
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FAST, SCALABLE AND DOS-RESISTANT PROOF-
OF-STAKE CONSENSUS PROTOCOL BASED ON
AN ANONYMIZATION LAYER
RYCHLÝ, ŠKÁLOVATELNÝ, A DOS-REZISTENTNÍ PROOF-OF-STAKE KONSENSUÁLNÍ
PROTOKOL ZALOŽEN NA ANONYMIZAČNÍ VRSTVĚ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MAREK TAMAŠKOVIČ
AUTOR PRÁCE

SUPERVISOR Ing. IVAN HOMOLIAK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Master's Thesis Specification

Student: Tamaškovič Marek, Bc.
Programme: Information Technology
Field of
study:

Information Technology Security

Title: Fast, Scalable and DoS-Resistant Proof-of-Stake Consensus Protocol Based
on an Anonymization Layer

Category: Security
Assignment:

1. Get familiar with existing proof-of-stake protocols, in particular, Algorand and Tendermint.
2. Make a theoretical comparison of these protocols in terms of throughput, scalability, security,

liveness, safety, finality, etc. In security analysis, consider all existing proof-of-stake
vulnerabilities as well as general ones.

3. Acquaint yourself with anonymization techniques used in network traffic, in particular, onion
routing.

4. Design a fast proof-of-stake protocol that provides deterministic leader election and is
resilient against DoS of the leader. Consider an internal onion routing as an anonymization
layer of the protocol.

5. Evaluate the key performance and security measures of the proposed protocol and compare
it to the related work.

Recommended literature:
Biryukov, Alex, and Ivan Pustogarov. "Bitcoin over Tor isn't a Good Idea." 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015.
Fanti, Giulia, et al. "Dandelion++: Lightweight cryptocurrency networking with formal
anonymity guarantees." Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2.2 (2018): 29.
Gilad, Y., Hemo, R., Micali, S., Vlachos, G. and Zeldovich, N., 2017, October. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium
on Operating Systems Principles (pp. 51-68). ACM.
Buchman, Ethan. Tendermint: Byzantine fault tolerance in the age of blockchains. Diss.
2016.
Homoliak, I., Venugopalan, S., Hum, Q., & Szalachowski, P. (2019). A Security Reference
Architecture for Blockchains. arXiv preprint arXiv:1904.06898.

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Homoliak Ivan, Ing., Ph.D.
Consultant: Perešíni Martin, Ing., UITS FIT VUT
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: November 11, 2020

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/22623/2020/xtamas01 Page 1/1

Abstract
In this work, we summarized research in the state-of-the-art Proof-of-Stake protocols like
Algorand, Tendermint, and LaKSA. We analyzed and summarized their features and issues.
Based on the included research we implement a new PoS protocol that mitigates issues with
throughput, scalability, and security.

Abstrakt
V tejto práci sumarizujeme aktuálny výskum protokolov z rodiny Proof-of-Stake ako napr.
Algorand, Tendermint a LaKSA. Analyzovali sme ich funkcionalitu a tiež ich problémy. V
rámci výskumu sme implementovali a novy protokol z rodiny Dôkaz-Podielom, ktorý rieši
nájdené problémy ako priepustnosť, škálovatelnosť a bezpečnosť.

Keywords
Blockchain, Proof-of-Stake, Anonymization, Onion Routing, DoS Resistance

Klíčová slova
Blockchain, Proof-of-Stake, Anonymita, Onion smerovanie, DoS odolnosť

Reference
TAMAŠKOVIČ, Marek. Fast, Scalable and DoS-Resistant Proof-of-Stake Consensus Pro-
tocol Based on an Anonymization Layer. Brno, 2021. Master’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Ivan Homoliak, Ph.D.

Rozšířený abstrakt
Táto práca sa zaoberá analýzou aktuálnych „Proof-of-Stake" (PoS) protokolov a implemen-
táciou novo navrhnutého PoS protokolu skupinou security@FIT. Motivácia vytvoriť tento
protokol vznikla analýzou aktuálnych PoS protokolov a zistení ich slabín (priepustnosť,
škálovateľnosť a náchylnosť na útok typu odmietnutie služby, ang. denial of service). Novo
navrhnutý protokol adresuje nájdené chyby a jeho súčasťou je tiež natívna anonymizačná
vrstva.

Aktuálne jedny z najlepších PoS protokolov sú Tendermint alebo Algorand. Ich analýza
sa nachádza v tejto práci. Problémy, ktoré boli odhalené pre jednotlivé protokoly sú nasle-
dovné:

Tendermint, tento protokol je takmer čistou implementáciou byzantského systému odol-
nému proti poruchám. Tento protokol využíva pevne stanovenú komisiu na schvaľovanie
blokov a funguje v troch krokoch: návrh blokov jednotlivými členmi komisie, hlasovanie za
jeden blok a následné rozposlanie schváleného bloku. Každý tento krok posiela N správ.
Problémy, ktoré z tohto dizajnu plynú sú:

• nemožnosť škálovať komisiu

• pevne stanovená komisia je náchylná na DoS útok

• prílišná „výrečnosť” protokolu, kde v jednom kole sa pošle 3N správ

Algorand je označovaný ako „pravý” PoS protokol, tiež označovaný názvom byzantská
dohoda. Jeho architektonické výhody v porovnaní s Tendermint sú zjednodušenie návrhu
bloku a obmeny komisie v každom kole. Návrh bloku je vyriešený tak, že v predchádzajúcom
bloku sa nachádza tzv. maják (beacon), podľa ktorého si každý účastník vie zistiť či je,
alebo nie je lídrom, resp., alternatívnym lídrom. Tento líder potom vytvorí blok a odošle
ho do siete na schválenie. Schvaľovací proces rieši komisia, ktorá je volená obdobne ako
líder pomocou „majáku”. Týmto spôsobom je komisia dynamická a v konečnom dôsledku
sa pošle len 2N+1 správ. Vďaka majákom vopred nevieme kto je líder, vieme ho len overiť
ak už prijmeme blok, preto je veľmi náročné cieliť DoS útok na možných lídrov.

Navrhnutý protokol, ktorý táto práca implementuje, ide v optimalizácii ešte ďalej a
odpadá potreba komisie. Ak niekto príjme blok, a tento blok je vygenerovaný lídrom ako v
prípade Algorand-u, tak tento blok príjme. Aby nenastal problém s vytvorením paralelnej
reťaze v blockchain-e, tak bol použitý Casper, ktorý uviedol kontrolný bod v histórii blokov,
kde sa nová reťaz smie vytvoriť iba v prípade, ak rozdvojenie nastane na bloku, ktorý je
vyšší (mladší) ako kontrolný bod. Vďaka tomuto riešeniu je pre útočníka ťažké vytvoriť
paralelnú reťaz dosť dlhú na to, aby predbehla hlavnú reťaz tvorenú pravými lídrami.

Ďalšia časť navrhovaného protokolu je anonymizačná vrstva. Pri použití aplikácií tretích
strán, ktoré anonymizujú účastníka v sieti vznikajú problémy, ktoré môžu odhaliť účast-
níkov v blockchain-e. Riziko odhalenia účastníka v protokole vieme znížiť tým, že natívnu
implementáciu anonymizačného protokolu zahrnieme do nášho konsenzus protokolu. Pre
tento prípad sme sa rozhodli použiť Onion (cibuľové) smerovanie správ v sieti. Tento
prístup bol zvolený aj pre vysokú motiváciu účastníkov mať najlepšie pripojenie, čo v prí-
pade použitia aplikácií tretích strán nie je zaručené.

Výsledky implementácie sa dajú považovať za úspech, pretože celá aplikácia je braná ako
prototyp, ktorý bez výrazných optimalizácií dosiahol priepustnosť 760 tx/s (transakcií za
sekundu). Pre porovnanie, Algorand dosahuje rýchlosť cca. 3000 tx/s. Výrazné spomalenie
sme videli v prípade, ak pri prijímaní bloku hneď aj validujeme všetky transakcie v danom
bloku. Toto spomalenie bolo pre slabú implementáciu knižnice, ktorá overovala podpisy.

Fast, Scalable and DoS-Resistant Proof-of-Stake
Consensus Protocol Based on an Anonymization
Layer

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Ivan Homoliak Ph.D. The supplementary information was
provided by Ing. Martin Perešíni. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis.

. .
Marek Tamaškovič

May 17, 2021

Acknowledgements
I would like to thank my supervisor Ivan Homoliak for his supervision of this work and
my consultant Martin Perešíni as well. Further, we acknowledge that this work is a part
of the ongoing research in the security@FIT group, and it will be fully published with all
the contributors: Lukas Helebrant, Ivan Homoliak, Kamil Malinka, and Peter Hanacek.
Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA
LM2018140) provided within the program Projects of Large Research, Development and
Innovations Infrastructures. Lastly, I would like to thank my family and closest friends for
the emotional and physical support they created in my academic path. They deserve the
biggest ’Thank you!’.

Contents

1 Background and Preliminaries 3
1.1 Preliminaries . 3
1.2 Blockchains and their Principles . 3

1.2.1 Participants . 3
1.2.2 Distributed System Properties . 4

1.3 Stacked Architecture of Blockchain . 5
1.3.1 Network Layer . 5
1.3.2 Consensus Layer . 5
1.3.3 RSM Layer . 6
1.3.4 Application Layer. 6

2 Proof-of-Stake Protocols 9
2.1 Principles . 9
2.2 Tendermint . 9
2.3 Algorand . 11
2.4 LaKSA . 14
2.5 Casper . 15
2.6 Summary . 15

3 Attacks on PoS Protocols 17
3.1 General Attacks . 17

3.1.1 Blockchain attacks . 17
3.1.2 Network Layer Attacks . 19

3.2 Proof-of-Stake Attacks . 21
3.3 Summary . 23

4 Anonymization Techniques in Network Traffic 25
4.1 Tor project . 25

4.1.1 Onion Routing . 25
4.1.2 Hidden Services . 27

4.2 I2P Anonymous Network . 28
4.2.1 Garlic Routing . 28

5 Proposed Proof-of-Stake Protocol 30
5.1 Consensus Protocol . 30

5.1.1 Design Considerations . 31
5.1.2 Initialization . 32
5.1.3 Normal Operation . 32

1

5.1.4 Incentives and Rewarding Scheme 34
5.1.5 Joining the Protocol . 35
5.1.6 Churn of the Nodes . 35
5.1.7 Forks . 35

5.2 Anonymization Layer . 36
5.2.1 Joining the network . 36
5.2.2 Sending the messages . 36
5.2.3 Relaying the messages . 37

6 Proof-of-Concept Implementation 38
6.1 Requirements . 38
6.2 Use Cases . 38
6.3 Structure . 39
6.4 Class Hierarchy . 40
6.5 Toolset . 43
6.6 Used Libraries . 44

7 Analysis of proposed Proof-of-Stake Protocol 46
7.1 Testing Plan . 46
7.2 Test Cases . 47
7.3 Results . 47

8 Conclusion 51

Bibliography 52

A Contents of the included storage media 57

B Excel@FIT Material 58

2

Chapter 1

Background and Preliminaries

This chapter will describe the ideas and basic building blocks of blockchain technology.
We will explain the layers blockchain utilizes, how the distribution across the network
works, and both the permission and permissionless modes. Then we will discuss different
blockchain types, with a focus on their consensus layer. Finally, we will examine a few
applications that utilize blockchain for their functions.

1.1 Preliminaries
The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’, ’SHOULD’,
’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document are to
be interpreted as described in RFC 2119 [12].

1.2 Blockchains and their Principles
Blockchain is, in the most basic sense, a data structure that represents an append-only
distributed ledger. The ledger consists of records called blocks that are immutably cryp-
tographically connected. The individual blocks consist of a header and body. The cryp-
tographic connection is created by a cryptographic signature in the block header. The
signature is created by signing a hash of the previous and current blocks. The body of the
block is a collection of records that are called transactions. A transaction is a unit of work
performed within the blockchain. Because the blocks are immutably connected, they create
a chain of blocks, blockchain as shown in Figure 1.1.

1.2.1 Participants

There are usually three types of participants or nodes present in the blockchain: consensus,
validating, and lightweight nodes [38]. The consensus nodes are the essential part of the
blockchain. They can read and write into the blockchain. The consensus nodes actively
participate in the creation and verification of the blocks. They can also prevent malicious
behavior by not appending invalid transactions or blacklisting malicious nodes.

The validation nodes can only do read operations on the blockchain, but they can
validate the blockchain as the name suggests. They are not capable of mitigating the
adversaries, but they can detect them.

The lightweight nodes depend on the validation and consensus nodes. They read only
a small part of the blockchain, typically just the block headers that concert them.

3

Hash: 0xabcd1234

T1 T3T2

Previous Block

Hb Hc

Ha

Merkle Txs Root

BlockHeader N-2

T4

Block N-2

T5 T7T6

Previous Block

He Hf

Hd

Merkle Txs Root

BlockHeader N-1

T8

Block N-1

T9 T11T10

Previous Block

Hh Hj

Hg

Merkle Txs Root

BlockHeader N

T12

Block N

Hash: 0xdffe4563 Hash: 0xff31bcde

Figure 1.1: The figure shows an example of a blockchain data structure. The header contains
a Merkle root hash of the Merkle transaction tree. The yellow blocks represent a hash value
of a subtree. The blue blocks represent transactions numbered from 1 to 12. The number
of transactions in a block depends on specific blockchain implementation. The first block
in the blockchain is called the genesis block. The genesis block is typically hard-wired into
implementation.

1.2.2 Distributed System Properties

Several important properties describe the consensus layer. These are finality, liveness, and
safety.

Liveness - If a peer sends a transaction into the blockchain through a honest node, it will
eventually spread across the network. After some time, it will occur in a published block,
i.e., the transaction will process. And the whole process from receiving to processing the
transaction represents liveness. If the transaction waits to be processed and every other
transaction is processed instead, the transaction could starve. The starvation is an antonym
to the liveness.

Safety is when an honest node accepts (or rejects) a transaction and all other honest nodes
do the same. Usually, the consensus protocol is responsible to guarantee safety and liveness.

Finality or time to finality represents the sequence of blocks from genesis block up to
block B that is unlikely to overturn. After several successive published blocks, the chance
of overturn or a change to another chain quickly drops, which means that we can say that
these blocks are final. There was only one incident with the rollback in Ethereum caused
by [2].

Scalability represents a property that describes how hard is to join the consensus nodes.
There is an implementation that does (Algorand) and does not scale (Tendermint).

Throughput describes how many transactions can be processed in a given time (typically
transactions per second or blocks per second).

