process, many tools are available. However, only a few of them
support a wide range of image formats, and some of them detect only identical images, not
similar. They also differ based on the operating system they are designed for.

2.3.1 Tools for duplicate detection

There is a group of tools that work in a similar manner. A user usually needs to import
photos they want to scan. After some computation time, the list of found duplicates is
presented with an option to mark which ones to delete. It might be convenient for some
users. However, for the process of photo management and photo duplicates scan, there is
a need for two different software solutions.

Duplicate Photos Fixer Pro

Duplicate Photos Fixer14 is usually number one in users’ satisfaction evaluations for du-
plicate photos manager. It is available for Windows, Mac, Android and iOS. After adding
files or folders the user desires to scan, the search engine scans photos and detects dupli-
cates. It lets users review and mark the photos they want to delete before the deletion.
The Fixer works with a wide range of image formats. It can identify duplicates based
on certain parameters, such as quickly-shot series of photographs (Burst photos), slightly
edited/touched-up images or similar photos taken within 24 hours. However, the free ver-
sion has many limitations — removing only 15 files and blocked premium features. The Pro
version price differs based on the OS, from $7 for iOS to $72 for Windows.

Other applications

Other applications worth mentioning are:

• Remo Duplicate Photos Remover15

• Duplicate Cleaner16

• Duplicate Photo Cleaner17

14https://www.duplicatephotosfixer.com
15https://www.remosoftware.com/remo-duplicate-photos-remover
16https://www.digitalvolcano.co.uk/
17https://www.duplicatephotocleaner.com/

13

https://www.duplicatephotosfixer.com
https://www.remosoftware.com/remo-duplicate-photos-remover
https://www.digitalvolcano.co.uk/
https://www.duplicatephotocleaner.com/

2.3.2 Photo management with duplicate detection

The most convenient way for users to organise their photo library is a photo management
application with built-in duplicate detection functions. Some of the previously mentioned
applications from Section 2.2.3 offer duplicate detection.

Google Photos

Google Photos automatically detects an attempt of importing an image that is already in
the library and will not upload it again. The duplicate will be detected even if the name
of the file is changed. However, when the metadata of a photo is changed (for example
date of creation), it does not detect duplicates. There is no feature as ”find duplicates“
implemented in Google Photos.

MAGIX

MAGIX offers a feature ”search my files and folders for duplicates“. But it detects only
identical photos.

Phototheca

When importing files to Phototheca, a dialogue window will appear if duplicate was de-
tected. It lets the user check what photos are duplicated and where the copies are located.

Mylio

When importing photos to Mylio, there is a checkbox with an option to ”Exclude suspected
duplicates“. With the checkbox turned on, Mylio will exclude identical images, even if they
were renamed. Nevertheless, after even a small change in the photo’s metadata (for example
the device it was taken with or rating of the photo), Mylio will not identify such an image
as a duplicate.

Lightroom

In the process of importing to Lightroom, users can see which photos from the device are
already uploaded. Uploading an identical photo is not possible. However, when the same
picture is copied to another device and renamed, Lightroom does not recognise it as a du-
plicate.

14

Chapter 3

Photography metadata

Metadata, often referred to as “data about data”, provides interesting information that
supplements the primary content of digital documents [2]. As stated in the document
[13], metadata has become a powerful tool to organize and search through the growing
libraries of image, audio and video content. This is especially important in the area of
digital photography where, despite the increased quality and quantity of sensor elements,
it is not currently practical to organize and query images based only on the millions of
image pixels. Instead, it is the best option to use metadata properties that describe what
the photo represents and where, when and how the image was taken.

In this chapter, the term photography metadata is described in detail, along with
the journey from historical photo metadata to today’s standards.

3.1 History of photography management and metadata
Before the world’s digitization—and even during the early stages of it—metadata were
the bits of information written, stamped, typed or printed on slide mounts, envelopes or
the backs and borders of photographic prints, usually concerning the author of the photo-
graph, date or a description of its content. It was a piece of information about the picture
that must have been communicated through text because it was not evident in the picture
itself.

As described in book [16], in the early days of digitization, photos were digitized only
for transmission purposes and the digital version was of little consequence because it disap-
peared after transmission. Photographers transmitting the images typed the photo meta-
data (cutlines, bylines, dates, locations, etc.) on a strip of paper, attached the strip to
the margin of the print and transmitted the verbal information as part of the photo. Es-
sential data and the photos stayed together. Nevertheless, as digital technology developed,
keeping digital and written data in one place became increasingly difficult.

3.2 Metadata today
In the modern world, photo metadata is key to protecting images’ copyright and licensing
information online. It is also essential for managing digital assets. Detailed and accurate
descriptions about images ensure they can be easily and efficiently retrieved via search, by

15

users or machine-readable code. This results in smoother workflow within organizations,
more precise tracking of images, and increased licensing opportunities1.

3.2.1 Metadata formats

There are three metadata formats widely used in the industry:

• EXIF – Exchangeable image file format

• IPTC-IIM – IPTC Information Interchange Model

• XMP – Extensible Metadata Platform

They are described in more depth in the article [18].

EXIF

A standard for image file formats, jointly managed by the Japan Electronics and Information
Technology Industries Association (JEITA) and Camera and Imaging Products Association
(CIPA). In particular, the EXIF image format defines a set of TIFF tags that describe
photographic images and is widely used by digital cameras.

EXIF attributes contain for example:

• information about the camera – Camera Model Name, Camera Serial Number,

• photo’s exposure values – Exposure Time, Shutter Speed Value, Exposure Index,

• flash settings information – Flash, Light Source,

• resolution of the photo – X Resolution, Y Resolution, Image Width, Image Height,
Image Size,

• GPS coordinates – GPS Latitude, GPS Longitude, GPS Position,

and other data, based on camera manufacturers. Example of metadata of a picture
taken with a GoPro camera is shown in Figure 3.2. EXIF metadata can be found in TIFF,
JPEG, and PSD files. [13]

IPTC-IIM

Multimedia metadata standard developed by International Press Telecommunications Coun-
cil (a consortium of the world’s major news agencies, news publishers and news industry
vendors). The first IPTC standard was text-only and defined to protect the interest of
the telecommunications industry (1979).

Later, in 1991, a new standard, the “Information Interchange Model” (IIM), was cre-
ated. IIM is an envelope format for transmitting news text documents and photos, and it
defines the so-called “IPTC headers” which now exist in many photo files. Users can easily
insert the data, specifically photo description, keywords, labels, etc. by software concerning
photography metadata.

1Cited from https://iptc.org/standards/photo-metadata/

16

https://iptc.org/standards/photo-metadata/

XMP

Adobe’s Extensible Metadata Platform2 is a labelling technology that allows embedding
metadata into a file itself. XMP allows each software program or device along the way to
add its own information to a digital resource, which can then be retained in the final digital
file. XMP is serialized in XML and stored using a subset of the W3C Resource Description
Framework (RDF). Therefore, customers can easily define their custom properties and
namespaces to embed arbitrary information into the file.

3.2.2 Metadata properties

Every metadata format defines its metadata properties. In the simplest scenario, a given
metadata property is only defined in a single metadata format. This is, for example, true
for the rating property — it should always be read and written into the corresponding XMP
(xmp:Rating) field. No further reconciliation is necessary. Also, there are other properties
that are unique to the container and will not be reconciled amongst the other formats.

However, photography metadata can be defined in more than one format. Dealing with
more than one metadata format makes it challenging to determine the correct behaviour
for handling the particular property values.

Figure 3.1: Simplified view of metadata defined in more than one format [13]

Based on Figure 3.1, there are only a few properties defined in more than one metadata
format. Only four of them are available in EXIF, IPTC-IIM and XMP (Copyright, Descrip-
tion, Creator and Date/Time). To ensure interoperability between software solutions, there
is a metadata reconciliation guidance on how to handle the different metadata properties in
the context of the actor/role definitions described in section 2 of chapter 3 of this document
[13].

