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Abstract
Biometric-based authentication systems are getting broadly adopted in many areas. How-
ever, these systems do not allow participating users to influence the way their data will be
used. Furthermore, the data may leak and can be misused without the users’ knowledge.
In this thesis, we propose a new authentication method which preserves the privacy of an
individual and is based on a generative adversarial network (GAN). Concretely, we suggest
using the GAN for translating images of faces to a visually private domain (e.g., flowers
or shoes). Classifiers, which are used for authentication purposes, are then trained on the
images from the visually private domain. Based on our experiments, the method is robust
against attacks and still provides meaningful utility.

Abstrakt
Systémy založené na biometrickej autentizácii sa stávajú súčasťou nášho každodenného by-
tia. Tieto systémy však nedovoľujú používateľom priamo alebo nepriamo meniť spôsob,
akým sa k ich dátam pristupuje a ako sa s nimi bude zaobchádzať ďalej v budúcnosti.
Dôsledkom tohto môžu vyplynúť riziká spojené s uniknutím identity jedinca. Táto práca
sa zaoberá návrhom systému, ktorý zachováva privátnosť a zároveň umožňuje autentizáciu
na základe biometrických čŕt používateľov, a to za pomoci generatívnej neurónovej siete
(GAN). V práci sa konkrétne uvažuje o tom, že GAN je použitá na transformáciu obrázkov
tvárí napríklad na obrázky kvetov. Autentizačný systém sídliaci na serveri je v konečnom
dôsledku učený rozlišovať používateľov podľa obrázkov kvetov a nie tvárí. Na základe vyko-
naných experimentov môžeme potvrdiť, že navrhovaná metóda je robustná voči útokom,
pričom stále vykazuje kvalitatívne požiadavky kladené na štandardný autentizačný systém.
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Rozšířený abstrakt
Neurónové siete sú v dnešnej dobe používané na rôzne účely. Môžu rozpoznávať objekty,

identifikovať používateľa v rámci systému alebo slúžiť k prevodu reči na text či transformácií
obrázkov z jednej domény do druhej. Pri transformácií obrázkov sa využívajú tzv. gene-
ratívne neurónové siete. Generatívna neurónová sieť (ďalej len GAN) pozostáva z dvoch
neurónových sietí, kde jedna z nich sa nazýva diskriminátor a druhá generátor. Generá-
tor generuje obrázky a diskriminátor určuje, či obrázok, ktorý je aktuálne spracovávaný,
pochádza z generátora alebo zo skutočného datasetu. Generátor sa na základe výstupov
diskriminátora učí, ako generovať také obrázky, aby sa čo najviac podobali tým reálnym.

Štandardný GAN model nie je dostatočne robustný a preto sa do trénovacej procedúry
pridávajú ďalšie loss funkcie, ktoré zohľadňujú napr. cyklickú konzistenciu alebo geomet-
rickú konzistenciu medzi transformovanými obrázkami. V práci sú diskutované moderné
GAN architektúry, ktoré dosahujú skvelé výsledky pri menšom počte trénovacích dát alebo
kratšom čase potrebnom na trénovanie. Konkrétne sa vedie diskusia o CycleGAN, Dual-
GAN, DiscoGAN, GANimorph, GcGAN, StarGAN, GANHopper, SPA-GAN, TraVeLGAN
a U-GAT-IT.

Po predstavení GAN architektúr sa práca ďalej venuje popisu rozdielov medzi centralizo-
vaným a kolaboratívnym učením neurónových sietí. Centralizované učenie zastáva typický
model trénovania, kde neurónová sieť je učená priamo na celom datasete. Problém cen-
tralizovaného učenia spočíva v tom, že ak dataset, obsahujúci privátne dáta používateľov,
unikne alebo sa dostane do rúk neoprávnenej osoby, môže to mať vážne následky. V prí-
pade kolaboratívneho učenia je dataset rozdistribuovaný medzi niekoľkými zariadeniami
a spoločne trénujú jednu alebo viac neurónových sietí.

Väčšina systémov, ktoré sú postavené na kolaboratívnom učení, využíva možnosť parale-
lizácie algoritmu SGD. Naviac, takáto konfigurácia umožňuje trénovať neurónové siete tak,
aby bola zachovaná privátnosť jednotlivých datasetov, nakoľko neexistuje priamy prístup
ku kompletnému datasetu. Na zabezpečenie privátnosti je však stále nutné používať tech-
niky, ktoré dodatočne zabezpečia paralelizáciu algoritmu SGD. To je napríklad vynútená
agregácia dát a pridávanie šumu.

Pridávanie šumu musí byť určitým spôsobom korigované. Diferenciálna privátnosť (ďalej
ako DP) práve pracuje s takýmto šumom. Podstata DP spočíva v tom, že ak objekt
v trénovacej sade neovplyvní výsledok trénovania, potom informácia o ňom ani nemôže byť
zapamätaná. Teda, privátnosť tohto objektu je v rámci trénovacej sady potom zaručená.

V práci je popísaných niekoľko variantov DP. V každom prípade sa na vloženie šumu do
dát používa tzv. randomizačný mechanizmus. Tento mechanizmus ovplyvňuje to, aká bude
pravdepodobnosť toho, že objekt ovplyvní výsledok trénovania. Pravdepodobnosť ďalej
určuje, aký je maximálny únik dát pri celkovom trénovaní, čomu prislúcha budget privát-
nosti. Platí, že čím menší je budget privátnosti, tým horšie sa dá určiť, či sa objekt nachádza
v trénovacej sade a tým viac šumu sa vkladá do dát. Výsledkom príliš malého budget-u
privátnosti je, že neurónová sieť bude mať nízku výkonnosť a stane sa nepoužiteľnou.

Mimo DP existuje ďalšia známa možnosť ochrany, a to homomorfné šifrovanie (HE).
HE umožňuje pracovať so zašifrovanými dátami bez toho, aby sa niekedy museli odšifrovať.
Tento koncept je však mimoriadne náročný na realizáciu a oproti DP nie je tak ľahko
použiteľný pri trénovaní neurónových sietí.

Systémy založené na biometrickej autentizácii často používajú neurónové siete, ktoré
sa učia identifikovať používateľov na základe ich biometrických čŕt. Ak tieto biometrické
dáta uniknú, útočník získa šablónu biometrických čŕt a dokáže spätne určiť tváre všetkých
používateľov systému.



V tejto práci navrhujeme riešenie, ktoré zaručuje privátnosť používateľov aj v prípade
centralizovaného učenia. Konkrétne navrhujeme použiť GAN na transformáciu obrázkov
tvárí napr. na obrázky kvetov alebo topánok. Transformácia prebieha ešte na zariadení
používateľa a server, na ktorom sa nachádza neurónová sieť slúžiaca k autentizácii, má
k dispozícii obrázky len zo zabezpečenej domény. Toto riešenie umožňuje používateľom sa
prihlasovať do systému na základe svojich biometrických čŕt bez toho, aby niekedy boli
skutočne odtajnené.

Zo všetkých predstavených GAN architektúr vyhovoval našej metóde najviac TraVeL-
GAN. TraVeLGAN modely, trénované na datasete tvárí celebrít a kvetov, boli použité pri
finálnom vyhodnocovaní a testovaní navrhnutej metódy. Experimenty ukázali, že v prípade,
že sa použili na identifikáciu používateľov obrázky kvetov, celkové zníženie výkonnosti sys-
tému z pohľadu F-1 skóre neprekročilo 6%.

Ďalej boli v rámci experimentovania uskutočnené dva typy útokov na našu metódu.
Prvý typ útoku pozostával z natrénovania rovnakej GAN architektúry, ale s prehodenými
doménami. Neurónová sieť sa teda učila transformovať obrázky kvetov na obrázky tvárí.
Tento útok nebol v žiadnom z pokusov úspešný, ak útočník chcel zrekonštruovať tvár použí-
vateľa z odchyteného obrázku kvetu. Druhý typ útoku pozostával zo znalosti správnych
párov tvár-kvet, ktoré generuje používateľský GAN model. V tomto type útoku má útočník
k dispozícii všetky informácie okrem privátneho datasetu používateľa (obrázkov jeho tváre).
Útok bol úspešný z hľadiska určenia pohlavia, približnej geometrie tváre a štýlu vlasov.
Avšak skutočná identita používateľa nemohla byť nikdy jasne deklarovaná.

Počas vykonávania druhého útoku sme zistili, že ak útočník pretransformuje rekonštruo-
vanú tvár späť do domény kvetov, tak sa v systéme môže autentizovať ako reálny používateľ
v 45% prípadov. Pridanie Gaussovského šumu do transformovaných obrázkov čiastočne
problém zredukovalo, avšak za cenu presnosti klasifikátora.

Záverom práce zhrňujeme, že ak útočník získa priamy prístup k používateľskému GAN
modelu a odchytí niekoľko obrázkov kvetov identifikujúcich reálnu tvár, ochrana súkromia je
vždy do určitého spektra zaručená. Utočník ale môže z odchytených obrázkov vygenerovať
nové obrázky kvetov a nimi sa úspešne autentizovať na serveri takmer v jednom z dvoch
pokusov.

Aj tento problém sa dá vyriešiť tým, že používateľský GAN model bude v zariadení
zabezpečený a prístup k nemu bude vždy autorizovaný napr. operačným systémom tak,
aby útočník nemohol čítať váhy natrénovanej siete.

V tejto práci sme predstavili koncept použitia GAN architektúr na zachovanie privát-
nosti používateľov pri autentizácii. Do budúcna navrhujeme otestovať robustnosť systému
s 500 a viac používateľmi, nakoľko experimenty prebiehali len v systéme s takmer 100 použí-
vateľmi. Podobne odporúčame ďalej experimentovať s DP, keďže sme počas testov zistili,
že komplexné GAN architektúry sú príliš citlivé na vkladanie akéhokoľvek šumu do procesu
trénovania. Ak sme použili DP v modeloch TraVeLGAN, generované obrázky neboli dosta-
točne rôznorodé, čo je jedna z podmienok nutných na autentizáciu používateľov. Na záver
navrhujeme otestovať novšie GAN architektúry a zlepšiť tak kvalitu pretransformovaných
obrázkov v zabezpečenej doméne.
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Chapter 1

Introduction

Biometric-based authentication systems are being used by millions of people daily. Every
modern smartphone is equipped with a fingerprint sensor or facial recognition hardware.
However, information about fingerprints or faces may end up in an unreliable place, and
users cannot influence that. In general, the users are not able to affect the way biometric
systems manipulate their data.

This opens a question of trust because biometric data are not easily cancelable. Once
a regular password leaks, there is a way to change it. Changing a user’s face when it was
exposed to an attacker is not really feasible.

The privacy of an individual should be always protected unless there is a public interest
in revealing it. In this thesis, there are discussed current limitations and possibilities of how
privacy-preserving authentication and identification systems work. Furthermore, we aim
our attention on defining a novel method for preserving privacy by utilizing a generative
adversarial network (GAN). The GAN is used to translate images of faces to a visually
private domain (e.g., flowers), totally unrelated to the domain of faces. Thus, the privacy
is assured solely by the GAN and the learnt mapping function between the domains.

In the thesis, we assume scenarios, where a user is authenticated by images of flowers.
Such scenarios simulate standard environments where users log in to the biometric-based
systems without revealing their actual identities.

Overall, our contributions are twofold. First, we proposed a method that does not
require any extra transformation to perform a translation to a visually private domain,
as opposed to the existing works. Second, we carried out experiments on multiple target
domains and successfully validated the proposed method on real-world binary classification
tasks, representing a centralized authentication use case.

The thesis is organized as follows: in Chapter 2, there are clarified basic concepts
of GANs. Then, a variety of GAN architectures, used for image-to-image translation,
is compared between each other. Chapter 3 presents two frequently used techniques for
privacy preservation, i.e., differential privacy (DP) and homomorphic encryption (HE). In
Chapter 4, we compare centralized learning with collaborative learning while focusing on
privacy aspects. Chapter 5 contains a description of the proposed method. In Chapter
6, we assess and execute experiments to validate the proposed method. Then, we devise
a plan for attacking our method in Chapter 7. In the end, a conclusion is drawn from the
performed experiments and possible future improvements are discussed.

3



Chapter 2

Generative Adversarial Networks

Generative adversarial networks (GANs) are used in many settings. For instance, one can
employ the GANs in generating realistic pictures of landscapes, animals, or even human
faces.

At the beginning of this chapter, we explain the notion of the standard GAN archi-
tecture. After that, we extend this concept to recent architectures and compare these
approaches in terms of performance. Finally, for an overall comparison of the architectures,
with regards to loss functions or mapping capabilities, see Section 2.3.

2.1 Basic Concepts
A GAN consists of two base models: a generator and a discriminator. The generative
model produces fake samples and the discriminative model strives to determine whether
a sample comes from the real data distribution or the model distribution. Both of these
models are trained simultaneously and they play the two-player minimax game with the
following objective:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + E𝑧∼𝑝𝑧(𝑧)[log(1−𝐷(𝐺(𝑧)))] (2.1)

Where 𝑝𝑧(𝑧) represents input noise variables (referred to as a latent vector), 𝐺(𝑧) describes
a differentiable mapping function to the data space, and 𝐷(𝑥) stands for a function which
outputs a single scalar which defines the probability that 𝑥 comes from the data source
and not from the generator’s distribution. E is the expected value over instances given
by the subscripts. 𝐷 is trained to maximize the probability of assigning correct labels for
examples. On the other hand, 𝐺 is trained to minimize log(1−𝐷(𝐺(𝑧))), because it cannot
affect the term log(𝐷(𝑥)) directly [26].

In Figure 2.1 below, we show how the training of the standard GAN framework looks
like. The discriminator is fed with the real samples and the generated samples. The
output of the discriminator is exploited during the backpropagation. The weights of the
discriminator and generator are then updated correspondingly.

4
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Figure 2.1: A conceptual illustration of the standard GAN [21].

2.2 Architectures
This whole section contains a summary of commonly known GANs and considers only the
networks designed for image-to-image translation tasks. The goal of the image-to-image
translation is to learn the mapping between two or more domains. Once there is discovered
such mapping, we can transfer styles or textures from one domain to another.

2.2.1 CycleGAN

Pictures within a specific domain always have something in common. By capturing the
characteristics and examining how they may be translated into other domains, we solve an
image-to-image translation task. CycleGAN studies those characteristics in an unsupervised
manner by leveraging a pair of GANs.

CycleGAN incorporates two mappings 𝐺𝑋𝑌 : 𝑋 → 𝑌 and 𝐺𝑌 𝑋 : 𝑌 → 𝑋. For each
mapping, there is a separate generator network, accompanied by a discriminator, that focus
on single domain transfer. The first discriminator tries to correctly assess generated samples
from the first generator. While the second discriminator aims to determine whether the
generated samples come from the second generator. CycleGAN has therefore two adversarial
losses which are based on Equation 2.1. For the generator 𝐺𝑋𝑌 and discriminator 𝐷𝑌 , the
equation looks like this:

ℒ𝐺𝐴𝑁 (𝐺𝑋𝑌 , 𝐷𝑌 , 𝑋, 𝑌 ) = E𝑦∼𝑝𝑑𝑎𝑡𝑎𝑦[log𝐷𝑌 (𝑦)] + E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log(1−𝐷𝑌 (𝐺𝑋𝑌 (𝑥)))] (2.2)

The adversarial losses alone cannot assure that the learned mapping between two do-
mains is flawless. A network can still map the same set of inputs to random permutations of
images in the target domain. Due to that, CycleGAN uses cycle-consistency loss to reduce
the space of possible mapping functions. The idea behind the cycle-consistency loss is that
for every single image 𝑥 from a domain 𝑋, the translation should return the original image
𝑥, thus, 𝑥 → 𝐺𝑋𝑌 (𝑥) → 𝐺𝑌 𝑋(𝐺𝑋𝑌 (𝑥)) ≈ 𝑥. The same analogy is applied to an image
𝑦 from a domain 𝑌 . Following these notions, the cycle-consistency loss is formally defined
as:

ℒ𝑐𝑦𝑐(𝐺𝑋𝑌 , 𝐺𝑌 𝑋) = E𝑥∼𝑝𝑑𝑎𝑡𝑎𝑥[‖𝐺𝑌 𝑋(𝐺𝑋𝑌 (𝑥))−𝑥‖1]+E𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)[‖𝐺𝑋𝑌 (𝐺(𝑦))−𝑦‖1] (2.3)
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The distance between the vectors is processed by the L1 norm, also known as the Manhattan
distance. Figure 2.2 exhibits the concept of CycleGAN.