4

Blockchain

Lightweight Nodes
- disseminate own txs
- (partly) read blockchain
- (partly) verify blockchain

Validating Nodes
- disseminate own txs and blocks
- read blockchain
- verify blockchain

Consensus Nodes
- disseminate own txs and blocks
- read blockchain
- write blockchain
- validate blockchain

Figure 1.2: The figure shows an interaction of involved parties with the blockchain [38].

1.3 Stacked Architecture of Blockchain
The blockchain architecture that has been proposed in [66] can be imagined as a stacked
model with four layers, the network, consensus, RSM, and application layer. The first
layer is the Network Layer, which covers the network connectivity, i.e., communication
protocols, data encoding, representation, and transfer across the network. The next layer is
the Consensus Layer. This layer deals with ordering transactions and agreeing on a leader.

1.3.1 Network Layer

The blockchain can run on public or private networks. Both of those variants have some
advantages and pitfalls. Blockchains on public networks have high availability, geograph-
ical decentralization, and low entry barrier. However, the network layer has centralized
elements, i.e., IP addresses and ASes, managed by centralized entities like IANA (Internet
Assigned Numbers Authority). Another problem is that external adversaries can com-
promise the chain. Private networks are usually routed through VPNs (Virtual Private
Network), which means that the connections are centralized. Private networks have many
advantages, such as low latency, high throughput, privacy, and resilience to external attacks.
However, the disadvantages are that it is suitable only for permission blockchain, it is not
resilient to insider threats, and requires a VPN for geographically spread participants.

1.3.2 Consensus Layer

The consensus layer deals with ordering transactions and agreeing on a leader. The layer
has many variations in how nodes communicate and achieve consensus, such as Proof-of-
Resource, Proof-of-Stake, Byzantine Fault Tolerant protocols. Nodes in Proof-of-Resource
protocols must prove the spending of scarce resources in a lottery-based fashion [40].

5

There are many solutions om how to cover the crypto-tokens (can be named as spending
resources as well):

1. Proof-of-Work spending computation power - every node is trying to find a hash of
the current block with specific properties, e.g., Bitcoin, Ethereum

2. Proof-of-Space spending storage - where a service requestor must dedicate a signif-
icant amount of disk space as opposed to computation [26], e.g., SpaceCoin [54],
SpaceMint [53]

3. Proof-of-Burn spent crypto-tokens - after sending money node must prove that it
cannot use that money [42],

4. Proof-of-Retrievability combination and modification of previous types, e.g., Perma-
coin [48], PeerCoin [44]

Many of these protocols are categorized as the first generation of consensus protocols, and
they are mostly based on Nakamoto Consensus [51]. Proof-of-Stake protocols are lottery-
based and it must prove investment (stake) to participate in the consensus protocol. Nodes
that want to be a leader must have a stake to be able elected as a leader. The stake can be
obtained just from nodes that already have some stake. Real word implementations, e.g.,
Algorand [31], Tendermint [13], Peercoin [44], LaKSA [56].

Based on the way how new consensus nodes, we recognize permissioned, permissionless,
or semi-permissionless blockchains. When the node first needs to obtain permission to join
the consensus protocol, we say it is a permissioned one. The permission is obtained from
centralized authority or authorities, while nodes usually have equal consensus power. When
the node can connect without affecting the consensus, a blockchain is called permissionless.
These are designed to run over the Internet. A node can connect to the permissionless
blockchains as an anonymous node. The semi-permissionless blockchains are a combination
of both. The permission to connect is based on the stake obtained from other consensus
nodes in the network. The difference between permissionless and semi-permissionless is
that the consensus power is based on how much stake the node has, and the consensus is
based on the stake rather than on resources spent.

1.3.3 RSM Layer

The replicated state machine layer (RSM) is responsible for interpreting transactions into
the blockchain ledger.

A replicated State Machine is a deterministic automaton that is replicated amongst
processes such that it can function as a single automaton despite the failure of some pro-
cesses [57]. Transactions and Smart Contracts are used as input for the RSM [32, 8]. Every
change can be done if the consensus layer has issued a new block. After that, the RSM
can interpret transactions from newly issued blocks. The transactions that are not yet
processed are in a queue named mempool that is sorted by priority (height of a fee).

1.3.4 Application Layer.

The last one is the application layer representing user services, e.g., e-voting, wallets, and
exchanges. The layer contains the most common end-user services. This layer can be
divided into two groups with common functionalities designed to provide building blocks
for higher-level applications [38].

6

Crypto-Tokens & Wallets is part of the basic building blocks of applications. This block
provides crypto-currencies with a native crypto-tokens [50]. There are two types of secure
wallets, Self-Sovereign Wallets (SSW) and Hosted Wallets (HW), to secure tokens [10, 27].
SSW users create local wallets where they can store private keys and directly interact with
crypto-currencies using these private keys. The private keys can be stored in software wallets
(My Ether Wallet1) in hardware wallets (e.g. Trezor2). HWs are managed by a centralized
party that provides an interface to interact with the wallet and with the blockchain. By the
way, how HW handles private keys we refer to them as a server-side or client-side wallet.
In server-side the private keys, the centralized party has full control over private keys. The
client-side wallet has private keys stored in the client’s web browser.

Exchanges are places where users can exchange their crypto-tokens. Exchanges can be
centralized or decentralized (DEX). The centralized design of centralized exchanges can
cause security threats. The only countermeasure is to use DEX. Exchanges can be divided
into multiple types based on the type of exchange (cross-chain or intra-chain).

A direct cross-chain atomic swap is between two parties in two different blockchains,
where the two parties want to exchange their tokens using atomic swap [38]. To do so, they
use the atomic swap or they can use contra-party DEX. Users can make the atomic swap
with DEX, using it as a middleman. Intra-chain DEX requires parties to put offers into a
blockchain, and the execution of the trade is done with smart contracts.

Filesystems are used as distributed data storage infrastructure. Used filesystems derived
from peer-to-peer storage systems that persevere data with tokens. Data stored in the
blockchain can be fully replicated with the ledger because the full content is stored in the
blockchain, which means that we have full data replication, and extremely high durability.
We can replicate data partially in the ledger, i.e., the data block is encoded with two
numbers (𝑘, 𝑛) where 𝑛 represents total erasure shares and 𝑘 represents a minimum number
of shares to recover data [48]. Another way to partially replicate data is without a ledger.
In this case, are used distributed hash tables are used as a decentralized data lookup service.

Identity Management, (IDM) provides binding from a public key to the identity of an
entity. It can be named as Public Key Infrastructure (PKI) as well, and it has a few
security goals, [29], i.e., accurate registration, identity retention, censorship resistance. The
problem with PKI is that it is hard to design decentralized, secure, and human-readable
infrastructure [67].

E-Voting tries to implement many of the security features of paper voting [29]. Decentral-
ized e-voting protocol has multiple phases and requires multiparty computation executed
by the voters [19, 21]. The main advantages of e-voting are immutability, higher availability,
and public verifiability. An example of (first) voting protocol is the Open Voting Network,
(OVN) [45], implemented using Ethereum smart contracts.

Notaries are responsible for providing proof of the existence of a document, also to vet
and certify notarized documents [52].

An example can be notary based on Ethereum named EthNot [35]. The notary is based
on smart contracts as well as IDM. Using the IDM the notary can verify the parties and
using the smart contracts it can create the contracts that are made by vetting parties.

1https://www.myetherwallet.com/
2https://trezor.io/

7

https://www.myetherwallet.com/
https://trezor.io/

Honorable mentions of other blockchain applications: Oracles, Secure Timestamping,

Reputation Systems, Data Provenance, Direct Trading, Escrows, Auctions. We refer the
reader to work [38] for a more detailed application overview.

D
at

a
R

ep
re

se
nt

at
io

n

Peer Discovery
& Management

DNS

IP BGP

Authentification

Access Control

Pu
bl

ic
 N

et
w

or
ks

Pr
iv

at
e

N
et

w
or

ks

N
et

w
or

k
Se

rv
ic

es

N
et

w
or

k
 L

ay
er

Proof-of-Stake
Protocols

Proof-of-Resource
Protocols

Byzantine Fault
Tolerant Protocols

(BFT)C
on

se
ns

us
La

ye
r

R
ep

lic
at

ed
St

at
e

M
ac

hi
ne

La
ye

r

Transactions
Smart Contracts

EvotingAuction

Escrow NotariesData Provenance

Direct Trading Another
General

App

File Systems

ExchangesIdentity Management

Secure Timestamping

Crypto Wallets

Oracles
Ec

o
Sy

st
em

H
ig

he
r-

Le
ve

l
A

pp
lic

at
io

ns

A
pp

lic
at

io
n

La
ye

r

Figure 1.3: This figure shows the security stacked model of blockchain introduced by Ho-
moliak et. al. [38]. We can see the network, consensus, RSM, and application layers.

8

Chapter 2

Proof-of-Stake Protocols

There are several well-known PoS protocols, Algorand [31], Tendermint [13]. In this chapter,
we will have a closer look at their consensus layer and we will discuss their properties, i.e.,
liveness, fairness, safety, throughput, and scalability.

2.1 Principles
We already mentioned that there are several implementations of the consensus layer. The
first implementation was a proof of concept called Bitcoin [51]. Other implementations were
then derived or inspired by it, e.g., Proof-of-Stake (PoS) protocols [55]. The idea behind
the PoS protocols is that to sign blocks, you have to be a leader of the current round. The
node could be elected as a leader only if the node proved ownership of a certain amount
of cryptotokens, called a stake. The stake is deposited in the blockchain as a security
deposit. The security deposit was introduced by a paper called Slasher [15] due to the
’nothing-at-stake’ attack. The node can obtain a stake just from nodes that already have
some stake.

The election process is probabilistic and the chance for the node to be elected is pro-
portional to the amount of stake the node has. After a consensus has been reached in the
network, the newly accepted block is distributed across the network. Some protocols use to
reward such nodes that were participating in reaching the consensus. Usually, these newly
obtained cryptotokens are moved directly to the leader’s stake [60].

In the following we will elaborate on a few well-known PoS protocols and we will present
their comparison.

2.2 Tendermint
Tendermint is a Byzantine Fault Tolerant (further BFT) protocol with elements of proof of
stake [13]. The main goal of the protocol is to have a balance among throughput, security,
and scalability. The whole platform is Open Source, written in Go, and the repository
is hosted on GitHub1. Tendermint is commercially used2 for cryptocurrency SDK named
Cosmos Cash.

1https://github.com/tendermint/tendermint
2https://tendermint.com/

9

https://github.com/tendermint/tendermint
https://tendermint.com/

Commit New Round

New
Height Propose

Prevote Nil Prevote Block

Precommit Nil

Precommit Block

Invalid block or
not received

in time

Wait for
precommits
from +2/3

Wait for
prevotes

from +2/3

Valid block

+2/3
precommit for

block

no +2/3
precommit for

block

no +2/3
prevote for

block

+2/3
prevote for

block

Figure 2.1: An overview of Tendermint. After the proposal phase, validators can only
continue if two thirds or more (+2/3) send their answers for the proposition or precommit.
The dotted arrow extends the consensus into the atomic broadcast by moving to the next
height[13].

Overview In the beginning, there is a set of validators that are identified by their public
keys. Their responsibilities are to maintain the full copy of the replicated state, proposing
new blocks, and voting on them. Every block has a parameter called height, which is an
incrementing index. There is only one block of a certain height in the valid index. In
every round, there can be only one valid block proposer. Block proposition is handled in
turns, during which the validators vote for a block that will be committed. The new block’s
commitment can take multiple rounds due to network asynchrony or due to the halting of
the network. Halting can happen in the case when a one-third or more of the validators
are offline. Voting for the commitment is divided into two phases, where validators engage
with each other. The process follows a simple locking mechanism that ensures the safety
of the round and can be compromised only if a malicious coalition is formed with at least
one-third of the validators [13].

Consensus In Tendermint, the consensus algorithm can be divided into three phases Pro-
posals, Votes, Locks.

Each round starts with a Proposal. The selection of a proposer is deterministic, and
the process uses round-robin to select the next proposer. There can only be one proposer
in each round. When the proposer is selected, he will create a proposed block with a
transaction from the local cache (mempool), and he broadcasts the block into the network.
For Byzantine tolerance, a cycle proposer is necessary. Due to cycling proposers, we can
ensure liveness because if one proposer does not pick some transaction, the others might [13].

The voting phase has two sub-phases. The first is called pre-vote and is initialized
after validators receive the proposed block. If the validator does not receive the block in
ProposalTimeout or the block is invalid, it votes for nil. If the validator pre-voted nil, it

10

means that it is prepared to move to the next round of proposals. However, if he voted
for the proposed block, it is ready to commit the proposed block. If the validator receives
a polka3 it is a justification of the network for the validator to broadcast a pre-commit
vote for that block. On the other hand, when the validator receives nil-polka4 it means
validators did not receive a block or it was invalid, and thus pre-commit vote will be nil,
to move to the next round. Sometimes there is a situation where the validator does not
receive polka or nil-polka. This scenario means that the validator is not justified to commit
the block and must pre-commit nil (move to the next round). If the result of pre-commit
for a single block is 2

3 votes supporting the block, the consensus nodes commit the block,
set the round to 0, and they increase the height of the blockchain [13].

Locks are used to ensure safety across rounds. The locks prevent from committing two
different blocks in two different rounds at the same height. The locks are built around polka
resulting in two locking rules Prevote-the-Lock and Unlock-on-Polka. The lock mechanism
ensures that the validator must pre-vote for the block he locked on. If the validator is a
proposer then the validator proposes the block. Behavior like this is used to prevent val-
idators to committing to multiple blocks in different rounds at the same height. Unlocking
means to release the lock only if a locked validator sees a polka at round greater than that
at which it locked. This way validators ensure liveness and do not compromise the safety
of the network [13].

Throughput In the original thesis [13], there were three experiments focused on how
many transactions per second can Tendermint achieve. Parameters were set accordingly:
ProposalTimeout was set to 10 seconds, and all other timeout parameters were set to 1
millisecond. Additionally, all mempool activity was disabled [13]. We use as reference the
second experiment which was run on multiple machines in one data center (latency is close
to 0). The results can be seen in Figure 2.2

Safety Tendermint suffers from BFT architecture. As mentioned in Section 2.2 it has three
parts where the second and the third phase is delaying the whole round. If two phases could
be substituted for something more efficient, it would significantly increase the throughput.
As mentioned in the original paper, the committee that verifies and commits block is fixed,
which means that Tendermint does not scale very well. Another problem with Tendermint
is that round-robin is used to elect a new leader in the round. The adversary can use that to
commit a Denial-of-Service (DoS) attack by attacking specific nodes because the adversary
knows which node will be a leader in the next round.

