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Abstract
In this work, we study ways to improve the performance of network intrusion detectors. In
detail, we focus on behavioral analysis, which uses data extracted from individual network
connections. Such data is used by the described framework for obfuscation of targeted
network attacks that exploit a set of contemporary vulnerable services. We select vulnerable
services by scraping the National Vulnerability Database of NIST while limiting the search
for years 2018 and 2019. As a result, we create a novel dataset that consists of direct
and obfuscated attacks executed on selected vulnerable services as well as their legitimate
traffic counterparts. We evaluate the dataset using a few classification techniques, and we
demonstrate the importance of training these classifiers using obfuscated attacks in order
to prevent evasion of the classifiers (i.e., false negatives). Finally, we perform the cross
dataset evaluation using the state-of-the-art ASNM-NPBO dataset and our dataset. The
results indicate the importance of retraining the classifiers with the novel vulnerabilities
while still preserving a high detection performance of attacks on older vulnerabilities.

Abstrakt
V této práci se zabýváme vylepšením systémů pro odhalení síťových průniků. Konkrétně
se zaměřujeme na behaviorální analýzu, která využívá data extrahovaná z jednotlivých
síťových spojení. Tyto informace využívá popsaný framework k obfuskaci cílených síťových
útoků, které zneužívají zranitelností v sadě soudobých zranitelných služeb. Z Národní
databáze zranitelností od NIST vybíráme zranitelné služby, přičemž se omezujeme jen na
roky 2018 a 2019. Ve výsledku vytváříme nový dataset, který sestává z přímých a obfusko-
vaných útoků, provedených proti vybraným zranitelným službám, a také z jejich protějšků
ve formě legitimního provozu. Nový dataset vyhodnocujeme za použití několika klasi-
fikačních technik, a demonstrujeme, jak důležité je trénovat tyto klasifikátory na obfusko-
vaných útocích, aby se zabránilo jejich průniku bez povšimnutí. Nakonec provádíme křížové
vyhodnocení datasetů pomocí nejmodernějšího datasetu ASNM-NPBO a našeho datasetu.
Výsledky ukazují důležitost opětovného trénování klasifikátorů na nových zranitelnostech
při zachování dobrých schopností detekovat útoky na staré zranitelnosti.
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Rozšířený abstrakt
Síťově orientované systémy pro odhalení průniku, které jsou založené strojovém učení,

jsou schopny pomocí behaviorální analýzy síťové komunikace detekovat i pro ně neznámé
útoky, a to i bez nahlížení na vnitřní data jednotlivých paketů. Problémem je, že pomocí
obfuskačních metod lze tyto klasifikátory oklamat, a tudíž je možné pro obfuskovaný útok
přes takové systémy proniknout bez povšimnutí.

V této práci se řeší, jak vylepšit schopnost klasifikátorů detekovat adversariální útoky
založené na obfuskacích a zjistit, jak se od sebe navzájem liší jednotlivé klasifikátory. Dále
je cílem zjistit, jak dobře dokážou detekci obejít různé obfuskační techniky a jak odolné
jsou klasifikátory vůči neznámým obfuskačním technikám. Ke konci je práce se zaměřena
na to, jaký vliv má použití různých datasetů pro trénování a testování daných klasifikátorů.

V rámci práce byly v Národní databázi zranitelností Národního institutu standardů a
technologie, který spadá pod Ministerstvo obchodu Spojených států amerických, dohledány
zranitelnosti z roku 2018 a 2019. Následně byly v databázi od společnosti Offensive Secu-
rity nalezeny exploity, které daných zranitelností zneužívají k průniku do cílového systému.
Ke každé zranitelné službě byl vytvořen virtuální stroj, na který byla služba nainstalo-
vaná. K virtuálním strojům byl připojen útočný počítač, který používal nástroj Metas-
ploit, pomocí kterého se stažené exploity použily k útokům na každý virtuální stroj. Celá
komunikace všech útoků byla nahrána pomocí nástroje tcpdump. Dále byl na útočný stroj
přidán mně dodaný Non-Payload-based (NPBO) framework, který sloužil jako nástroj pro
obfuskaci útoků provedených staženými exploity.

K obfuskaci byly použity techniky, které měnily různé behaviorální vlastnosti útoků
pomocí změn, které nezasahovaly do vnitřních dat paketů. Obfuskační techniky prováděly
např. simulaci nespolehlivého síťového kanálu pomocí umělého poškozování určitého pro-
centa paketů, přidávání zpoždění přenášených paketů, změnu pořadí paketů, různé kombi-
nace jmenovaných technik atd. Pomocí NPBO frameworku se automaticky nebo poloau-
tomaticky útočilo obfuskovanými útoky na všechny zranitelné služby běžící na virtuál-
ních strojích. NPBO framework veškerou komunikaci zaznamenal pomocí automatického
spouštění nástroje tcpdump. Dále byly vytvořeny záznamy komunikace legitimního provozu
zranitelných služeb (opět pomocí nástroje tcpdump), což obsahovalo připojení se k dané
službě a tam případnou autentizaci na nějakého uživatele a různé změny nastavení na
dané službě, vytváření nových uživatelských účtů, vytváření webových stránek, nahrávání
a stahování souborů apod. Zkrátka se vykonávaly běžné úkony, které by mohly být ob-
vyklé v případě každé služby. Nový dataset se tedy skládá ze záznamů legitimního provozu
každé služby, záznamů přímých útoků na danou službu a záznamů obfuskovaných útoků
na ni. Slabinou tohoto datasetu je fakt, že veškeré útoky a simulace legitimního provozu
byly prováděny v laboratorních podmínkách, a to dokonce mimo jakéhokoli jiného provozu,
tudíž nashromážděná data dokonale neodpovídají reálnému provozu v praxi.