X Y
GYX

GXY

DYDX
x y' x'
GXY GYX

{cycle-consistency
loss

y x' y'
GYX GXY

} cycle-consistency
loss

(a) (b) (c)

Figure 2.2: (a) CycleGAN contains two mapping functions 𝐺𝑋𝑌 , 𝐺𝑌 𝑋 , and two discrimi-
nators 𝐷𝑋 , 𝐷𝑌 . (b) depicts the forward cycle-consistency loss, whereas (c) visualizes the
backward cycle-consistency loss [86].

In the end, CycleGAN aims to solve the main objective by combining the two losses
mentioned above via the two-player minimax game, like so:

𝐺*
𝑋𝑌 , 𝐺

*
𝑌 𝑋 = arg min

𝐺𝑋𝑌 ,𝐺𝑌 𝑋

max
𝐷𝑋 ,𝐷𝑌

ℒ𝐶𝑦𝑐𝑙𝑒𝐺𝐴𝑁 (𝐺𝑋𝑌 , 𝐺𝑌 𝑋 , 𝐷𝑋 , 𝐷𝑌 ) (2.4)

According to the authors of CycleGAN, the training was more stable when they re-
placed the standard GAN loss with LSGAN [48]. So, the generator and discriminator were
eventually trained to minimize:

ℒ𝐿𝑆𝐺𝐴𝑁 (𝐺𝑋𝑌 ) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[(𝐷𝑌 (𝐺𝑋𝑌 (𝑥))− 1)2] (2.5)

ℒ𝐿𝑆𝐺𝐴𝑁 (𝐷𝑌 ) = E𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)[(𝐷𝑌 (𝑦)− 1)2] + E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝐷𝑌 (𝐺𝑋𝑌 (𝑥))
2] (2.6)

In terms of the implemented architecture, both generators consist of three convolutions
and multiple residual blocks. Such an architecture was first proposed by Johnson et al. [37].
The discriminators make use of the PatchGAN architecture [33]. Here, pixels beyond a par-
ticular area are considered to be independent of each other. Thanks to that, the network
pays attention to pixels just at the patch level rather than the full image. Therefore, fea-
tures that are situated more frequently in images are correctly captured. This configuration
allows CycleGAN to better discriminate overlapping image patches as real or fake.

CycleGAN was extensively evaluated on image-to-image translation problems that mainly
consisted of transferring styles between various domains. Such problems included zebra →
horse, winter→ summer scene, or landscape→ Van Gogh painting transfer tasks. In Figure
2.3, we provide results of the translations retrieved from the official landing page1 of the
CycleGAN project [86].

2.2.2 DualGAN

A similar approach was made by the authors of DualGAN [79]. In this case, the loss
functions are supported by Wasserstein GAN (WGAN) [4]. WGAN has proven to improve
the stability of training and generator’s convergence while boosting the quality of generated
images. In the original GAN, there is used the sigmoid cross-entropy loss (a.k.a. logarithmic
loss).

1https://junyanz.github.io/CycleGAN/
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Figure 2.3: Image-to-image translations performed by CycleGAN [86].

In DualGAN, a function that accounts for reconstruction errors is used for training the
generators. Assuming that 𝑋 and 𝑌 are domains where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , 𝜆𝑋 and 𝜆𝑌 are
constant weights that influence the impact of the partial recovery errors, the loss functions
of DualGAN are defined like:

ℒ𝐷𝑌
(𝑋,𝑌 ) = 𝐷𝑌 (𝐺𝑋𝑌 (𝑥))−𝐷𝑌 (𝑥) (2.7)

ℒ𝐷𝑋
(𝑋,𝑌 ) = 𝐷𝑋(𝐺𝑌 𝑋(𝑦))−𝐷𝑋(𝑦) (2.8)

ℒ𝐺(𝑋,𝑌 ) = 𝜆𝑋‖𝑥−𝐺𝑌 𝑋(𝐺𝑋𝑌 (𝑥))‖1 + 𝜆𝑌 ‖𝑦 −𝐺𝑋𝑌 (𝐺𝑌 𝑋(𝑦))‖1
−𝐷𝑌 (𝐺𝑋𝑌 (𝑥))−𝐷𝑋(𝐺𝑌 𝑋(𝑦))

(2.9)

DualGAN establishes an alternative way of achieving the results comparable to those
in CycleGAN. The reconstruction error embedded into the generators’ loss is more or less
identical to the cycle-consistency loss. According to Omdal [57], who evaluated the per-
formance of CycleGAN and DualGAN in the matter of artistic image-to-image translation
tasks, it was possible to train DualGAN for the same number of epochs in a quarter of the
time.

The architecture of DualGAN is designed in the following way. The generators are built
with an equal number of downsampling and upsampling layers. Together, these layers form
a U-shaped net [60]. The discriminators adopt the PatchGAN architecture that was used
in CycleGAN as well.

2.2.3 DiscoGAN

DiscoGAN is another GAN that attempts to solve image-to-image translation problems in
a way akin to CycleGAN or DualGAN. Instead of the cycle-consistency loss, in DiscoGAN,
there is employed reconstruction loss along with standard generator loss. For the reconstruc-
tion loss, one can use various forms of distance functions 𝑑, e.g., cosine distance, hinge-loss,
or mean squared error. For an input image 𝑥 from a domain 𝑋, the reconstruction loss is:
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ℒ𝐶𝑂𝑁𝑆𝑇𝑋
= 𝑑(𝐺𝑌 𝑋(𝐺𝑋𝑌 (𝑥)), 𝑥) (2.10)

In the paper [40], it is stated that the addition of one reconstruction loss does not
prevent the mode collapse problem. Mode collapse occurs when two or more samples from
a domain 𝑋 are mapped into a single sample from a domain 𝑌 . However, DiscoGAN uses
two reconstruction losses. Each loss for a different domain. The total discriminator loss is
a sum of standard GAN losses, like in Equation 2.1. On the other hand, the total generator
loss (Equation 2.11) is a sum of the reconstruction loss and the GAN loss. 𝐿𝐶𝑂𝑁𝑆𝑇𝑋

and
𝐿𝐶𝑂𝑁𝑆𝑇𝑌

are closely related to the partial recovery errors present in Equation 2.9.

ℒ𝐺 = −ℒ𝐺𝐴𝑁𝑌
+ ℒ𝐶𝑂𝑁𝑆𝑇𝑋

− ℒ𝐺𝐴𝑁𝑋
+ ℒ𝐶𝑂𝑁𝑆𝑇𝑌

(2.11)

Each generator feeds its input through an encoder-decoder pair composed of convolution
and transposed convolution layers (also called upsampling layers). The discriminators’
architecture is relatively similar to the encoders used within the generators. The only
difference is that one more convolution layer is added at the end of the network, together
with the Sigmoid activation function. The complexity of the architecture is analogous to
DualGAN and CycleGAN [40].

LDx

LDY

GXY GYX

GYX GXY

DX

DY

LCONSTx

LCONSTY

Figure 2.4: The framework of DiscoGAN [40].

2.2.4 GANimorph

In this section, we briefly describe the GANimorph framework which was invented by
Gokaslan et al. [25]. The rationale behind designing GANimorph came from the fact that
GANs leveraging the cycle-consistency loss and reconstruction loss cope with larger shape
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deformations hardly. Furthermore, patch-based discriminators allow the network to ex-
amine only spatially local content. Due to this, the discriminators reduce the amount of
information that generators should obtain.

To allow the patch-based discriminators to perceive images more as a whole, the authors
of GANimorph use dilated convolutions. For the same number of parameters, the dilated
convolutions increase the generators’ information flow while incorporating image data from
surrounding regions. This is achieved by the expansion of a receptive field (the kernel)
without losing the coverage or resolution [81]. In many machine learning frameworks, the
dilation rate is configurable and indicates how much is the kernel widened.2

Since the discriminators can better determine where the segments belong, the issue of
localizing the regions within the translated images is mitigated. In Figure 2.5, there is
a comparison of outputs of CycleGAN, DiscoGAN, and GANimorph.

Input CycleGAN DiscoGAN GANimorph Input CycleGAN DiscoGAN GANimorph

Figure 2.5: Human-to-anime and anime-to-human transfers [25].

The GANimorph’s final loss function consists of the standard GAN loss, two cyclic
reconstruction losses, and one feature matching loss. All these losses are normalized via
so-called scheduled loss normalization. The cyclic reconstruction losses are represented
by two separately computed losses based on multi-scale structure similarity loss and the
L1 norm. According to Wang et al. [74], the multi-scale structure similarity loss better
preserves features that are more visible to humans and allows the network to cope with
shape changes more effectively. Simply put, it advocates real and fake samples to activate
similar neurons within a single layer in the discriminator. This is achieved by monitoring
the activation potentials during training. The feature matching loss has demonstrated that
it increases the stability of the framework.

2.2.5 GcGAN

The authors of GcGAN introduced a concept of a geometry-consistent constraint into their
framework. Suppose that ̃︀𝑋 and ̃︀𝑌 are domains retrieved from 𝑋 and 𝑌 by applying a given
transformation 𝑓(·). The motivation behind the geometric constraint is that the transfor-
mation between two input images should be always preserved by analogous translators, i.e.,
𝐺𝑋𝑌 and 𝐺 ̃︀𝑋 ̃︀𝑌 . The geometry-consistency may be articulated as 𝑓(𝐺𝑋𝑌 (𝑥)) ≈ 𝐺 ̃︀𝑋 ̃︀𝑌 (𝑓(𝑥))
and 𝑓−1(𝐺 ̃︀𝑋 ̃︀𝑌 (𝑓(𝑥))) ≈ 𝐺𝑋𝑌 (𝑥). The function 𝑓−1(·) is the inverse of 𝑓(·). In GcGAN,
there was either a vertical flipping or 90°clockwise rotation used as the predefined geomet-
ric transformation function 𝑓(·) during the training. The consistency loss has the following
form:

2https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
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ℒ𝑔𝑒𝑜(𝐺𝑋𝑌 , 𝐺 ̃︀𝑋 ̃︀𝑌 , 𝑋, 𝑌 ) = E𝑥∼𝑝𝑋 [‖𝐺𝑋𝑌 − 𝑓−1(𝐺 ̃︀𝑋 ̃︀𝑌 (𝑓(𝑥)))‖1]
+ E𝑥∼𝑝𝑋 [‖𝐺 ̃︀𝑋 ̃︀𝑌 (𝑓(𝑥))− 𝑓(𝐺𝑋𝑌 (𝑥))‖1]

(2.12)

The full objective of GcGAN is a sum of the geometry-consistency loss from Equation
2.12 and the LSGAN losses for 𝐺𝑋𝑌 , 𝐷𝑌 , and 𝐺 ̃︀𝑋 ̃︀𝑌 , 𝐷𝑋 , respectively.

Regarding the implementation details, 𝐺𝑋𝑌 and 𝐺 ̃︀𝑋 ̃︀𝑌 have the same architecture and
share all the parameters. The GcGAN framework follows the configuration of CycleGAN
(using PatchGAN in the discriminators and encoder-decoder layers with residual blocks).
In Figure 2.6, the reader can see how CycleGAN and GcGAN perform on regular image-
to-image translation tasks.

Figure 2.6: A comparison of images generated by CycleGAN and GcGAN. It is obvious that
the images produced by GcGAN seem to be more realistic, yet preserving the transferred
styles [24].

It is essential to mention that GcGAN is a network aimed for one-sided domain mapping.
This means that we cannot use the same GcGAN model for translation tasks such as zebra-
to-horse and vice-versa like it was possible in CycleGAN. Having the cycle-consistency
requirement, both 𝐺𝑋𝑌 and 𝐺𝑌 𝑋 are trained simultaneously. In terms of GcGAN, it is
necessary to train a new model to learn inverse mapping from scratch.

Similarly, the one-sided domain mapping problem was resolved in DistanceGAN by
maintaining the distances between multiple images within domains. DistanceGAN tackles
the mapping problem via distance-consistency loss [8]. Still, GcGAN claims better results,
concerning classification accuracies, than DistanceGAN and CycleGAN by a notable margin
(6%–7%) [24].

2.2.6 StarGAN

All previous frameworks have one thing in common. They learn the mapping between two
domains only. This is a tremendous limitation because if there is a demand for mappings
between three and more domains, a GAN needs to be retrained and built from the very
beginning. StarGAN addresses this limitation by allowing concurrent training on multiple
datasets with different domains.

If we do not consider the fact that StarGAN has just one pair of a generator and
discriminator, the architecture of StarGAN remains relatively unchanged with respect to
CycleGAN. The adjustments were made mainly to the loss functions and the training
strategy. The objective functions to optimize the generator and discriminator are:
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ℒ𝐷 = −ℒ𝑊𝐺𝐴𝑁−𝐺𝑃 + 𝜆𝑐𝑙𝑠ℒ𝑟𝑐𝑙𝑠 (2.13)

ℒ𝐺 = ℒ𝑊𝐺𝐴𝑁−𝐺𝑃 + 𝜆𝑐𝑙𝑠ℒ𝑓𝑐𝑙𝑠 + 𝜆𝑟𝑒𝑐ℒ𝑟𝑒𝑐 (2.14)

Where ℒ𝑊𝐺𝐴𝑁−𝐺𝑃 stands for the improved Wasserstein GAN loss with gradient penalty [27].
ℒ𝑟𝑒𝑐 is the reconstruction loss, same as in Equation 2.3, albeit without the loss connected to
the second generator since the framework has one generator (E𝑥,𝑐,𝑐'[‖𝑥−𝐺𝑋𝑌 (𝐺𝑋𝑌 (𝑥, 𝑐), 𝑐')‖1],
where 𝑐' is the original domain label). ℒ𝑐𝑙𝑠 is domain classification loss. The superscripts
denote whether the loss corresponds to domain classification loss of real or fake images.
The classification is accomplished by an auxiliary classifier3 which is placed on top of the
discriminator. The auxiliary classifier enables the discriminator to control a set of domains.
Finally, the generator’s objective is to minimize the number of correctly classified images
in a particular domain. 𝜆𝑐𝑙𝑠 and 𝜆𝑟𝑒𝑐 are parameters that control the importance of the
computed loss functions.

To learn from multiple datasets, StarGAN incorporates the knowledge of different types
of class labels. The issue is that the label information is known just partially. The complete
information is however needed by the generator during the training. To alleviate such
a problem, a one-hot4 mask vector is used. It allows StarGAN to neglect unspecified labels
and focus on labels that come from a real dataset. When training on 2 datasets, the mask
vector is represented by a concatenated list of 2 class labels [15].

StarGANv2

In 2020, a new version of StarGAN was published. StarGANv2 attempts to resolve the
main issue from which StarGAN suffered. That is, learning a deterministic mapping of
each domain. This did not allow StarGAN to capture the multi-modal nature of real data
distribution since every domain had to be explicitly labelled by a predetermined label.

StarGANv2 uses extra two modules to mitigate the problem mentioned above. First,
the mapping network learns how to convert Gaussian noise into a style code. Second, the
style encoder network studies how to extract the style code from an image. The generator,
therefore, learns to generate synthetic images over various domains by utilizing these style
codes [16].