The adversary can misuse DNS attacks or Routing attacks because Tendermint relies
on the proper network layer. If this assumption is broken, Tendermint halts its consensus
layer, and it is waiting for at least 2

3 of consensus nodes to go back online. Eclipse attack
types of attacks are not possible in Tendermint because every consensus node is exchanging
messages with every consensus node. Due to BFT like consensus layer, the Nothing at stake
and Grinding attacks are relevant for Tendermint.

2.3 Algorand
Algorand is a pure Proof-of-Stake protocol that implements a Byzantine Agreement (BA).
As the author says it is ”Algorand is a truly democratic and efficient way to implement

3A set of more than 2
3

pre-votes for a single block at a given round
4Like polka but pre-votes for nil

11

(a) The figure shows how [IH: the number je pocet; a
number je niekolko, takze the] number of transactions
per second depends on block size. (b) Block latency according to number of txs.

Figure 2.2: Colored lines represent how many validators are in the network. Looking at
the graphs, we can see that Tendermint can handle tens of thousands of transactions per
second [13].

public ledger.“ [31]. Similarly, to Tendermint, it is commercially used as cryptocurrency5,
but it can be extended for other usages.

Overview Algorand’s properties are very advantageous. It can withstand even many ar-
bitrary users in a permissionless environment where users can join the network without
any issues. In the permissioned environment, Algorand can run even better. A very ad-
vantageous property is that Algorand can work even in very adversarial environments, e.g.,
where the adversary can instantaneously corrupt any user any time he wants. This situation
can be overcome in a permissionless environment, where 2

3 of the money belongs to honest
users or 2

3 of honest users in a permissioned environment. Algorand can work even if the
adversaries can control all corrupted users at once, and it can work even if the adversary
can schedule messages, provided that each message from an honest user can be delivered
to 95% of the honest users within a time 𝜆𝑚 [31]. Another super beneficial property is that
Algorand uses minimal computational power, no matter how many users are connected to
the network. Generation of a new block does not take longer than 10 minutes. The only
limiting factor is network speed. The blockchain forking can happen only with a very small
probability (i.e., less than one in a trillion), and thus users can rely on transactions as they
appear in the ledger (small finality) [31].

Consensus To select a new leader of the round uses a public-key version of a keyed cryp-
tographic hash called verifiable random function (VRF). Only the private key holder can
compute the hash, but anyone with the public key can verify the correctness of the hash [46].
In Algorand is used VRF (cryptographic sortition) to select members that will acknowledge
the leader (selected verifiers) and the leader itself. Every committee member candidate will
locally compute VRF, and if the value from VRF is smaller than a threshold set by the
previous block, the user becomes committee member. To enhance safety in the block, there

5https://www.algorand.com/

12

https://www.algorand.com/

(a) Latency for one round of Algorand as a func-
tion of the block size [31].

(b) Latency for one round of Algorand, with
5,000 to50,000 users [31].

Figure 2.3: Colored lines represent how many validators are in the network. Looking at
the graphs, we can see that Tendermint can handle tens of thousands of transactions per
second [31]

is a carefully defined nounce that is used as input for VRF as well. With this value, we
can overcome issues where adversaries can craft specific transactions into the last block and
thus influence new leaders and newly selected verifiers. When the user realizes that he is
the new leader for the next block, first he secretly assembles the new proposed block and
then disseminates it together with his credentials [31]. After broadcasting, the block leader
can peacefully die and the next problem lies on verifiers. They must run the Byzantine
Agreement upon a newly received block. After their peer-2-peer agreement, they broadcast
the block into the network.

Throughput By the article [7], Algorand can handle up to 500k peers in a network with
a throughput of around 1000 transactions per second. The throughput is limited only by
the speed that can messages travel around the network. The protocol scales independently
of the number of total users participating [7]. Nevertheless, the finality of the block is
relatively small.

Safety Algorand depends on the correct networking layer and thus adversary can attack
on DNS and on routing as well. The beauty of Algorand is that if the block pushed to
be the leader is delayed more than blocks of alternative leaders, it will be still backward
accepted and the blockchain will rollback. This can be done only to a specific point (check-
point in hones chain). Another attack that can adversary uses is the Eclipse attack or the
long-range attacks, however, it will not be efficient against the consensus layer of Algorand.
Hypothetically if the adversary can cooperate with the actions of multiple peers, then it is
rather a pessimistic hypothesis because that type of coordination is challenging to achieve.
It is much simpler to coordinate smaller groups of malicious users; however, coordinating
these groups suffocates at the same problem when one adversary controls them all. Assum-
ing that adversary can corrupt peers secretly and immediately is pessimistic [31]. By the
Algorand characteristic VRF function, it is resistant against grinding attack and DoS on
the leader as well. The nothing at stake attack in Algorand is not properly handled because
as it says in Algorand paper: ”... one possible way to avoid this trade-off, which we do

13

not explore in Algorand, is to take the minimum of a user’s current balance and the user’s
balance from the look-back block as the user’s weight.“ [31].

2.4 LaKSA
LaKSA is derived from Algorand and it adopted ideas from DFINITY and Randhound [33,
62]. It is a proper Proof-of-Stake protocol with some BFT ideas [56]. It is not yet
commercially used as the protocols above. It was developed to reduce drawbacks as high
reward variance and long confirmation times. It enhances Algorand properties such as
lightweight committee voting, it should be more robust and easily scalable than other
protocols. In LaKSA, committee members are randomly and periodically sampled to vote
for their preferred main chain views [56].

Consensus Each round of consensus consists of two steps. First, everyone obtains a random
beacon from the previous block (in the first round from genesis block), used to elect leaders
and voters (selected verifiers as in Algorand). In the first step, the node obtains a number
of the stake it can use in that round. If the node has some stake to use in voting, it is
called a voter. The other then assembles the vote and broadcast it to the network. If the
node does not have the stake, it can verify the votes (if it is a legitimate voter if the vote
is formatted correctly, authentic, and not from the future). After successful verification,
a vote is added to the pending list of votes directly supporting the last block [56]. This
list of votes creates a so-called virtual block. After some time, the second part of the
consensus starts. In this part node checks if it is elected as a leader (from broadcasted
random beacon). If the node is the leader, it will assemble a new block-based on votes
from the first part. After block assembly, the block is broadcasted into the network. A
node receiving a new block verifies multiple attributes - if the new block is authentic, the
leader is legitimate, formatted correctly, points to an already existing block, etc. The
electing method is called cryptographic sampling that was firstly presented in the LaKSA
paper [56]. Random beacon is not specified in the original paper and it is proposed to
investigate the suitability of beacons from DFINITY and RandHound algorithms [33, 62].
The block commitment is decided by every peer individually. A peer computes the risk of
the block commitment and probability that the target block can be reverted. If the risk
and the probability are below a threshold, it will be committed.

Analysis As a result of the block commitment, there is a long finality due to the compute
probability of chain reverting, etc. Fairness in LaKSA is a bit better than in Algorand.
Every node that voted in one round gets a reward proportional to their stake. Safety is
similar to Algorand with honest money majority and honest users majority. Another weak
spot in this protocol is the beacon implementation. If it is poorly implemented, adversary
can affect the beacon towards the advantage of malicious nodes using grinding attack.
Breaking network assumptions can only affect the blockchain if the committee to accept
published blocks is not fully operational. This means that the whole committee must sign
the block. In other case it will be waiting till the committee will be fully functional (in next
round). The long-range attack will suffer on the same thing as in Algorand. It is almost
impossible to cooperate with a large group of malicious nodes. Due to the committee’s
acceptance of a new block, it is very hard to create separate chains and do the nothing at
stake attack.

14

2.5 Casper
Casper is just a gadget, from the BFT school of PoS, that developed some ideas on how
to sooner finalize blocks and choosing the honest chain. It was introduced by Ethereum
Foundation [16]. It is just an overlay and it does not implement the proposed mechanism.
It introduced new properties to blockchain:

Accountability that will penalize any validator who has violated some network rules.
In this case, the penalty is the violator’s whole deposit. This is property is useful in PoS
protocols rather than in PoW because in PoS this way violator cannot be a leader without
any stake involved.

Dynamic Validators are a useful property because validators can join and leave the
verification process. When the node wants to be the validator it will send a message to
the blockchain. The validator can start validation after some checkpoints passed in the
blockchain. To leave, he will send the message once more with information that he is
leaving. However, he must verify the block for some checkpoints afterward. The specific
numbers differ from implementation to implementation, but in the Casper paper, it is shown
as 2 checkpoints to join, 2 checkpoints to leave [16]. If the verifiers left without a proper
goodbye, it will be permanently banned from verifying the chain. To be able to verify, you
need to deposit some cryptotokens like in PoS to be able to become the leader. However,
here everyone who deposits the tokens can be a verifier.

Defenses against long-range revision attacks as well as attacks where 1
3 of the network

are unreachable were introduced as well. However long-range attacks and their mitigation
are described in Chapter 3.

Modular overlay design approach enables to implement Casper into existing protocols
such as any PoW or PoS.

Casper’s identification of the honest chain is based on finding the highest checkpoint in
the block tree. In this behavior are some vulnerabilities, that are described in Chapter 3.

2.6 Summary
in Table 2.1 is side by side comparison of PoS protocols with their properties. Casper is the
only framework for blockchains that decreases time to finality, so other properties are not
evaluated. The best PoS protocol with the biggest throughput is Algorand. Tendermint’s
disadvantage is when there is not enough validation nodes online, the whole network halts
itself and can start when there is enough users to make consensus.

15

Liveness Throughput Finality Scalability

Te
nd

er
m

in
t

Eventualy every tx
will be processed.

Relatively low
throughput due to
2 phase consensus
of 2/3 nodes

Blocks are almost
instantly finalized

Very hard, there is
still the same set of
verifying nodes

A
lg

or
an

d

Eventualy every tx
will be processed.

Relatively large
throughput due
to fast block
broadcasting

Finalized blocks
are only those
which are located
before checkpoint

Simple scalability
based on stake
transfer

La
K

SA Similar as Algo-
rand

Similar as Algo-
rand

Due to fixed com-
mittee, finality is
lower than in Algo-
rand

Simple scalability
based on stake
transfer

C
as

pe
r Depends on the

chosen proposal
mechanism.

Could not evaluate
Finalized blocks
are until check-
point

Could not evaluate

Table 2.1: Side by side comparison of PoS protocols and their properties. Details are
described in sections above.

16

Chapter 3

Attacks on PoS Protocols

In this chapter, we will describe known attacks on blockchain as a whole ecosystem and
proof-of-stake specific attacks as well. The security of the protocols mentioned in this
chapter will be concluded in Table 3.2.

3.1 General Attacks
General attacks describe the most common attacks that are not dependent on any specific
blockchain protocol but the general behavior of these protocols and on technologies that
blockchain depends on.

3.1.1 Blockchain attacks

These attacks are threats for all blockchain protocols not just any type like PoS or PoR.

Double-Spending Attack is possible due to the creation of two or more conflicting blocks
with the same height. This behavior results in forking, and due to forking some cryptotokens
can be spent in both blocks. However, only one block can be used in an honest chain. To
mitigate this attack the transaction can be counted when the block is settled. The time to
settle can vary and it is called finality. Finality can be shortened with protocols like BFT
where finality is close to zero [20].

Attacks on Shards. To describe this attack we need to say what the sharding means in
this context. Sharding is when the whole blockchain network is partitioned into subsets
of consensus nodes that are cooperating. The cooperation is established as an agreement
on which transactions will be accepted or rejected. Shards are working in parallel and it
can increase throughput and scalability of the whole blockchain network. However, it is a
threat because the shard can have only a few nodes, and it can be easier for an adversary
to attack these nodes. If the attacker compromises many shards, it can compromise the
whole network [24, 47]. Mitigation to this attack is to randomly distributes nodes among
shards. Sharding attacks can lead to replay attacks [61].

Time De-Synchronization Attacks are used to inject invalid timestamps that are used
as median or mean values computed from peers. This median is usually appended into the
block header, and the receiving node can validate the block if it is not too old. The attacker
can exploit this approach by connecting a significant number of peers into the network that
will change the mean (median) time. After injection network can discard even valid blocks

17

T: Double Spending
Attacks

D: Asynchronous
Protocols

D: Statistical Analysis

D: Incentive Schemes
(Punishments)

T: Attacks on
Distribution of Shards

T: Time De-
Synchronization

Attack

T: Breaking Network
Assumptions

D: Timestamping
Authority

D: Reputation List of
Trusted Peers

T: 51% Attack or 1/3
Byzantine Nodes

D: Use Consensus
Protocols with Fast

Finality

D: Wait Certain
Amount of Time

D: Collaborative
Computation by

Consensus Nodes

D: Distributed
Randomness Protocol

(RoundHound)

D: PoW for Shards
DistributionV: Partitioning of the

Consensus Power

V: Slow Finality

V: Violation of
Protocol Assumptions

All Protocols

Figure 3.1: Generic threats and defenses of the consensus layer [38].

due to their invalid time (timejacking) [11]. To mitigate time-jacking you can create a list
of trusted peers that will be used authority for time-stamping [64].

Breaking Network Assumptions can be broken in protocols like BFT and PBFT where
nodes depend on synchronous or partially synchronous message delivery. If it fails, proto-
col is unusable and can not be achieved consensus. This vulnerability leads to developing
threshold-based BFT that can operate when at least X nodes are online and can commu-
nicate [49, 17].

Adversarial Centralization of Consensus Power is an attack that is trying to violate
the assumption about the decentralized distribution of consensus power in the network.
The typical example of the attacks from this category is 51% attacks for PoR and 1/3 of
Byzantine nodes for the PoS protocols family. When a majority of the network (at least
51%) is controlled by an adversary, it is called a 51% attack. In the PoS family there is
equivalent and it can even halt the whole network. For this disruption, it is only needed 1/3
of the nodes to be controlled by the adversary. To mitigate these issues there are plentiful
solutions such as:

• schemes to reward honest nodes

• schemes to discourage/punish protocol violation

• statistical analysis of sudden anomalies in the history of consensus power distribution,
that can be used in fork-choice rules in the consensus protocol

18

3.1.2 Network Layer Attacks

Network layer attacks are focused on the infrastructure on which blockchain depends. Those
are typically attacks on network address translation, routing, or denial of service attacks.

DNS Attacks are targeted at blockchains that use hard-coded DNS seeders. Mitigation
of this attack can be using DNSSEC. Describing attacks on DNS and their mitigation are
not in the field of this thesis and thus we leave it for the reader. Examples can be found [5].