Nashromážděná data byla potom předána dalšímu mně dodanému nástroji recurs-walker,
který provedl extrakci jednotlivých TCP spojení ze záznamů komunikace a přidal je do nové
PostgreSQL databáze. Následně byl spuštěn další mně dodaný nástroj metrics-extractor,
který analyzoval TCP spojení v databázi a z nich extrahoval Advanced Security Network
Metrics (ASNM) rysy, např. průměr velikosti zdrojových paketů (statistický rys), počet
přenesených bajtů za sekundu (dynamický rys), zdrojová IP adresa (lokalizační rys), počet
paketů za sekundu distribuovaných do 10 intervalů (distribuovaný rys), aproximace délek
příchozích paketů polynomem 5. řádu (behaviorální rys). V průběhu extrakce rysů se
provedla i anonymizace koncových bodů ve spojeních pomocí změn IP adres. Dále byly
implementovány procesy v nástroji RapidMiner, které provedly další zpracování TCP spo-



jení a přípravu dat pro jednotlivé klasifikátory, např. odstranění lokalizačních rysů, protože
v laboratorních podmínkách pro klasifikaci dat, která neobsahují žádná jiná spojení než je
útok, nebo jen legitimní provoz dané aplikace jedním uživatelem, nemá daný rys význam.
V dalším procesu jsou potom z připravených dat vybrány rysy pomocí algoritmu Forward
Feature Selection za použití klasifikátoru Naïve Bayes s Kernel Density Estimation nejprve
z dat obsahujích přímé útoky (DL data) a potom z dat, které obsahují i obfuskované útoky
(DOL data). Následně je provedena křížová validace na datech DL a DOL, srovnány rozdíly
mezi klasifikátory za použití vybraných rysů z těchto dat a otestována odolnost klasifikátorů
se znalostmi o obfuskovaných útocích vůči pro ně neznámým obfuskacím.

Vyhodnocení nového datasetu bylo zaměřeno na šest klasifikátorů. Nejdříve byly klasi-
fikátory natrénované jen na legitimním provozu a přímých útocích. V křížové validaci
bylo správně detekováno od 97.63% do 100.00% přímých útoků. Následně byly testovány
schopnosti těchto klasifikátorů detekovat obfuskované útoky a experiment ukázal, že mnoho
útoků se detekci vyhnulo. Výsledky ukázaly, že klasifikace obfuskovaných útoků dopadla
o 0.35% až 83.55% hůř, než křížová validace nad přímými útoky a legitimním provozem.
Oproti tomu v experimentu křížové validace na datech, která obsahují i obfuskované útoky,
klasifikace přímých útoků v kombinaci s obfuskovanými útoky dosáhla zlepšení o 0.04% až
81.05% v závislosti na typu klasifikátoru. Trénování klasifikátorů na obfuskovaných útocích
se tedy ukázalo jako velmi důležité.

Nad novým datasetem a datasetem ASNM-NPBO-v1 [39] bylo provedeno křížové vy-
hodnocení pomocí čtyř klasifikátorů. Úspěšnost detekce útoků klasifikátorů trénovaných
na novém datasetu a testovaných na datasetu ASNM-NPBO-v1 dosahuje od 54.37% do
86.41% a klasifikátory trénované a testované naopak dosáhly 9.2% až 37.57%. Při hlubší
analýze výsledků byly nalezeny značné rozdíly ve výsledcích různých zranitelných služeb.
Klasifikátory trénované na novém datasetu detekovaly průměrně 96.76% útoků na Apache
a jen 30.43% útoků na MSSQL. Podobné dva extrémní případy byly objeveny i v opačném
případě, kdy byly klasifikátory trénované na datasetu ASNM-NPBO-v1, kde detekovaly
průměrně 70.38% útoků na Gitstack a 0% útoků na FTPShell. Bylo ověřeno, že klasi-
fikátory jsou schopny úspěšně detekovat velké procento pro ně absolutně neznámých útoků
na některé zranitelnosti, ale zároveň existují i útoky zaměřené proti jiným zranitelnostem,
které jsou pro ně nedetekovatelné.
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Chapter 1

Introduction

In the list of top 10 cybersecurity threats1 are attacks, such as Ryuk, Maze, Nemty ran-
somware, campaigns like Operation ZeroCleare, etc. Mentioned attacks targeted organi-
zations, which are capable of paying the large ransom demanded, governments, industrial
sectors, telecommunications providers, or regular people to steal sensitive data, encrypt
data and require money for decryption, cause damage to machines, etc. Another problem
is unpatched software for example from Adobe, Microsoft, or Oracle2, which is being tar-
geted mostly. Therefore, there is a necessity for defense against attacks like them, which
might be acquired with the use of intrusion detection systems.

Knowledge-based (a.k.a. misuse-based) intrusion detection systems have difficulties de-
tecting zero-day attacks and they are also vulnerable to attacks that were modified using
polymorphism. The vulnerability originates from the fact there are no signatures for novel
attacks and polymorphic modification of known attacks might prevent the positive sig-
nature match as well. Hence there is a requirement for new ways of network intrusion
detection, which would eliminate mentioned defects. A possible solution to the problem
is anomaly detection systems. Anomaly-based intrusion detection systems build profiles
of users, which represent their normal behavior. Anomalies are recognized as deviations
from users’ profiles. There is a drawback of an anomaly-based approach though because
these systems tend to have a high false-positive rate, unlike a knowledge-based approach.
Another interesting approach is classification-based detection, which combines the advan-
tages of both techniques. The principle of a classification-based detection system resides in
constructing its model from malicious traffic as well as benign traffic. To classify an input
the detector just compares the input to both models and assigns the more similar class to
it. Anomaly detection systems and classification-based systems are capable of new attack
detection, but they have problems detecting attacks based on obfuscation techniques [42].

Due to data encryption and also for efficiency reasons this thesis is concerned only
with classification-based network intrusion detection systems, which are not performing
deep packet inspection that analyzes the packet payload. On the contrary, these systems
inspect only headers of packets that are attributed to particular TCP connections. We
also assume that adversaries know all details about principles of the classification-based
system, because the system should be secure even if the adversary knows everything about
it.3 The adversary is capable only to modify the input of the system, but he has to
adhere to protocols of the TCP/IP stack specification. Hence there are several things he

1https://www.mcafee.com/enterprise/en-us/threat-center.html
2https://www.us-cert.gov/ncas/alerts/TA15-119A
3The assumption is derived from the Kerckhoffs’s principle.
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might execute, for example: exploit code modification, adding padding at the application
layer of exploit code or he may manipulate network or transport layer protocols. When
an adversary needs to attack a big count of targets and use many different exploits it is
very impractical for him to manually modify exploit codes or add padding to each of them
separately. Therefore he might find it useful to implement non-payload-based obfuscation
techniques, which would transform known intrusions in an exploit-independent way. Non-
payload-based obfuscation methods’ goal is to camouflage intrusions to make them look
similar to legitimate traffic. The Non-Payload-Based Obfuscation framework described in
this thesis follows this idea and achieves exploit-independent obfuscation by modifying given
exploits at network and transport layers of TCP/IP stack. Considering a classification based
on generalized architecture of intrusion detection system (see Section 3.2), this approach
belongs to the measurement phase-based attacks. In the case of the categorization by
Barreno et. al [21] (see Section 4.0.1), our framework’s method belongs to the exploratory
type of attacks as far as influence is concerned, integrity attack in case of security violation,
and it belongs to the category of indiscriminate attacks in case of specificity [42].