2https://www.adobe.com/products/xmp.html
4https://exiftool.org/

17

https://www.adobe.com/products/xmp.html
https://exiftool.org/

C:\Users\Kiwinka> exiftool D:\Pictures\GOPR0016.JPG

ExifTool Version Number : 11.84

File Name : GOPR0016.JPG

Directory : D:/Pictures

File Size : 4.5 MB

File Modification Date/Time : 2019:03:25 14:22:37+01:00

File Access Date/Time : 2019:03:26 17:15:42+01:00

File Creation Date/Time : 2019:03:25 14:22:37+01:00

File Permissions : rw-rw-rw-

File Type : JPEG

File Type Extension : jpg

MIME Type : image/jpeg

Exif Byte Order : Big-endian (Motorola, MM)

Image Description : DCIM\100GOPRO\GOPR0016.JPG

Make : GoPro

Orientation : Horizontal (normal)

X Resolution : 72

Y Resolution : 72

Resolution Unit : inches

Software : HD7.01.01.70.00

Modify Date : 2019:03:25 13:22:37

Exposure Time : 1/8

F Number : 2.8

ISO : 200

Exif Version : 0221

Date/Time Original : 2019:03:24 19:25:25

Create Date : 2019:03:24 19:25:25

Shutter Speed Value : 1/8

Aperture Value : 2.8

Max Aperture Value : 2.8

Subject Distance : 0 m

Metering Mode : Average

Light Source : Unknown

Flash : No flash function

Focal Length : 3.0 mm

Exif Image Width : 4000

Exif Image Height : 3000

Interoperability Version : 0100

Exposure Index : 2147483595

File Source : Digital Camera

Scene Type : Directly photographed

Custom Rendered : Normal

Exposure Mode : Auto

Digital Zoom Ratio : 1

Focal Length In 35mm Format : 15 mm

Scene Capture Type : Landscape

Gain Control : None

Contrast : Normal

Saturation : Normal

Serial Number : C3281325991476

GPS Latitude Ref : North

GPS Longitude Ref : West

GPS Altitude Ref : Above Sea Level

GPS Time Stamp : 19:25:25

GPS Date Stamp : 2019:03:24

Compression : JPEG (old-style)

Thumbnail Offset : 44032

Thumbnail Length : 18379

Creator Tool : HD7.01.01.70.00

Metadata Date : 2019:03:25 13:22:37Z

Photographic Sensitivity : 200

Video Frame Rate : 0.000000

Video Frame Size W : 4000

Video Frame Size H : 3000

Video Frame Size Unit : pixel

Coded Character Set : UTF8

Application Record Version : 4

Date Created : 2019:03:24

Time Created : 19:25:25

MP Image Flags : Dependent child image

MP Image Format : JPEG

MP Image Type : Large Thumbnail (VGA equivalent)

Total Frames : 1

Device Name : Photo Global Settings

Firmware Version : HD7.01.01.70.00

Camera Serial Number : C3281325991476

Camera Model Name : HERO7 Black

Auto Rotation : Up

Digital Zoom : No

Pro Tune : On

White Balance : 2800K

Sharpness : HIGH

Color Mode : FLAT

Auto ISO Max : 200

Auto ISO Min : 100

Rate : 4_1SEC

Photo Resolution : 12MP_W

HDR Setting : OFF

Image Width : 4000

Image Height : 3000

Encoding Process : Baseline DCT, Huffman coding

Bits Per Sample : 8

Color Components : 3

Aperture : 2.8

Image Size : 4000x3000

Megapixels : 12.0

Scale Factor To 35 mm Equivalent : 5.0

Shutter Speed : 1/8

GPS Altitude : 55.5 m Above Sea Level

GPS Date/Time : 2019:03:24 19:25:25Z

GPS Latitude : 38 deg 38' 36.84" N

GPS Longitude : 9 deg 14' 26.28" W

Date/Time Created : 2019:03:24 19:25:25

Circle Of Confusion : 0.006 mm

Field Of View : 100.4 deg

GPS Position : 38 deg 38' 36.84" N, 9 deg 14' 26.28" W

Hyperfocal Distance : 0.53 m

Light Value : 5.0

Figure 3.2: Example of a photograph’s metadata extracted by using Phil Harvey’s Exiftool4.

18

Chapter 4

Principles of usable multi-platform
application design

This chapter is focused on describing the principles of developing a multi-platform ap-
plication that is considered usable. In the first section, the principles of multi-platform
development are listed and described. In the second section, there is a list of possible solu-
tions for developing a multi-platform desktop application with their main advantages and
disadvantages portrayed. In the third section, the term usability is defined, and the steps
of developing a usable user interface design are illustrated.

4.1 Principles of multi-platform development
When developing a multi-platform application, there are some rules to keep in mind. Firstly,
operating systems use various file systems. When working with file systems, the application
should detect which one is in use and have a valid approach implemented. Also, a path to
system data is different for every platform. While Microsoft Windows keeps information
about applications in the Appdata folder, OS X usually uses ~/Library/Application Support
and Linux equivalent depends on the specific application – for instance, Chrome data is
usually in ~\.Chrome folder.

The second issue concerning different operating systems is the title bar of their windows.
The title bar1 is a horizontal bar located at the top of a window in a GUI. It displays the title
of the software, name of the current document, or other text identifying the contents of
that window. The placement of minimise, resize, and close buttons varies. While Windows
has these buttons always on the right size, OS X keeps them on the left side. On Linux,
placement of them and window GUI is customisable and depends on the chosen desktop
environment. The application should try to keep them placed where the user expects them
to be.

Another problem may appear when the application needs to run third-party software.
Each operating system has its own way of launching an application within an application.
Last but not least, detailed and comprehensive testing is crucial, on as many platforms and
their versions as possible.

1https://www.computerhope.com/jargon/t/titlebar.htm

19

https://www.computerhope.com/jargon/t/titlebar.htm

4.2 Development of multi-platform applications
There are different ways of approaching the problem of writing a cross-platform application
program. One of them is to create multiple versions of the same program in different source
trees. This means that the Microsoft Windows version of a program would have one set
of source code files while the Linux or Mac version might have another. Even though
this is a straightforward approach to the problem, it has the potential to be noticeably
more expensive in development cost and development time. Furthermore, creating two
or more than two different programs that are supposed to behave similarly may lead to
more difficulties, because the two different source trees may have different programmers
and possible problems with bug tracking and fixing.

To be platform-independent is the desired quality of many applications. Modern de-
velopment offers multiple methods to simplify the implementation process. One of them
is called cross-platform software development. This development process allows writing
a single code-base to create applications for multiple platforms. There are many options of
frameworks or available tools to choose from.

4.2.1 Software platform possibilities

In this section, the alternatives of frameworks are listed, and their advantages and dis-
advantages are described. There are many possible options available, for example Haxe,
Electron, NW.js, 8th, Kivy, Enyo and more. In this section, Haxe, Electron and NW.js are
described.

Haxe

Haxe2 is an open-source high-level strictly-typed programming language with a fast opti-
mizing cross-compiler. It allows compilation of programs, written using an ECMAScript-
oriented syntax, to multiple target languages. Currently, there are nine supported target
languages, including JavaScript, PHP, Python, C++, C# and Java. The first version came
out in 2006.

Because the Haxe Language can compile to many different platforms, it is useful in
a wide variety of domains. It is popular with game creators because it is fast, has many
useful libraries, and can target iOS, Android, Web and Desktop easily.

Haxe can be used for web development, for client-side as well as server-side. The most
popular libraries are Haxe JS Kit and Haxe React. Furthermore, it is popular for desktop
applications as well. When aiming for apps with a native look, users can use the HaxeUI
library, which uses several ways to build native UI for each platform. There is support for
WxWidgets when targeting C++, which provides a real native look that lets developers
create applications for Windows, Mac OS X, Linux. Moreover, Haxe offers full access to
JavaScript/Node APIs.

However, there are several disadvantages, one of them being not very detailed documen-
tation and only a few books on Haxe, many of which are outdated. Many users claimed to
have troubles with compatibility when adding third-party APIs.

2www.haxe.org

20

www.haxe.org

Electron

Initially built for the Atom code editor, Electron is an open-source framework developed
by GitHub. It is based on Chromium core and Node.js, which allows developers to write
cross-platform desktop user interfaces with popular web technologies: HTML, CSS and
JavaScript. It provides all advantages of a native desktop application, such as access to
the file system or the use of system notifications.

Electron has two separate contexts (main process and render process) that are com-
pletely separated. The script that runs in the main process can display a GUI by creating
web pages. An Electron app always has only one main process. Each web page in Electron
runs in its own process, which is called the renderer process. These processes can commu-
nicate in several ways, for example using ipcRenderer and ipcMain modules for sending
messages. Electron architecture is described in more depth in Section 7.1.1.

Front-end relies entirely on web standards and technologies, which makes it possible to
integrate modern front-end frameworks, such as ReactJS3 or Angular4. For desktop appli-
cations, it provides various core functionalities, such as automatic updates, crash reporting,
installer creator, debugging and system-specific features. Moreover, it offers detailed docu-
mentation [8] and has a large community. Another advantage is that applications written
using Electron are easily transferable to the browser as a result of using web technologies.
One of the disadvantages is that there is no built-in Model-View-Controller architecture
provided by Electron, and platforms for Chrome are not fully supported yet.

NW.js

NW.js (previously known as Node-WebKit) allows developing cross-platform software using
modern web technologies like HTML, CSS3 and JavaScript, including WebGL. As well as
Electron, NW.js is based on Chromium and Node.js. It provides support for all Node.js
APIs and most of the third-party modules. It calls Node.js modules directly from DOM
and Web Workers. It was created in the Intel Open Source Technology Center.