Routing Attacks can be described as the manipulation of routing the packets among
nodes. Within manipulation, we can imagine eavesdropping, modification, or dropping
packets. This can lead to network partitioning or in 51% attacks, selfish mining, and many
more. Proof of this attack can be found here [4] and it shows that Blockchain is vulnerable
to BGP attacks. To mitigate these attacks, there is work from the same author, Apostolaki
et. al. [3] that creates a secure relay network that runs alongside the bitcoin network.
More general mitigation is to use multi-homed nodes for route diversity (choosing nodes
from another ASes). This diversified routing can be useful to broadcast and retrieve recent
blocks.Another mitigation can be using BGPsec [39]. Another way to secure routing such
as secure routing table, creating a trusted authority for routing nodes (probably not wanted
in decentralized style of this thesis), or using self-certifying data for routing was introduced
in [18].

Eclipse Attacks evolved from DNS and routing attacks [34, 68]. This attack is focused
on hijacking all node’s traffic to peers and the blockchain itself. The eclipsed node can
unknowingly vote for the attacker’s chain that implies that the adversary is partitioning
the network. Additionally, the eclipse attack induces selfish mining and double-spending.
Erebus [65] is another network partitioning attack that is part of the eclipse attacks. It has a
small network footprint. Erebus attack influences the node’s peer selection because Erebus
floods the peer connection with the attacker’s shadowed IP addresses. There is at least a
handful of mitigation. One of them is proposed in Erebus’s paper that there should be two
lists of peers and those are already connected peers and new peers. This way, the attacker
can fill only one table and the node is still operating normally. Another mitigation is that
nodes can communicate with lightweight nodes over gossip protocol (out-of-band) [1]. Next
is randomly choosing peers, which is the mitigation proposed in [34].

DoS Attack is the budget option of listed attacks. These attacks can be divided into
two groups and those are Resource DoS and Connectivity DoS. Resource DoS are attacks
that are targeted on node hardware, e.g., memory. An example of memory flooding can
be a penny-flooding attack which will flood the memory pool with low-fee-transactions.
This may lead to a system crash. To prevent this attack, we can set a minimum fee for
the transaction which means that it will be more expensive for the adversary [58]. Another
mitigation can be to receive only a predefined number of transactions in a fixed period from
one peer. DoS attacks on the connectivity of consensus nodes may lead to loss of consensus
power. This means that the node will not be rewarded because of not participating in
consensus [37]. If the DoS is focused on verifying nodes, it may result in a disruption in
services that are dependent on blockchain such as [59].

19

T: DNS Attacks

D: DNSSec

D: Certificate Transparency

D: DANE

D: Alternate DNS servers

T:Routing Attacks

D:Multi-Homed Nodes

D: SABRE

D: VPN

D: Extra Peers

D: BGPSec

T: DoS Attacks on
Local Resources

D: Minimum Transaction Fee

D: Rate-Limit Transactions

D: Scoring and Banning Peers

T: Identity Revealing
Attacks

D:VPN and anonymization services

D: Design of the Consensus Protocol

T: Eclipse Attacks

D: Randomness in Choosing the Peers

D: Redundant Network Links

D: Out-of-Band Connections / Gossip
Networks

D: More Outgoing Peer Connections

D: Peer Selection with AS Topology

T: DoS Attacks on
Connectivity

D: Peer only with Whitelisted Nodes

D: On premise Filtering
(with a Device)

D: Cloud Filtering (Redirection)

D: Hybrid Filtering (Cloud+On-
Premise)

V: Centralization of
Control

V: Shared Untrusted
Networks

V: Design of P2P
Protocols

V: Aspects of DNS, and
Routing Protocols

Public Networks

Figure 3.2: Vulnerabilities, Threats and Defenses in the Public Networks [38].

20

3.2 Proof-of-Stake Attacks
These attacks arise from PoS protocol architecture and they are specific and targeted just
to them.

Nothing-at-Stake attack can be described as publishing two or more conflicting blocks
at the same round and height. With this approach, a node can increase the probability to
be rewarded. This problem is much worse in PoS protocols rather than in PoR because
PoS protocols do not require any resources to spend. This unwanted behavior is increasing
forking and extending time to finality. There are at least two approaches to fix this behavior.
The first is Checkpoint based solutions such as [16, 41, 22, 44]. Casper deals with forking in
the highest checkpoint manner. It means that it will choose a fork in which is the checkpoint
higher than in any other fork. PPcoin deals with this issue that it will ignore any duplicate
transaction until a successor block is received as an orphan block [44]. Casper can be used
as an example of deposit-based solutions. This solution requires a deposit during some fixed
time/round.

Grinding Attack is based on knowing a leader before the round starts. Based on this
information, the attacker can manipulate the selection process to his advantage to be a
leader in the next round, e.g., PoS protocols take hash from the previous round for the
election, thus the attacker can create many blocks with different hashes to select the leader.
The solution can be that the election of the leader can be done with the interaction of
consensus nodes within some committee[43]. Another solution brought by Algorand is the
usage of the VRF functions to determine the leader. The VRF function uses a beacon
from a previous round to compute a value that is used as a threshold for determining the
leader. If the internal value of a consensus node (e.g. public key) is smaller than the newly
computed threshold from VRF, then the node is considered as a leader. Input is the user
public key and the randomness bound to the previous block [31].

Denial of Service on a Leader/Committee is easy to perform on protocols where
a committee or a leader is publicly determined before the round starts [43]. If it is the
case, then the adversary can conduct DoS or DDoS to the leader or committee. This attack
leads to a restart of the round and the adversary can repeat the attack until the adversary’s
desired nodes are elected. The solution to this attack can be found in Algorand, Ouroboros
Praos, or Dfinity [31, 23, 33]. In Algorand, nodes privately determine if it is the leader of
that round and if so it will broadcast the block candidate.

Long-Range Attack was described as in [14] or in [22]. In this attack, the adversary bribes
a consensus node or steals a private key from the consensus node. The problem arises when
the attacker has enough keys, then he can change the chain (rewrite the blockchain history).
Another issue is that he can exchange the consensus node balance in fiat money. A variant
of the long-range attack is stake-bleeding [30]. Mitigation of this attack is to lock the deposit
for a longer time than the time participated in consensus [6]. Another mitigation is to do
regular checkpoints in the blockchain that results in the irreversibility of the blockchain
concerning the last checkpoint. Next mitigation is a context-sensitive transaction, i.e., the
transaction adds a hash of a recent valid block to the transaction [30]. To mitigate this
attack, we can use the key evolving technique that was introduced in [28].

21

D: Fresh Leader Election

D: Fresh Leader Election by Private
Check of VRF against the Treshold

D: Deposi-Based Solution

D:State-Freezing (Checkpoints)

D: Revealing SK of a node that signs
2+ conflicting blocks

D: Backwards Penalization

D: Decreasing Time to Finality (+ BFT)

D: Frequent Checkpoints

D: Lock the Deposit for a Longer Time
than the period of Participation

D: Key-Evolving Crypto / Forward-
Secure Signatures

D: Enforcing a Chain Density in a Time

D: Context-Sensitive Transactions

T: Grinding Attack

T: DoS on the Leader or
Committee

T: Nothing-at-Stake
Attack

T: Long-Range Attack

V: Predictability of Leadership

V: No Risk for Extending 2+ blocks
& No Energy Spent

V: No Checkpoints (Soft Finality)

V: No Key Rotation

PoS Protocols

Figure 3.3: Vulnerabilities, threats, and defenses of PoS protocols (consensus layer) [38].

22

Network Attacks
DNS Routing Eclipse DoS

Te
nd

er
m

in
t

Not affected Can delay mes-
sages

Relatively easy to
eclipse consensus
nodes due to small
number of them,
but Tendermint
will halt if more
then 1

3 of nodes
are not operational

Consensus nodes
are known

A
lg

or
an

d

Not affected Can delay mes-
sages

Very hard to imple-
ment Not affected

La
K

SA Not affected Can delay mes-
sages

Very hard to imple-
ment

Committee is
known but hard-
ened using Dande-
lion

C
as

pe
r

Not affected Can delay mes-
sages

Very hard to imple-
ment X

Table 3.1: Network attacks on some Proof of Stake protocols.

3.3 Summary
We compare mitigations across various implementation in Table 3.1 and Table 3.2. From
the properties, the most resistant implementation against DoS is Algorand and LaKSA if
Dandelion [9] is part of the implementation.

23

Proof of Stake attacks

Nothing at Stake Grinding DoS on Leader or
Committee Long-Range

Te
nd

er
m

in
t

Not affected, there
is no other chain
then honest chain

Not affected Consensus nodes
are known

Can affect protocol
due relatively small
number of consen-
sus nodes

A
lg

or
an

d Vulnerable, not im-
plemented any mit-
igation

Not affected Not affected Not affected

La
K

SA Not affected

If beacon imple-
mentation is vul-
nerable then Ad-
versary can attack
on committee.

Committee is
known but hard-
ened using Dande-
lion

Not affected

C
as

pe
r

Not affected,
implemented pe-
nalization for
nodes that violate
nothing-at-stake

Not affected X

As long as a client
gains complete
knowledge of the
justified chain at
a regular interval,
it will not be sus-
ceptible to a long
range attack [16].

Table 3.2: Proof of Stake specific attacks on some PoS protocols.

24

Chapter 4

Anonymization Techniques in
Network Traffic

Demand for anonymity on the Internet or in the P2P1 networks arose in the last years
due to users’ realization that their information is valuable for commercial companies and
open for potential abuse. This problem may not sound terrible for average Internet users.
However, when we start speaking about dissidents and whistle-blowers, it starts to make a
lot of sense [69]. Based on this demand for anonymity, new technologies were created to
anonymize users in the P2P networks such as Tor, I2P, GNU Net, etc. The guaranty is
based on mathematical models that were proven correct and developed for many years. In
this work, we will describe the two most common anonymization networks, Tor and I2P.

4.1 Tor project
Tor is the biggest anonymizing network to this date. This network was deployed in 2003
and design papers were introduced at the USENIX conference in 2004 [63]. In the last ten
years, the whole network quadruplet2, and the userbase is in time of writing this thesis
around 2.5 million active users3. Tor is based on, so-called, ”Onion Routing“ that transfers
all network data through the ”Routing nodes“ to the users.

Another anonymization technique introduced to the Tor network was so-called ’hidden
services’. These services were designed to hide a service provider’s location, i.e his IP
address, and resist denial-of-service attacks. This technique is not bounded to the Tor and
can be used with other anonymization technologies as well.

4.1.1 Onion Routing

Tor is just an implementation of Onion routing introduced in 1998. To show how this
routing works imagine a situation where a person named Alice wants to send a message to
a person named Bob. Firstly, Alice needs to obtain a list of all onion routers (OR). After
that, A picks up three ORs from the obtained list, let’s call them 𝑅1, 𝑅2, ...𝑅3 (typically
they are three). The third step would be to create TLS tunnel between Alice and 𝑅1. After
the creation of the first tunnel, Alice will try to negotiate the second tunnel to 𝑅2 through
the already created tunnel. In the network, it will look like Alice is communicating with the

1Peer2Peer
2https://metrics.torproject.org/networksize.html
3https://metrics.torproject.org/userstats-relay-country.html

25

https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/userstats-relay-country.html

Tor Network

Client
Server

R1

R2

R3

Figure 4.1: Example of a route in Tor network. Location of the Tor relay nodes can be
anywhere around the globe, e.g., guard-node can be in Germany, next hop in the USA and
the exit-node can be in Japan.

router R1 and not with router 𝑅2 as shown in Figure 4.1. This procedure is then applied
to 𝑅3 and Bob as well. This way there is created a tunnel from Alice to Bob. The shown
layering of tunnels looks like an onion and thus it is called onion routing. From Bob’s
perspective, he knows only the last router R3 called ’exit node’. Similarly, the 𝑅1 is called
an entry-node.

Let’s say that 𝑘𝑖 will represent a key shared with 𝑅𝑖 and 𝐸𝑘(𝑚,𝑇) is tuple (𝑚,𝑇)
encrypted with key 𝑘. In our example, 𝑚 is message that we want to send to target 𝑇 . The
message 𝑚′ from Alice to Bob is encrypted accordingly:

𝑚′ = 𝐸𝑘1(𝐸𝑘2(...(𝐸𝑘𝑛(𝑚,𝐵), 𝑅𝑛)..., 𝑅3), 𝑅2)

The message 𝑚′ is sent to OR 𝑅1. When 𝑅1 receives the message it will decipher it
with the key 𝑘1. From the deciphered message OR 𝑅1 knows where it should send the
deciphered message. The deciphered message looks like this:

𝑚′′ = 𝐸𝑘2(...(𝐸𝑘𝑛(𝑚,𝐵), 𝑅𝑛)..., 𝑅3)

Tor implements the onion routing with small improvements. The main difference is how
Tor picks ORs. ORs are labeled by their network properties (fast and stable) and these
labels are stored with their address in the list.

• An OR is labeled fast if its bandwidth is higher than the median of all routers in the
network.

• An OR is labeled stable if its availability is higher than the median of all routers in
the network.

26

Message m

R3: Ek3(m, B)

R2: Ek2(Ek3(m, B), R3)

R2: Ek1(Ek2(Ek3(m, B), R3), R2)

B

A

Figure 4.2: Message encapsulation in Tor protocol

When Alice wants to create a route to Bob, she must pick an 𝑅1 that is stable and fast.
Other ORs will be picked up to target the optimal network speed and latency. Another
significant difference is during the tunnel creation. In Tor, the second TLS connection is
not created directly but through the 𝑅1 and vice versa for 𝑅3 and Bob. Together with the
route creation, there is created a unique session key for every session created. The message
encapsulation is illustrated in Figure 4.2.

4.1.2 Hidden Services

A hidden service is any regular service that can be only accessed through the Tor network
and the connection is end-to-end encrypted. The important thing that hidden services
introduced is the idea that the client does not know the address of the server and vice
versa. The main difference between a hidden service and a classic service is that we know
the address of the classic service. However, when we are connecting to the hidden service
we only know the index to the DHT where are located introduction points.

The architecture of hidden service consists of:

1. The hidden service (server) chooses three onion routers as ’introduction points’ (server
will create an onion tunnel to the introduction point).

2. The client will use the onion address to ask DHT for introduction points.

3. The client will select one onion router as a rendezvous point, create an onion route to
the router and create the first part of a handshake. Afterward, he sends the address
of the rendezvous point and the partial handshake to the introduction point.

4. The introduction point will send this information to the server.

5. The server will decide if he wants to connect to the rendezvous point. If yes, he will
create an onion route to the rendezvous point and finish the handshake.

6. The rendezvous point will send the handshake to the client to verify it. if everything
is in check the rendezvous point will connect these two onion routes. Thus the client
and the server can exchange messages in a completely anonymous way.

27

4.2 I2P Anonymous Network
Invisible Internet Project is sometimes called by acronym I2P. It was introduced to the
world in the Master thesis by Roger Dingledine [25]. I2P is based on the garlic routing and
that is derived from the Onion routing.