Contributions

In this thesis, a novel dataset was created. The dataset consists of ASNM features extracted
from network traces of legitimate traffic, direct attacks, and obfuscated attacks. Attacks in
the dataset are executed on contemporary vulnerabilities present in 11 services. Vulnera-
bilities that we selected were disclosed to the National Vulnerability Database of NIST in
2018 and 2019.

Then the evaluation of the novel dataset was performed using 6 classifiers. First, the
classifiers were trained on legitimate traffic and direct attacks only. In cross-validation,
the true-positive rate (TPR) of direct attack detection achieved values from 97.63% to
100.00% (with a low false-positive rate). Next, the detection capability of obfuscated at-
tacks was tested using these classifiers, and the experiment proved that many attacks evaded
the detection, and thus caused false-negative predictions. The results of the prediction of
(unknown) obfuscated attacks showed that deterioration of TPR in contrast to the ini-
tial cross-validation experiment ranges from 0.35% to 83.55%. Further, when we included
obfuscated attacks into the training process of the classifier, the ability to detect direct
and obfuscated attacks was raised by range from 0.04% to 81.05%, depending on a par-
ticular classifier. Therefore, including some obfuscated attacks into the training process of
classification-based models showed to be very important.

Cross-dataset evaluation using four classifiers was performed with the novel dataset
and ASNM-NPBO-v1 dataset [39]. TPR of classifiers trained on novel dataset tested on
the ASNM-NPBO-v1 dataset ranges from 54.37% to 86.41%, and TPR TPR of classifiers
trained and tested vice versa achieves values ranging from 9.2% to 37.57%. In the detailed
analysis of the results, significant differences between various vulnerabilities were found.
Classifiers trained using novel dataset and validated on the ASNM-NPBO-v1 dataset de-
tected 96.76% of Apache attacks and only 30.43% of MSSQL attacks. In the opposite
situation (i.e., training on ASNM-NPBO-v1 dataset and validation using our dataset), two
extreme cases can be found in the results – detecting on average 70.38% of attacks on
Gitstack and 0% FTPShell attacks. Therefore, classifiers can successfully detect a high
percentage of completely unknown attacks targeted to some vulnerabilities, but also some
of the unknown attacks targeted to different vulnerabilities are undetectable to them.
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Organization

The structure of this document consists of these chapters: Chapter 2 describes the taxon-
omy of network intrusion detection systems, Chapter 3 describes adversarial attacks divided
by the intrusion detection system’s phases, in Chapter 4 there are attacks which are de-
signed against classification intrusion detection systems, and in chapter 5 there is described
the non-payload-based obfuscation framework. The novel dataset is described in Chapter
6, in Chapter 7 is noted data preparation process, forward feature selection, and experi-
ments with models without knowledge about obfuscated attacks. In Chapter 8 are listed
experiments with obfuscated attacks and cross-dataset evaluation.

6



Chapter 2

Taxonomy of Network Intrusion
Detection Systems

Network intrusion detection systems could be based on one of these three fundamental prin-
ciples: anomaly detection, misuse detection and there are also classification-based intrusion
detection systems that combine both latter approaches.

Anomaly detection works with a normal behavior model and it detects abnormal devi-
ations from the model, which could be later identified as attacks. The fact knowledge of
intrusions is not required implicates it is possible to detect new unknown attack techniques
and we do not need to update the system with new attack information.

Misuse detection needs intrusions specifications for its operation. This approach aims
to detect concrete attack patterns and it searches for weak spots in the monitored system.
Audit data streams are checked for the intrusion patterns and attack signatures, and if
a successful match occurs an alarm is generated. Thanks to precise specifications this
approach is easier to understand and thus implement for developers and analysts The main
disadvantage of this method compared to anomaly detection is the fact it faces problems
detecting novel attacks, because of its requirements for specification [45].

Classification-based intrusion detection systems combine the advantages of both men-
tioned approaches. The principle is based on modeling of legitimate behavior, but also on
the modeling of intrusions. The classification of inspected data is based on similarities with
those models.

2.1 Signature detection principles
Most of the information in this section is based on an article called ”Intrusion Detection
Systems: A Survey and Taxonomy“ by Stefan Axelsson [20]. Signature detection principles
use quit different approach than anomaly detection ones. The difference is that the core of
the detector is built upon a knowledge-base, where are defined all patterns of what signals
legal or malicious behavior. Observation data are being compared to intrusion knowledge
and then the decision is made.

Normal behavior is not modeled in this approach, thus it is not critical to the detector
what the observed systems look like because it is not taken into consideration while making
a decision if the intrusion occurred. These systems have acceptable detection and false
alarm rate. The taxonomy of signature detection principles is illustrated in Figure 2.1.
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Figure 2.1: Classification of Signature detection and inspired principles by Axelsson [20].

2.1.1 Programmed

These systems are programmed with an explicit decision rule. In the decision rule, there is
precisely programmed what is expected to happen from a specific intrusion. The principle
is to implement attack traces that are checked, and the decision is made based on it. This
approach is common in the law field, the detector is based on illegal behavior listing.

State-modeling

The intrusion is encoded as a number of different states in the observation space. These
systems are using time series models. This approach can be split into two subclasses:

State-transition, where the intrusion forms a simple chain, where every part should
take place in order. The second is Petri-net based. The Petri-net is a tree structure, which
consists of states connected with transitions. The states might be fulfilled in parallel until
the destination is reached, thus this approach is more general than the former one.

Expert system

An expert creates the rules, which are later applied to audit data. The core of the detection
system is a set of rules. Typically it is a forward-chaining production-based tool. They are
flexible and use powerful operations such as unification but at the cost of execution speed.

String matching

A very simple method, which uses extremely efficient algorithms searching for substrings.
It is easy to understand for its developers and users. Usually, the system is case sensitive.
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Simple rule-based

The system makes decisions using a base with a set of rules. It is similar to expert systems,
but it is not as sophisticated as them. However, as simpler systems, they have higher
performance.