MetalGAN

A relevant approach was also made by Fontanini et al. [23]. In their framework, called
MetalGAN, they use meta-learning techniques to solve the problem of multi-modal train-
ing. The meta-learning suggests training a system that trains other learning subsystems.
Furthermore, traditional training settings require retraining the model when a new domain
is added to the target outputs. StarGAN and StarGANv2 experience this difficulty as well.
On the contrary, MetalGAN promises to handle this situation by seeing just a few examples
from the new domain (this is referred to as few-shots learning).

The training procedure is as follows: at the beginning, for each meta-iteration, there
is a single task selected. A task is a group of images that belong to one domain. The
network is trained on that single task for a specific number of internal iterations. In the

3An auxiliary classifier network outputs a class label 𝑐 for training data which forces the StarGAN’s
discriminator to acknowledge additional information.

4A one-hot vector is a representation of categorical variables as segregated binary vectors
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Figure 2.7: Images produced by StarGANv2. The GAN was trained on the CelebA-HQ
dataset and the AFHQ dataset [42][16].

next meta-iteration, MetalGAN is trained on a different, but still related task. A final
push is necessary to move the final representation in the optimal direction of the target
task. This is managed by the inference part where the generator and discriminator are
fed with images from new domains. As a result, MetalGAN produces images comparable
to StarGAN (see Figure 2.8). Nevertheless, StarGANv2 has proven to create significantly
better outputs with regards to image quality, as shown in Figure 2.7.

Input MetalGAN StarGAN Input MetalGAN StarGAN Input MetalGAN StarGAN Input MetalGAN StarGAN Input MetalGAN StarGAN

Figure 2.8: Outputs of MetalGAN and StarGAN for the black hair domain [23].

2.2.7 GANHopper

When heterogeneous domains show a significant disparity of shapes, a proper translation
function is expected to be complex and may not be properly learned. We already revealed
the frameworks GANimorph and GcGAN that somehow cope with this problem. Some
frameworks resort to additional latent space translations. For instance, TransGaGa is
a disentangle-and-translate framework that broadens awareness of the geometric properties
within the scene. Instead of directly translating an image into another domain, the image is
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disentangled into the Cartesian product geometry and appearance latent spaces first. After
that, the translation is made based on the geometry and appearance space separately [76].

GANHopper is a framework that adopts the architecture of CycleGAN and does not
rely on latent space translations. Its uniqueness lies in the fact that the output images are
not translated in a single pass. GANHopper enforces gradual intermediate translations.
This can be viewed as a decomposition of the overall translations which have to be made.

In general, it is assumed that a full translation is achieved by a given number of ℎ hops.
If ℎ = 3, then 𝐺(𝐺(𝐺(𝑥))) = 𝑦' for the input image 𝑥, the generator 𝐺, and the synthetic
image 𝑦'.

Regarding the training schema, GANHopper’s loss is a sum of:

• ℒ𝑐𝑦𝑐(𝐺𝑋𝑌 , 𝐺𝑌 𝑋 , ℎ). The total cycle-consistency loss composed of cycle-consistency
losses computed per individual hop.

• ℒ𝐺𝐴𝑁 (𝐺𝑋𝑌 , 𝐺𝑌 𝑋 , 𝐷𝑋 , 𝐷𝑌 , 𝑋, 𝑌, ℎ). The standard GAN loss summed over the de-
fined number of ℎ hops.

• ℒ𝑑𝑜𝑚(𝐺𝑋𝑌 , 𝐺𝑌 𝑋 , 𝐷𝐻 , 𝑋, 𝑌, ℎ). The hybrid loss describes the degree to which a trans-
lated image belongs to one of two domains. In GANHopper, a third discriminator
(the hybrid-discriminator) assesses the correspondence to each domain. Having the
constant ℎ equal to 4, then the result of the first hop should be judged for 𝐺𝑋𝑌 (𝑥),
where 𝑥 ∈ 𝑋, as belonging 25% to the domain 𝑌 .

• ℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝐺𝑋𝑌 , 𝐺𝑌 𝑋 , ℎ). The smoothness loss penalizes the difference between multiple
hops regarding the values of image pixels.

Figure 2.9 displays the quality of generated images compared to CycleGAN, DiscoGAN,
and GANimorph, eventually. The images produced by GANHopper perform fairly better on
the dog-to-cat translation task. Also, the authors of GANHopper stress that the framework
outperforms other baseline models in both quantitative analysis and human evaluation
experiments [45].

Input GANHopper (1-4 hops) 8 hops CycleGAN DiscoGAN GANimorph

Figure 2.9: A comparison of synthetic images created by GANHopper, CycleGAN, Disco-
GAN, and GANimorph [45].

13



2.2.8 SPA-GAN

Image-to-image translation methods need to seek for the areas which have to be trans-
formed. Neither GcGAN nor GANimorph localizes the areas of interest. They use dif-
ferent procedures that often fail when input images contain numerous target instances in
a cluttered background. InstaGAN addresses these issues with grace. However, it requires
pixel-wise annotations to precisely differentiate between the background and instances. For
applications where such information is not available during training, it poses a substantial
limitation [53].

SPA-GAN tries to surpass the problem of InstaGAN. Moreover, it utilizes the attention
mechanism embedded directly in the GAN architecture. The SPA-GAN architecture is
almost the same as the CycleGAN architecture. In addition to that, the discriminators
compute normalized attention maps that are looped back to the generators to help them
focus more on the most distinctive regions.

Suppose 𝐹𝑖 is the 𝑖-th activation map of a discriminator’s layer and 𝐶 indicates the
number of channels. A spatial attention map is characterized by 𝐴𝐷 =

∑︀𝐶
𝑖=1 |𝐹𝑖|. So,

𝐴𝐷 implies the actual effect of the neurons at each spatial location in classifying the input
image.

Every attention map in the discriminator focuses on particular features. Middle layer
attention maps may have higher activations on regions like eyes, while high-level attention
activations can correspond to entire faces. The attention maps are supplied to the generators
via element-wise product, i.e., 𝑥' = 𝐺(𝑥𝑎) = 𝐺(𝐴𝐷𝑋

(𝑥)⊙𝑥), for the input sample 𝑥 retrieved
from the domain 𝑋.

SPA-GAN’s full loss is defined as a sum of two ℒ𝐺𝐴𝑁 losses (Equation 2.1), ℒ𝑐𝑦𝑐 (Equa-
tion 2.3), and ℒ𝑓𝑚 which aims to preserve domain specific features between the translations.

Let 𝐺𝑖 be the 𝑖-th feature map and 𝐶 be the number of these feature maps per a gener-
ator’s layer. Let 𝑦𝑎' be the attended generated sample formed by the generator 𝐺𝑋𝑌 . Then
as well, let 𝑥𝑎' have the similar meaning. The feature map loss is calculated as follows [19]:

ℒ𝑓𝑚(𝐺𝑋𝑌 , 𝐺𝑌 𝑋) =
1

𝐶

𝐶∑︁
𝑖=1

(‖𝐺𝑖
𝑋𝑌 (𝑥𝑎))−𝐺𝑖

𝑋𝑌 (𝑦𝑎')‖1)

+
1

𝐶

𝐶∑︁
𝑖=1

(‖𝐺𝑖
𝑌 𝑋(𝑦𝑎)−𝐺𝑖

𝑌 𝑋(𝑥𝑎')‖1)

(2.15)

Figure 2.10 below shows the efficacy of SPA-GAN. The outputs of SPA-GAN are also
compared to Attention-GAN. Attention-GAN decomposes the generator into two networks
where the first network predicts the regions of interest and the second network transforms an
image from one domain to another. The attention network requires supervised learning [13].
SPA-GAN is a lightweight framework that does not need additional attention networks and
segmentation labels during training.
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Input SPA-GAN Attention-GAN CycleGAN DualGAN

Figure 2.10: A qualitative comparison of SPA-GAN, Attention-GAN, CycleGAN, and
DualGAN [19].

2.2.9 TraVeLGAN

Despite the advances in the area of style transfers, many networks are successful in mapping
local texture but are typically doomed when translation tasks require large shape changes.

TraVeLGAN can better handle mappings between complex and heterogeneous domains.
The framework completely eliminates the need for coupling generator weights or cycle-
consistency. The translation process is tailored by a third network called siamese that
ensures similarity between original and generated images [3].

The authors of TraVeLGAN adopted the concept of a transformation vector between two
points. Similarly to language processing applications where a vector within a given space
dictates how one word should be transformed to another word, here the transformation
vector is used for governing the background colour, size, or shape of an image during the
translation.

The approach described in the TraVeLGAN paper is related to that proposed in Dis-
tanceGAN. In DistanceGAN, pairwise distances are calculated directly on the pixel space.
Eventually, this does not preserve any notion of directionality in the space between images.
Therefore, it is crucial to not rely on pixel space arithmetic.

TraVeLGAN uses three kinds of losses. The standard GAN loss, siamese loss, and
TraVeL loss. Formally, given a generator 𝐺, siamese network 𝑆, distance metric 𝐷𝑖𝑠𝑡, and
𝛿 signifying the minimum distance between the points in the latent space, the TraVeL and
siamese losses are defined in Equations 2.16 and 2.17.

ℒ𝑇𝑟𝑎𝑉 𝑒𝐿 =
∑︁∑︁

𝑖 ̸=𝑗

𝐷𝑖𝑠𝑡(𝑣𝑖𝑗 , 𝑣'𝑖𝑗)

𝑣𝑖𝑗 = 𝑆(𝑥𝑖)− 𝑆(𝑥𝑗)

𝑣'𝑖𝑗 = 𝑆(𝐺(𝑥𝑖))− 𝑆(𝐺(𝑥𝑗))

(2.16)

ℒ𝑆𝑐 =
∑︁∑︁

𝑖 ̸=𝑗

𝑚𝑎𝑥(0, (𝛿 − ‖𝑣𝑖𝑗‖2)) (2.17)

15



𝐺 and 𝑆 networks are jointly trained in the sense that each is trying to minimize ℒ𝑇𝑟𝑎𝑉 𝑒𝐿

in addition to their specific goal. Their final objective terms are:

ℒ𝑆 = ℒ𝑆𝑐 + ℒ𝑇𝑟𝑎𝑉 𝑒𝐿 (2.18)

ℒ𝑆𝑐 = ℒ𝐺𝐴𝑁 + ℒ𝑇𝑟𝑎𝑉 𝑒𝐿 (2.19)

The generator implements the standard U-Net architecture with skip connections. Both
the discriminator and siamese network have the same PatchGAN architecture differing only
at the output layer. The siamese network has the output space of size 1000 while the
discriminator network of size 1.

Figure 2.11: TraVeLGAN trained on images of crosswords and abacus. The learnt map-
ping function allows the framework to properly translate the crosswords into the seconding
domain while still considering semantic changes [3].

2.2.10 U-GAT-IT

GAN frameworks deal with the image-to-image translation problem in various ways. They
often tend to pile up regularization techniques and add more restrictions to the training
process. For instance, UNIT enforces the shared-latent space constraint for the generators
which implies the cycle-consistency constraint. Like in CycleGAN, this method does not
resolve complex shape transfiguration [46]. TransGaGa deals with geometry and appear-
ance without considering the foreground and background of images. SPA-GAN separates
the foreground by leveraging the attention mechanism. Some works utilize instance nor-
malization techniques to normalize irrelevant styles from images, like MUNIT [32]. Such
normalization helps with the recognition performance of transferable regions [54]. U-GAT-
IT combines the attention mechanism with improved adaptive normalization. This makes
U-GAT-IT perform well on different datasets without changing hyperparameters or the
model’s architecture.

In U-GAT-IT, attention maps are obtained by two auxiliary classifiers which are em-
bedded into the generator and discriminator. Thanks to that, the generator can focus
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more on areas that distinguish two domains, while the discriminator can better examine
fake and real images. The classifiers are trained to learn the weights of feature maps from
source domains by using the global max pooling (the maximum of elements across tensor’s
dimensions) and global average pooling (the mean of elements across tensor’s dimensions).
Overall, U-GAT-IT has a specialized CAM loss function for exploiting the information from
the auxiliary classifiers.

U-GAT-IT uses an identity consistency constraint which ensures that the color distri-
butions of input and output images are similar. For a translated image 𝑦' ∈ 𝑌 ', the identity
loss is defined as ℒ𝑖 = E𝑦'∼𝑌 '[‖𝑦'−𝐺𝑋𝑌 (𝑦')‖1].

The adaptive layer-instance normalization (AdaLIN) is applied to the residual decoder
blocks of the generator. It adjusts the management of layer normalization and instance
normalization adaptively based on the input and output domain distributions. The layer
normalization aims for better transformation to the target domain. The instance normal-
ization is capable of preserving properties of the source domain [39].

Below, we attach examples of pictures generated by U-GAT-IT and the GANs that were
introduced previously.

Input CycleGAN UNIT MUNIT U-GAT-IT

Figure 2.12: A visual comparison of the images generated in the selfie-to-anime and anime-
to-selfie tasks [39].
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2.3 Comparison of the Architectures
Tables 2.1 and 2.2 compares the introduced architectures in terms of loss functions, network
architectures, and mapping types. Even though many architectures dispose of the same
architecture, they are not identical. For example, GANimorph uses dilated convolutions
in the discriminators. U-GAT-IT has the additional classifier connected directly to the
encoder followed by the additional instance normalization. For the sake of simplicity, these
details were omitted in the comparison.

Table 2.1: A comparison between the CycleGAN, DualGAN, DiscoGAN, GANimorph, and
GcGAN architectures.

CycleGAN DualGAN DiscoGAN GANimorph GcGAN
Year 2017 2017 2017 2018 2019

Loss
function

LSGAN
+ CCL

WGAN
+ CCL

GAN
+ RL

GAN
+ CRL
+ FL

LSGAN
+ GL

Networkarchitec-ture
(generator

&

discriminator)

ResNet
&

PatchGAN

U-Net
&

PatchGAN

Encoder-
decoder

pair
&

Encoder

ResNet
&

PatchGAN

ResNet
&

PatchGAN

Mapping Two-sided Two-sided Two-sided Two-sided One-sided

Table 2.2: A comparison between the StarGAN, TraVeLGAN, GANHopper, SPA-GAN,
and U-GAT-IT architectures.

StarGAN TraVeLGAN GANHopper SPA-GAN U-GAT-IT
Year 2018 2019 2020 2020 2020

Loss
function

WGAN-GP
+ DCL
+ CCL

GAN
+ TL

+ SML

GAN
+ CCL
+ HL
+ SL

GAN
+ CCL
+ FML

LSGAN
+ CCL
+ CAM

+ IL
Networkarchitec-ture
(generator

&

discriminator)

ResNet
&

PatchGAN

U-Net
&

PatchGAN

ResNet
&

PatchGAN

ResNet
&

PatchGAN

ResNet
+ AdaLIN

&
PatchGAN

Mapping Multi-sided One-sided Two-sided Two-sided Two-sided

The abbreviations for loss functions presented in the tables have the following sig-
nificance: GAN is standard GAN loss, WGAN is Wasserstein GAN loss, WGAN-GP is
Wasserstein GAN loss with gradient penalty, CCL is cycle-consistency loss, RL is recon-
struction error loss, CRL is cyclic reconstruction loss, FL is feature matching loss, DCL is
domain classification loss, TL is TraVeL loss, SML is siamese loss, HL is hybrid loss, SL
is smoothness loss, FML is feature map loss, LSGAN is least squares GAN, CAM is class
activation mapping loss, and finally, IL is identity loss.
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Chapter 3

Privacy Preservation

When it comes to biometric data, they are considered to be extremely sensitive. The
analysis of sensitive data is more and more demanding for various reasons. Storing and
managing biometric data poses serious privacy risks. In this chapter, two famous techniques
for preserving privacy are advertised. Concretely, we explain the ideas behind differential
privacy (DP) and homomorphic encryption (HE).