4.2.1 Garlic Routing

The extension to the onion routing is that the garlic routing is bundling multiple messages
together. Every bundle is called a bulb. Every clove in a bulb has its delivery information.
I2P implements delaying messages, which makes timing attacks from Tor not relevant any-
more. Another extension is that path or tunnel is unidirectional instead of bidirectional in
Tor. Unidirectional tunnels imply that every subject in the network must create two tun-
nels (inbound and outbound tunnel). This way of sending messages using different tunnels
will diversify traffic in the network more.

28

Tor Network

Client
Server

I1

I2

I3

Introduction
Nodes

(a) Service will pick some nodes (in our case
three) and marks them as introduction nodes.

Tor Network

Client
Server

I1

I2

I3

Introduction
Nodes

Rp

Onion Route to
Rendezvous Point

1 2

3

(b) A client will create an onion route to a node
(that he selected), and he marks it as a ren-
dezvous node. Next, the client will send the ad-
dress of the rendezvous point to one of the in-
troduction points. The introduction point will
transport that information to the service.

Tor Network

Client
Server

I1

I2

I3

Rp

Onion Route to
Rendezvous Point

(c) If the service accepts the connection request,
then the service will create an onion route to
the rendezvous point. The rendezvous point will
transfer all needed information to the client.

Tor Network

Client
Server

I1

I2

I3

Rp

Passthrough

(d) When everything is in check, the rendezvous
point is used as a proxy to transfer messages be-
tween the client and the service.

Figure 4.3: This figure shows a schema of connection establishing between a client and a
hidden service.

AliceBob

EndpointParticipantGateway Gateway Participant Endpoint

GatewayParticipantEndpointGatewayParticipantEndpoint

Outbound Tunnel Inbound Tunnel

Outbound TunnelInbound Tunnel

Figure 4.4: I2P illustrated tunnels

29

Chapter 5

Proposed Proof-of-Stake Protocol

This chapter will focus on laying a high-level overview on the proposed PoS protocol. The
new PoS protocol will have just one leader in a round and he will unambiguously determine
the leader of the next round before the round starts. Another emphasis in this protocol
is to be DoS resistant. To achieve DoS resistance, the anonymization layer should be
implemented right in the network layer of this protocol.

At the beginning of the protocol, we assume a genesis list of all initial participants
with the stake distributed by the Initial Coin Offering (ICO). The position of the node in
the ICO will determine her ID, which will never change. Every node needs to establish a
connection to 𝑁 randomly selected nodes, using the anonymization layer (see Section 5.2).

All participants produce a random seed rand of the first round using the RoundHound
protocol [62]. The random seed unambiguously determines the leader of the first round.
The leader is selected from the list of all participants in the blockchain. The unambigu-
ity is guaranteed by the combination of the VRF and stake-weighted probabilistic leader
election (SWEPLE). This principle is iteratively used in each round and thus it generates
a sequence of block leaders who are known only one round ahead. Thanks to the network
anonymization layer these block leaders cannot be DoS-ed. In our case, our protocol could
be used for a smart contract platform, however, in this work we consider the use case of
cryptocurrency, such as Bitcoin. In the following section, we will describe the consensus
protocol and the anonymization technique presented at the consensus and network layer,
respectively.

5.1 Consensus Protocol
The proposed protocol creates and extends its blockchain, an append only structure con-
sisting of linked blocks Figure 5.1. The block consist of aggregated transactions and block
header created by the leader of the current round. The block header consists of these parts:

• ID – the counter of all blocks,
• hPrev – the hash of the previous block’s header in the blockchain,
• txsRoot – the Merkle Patricia root of all transactions included in the block,
• coinbase – the public key (PK) of the node that is the leader of the block (it is used

for the signature verification),
• rand the randomness of the round, which detemines the leader of the next round

and/or alternative leaders if the main one is not available. This value represents

30

ID

T1 T3T2

hPrev

Hb Hc

Ha

txsRoot

BlockHeader N-2

T4

Block N-2

T5 T7T6

hPrev

He Hf

Hd

txsRoot

BlockHeader N-1

T8

Block N-1

T9 T11T10

hPrev

Hh Hj

Hg

txsRoot

BlockHeader N

T12

Block N

ID ID

altIdx

rand

coinbase

signature

altIdx

rand

coinbase

signature

altIdx

rand

coinbase

signature

Figure 5.1: Connection between block headers

a signature made by the leader of the current round on the randomness from the
previous round at the input

• altIdx is the order of the laternative leader who created the current block. Hence,
𝑎𝑙𝑡𝐼𝑑𝑥 = 0 for the main leader of the round, 𝑎𝑙𝑡𝐼𝑑𝑥 = 1, 2, 3, . . . for the first alternative
leader of the round, second one, etc.

• 𝜎 the signature of all above fields in the header

Second part of the block are transactions and those consists of:

• dst – the address of the recipient of the transaction
• val – the value sent from the sender to the recipient
• fee – the fee that is payed to the leader who creates the block
• sig – the signature of the sender

One may think that the transaction misses the sender. However, the sender’s address
will be computed from the transaction itself and the signature. To achieve this behavior the
signing process must be done with a cryptographic function that can include the signer’s
public key into the signature.

5.1.1 Design Considerations

In our implementation of the proposed protocol, we do not need to have a history tree data
structure. The history tree is used only when we need to guarantee the block order, but
that’s not our case. For our account-balance model is best suitable Merkle Patricia Tree for
a global state (gs). We leverage the secp256k1 cryptographic algorithm for signing, which
is very well established among all blockchain networks.

31

UponBlkRcv

:Node :Block nm[k]:NodeMeta :Mempool

parseFromBytes()

return

UponRecvBlk()

return

getChain()

computeDifficulty()

Elect()

validateAndExecute()
update()

return

removeTxs()

return

cancelTimeout()

Figure 5.2: This figure shows interaction among objects in a function UponBlkRcv.

5.1.2 Initialization

We assume that a code of a full node contains a list of the genesis nodes whose stake is
distributed according to ICO. Another assumption is that all of the crypto-tokens are put
into stakes of individual full nodes. This assumption is derived from the idea that every
node at the beginning wants to participate in the consensus protocol. Next thing is that
every node will create an anonymized connection to N randomly selected nodes from the
list of all nodes, referred to as transport peers. These peering nodes are used as transport
relays for all messages and transactions that are sent/forwarded by the node.

5.1.3 Normal Operation

The normal operation of the consensus protocol is described in the Figure 5.3 and in Fig-
ure 5.2. When the round starts, the node resets the counter 𝑅 of timeout expiration. Then
a node checks if it’s the leader of the current round based on randomness from the previous
round. If the node is a leader of the current round, it will create a new block and broad-
casts it afterward (see function 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑙𝑜𝑐𝑘). The newly created block consists of the set
of transactions with the highest fee picked from mempool.

If the node is not a leader in the current round, the node will set synchronous timer
𝜏𝐵 on the expiration of valid block delivery and it waits on the reception of the block (see

32

Block Creation

:Node :Block :Mempool

CreateBlock()

return

n[k]:NodeMeta

getLastBlock()

Elect()

pickBlkTxs()

get()
return

validateAndExecute()
update()

return

parseFromBytes()
return

construct()

return

reward()

gossip()

CancelTimeout()

Figure 5.3: This figure shows interaction among objects in a function CreateBlock.

function 𝑈𝑝𝑜𝑛𝑅𝑒𝑐𝑣𝐵𝑙𝑘). When a node receives a block, it will check the binding of the
block on its predecessor (i.e., ℎ𝑃𝑟𝑒𝑣), and checks the signature of the block header using
𝑐𝑜𝑖𝑛𝑏𝑎𝑠𝑒 as a public key. Next, the node will validate the transactions, if they are correctly
signed (public key is derived from signature and the transaction), and the values are in
check with the current global state. Lastly, it will check the correctness of the elected
leader. This check is done by comparing the output of the 𝐸𝑙𝑒𝑐𝑡 function with the coinbase
field. If the block is valid, then the node will reward the leader (see Section 5.1.4). Finally,
the block is added into the database of all blocks.

If the node does not receive a block within the timeout 𝜏𝐵, then it means that the main
leader is off-line, or the block message was dropped by the network.1 The node must deal
with this situation as described in Section 5.1.6.

1Note that the second option is very unlikely due to a high redundancy in transport peers.

33

Node 2 N3 Node 4 Node 5N1

Intervals according to nodes stake

Interval
that represents
Node 1 stake

Random
Value

Figure 5.4: This figure shows how the elect function works. First, we create a list of
intervals, which size is proportional to each node’s stake. After that, we pick a random
value that will be used to determine a first leader. After the election of a first leader, the
value is hashed and used one more time to pick up the alternative leader. This process with
an alternative leader can be iterated until the round increases.

If the node receives a transaction 𝑡𝑥, it verifies the existence of the sender and the
transaction’s signature. After the initial checks, the node will check the balance of the sender
with regards to the transferred amount and the transaction fee. When the transaction is
valid, it will add the 𝑡𝑥 to the 𝑚𝑒𝑚𝑝𝑜𝑜𝑙 of unprocessed transactions and gossips the 𝑡𝑥 to
her consensus peers.

5.1.4 Incentives and Rewarding Scheme

The incentive scheme of our protocol is shown in the 𝑅𝑒𝑤𝑎𝑟𝑑 function. This function
rewards the leader with transaction fees and full reward 𝑅𝐹 , while the alternative leaders
are rewarded with partial reward 𝑅𝑃 . We decided for this rewarding scheme to decrease
reward variance that can occur when just the leader is rewarded [51].

Stake and Balance: The important aspect of the rewarding scheme is that the stake
and the balance are separated. The overall value of the node’s assets is computed as a sum
of these two values. We define different rules for the stake and the balance, each having
respective pros and cons. The node’s balance has high liquidity and thus can be used by
the node to make any transactions according to her will. The stake is quite the opposite, it
has low liquidity, and it is meant as an investment that yields an ’interest rate’. We emulate
the long term investment and its interest rate by two requirements:

• When a node want’s to shift a part of the balance to the stake, the node has to wait
for 𝐾# blocks before the stake is taken into account at the 𝐸𝑙𝑒𝑐𝑡 function, that is
shown in Figure 5.4. This shift is made within a dedicated transaction (sender and
receiver are the same).

• Similarly, when the node wants to shift part of the stake to the balance, the assets
will be frozen for 𝑆# blocks before it is reflected.

The values 𝑆# and 𝐾# must be big enough to penalize the liquidity of the node’s crypto
assets. Besides penalization, this scheme can mitigate the loss of the market’s capital in a
time of crisis. Further, there could be implemented different reward lock-out mechanisms.
However, this is not implemented in this work.

34

w=1

w=1

w=0.5

w=0.5

w=0.5

w=1

w=1

w=1

w=1

w=1

w=1

Checkpoint

New checkpoint

Figure 5.5: Check-pointing mechanisms

5.1.5 Joining the Protocol

To join the protocol, the node has to buy the balance from any of the existing nodes and
then convert it into the stake.

5.1.6 Churn of the Nodes

Sometimes may occur a situation where the node will go offline (i.e., churn) and thus not
produce a block when it is elected as a leader. If a node does not receive a block within the
timeout 𝜏𝐵, then it increases the number of timeout restarts 𝑅. After the incrementation,
the node checks if it is an alternative leader and if so it will call the 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑙𝑜𝑐𝑘 function
with 𝑅 as the parameter. In the positive case, the node creates and gossips the block with
adjusted 𝑎𝑙𝑡𝐼𝑑𝑥 field to 𝑅 (i.e., 1). Otherwise, it readjusts the timeout 𝜏𝐵 and waits until
a valid block will be received from the next alternative leader.

5.1.7 Forks

Forks are inconsistencies formed from multiple parallel chains in the whole blockchain.
When forks occur there come in handy a function 𝐶ℎ𝑎𝑖𝑛𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦. This function com-
putes the chain difficulty from block’s weight as shown in Figure 5.5. Every block is in-
creasing the chain difficulty. The value depends on which leader produced that block. The
leader contributes with a higher difficulty than the alternative leaders. Alternative leaders
contribute with exponentially decayed difficulty, depending on the index of the alternative
leader, i.e, higher the index lower the difficulty.

35

Although there might exist only a single strongest chain, which is created by main
leaders only, sometimes a main leader of the round might not be available (see churn),
thus a block of the round is created by an alternative leader. The offline node during the
’leadership’ might return online and try to send created block retrospectively. That block
can overturn the current strongest chain if it would be extended by the sequence of strong
enough leaders. This will break the finality of the whole blockchain because the blocks
would not acquire finalized state. To overcome this issue we introduce check-pointing to
decrease the finalization of blocks. The checkpoint would be created after each 𝐶 blocks,
after which no node will accept the overturning of the strongest chain. This situation is
illustrated in Figure 5.5 for 𝐶 = 3, where 𝑤 presents a difficulty of each block computed
within 𝐶ℎ𝑎𝑖𝑛𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦.

5.2 Anonymization Layer
The anonymization is realized at the network layer and works as described in this chapter.
Details of joining, sending, and relying messages are shown in Algorithm 1. This commu-
nication on network level won’t be anonymized. It is not an issue, because it won’t contain
any peer identifier, which makes it impossible to tie peer identity (private key) to node
identity (IP address).

5.2.1 Joining the network

When node 𝑁 want’s to join a network, she must do following steps:

1. New node 𝑁 gets a list of IP addresses of all nodes from a directory (its trust-
worthiness may be ensured by multiple ways, e.g., a decentralized solution utilizing
blockchain [36])

2. 𝑁 selects 𝑛 sets of 𝑚 peers

3. For each set: Build a circuit consisting of 𝑚 selected nodes (in chosen order 𝑛1, 𝑛2, ...𝑛𝑚

where ℎ1 is closest to 𝑁 in the circuit). To build a circuit, perform a key exchange
with each of the selected nodes, for example by the approach proposed in [63].

4. The circuit has been established. 𝑁 now shares secret key 𝐾𝑖 with 𝑛𝑖 for each 𝑖.
Every further communication will be anonymized.