2.2 Anomaly-based detection principles
Information in this section is based on ”Network Anomaly Detection System: The State of
Art of Network Behaviour Analysis“ article by Shu Yun Lim et al. [45] and an article called

”Intrusion Detection Systems: A Survey and Taxonomy“ by Stefan Axelsson [20].
Three components participate in generic anomaly detection system:

• The Sensor subsystem monitors input traffic which is used for later anomaly detection.

• The Modeling subsystem is responsible for normal behavior model generation.

• The Detection system looks for events with suspicious characteristics in real-time and
flags anomalous activities.

The network anomaly detection system operates in two modes: model construction and
detection. To make the system working correctly it is necessary to train the anomaly
detection sensor. It monitors network traffic events for a period of time, for example, a
few days or weeks. While observing the network traffic it gradually builds a picture of all
hosts. After the time period expires the system generates a measure for the data using a
profiling method. Now it has a baseline of the system’s normal behavior, which consists of
extracted data characteristics for example the state of the network’s traffic load, protocol,
and typical packet size. The behavior model then serves as a pattern of correct network
traffic characteristics in the detection phase. If any abnormal network activity occurs in
the model construction phase the system has the wrong normal behavior model and does
not detect attacks that are based on that anomaly. The complete taxonomy scheme by Lim
is depicted in Figure 2.2 and anomaly detection from Axelsson’s point of view is portrayed
in Figure 2.3.

2.2.1 Learnt Model by Lim

There are two phases of operation in this approach [45]: the learning phase and the anomaly
detection phase. In the former phase, the detection system creates a profile based on the
normal behavior of the specific network or host using machine learning techniques. It is
necessary to train on the system, where it will be later used for anomaly detection because
every network has its special characteristics. There are three approaches based on this
anomaly detection model: Rule-based, Model-based and Statistical-based.

Rules-based

The normal behavior of the monitored network or host is represented by a set of rules.
Those rules are based on comparing a high-level state of the system change patterns that
were derived from the audit data, with penetration state change scenarios.
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Figure 2.2: Network Anomaly Analysis Taxonomy by Lim [45].

Expert System

Expert System extends rule-based systems to a more complex approach. The core of the
system is based on knowledge-base, which has two parts. The first part is a fact-based
represented by a set of assertions which are applied to input audit data, and the second
one is a rule-base which contains a set of rules which describe known intrusion techniques’
scenarios in the system. When a match of an assertion from the fact-base and some rule’s
predecessor pattern is found, the system creates a rule-fact binding. If all the patterns of
one specific rule have been bound with some facts, then the binding analysis process is
triggered. The binding analysis assures the consistency of all the associated variables in
the rule with their binding.

Model-based

The difference of model-based intrusion detection technique compared to Rules-based is
it works on a higher level of abstraction instead of binding audit records to expert rules.
Anomaly detection is based on a model of the normal behavior of the current monitored
network or host. This approach might process input data faster because it uses just audit
data which are relevant to the more general behavior model. Anomalies are detected by
comparing actual input information to the normal behavior model, unusual deviations from
the model are considered suspicious. Thanks to the higher abstraction of the model there
are more intuitive explanations of intrusions which allow us to predict intruder’s next action.
In the Lim’s taxonomy of network anomaly analysis there are 3 examples of model-based
approaches: Data Mining, Neural Networks and Pattern matching.
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Data Mining

Data Mining method at first extracts relevant features from audit data for individual net-
work connections and host sessions. Then a data mining program is applied to those
features. The result is models describing the behavior of intrusions and normal activities.
The system adaptively builds models from a large amount of data, thus its models are
up-to-date and the whole process is efficient.

There are data mining-based frameworks principles that can be split into these three
parts. Meta classification, which allows it to learn correlations between intrusions, associ-
ation rules creation for link analysis, and frequent incident matters of sequence analysis.
The whole process is based on mining audition data, and then using extracted patterns to
train classifiers, which are able to detect intrusions using its knowledge.

Neural Networks

Neural Networks are very efficient at learning system-call sequences, one of the significant
reasons for it is probably the fact neural networks work with high abstraction level input
data extracted from audit data. When trained on a representative command sequences of
a user, the net derives the generalized profile of the user’s normal behavior.

Neural Network Intrusion Detector (NNID) is a useful approach for off-line monitoring
user profiles. It is a backpropagation neural network which is run at the end of each day by
an administrator to learn from what users did at their workstations to build their profiles.
The NNID uses each user profile built on the user’s past behaviors to recognize him from
the current day. If the user has behaved differently in a suspicious way the investigation of
the incident starts.

Neural Networks approach is a very perspective area of network anomaly detection
especially for individual user anomaly detection because they have as high performance
that it is possible to use them for real-time detection.

Pattern Matching

Pattern Matching builds normal traffic profiles based on symptom-specific feature vectors,
for instance, link utilization, packet loss, and the number of collisions. The learning process
is performed online. Traffic profiles building is very sensitive to a monitored network, thus
it is not possible to use them in a different network environment. The tolerance limits need
to be set after traffic profiles are finished because the thresholds are derived from normal
traffic behavior. If new input features exceed the thresholds of set tolerance an anomaly is
recognized.

Statistical-based

The anomaly detector for all subjects generates profiles representing their normal behavior
base. These profiles are stored in very little memory consuming way, and they are required
to be updated fast and efficiently. The reason for it is that profiles might be updated with
each audit record. The system periodically generates quantitative measures of its stored
normal profiles.

Anomalies are being recognized using multiple statistical methods such as the integral
of absolute difference of two functions over a time interval, which were calculated from
profiles data. The difference must not raise above the tolerance threshold, otherwise, it
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would be considered malicious. Another method could be based on for example multiple
of the standard deviation on any side of the mean. There are even more statistics-based
methods, for instance, Bayesian statistics, covariance matrices, and Chi-square statistics.

A serious disadvantage connected with statistical-based approaches is the fact statistics
are not sensitive to the order of events in an intrusion, thus there is considerable informa-
tion loss. It could be fixed using an enhancement which checks intrusion event sequences.
There’s also a problem with setting thresholds right, because if they are too tolerant it
leads to false negatives and otherwise false positives, thus it is critical to the system how
precise thresholds are.

2.2.2 Specification Model by Lim

The specification model is not based on mathematics as much as previous approaches, but
it is based on human expert knowledge. The model is built upon a logic-based description
of expected behavior. Different system element monitoring is combined in this method,
monitored elements range from application to network traffic.