3.1 Differential Privacy
Differential privacy (DP) allows researchers or analysts to operate with datasets that contain
sensitive data while offering stronger privacy protections. Simply put, differential privacy
ensures that when an item is added or removed from a database, it does not affect a query’s
outcome. This is done by introducing statistical noise to the query’s response. With DP,
the privacy of an individual is protected, yet it does not have a significant impact on the
accuracy of the query’s response.

3.1.1 𝜖-Differential Privacy

Assume two databases 𝐷1 and 𝐷2. Supposing that 𝐷1 differs in at most one element from
𝐷2, then 𝐷1 is an exact subset of 𝐷2 and the database 𝐷2 has only one additional row.
A randomized mechanism ℳ gives 𝜖-DP if for the databases 𝐷1 and 𝐷1, differing at most
in one element, and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ), it satisfies Equation 3.1.

𝑃𝑟[ℳ(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟[ℳ(𝐷2) ∈ 𝑆] (3.1)

Where the probability is taken over the randomness used by the mechanismℳ. For a query
function 𝑓 : 𝒟 → ℛ and a database 𝑋, the privacy mechanism ℳ corresponds to:

ℳ𝐿𝑎𝑝𝑓(𝑋) , 𝑓(𝑋) + (𝐿𝑎𝑝(△𝑓/𝜖)) (3.2)

Here, △𝑓 is the sensitivity of the function 𝑓 and it is equal to 𝑚𝑎𝑥𝐷1,𝐷2‖𝑓(𝐷1)− 𝑓(𝐷2)‖1.
The Laplace mechanism is an essential 𝜖-differentially private algorithm [18].

DP also depends on 𝜖. The parameter 𝜖 in Equation 3.1 is used to quantify the privacy
risk that can occur when releasing (noisy) answers computed on private data. Given a suf-
ficiently low 𝜖, an adversary’s ability to identify an individual is minimal. On the other
hand, the accuracy of the answers decreases by lowering 𝜖 too much.
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One way of determining 𝜖 is to clarify the scenario in which DP will be held. In the
model where two parties share conflicting views about how data will be used, the value
of 𝜖 is the result of a trade-off between these conflicting objectives [30]. In the case of
a face recognition system, a compromise is made between the system’s accuracy and users’
privacy.

𝜖-DP is closed under composition and the 𝜖 parameters of composed mechanisms add
up [87]. This motivates the concept of a privacy budget introduced in Section 3.1.4.

3.1.2 (𝜖, 𝛿)-Differential Privacy

(𝜖, 𝛿)-DP is a relaxation of 𝜖-DP and it is defined in the following equation:

𝑃𝑟[ℳ(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟[ℳ(𝐷2) ∈ 𝑆] + 𝛿 (3.3)

In 𝜖-DP, only a small amount of information about each individual is possible to obtain
because all outputs may occur with a similar probability. The additive term 𝛿 in Equation
3.3 covers two modes in which privacy could fail. In the first mode, a secret becomes com-
pletely exposed with a probability 𝛿. In the second mode, privacy degrades gracefully when
multiple queries are made. In 𝜖-DP, the simultaneous release of randomized mechanisms
ℳ1 and ℳ2 satisfies the basic composition theorem, i.e., (𝜖ℳ1 + 𝜖ℳ2)-DP. However, the
privacy decreases with the probability 𝛿/2 for 𝜖1-DP and 𝛿/4 for 𝜖2-DP in (𝜖, 𝛿)-DP.

The value of 𝛿 is recommended to be less than 1/𝑁 , for a specific number 𝑁 of examples
in the database. The notion behind this is that the notably small value avoids the worst-case
scenario of violating privacy.

For (𝜖, 𝛿)-DP, the Gaussian mechanism is a prototypical mechanism and has the next
significance:

ℳ𝐺𝑎𝑢𝑠𝑠𝑓(𝑋) , 𝑓(𝑋) +𝑁(0, 𝜎2) (3.4)

In Equation 3.4, 𝜎 is the standard deviation of the Normal distribution. The Gaussian
mechanism does not meet 𝜖-DP for any 𝜖 if 𝛿 ̸= 0. Yet, it maintains (𝜖, 𝛿)-DP for all
combinations of 𝜖 < 1 and 𝜎 >

√︀
2𝑙𝑛1.25/𝛿△2𝑓/𝜖. The sensitivity for the query function

𝑓 is defined as △2𝑓 , 𝑚𝑎𝑥𝐷1,𝐷2‖𝑓(𝐷1)−𝑓(𝐷2)‖2. The subscript 2 symbolizes the L2 norm
which is known as the Euclidean norm.

There exist two reasons why researchers lean towards (𝜖, 𝛿)-DP. One is the Gaussian
mechanism. And the second is the application of the advanced composition. The goal of
the advanced composition is to calculate parameters 𝜖' and 𝛿' for 𝑘-mechanisms, where each
mechanism is (𝜖, 𝛿)-differentially private, such that the composition of these mechanisms
satisfies (𝜖', 𝛿')-DP.

For any 𝛿' > 0, the advanced composite mechanism can be expressed as (𝜖', 𝑘𝛿+𝛿')-DP,
where 𝜖' has the following definition:

𝜖' ,
√︀
2𝑘𝑙𝑛(1/𝛿')𝜖+ 𝑘𝜖(𝑒𝜖 − 1) (3.5)

In the Gaussian mechanism, the noise comes from the same distribution as the error
present in the database. Furthermore, the mechanism is closed under addition. The ad-
vanced composition and the Gaussian mechanism do not compose with each other. This
means that when we take the Gaussian mechanism and apply it iteratively multiple times,
we will get the Gaussian mechanism again [51].
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3.1.3 (𝛼, 𝜖)-Rényi Differential Privacy

Rényi DP (RDP) is based on the concept of the Rényi divergence which is related to the
Rényi entropy. RDP is a generalization of 𝜖-DP, but it is conceptually weaker. (∞, 𝜖)-RDP
is basically 𝜖-DP. On the other hand, RDP leads to stronger bounds compared to (𝜖, 𝛿)-DP.

A randomized mechanism ℳ has (𝛼, 𝜖)-RDP if for any of its distribution over two
adjacent databases 𝐷1 and 𝐷2, it holds that [87]:

𝐷𝛼(ℳ(𝐷1)‖ℳ(𝐷2)) ,
1

𝛼− 1
𝑙𝑜𝑔E𝑥∼ℳ(𝐷2)

[︂(︂
𝑝ℳ(𝐷1)

𝑝ℳ(𝐷2)

)︂𝛼]︂
≤ 𝜖 (3.6)

Where 𝐷𝛼 is the Rényi divergence. The optimal value for the order 𝛼 ranges from 1 to +∞.
According to the experiments performed by Mironov in the paper [51], even a restricted
set of values (i.e., 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 8, 16, 32, 64, +∞) preserves the privacy
guarantees.

When accessing the database numerous times via differentially private mechanisms,
RDP promises to preserve privacy on the union of the answers. The composition in RDP
produces more favourable privacy parameters than the advanced composition for (𝜖, 𝛿)-DP.
Simultaneous release of (𝛼, 𝜖1)-RDP and (𝛼, 𝜖2)-RDP is (𝛼, 𝜖1 + 𝜖2)-RDP.

To conclude, RDP fixes the issues of (𝜖, 𝛿)-DP while allowing easy compositions of
heterogeneous mechanisms. RDP also provides a convenient and accurate way of track-
ing cumulative privacy loss because the privacy curves for composed mechanisms add up
easily [51].

3.1.4 Privacy Accounting

A contributor who commits private data to the database needs to be compensated for
the participation. Due to that, an analyst may be able to conduct only a limited study
until a so-called privacy budget spent on the study exceeds. The privacy budget refers to
a maximum privacy leakage allowed for all queries. Thus, the privacy budget relates to 𝜖 in
DP. A privacy accountant implements privacy accounting. Its main task is to track privacy
consumption during the analysis.

In this thesis, we exclusively focus on aspects of DP in deep learning. While training
neural networks, it is inevitable to feed the networks with thousands of representative
examples. Regularization techniques that aim to avoid overfitting can hide the details of
the examples. However, it is still unknown whether the internal representations of the
networks could encode fine details at least for some examples.

An adversary can extract training data via the model inversion attack or membership
inference attack. In the model inversion attack, the adversary tries to deduce the infor-
mation about the data from the prediction scores. This type of attack does not result in
producing actual member’s data nor gaining knowledge about her presence in the data.
The membership inference attack connects to the problem of identifying the presence of the
individual’s data [66].

Models that employ DP during training limit the probability of successful attacks. Abadi
et al. [2] proposed a differentially private stochastic gradient descent algorithm (DPSGD) to
cope with the attacks mentioned earlier. Each gradient in the L2 norm is clipped by a given
threshold value that should be set separately for each layer within a network. The authors
stress that the clipping needs to be done before averaging. In DPSGD, the accountant
accumulates the privacy cost for every access to the training data. The accumulated cost
corresponds to all layers in a trained network and determines if a privacy budget exceeds.
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Measuring the achieved privacy guarantee in deep learning is feasible in many machine
learning frameworks. TensorFlow Privacy1 is a framework that handles the accounting
required for computing a spent privacy budget. For instance, Listing 3.1 illustrates how
TensorFlow Privacy can be used.

1 from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import (
2 DPKerasSGDOptimizer,
3 )
4 from tensorflow_privacy.privacy.analysis.rdp_accountant import (
5 compute_rdp,
6 get_privacy_spent,
7 )
8
9 def compute_epsilon(steps, batch_size, dataset_size, target_delta):

10 orders = [1 + x / 10.0 for x in range(1, 100)]
11 + list(range(12, 64))
12 sampling_probability = batch_size / dataset_size
13 # compute RDP of the Sampled Gaussian mechanism for each order
14 rdp = compute_rdp(sampling_probability, sigma, steps, orders)
15 # compute epsilon given the list of RDP values and the target delta
16 return get_privacy_spent(orders, rdp, target_delta=target_delta)[0]
17
18 optimizer = DPKerasSGDOptimizer(
19 l2_norm_clip=1.0,
20 noise_multiplier=sigma,
21 num_microbatches=batch_size,
22 learning_rate=0.15,
23 )
24
25 # train a simple CNN model on the MNIST dataset with
26 # the optimizer instantiated by the class DPKerasSGDOptimizer
27
28 # the MNIST dataset has 60_000 examples (delta << 1/60_000)
29 delta = 1e-5
30
31 steps = epochs * dataset_size // batch_size
32 epsilon = compute_epsilon(steps, batch_size, dataset_size, delta)
33 print(f"The current epsilon for delta ’{delta}’ is {epsilon}")

Listing 3.1: Computing the expended privacy budget with TensorFlow Privacy by leveraging
the RDP accountant.

GAN architectures require further modification to the existing codebase. GANobfus-
cator utilizes a gradient pruning strategy that improves the stability and scalability of the
framework. In general, GANs are known for the issues related to instability during training.
Incorporating DP in GANs worsens these issues. In GANobfuscator, the model requires
access to a small amount of public data (available in many settings). The pruning bounds
are tuned based on the average gradient norms computed on the public data. Regarding

1https://github.com/tensorflow/privacy/
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privacy, the privacy accountant is updated after each access to private data. Then, the
cumulative privacy loss is measured by the end of the training step and the learning stops
automatically when the privacy budget exceeds [77]. In the end, the concept introduced in
Listing 3.1 therefore remains almost the same.

A contrasting approach was made by Zhang et al. [83]. They proposed a GAN framework
(PPGAN) which preserves privacy by leveraging a mechanism that perturbs the objective
function. In particular, Laplace noise is injected into the coefficients of the objective func-
tions. Thanks to that, a privacy budget is not accumulated in each generator step and
remains unaffected by the cardinality (size) of the training set. The model is reliable and
can generate real-like synthetic data while not disclosing sensitive information.

3.2 Homomorphic Encryption
In standard cryptography, information is encrypted, transmitted, and then decrypted for
further manipulation. Homomorphic encryption (HE) is a form of encryption that supports
computations on encrypted data without decrypting them first. Therefore, it is not required
to possess a secret key to execute computations on the receiver’s side.

3.2.1 Basic Concepts

A homomorphism is a structure-preserving map between two groups. Let’s assume two
groups (𝐺, ·) and (𝐻, *). The structure-preserving map between them is defined as 𝑚 :
(𝐺, ·)→ (𝐻, *). The map is additively homomorphic if we consider addition operations and
multiplicatively homomorphic if we consider multiplication operations. For an encryption
function 𝐸 and a set of plaintexts 𝑃 , a scheme is homomorphic when it satisfies:

∀𝑝1, 𝑝2 ∈ 𝑃 : 𝐸(𝑝1 · 𝑝2)← 𝐸(𝑝1) * 𝐸(𝑝2) (3.7)

Where← means that the right part can be directly computed without intermediate decryp-
tion [22]. Figure 3.1 demonstrates simple operations performed on different objects with
regards to HE.

There exist three types of HE: partially HE (PHE), somewhat HE (SHE), and fully HE
(FHE). In PHE, only one operation can be executed on encrypted data. The unpadded
RSA cryptosystem is multiplicatively homomorphic respecting PHE. Executing more than
one operation, but in a limited fashion, is allowed in SHE. FHE can compute any function
without limitations. The only advantage of PHE and SHE over FHE is that these HE
techniques are more efficient in their processes [56].

The standardized FHE is based on three models of computations. The models rep-
resent boolean circuits, modular (exact) arithmetic, and approximate number arithmetic.
The boolean circuits model operates with encrypted bits. The modular arithmetic ap-
proach evaluates arithmetic circuits for values encrypted by modulo an integer 𝑖. Finally,
the approximate number arithmetic computation produces almost accurate results. This
technique is suited for a fast polynomial approximation and floating-point calculations [75].

3.2.2 Machine Learning Usage

Homomorphic methods may be applied for privacy-preserving deep learning as well. Since
only certain mathematical operations, like addition and multiplication, are homomorphic,
the advanced encryption standard (AES) cannot be used. Instead, discrete convolutions
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encrypt(x) = 2x decrypt(x) = x/2

  6 + 10    =      16

   3 + 5     =       8

ciphertext

 plaintext

encrypt(x) = x >> 2 decrypt(x) = x << 2

  JGNNQ . YQTNF    =   JGNNQYQTNF
ciphertext

 plaintext
  HELLO . WORLD    =   HELLOWORLD

Figure 3.1: A demonstration of HE. On the left, the addition of two unencrypted integers
yields the same output as the decrypted addition of two encrypted values. On the right,
a concatenation of two words is performed. Following the analogy from the example on the
left, the operation results in the same value after decryption.

can be computed using FHE because the convolutions are expressed as polynomials. After
training, the kernel weights for every convolution layer may be encrypted. The computation
is simple and relatively stable for mean pooling layers. Fully connected layers are described
by polynomial functions and therefore can be evaluated using FHE too.

The activation layers introduce non-linearity to the model. In terms of activation layers,
we need to select their homomorphic alternatives properly. For instance, CryptoNets,2
which demonstrates the use of neural networks over encrypted data by leveraging SEAL,3
replaces ReLU with the square activation function, i.e., 𝑓(𝑥) = 𝑥2. However, the authors of
CryptoNets stress that networks deeper than ten layers may experience difficulties because
the square activation function can yield unstable behaviour during the backpropagation.
Following the CryptoNets’ solution, Chabane et al. [11] incorporate a low-degree polynomial
approximation of ReLU together with batch normalization.

Yet, the usage of HE in machine learning is still problematic. Noise is associated with
each conversion from plaintext to ciphertext. This noise continues to expand after applying
homomorphic operations. Uncontrollable accumulation of the noise leads to indecipherable
ciphertext. To deal with this issue, one can use a bootstrappable SHE which decrypts and
re-encrypts noisy ciphertext. The decryption algorithm is fed with the encrypted version of
the decryption key. Such a procedure has shown that the new ciphertext contained less noise
and was as secure as the original ciphertext. Briefly, the bootstrapping homomorphically
refreshes ciphertext [56].