5.2.2 Sending the messages

Any message 𝑃 wants to send (broadcast) is sent in the onion routing manner, i.e.:

1. The message is encoded so it can be received by the intended receivers

2. The message 𝑀 is encrypted with 𝐾𝑖: 𝐾𝑖(𝑀)

3. The result of the previous step is encrypted with 𝐾(𝑚− 𝑥) for 𝑥 = 𝑚− 1 𝑑𝑜𝑤𝑛𝑡𝑜 1
and appended with IP of the (𝑚 − 𝑥 + 1)th peer in the circuit, e.g., (𝑚 = 3):
𝐾1(𝑝2,𝐾2(𝑝3,𝐾3(𝑀)))

36

Algorithm 1: Anonymization layer interface
◁ Declaration of types and variables:

route { 𝑛𝑜𝑑𝑒𝑛−1, 𝑛𝑜𝑑𝑒𝑛−2, . . ., 𝑛𝑜𝑑𝑒0},
node { 𝑎𝑑𝑑𝑟, 𝑘𝑒𝑦 },
addr { 𝐼𝑃 , 𝑝𝑜𝑟𝑡 },
this: the current node,
𝑟𝑜𝑢𝑡𝑒𝑠: list of all routes that will be used in anonymization layer,
𝑀𝑒𝑠𝑠𝑎𝑔𝑒: constructor of selected messages,

function 𝑗𝑜𝑖𝑛𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑛_𝑟𝑜𝑢𝑡𝑒𝑠, 𝑚_𝑛𝑜𝑑𝑒𝑠)
𝑎𝑙𝑙𝑛𝑜𝑑𝑒𝑠← 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝑠();
𝑟𝑜𝑢𝑡𝑒𝑠← 𝑝𝑖𝑐𝑘𝑅𝑜𝑢𝑡𝑒𝑠(𝑛_𝑟𝑜𝑢𝑡𝑒𝑠,𝑚_𝑛𝑜𝑑𝑒𝑠);
for 𝑟𝑜𝑢𝑡𝑒: 𝑟𝑜𝑢𝑡𝑒𝑠 do

for 𝑛𝑜𝑑𝑒: 𝑟𝑜𝑢𝑡𝑒 do
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐾𝑒𝑦(𝑛𝑜𝑑𝑒);

for 𝑟𝑜𝑢𝑡𝑒: 𝑟𝑜𝑢𝑡𝑒𝑠 do
𝑣𝑒𝑟𝑖𝑓𝑦𝑅𝑜𝑢𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑢𝑡𝑒);

function 𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑑𝑠𝑡, 𝑚𝑠𝑔)
for 𝑟𝑜𝑢𝑡𝑒 : 𝑟𝑜𝑢𝑡𝑒𝑠 do

𝑟𝑒𝑙𝑎𝑦_𝑚𝑠𝑔 ←𝑀𝑒𝑠𝑠𝑎𝑔𝑒.𝑅𝑒𝑙𝑎𝑦(𝑑𝑠𝑡,𝑚𝑠𝑔);
for 𝑛𝑜𝑑𝑒 : 𝑟𝑜𝑢𝑡𝑒 do

𝑐𝑡← Σ𝑛𝑜𝑑𝑒.𝑘𝑒𝑦.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑚𝑠𝑔);
𝑒𝑚←𝑀𝑒𝑠𝑠𝑎𝑔𝑒.𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑(𝑡ℎ𝑖𝑠.𝑎𝑑𝑑𝑟, 𝑐𝑡);
𝑟𝑒𝑙𝑎𝑦_𝑚𝑠𝑔 ←𝑀𝑒𝑠𝑠𝑎𝑔𝑒.𝑅𝑒𝑙𝑎𝑦(𝑛𝑜𝑑𝑒.𝑎𝑑𝑑𝑟, 𝑒𝑚);

𝑔𝑜𝑠𝑠𝑖𝑝(𝑟𝑜𝑢𝑡𝑒[−1], 𝑟𝑒𝑙𝑎𝑦_𝑚𝑠𝑔);

function 𝑅𝑒𝑙𝑎𝑦𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑠𝑟𝑐, 𝑟𝑒𝑙𝑎𝑦_𝑚𝑠𝑔)
𝑚𝑠𝑔_𝑘𝑒𝑦 ← 𝑓𝑖𝑛𝑑𝐾𝑒𝑦(𝑛𝑜𝑑𝑒𝑠, 𝑠𝑟𝑐);
𝑚𝑠𝑔 ← Σ𝑚𝑠𝑔_𝑘𝑒𝑦.𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑟𝑒𝑙𝑎𝑦_𝑚𝑠𝑔);
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑘𝑒𝑦 ← 𝑓𝑖𝑛𝑑𝐾𝑒𝑦(𝑛𝑜𝑑𝑒𝑠,𝑚𝑠𝑔.𝑑𝑠𝑡);
𝑐𝑡← Σ𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑘𝑒𝑦.𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑚𝑠𝑔);
𝑒𝑚←𝑀𝑒𝑠𝑠𝑎𝑔𝑒.𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑(𝑡ℎ𝑖𝑠.𝑎𝑑𝑑𝑟, 𝑐𝑡);
𝑠𝑒𝑛𝑑(𝑚𝑠𝑔.𝑑𝑠𝑡, 𝑒𝑚);

5.2.3 Relaying the messages

• When a peer 𝑝(𝑛) in a circuit receives a message, it decrypts it using the key shared
with 𝑃 . It discovers the identity of 𝑝(𝑛 + 1) and sends the message (that is still
encrypted by 𝑃 using 𝐾(𝑛+ 1)) to it.

• If there is no 𝑝(𝑛+ 1), the peer is an exit peer. It decrypts the message and gossips
it [63].

37

Chapter 6

Proof-of-Concept Implementation

The requirements, use cases, particular parts, and whole proof-of-concept implementation
architecture will be described in this chapter.

6.1 Requirements
We will require from the application to fulfill the following requirements:

1. The application will be designed with consideration of good OOP practices.

2. The application will consists of multiple layers:

(a) Network layer
• based on Transmission Control Protocol (TCP).
• support of sending files larger than network Maximum Transmission Unit

(MTU).
(b) Anonymization layer

• Based on onion routing.
• The parameters of the onion routing could be adjusted, e.g., number of

transport nodes, etc.
(c) Consensus layer

• Consensus will be implemented according to ongoing research and proposed
paper by Security@FIT group

(d) Replicated State Machine Layer
(e) Presentation Layer

• Command Line Interface (CLI).
• Terminal User Interface (TUI).

(f) Event logger

6.2 Use Cases
Before the creation of architectural design, we identified use cases that are a mandatory
part of the creation of the application. First, we identified users of the system. Those are

38

regular user, the node itself, and time. Each of these entities can call some procedures that
are shown in Figure 6.1. The main part of the use cases for the user are use cases that show
some information of the current local state of the blockchain. He can determine who is the
next leader and start the statistics. He extends the node’s use cases that are defined by the
consensus protocol (create a block, process a block, gossip a block, gossip a transaction,
increase the height). The time entity can only increase the round, create a new block or
determine who is the next leader by running the elect method.

Use Cases

User

Exit

Show

Help

Time

Node

Process
Block

Create
Block

Start
Worker

Exchange
Keys

Increase
Round

Increase
Height

Gossip
Block

Gossip
Transaction

Elect

Benchmark

State

Nodes
State

Mempool

Last
Block

Mempool
SIze

Transport
Keys

Height

Round

Figure 6.1: Identified use cases that are mandatory to implement.

6.3 Structure
The application structure is divided into multiple layers as introduced in paper [38]. The
layers that are implemented in our solution are network, anonymization, RSM. To view the

39

data from mentioned layers, we added a presentation layer. The dependencies among the
layers is shown in Figure 6.2.

Network Layer. The Network layer handles the network communication. That means
it creates the connection between nodes and creates a secure connection using the Diffie
Hellman algorithm. The layer that depends on the network layer is the anonymization layer.
This layer is responsible for creating routes inside the network, encryption, decryption,
encapsulation of the messages according to onion routing. The next responsibility is to
route the messages in the network.

Consensus Layer. In the consensus layer we implemented the proposed protocol by the
set of authors mentioned in the introduction. This layer is responsible for ordering the
transactions in the blockchain and for the acceptance of published blocks. The accepted
transactions inside the blocks are interpreted in the RSM layer. Block creation and pro-
cessing are handled in this layer as well.

Presentation Layer. Apart from these crucial layers, we have a Presentation layer that
includes a shell module. The shell module is presenting information from the core layers
mentioned earlier. It is used to execute commands that control the core layers. The shell
is designed to be an interactive Text User Interface (TUI).

Others. Other modules that are not part of any layer are Transaction generator, Statis-
tics, Logging, and Key Management. The transaction generator is only used when we are
performing performance testing of the whole network. In that case, the generator is creat-
ing transactions that are inserted into the mempool. This generator is one of the two ways
how to insert transactions inside the node’s mempool.

The statistics are part of the performance testing, and it is collecting information about
the blockchain itself, such as the number of processed transactions, elapsed time, time to
create a block, etc. After the capture of all information, it is responsible for the processing
of that information.

The logging module is used every time, and its responsibility is to log every event and
save it to an external file. There is the capability of logging multiple events in a multi-
threaded application. The order of those events is set by the time they were created.

The last module is the Key Management module, which is responsible for storing the
keys that are used across the network. It is not part of anonymization nor the network layer
because both of them are using it differently. The network layer is storing Diffie Hellman
keys in it, and the Anonymization Layer is storing the public keys of other blockchain
participants.

6.4 Class Hierarchy
This section provides information about class hierarchy in this project. The color of classes
in figures does not mean anything. It is there only for better readability. The main class is
the Node class which is composed of Mempool. The mempool is a class that encapsulates
the collection of transactions and simplifies the work with this collection. The node consists
of a dictionary that stores the mapping of processed blocks and their hashes. The block
is composed of a block header and a collection of transactions. The block header is a data

40

<<model>>

RSM Layer

Transaction
Handling

Logging

Key
Management

StatsTransaction
Generator Block

Processing
Block

Creation

Transaction
Validation

Consensus Layer

Ordering
Transaction

Ordering
Blocks

Anonymization Layer

Route
Bootstrap

Message
Routing

Message
Decryption

Message
Encryption

Presentation Layer

Shell

Network Layer

Diffie Hellman
Exchange

Message
Exchange

Figure 6.2: Diagram of modules and their dependencies inside the implementation of the
proposed Proof-of-Stake protocol.

structure that holds data specified in Section 5.1. The transaction is a data structure that
holds information about who is sending the crypto tokens to whom. The transaction also
consists of its value, fee, nounce, and signature.

Another component of the Node class is Stats. This class stores and computes the sta-
tistical data that will be shown after the performance testing. The node has a collection
that contains NodeMeta instances. The NodeMeta holds information about the node, e.g.,
public key, balance, stake, last used transaction nounce. The TransportKey class is a collec-
tion that stores Diffie Helman keys. The last part of the Node class is the AnonymityLayer
class. That class is responsible for choosing a route among the nodes and for negotiating a
Diffie Hellman key.

41

Implementation

+_shared_key
+_private_key
+_publick_key
+_derived_key
+initialized

+__init__()
+serialize_public_key()
+loadPeerPublicKey()
+genShared()
+encrypt()
+decrypt()
+pad()
+unpad()

TransportKey

+_dst
+_val
+_fee
+_nounce
+_sig
+_rec_id

+__init__()
+__str__()
+__repr__()
+__eq__()
+__gt__()
+__lt__()
+__hashable__()
+getSignature()
+bytes()
+parseFromBytes()
+hash()
+hash_b()
+dst()
+val()
+fee()
+nounce()
+sig()
+rec_id()

Transaction

+txs
+blocks
+rtxs
+time
+txpsec
+bpt
+bct
+bpt_avg
+bct_avg

+__init__()
+compute()
+print()
+write()

Stats

+_private_key
+_public_key
+public

+__init__()
+public()
+private()
+genKeys()
+sign()
+norm_sign()
+recover_sig_pk()
+normalize_sig()
+serialize_sig()
+deserialize_sig()
+verify()
+load_private()
+load_public_raw()
+load_public()
+save()
+save_private()
+save_public()

SigningKeyPair
+_PK
+_stake
+_balance
+_nounce
+_f_balance
+_f_stake

+__init__()
+__str__()
+addr()
+PK()
+PK_json()
+stake()
+balance()
+nounce()
+f_decrease()
+f_exchange()
+parseFromBytes()

NodeMeta

+exiting
+my_addr
+transportNodes
+receivedMessages
+block_size
+finality
+checkpoint
+benchmarking
+stats
+benchmark_started
+benchmark_start
+txprocessed
+profiler
+sigKey
+n_routes
+m_nodes
+anonymitylayer
+gossipNodes
+signingReward
+tau_B
+frozenAssets
+blk_queue
+blk_q_mutex
+blk_available
+tx_queue
+tx_q_mutex
+tx_available
+gs
+blocks
+nodes
+mempool
+BLast
+R
+timer

+__init__()
+createGenesisBlk()
+pubkey()
+deleteTransportNode()
+addNewTransportNodes()
+updateAnonLayer()
+updateNodeInfo()
+worker()
+genKeys()
+saveKeys()
+initDH()
+finalizeDH()
+UponRoundStart()
+UponExprBLKTimeout()
+CreateBlock()
+UponRecvBlk()
+UponRecvTx()
+Reward()
+RaiseHeight()
+hash()
+unfrozeAssets()
+sign()
+getTxFees()
+pickBlkTxs()
+validateAndExecute()
+getMPTrootHash()
+cancelTimeout()
+setBlkTimer()
+gossip_block()
+gossip()
+getStakes()
+Elect()
+setCheckpoint()
+getChain()
+getLastBlock()
+chainDifficulty()

Node

+sl
+sl_lock

+__init__()
+add()
+remove()
+remove_list()
+empty()
+pop()
+len()
+__repr__()

Mempool

+id
+hPrev
+txsRoot
+coinbase
+rand
+altIdx
+sigma

+__init__()
+__str__()
+__repr__()
-hashable()
+signable()
+types()
+hash()
+hash_b()

BlockHeader

+hdr
+txs

+__init__()
+__str__()
+__repr__()
+parseFromBytes()
+addTx()
+getTx()
+bytes()

Block

+node = node
+my_addr = my_addr
+exiting = event
+help_msg = HELP_MSG

+__init__(node, my_addr, event)
+bottom_toolbar()
+run()
+processCMD(cmd)
+cmd_start_chain()
+cmd_benchmark()
+cmd_send(cmd)
+cmd_tx(cmd)
+cmd_show(cmd)
+cmd_gossip_publickey()
+cmd_gossip_block(cmd)
+cmd_elect()
+cmd_create_block()
+cmd_load(cmd)
+cmd_genTxs(cmd)
+cmd_unhello(cmd)
+cmd_hello(cmd)
+cmd_ping(cmd)
+cmd_list_nodes()
+cmd_get_block(h)
+cmd_send_stop_msg()
+printKeys(addr, dh, pk, sk)

Shell

1

1

1

1

1

0..*

1 1

1

0..*

1
1..*

1

1

1

*

1 1

1

0..*

<<use>>

Figure 6.3: Fix colors, add MPT, shell. This figure shows the class hierarchy and their
dependencies. The main class that holds whole functionality is the Node class. It consists
of instances of other classes, e.g., NodeMeta, Block, . . . The NodeMeta holds information
about a specific Node (public key, balance, . . .). The Block is a data structure that consists
of Block Header and multiple Transactions. The node has one instance of Mempool in which
are stored transactions that are not yet processed in the blockchain.