NW.js has a generous list of demo applications and video games and provides great
community support with easily searchable answers. Some of its functions are more feature-
rich and mature than those of Electron. However, some features that are available in
Electron, such as auto-updater and crash-reporting, do not come built-in with NW.js.
That said, building with NW.js requires more efforts and extra modules. Unlike in Electron,
where its two contexts are separated, NW.js offers an option of separate contexts and mixed
contexts. More information is provided in the documentation of NW.js [14].

3https://reactjs.org/
4https://angular.io/

21

https://reactjs.org/
https://angular.io/

4.3 Design of usable application
The quality that every application interface is trying to reach is being usable. But the term
usability could be understood differently.

4.3.1 Terminology

ISO defines the term usability as ”extent to which a system, product or service can be used
by specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use“ in the international standard ISO 9241-210 [17]. It consists
of the 6 subcharacteristics – appropriateness recognisability, learnability, operability, user
error protection, user interface aesthetics and accessibility.

Usable design is also focused on responsivity. As Jeff Johnson writes in the book Design
with the Mind in Mind [11]:

To be perceived by users as responsive, interactive software must follow these
guidelines:

• Acknowledge user actions instantly, even if returning the answer will take
time; preserve users’ perception of cause and effect.

• Let users know when the software is busy and when it is not.
• Free users to do other things while waiting for a function to finish.
• Animate movement smoothly and clearly.
• Allow users to abort (cancel) lengthy operations they do not want.
• Allow users to judge how much time lengthy operations will take.
• Do its best to let users set their own work pace.

4.3.2 Used techniques

To fulfil the requirements for a usable user interface, the interaction with product users is
inevitable. There exist a variety of methods and techniques for analysis and evaluation of
user requirements. Jenny Preece in book Interaction Design [15] describes five methods of
data gathering for requirements: interviews, questionnaires, observation, researching similar
products and studying documentation. Another used technique to gather information and
empathise with users is creating personas. To visualise and summarise the data, the use-case
diagram can be used.

Questionnaire, interviews and documentation studying

A questionnaire is a simple technique for gathering information from respondents. More
personal approach, however, is an interview. According to [15], there are two types of
interviews – structured and unstructured ones. Structured interviews consist of predeter-
mined questions, while in unstructured interviews ”the questions posed by the interviewer
are open, meaning that there is no particular expectation about the format or content of
answers. A benefit of unstructured interviews is that they generate rich data that is often
interrelated and complex, i.e. data that gives a deep understanding of the topic.“

Later, the author states ”Studying documentation is good for understanding legislation
and getting some background information on the work. It also does not involve stakeholder

22

time, which is a limiting factor on the other techniques.“. The documentation about pho-
tography metadata [13] was studied, and the main information was described in Chapter 3.

Personas

Personas are fictional characters, which are created based on research in order to represent
types of users that will use an application, product or service. Creating a persona is
an important step to understanding the mindsets of potential customers. It helps designers
to gain a similar perspective and identify with the users and to build empathy. A persona
is usually presented as an individual person with a name, face, and a backstory.

”Personas usually explain that person’s needs, values, goals, frustrations, and
desires. Personas are made as human as possible to further enhance the sense
that this is a real person with a messy life and quirky ways of coping with very
recognisable human situations.“

- Leah Buley, The User Experience Team of One [5]

Use-case diagram

An important step before designing software architecture is to define all the requirements
and assign them to roles. One of the options to do so is to create a use-case diagram.
The purpose of a use case diagram in Unified Modeling Language (UML) is to demonstrate
the different ways that a user might interact with a system. In the UML, a use-case diagram
can summarise the details of the system’s users (in this context known as actors) and their
interactions with the system [7]. An effective use case diagram can help to see different
scenarios or to help clarify the goals of the system. As stated in [3], actors can communicate
with the system for many reasons, including:

• To start a use case. Use cases are always started by actors.

• To ask for some data stored in the system.

• To change the data stored in the system by means of a dialogue with the system.

• To report that something has happened in the system’s surroundings that the system
should be aware of.

The use cases, actors, and their associations can be shown on use-case diagrams. The di-
agrams are used to convey who the actors are, what the use cases are, and how they are
related.

Testing

As written in the book Interaction Design [15], collecting data about users’ performance
on predefined tasks is a central component of usability testing. There are numerous meth-
ods for the data collection, for example, video recording of the users including their facial
expressions and logged keystrokes and mouse movements, asking participants to think out
loud while carrying out tasks or a satisfaction questionnaire to find out how users actually
feel about using the product. Structured or semi-structured interviews may also be con-
ducted with users to collect additional information about what they liked and did not like

23

about the product. Usually, the tasks that are given to users include searching for informa-
tion, navigating through the application. Sometimes, their performance is measured, for
example, the time to complete a task, a number of errors per task or the success rate of
completing the task.

24

Chapter 5

Problem analysis

In this chapter, problems concerning photo management are analysed. In the first section,
the user needs and requirements are described using three different methods. After that,
the advantages and disadvantages of existing solutions are listed. In the last section, there
is a summary of what was being said and a conclusion that leads to the solution design of
a new application.

5.1 User requirements

”A great product experience starts with a good understanding of your users. Not
only do you want to know who they are, but you want to dive deeper into their
motivations, fears, mentality, and behaviour. But how do we know what our
users really want?“

- Chris Bank, Jerry Cao, Guide to UX Design Process and Documentation [6]

Well defined and understood user requirements can help make decisions about design
and development. Leah Buley wrote that connecting with users is so essential that it’s
one of the core tenets of user experience: design products for and with users [5]. Later he
explains that he prefers calling users just people because it reminds him that it’s the people
all around us that we’re designing for.

5.1.1 Question form

The first method I used for user analysis was a question form containing nine simple
questions to specify and verify my assumptions. There was a need to determine whether
the planned photography management application is actually wanted or needed. The form
was published using social media in groups of international students who keep photos from
all their travels and also in groups of high school and university students. It was answered
by 65 people. The questionnaire is in Appendix A. The main outcomes were:

• 97% of asked people claimed to take pictures using their smartphone, of which 25%
also used a camera.

• 29% of asked do not back up their photography data at all, 33% use external hard
drives, USBs, SD cards or a computer for backups and 38% use cloud services such
as Google Photos or iCloud.

25

• 60% of asked claimed to have troubles with duplicates in their storage, and 84% of
them delete duplicates manually.

• Some of the asked wrote that they keep some duplicates intentionally to store them
into more than one category and search for them more easily.

• Most of the asked responded that they are concerned about their privacy when using
cloud services, or they do not use them.

• A significant part of respondents answered that they would like to organise their pho-
tos if they had the time because they consider the process excessively time-consuming.

The main conclusion of the questionnaire was that asked people do not have a compre-
hensive way of storing and managing photos which are stored on many devices.

5.1.2 Interviews

Next approach was more personal and oriented towards users as individuals. I spent a few
days interviewing various people that could become potential users of the final product.
Interviewed people can be divided into two main groups. The first is a group of people
aged between 18 and 25, mostly college students or young adults. The second group is
made up of slightly older or middle-aged adults, who collected a large number of digital
photos during their life so far and they are not as technically proficient to be working with
complicated software. During the interview, I focused on these issues:

• What their current photo storing and organisation system looks like.

• How much data they store and how many devices they use.

• Which formats of photos they mostly work with.

• Whether they use device synchronisation.

• How often people go through their old photos.

Thanks to the interviews and discussions, I gained a lot of useful information and a wide
perspective on different users’ problems.

Conclusions

Some people tried to keep their photo library tidy and organised from the start—from their
first phone with a camera or their first digital photo camera. Photos divided into albums
are clearer, however, albums tend to grow and are challenging to maintain. It would be
very time consuming for them to rebuild the system of albums that was kept before. It is
also hard to find the motivation to sort photos into albums. Moreover, if a person spent
many hours on organising photos into albums on a mobile device and after some time they
change a phone brand, it might not be compatible. The new phone will ignore the hierarchy
of photos and would store them differently. All the work that was put into it would be
useless.

Even though not always organised, users try to keep their photos in one place, usually in
a computer or an external hard drive. Many people that use Apple devices, as well as devices
with a different operating system, had issues with compatibility. Most of the interviewed

26

claimed that they try to back up their data regularly. Many of them encountered a problem
with duplicates. For example, a person backups their photos from phone to computer,
and keeps photos in both places. They organise their photos in a computer into albums.
However, when they back up their photos next time, they do not know how to store them
into created folders, and they get lost in all the data. This leads to a lack of motivation
for users to organise photos because it would take them too much time. As a result, they
just copy all the photos to the computer again, causing duplicates and using more space of
data storage. The amount of data people store differs substantially. Some keep only a few
gigabytes, while people with better quality cameras can store up to hundreds of gigabytes.