Although the approach mentioned in the previous paragraph (also known as the Gentry’s
approach, where an FHE scheme can be built from a SHE scheme) seems to be an ultimate
solution to the noise problem, its underlying implementation is impractical for real-world
deployment because of slow run times. The current generation of HE systems continues to
increase the overall performance. Many libraries which employ specific schemes are now

2https://github.com/microsoft/CryptoNets
3https://github.com/Microsoft/SEAL
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publicly available. Some of them lack bootstrapping and therefore cannot be considered as
FHE, e.g., SEAL.

TF Encrypted4 is a framework for machine learning. It enables developers to design
and train models over encrypted data while taking advantage of the TensorFlow API.
Similarly, TF SEAL5 creates a bridge between TensorFlow and SEAL. The frameworks are
still considered to be in the Beta stage and demand more attention from the core developers.
The main disadvantage of these frameworks is that they do not support the newer versions
of TensorFlow 2.0.

3.3 Protecting Biometric Data
Biometric technology has proven to be more beneficial than standard authentication and
identification systems built upon passwords, keys, tokens, or access codes. The biggest issue
of biometric-based systems is that nothing stops an attacker from making replay attacks
once she obtains biometric templates.

In previous sections, we gave the reader a short introduction to DP and HE. Both DP
and HE provide privacy guarantees. While DP is a system that allows sharing knowledge
about a dataset without disclosing information of a single individual, HE operates merely
on encrypted data and so protects the privacy of each user. These methods may eliminate
possible attacks when it comes to biometric data.

In the upcoming two sections, a couple of works that try to resolve the problem of
securing biometric data are presented.

Differential Privacy

In machine learning, the goal of DP is to give privacy protection for the training dataset.
Most of the defence mechanisms are arranged against membership inference attacks. In
deep learning models, DP can be applied to these three locations [84]:

• Input layers. Where synthetic data are generated from sensitive data.

• Hidden layers. Where noise is injected into gradients (like in GANobfuscator).

• Output layers. Where an objective function is perturbed (like in the work [83]).

Mao et al. [49] split a neural network into two successive layers and deployed these two
partitions at different locations. The first (user) part ensures (𝜖, 𝛿)-DP. The output of
the user network activations is passed to the second part placed on the edge server. Such
a scheme was tested to be accurate and satisfactory in terms of face recognition. Chamikara
et al. [12] proposed the method named PEEP (Privacy using EigEnface6 Perturbation) that
applies perturbations on input data. As a result, the properties of local DP alleviate privacy
leaks that could occur. The said two works are easy to implement and may be deployed on
resource-constrained devices.

Figure 3.2 depicts face images produced by GANobfuscator. The quality of the gen-
erated images is close to the images generated by the regular WGAN. The authors of

4https://github.com/tf-encrypted/tf-encrypted
5https://github.com/tf-encrypted/tf-seal
6Eigenface utilizes the principal component analysis to represent the low-dimensional version of an image.

It acknowledges a predefined number of the largest eigenvectors as the principal axes.
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GANobfuscator also executed the inference attack on the trained model. The attacker was
not able to accurately infer the distribution of the target models when the privacy budget
was small. However, when the privacy budget was too low, the overall quality started to
worsen. This confirms that there is always a trade-off between utility and the privacy level
in methods that utilize DP [77]. Furthermore, Bagdasaryan et al. [6] pointed out that once
an original non-private model exhibits lower accuracy for underrepresented and complex
classes, this gap is even bigger in the corresponding private model. Thus, the underrep-
resented classes’ size, larger gradients computed during the backpropagation, and applied
final noise have a serious impact on model accuracy.

(a) (b) (c)

Figure 3.2: Images generated by GANobfuscator. The following DP configuration was used:
(a) 𝜖 = 8, 𝛿 = 10−5; (b) 𝜖 = 4, 𝛿 = 10−5; (b) 𝜖 = 2, 𝛿 = 10−5 [77].

In the work [69], a privacy-aware virtual reality interface that utilizes DP was proposed.
The method prevents user re-identification and protects soft biometric traits, i.e., eye move-
ments. Likewise, a DP privacy-preserving framework for soft biometric-based systems was
designed by Sadhya and Singh [61]. The framework preserves the privacy of traits such as
age or gender while retaining the original accuracy rates for the recognition. The results
were evaluated in a multi-modal environment where images of fingerprints and faces were
used as primary biometric characteristics.

By the end of this section, we underline that the injected statistical noise in DP often
disrupts the patterns required for recognition purposes. Therefore, it is not common to
have standalone systems which administer fingerprints solely. HE is more superior in this
area.

Homomorphic Encryption

Biometric data cannot be reset like passwords and PINs. This kind of data should not be
exposed to a third party. One solution is to encrypt the data before releasing them to the
cloud. Then, specific operations can be carried out using the ciphertext by leveraging HE.
Salem et al. [62] adopted transfer learning and HE which allowed them to verify features
of iris and fingerprint inputs securely. They showed that combining the features made the
system more rigorous as they achieved 95.47% accuracy on the test data. Similarly, Song
et al. [68] implemented a system that is partially powered by SEAL and follows FHE. Here,
encrypted iris templates are sent to the cloud server during the registration phase. When
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a user tries to authenticate herself, the server performs the identification under the iris
ciphertext and calculates a resulting authentication code. The user decrypts the code with
the secret key and sends it back to the cloud server, where the final authentication is given.
The scheme is shown in Figure 3.3.

Figure 3.3: A client/server architecture arranged by Song et al. [68].

The most significant drawback of homomorphic encryption is the long execution time.
By executing an algorithm in parallel, it is possible to mitigate such an issue. The parallel
execution techniques for computing the Euclidean distance were applied in the work made
by Catak et al. [10]. The number of parallel computations is driven by the number of
available CPU cores. The solution was successfully tested on fingerprint data. The authors
advocate the usage of the face and iris templates in the future.

In the previous works, only biometric data were encrypted. One could want more
things to be masked. The topology of a neural network and its weights may be hidden
too. To achieve this, Izabachène et al. [35] suggest replacing a classic feed-forward neural
network by a Hopfield network.7 The Hopfield neural network is better adapted to FHE.
The framework recognizes faces with extraordinary accuracy in less than 0.6 seconds for
fully masked and fully homomorphic classification. This is an outstanding performance in
comparison to the past works.

7https://www.sciencedirect.com/topics/computer-science/hopfield-network
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Chapter 4

Privacy Aspects of Machine
Learning

All the frameworks introduced in the preceding chapters were applied in a setting where
a single model is trained on a centralized dataset. However, there is also an option to incline
towards techniques that do not require users to share their datasets. Such techniques take
advantage of so-called collaborative learning, where training data does not leave users’
devices.

In this chapter, we explore collaborative learning and compare it to centralized learn-
ing. Since both methods have their advantages and disadvantages, we also compare their
performance and scalability.

4.1 Centralized Learning
Centralized learning refers to a usual way of machine learning where a neural network
has access to a whole dataset. But, a collection of photos, speech, or videos gathered
from multiple individuals poses tremendous privacy risks. The users from whom the data
were collected can neither control how the data will be used nor delete them. Another
problem presents sensitive information, such as licence plates, sounds of other people, and
ambient noises that could be captured accidentally. Furthermore, in many domains related
to medicine, data sharing is not permitted by law. Researchers are allowed to perform deep
learning only on datasets belonging to their institutions because of that. This can result in
an overfitted model that has reduced utility on other inputs [65].

Almost every mentioned issue may be resolved via DP. With DP, it is possible to syn-
thesize input data before dispatching them to the insecure environment. In particular, this
method would require training another model that generates noisy data while preserving
the desired utility. Frameworks like GANobfuscator or PPGAN would be needed to be
dispatched on users’ devices and trained separately from scratch, which could often be
unfeasible within a given time. On the contrary, all the issues can be resolved using HE.
Nevertheless, HE calls for extensive refactorization of existing systems. Moreover, the high
computing complexity is still an open problem even though the efficiency of HE schemes
is continuously improving. Also, the length of ciphertext and computing complexity grows
quickly with the growth of security strength in ordinary HE schemes. Only a few HE
schemes are legitimately secure, verifiable, and thus practicable [31].
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In centralized learning, privacy can be assured by combining the outputs of numerous
submodels which are processed by another model afterwards. Assuming that an ensemble
of teacher models trains on disjoint subsets of sensitive data and a student model attempts
to mimic the ensemble based on the ensemble’s aggregated outputs, privacy is ensured by
the fact that the student does not learn the details characterizing the training data. In
the end, training data is protected from an adversary even when she observes the student’s
internals.

Intuitively, the student model seems to provide reasonable privacy when trained without
direct access to the training data. However, this may not suffice because even a single data
point can have a negative impact on the privacy of machine learning models. Papernot
et al. considered this problem and proposed the strengthened version of the teacher-user
strategy. The solution is called Private Aggregation of Teacher Ensembles (PATE) [58].
See Figure 4.1 for an overview of PATE.

Figure 4.1: A workflow of PATE. The ensemble of teachers is trained on disjoint subsets
of the sensitive data. The student model is trained on the ensemble’s outputs that are
associated with corresponding public data [58].

The aggregation is the part that employs DP in PATE. If an ensemble’s task is to assign
labels to input data, the aggregated output should not be solely affected by the prediction
of one teacher. Adding random noise to the overall decision introduces ambiguity. The
noise ensures that the assigned labels will be chosen randomly when the ensemble receives
an equal number of votes from the teacher models. On the other hand, adding the noise to
the vote counts will not change the final prediction when the label receives the most votes.

A framework consisting purely of an ensemble has two limitations. Predictions made
by the aggregation increases the spent privacy budget. And the ensemble itself cannot be
published because an adversary would easily extract the internal parameters. Due to that,
the student model is the final product of PATE. It may respond to any query from end-
users without jeopardizing the privacy because the knowledge acquired by the ensemble is
transferred in a privacy-preserving manner.

Papernot et al. improved the original PATE mechanism by leveraging new techniques
that are more selective and add less noise to the aggregated teachers’ predictions. During
the evaluation, the mechanisms performed better than the original PATE [59]. Moreover,
the improved PATE mechanism was utilized in the GAN framework named PATE-GAN,
which guarantees privacy for synthetic data that are based on real data [38].

Since teacher models are always trained independently, this might be useful in scenarios
where datasets are owned by a group of people who do not want to share sensitive infor-
mation but still wish to contribute to the learning process. Such scenarios are evaluated in
Section 4.2.
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4.2 Collaborative Learning
The main goal of collaborative learning (also known as federated learning) is to build
machine learning models trained on datasets distributed across multiple devices. Such
a configuration focuses on preventing data leakage. However, in centralized learning, only
the service provider can violate users’ privacy. In collaborative learning, any user may
intentionally compromise other users.

In this thesis, we pay attention exclusively to horizontal federated learning. Horizon-
tal federated learning follows the scenarios where datasets share the same feature space
but different space in samples. For instance, two regional banks could have distinct users
concerning the regions. However, their business is closely related. Typically, in horizon-
tal federated learning, we assume honest participants and an honest-but-curious central
server [78]. Later in this section, we address settings in which the participants are honest-
but-curious too.

4.2.1 Deep Neural Networks

To handle the aforesaid privacy issues in deep learning, Shokri and Shmatikov designed
a system that allows multiple parties to learn local neural network models jointly. They
exploited the fact that stochastic gradient descent (SGD) can be parallelized and executed
asynchronously.

Figure 4.2: Architecture of the system designed by Shokri and Shmatikov. In the picture,
there is shown a configuration where parameters are uploaded to one trusted server. The
architecture itself supports direct exchange of parameters between parties as well [65].
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Figure 4.2 displays how the proposed system works. Enrolled parties train their local
models concurrently and independently while selectively sharing some of the model pa-
rameters, namely gradients. The parameter sharing approach enables the parties to benefit
from each other because the parameters obtained from different users avoid the local models
being stuck in local minima. The shared parameters are summed before they are applied
in local models. Furthermore, the authors utilize DP to ensure that parameter updates do
not leak too much information [65].

Although DP provides protection, it is crucial to use it properly. Hitaj et al. made an
excellent research [29] on investigating the drawbacks of the collaborative learning system
designed by Shokri and Shmatikov. In this system, the level of granularity was not defined
correctly. DP was applied to the parameters immediately and it was not robust enough
against active adversaries.

The adversary developed by Hitaj et al. pretends to be an honest participant, but in
the background, it manipulates the parameters which genuine participants share. Since all
nodes need to agree on a common learning objective in advance, the adversary has extra
knowledge of the model’s structure and other participants’ data labels. The adversary can
then influence the learning process which results in more leaked data from the genuine
participants. In Listing 4.1, there is a pseudo-code illustrating how the adversary’s training
looks.

1 for e in epochs do
2 DOWNLOAD parameters from the server
3 REPLACE respective local parameters with the newly downloaded ones
4 CREATE a replica of a local model that will represent
5 a discriminator 𝐷 within the GAN framework
6 RUN a generator 𝐺 on 𝐷 targeting an unknown class 𝑎
7 UPDATE the 𝐺 parameters according to the answers from 𝐷
8 ASSIGN a label 𝑏 to the generated samples of 𝑎
9 MERGE the generated data with the local dataset

10 RUN SGD on the local dataset and update the local model 𝐷
11 COMPUTE the gradient vectors and UPLOAD them to the server
12 end for
13 return a GAN capable of generating prototypical examples of the class 𝑎

Listing 4.1: The adversary training adopted by Hitaj et al. [29].

User or device-level DP would be efficient against the GAN-based attack devised earlier.
Regarding the user or device-level DP, it is necessary to have a curator that aggregates and
randomly selects a group of participants who train the global model. Selected nodes train
their local models by leveraging DPSGD and dispatch the corresponding parameters back
to the curator. A malicious participant cannot extract information about other participants
since it is unclear who has participated in a single training round [44]. On the other hand,
the authors of the paper [73] were able to recover data even when the learning scheme used
the user-level DP. The proposed framework mGAN-AI resolves many issues that the GAN
framework designed by Hitaj et al. had. Their attack could be easily detectable because
of the significant adversarial influence on the learning process and it could infer only class-
wised representatives which are generic samples identifying class properties rather than the
exact samples of users.
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4.2.2 Generative Adversarial Networks

In the work [71], Triastcyn and Faltings introduced FedGP, a collaborative training model in
which participants cooperate to train GANs on their devices. The generators aim to replace
real data with artificial data while producing samples from the cross-user distribution.

The result of the traditional collaborative learning is a single trained model which does
not provide much flexibility when requirements change. Moreover, further aggregations
from different sources are considered to be troublesome when trying to combine multiple
federated models. The approach made in FedGP allows releasing entire datasets. This was
not feasible before, and it has many advantages compared to the model release. FedGP
uses the FedAvg algorithm, which is a generalization of FedSGD.1 Listing 4.2 demonstrates
the idea behind the FedAvg algorithm.

1 INITIALIZE models on every node randomly
2 for t in training steps do
3 run Server in parallel
4 SELECT a random subset 𝑆 of 𝑃 participants
5 SEND current weights 𝑤𝑡 to 𝑆
6 RECEIVE updated weights 𝑤𝑡+1 from 𝑆
7 AGGREGATE the updated weights 𝑤𝑡+1 as 1

𝑃

∑︀
𝑠∈𝑆 𝑤𝑡+1

𝑠

8 UPDATE 𝑤𝑡 with the aggregated weights
9 end parallel

10 run Node in parallel
11 DOWNLOAD the weights 𝑤𝑡

12 UPDATE the parameters for 𝐸 epochs with a given learning rate
13 SEND 𝑤𝑡+1 back to the server
14 end parallel
15 end for

Listing 4.2: The FedAvg algorithm designed by McMahan et al. [50].

Concretely, the training process in FedGP consists of communication rounds where
selected nodes update their respective models in each round. At the beginning of the
round, the server supplies the updated generator to nodes. Discriminators remain private
and are not shared between the nodes or the server.