Protocol-based

Protocol-based intrusion detection does not use any statistical-based model, instead, it is
based on the exact specification of the current TCP/IP protocol. The idea of designing a
detector by protocol’s specification has a significant impact on normal model construction
accuracy compared to statistic model-based approaches because statistic models generalize
their view of data and thus have very limited knowledge of monitored network protocols.
For this approach detect anomalies much easier, because of very precise documentation of
a protocol that specifies normal use states any deviation from described usage is considered
suspicious. Hence the basic explanation of the fundamental principle of an anomaly filter
may be described as simply searching for a protocol misuse.

The protocol is defined as a set of rules describing the interaction between communicat-
ing sides. The official definition of protocol theoretical rules is in the description document
(for example RFC), they might also be derived from practical usage of the protocol.

Systems based on this approach do not require any signature database updates, because
they are only based on the protocol description. Hence they are able to detect any attacks
including novel ones.

State-based

This method is making use of the idea that all connection-based network protocols have
states which conform to individual connection parts. Thus there is exactly defined what is
expected at a certain time in the connection for both communicating sides. If something
different happens and thus an unusual change of the state occurs, the anomaly is recognized.
The state model is represented by a state machine.

Transaction-based

The fundamental idea of this approach is that we describe positive behavior cases. Expected
behavior consists of a set of desired actions and a sequence of actions. Specific transactions
that correspond to expected actions are defined. The set of transactions is an integral part
of the security policy.
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Figure 2.3: Classification of Anomaly detection principles by Axelsson [20].

This concept originates from the area of database management systems, but unlike
there it is not necessary for distinct transactions to be executed. The detection system only
monitors the host or network for potential conflicts.

2.2.3 Self-learning systems by Axelsson

These systems learn what is normal behavior of a monitored system. Usually, it takes some
time of observing the network communication while constructing a model of the normal
state.

Non-time series detectors

Non-time series detectors model normal behavior using stochastic models that do not take
time-series behavior into account. There are two approaches to them: rule modeling and
descriptive statistics.

Rule modeling uses information gained from the monitoring of the traffic to create a
number of rules which have to be respected. If a poor match occurs the detector raises an
alarm and the whole situation needs to be investigated.

The latter approach is based on descriptive statistics. It constructs a profile using
collected simple, descriptive, mono-modal statistics and derives a distance-vector for the
traffic and the profile. If the distance exceeds tolerated limit the alarm is raised.
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Time series detectors

Time series detectors are generally more complex than non-time series detectors. There are
several approaches based on this principle, for instance, a Hidden Markov Model and an
Artificial Neural Network, which is described below.

An Artificial Neural Network (ANN) learns what normal behavior of the monitored
communication is like from observed traffic data. Then ANN’s output is compared with
measured communication data, thus the result can be used in the intrusion detection de-
cision. In a concrete system, the final decision might be done for example using a second
stage, which would be implemented as an expert system that decides if the result of the
comparison mentioned above signals an intrusion.

2.2.4 Programmed systems by Axelsson

Programmed systems have to be implemented by someone, thus all intrusions’ principles
are derived from his knowledge. What is considered abnormal decisions are based on the
opinion of the user of the system.

Descriptive statistics

Descriptive statistics based systems build a model of the normal behavior of the monitored
system with parameters. Usable parameters might be for instance the number of unsuc-
cessful logins, network connections count, the number of commands with error returns, etc.
This principle can be divided into three characteristic approaches:

Simple statistics based systems, which consist of higher-level components that use col-
lected statistics for the final decision.

Simple rule-based systems that need rules provided for the user. These rules are later
applied to the collected statistic data.

Threshold systems are the simplest version of descriptive statistics detectors. The user
sets thresholds, which trigger alarms. Thresholds might be represented as simple ranges or
simple conditions, for example, the number of unsuccessful login attempts > 3.

Default deny

Default deny system needs specific circumstances, in which the monitored system operates
in a security-benign manner, to be set. All deviations from this operation, which are not
explicitly permitted, are then labeled as intrusive.

State series modeling is a method, which based on the state machine theory. The policy
is encoded as a set of states of the state machine and the transitions between them are
implicit in the model. Only explicitly allowed actions do not cause the detector to raise the
alarm. If any action, which was not set is done, then a transition between states occurs
and thus the alarm is raised by the detection system. Alarm triggering actions might be
for instance file accesses, the opening of ports that are considered secure, etc. The rule
matching engine is simpler and not as powerful as a full expert system.

2.2.5 Other Anomaly intrusion detection principles by Debar

This section is based on the article ”A revised taxonomy for intrusion-detection systems“
by Hervé Debar et al. [30]. These principle models normal behavior and the model is built
upon information collected by monitoring of users or traffic communication. An intrusion
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is detected when the behavior deviates from the normal state in an unusual way. In other
words, the detector compares current behavior with its normal behavior model and then
makes a decision if an alarm should be raised. Anything anomalous is considered intrusive.

These systems have a useful advantage in their possibility to detect new intrusions. Thus
it is also possible to use them for the semiautomatic discovery of novel attacks. They are
able to detect ”abuse of privilege“ attack types, which do not use any security vulnerability
exploitation, as well.

On the other hand, the mentioned advantages are accomplished at the cost of a high
false-alarm rate. Another problem is that when the observed system changes it is necessary
to actualize the detector’s normal behavior model. Hence retraining of the detection system
has to be performed and while retraining the system is unable to detect any attacks and if
any intrusion occurs during the training process it learns it as normal behavior.

Several approaches have been proposed for the behavior intrusion detection: User In-
tention Identification and Computer Immunology. Some approaches have been already
described in Section 2.2: Statistical-based, Expert systems and Neural networks.

User Intention Identification by Debar

This approach models normal user behavior using the model which consists of a set of
high-level tasks, which the user has to perform. High-level tasks are then transformed into
actions, which are associated with collected audit data from the monitored system. If any
action does not fit to the task pattern, the system raises an alarm.

Computer Immunology by Debar

This approach models the normal behavior of services instead of users. In the model, there
are used short sequences of system calls, which are usual for the modeled service. Intrusions
tend to use extraordinary system calls because they need to open specific files, which are
not otherwise used very commonly. The systems get audit references from the reference
table, which includes all the known allowed sequences of system calls. This technique work
as an online monitoring detector.