Based on the questionnaire and the interviews, it was found that the most used format
of photos among asked users is JPG. However, people who focus more on photography
and photo editing answered that they keep their photos in RAW format, which requires
more space. It is not just the photos people take with their cameras, but also photos they
download from the internet or screenshots from their computer or phone. These pictures
are usually in PNG or GIF format. One of the asked questions was how often people go
through their old photos, and the results were unexpected. Usually, people often go back
only to their recent photos. Pictures taken more than a year before present are visited only
a few times a year, sometimes even less often. Among the reasons why people revisit their
old pictures are refreshing their memory of a particular event or finding a specific picture.

5.1.3 Personas

Based on the interviews, I created two personas to represent two main groups of users.
First of them is Nicolas (described in Figure 5.1), and the second one is Laura (in Figure
5.2). They are different, but their goal concerning photo organisation is the same, as well
as the problems they encounter.

Nicolas

• owns an insulation company

• has a big family and a dog

• his way of making memories is to take pictures of holidays,
celebrations and time spent with his family

• uses a smartphone and has a personal laptop

• not afraid of internet banking or creating invoices, but he can get
easily lost in complicated software

• doesn't like to share personal information and photos online, he
doesn't trust easily

• changes phone regularly every 2 years and keeps data backup in his
laptop but unorganised and usually with duplicates

• lives in a house close to city

• has lot of data to store, don't have time for its management
Age: 51

Married

3 Children

Figure 5.1: Persona Nicolas as a representation of older users, with not organised way of
photo management and no professionally advanced computer skills.

27

Laura

• born and raised in a small city, oldest of four siblings

• studies international business abroad

• likes to keep an order in all her belongings

• takes pictures with camera and phone, owns a laptop

• usually takes trips with friends

• posts pictures on Instagram to share them with friends and family

• doesn't always have an internet connection when travelling

• likes to manage her photos on laptop and archive older ones
using cloud to not take too much of her storage space

• after each trip or event she moves her photos to her laptop to
free up space in the phone and in memory card of her camera

• organises her photos into albums named by a trip destination
and a date

• has a lot of pictures from her friends, sometimes duplicates

• does not have a budget for a photo managing software

Age: 21

Single

No commitments

Figure 5.2: Persona Laura as a representation of younger users, with a lot of photos from
all around the world and no persistent photo management, but more advanced computer
skills.

Nicolas represents older users. They prefer clean and intuitive design. They collected
a huge amount of photos over their life but are too busy to manage them manually. Another
required feature is duplicate detection. They usually take photos with only a few devices,
but store photos across many.

Laura, on the other hand, represents younger users who are familiar with more compli-
cated software. They usually take photos with more than one device and have many shared
photos with friends. They require a way to organise photos across multiple devices. They
are not equipped with constant access to the internet. They have gathered many photos
from across the world and would probably appreciate a map view with the locations of their
pictures.

5.1.4 System requirements

Based on everything that has been said, the main system requirements are presented. Users
value their privacy. They appreciate automatic device synchronisation and online backing
up, but only of photos of their choosing. However, the easiest way of using cloud services
(described in Section 2.2.3) is to upload all photos automatically. That means that users
would have to organise and sort out their photos before uploading them to the cloud, which
often leads to a decrease in efficiency.

The interviewed people use multiple devices with a variety of operating systems. Com-
monly, the one device connecting most of their photos is a laptop or a computer. In other
words, the most suitable application for photography management should be available for
computer operating systems such as Windows, macOS, as well as Linux distributions.
The photo managing software should provide an option for detecting and deleting du-
plicates, including very similar photos. Moreover, a lot of asked people would appreciate

28

the facial recognition of people displayed in the photos. A map displaying photos taken on
different places would be an excellent feature for many of the asked users.

The most used method of photo management is to divide photos into custom albums,
so the system should not skip this feature. Also, it should allow users to label their pictures
with tags, names and descriptions for easier search. Searching for a particular photo in a li-
brary should not take too much time, and filtering pictures should be intuitive. Interviewed
people suggested filtering photos based on date, location, tags, faces, albums, occasions,
type (landscape or portrait), a device they were taken with etc.

5.2 Existing solutions
The existing solutions described in Section 2.2.3 cover several user requirements. Google
Photos is the best solution for people who have constant internet access, are not concerned
about their private pictures and do not mind quality restrictions. For them, it is a free
and available powerful tool to help them automatically organise their photo library and
synchronise their devices. When using an Apple device, the best solution to organise
photos is using iCloud and iPhotos applications. However, only 5 GB of cloud data is for
free. Users that do not wish to pay for extra storage usually choose different software.

People who do not prefer to upload their photos to a cloud can choose from a variety
of options depending on their operating system. The most popular ones for Windows
are ACDSee Photo Studio, Phototheca and MAGIX Photo Manager. They all come in
free and paid versions, however, the free version is very limited in all cases. The most
interesting features were listed in Section 2.2.3. The ACDSee Photo Studio seems chaotic
for users at first glance. It offers many features, nonetheless, it is overwhelming for a user
concerned only about photo management. It has a steep learning curve, and since most of
the functions are manual, it is taking a significant amount of time to organise photos in this
program. However, when the user is already familiar with the environment, it is convenient
for them to continue using this application. The Phototheca application has an outdated
user interface and lacks the ability to show pictures on a map. On the other hand, it offers
a clear view of the data distribution in different devices. Also, it offers media type division
(left side panel in the middle picture of Figure 2.3).

The best option for professional photographers who want to work with RAW formats
of photos and powerful editing options is Lightroom. However, this solution is not rec-
ommended for a layman, for the reason that it is expensive for essential photo organising
purposes.

The last existing solution described in this paper is Mylio. It is an offline tool, but
it requires an online user’s registration. It has a modern user interface and offers many
features, including displaying photos on a map (using OpenStreetMap1). Even though
the interface looks quite clear and intuitive on a first glance, it is actually quite complex,
and it takes time to learn its mechanisms. Another downside is that the application is not
available for Linux and that the free version is limited. Furthermore, it lacks a feature for
searching for duplicates.

1www.openstreetmap.org

29

www.openstreetmap.org

5.3 Summary
Based on all the user requirements listed in this chapter and their mapping to already
existing solutions for photo management, there is an opportunity for a new application.
Users lack an application that can work on multiple operating systems, including Linux.
They want an application that is private and free, with an opportunity to manage their own
data the way they desire with absolute control of it. Many users would prefer customisable
UI or a possibility of light and dark mode. They would appreciate seeing a world map with
markers of places where they took their photos, but the map should not have too many
details. The default order of the photos should be in a simple looking and easy to navigate
timeline.

One of the main desires is to be able to edit metadata of photos, but not each photo
separately, but to be able to change an attribute of metadata on multiple selected photos
at the same time. However, the most important feature is to be able to clearly see which
photos are stored where and on which device, with the option to manage and organise them
like they are all in one folder. They demand to be able to tag people on their photos with
a possibility of automatic face recognition. They lack automatic duplicate detection and
the option to search through their library and find similar or duplicate photos. They want
to be able to create albums with custom names, descriptions and thumbnail photos.

All these features cannot overload the design of the application because users prefer
simple looking and intuitive applications.

30

Chapter 6

Solution design

In this chapter, the design of the application is described. The first section is focused on
the analysis of the data structure, and the data solution is presented. The second section
is focused on the UI design of the final application. The use-case diagram is created, and
the application is divided into sections. Each section is described, and the user interface
design is presented.

6.1 Data structure design
Photography metadata contains a lot of information. Most of them are not needed in case
of managing and organising them. However, some are crucial. The application needs to
store a piece of information about each of the photos, to enable the filtering and sorting
based on this data. Particularly name, path, date, resolution, location, a device it was
taken with, a device where it is stored, size, tags and additional data that users need. Each
photo is provided with an ID. Additionally, the miniature of the photo is required for faster
loading of the images.

6.1.1 Data analysis

Photos in the library need to be divided by the device they are stored in. Each device is
provided with the number of photos it currently holds. Photos need to keep their metadata
and tags. Every photo has a unique ID and its data. The global number of images in
the library is required as well.

6.1.2 Final data structure

The design of the data structure is demonstrated using an Entity-relationship diagram,
displayed in Figure 6.1. Each device in the library has a unique ID, and the count of photos
it currently holds is computed. It can contain zero to an unlimited amount of images. Each
photo is distinguishable by its ID and contains all the required information. Additionally,
tags can be added to it, and any number of people can be tagged on each photograph.