During the evaluation of FedGP, the authors studied the accuracy of the proposed
method in two settings: with independent and identically distributed (i.i.d.) data and with
non-i.i.d. data. They noticed that non-i.d.d. was beneficial for FedGP. Likely, because the
discriminators are more easily trained with less diverse data. Jeong et al. [36] inspected
the behaviour of non-i.i.d. data and they developed a federated augmentation method that
empowered nodes to reproduce all samples across the infrastructure locally. As a result,
the final synthetic dataset should be i.i.d. This might be convenient in some scenarios.

The privacy guarantee of FedGP is not as strong as (𝜖, 𝛿)-DP. In FedGP, there is used
differential average-case privacy. The gained protection proved to be sufficient against pas-
sive adversaries, but the differential average-case privacy is still not accepted by the privacy
community [5]. In comparison, Triastcyn and Faltings utilized the notion of Bayesian DP
(BDP) in their subsequent work [72]. The method provides user-level privacy and datasets

1FedSGD corresponds to the SGD algorithm applied in the federated setting. On the server, gradients
are averaged proportionally to the number of training samples on nodes and used to make one gradient
descent step.
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of individuals are protected from the central server and other participating users. BDP
allows non-uniform failure probability for all data points, while the standard DP has just
uniform probability. Thanks to that, DP guarantees hold for out-of-distribution samples
(e.g., for data points that are generally hard to hide). BDP enabled the GANs to generate
data of higher fidelity. The experiments showed that the generated data could be used for
both labelling and training. The models which were trained on the synthetic data achieved
remarkable accuracy compared to prior state-of-the-art methods. Also, switching from real
to synthetic data did not deteriorate the accuracy of the models model significantly.

4.2.3 Problems in Collaborative Learning

Despite the recent progress, collaborative learning still faces many challenges. The learning
environment is not always as hospitable as anticipated. The following problems need to be
addressed by researchers [43]:

• Expensive communication. A serious bottleneck in federated learning is communi-
cation. In general, it is required to implement communication-efficient methods that
iteratively send small amounts of data through the network. For example, the feder-
ated augmentation method proposed in the paper [36] also aims for smaller commu-
nication overhead. However, implementing such a method seems unrealistic because
sending local data to the server little by little violates the key privacy assumption of
federated learning.

• Systems heterogeneity. Every participant within a federated network may have
different computational and communication capabilities. Here, network connectivity,
variability in hardware, and system-related constraints can negatively impact the
learning process. Therefore, the developers of federated networks need to take care
of heterogeneous hardware and design robust systems that are fault tolerant (e.g., in
cases where a few participants drop out during training iteration).

• Statistical heterogeneity. Data points across devices may vary significantly. In
a distributed setting, the basic assumption of i.i.d. data is therefore often violated.
The artificial augmentation of local datasets alleviates this problem. Having datasets
of faces, it is possible to utilize the GAN frameworks, such as StarGANv2, to augment
the datasets.

• Privacy concerns. Finally, the idea behind collaborative learning is to protect the
sensitive data of individuals. Current methods aim to enhance privacy by employing
secure multiparty computation (SMC),2 HE, or DP. This all comes at the cost of
system efficiency or model performance.

4.2.4 Attacks and Defensive Measures

In centralized learning, only the server is treated as an unsafe spot. Standard configurations
in collaborative learning pose threats from both a dishonest server and honest-but-curious
participants. In this section, we provide an overview of attacks and defensive measures in
collaborative learning. The presented information is taken from the paper [20].

2In SMC, multiple parties cooperatively compute a function over their inputs while keeping those inputs
private.
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An adversary has two main goals when attacking a model: to extract private data from
victims and to force the model to behave differently than intended. The abilities to regulate
participating clients, to differentiate the model updates before the aggregation, to shape
the data on which the clients train their models, to manipulate gradient updates, or to
influence the impact of clients’ respective models during the aggregation are all considered
to be exploitable points in federated learning. Attacks performed by the adversary can be
partitioned into specific types with respect to these abilities.

Sample Reconstruction Attacks

The usage of ReLU activation functions on each layer enables an adversary to compute
what relation has the input to a given loss at the output. This is done via a mathematical
framework that assumes complete knowledge of the system. The input-output relation is
described by several polynomials, which are used to determine training samples consistently
with the loss function. However, the application of this white-box attack is limited to linear
models which incorporate only the ReLU activation functions.

Another attack aims for gradients calculated within the first dense layer that may reveal
more information about the training data. The gradients themselves are accumulated in
a neuron and linearly scaled to the activation functions. When a model is trained on a single
sample, the sample is going to be fully reconstructed by applying this attack.

Deep Leakage from Gradients (DLG) is a type of attack where an adversary tries to
retrieve training samples by iteratively optimizing the inputs that produce correct gradients
in a client’s model.

Information Inference Attacks

The model inversion attack (MIA) is built on the assumption that a trained linear model is
available in a black-box setting. Here, an adversary guesses the input training data based
on the output of the model.

One can also perform model inference attacks by utilizing GANs. The multitask GAN
for Auxiliary Identification (mGAN-AI) attack aims to reconstruct training samples from
clients’ model updates and an auxiliary dataset. The generator produces fake input images
from the model updates, and the discriminator strives to figure out to which client or
category the fake images belong. This attack is considered passive, but an active variant
allows an adversary to target a specific victim.

Similarly, the standard GAN attack actively tries to persuade a victim to release private
data by poisoning the shared model. In this case, an adversary uses a GAN to generate
images for labels used by the victim. The adversary mislabels the images to make them
look like they do not belong to the victim. This results in steeper gradients submitted by
the victim, allowing the adversary to be identified as the victim with a higher probability.

Model Corruption Attacks

Model poisoning can be used to insert a backdoor into a model. For instance, one way of
poisoning the model is to declare that a client has a significantly large amount of training
samples. This forces the model to become biased towards a concrete class. Furthermore,
other attacks focus on reducing the influence of singular clients.

In a Sybil-based attack, an adversary returns a multitude of poisoned models with
pseudonymous identities to the server after each iteration. A more serious problem poses
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attacks that are coordinated by a larger group of users. This kind of problem was ob-
served in the Twitter chatbot developed by Microsoft. Even though it was rather an attack
coordinated unwittingly, such a problem should be considered as well.

Runtime Misclassification Attacks

A misclassification attack attempts to introduce samples that are purposefully misclassi-
fied by the shared model. Federated learning is vulnerable to this type of attack because
adversaries can craft fake examples without any restrictions once the model is deployed.

Defensive Measures

The attacks above cannot be performed in all situations regardless of the system configu-
ration. For example, the attack on models which use ReLU activation functions is weak
against any form of added noise. Moreover, as already stated, this type of attack is limited
to linear models only, like the MIA attack.

In convolutional networks, the attack targeting gradients’ values within the first dense
layer requires extra algorithms to be useful. Furthermore, the method is very unreliable
when local datasets are large enough. The greater size of the datasets results in high
computation cost in both the DLG and MIA attacks. In addition to that, the standard
GAN attack is infeasible when clients are selected randomly during one training step. Also,
once clients do not share labels within a federated system, the GAN attack fails too.

Nevertheless, the following defensive measures should be applied in collaborative learn-
ing schemes:

• Gradient selection. A selection method for dispatching only the most important
gradients. Such a method reduces the information that a server has about clients.

• Gradient compression. The compression has two advantages. First, it increases
the communication efficiency between clients and a server. Second, encoding and
decoding the gradients results in losing some information.

• Dropout. Dropout introduces randomness to the gradient updates. In general, this
technique is used primarily for regularizing deep neural networks to prevent overfit-
ting.

• DP. The sensitivity of DP should be set on a client basis. When gradients are clipped
and perturbed, a client is not able to infer other clients. Here, it is important to say
that Bayesian DP provides faster convergence while retaining the same privacy bounds
as the standard DP in federated learning.

• SMC. This procedure allows clients to hide their computations from the server. Many
developed schemes assume that honest participants are in the majority. Thus, SMC
can be deployed without hesitation in such settings.

• HE. HE ensures no performance loss in terms of model convergence since the training
data remains untouched and the computations are run on their encrypted versions.
One of the problems is that the server does not have direct access to the central
model. This makes the usage of HE questionable because a single model is usually
the result of collaborative learning.
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• Robust aggregation. Robust aggregation methods restrict malicious clients from
exploiting which weights correspond to which clients based on local datasets’ size.
Also, a key challenge here is to force aggregation before further manipulation occurs
because the server may be able to learn the users model updates.

Table 4.1: A table describing the effectiveness of specific defensive measures against the
introduced attacks. The symbol stands for reliably effective, for limited effectiveness,

for not effective, and ⊙ for context dependent effectiveness, respectively [20].
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4.3 Privacy Overview
In centralized learning, all data are stored in one place and are managed by a single main-
tainer. Therefore, only the maintainer defines how the data are protected and how they
will be used. Besides the problems we outlined at the beginning of Section 4.1, acciden-
tal or intentional breach may expose biometric features of enrolled individuals when the
data stays unencrypted in the database.3 Furthermore, biometric data cannot be centrally
processed unless there is given explicit consent or the processing is essential for reasons of
substantial public interest.4

On the other hand, collaborative learning suggests resolving these issues. However, it
requires shifting the workload to clients who possess the data. Adversaries can profit from
that because they have more insights into the learning process. Due to this, collaborative

3https://us.norton.com/internetsecurity-emerging-threats-biometric-data-breach-database-
exposes-fingerprints-and-facial-recognition-data.html

4https://europa.eu/youreurope/business/dealing-with-customers/data-protection/data-
protection-gdpr/index_en.htm
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learning poses privacy risks from dishonest clients as well. As we mentioned in Section 4.2.4,
many countermeasures need to be implemented in order to minimize potential attacks. Sill,
since sensitive data are not stored on a single node, the adversaries cannot deduce all
biometric features with a successfully performed attack at once.
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Chapter 5

Proposed Method

Centralized learning provides fewer opportunities for adversaries in comparison to collab-
orative learning. Yet, at the cost of privacy. To tackle the privacy problem, we propose
replacing sensitive data from a private domain with data from a safe domain, totally un-
related to the private domain. The translation to the safe domain can be performed by
a GAN. Then, the centralized classification model residing on the server is trained purely
on the outputs of the GAN. Thus, the server is unaware of sensitive data points from the
original distribution.

At first sight, our approach perhaps resembles the concept of GANobfuscator. However,
we are not focusing on anonymizing existing input datasets. We rather try to examine the
possibility of replacing the whole input domain and still assure reasonable utility.

This means that we can use the translated images for authentication purposes. For
instance, we assume scenarios in which users authenticate themselves with images of flow-
ers or shoes without revealing their actual identities. After successful authentication, the
system which benefits from this method grants access to permitted resources, like regular
biometric-based authentication systems. As opposed to the standard biometric-based au-
thentication systems, here, the classifiers are learnt how to identify users concerning the
features posed by images of flowers or shoes instead of real faces, as shown in Figure 5.1.

Note that through this whole work, we focus only on translating images of human faces.
Hence, no other biometrics will be used for final analysis or evaluation.

5.1 Analysis
Our method is related to the works made by Chen et al. [14], Sirichotedumrong and
Kiya [67], and Ito et al. [34]. Chen et al. developed a privacy protection model where
a GAN generates fake faces and an additional transformation method adjusts the final
image to maintain the key attributes of the face. Similarly, Sirichotedumrong and Kiya de-
veloped a scheme that protects visual information on plain images by translating the input
images into a visually protected (noisy) domain. Ito et al. resolved some of the issues from
the previous work and focused on reducing the loss value of a classification model deployed
on the server. Their scheme exposes no visual information, as opposed to the work made
by Sirichotedumrong and Kiya.

However, none of these approaches considers scenarios where both the server and clients
are mutually distrustful and the communication between them is not curated by a trusted
third party.
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Figure 5.1: A GAN-based authentication system. Face images of users are translated to
images of flowers which are then used for authentication purposes.

A possible solution to the security problem of biometric systems lies in cancelable bio-
metrics. The concept of cancelable biometric identifiers was addressed by Bathen et al. [7].
The whole process starts by capturing the face of a user, extracting its features, and ap-
plying a set of filters. Every feature set is decomposed into blocks where each block is
filtered by bloom filters. The bloom filters are useful for determining whether an element
is a member of a set or not. After applying the bloom filters, the resulting data are salted
before being stored. From the user’s perspective, it is possible to create temporary IDs
which can be changed on demand. Any system trying to use the cancelable IDs then re-
quests from a user two things: (1) proof that the user owns the salt, (2) an ID matching the
authenticated person. The only drawback of the system is that every time a new biometric
is added, it is required to retrain models which identify the users from the blooms.

Our method does not require any extra transformation functions or salting and is not
restricted to a concrete GAN architecture or dataset. On the other hand, some limitations
are still present. First, a GAN must be capable of translating images between heterogeneous
and asymmetric domains. Second, the translation mechanism must not preserve any visible
features of the input images. Third, clients are required to train their models on their own
because no transfer learning is employed in the process.

If one of the limitations is neglected, the system may fail. For instance, when a GAN
generates images of poor quality, it means that a classifier on the server will not be able
to properly learn any features that distinguish one user from the others. Also, once the
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translated images preserve notable features of a human face, privacy cannot be guaranteed
because it helps an attacker to identify a victim.

The privacy protection is therefore solely provided by a GAN which resides on the user’s
device and is trained on arbitrary datasets. The GAN model is expected to be trained on
a private dataset (containing face images of the user) backed by a public dataset. When an
adversary gains access to the user’s device, privacy may be violated. In ideal conditions, the
adversary can reconstruct the reverse mapping function by inserting a new inverse GAN
into the original framework, freezing the layers of the existing GAN, and initiating the
training. In the end, the adversary may have a generator capable of generating the actual
faces of the users from a visually private domain. We provide more details on possible
attacks on our method in Chapter 7.

5.2 Implementation Details
All the source files are written in Python. Python itself does not allow running more
than one concurrent thread at once.1 Therefore, we used TensorFlow [1], a deep learning
framework developed by Google, to ensure that computationally expensive operations take
advantage of multithreading during the training of GANs.

In TensorFlow, computation graphs are compiled in advance and evaluated in a custom
interpreter. To achieve high performance, TensorFlow includes support for CUDA-enabled2

GPU cards. Furthermore, TensorFlow provides a simple API for automatic differentiation.
Automatic differentiation enables the framework to evaluate the derivatives of functions
which can be computed automatically by repeatedly applying the chain rule on selected
arithmetic operations. From the programmer’s perspective, TensorFlow remembers what
operations happen in what order during the forward pass and then traverses the list of
the operations in reverse order to compute gradients in the backwards pass. Listing 5.1
demonstrates the way how gradients can be computed in TensorFlow.

1 with tf.GradientTape(persistent=True) as tape:
2 fake_B = self.gen(real_A, training=True)
3 disc_real_outputs = self.disc(real_B, training=True)
4 disc_fake_outputs = self.disc(fake_B, training=True)
5 disc_loss = get_disc_loss(disc_real_outputs, disc_fake_outputs)
6 gen_loss = get_gen_loss(disc_fake_outputs)
7
8 disc_vars = self.disc.trainable_variables
9 gen_vars = self.gen.trainable_variables

10 disc_gradients = tape.gradient(disc_loss, disc_vars)
11 gen_gradients = tape.gradient(gen_loss, gen_vars)
12
13 self.disc_opt.apply_gradients(zip(disc_gradients, disc_vars))
14 self.gen_opt.apply_gradients(zip(gen_gradients, gen_vars))

Listing 5.1: A simple GAN training step implemented in TensorFlow.

1This is relevant only to CPython, the default and most widely used implementation of the Python
language.