There is a very low false-positive rate if the reference table is complex enough. The
problem of this technique is it does not detect intrusions based on configuration errors,
because such attacks use legitimate actions to gain unauthorized access.

2.3 Classification-based detection principles
The classification-based systems are in Axelsson’s article called as signature inspired detec-
tion principles, which are portrayed in Figure 2.1.

These systems use both points of view on the problem, it models normal behavior of
observed elements and the intrusive behavior of the intruder. However, they are called

”signature inspired“, because the intrusion model is much stronger and more explicit than
the model describing normal behavior. These systems are good at detecting very advanced
intrusions because they have the intrusion knowledge and combine it with normal behavior
knowledge gained from the normal model. These detectors are in some senses respected as
the most advanced intrusion detection systems in this survey.
Self-learning. This approach’s idea is to learn normal behavior and the same behavior
infected with intrusions, thus the detector is going to recognize malicious traffic specifically
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for the monitored network or host. The learning process requires examples with normal
behavior and prepared attacks, which have to be labeled as intrusive. These systems might
also use methods, such as Automatic Feature Selection, where the detector learns automat-
ically what features are important for intrusion recognition.

2.3.1 Machine learning

In this section are described some widely used techniques approached in models, which are
used by classifiers of intrusions detection systems [25].

Support Vector Machines (SVM)

SVMs are supervised learning models, where data is represented as points in the space, and
its goal is to construct maximum-margin hyperplane and divide these points into classes.
This algorithm is searching for maximally wide spaces between bordering points of different
classes.

Artificial Neural Networks (ANN)

ANNs are networks consisting of mutually connected perceptrons, called neurons, which
were inspired by biological neurons. These neurons’ outputs connected to inputs of some
other neurons and their behavior is defined by weights and an activation function. In the
learning process weights are updated using the back-propagation algorithm.

Deep Neural Networks (DNN)

DNNs are ANN which include multiple layers that are connected to previous and succeeding
layers, except for the input layer and output layer. Layers that have predecessors and
successors are called hidden. The advantage of DNNs is that their input might be unlabeled
and unstructured data because they are able to extract related features on their own.
Convolutional Neural Networks (CNN). CNNs consist of two main parts, which have
different functionalities: feature learning part and classification part. The former part is
made of convolutional or sub-sampling layers and its task is to create a feature map and
extract important information from it. It sub-samples its input in order to reduce the
dimensionality of each feature map. The latter part consisting of one or two layers is fully
connected to the last layer of the previous part and classifies the data.

2.4 Honeypots
Honeypots have no functionality in the production system, except being bait for adversaries.
There should not be any traffic communicating with the honeypot. If any communication
directed to honeypot occurs or the honeypot itself starts sending packets to the network,
then it is considered malicious. Honeypots can be split into two categories based on how
much activity might an attacker do there [44]:

2.4.1 Low-Interactive

These systems are designed to emulate only some functionalities of the system that they ap-
pear as. Usually, these systems emulate some services, which allow the attacker just limited
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interaction, because the emulation is not full. For example, FTP service limited to login
function and some basic commands. The advantage of these systems is low maintenance
requirements and the fact it does not use the whole operating system. There is also not a
high risk of an attacker, because he only controls the partial emulation of service, which is
immediately reported to honeypot’s logs. There is also a risk that the attacker discovers
the fact he is interacting with only the honeypot if he uses some of the not implemented
commands.

2.4.2 High-Interactive

High-Interactive honeypots are more sophisticated than Low-Interactive ones. They are
run at real systems with real operating systems. Services used by these honeypots are
completely installed on the system. There is a higher risk of using these systems because a
potential attacker takes control over the whole operating system and might use it in order
to intrude on other hosts in the network. The main advantage of these systems is that their
owners might deeply investigate what is the attacker doing and deduce what is his aim. On
the other hand, its drawback is the fact these systems require a full machine, which only
baits potential attackers, which might be quite expensive.
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Chapter 3

Taxonomy of Adversarial Attacks

This chapter is mostly based on the article ”Adversarial Attacks against Intrusion Detection
systems: Taxonomy, Solutions and Open Issues“ by Igino Corona et al. [28] and ”Adversarial
Attacks and Defences: A Survey“ by Anirban Chakraborty et al. [25]. And the chapter was
written with a focus on network-based attacks because host-based attacks are beyond the
scope of this thesis.

Intrusion detection systems with other tools constitute the computer security infrastruc-
ture, hence they might be vulnerable to attacks by the same intrusions they try to detect.
Thus intrusion detection systems became targets of attacks, and if they are successfully
exploited they might transform themselves into attacking tools serving an intruder.

3.1 Goals of attacks on IDSs
There are six main goals of attacks against intrusion detection systems [28]:

Evasion

It modifies the intrusion pattern to make the attack undetected. Hence, it causes that an
intrusion attempt evinces the characteristics of benign network communication.

Overstimulation

In overstimulation attacks, the attacker tries to generate false positive alerts of IDS by
creating a benign communication that evinces aspects of malicious intrusions. Many attack
patterns are applied to overstimulate the detection system. These attacks are less popular
than evasion attacks since their effect does not lead to compromise of the system but to
exhaustion of the operator who analyzes the alerts.

Poisoning

The aim of this approach is to insert malicious patterns into the training set for the intrusion
detection system and mislead the learning phase into a state, where the detector will be
unable to detect prepared intrusions.
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Denial Of Service (DoS)

Attacks of this type use patterns to disable or at least slow down the detector sensor.
If the network traffic is not allowed to transfer into the internal network of the attacked
system without proper inspection by the intrusion detection system, then slowing down the
detector might cause network traffic transfer delay and packet drops.

Response Hijacking

This type of attack tries to fake alarm descriptions for response units to make them react
inappropriately, for instance, to make them block some legitimate connections.

Reverse Engineering

The goal is to extract information about the intrusion detection system’s internal implemen-
tation and use the gained information to design new attack patterns that take advantage
of it.

3.2 Attack classification based on generalized architecture of
Intrusion Detection Systems

There are many different architectures that constitute Intrusion Detection Systems. How-
ever, most of them are based on a relatively general architectural framework, which con-
sists of these four components: event generator, event analyzers, response units, and event
databases. The framework’s operation can be divided into these three phases: Measure-
ment, Classification and Response [28].

3.2.1 Measurement phase

Measurement is performed by event generators. A vector of measurements (aka features) is
used to characterize and event pattern. The detector uses features to differentiate intrusions
from legitimate actions.