42

6.5 Toolset
To support the main application we designed two separate applications settings_manager
and tx_gen and installation script. The first mentioned application will create the config.py
file that is used as configuration file for the main application. The file consists of variables,
e.g., block size, receive delay, finality, etc. This design was used due to easy-of-use manners
when propagating values to multiple places in the application.

Settings Manager. The settings_manager can setup these values:

• block size - sets the number of transactions in the block,

• finality - sets the number of blocks that can be overturned in the current chain,

• tau - sets the round-reset timer,

• receive delay - sets the delay when receiving a block (used as network simulation
parameter).

• list of nodes - sets the list of nodes addresses (it is created in sequence, e.g., ip:port,
ip:(port + 1), ip:(port + 2), etc.)

• generate transactions - when set, the main application will generate a specified
number of transactions before it starts.

• a number of benchmark starting transactions - threshold when the benchmark
starts, i.e., the benchmark waits till the mempool size is at least specified size.

• a number of benchmark stopping transactions - threshold when the benchmark
stops, i.e., the benchmark will stop the application and prints the statistics on the
standard output.

43

1 > python ./settings_manager.py --help
2 usage: settings_manager.py [-h] [-starttt STARTTT] [-stoptt STOPTT] [-gmt

GMT] [-bs BS] [-f FIN] [-t TAU] [-rd RD] [-nc IP_START PORT_START
COUNT] [-o FILENAME]

3
4 optional arguments:
5 -h, --help show this help message and exit
6 -starttt STARTTT, --start-tx-treshold STARTTT
7 Set transaction treshold to start benchmark, default

set to 1000
8 -stoptt STOPTT, --stop-tx-treshold STOPTT
9 Set transaction treshold to stop benchmark, default

set to 1000
10 -gmt GMT, --generate-mempool-txs GMT
11 Generate Mempool Txs, default 0
12 -bs BS, --block-size BS
13 Block size, default 100
14 -f FIN, --finality FIN
15 Finality, how much block can be overturn, default 5
16 -t TAU, --tau TAU Sleep time when the node is not the leader, default 60
17 -rd RD, --recv-delay RD
18 Simulate network delay, default set to 0
19 -nc IP_START PORT_START COUNT, --nodes-count IP_START PORT_START COUNT
20 Set IP, PORT and ID of nodes
21 -o FILENAME, --output FILENAME
22 Output file

Figure 6.4: The run-time arguments of the settings manager.

Installation Script. The installation script is used to install all dependencies and setup
the environment in which the main application can be executed. This script is used to set
the testing environment in Metacentrum and for GitLab CI. The CI is set up to run unit
tests and some of the basic use cases, e.g., create user key, create blockchain key, etc.

Transaction Generator. The second support application, tx_gen.py, is used to generate
transactions and send them over the network to the node. This solution can be used to
simulate peers in the network. The application can send each transaction individually or
in bundles, e.g., 100 transactions in one message. The support application can be set to
generate infinite or finite number of transactions.

6.6 Used Libraries
To support the implementation, we used 3rd party libraries that are mentioned bellow:

44

1 > python ./tx_gen.py --help
2 usage: tx_gen.py [-h] [--count COUNT] [--delta DELTA] [--keys KEYS]

[--bundle BUNDLE]
3
4 optional arguments:
5 -h, --help show this help message and exit
6 --count COUNT Create COUNT bundles. Default set to 0
7 --delta DELTA Delay between bundles. Default set to 0.0
8 --keys KEYS Foleder, that holds the keys for signing the transactions.
9 --bundle BUNDLE Size of a transaction bundle. Default set to 100

Figure 6.5: The run-time arguments of the transaction generator.

py-libsecp256k1. To use the signing algorithm ECDSA widely used in blockchains with
parameters secp256k1, we used python library py-libsecp256k11. It is a python interface
for the libsecp256k1 c library.

sortedcontainers. The unprocessed transactions are stored in a mempool. The mempool
is storing them sorted with transaction fee used as a sorting key. The motivation behind
this is that the node wants to include the transactions with the biggest fees into the block,
due the node will receive the fees as a reward. In order to have the transaction sorted all
the time in the mempool, we used sortedcontainers2.

eth-mpt. We used the eth-mpt3 implementation of the Merkle Patricia Tree to store the
global state of the blockchain, as proposed in the protocol.

1https://github.com/ludbb/secp256k1-py
2https://github.com/grantjenks/python-sortedcontainers
3https://github.com/popzxc/merkle-patricia-trie

45

https://github.com/ludbb/secp256k1-py
https://github.com/grantjenks/python-sortedcontainers
https://github.com/popzxc/merkle-patricia-trie

Chapter 7

Analysis of proposed
Proof-of-Stake Protocol

The analysis of the proposed protocol is described in this chapter. We tested the protocol
in three scenarios, to prove that the solution has the desired properties.

7.1 Testing Plan
In order to test the implementation, we implemented a few features to the implementation
itself. First is the stats module that stores information about how many transactions
were received, processed, published. Another value that we store in the stats module is a
block processing time and overall time from start to finish of the execution. We used those
properties to compute overall stats for the evaluation of the protocol.

Another feature that is implemented is the transaction generator. This generator gen-
erates valid transactions with pseudo-random values. We used the NumPy1 library for the
pseudo-random implementation of the number generator. The generator uses a normal
distribution to generate numbers, with the mean value set to 0.2, and standard deviation
to 0.2 as well. The generator supports a feature that can create the transaction in batches
or one by one. A delay can be inserted into sending badges to the node or into the network
processing in the Node implementation. With those delays, we can simulate real-world
network latencies that are not present in the lab itself.

The steps used in each test:

1. Create a virtual machine in OpenStack instance with at least 2GB RAM with oper-
ating system Ubuntu 20.04.

2. Initialize the virtual machine, install all dependencies and libraries.

3. Clone application inside the machine.

4. Generate settings for node using a dedicated tool (mempool threshold for node start,
processed transaction threshold for node stop, number of transactions, that will be
generated into the mempool, network delay, block size, reset timer 𝜏 , node list with
addresses).

1https://numpy.org/

46

https://numpy.org/

5. Generate a public and private key for each node that will be participating in the test
case.

6. One randomly chosen node will generate blockchain private and public keys.

7. The node which generated the blockchain key will share the key with other partici-
pating nodes.

8. One node is in advance marked as stat counter.

9. We start the nodes in headless mode.

10. Depending on the genesis block, each node checks if it is the leader and if so, she will
generate a block. The node automatically gossips the newly created block into the
network. This broadcast will jump-start the chain reaction of the whole chain.

11. When the node achieves the threshold of processed transactions, it will send a stop
message to every node.

12. The one node that has the statistics will print it into a specified file.

7.2 Test Cases
Multiple test cases were created to provide data that will be compared with algorithms that
were described in Chapter 2. The scenarios are:

• Run all nodes on one machine using localhost to share messages, without using
anonymization layer.

• Run all nodes on one machine using localhost to share messages, with anonymization
layer turned on.

• Run all nodes on separate machines using real network to share messages, with
anonymization layer turned on.

The first test case is used to set a baseline for comparison. The second test case is
used to discover the overhead of the anonymization layer and its impact on the node’s
performance. The third test case is to show how the real network affects the protocol itself.

These three test cases are designed to run with different properties to find out if the
protocol exceeds the already implemented state-of-the-art proof-of-stake protocols. The
variable properties in the test cases are block size, reset timer 𝜏 . Thus we picked values
shown in Table 7.1 that will be tested.

7.3 Results
We concluded the experiments with the attributes specified in Table 7.1, and the results
are shown in Figure 7.1 and Figure 7.2. The first run of experiments was run on localhost
without the anonymization layer turned on. The results are drawn with a blue line. The
second run of experiments was the same as the first one, but the anonymization layer
was turned on. The results are shown with the red line in the figures. The last set of
experiments was run on different machines connected with regular network settings. As

47

you can see in the statistics, the throughput was not affected by the anonymization layer or
the network itself. We measured the block processing time, and it was not affected by these
environmental settings. As we can see in Figure 7.2, the throughput peaked around the
value 770 𝑡𝑥/𝑠 with block size 2000 transactions. The block processing time is increasing
exponentially, and it is not feasible to use a block size bigger than 5000. When the block
size is bigger than this threshold, the network latency increases exponentially as well.

101 102 103 104

0

0.5

1

1.5

2

Block size [tx]

Bl
oc

k
pr

oc
es

s
tim

e
[s
ec
]

Processing Time according to Block Size

Localhost without anonymization
Localhost with anonymization

Network run with anonymization

Figure 7.1: This figure shows the connection between block size and the processing time of
the block. As you can see the block processing time is increasing linearly with the block
size.

The Figure 7.3 show us the performance difference between the situation where is the
verifying of the transaction signatures enabled and disabled. We stuck with the verification
turned off because usually, the verification is made off-chain by the validating nodes.

Another experiment was to measure the throughput affected by the size of offline nodes
in the network. We concluded the run with multiple sizes of offline group in the network
(10, 20, 30, 40, 50%). The results can be seen in Figure 7.4.

Block size [𝑡𝑥] Reset timer 𝜏 [𝑠]

10 2
100 20
500 20
1000 200
2000 200
10000 200

Table 7.1: This table shows variables that are used for every test case. When we extend
the block size we must extend the reset timer as well, due to extended block processing
time. Before the experiment starts, we filled the mempool of each node to have sufficient
amount of transactions for processing.

48

101 102 103 104

200

400

600

800

Block size [tx]

Tr
an

sa
ct

io
n

pe
r

Se
co

nd
[t
x
/
s]

Transaction/sec according to Block Size

Localhost without anonymization
Localhost with anonymization

Network run with anonymization

Figure 7.2: This figure shows the throughput of the protocol based on the block size. The
peak is around the block size with 2000 transactions. The peak value is 766 tx/sec.

101 102 103 104

0

200

400

600

800

Block size [tx]

Tr
an

sa
ct

io
n

pe
r

Se
co

nd
[t
x
/
s]

Comparison of verifying the transaction signatures turned on/off

Verifying turned off
Verifying turned on

Figure 7.3: This figure shows the difference in throughput when the verifying of the trans-
action’s signature is turned on and off.

49

0 10 20 30 40 50
50

100

150

200

Offline nodes [%]

Tr
an

sa
ct

io
n

pe
r

Se
co

nd
[t
x
/
s]

Throughput based on how many percent of nodes are not responding

Figure 7.4: This figure shows how an offline group can affect the throughput. As you can
see, the throughput decreases when the number of offline nodes increases in the network.

50

Chapter 8

Conclusion

The goal of this thesis was to implement a blockchain consensus protocol that is secure,
DoS resistant, easily scalable, and with a native implemented anonymization layer.

We learned how blockchain networks work and the difference among the various con-
sensus protocols. We studied and analyzed individual proof-of-stake protocols with their
properties, i.e., throughput, scalability, and security. The main proof-of-stake protocols
that we analyzed are Tendermint, Algorand, and LaKSA. We studied how the anonymiza-
tion networks, name Tor and I2P, work. Next, we figured out how to implement those ideas
into the proposed protocol.

The main part of the thesis was to implement a proof-of-concept of the proposed pro-
tocol by the security@FIT group and conclude experiments upon the implementation. The
experiment part was used to support the idea, but the real-world performance would need
an overhaul. The critical factor is the relatively low throughput in current implementation
due to chosen language and support libraries. We encourage to use a compiled language
instead of interpreted one, e.g., Go.

This thesis can be extended with the implementation of smart contracts, which could
significantly improve the usability of the final protocol. The reason is that the leading
players in the industry do not use proof-of-stake consensus protocol yet, or the smart-
contract language is not usable.

51

Bibliography

[1] Alangot, B., Reijsbergen, D., Venugopalan, S. and Szalachowski, P.
Decentralized lightweight detection of eclipse attacks on bitcoin clients. In:
IEEE. 2020 IEEE International Conference on Blockchain (Blockchain). 2020,
p. 337–342.

[2] Antonopoulos, A. M. and Wood, G. Mastering ethereum: building smart
contracts and dapps. O’reilly Media, 2018.

[3] Apostolaki, M., Marti, G., Müller, J. and Vanbever, L. SABRE: Protecting
bitcoin against routing attacks. ArXiv preprint arXiv:1808.06254. 2018.

[4] Apostolaki, M., Zohar, A. and Vanbever, L. Hijacking bitcoin: Routing attacks
on cryptocurrencies. In: IEEE. 2017 IEEE Symposium on Security and Privacy
(SP). 2017, p. 375–392.

[5] Ariyapperuma, S. and Mitchell, C. J. Security vulnerabilities in DNS and
DNSSEC. In: IEEE. The Second International Conference on Availability, Reliability
and Security (ARES’07). 2007, p. 335–342.

[6] Bano, S., Sonnino, A., Al Bassam, M., Azouvi, S., McCorry, P. et al. SoK:
Consensus in the age of blockchains. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies. 2019, p. 183–198.

[7] Berger, C. and Reiser, H. P. Scaling Byzantine Consensus: A Broad Analysis.
In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for
Distributed Ledgers. New York, NY, USA: Association for Computing Machinery,
2018, p. 13–18. SERIAL’18. DOI: 10.1145/3284764.3284767. ISBN 9781450361101.
Available at: https://doi.org/10.1145/3284764.3284767.

[8] Blockchainwiki. Smart contract. 2017-10-6. Available at:
https://en.bitcoinwiki.org/wiki/Smart_contract.

[9] Bojja Venkatakrishnan, S., Fanti, G. and Viswanath, P. Dandelion:
Redesigning the bitcoin network for anonymity. Proceedings of the ACM on
Measurement and Analysis of Computing Systems. ACM New York, NY, USA. 2017,
vol. 1, no. 1, p. 1–34.

[10] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A. et al. Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies. In:
IEEE. 2015 IEEE symposium on security and privacy. 2015, p. 104–121.

52

https://doi.org/10.1145/3284764.3284767
https://en.bitcoinwiki.org/wiki/Smart_contract

[11] Boverman, A. Timejacking & Bitcoin. 2011-05-21. Available at:
http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html.

[12] Bradner, S. Key words for use in RFCs to Indicate Requirement Levels [Internet
Requests for Comments]. RFC 2119. RFC Editor, march 1997. Available at:
https://www.rfc-editor.org/rfc/rfc2119.txt.

[13] Buchman, E. Tendermint: Byzantine fault tolerance in the age of blockchains. 2016.
Dissertation. University of Guelph, School of Engineering.