31

 0 .. *

 0 .. *

 0 .. *

Photograph

IdPK

Name

Path

Location

Date

Size

Dimensions

TakenWith

Miniature

Person

PersonNamePK

Tags

TagNamePK

Device

DeviceIdPK

PhotoCount

contains

Figure 6.1: Entity–relationship model of the application’s data structure design.

6.2 UI design
In this section, the user interface design is described. First, based on the requirements
from the previous chapters, the use-case diagram is created. Then the structure of the user
interface and the decisions concerning the design are described.

6.2.1 Use-case diagram

In the presented use case diagram, there is only one figuring actor—the user. The diagram
was created for UI design purposes, not for implementation. The final use case diagram is
in Figure 6.2.

User

<< include>>

Import photos

<<extend>>

Edit photo metadata

Select multiple photos

See photos on a map

Filter images

Create and manage
albums

Remove photos from
library

Add tags to photos

Tag a person on the
photo

Search library for
duplicates

Delete detected
duplicates after

confirmation

<<extend>>

See how many
photos are being

imported

See how many are
remaining

<< include>>

Figure 6.2: The final use case diagram.

32

It contains the main actions that the user can execute in the application. The first
use case any customer will face is importing photos into the library. To maintain the
application’s responsivity, the remaining time and number of imported photos are shown.
Then, the user is able to manage his photos—to edit their metadata, create and manage
albums, display them on a map or remove them. Another use case is to filter images based
on various criteria. Detecting duplicates in the library is a separate use case, and it should
be divided from other functionalities. User needs to see detected duplicates before he can
remove them, or choose which ones to remove.

6.2.2 Structure of the application UI

Based on the application requirements and the use-case diagram, the application should
have a variety of functionalities. In order to maintain clarity, the application is divided into
sections, which all have their own context view and are accessible from the main menu.
The sections’ design and functionalities are described below.

Navigation menu

To access all the functionalities and quickly orientate among them, the application is pro-
vided with the navigation menu (sketch is presented in Figure 6.3). The menu is located on
the top, to provide more space in width. It should contain only the most important links,
thus avoiding overloading the user.

Navigation	Menu

DevicesMapTimelineImport	Photos Albums Duplicates Filter

Figure 6.3: Sketch of navigation menu and layout of elements.

Import of Photos

Importing photos into the library is the first step in using the application. User is able to
add more photos at any time—therefore the import button should be always visible and
not difficult to locate. That is the reason why it has been placed in the navigation menu.

While photos are being imported, a user should be able to see how much time remains
and how many photos were successfully imported into the library. Also, they should be
able to cancel the operation at any time in the process.

Timeline

In the Timeline view, photos from the library are sorted by the date and displayed chrono-
logically. The presented data described in Chapter 4 shows that people focus more on recent
photos than older ones, so the newest photos in the Timeline view are placed on the top.

However, since there can be thousands of photos taken in a given year, letting users
scroll down to see different years implies impracticality. A possible solution could be to
display only a preview of one year’s photos and click on the year to display all of them. To
determine when the photo was taken, photos taken in one year could also be divided into
months and be displayed accordingly.

33

Photos displayed in the timeline should be clickable and selectable. After choosing
a particular photo, the information about it should be displayed, namely its size, name,
tags and other metadata. The displayed data are meant to be editable. To edit multiple
photographs at once, they need to be selectable. Users are used to selecting multiple items
using keyboard shortcuts, namely Shift for selecting a line of items, or Ctrl to select each
item individually. To maintain usability, there should not be new practises introduced.
On the other hand, benefit from what users are already used to improves the application’s
learnability and operability. Selected items are distinguished by an outline that contrasts
with the background. The first design of the Timeline view is displayed in Figure 6.4.

Figure 6.4: Proposed application design of the Timeline view (designed using Adobe Pho-
toshop).

Map

Seeing photos displayed in locations where they were taken was one of the requirements
by users. In the Map view, there is a zoomable map of the world with marks representing
the photos. The colour scheme of the map should not be too intense or expressive since
the focus should be more on the photos. Nonetheless, having too many photo markers in
one location would look confusing. That is the reason why their clustering was suggested.
While zoomed out, the user can see how many photos were taken on specific locations.
When zooming in, the marker will de-cluster into specific positions with the correct photo
marker. The photo is displayed on the map in such a way, that its location is in the middle
of the image. The layout design is in Figure 6.5.

34

Figure 6.5: Proposed application design of the Map view.

SearchTimeline Map Albums Duplicates+ Devices

+

Create	new	Album

Description of the album about
Paris from the trip in 2015 Lorem
Ipsum lorem impsum Ipsum
lorem impsum Ipsum lorem
impsum Ipsum lorem impsum.

Created: 12. 5. 2017

Photos: 147
Paris 2015

Description of the album about
London from the trip in 2013
Lorem Ipsum lorem impsum
Ipsum lorem impsum Ipsum
lorem impsum Ipsum lorem.

Created: 11. 8. 2013

Photos: 84
London 2013

Description of the album about
Prague from the trip in 2011
Ipsum lorem impsum Ipsum
lorem impsum Ipsum lorem
impsum Ipsum lorem impsum.

Created: 8. 2. 2013

Photos: 109
Prague 2011

Figure 6.6: Proposed design of the Album section. Albums with name, thumbnail, descrip-
tion, creation date and number of photos.

35

Albums

Creating an album of photos is one of the key features of any photo organising application.
Defining an album only by its name can be misleading, users may forget what they meant
by the name and would have to look inside to see what kind of photos they put there.
To avoid such situations, an album should be defined not only by its name but also by
a thumbnail and description. Thumbnail image is what the user’s eye focuses on the most.
The layout design is shown in Figure 6.6.

Duplicates

When clicking on the Duplicates section, the user is presented with an option to start
the process of duplicate detection. He can choose from 3 options: to detect exact duplicates,
to detect possible duplicates or similar photos, or to detect both. After the process is
finished, the detected photos are displayed. As shown in Figure 6.7, they are displayed in
a row, each photo with a name and device it is stored in, with an option to be deleted.

SearchTimeline Map Albums Duplicates+ Devices

Photo1.jpg
from Xiaomi Redmi 3 Pro

Photo2.jpg
from Apple iPad Mini

PhotoA1.jpg
from Xiaomi Redmi 3 Pro

PhotoA2.jpg
from Local disc

PhotoA3.jpg
from Apple iPad Mini

Figure 6.7: Proposed design of the Duplicates section. Detected duplicates are displayed
next to each other with an option to be deleted.

Devices

The user is able to import photos from as many devices as he uses. To keep the order of
photos imported from different devices, the Devices view was created. Even after discon-
necting a storage device from the computer, the user can see information about his photos
in the library. The disconnected devices are distinguished from those that are connected.
Users are also able to remove the device from the library and all photos from that device
with it.

36

SearchTimeline Map Albums Duplicates+ Devices

2	540	photosLocal Disc Remove device

850	photosXiaomi Redmi 3 Pro Remove device

1	420	photosApple iPad Mini Remove device
Disconneted

Info

Figure 6.8: Layout design of the Devices section. Every device has a name and a number
of photos imported in the library. Disconnected devices are distinguished by distinctive
colored information.

Filter

SearchTimeline Map Albums Duplicates+ Devices

Search

DATE

from to-

LOCATION

STORED IN

PEOPLE

TAGS

Portrait

Landscape

min

RESOLUTION

max-
TAKEN WITH

Figure 6.9: Layout design of the Filter section.

Last but not least, there is the Filter view. Based on the results of question 6 from the form
in Appendix A, photos should be filterable by these criteria: date, location, device it was
taken with, tags, people on the photo and whether it is a landscape picture or a portrait.
Additionally, users can filter photos based on which device they are stored. Another added
feature is to filter images depending on their resolution.

37

To choose a date, the user can use a date-picker or type a date manually. For people,
a list of devices or tags, users can pick from a dropdown menu with available options in each
field. After selecting desired attributes, pressing the button Search will present the results.
To provide more space for filtered photos, the filtering bar can be minimised using an arrow
at the right bottom (as presented in Figure 6.9).

38

Chapter 7

Implementation

This chapter describes the process of application implementation. Implementation was
based on the design described in Chapter 6. First of all, this chapter focuses on the project
architecture and description of chosen technologies for the final product. Later, it lists
interesting implementation problems and their solutions.

7.1 Project architecture
The most crucial step in the early stages of implementation was to choose a fitting frame-
work. In Section 4.2.1, three of the well-known frameworks are described. Based on their
advantages, disadvantages and overall usage, I decided to use Electron for my applica-
tion implementation. It was chosen mainly because of its built-in functionalities, such
as electron-builder, automatic updates and crash reporting. Furthermore, it includes
a detailed and easy-to-read documentation [8].