There are four categories of attacks which target network measurements in this phase:

Set of Measures

The attacker can exploit limits in the discriminant capability of the chosen set of mea-
surements in order to evade detection. Even if intruders are not capable to perform the
previously mentioned attack, they might try to evade using novel or small variations of a
known intrusion. Thus the intrusion detection system should be designed counting with
the possibility that attacks can evolve.

Input Data

The attacker modifies the input data for example in a system call, which returns the list of
running processes. This method is usual at the host level, but this problem might encounter
in a network environment as well, for example, if the attacker has control over a router.
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Event Reconstruction

These attacks are critical especially for network sensors and here are listed some examples:

• Tunneling - Using the type of traffic, that is not observable by the network sensor.

• Desynchronization - Evading the network sensor view, for example using TTL1 to
elude the network sensor by taking advantage of the network topology.

• Encoding Variations - Acquiring different semantic of data on each communicating
side, which can be handled into intrusion.

• Segmentation - The network traffic is divided into segments different on the source
side differently than on the destination side and taking advantage of the fact some
OSs2 have a different policy when dealing with duplicate or overlapping segments.

Integrity and Availability Attacks

There are more techniques in this category, but most of them are not listed, because this
thesis focuses on network-based analysis. An example of availability attacks is overloading
the network sensor with too much traffic, which it cannot inspect as fast as they come, so
it starts dropping packets.

3.2.2 Classification phase

The classification process is implemented in event analyzers. Internal models are created
and rules are applied for event pattern classification to decide if the pattern is legitimate
or intrusive. If the pattern has been determined as intrusive, then an alarm is generated
and the incident is presented human-readable form. This process is performed usually in
real-time.

In modern classifiers, there is a trend to develop an event analyzer based on machine
learning, which requires statistical representative patterns. There are three main problems
associated with statistical representativity described bellow:

• Privacy - Collecting legitimate users’ data may involve sensitive information and cause
problem with privacy.

• Real-world intrusions - It is necessary to keep a set of known real-world intrusions
and update it as quickly as possible.

• Ground Truth - It is critical to have training data for the system validated properly.
Validation requires deep expertise and training data amount is huge. This problem
is the reason why it is practically possible for intruders to use poisoning attacks.

Here are described some attack issues against event analyzers:

Difference between Alert Space and Intrusion Space

Let us define intrusion space (I) and alert space (A):
𝐼 = 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑣𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠,

1Time To Live in https://tools.ietf.org/html/rfc791
2Operating Systems
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𝐴 = 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑐𝑎𝑢𝑠𝑖𝑛𝑔 𝑎𝑛 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑖𝑠𝑖𝑛𝑔,
then
𝑀 = 𝐼 −𝐴 = 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑎𝑙𝑎𝑟𝑚𝑠,
𝐹 = 𝐴− 𝐼 = 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑎𝑘𝑒 𝑎𝑙𝑎𝑟𝑚𝑠.
Sets 𝑀 and 𝐹 might be used for evasion or overstimulation attacks in techniques listed
below:

• Contextual Information Exploitation, for example about observed hosts and services.

• Mimicry Attacks - this type of attack tries to mimic legitimate patterns.

• Cost-Sensitive Classification - classifying intrusions depending on damage cost.

• Classifier Ensembles - using multiple parallel classifiers, where each of them is designed
to detect its individual intrusion class.

• Automatic Evaluation - evaluation of how vulnerable are different classifying algo-
rithms against evasion and overstimulation intrusion methods.

Pattern Matching

Pattern Matching algorithms might be slowed down using a specially crafted pattern which
causes for example worst-case complexity scenario of the algorithm, which results in DoS3

attack.

Description of Intrusive Events

An attacker might create intrusion, which causes the detector to produce too general or
wrong alert description.This could lead for example into triggering defense mechanisms,
which would create wrong firewall rules blocking some legitimate users.

There are several defense techniques dealing with this problem. Classification confi-
dence measuring added to every alert description. Automated Attack Inference - Anomaly
detection systems might try to classify the unknown attack to most similar attack patterns
automatically. Model of the Adversary - modeling intruder’s goals and behavior.

Poisoning Attacks

There are several machine learning (ML) techniques, which are being used in intrusion
detection systems: Support Vector Machines (SVM), Hidden Markov Models (HMM), N-
grams, Decision Trees and Artificial Neural Networks.

However, ML-based algorithms might be vulnerable in their learning process. If an
attacker successfully inserts his prepared intrusions into the set of training examples, the
algorithm learns the wrong pattern and will not be able to detect the attack associated
with the inserted intrusion.

There are defense methods against poisoning attacks, for example, Training Data Ma-
nipulation based methods:

Reject On Negative Impact, which creates data sets with including and excluding a
test sample, and if the sample decreases the trained model success rate it is excluded as a
poisoning attack.

3Denial of Service
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Or the method, which works with multiple intrusion detectors, which all train on their
own randomly selected training samples, thus it can statistically determine from variations
of these detectors results which sample is poisoning.

3.2.3 Response phase

Response units’ function is to react to the raised alarm in order to save the defended system.
For example, a new firewall rule might be added to block the current attack. There are
some issues related to the response phase described below:

Response Effectiveness

To make the intrusion detector as effective as possible it is useful to evaluate response
effectiveness. The actions detector makes might have a good impact, but it may also cause
damage to the system, for example, DoS attack against infrastructure using firewall blocks.

There are several techniques trying to solve problems associated with this issue:
Game Theory, which requires the definition of an attacker model, potential costs of each

action it can perform against him, values of each protected element, etc.
Response Frameworks with their own infrastructures, which perform necessary actions

to prevent intrusion.
Cost-sensitive models, which calculate with costs of intrusion defense actions and costs

of potential damage dealt by intrusions.
There is also problematic with response time because for a successful intrusion preven-

tion process it is necessary to be faster than the attack.

Response Feedback

Response Feedback mechanisms might be used to prevent for instance DoS attack mentioned
in the previous paragraph. We might try to achieve it by simple checking the blocked traffic
characteristics, because in the case of well-known intrusion it may be possible to estimate
its consequences.