2https://developer.nvidia.com/cuda-zone
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For our method, we selected only four out of all GAN architectures introduced earlier:
CycleGAN, DiscoGAN, TraVeLGAN, and U-GAT-IT. The source codes for CycleGAN3

and U-GAT-IT4 are publicly available and required just minor modifications to the existing
input pipelines. Other frameworks are implemented based on the recommendations from
the original papers. Overall, the input pipeline is the same across the frameworks. As
shown in Listing 5.2, we execute in parallel as many operations as possible to achieve peak
performance for delivering input data. Also, we cache and load the data in advance before
each subsequent iteration to improve the performance even more. The caching is beneficial
only when there is a requirement to have the very same data during the whole training. In
order to augment data, it is possible to skip the caching.

1 def read_image(image):
2 image = tf.io.decode_png(tf.io.read_file(image), channels=3)
3 return tf.data.Dataset.from_tensors(image)
4
5 def normalize_image(image):
6 return tf.image.resize(image, [128, 128]) / 127.5 - 1
7
8 def build_input_pipeline(domain_files, batch_size):
9 d = tf.data.Dataset.list_files(domain_files)

10 d = d.interleave(read_image, num_parallel_calls=tf.data.AUTOTUNE)
11 d = d.map(normalize_image, num_parallel_calls=tf.data.AUTOTUNE)
12 d = d.batch(batch_size, drop_remainder=True)
13 d = d.cache().prefetch(tf.data.AUTOTUNE)
14 return d
15
16 train_A = build_input_pipeline(domain_A_files, batch_size)
17 train_B = build_input_pipeline(domain_B_files, batch_size)
18 dataset = tf.data.Dataset.zip((train_A, train_B))

Listing 5.2: Initialization of the input pipelines used in the implemented frameworks.

Employing DP in the training procedure was possible thanks to TensorFlow Privacy.
The library provides classes for differentially private optimizers that are based on the stan-
dard TensorFlow optimizers. For instance, DPKerasAdamOptimizer is a differentially pri-
vate variant of Adam optimizer that overrides the class tf.keras.optimizers.Adam (List-
ing 5.3). In addition to that, the library implements methods for computing the privacy
budget spent to train a machine learning model. To derive achieved privacy guarantees, an
RDP accountant is utilized.

1 dp_optimizer = DPKerasAdamOptimizer(
2 l2_norm_clip=1.0,
3 noise_multiplier=0.1,
4 num_microbatches=16,
5 learning_rate=5e-5, beta_1=0.5, beta_2=0.9
6 )

Listing 5.3: A definition of differentially private Adam optimizer.
3https://github.com/keras-team/keras-io/blob/master/examples/generative/cyclegan.py
4https://github.com/taki0112/UGATIT
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To validate the proposed method, it was necessary to implement classifiers used for the
authentication of users in a simulated environment. The classifiers are also implemented
in TensorFlow. But, there is no need to explicitly compute and record gradients due to
the presence of built-in methods for standard training procedures. The initialization and
training can be shortened to a few lines of code (see Listing 5.4).

1 model = keras.Sequential([
2 keras.layers.InputLayer(input_shape=IMAGE_SHAPE),
3 hub.KerasLayer(model_handle, trainable=True),
4 keras.layers.Dense(1, activation="sigmoid"),
5 ])
6 model.build((None,)+IMAGE_SHAPE)
7 model.compile(
8 optimizer=keras.optimizers.Adam(lr=1e-3),
9 loss=keras.losses.BinaryCrossentropy(), metrics=[’accuracy’],

10 )
11
12 train_dataset = build_input_pipeline(files, batch_size)
13 model.fit(train_dataset, epochs=EPOCHS)

Listing 5.4: Initialization and training of a simple classifier that benefits from the pre-
trained network declared by hub.KerasLayer.
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Chapter 6

Evaluation

To validate the proposed method, we carried out multiple experiments. First, we trained
four different GANs and compared the resulting quality of generated images. The GANs
were trained on five different datasets in order to give us a better overview of the utility
of the frameworks. Then, we analyzed and evaluated the performance of binary classifiers
which were trained on the images produced by the GANs.

6.1 Datasets
Assuming that the input data for GANs are always images of faces, one of the best available
datasets is the CelebA dataset [47]. The dataset contains more than 200,000 images of
celebrities and includes 10,177 distinct identities. The images cover large pose variations,
different skin tones, and face shapes. Such diversity is a prerequisite for good generalization
properties.

Choosing a satisfying output domain was more difficult. We have determined that many
datasets are very heterogeneous and asymmetric to the domain of faces. Ultimately, the
following datasets were considered for further evaluation:

• Shoes [80]. A dataset of 50,025 images collected from the catalogue of shoes from
Zappos.com. One of the disadvantages is that the images of shoes are captured just
from one angle. Therefore, further augmentations need to be employed to improve
the dataset’s utility.

• Textures [17]. A collection of 5,640 textural images organized into a list of 47 cate-
gories.

• Cars [41]. A dataset containing more than 16,000 images of cars. The images are cap-
tured from different angles and background conditions vary across the whole dataset.

• Flowers [55]. A collection of 8,186 flowers separated into 102 categories. The images
have large colour and shape variations.

• Food [9]. A dataset consisting of 101,000 food images with substantial background
differences. The images are divided into 101 food categories.
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6.2 Architecture Comparison
After thoughtful consideration, we decided to implement and evaluate four GAN architec-
tures. Out of all the architectures, TraVeLGAN worked best when trained on most of the
datasets described earlier.

CycleGAN

CycleGAN performed worst in the experiments. When trained on the datasets of shoes and
textures, the loss values of the discriminators rapidly converged to zero causing immediate
mode collapse.

We tried to introduce the concept of image pooling, described in the CycleGAN paper,
to see if the performance will improve. According to the paper, image pooling helps the
discriminator to remember which images were incorrectly classified in the past. Basically,
the images generated by the generator are stored in a pool (buffer) and then randomly
sampled by the discriminator through the training. Still, this technique did not provide
any satisfying results.

Proper hyper-parameters tuning, like setting different weights for the loss functions,
could possibly resolve the problem. Yet, we found the tuning time consuming and disre-
garded CycleGAN from additional experiments.

DiscoGAN

The DiscoGAN framework worked better on all datasets. However, the results were still
not plausible. Many times, the generators collapsed or were not able to produce sharp and
crisp images.

The situation did not improve even after adding feature matching loss to the training
process [63]. The inability to generate satisfying images led us to experiment with the
loss established in the WGAN-GP paper. We also tried to use spectral normalization [52].
Spectral normalization stabilizes the training of GANs and avoids mode collapse by con-
trolling the Lipschitz constant of the discriminator. While WGAN and WGAN-GP enforce
the Lipschitz constraint by clipping the weights and penalizing the norm of gradients, re-
spectively, spectral normalization constrains the spectral norm. The spectral norm is the
maximum singular value of a matrix. Unfortunately, neither WGAN-GP loss nor spectral
normalization did improve the final results.

On the other hand, DiscoGAN performed best only when the model was trained on the
dataset of shoes. A few examples of the generated images are provided in Appendix B.1.

TraVeLGAN

TraVeLGAN has shown the most decent results out of all tested frameworks. Except
for the textures and cars datasets, the model performed well on the rest of the datasets.
The models which were trained on the datasets of textures and cars were not producing
reasonable outputs and the generative model was jumping between modes for the same
inputs through the training.

During the experiments with DiscoGAN, we noticed that changing the background of
images results in very poor translations. This motivated us to examine images without
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cluttered background too. Therefore, we created a new dataset of faces with removed
background from the original CelebA images by utilizing image segmentation.1

In Figure 6.1, there are demonstrated outputs of TraVeLGAN. It is important to em-
phasise that the translations to flowers were only slightly affected by zooming or additional
background changes. More generated samples are provided in Appendix B.2.

Input Output Input Output Input Output Input Output

Figure 6.1: Left: outputs of TraVeLGAN trained on the dataset of flowers and CelebA
images with removed background. The GAN was trained for 111 epochs with Adam opti-
mizer. Right: outputs of TraVeLGAN trained on the dataset of flowers and cropped CelebA
images with removed background. In this case, the GAN was trained for 250 epochs with
Adam optimizer (FID score [28]: 51.82).

Experiments, where two or more distinct target datasets were merged, did not result
in any increased utility for DiscoGAN or TraVeLGAN. The training was not prosperous
and the efficiency of mapping functions was not developing. The models were consistently
jumping between modes, i.e., a few data points from the target datasets.

U-GAT-IT

We tried to evaluate the performance of U-GAT-IT as well. In this case, the resulting
synthetic images were fairly plausible for the dataset of shoes (Appendix B.3). However,
we were not able to exploit the real performance of U-GAT-IT because the full model
requires 32 GB of memory on a single GPU.

On NVIDIA Tesla T4 GPU, training the light model for 50 epochs on a dataset that
consisted of 10,000 samples took more than 4 days. To reduce the training time, it is possible
to do computations in parallel by splitting the model into two isolated entities. But, this
would involve refactoring the source code significantly. Because of that, U-GAT-IT was not
included in further experiments.

1https://github.com/susheelsk/image-background-removal
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6.3 System Performance
Based on the outputs seen earlier, we believe that TraVeLGAN trained on the dataset of
flowers is a sufficient method for translating images to a secure domain. The framework
was able to correctly identify key features of images regardless of the background changes
or magnifications.

To see whether synthetic images are suitable for authentication and identification, it is
necessary to verify that the model generates undoubtedly similar images for the same indi-
vidual. Unfortunately, the face images of a single individual contained within the CelebA
dataset often do not resemble each other. Because of that, we had to augment the im-
ages with StarGANv2. The required precondition for the classification purposes could be
afterwards verified, as shown in Figure 6.2. More images can be found in Appendix B.4.

Input Output Input Output Input Output

Figure 6.2: Synthetic flowers generated by TraVeLGAN for the same identities. Minor head
rotations do not influence the outcome of the translation. The GAN was trained for 250
epochs with Adam optimizer.

Regarding the augmentation, we noticed that different skin tones contribute to a simple
colour change of flowers. On the contrary, facial expressions, as well as hairstyles, affect
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the translation process significantly, leading to generating flowers of completely different
shapes.

Nevertheless, seeing the pleasant outputs produced by TraVeLGAN, the usability of our
method could be further assessed on binary classification problems (i.e., authentication).
To do so, we selected 93 celebrities from the CelebA dataset and augmented the images
of their faces. The number of images ranged from 10 to 20 per selected individual. Then,
we translated the augmented images and another random 2,000 images from the CelebA
dataset to images of flowers with TraVeLGAN. Finally, we trained 93 binary classifiers on
the images of flowers and 93 binary classifiers on the images of faces.

To study the performance drop between the classifiers trained on the images of flowers
and classifiers trained on the images of faces, the conditions for both scenarios must be
similar. Therefore, we exploited transfer learning and used the same pre-trained MobileNet
V2 model in both cases. MobileNet V2 is one of the state-of-the-art computer vision models
tailored for mobile devices. The model architecture consists of an initial convolution layer
with 32 filters, followed by 19 residual bottleneck layers.2 Based on the experimental
evidence, the authors suggested using linear bottlenecks since employing non-linear layers
in bottlenecks destroys too much information about input images [64].

Due to the fact that MobileNet V2 could not be used for our intention as it is, we used
only its feature vectors of images3 and added a final output layer, yielding 1 unit with the
Sigmoid activation function to predict the probability of classes directly.

Moreover, it was necessary to change the way how training data are perceived by the
classifiers. To make the classifiers pay more attention to examples from under-represented
classes,4 we adopted the concept of class weights. Such an approach allowed the models
to assign higher loss values for the samples of actually classified individuals during the
training. Note that the behaviour of Adam optimizer, which was used in the classifiers, is
always unaffected by the scaling change.

In the end, we performed 5-fold cross-validation and used the following metrics: accu-
racy, precision, recall, and 𝐹1 score to evaluate the performance of the classifiers. Precision
is a proportion of positive samples that were correctly classified to all positive predicted
samples. Recall is expressed as a ratio of correctly classified positive samples to the total
number of all real positive samples. 𝐹1 score represents a harmonic mean of precision and
recall. Let 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , 𝐹𝑁 be the acronyms for true positives, true negatives, false pos-
itives, and false negatives, respectively, the mathematical notations for accuracy, precision,
recall, and 𝐹1 score are listed below [70]:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(6.1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6.2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6.3)

𝐹1 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(6.4)

2A bottleneck layer is a layer with fewer neurons than the adjacent layers.
3https://tfhub.dev/google/imagenet/mobilenet_v2_100_128/feature_vector/4
4Under-represented classes are classes that describe an authenticated individual with respect to a single

binary classifier. These classes have usually less training data. So, the classification is performed on
imbalanced data
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The time required for training one classifier for 15 epochs fluctuated from 1 to 2 minutes.
The whole process of 5-fold cross-validation usually took no more than 10 minutes per
classifier on NVIDIA Tesla T4 GPU. Tables 6.1 and 6.2 demonstrate scores of the classifiers.
The values were averaged over distinct classes (i.e., identities) across the folds while having
the acceptance threshold set to 0.7 for each class. In Table 6.1, the recall score has revealed
that the classifiers trained on the synthetic flowers did not identify almost 30% out of all
positive examples when the layers of MobileNet v2 were frozen. The classifiers trained on
the dataset of faces correctly predicted labels for more than 91% of samples. Table 6.2
shows that the classification performance of the models trained on the dataset of flowers
improved when fine-tuning was enabled. On the other hand, we have noticed that the
accuracy of the classifiers trained on the dataset of faces decreased.

Table 6.1: Actual scores of the evaluated classifiers. The classifiers were trained for 15
epochs while having frozen the layers of MobileNet v2. In addition to that, a Dense layer
with 512 units and 20% dropout rate was inserted before the final output layer (learning
rate: 0.001, batch size: 32)

Faces Flowers
Metric Average Value Average Value
Accuracy 0.99976 0.99761
Precision 0.91385 0.83525
Recall 0.91482 0.70856
F1 Score 0.91433 0.76671

Table 6.2: Actual scores of the evaluated classifiers. The classifiers were trained for 15
epochs and their architecture was the same as declared in Listing 5.4 on lines 1-5 (learning
rate: 0.0005, batch size: 54).

Faces Flowers
Metric Average Value Average Value
Accuracy 0.9992 0.9974
Precision 0.8810 0.8594
Recall 0.9117 0.8627
F1 Score 0.8961 0.8611

The experiments ensured us that our method can be still used for authentication pur-
poses since the overall performance drop did not exceed 6%. Hyper-parameters tuning and
further architectural changes should decrease the difference even more.
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Chapter 7

Adversarial Attacks

In section 5.1, we outlined what ensures the protection of individuals. Thus, it is crucial
to not expose the trained GAN and its weights to attackers. The attackers can easily
determine which GAN framework was used for the translation and on which public datasets
the framework was trained. Given the fact that the system is used for authenticating users
based on the images of flowers generated from human faces, there are not so many options
for training datasets out there. Identifying the used GAN framework may be harder because
new GAN architectures emerge every year. Still, hiding such trivial information must not
be the main security aspect. Security through obscurity should not be therefore considered
as a reasonable defensive measure.

Suppose an attacker determines a used GAN framework, e.g., TraVeLGAN and pub-
lic datasets. A trivial attack consisting of switching the input and output domains and
straightforwardly learning the reverse mapping function is not effective. As per our ob-
servations, the generated faces looked like those depicted in Figure 7.1. Even though the
TraVeLGAN model was trained multiple times with a different set of hyper-parameters, it
still could not reconstruct a face that resembles a real individual. More images from the
learnt mapping are attached in Appendix C.1.

Input Output Reconstructed

Figure 7.1: Face images reconstructed from the synthetic flowers. Reverse mapping was
learnt by TraVelGAN that was trained on the datasets of faces and flowers. Compared to
the previous trainings, the input and output domains were switched. The framework was
trained for 240 epochs with Adam optimizer.
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Similarly, an attacker will not be able to get plausible reconstructed images by exploit-
ing cycle-consistency or reconstruction loss embedded into the framework. Based on the
experiments with DiscoGAN, we observed that there is shaped an imbalance between trans-
lated and reconstructed images during the training. The generator which had been learning
reverse mapping from the translated images back to the images present in the input domain
either collapsed or was not able to generate images in reasonable quality (see Figure 7.2).