To make the application interface responsive, the front-end part of the implementation
was done using React. Integrating React with Electron might become complicated, by cause
of security settings and mutual permissions and relative paths to source files and assets.
That is the reason why a secure-electron-template1 was used as a starting point. It
offers mentioned integration with React and Redux, with the addition of a best-practices
security setting.

7.1.1 Electron

What Electron is and its comparison with Haxe and NW.js was described in Section 4.2.1.
In this section, I will focus more on Electron architecture. All further mentioned facts
about Electron are cited from its official documentation [8].

As far as development is concerned, an Electron application is essentially a Node.js
application. The starting point is package.json file that is identical to that of any Node.js
module. Electron apps are developed in JavaScript using the same principles and methods.
The lifecycle of the application is managed through electron.app class and application
windows are created using BrowserWindow class. By default, the content of the application
is loaded from index.html. Electron keeps the back-end JavaScript state separate from
that of the front-end. This isolation is one of the differences between Electron and NW.js.
That is why data sharing between back-end and application windows is handled via inter-

1Template by reZach available here https://github.com/reZach/secure-electron-template

39

https://github.com/reZach/secure-electron-template

process communication (sometimes called “message passing”). There are several ways to
communicate (share data) between the main process and renderer processes. In my case,
the ipcRenderer and ipcMain modules were used. This communication is presented in
Figure 7.1.

ipcMain.on()window.api.send()
Renderer
process

Application

window.api.receive()

window.webContents.send()
Main process System

React source files

main.js
Communication.js

.

.

.
Renderer
process

Figure 7.1: Communication between Main process and renderer processes in Electron. Each
renderer process has a communication channel with the main process.

7.1.2 React

React is a JavaScript library for building user interfaces. It allows creating interactive UIs
built from components, which are efficiently updated and rendered only when the data
changes. These encapsulated components are reusable, which makes the code easier to read
and debug. There are two main approaches when using React: Class approach and React
Hooks. My application interface uses the React Hooks approach. More about React is
available in its documentation [9].

7.1.3 Data storage

The data analysis from Section 6.1 shows that there is a need to store application data.
To prevent forcing a user to install third-party software for a database and to keep all
the data offline, I tried to store the application metadata in the JSON format using LowDB2.
LowDB is a small JSON database for Node, Electron and the browser. The data was
distributed using a tree structure. However, this approach showed performance issues
concerning searching the database. If there was a request to find a photo in a library based
on a tag, the data would have to be searched linearly. Moreover, the whole JSON structure
would become hard to maintain. For these reasons, the data storage was remade.

IndexedDB

IndexedDB is a transactional database system, like an SQL-based Relational Database
Management System (RDBMS). However, unlike SQL-based RDBMS, which uses fixed-
column tables, IndexedDB is a JavaScript-based object-oriented database. It is a database
that is built into a browser and stores multiple kinds of values. It uses indexes to enable
high-performance searches of data. By its documentation, it is intended more for offline
than online applications. However, the API is quite complicated to use with not so easy-to-
read documentation and with a steep learning curve. There are multiple wrappers to make

2https://github.com/typicode/lowdb

40

https://github.com/typicode/lowdb

the development with IndexedDB more “programmer-friendly”. Dexie.js3 is a minimalist
wrapper for IndexedDB with high performance and thoroughly explained in the detailed
documentation. The first step was to design the structure of the database. The final
structure is presented in Figure 7.2.

Devices

PK DeviceId

Name

Type

NumberOfPhotos

Path

Albums

PK AlbumId

Name

Description

NumberOfPhotos

CreationDate

Thumbnail

PhotosInAlbum

PK PhotosInAlbumId

FK AlbumId

FK PhotoId

Photos

PK PhotoId

FK DeviceId

Filename

Path

Width

Height

TakenWith

Date

Location

Tags

Figure 7.2: Structure of the final database implemented using Dexie.js.

Each table is added to the database by its name and primary key, followed by the list of
indexed properties. Unlike SQL, not all properties need to be specified, only the ones that
are meant to be indexed. Dexie.js offers many useful methods for tables and collections.
Transactions are asynchronous and return promises4.

7.2 Used libraries
In this section, existing libraries used for application implementation are listed, and the rea-
son they were used is explained.

7.2.1 Leaflet

One of the desired functionalities was a map with photo locations. There was no need
to implement a new map from a scratch because there are already functional and free
libraries for this handling. I needed an interactive map interface with the possibility of
custom markers and clustering of them. For that purposes, I used Leaflet [1]. It also offers
component approach for React5. For photo clustering, I used a Leaflet.markercluster
plugin6.

7.2.2 Exiftool

ExifTool7 is a platform-independent Perl library plus a command-line application for read-
ing, writing and editing meta information in a wide variety of files. ExifTool supports
many different metadata formats. It is powerful, fast, flexible and customisable. It was
used to extract metadata from the image in Figure 3.2. To be able to use it in Electron

3https://dexie.org/
4More about Javascript promises is in the documentation https://javascript.info/promise-basics
5https://react-leaflet.js.org/
6https://github.com/Leaflet/Leaflet.markercluster
7https://exiftool.org/

41

https://dexie.org/
https://javascript.info/promise-basics
https://react-leaflet.js.org/
https://github.com/Leaflet/Leaflet.markercluster
https://exiftool.org/

application, an interface or a wrapper was required. Node-exiftool8 is a Node.js interface
to the Exiftool command-line application. Its methods were used for working with Exiftool.

7.2.3 Jimp and ImageMagick

To make loading of pictures faster on pages such as Timeline or Map—where there is no
need for them to be displayed in full quality—I decided to create miniatures (thumbnails)
of photos. They are created when the photos are imported to the library.

JavaScript Image Manipulation Program (Jimp)9 is an image processing library for
Node.js written entirely in JavaScript, with zero native dependencies. It offers many ways
to work with images, however, I used only a few methods to create miniatures. This
optimised application UI performance, but the process of creation of the miniatures was
too slow (further described in Section 8.1.1). For this reason I used ImageMagick10. It is
a powerful photo editing tool, but its many features do not affect the length of processing
time that much.

The location of miniatures depends on the operating system that runs the application.
The path is identical to those mentioned in Section 4.1. A filename of the miniature is id
of the original photo. Each photo has a path to its miniature saved in the database.

7.2.4 Semantic and Material-UI

Semantic UI React11 and Material-UI12 are both libraries with React components for faster
and easier web development. They were used for multiple reusable components through-
out the user interface implementation. Semantic was used for forms and sidebars, while
Material-UI was used more for buttons, icons and date pickers. They both provide detailed
documentation with clear examples, which made them uncomplicated to integrate.

7.2.5 Timeline component

React-vertical-timeline-component13 is a React component used in a main page of
the application to display photos chronologically in a timeline. The single-column version
was used. It was customised to match the theme of the application and buttons for specific
years were added to display each year’s photos separately.

7.3 Implementation details
This section is focused on more problematic parts of the implementation. Some of the func-
tionalities need a deeper description and explanation of why they were implemented in such
a way.

7.3.1 Working with metadata

After the photo’s metadata is read, particular attributes are saved in the database. User
is able to edit photo’s metadata after clicking button “edit metadata”. All the changes are

8https://github.com/Sobesednik/node-exiftool
9https://github.com/oliver-moran/jimp

10https://www.npmjs.com/package/imagemagick
11https://react.semantic-ui.com/
12https://material-ui.com/
13https://github.com/stephane-monnot/react-vertical-timeline

42

https://github.com/Sobesednik/node-exiftool
https://github.com/oliver-moran/jimp
https://www.npmjs.com/package/imagemagick
https://react.semantic-ui.com/
https://material-ui.com/
https://github.com/stephane-monnot/react-vertical-timeline

presented only in the application database. The original picture stays untouched. This way,
users can not accidentally damage their pictures—they work only with a representation of
them.

7.3.2 Duplicate detection

A desired functionality of the application was to detect duplicates in the library. There are
two possible approaches available: The first one is to detect a duplicate when it is about
to be imported and the second one is an action initiated by the user to search the library
for duplicates.

Importing

When a selected photo is being imported, its metadata is read, and a certain part of it is
saved in the database. In this process, each photo is determined by its path and name.
When importing, a database is searched whether there is an existing photograph with that
path, thus it is not possible to import the same picture twice. Importing of the photo is done
using importEachPhoto() asynchronous function (presented code example is in Listing 1).
Since path is an indexed attribute of table Photos, searching is accelerated. The function
returns a number of successfully imported photos.

async function importEachPhoto(photos, deviceId) {

let counter = 0;

await db.transaction('rw', db.photos, db.devices, async () => {
for (let i = 0; i < photos.length; i++) {

await db.photos.get({ path: photos[i].path }).then((photo) => {
// if the photo is not already in the library
if (photo === undefined) {

counter++;
db.photos.put(photos[i]);

}
})

}
// get current number of photos in device
const actualNumber = db.devices.get(deviceId, (device) => {

return device.numberOfPhotos;
}
// update counter of photos for device
db.devices.update(deviceId, { numberOfPhotos: actualNumber + counter });

return counter;
}

Listing 1: Asynchronous Javascript pseudocode representing function used for importing
pictures to the database. Before photo is saved, a check is done to see if it already exists in
the database (particularly in table Photos). After importing, it updates numberOfPhotos
attribute of the device.