[14] Buterin, V. Long-range attacks: The serious problem with adaptive proof of work.
Ethereum Blog, May. 2014.

[15] Buterin, V. Slasher: A punitive proof-of-stake algorithm. Ethereum Blog URL:
https://blog. ethereum. org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm.
2014.

[16] Buterin, V. and Griffith, V. Casper the friendly finality gadget. ArXiv preprint
arXiv:1710.09437. 2017.

[17] Cachin, C. and Poritz, J. A. Secure intrusion-tolerant replication on the Internet.
In: IEEE. Proceedings International Conference on Dependable Systems and
Networks. 2002, p. 167–176.

[18] Castro, M., Druschel, P., Ganesh, A., Rowstron, A. and Wallach, D. S.
Secure routing for structured peer-to-peer overlay networks. ACM SIGOPS
Operating Systems Review. ACM New York, NY, USA. 2002, vol. 36, SI, p. 299–314.

[19] Chaum, D. L. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM. ACM New York, NY, USA. 1981, vol. 24, no. 2,
p. 84–90.

[20] Chohan, U. W. The double spending problem and cryptocurrencies. Available at
SSRN 3090174. 2017.

[21] Cohen, J. D. and Fischer, M. J. A robust and verifiable cryptographically secure
election scheme. Yale University. Department of Computer Science, 1985.

[22] Daian, P., Pass, R. and Shi, E. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Springer. International Conference
on Financial Cryptography and Data Security. 2019, p. 23–41.

[23] David, B., Gaži, P., Kiayias, A. and Russell, A. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Springer. Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. 2018, p. 66–98.

[24] Dexter, S. 1% Shard Attack Explained – Ethereum Sharding (Contd..). 2018-03-11.
Available at: https:
//www.mangoresearch.co/1-shard-attack-explained-ethereum-sharding-contd/.

[25] Dingledine, R., Freedman, M. J. and Molnar, D. The free haven project:
Distributed anonymous storage service. In: Springer. Designing Privacy Enhancing
Technologies. 2001, p. 67–95.

53

http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
https://www.rfc-editor.org/rfc/rfc2119.txt
https://www.mangoresearch.co/1-shard-attack-explained-ethereum-sharding-contd/
https://www.mangoresearch.co/1-shard-attack-explained-ethereum-sharding-contd/

[26] Dziembowski, S., Faust, S., Kolmogorov, V. and Pietrzak, K. Proofs of space.
In:. Springer Verlag, 2015, vol. 9216, p. 585–605. ISBN 9783662479995.

[27] Eskandari, S., Clark, J., Barrera, D. and Stobert, E. A first look at the
usability of bitcoin key management. ArXiv preprint arXiv:1802.04351. 2018.

[28] Franklin, M. A survey of key evolving cryptosystems. International Journal of
Security and Networks. Inderscience Publishers. 2006, vol. 1, 1-2, p. 46–53.

[29] Fromknecht, C., Velicanu, D. and Yakoubov, S. A Decentralized Public Key
Infrastructure with Identity Retention. IACR Cryptol. ePrint Arch. 2014, vol. 2014,
p. 803.

[30] Gaži, P., Kiayias, A. and Russell, A. Stake-bleeding attacks on proof-of-stake
blockchains. In: IEEE. 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT). 2018, p. 85–92.

[31] Gilad, Y., Hemo, R., Micali, S., Vlachos, G. and Zeldovich, N. Algorand:
Scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th
Symposium on Operating Systems Principles. 2017, p. 51–68.

[32] Gray, J. et al. The transaction concept: Virtues and limitations. In: VLDB. 1981,
vol. 81, p. 144–154.

[33] Hanke, T., Movahedi, M. and Williams, D. Dfinity technology overview series,
consensus system. ArXiv preprint arXiv:1805.04548. 2018.

[34] Heilman, E., Kendler, A., Zohar, A. and Goldberg, S. Eclipse attacks on
bitcoin’s peer-to-peer network. In: 24th {USENIX} Security Symposium ({USENIX}
Security 15). 2015, p. 129–144.

[35] Heleness. Blockchain-based notarization platform on Ethereum. 2018. Available at:
https:
//ethresear.ch/t/blockchain-based-notarization-platform-on-ethereum/5326.

[36] Hellebrandt, L., Homoliak, I., Malinka, K. and Hanacek, P. Increasing Trust
in Tor Node List Using Blockchain. In: 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). IEEE, 2019, p. 29–32. ISBN 9781728113289.

[37] Higgins, S. Bitcoin mining pools targeted in wave of ddos attacks. 2015.

[38] Homoliak, I., Venugopalan, S., Reijsbergen, D., Hum, Q., Schumi, R. et al.
The Security Reference Architecture for Blockchains: Towards a Standardized Model
for Studying Vulnerabilities, Threats, and Defenses. IEEE Communications surveys
and tutorials. IEEE. 2020, p. 1–1. ISSN 1553-877X.

[39] Huston, G. and Bush, R. Securing bgp with bgpsec. In: Citeseer. The Internet
Protocol Forum. 2011, vol. 14, no. 2.

[40] Hyperledger. Hyperledger Architecture, Volume 1: Introduction to Hyperledger
Business Blockchain Design Philosophy and Consensus. 2017. Available at:
https://www.hyperledger.org/wp-content/uploads/2017/08/
Hyperledger_Arch_WG_Paper_1_Consensus.pdf.

54

https://ethresear.ch/t/blockchain-based-notarization-platform-on-ethereum/5326
https://ethresear.ch/t/blockchain-based-notarization-platform-on-ethereum/5326
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf

[41] Karakostas, D. and Kiayias, A. Securing Proof-of-Work Ledgers via
Checkpointing. IACR Cryptol. ePrint Arch. 2020, vol. 2020, p. 173.

[42] Karantias, K., Kiayias, A. and Zindros, D. Proof-of-burn. In:
Springer. International Conference on Financial Cryptography and Data Security.
2020, p. 523–540.

[43] Kiayias, A., Russell, A., David, B. and Oliynykov, R. Ouroboros: A provably
secure proof-of-stake blockchain protocol. In: Springer. Annual International
Cryptology Conference. 2017, p. 357–388.

[44] King, S. and Nadal, S. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
Self-published paper, August. 2012, vol. 19, p. 1.

[45] McCorry, P., Shahandashti, S. F. and Hao, F. A smart contract for boardroom
voting with maximum voter privacy. In: Springer. International Conference on
Financial Cryptography and Data Security. 2017, p. 357–375.

[46] Micali, S., Rabin, M. and Vadhan, S. Verifiable random functions. In: IEEE. 40th
annual symposium on foundations of computer science (cat. No. 99CB37039). 1999,
p. 120–130.

[47] MihailoBjelic. On the probability of 1% attack. 2018-11-01. Available at:
https://ethresear.ch/t/on-the-probability-of-1-attack/4009/6.

[48] Miller, A., Juels, A., Shi, E., Parno, B. and Katz, J. Permacoin: Repurposing
bitcoin work for data preservation. In: IEEE. 2014 IEEE Symposium on Security and
Privacy. 2014, p. 475–490.

[49] Miller, A., Xia, Y., Croman, K., Shi, E. and Song, D. The honey badger of BFT
protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 2016, p. 31–42.

[50] MME. Conceptual framework for legal and risk assessment of crypto tokens. 2018.
Available at: https://www.mme.ch/fileadmin/files/documents/
180501_BCP_Framework_for_Assessment_of_Crypto_Tokens_-_Block_2.pdf.

[51] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Manubot, 2019.

[52] National Notary Association, C. What is notarization? 2009. Available at:
https:
//www.nationalnotary.org/knowledge-center/about-notaries/what-is-notarization.

[53] Park, S., Kwon, A., Fuchsbauer, G., Gaži, P., Alwen, J. et al. Spacemint: A
cryptocurrency based on proofs of space. In: Springer. International Conference on
Financial Cryptography and Data Security. 2018, p. 480–499.

[54] Park, S., Pietrzak, K., Alwen, J., Fuchsbauer, G. and Gazi, P. Spacecoin: A
cryptocurrency based on proofs of space. IACR Cryptology ePrint Archive. 2015,
vol. 2015, p. 528.

[55] QuantumMechanic. Proof of stake instead of proof of work. 2011-06-11. Available
at: https://bitcointalk.org/index.php?topic=27787.0.

55

https://ethresear.ch/t/on-the-probability-of-1-attack/4009/6
https://www.mme.ch/fileadmin/files/documents/180501_BCP_Framework_for_Assessment_of_Crypto_Tokens_-_Block_2.pdf
https://www.mme.ch/fileadmin/files/documents/180501_BCP_Framework_for_Assessment_of_Crypto_Tokens_-_Block_2.pdf
https://www.nationalnotary.org/knowledge-center/about-notaries/what-is-notarization
https://www.nationalnotary.org/knowledge-center/about-notaries/what-is-notarization
https://bitcointalk.org/index.php?topic=27787.0

[56] Reijsbergen, D., Szalachowski, P., Ke, J., Li, Z. and Zhou, J. ProPoS: A
Probabilistic Proof-of-Stake Protocol. ArXiv preprint arXiv:2006.01427. 2020.

[57] Schneider, F. B. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR). ACM New York, NY, USA.
1990, vol. 22, no. 4, p. 299–319.

[58] Sgnornic, Lerner, Atheros, Guaka, Aceat64 et al. Weaknesses. 2020-06-27.
Available at:
https://en.bitcoin.it/wiki/Weaknesses#DenialofService.28DoS.29attacks.

[59] Shares, D. Major DDoS Attacks Hit Bitcoin.com. 2017-03-18. Available at:
https://news.bitcoin.com/ddos-attacks-bitcoin-com-uncensored-information/.

[60] Siim, J. Proof-of-stake. In: Research Seminar in Cryptography. 2017.

[61] Sonnino, A., Bano, S., Al Bassam, M. and Danezis, G. Replay attacks and
defenses against cross-shard consensus in sharded distributed ledgers. In: IEEE. 2020
IEEE European Symposium on Security and Privacy (EuroS&P). 2020, p. 294–308.

[62] Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L. et al. Scalable
bias-resistant distributed randomness. In: Ieee. 2017 IEEE Symposium on Security
and Privacy (SP). 2017, p. 444–460.

[63] Syverson, P., Dingledine, R. and Mathewson, N. Tor: The secondgeneration
onion router. In: Usenix Security. 2004, p. 303–320.

[64] Szalachowski, P. (Short Paper) Towards More Reliable Bitcoin Timestamps. In:
IEEE. 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). 2018,
p. 101–104.

[65] Tran, M., Choi, I., Moon, G. J., Vu, A. V. and Kang, M. S. A stealthier
partitioning attack against bitcoin peer-to-peer network. In: IEEE Symposium on
Security and Privacy (S&P). 2020.

[66] Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D. et al. A Survey on
Consensus Mechanisms and Mining Strategy Management in Blockchain Networks.
IEEE Access. IEEE. 2019, vol. 7, no. 99, p. 22328–22370. ISSN 2169-3536.

[67] Wilcox O’Hearn, Z. Names: Decentralized, secure, human-meaningful: Choose
two. Online] https://web. archive. org/web/20011020191610/http://zooko.
com/distnames. html[retrieved 2018-04-21]. 2003.

[68] Wüst, K. and Gervais, A. Ethereum eclipse attacks. ETH Zurich, 2016.

[69] Øverlier, L. Anonymity, Privacy and Hidden Services: Improving
censorship-resistant publishing. 2007. Available at:
http://hdl.handle.net/10852/9783.

56

https://en.bitcoin.it/wiki/Weaknesses#DenialofService.28DoS.29attacks
https://news.bitcoin.com/ddos-attacks-bitcoin-com-uncensored-information/
http://hdl.handle.net/10852/9783

Appendix A

Contents of the included storage
media

On attached compact disk are located source codes of the proof-of-concept protocol (in
directory src), and thesis including LATEXsource code (in directory thesis). The materials
that were used at Excel@FIT are located in directory excel.

• sources – Here you can find zip file with all sources:

– sources_master.zip-̇- zip file with all sources:
∗ Results/ – contains raw results measured by the protocol itself,
∗ chain/ – main implementation of the consensus protocol is located here,
∗ excel/ – materials that were used at Excel@FIT,
∗ img/ – images that are used in README.md,
∗ logs/ – helping directory for storing log files,
∗ metacentrum/ – configuration scripts that are used to install dependecies on

virtual machine and to setup Gitlab CI,
∗ tests/ – contains unit tests,
∗ License – MIT License,
∗ README.md – notes to the project,
∗ config.py – configuration file of the consensus protocol,
∗ main.py – main script,
∗ requirements.txt – python module requirements,
∗ settings_manager.py – helper script to setup config.py,

• thesis – contains pdf and sources of this thesis,

– xtamas01_sources.zip – LATEX sources to compile this thesis,
– xtamas01.pdf – this thesis,

• excel – contains materials used at Excel@FIT:

– slide.svg – Pitch slide used at Excel@FIT,
– logo.svg – Logo slide used at Excel@FIT,

57

Appendix B

Excel@FIT Material

Here are located materials that were used at Excel@FIT. Materials are shown in Figure B.1
and Figure B.2.

58

Figure B.1: Logo used at Excel@FIT

59

Fi
gu

re
B.

2:
Pi

tc
h

sli
de

us
ed

at
Ex

ce
l@

FI
T

60

	Background and Preliminaries
	Preliminaries
	Blockchains and their Principles
	Participants
	Distributed System Properties

	Stacked Architecture of Blockchain
	Network Layer
	Consensus Layer
	RSM Layer
	Application Layer.

	Proof-of-Stake Protocols
	Principles
	Tendermint
	Algorand
	LaKSA
	Casper
	Summary

	Attacks on PoS Protocols
	General Attacks
	Blockchain attacks
	Network Layer Attacks

	Proof-of-Stake Attacks
	Summary

	Anonymization Techniques in Network Traffic
	Tor project
	Onion Routing
	Hidden Services

	I2P Anonymous Network
	Garlic Routing

	Proposed Proof-of-Stake Protocol
	Consensus Protocol
	Design Considerations
	Initialization
	Normal Operation
	Incentives and Rewarding Scheme
	Joining the Protocol
	Churn of the Nodes
	Forks

	Anonymization Layer
	Joining the network
	Sending the messages
	Relaying the messages

	Proof-of-Concept Implementation
	Requirements
	Use Cases
	Structure
	Class Hierarchy
	Toolset
	Used Libraries

	Analysis of proposed Proof-of-Stake Protocol
	Testing Plan
	Test Cases
	Results

	Conclusion
	Bibliography
	Contents of the included storage media
	Excel@FIT Material