Input Output Reconstructed

Figure 7.2: Samples produced by DiscoGAN trained on the datasets of faces and shoes.
The network was trained for 200 epochs with the same hyper-parameters as presented in
the original paper. Additionally, one convolution layer with 100 filters was inserted into the
generators.

A more sophisticated attack suggests training a GAN the same way a victim did. The
attacker then freezes the trained model and inserts a new neural network model into the
framework. The new model is trained to discover reverse mapping from the visually private
domain back to the domain of faces more efficiently due to the presence of a correct pair
set. This attack is also referred to as an inverse transformation network attack (ITN-
Attack) [34].

7.1 Inverse Transformation Network Attack
Ignoring the fact that the user’s models are always initialized with random weights and
that the user can govern the hyper-parameters, the attacker may create an almost identical
mapping function from the domain of faces to a visually private domain. Otherwise, there
is no guarantee that an ITN-Attack is going to be successful. Apart from that, the user can
utilize DP during the training which results in reduced chances for the attackers as well, yet
at the cost of the classification model accuracy. Furthermore, the protection is implicitly
given by the properties of the chosen datasets. Transforming images between asymmetric
datasets back and forth causes losing the information about initial data distribution, as
shown in Figure 7.2.
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If an adversary can prepare an exact pair set of input and output images, an ITN-Attack
can be performed. Without having a user’s model, the preparation can be considered unfea-
sible thanks to the characteristics of neural network models described earlier. Nevertheless,
we simulated a scenario where the adversary has knowledge about everything except for
a private dataset: a user’s GAN, the public datasets, and the model’s weights.

Assuming that an attacker somehow gains access to the user’s model and extracts the
model’s weights, the only thing remaining to do is to train a new model that makes use of
the correct pair set. In TensorFlow, this means inserting the pre-trained network into the
training loop by changing a few lines of code (Listing 7.1).

1 def train_step(self, batch_data):
2 real_faces, real_flowers = batch_data
3
4 fake_flowers = self.pretrained_travelgan.generator(real_faces)
5
6 with tf.GradientTape(persistent=True) as tape:
7 fake_faces = self.generator(fake_flowers, training=True)
8
9 disc_real = self.discriminator(real_faces, training=True)

10 disc_fake = self.discriminator(fake_faces, training=True)
11
12 siam_real = self.siamese(fake_flowers, training=True)
13 siam_fake = self.siamese(fake_faces, training=True)
14 ...

Listing 7.1: One training step of the inverse transformation network (ITN), i.e., TraVeL-
GAN. The highlighted code demonstrate the changes required to be made in the existing
training step of the ITN.

But, the change described above does not assure favourable results. Since there is
a notion of valid pair sets, it is necessary to change the objective function as well. In the
case of an adversary TraVeLGAN model, we introduced mean squared error loss to the
training to ensure that the learnt function pays attention to pixel-level details of original
images. Apart from that, we investigated the behaviour of the model with mean absolute
error loss and without the presence of mean squared error loss. In both cases, the model
could not properly learn the reverse mapping function.

Figure 7.3 displays a successful ITN-Attack performed via TraVeLGAN. More recon-
structed images can be found in Appendix C.2. Given sufficient knowledge about correct
pair sets, an attacker reconstructed the users’ faces to some extent. Still, from the samples,
it is possible to determine sex or hairstyle, but not the real identity. On the other hand,
such reconstruction allowed the attacker to recreate new flowers that look like those gener-
ated from the real face domain. This can be treated as a security flaw because the attacker
will be able to fool the classifiers.

Due to that, we performed a couple of experiments with the recreated flowers to see what
is the real impact of adversarial images. Once again, we trained 93 binary classifiers and
recorded the performance on the adversary images. The adversarial images were classified
as valid in 45% out of all cases. The real images were correctly labelled in more than 97%
of cases. Although the classification drop is significant, an attacker can be authenticated
as a real user almost in one out of two trials.
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Input Output Reconstructed Recreated

Figure 7.3: Images reconstructed after a successful ITN-Attack. An adversarial TraVeL-
GAN model is trained on correct pair sets of images of faces and flowers generated by
a pre-trained TraVeLGAN network. From the last two columns, it is obvious that the pre-
trained TraVeLGAN network pays more attention to hairstyle and face geometry. Because
of that, the pre-trained network was able to recreate almost the very same images of flowers
from the reconstructed faces.

7.2 Defensive Measures
Applying noise to the output images may seem to be a feasible defensive measure against
adversaries. In Figure 7.4, there are displayed reconstructed images after adding Gaussian
noise (with the standard deviation equal to 0.1) to normalized images of flowers. Here,
the performance of the classifiers decreased subtly in terms of flowers generated by real
users (see Table 7.1). However, this technique should not be considered as an acceptable
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defensive measure because the adversary can retrain a model to learn which distribution
need to be neglected during an ITN-Attack.

Table 7.1: A proportion of positive predicted samples for real and reconstructed flowers.

Real Reconstructed
Without Noise With Noise Without Noise With Noise

Prediction 0.9718 0.9590 0.4575 0.0517

Input Output Reconstructed Recreated

Figure 7.4: Images reconstructed after an ITN-Attack. An adversarial TraVeLGAN model
is trained on correct pair sets of images of faces and flowers generated by a pre-trained
TraVeLGAN network. In this case, Gaussian noise is added to the output images which
results in worse quality of the reconstructed images.
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Due to that, we tried to employ DP in the training of a user’s TraVeLGAN model
by replacing the standard Adam optimizer with its secure variant, declared in Listing 5.3.
Unfortunately, the TraVeLGAN model could not learn a favourable mapping function from
faces to flowers after introducing noise to the gradients. The following configurations were
tested with respect to DP:

• All optimizers within the framework implemented their differentially private variants.

• DP applied only to the discriminator’s optimizer.

• DP applied only to the generator’s optimizer.

None of the configurations did provide decent results. The generators collapsed after
tens of epochs. Because of that, we experimented with so-called warm starting, where
a generative model is first trained without employing DP to boost up the convergence rate
in the beginning. Then, DP is enabled only for the rest of the epochs. Such a procedure
was proposed in the dp-GAN paper [82]. Again, the results were not promising and the
warm starting did not alleviate mode collapse, as seen in Figure 7.5. The results did not
improve even when we trained the model either for more or fewer epochs.

Input Output Input Output

Figure 7.5: Outputs of a TraVeLGAN model trained for 220 epochs without using DP and
30 epochs with using DP.

Except for applying noise to the gradients during the training, we were not able to
devise any other defensive measure. Therefore, we acknowledge that if an attacker gains
access to the user’s device, there is no way to prevent a successful ITN-Attack.

Still, a user is allowed to use different kinds of target domains per each authentication
system. For example, it is possible to authenticate with images of flowers in one system and
with images of shoes in another system. Compromising one centralized server, therefore,
does not affect the other system. Without direct access to correct pair sets of faces and
flowers, the attacker should not be able to reconstruct the face identifying a particular user.
This assumption is built upon the fact that when we trained the same GAN multiple times,
the model did not ever reach the same local optima and always generated different images
of flowers for identical input data in comparison to other trained models.

Also, we admit that further transformation functions may need to be employed when
protection needs to be provided against unauthorized access to the user’s device. With this
in mind, it is possible to encrypt the model’s weights to make the model residing on the
user’s device tamper-resistant. The weights will be decrypted only during legitimate usage.
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For example, Android implements a system that allows application developers to execute
secure encryption and decryption procedures in a tamper-resistant security hardware mod-
ule.1 Speaking of Android, TensorFlow offers scripts for exporting the trained models via
Tensorflow Lite converter.2 Thus, a GAN model trained on a personal computer can be
exported to the user’s device and additional training and transformation will happen in
a sandbox only when the model’s weights are decrypted. Additionally, model compression
may provide greater security guarantees because the weights of GANs will be truncated
and rounded. All these improvements are advised for future work.

1https://developer.android.com/training/articles/keystore
2https://www.tensorflow.org/lite/convert
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Chapter 8

Conclusion

In this thesis, we have presented a novel approach that employs a generative adversarial
network (GAN) for privacy preservation in biometric-based authentication systems. In
detail, the GAN is used to translate face images of individuals to a visually private domain
(e.g., flowers).

The rationale behind the protection of users’ privacy lies in the fact that a GAN creates
a mapping function that is hard to invert since the target domain is heterogeneous to the
domain of faces. Another protection is given by the implicit way of how the GAN can be
trained, meaning that different starting point leads to a different optimal translation.

At the beginning of the thesis, we have introduced a couple of GAN architectures.
Besides that, we compared differential privacy (DP) and homomorphic encryption (HE)
with respect to their complexity, utilization, and specific usage in classification systems.
Furthermore, we have assessed the privacy aspects of centralized and collaborative learning.

Based on the findings we conducted, we proposed a method that uses a GAN, which is
trained in a centralized setting and still provides reasonable privacy guarantees. We have
evaluated four GAN architectures (CycleGAN, DiscoGAN, TraVeLGAN, U-GAT-IT) for
the proposed method and compared their performance. Based on the qualitative results of
synthetic images, we found out that TraVeLGAN suits our needs best. Binary classifiers
trained on the images generated by TraVeLGAN correctly classified 86% of unseen samples.
Compared to the classifiers which were trained on the images of users’ real faces, the overall
performance drop did not exceed 6%. The comparison was made in a configuration where
both types of classifiers had the same architecture and conditions. Hence, the conditions
were strictly similar in all the experiments.

To validate the aforementioned privacy guarantees, we performed two types of attacks on
the proposed method. First, we ran a standard GAN-based attack that is straightforwardly
trained to discover a reverse mapping function from the safe domain back to the domain
of faces. Second, we executed an inverse transformation network attack (ITN-Attack),
where an adversary trains a network on correct pair sets of synthetic and real images. As
a result, our method is resistant to the GAN-based attack. With the ITN-Attack, we were
able to reconstruct the faces of users to some extent. The reconstructed faces did not
resemble the real users, but hairstyle, sex, or race could be clearly determined. Still, this
was possible only due to the presence of the correct pair sets what means that the attacker
had knowledge about the used GAN architecture, public datasets, and model’s weights. So,
once the attacker gains access to the user’s device and can read the model’s weights, the
security may be violated.
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Employing DP in the training did not mitigate the said security violation. The intuition
behind DP is that if a single training point does not affect the outcome of the learning,
the information contained in that training point cannot be memorized and the privacy of
the individual who contributed this data point to a dataset is respected. According to
our experiments, adding noise to the gradients led to mode collapse almost immediately.
Therefore, we are doubtful about the real prospects of employing DP in complex GAN
architectures. Yet, more experiments might show the opposite result. Nevertheless, it might
be appropriate to employ other GANs to perturb input data, for instance, by changing sex
or age.

To conclude, our method has just two disadvantages: (1) users are required to train
GANs on their own what can be time-consuming and (2) some models may end up gener-
ating almost identical images for different identities, which can result in low performance
of classifiers. On the other hand, the proposed method is not restricted to a specific GAN
framework or dataset. Also, the method does not require training classifiers on the server
from scratch since transfer learning can be utilized. The second disadvantage may be alle-
viated by using another dataset or a GAN when the server detects the performance drop.

In future work, we will investigate the proposed method in a system with 500 or more
users. Even though the system worked properly with 93 users in our case, experimenting
with a larger user base may exhibit hidden flaws of the proposed method. Similarly, it
is necessary to improve the quality of synthetic images generated by GANs. The GANs
cannot generate new patterns without further augmentations or without merging distinct
datasets. To improve the GAN’s performance at low cost, differentiable augmentation may
be employed [85]. New GAN frameworks may perform better on the same translation tasks.
For instance, U-GAT-IT seemed to be a good candidate for our method too. But, due to
the long training times and high computational requirements, we decided to disregard U-
GAT-IT for additional experiments.

Moreover, we suggest implementing the system as a whole. In this thesis, we have only
shown how GANs can be utilized for generating images that are used for authentication.
Pairing users’ GANs and server’s classifiers need to be studied as well. Such pairing can
prevent attackers to execute brute-force attacks and log in to the system as real users.
Ultimately, the pairing approach needs to be further assessed because users who trust each
other can share the same GAN model.

Also, we recommend developing an update procedure allowing users to submit new
synthetic images after changing the visage. This could be done by caching the generated
images and when the change within a given threshold is detected, the user’s device will
message the server to consider the new images.

Preliminary results of this thesis were presented at Excel@FIT.1 The published pa-
per received an expert committee award. In addition to that, the contribution was also
recognized by Honeywell, a partner of the Excel@FIT conference.

1http://excel.fit.vutbr.cz/
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Appendix A

DVD Content

The attached DVD contains the following directories:

• sources. Source files of tested GAN architectures and executable scripts.

• pretrained. Pre-trained models’ weights that can be used for further assessment.

• datasets. Datasets used for authentication purposes.

• latex. LATEX source files.
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Appendix B

Generated Images

B.1 DiscoGAN

Input Output Reconstruction

Figure B.1: Outputs of DiscoGAN trained on the dataset of shoes. The GAN was trained
for 200 epochs with Adam optimizer (learning rate: 0.0002, batch size: 200, dataset size:
20,000).
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Input Output Reconstruction

Figure B.2: Outputs of DiscoGAN trained on the dataset of flowers. The GAN was trained
for 250 epochs with AdamW optimizer and added feature matching loss (learning rate:
0.0002, weight decay: 0.0001, batch size: 200, dataset size: 8,000).
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Input Output Reconstruction

Figure B.3: Outputs of DiscoGAN trained on the food dataset. The GAN was trained for
400 epochs with AdamW optimizer and added feature matching loss (learning rate: 0.0002,
weight decay: 0.0001, batch size: 200, dataset size: 5,000).
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B.2 TraVeLGAN

Input Output

Figure B.4: Outputs of TraVeLGAN trained on the flowers dataset. The GAN was trained
for 123 epochs with Adam optimizer (learning rate: 0.0002, batch size: 16, dataset size:
8,000).
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Input Output

Figure B.5: Outputs of TraVeLGAN trained on the dataset of textures. The GAN was
trained for 390 epochs with Adam optimizer (learning rate: 0.0002, batch size: 16, dataset
size: 5,640).
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Input Output

Figure B.6: Outputs of TraVeLGAN trained on the dataset of cars. The GAN was trained
for 390 epochs with Adam optimizer (learning rate: 0.0001, batch size: 16, dataset size:
8,100).
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B.3 U-GAT-IT

Input Output

Figure B.7: Outputs of U-GAT-IT trained on the shoes dataset. The GAN was trained for
50 epochs with Adam optimizer (learning rate: 0.0001, batch size: 1, dataset size: 10,000).
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B.4 Classified Identities

Input Output Input Output Input Output Input Output

Figure B.8: Outputs of TraVeLGAN trained on the images of flowers and cropped CelebA
images with removed background. The GAN was trained for 250 epochs with Adam opti-
mizer (learning rate: 0.0002, batch size: 16, dataset size: 8,000). Given that none of the
input images were seen by the GAN, it still generates satisfying images.
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Appendix C

Reconstructed Images

C.1 Simple Reverse Mapping

Input Output Reconstructed

Figure C.1: Face images reconstructed by TraVeLGAN trained on the datasets of faces and
flowers. The GAN was trained for 240 epochs with Adam optimizer (learning rate: 0.0002,
batch size: 16, dataset size: 8,000).
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C.2 Reverse Mapping with Correct Pair Sets

Input Output Reconstructed Input Output Reconstructed

Figure C.2: The mapping learnt by a TraVeLGAN model which translates unseen images
of flowers back to the images of faces. The training data for the model consisted of paired
sets of faces from the CelebA dataset and flowers generated by a pre-trained TraVeLGAN
network. The training of the adversary model was curated by mean squared error loss.
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