43

User-initiated action

User can not import the same picture twice. Nevertheless, having duplicated photos with
different names across multiple devices is a possible situation. For that reason, the user is
able to initiate action for searching the library and detect groups of same photos, even with
different names and paths. This action is executed after clicking button “Detect duplicates”
in page Duplicates. It initiates an algorithm described in Listing 2.

async function findDuplicates() {

const arrayOfArrays = []; //final structure
await db.transaction('r', db.photos, async () => {

let previousPhoto = {}; // saved to compare with current
let readingFirstTime = true; // to skip first comparison with previousPhoto
let duplicateDetected = false; // to control a chain (more than 2)
let arrayOfDuplicates = [];

//photos are ordered by date, it is the most important parameter
db.photos.orderBy('date').each((photo) => {

if (!readingFirstTime) {
// multiple parameters of photos are compared
if (photo.parameters === previousPhoto.parameters) {

// if there is not a chain of duplicate photos
if (!dulpicatedDetected) {

arrayOfDuplicates.push(previous, photo);
duplicateDetected = true;

} else { // if it is a chain, store only current photo
arrayOfDuplicates.push(photo);

}
} else {

//the previousPhoto and current photo are not duplicates
duplicateDetected = false;
// if the previous photos were a chain a duplicates,
// store the group globally and empty the arrayOfDuplicates
if (arrayOfDuplicates.lenght !== 0) {

arrayOfArrays.push(arrayOfDuplicates);
arrayOfDuplicates = [];

}
}

}
readingFirstTime = false;
previousPhoto = photo;

}
}
return arrayOfArrays;

}

Listing 2: Algorithm written in JavaScript pseudocode to demonstrate findDuplicates()
function. The algorithm is iterating through sorted photos by date and comparing each one
with the previous. If there is a match, it stores them in arrayOfDuplicates. It can detect
chain of duplicate photos. When the chain is broken, photos from arrayOfDuplicates are
saved in arrayOfArrays and the first array is emptied.

44

7.3.3 Device management

Users are not only able to import photos from the local drive, but also any device connected
to the computer. In the application, there is a representation of every device. It contains
a name, type, and a path to the root directory of the device. Photos imported from
a certain device have a relative path bounded with their parent devices. The reason for
this is the application portability. User can export and afterwards import their database
of pictures to another computer. After specifying new paths to their devices, the whole
library is functional without the need of re-importing the photos, because the photo paths
are dependant on the device path. Removing a device from the library would mean deletion
of all photos imported from it.

User can specify the path to a certain device when the devices are created (in the page
Devices). Afterwards, when photos are imported, it is necessary to select which device they
come from.

7.3.4 Searching

One of the key functionalities of the application is to filter images based on attributes
specified by the user. The final parameters of searching are displayed in Figure 7.3.

Figure 7.3: The final parameters that users can use to filter their images. This image is
a screenshot of the application.

At least one parameter needs to be filled for searching to perform. The search()
function is executed in one transaction. In Listing 3, there is Javascript pseudocode to
represent the logic of the searching algorithm. Only the first parameter is read from the
database, because Dexie.js does not offer chaining of ’where’ clause. When this feature is
added to Dexie, search function will be optimised.

45

async function search(parameters) {
let noParameterRead = true;
let finalArray = [];
await db.transaction('r', db.photos, async () => {

forEach (parameter) {
if (parameter is not empty) {

if (noParameterRead) {
//this is the first parameter we search for
let res = db.photos.where(paramName).equals(paramValue).toArray();
finalArray.push(res);
//at least one parameter was read
noParameterRead = false;

}
else {

forEach(item in finalArray) {
// search finalArray
if (item.parameter != parameter)

// remove items which do not meet conditions
finalArray.remove(item);

}
}

}
}
return finalArray;

}
}

Listing 3: Asynchronous Javascript function used for searching through photos based on
parameters filled by users.

7.4 Packaging and used developer tools
By using electron-builder mentioned in Section 7.1, it became noticeably easy to package
and build a ready for distribution Electron app for macOS, Windows and Linux. The ap-
plication needs to be compiled for each of the platforms. A compiled executable version
for these three platforms is part of the CD content listed in Appendix B. They were also
shared online14 and given users for evaluating purposes.

7.4.1 Developer tools

The application was developed using JetBrains WebStorm15 with school licence. It was
implemented and tested on Ubuntu 18.04. The project was versioned and backed up using
the Github repository.

14http://www.stud.fit.vutbr.cz/~xurmin01/Memotheca/index.html
15https://www.jetbrains.com/webstorm/

46

http://www.stud.fit.vutbr.cz/~xurmin01/Memotheca/index.html
https://www.jetbrains.com/webstorm/

Chapter 8

Testing

This chapter summarises testing methods performed to prove the application’s usability
and functionality. Firstly, it describes tests of performance, with an emphasis on testing on
multiple platforms. Secondly, the reactions of users are described.

8.1 Performance testing
The most time-consuming actions in the application are importing of photos, duplicate
detection and their filtering by user-specified parameters. This is the reason why the most
significant emphasis was on them in testing.

8.1.1 Import

When a photo is being imported, its metadata is read (by Exiftool), a miniature is created,
and extracted data is written to the database. All of these three processes are asynchronous.
When testing the application the first time, this process took approximately 2.3 seconds to
import a photo. Therefore, the application had to be tested to see which of these processes
took the most time. Each process was debugged and tagged with a timestamp of start
and end. As a result, miniature creation took the longest. The Jimp library significantly
extended the time of importing photos. For this reason, I decided to analyse my options
further. After thorough research, Imagemagick was used.

In Table 8.1, performance results are shown. The import was tested multiple times, al-
ways importing 236 photos, both JPG and PNG files, together 631,3 MB large. The biggest
photo had 11 MB, the smallest 17 KB.

Testing of import [s]
Reading metadata Miniature creation Storing data to DB Overall

37.31 10.384 0.312 48.006 s
31.84 11.112 0.322 43.274 s
33.24 10.587 0.314 44.141 s
34.89 12.741 0.308 47.939 s
32.12 10.107 0.354 42.581 s

Table 8.1: Results of import testing. Three main operation were tested and their depen-
dence on time compared. The average time to import 236 photos is 45.188 seconds, that is
191 milliseconds per photo.

47

The results show that the largest action is reading of metadata—it takes approximately
3
4 of the import time. Creation of the miniatures takes around 1

4 of the time and storing
the data in the database is really fast (1.3 ms per photo).

I also tried importing a lot more photos. For example, 1300 photos were imported in
3 minutes and 56 seconds, which makes 180 milliseconds per photo. This could be optimised
by not extracting metadata from each photo separately, and do it in one process. However,
this solution will require a deeper examination of Exiftool.

8.1.2 Duplicate detection

User can search their library for duplicates. To test the speed of this feature, I repeated
the process of detection multiple times with a variation of photos in the library. The results
are presented in Table 8.2.

Duplicates Testing [ms]
Number of photos in library Average time

100 97 ms
260 122 ms
550 187 ms
800 301 ms
1000 340 ms
2000 635 ms

Table 8.2: Results of duplicate detection testing. The detection was executed with a variety
of photos in the library, the average time changed depending on number of photos.

The results undoubtedly show that the more photos in the library, the longer the du-
plicate detection takes. However, the time complexity is not linear.

8.1.3 Search

The last time-consuming action in the application is searching. Users can search their
library based on many parameters. In this testing, I focused on the time required to get
results based on the number of photos currently in the library and the number of parameters
to search by. The results of these measurements are presented in Table 8.3.

Search Testing
Number of photos in library Number of parameters Average time

850 1 70.9 ms
850 2 93.5 ms
850 3 90.3 ms
850 4 86.1 ms
2000 1 128.3 ms
2000 2 160.5 ms
2000 3 170.4 ms
2000 4 176.8 ms

Table 8.3: Results of search testing. The table shows dependence of the search speed on
the number of parameters and the number of photos in the library.

48

Based on the measurements, it is obvious that not only the number of photos but also
the number of search parameters influences the length of search time. However, it is possible
that many specified parameters will shorten the computing time because the array which
the algorithm works with will contain fewer values.

8.1.4 Multiplatform testing

The final application is supposed to be functional on multiple platforms. To verify this
claim, it was tested on Ubuntu 18.04, Kali 2019.1 and Windows 10. The application has
been successfully launched and ran without any problems in all three cases. Integration
with Exiftool and IndexedDB worked in all the platforms.

8.2 User testing
To verify the usability of the user interface, a narrow circle of testers was selected, whose task
was to test the application in order to identify deficiencies of the interface. The application
was sent to 7 volunteers, who started to use the software for the purpose of organisation and
management of their photos. Five of the seven users tested the application on Windows,
two on Linux. They installed it without troubles. I used controlled settings involving users
method of evaluation. This method is further described in Chapter 13 of this book [15].

8.2.1 Clarity of the user interface

I was present when they tested the user interface. The feedback took the form of an in-
terview. They were asked to complete tasks and to comment on the process. As a result,
valuable information has been obtained. Several users had suggestions on how to improve
the application. Some users lacked an intro home page, where it would be explained, what
is the application capable of with a description of its functions. It was pointed out, that
icon of a plus (for import) and icon of a magnifying glass (for search) are not intuitive
enough, and should be replaced with the page name. Some users expected that the appli-
cation could create a slideshow of photos and going through them on full screen. This idea
was added to further future extensions. Another required functionality was to be able to
create a new device on the Import page (not only on the Devices page). That would fasten
the process of import to a new device.

8.2.2 Application usability

Six out of seven users stated that they would personally like to start using the application
after its publication. However, they would appreciate if they could use keyboard shortcuts
for more actions (for example Esc for closing sidebar). They would like to have an option to
edit the colour theme of the application. The seventh volunteer commented that he is sat-
isfied with the features of Lightroom and does not need another application. All comments
from the users will be considered and taken into account in further development.

49

Chapter 9

Conclusion

The goal of this thesis was to implement a multi-platform application for organising and
managing photos. The application is focused on the management of photos from multiple
devices, duplicate detection and filtering of photos based on user-specified parameters.

Based on the analysis of user requirements and research of existing solutions, application
functionalities, along with user interface, were designed. To understand extracting data
from photographs, photo metadata were studied. After the analysis of principles of usable
multi-platform application design, the software was implemented using Electron and React.

The final application offers many functionalities: hierarchical order of photos on the time-
line, location of photos displayed on a map, device-based photo management, distribution
of photos into albums, editing metadata of photos, user-specified parameter search, and
duplicate detection.

This work can be further developed in the future by implementing automatic face recog-
nition. Additionally, another way to further develop this work is to implement an algorithm
for similar photos detection, based on multiple criteria.

The final application was tested by users, and its performance was examined on multiple
operating systems. The project was open-sourced on GitHub1 in July 2020.

1https://github.com/Kiwinka/Memotheca

50

https://github.com/Kiwinka/Memotheca

Bibliography

[1] Vladimir Agafonkin: Leaflet API Documentation. 2020.
Retrieved from: https://leafletjs.com/reference-1.6.0.html

[2] Baca, M.: Introduction to metadata. Los Angeles: Getty Publications. third edition.
2016.
Retrieved from: http://www.getty.edu/publications/intrometadata

[3] Bittner, K.; Spence, I.: Use Case Modeling. Addison-Wesley. 2003. ISBN
0-201-70913-9.

[4] Brogie, M.: Average Number of Photos Taken Per Day Around the World. Available
at https://www.repsly.com/blog/field-team-management/field-data-insight-
average-number-of-photos-taken-per-day-worldwide.

[5] Buley, L.: The User Experience Team of One: A Research and Design Survival
Guide. Brooklyn, N.Y. : Rosenfeld Media. 2013. ISBN 9781457102943.

[6] Chris Bank, J. C.: The Guide to UX Design Process & Documentation. UXPin Inc..
2015.
Retrieved from: https://www.uxpin.com/studio/ebooks/guide-to-ux-design-
process-and-documentation/

[7] Daoust, N.: UML Requirements Modeling for Business Analysts. Technics
Publications LLC. 2012.

[8] ElectronJS: Electron Documentation. 2020.
Retrieved from: https://www.electronjs.org/docs

[9] Facebook: ReactJS Documentation. 2020.
Retrieved from: https://reactjs.org/docs/

[10] Goldstein, J.: How Much Photo Video Data Do You Have Stored? Available at
https:
//www.backblaze.com/blog/how-much-photo-video-data-do-you-have-stored/.

[11] Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User
Interface Design Guidelines. Morgan Kaufmann Publishers/Elsevier. 2010. ISBN
978-0-12-375030-3.

[12] Kabachinski, J.: TIFF, GIF, and PNG: Get the picture? Biomedical instrumentation
& technology. vol. 41, no. 4. 2007: pp. 297–300.
Retrieved from: https://www.aami-bit.org/doi/pdf/10.2345/0899-8205%282007%
2941%5B297%3ATGAPGT%5D2.0.CO%3B2

51

https://leafletjs.com/reference-1.6.0.html
http://www.getty.edu/publications/intrometadata
https://www.repsly.com/blog/field-team-management/field-data-insight-average-number-of-photos-taken-per-day-worldwide
https://www.repsly.com/blog/field-team-management/field-data-insight-average-number-of-photos-taken-per-day-worldwide
https://www.uxpin.com/studio/ebooks/guide-to-ux-design-process-and-documentation/
https://www.uxpin.com/studio/ebooks/guide-to-ux-design-process-and-documentation/
https://www.electronjs.org/docs
https://reactjs.org/docs/
https://www.backblaze.com/blog/how-much-photo-video-data-do-you-have-stored/
https://www.backblaze.com/blog/how-much-photo-video-data-do-you-have-stored/
https://www.aami-bit.org/doi/pdf/10.2345/0899-8205%282007%2941%5B297%3ATGAPGT%5D2.0.CO%3B2
https://www.aami-bit.org/doi/pdf/10.2345/0899-8205%282007%2941%5B297%3ATGAPGT%5D2.0.CO%3B2

[13] Metadata Working group: Guidelines for Handling Image Metadata. 2010.
Retrieved from: https://web.archive.org/web/20120131102845/http:
//www.metadataworkinggroup.org/pdf/mwg_guidance.pdf

[14] NW.js: NW.js Documentation. 2020.
Retrieved from: https://nwjs.readthedocs.io/

[15] Preece, J.; Rogers, Y.; Sharp, H.: Interaction Design: Beyond Human-Computer
Interaction. John Wiley & Sons. 2015. ISBN 978-1-119-02075-2.

[16] Robl, E. H.: Organizing your photographs. Amphoto. 1986. ISBN 978-0817453008.

[17] for Standardization (ISO), I. O.: ISO 9241-210:2019 Ergonomics of human-system
interaction — Part 210: Human-centred design for interactive systems. 2019.

[18] Tesic, J.: Metadata practices for consumer photos. IEEE MultiMedia. vol. 12, no. 3.
2005: pp. 86–92.

52

https://web.archive.org/web/20120131102845/http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
https://web.archive.org/web/20120131102845/http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf
https://nwjs.readthedocs.io/

Appendix A

Questionnaire

53

54

Appendix B

CD content

readme.txt

File describing structure of the content.

xurmin01-thesis.pdf

PDF thesis.

xurmin01-thesis-print.pdf

Print version of PDF thesis.

thesis-src/

LATEXsource code.

app/

Source files of the application.

dist-linux/

Executable application for Linux.

dist-windows/

Executable application for Windows.

dist-mac/

Executable application for Mac OS.

55

	Introduction
	Photography management
	Photo storage
	Online storage
	Offline storage

	 Organisation of photos
	Managing photos offline
	Managing photos online
	Photo organising applications

	Detection of photo duplicates
	Tools for duplicate detection
	Photo management with duplicate detection

	Photography metadata
	History of photography management and metadata
	Metadata today
	Metadata formats
	Metadata properties

	Principles of usable multi-platform application design
	Principles of multi-platform development
	Development of multi-platform applications
	Software platform possibilities

	Design of usable application
	Terminology
	Used techniques

	Problem analysis
	User requirements
	Question form
	Interviews
	Personas
	System requirements

	Existing solutions
	Summary

	Solution design
	Data structure design
	Data analysis
	Final data structure

	UI design
	Use-case diagram
	Structure of the application UI

	Implementation
	Project architecture
	Electron
	React
	Data storage

	Used libraries
	Leaflet
	Exiftool
	Jimp and ImageMagick
	Semantic and Material-UI
	Timeline component

	Implementation details
	Working with metadata
	Duplicate detection
	Device management
	Searching

	Packaging and used developer tools
	Developer tools

	Testing
	Performance testing
	Import
	Duplicate detection
	Search
	Multiplatform testing

	User testing
	Clarity of the user interface
	Application usability

	Conclusion
	Bibliography
	Questionnaire
	CD content