Response Evaluation

The idea of this issue is that we could simulate an attacked infrastructure and intrusions
attacking it. From the simulation, we could potentially evaluate the costs of an intrusion
and damage dealt.
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Chapter 4

Taxonomy of Attacks against
Classification-Based IDSs

This chapter is based on the article ”Adversarial attacks and defences: A survey“ by A.
Chakraborty [25]. There are three types of adversarial attacks, which are being designed
against classification-based intrusion detection systems to explore it, evade detection, or poi-
son the classifier. Hence there are three fundamental types of these attacks: Exploratory
attacks (in Section 4.1), Evasion attacks (in Section 4.2) and Poisoning attacks (in Sec-
tion 4.3). The attacks might be also categorized based on other properties, which is de-
scribed in the following subsection:

4.0.1 Categorization by Barreno

The attacks might be categorized based on Influence, Security Violation, and Specificity.
This subsection is based on the article: ”The security of machine learning“ by M. Barreno
et al. [21].

Influence

These categories discriminate against the capability of the attacker.

• Causative - the attacker influences training data for the classifier.

• Exploratory - the attacker cannot influence training data for the classifier, but he
sends new instances to the classifier and examines its decisions.

Security Violation

These categories depend on the harm the attacker might cause.

• Integrity - the attacker’s intrusive data is able to evade the classifier and go through
as false negatives.

• Availability - the attack leads into Denial of Service, mostly it is caused using false
positives.

Specificity

This categorization distinguishes how specific are targets of the attack.
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• Targeted - the attack specializes against a concrete instance.

• Indiscriminate - the attack tries to manipulate the classification of a wide distribution
of instances.

4.1 Exploratory attacks
These attacks do not try to manipulate the training set, but they are designed to extract as
much information about the classifier as possible. They are being used in the testing phase
of the attacked intrusion detection system. Attacks of this type look the same as legitimate
traffic and do not cause any harm to the system, thus they evade the detection and gain
information about tested learner [25].

4.1.1 Model Inversion

In this approach, the aim is to perform model inversion in order to get information about its
inputs using output data. The linear regression model 𝑓 estimates the patient’s drug dosage
from his medical history information and genetic markers. Then the mentioned model 𝑓
is used as a white-box and an example of data (𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑦), it is possible to gain
genetic marker 𝑥1 from the inversion of model 𝑓 . This method can be enhanced and also
used for black-box models, for example, to recover images in case of face recognition [25].

4.1.2 Model extraction via APIs

This attack is focused against Machine learning APIs. The attacker has no information
about the model or training data, but the target API returns him precision confidence
values and class labels. Therefore, the attacker tries to solve it mathematically. Param-
eters or features can be calculated from equations with supplied confidence values. The
attacker needs to perform 𝑑 + 1 queries with d-dimensional inputs in order to calculate
𝑑+ 1 parameters [25].

4.1.3 Member Inference Attack

The black-box target model is attacked in this method. The attackers send queries with
his dataset to the target model. The target model returns him information in the form of
vectors of probabilities, which specify recognized classes of queried data. Using the queried
dataset as training dataset and output vectors from the target model the attacker builds
shadow models. Then he constructs a training structure for the attack model. Shadow
models have input from the training dataset and also a new testing dataset, then their
outputs are labeled depending on input sets. The labeled dataset is used as training data
for the attack model, thus the attack model is trained to categorize its input data whether
are they from the training dataset or the testing dataset. Therefore, the attack model is
able to estimate which data were in the training dataset of the black-box target model [25].

4.1.4 Information Inference

An attacker uses a meta-classifier to extract applicable information from a machine learning
system. The attack requires information about training data, but no information about the
target system internal, thus it attacks a black-box. An example of this attack is a public
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API of the speech recognition system, which is based on Hidden Markov Models. For an
attacker, it is possible to extract the information he should not be able to extract, for
instance, the accent of the users [25].

4.2 Evasion attacks
Information in this section was adopted from the article ”Adversarial Attacks and Defences:
A Survey“ by Anirban Chakraborty et al. [25]. Evasion attacks try to evade the detector,
in other words, to not be recognized as an attack and intrude the system.

4.2.1 Adversarial Examples Generation

Changing samples in order to damage the classifier to make it unable to detect the intru-
sion. This approach is divided into two categories based on which phase of the classifier
implementation it is trying to manipulate.

Training Phase Modification

Training data might be modified in two manners:
Label Manipulation - The adversary is able to modify the training labels only. In the

study [22] researchers randomly flipped 40% of the training data labels, which worsened
the classifier enough for their adversary task.

Input Manipulation - The attacker is capable to modify also the input features. Thus
he is able to influence the decision boundary of the classifier into his favor.

Testing Phase Generation

There are two types of this approach depending on the knowledge of the tested setup.
White-Box Attacks - The framework (from [62]) is searching for the perturbations which

are added to input data samples for the attacked classifier. Final found perturbations
should be able to manipulate the classifier to classify the modified sample differently. At
first direction sensitivity estimation process is performed, then the perturbation is selected,
which is then checked for its ability to be misclassified by the neural network and the
feedback is sent back to the direction sensitivity estimation process.

Black-Box Attacks - An example of this approach is the technique called Jacobian based
Data Augmentation. This technique’s aim is to learn a substitute for the attacked model,
which is later used to scheme new inputs for the black-box. The idea is that new inputs
will be classified by the black-box the way the intruder wants [25, 61].

Transferability of Adversarial Samples

The idea of this principle is that samples generated by one model might affect the second
model. It might be intra-technique, where are both models of the same type, for example,
Neural Networks, or cross-technique, where are models of different types, for instance,
Neural Network and Support Network Machine.

4.2.2 Generative Adversarial Attack (GAN)

There are two deep learning networks in the GAN procedure, which play different roles in
the learning procedure. The first is a generative deep learning network, whose task is to
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generate samples that cannot be differentiated from the training set for the second network.
The second one is the discriminative deep learning network, which has to determine if its
input samples come from a generative network or from the training set. These two networks
compete with each other and that leads to their accuracy advancement. The training
finishes when the discriminative network makes a mistake.

4.2.3 GAN based attack in Collaborative Deep Learning

There are two collaborative neural networks, one of them is the victim training classification
of its training set and the second is the attacker, which uses GAN for generating samples
similar to the victim’s training set. The GAN has access to honest outputs of the victim.
The goal is to amass as much information about the victim’s training set classes as possible.

4.2.4 Adversarial Classification attack based on Game Theory

The idea is based on game theory, where the classifier stands against the adversary. The
adversary’s goal is to modify the training samples to make them be classified as negative
instead of positive. The classifier’s goal is to classify even modified samples as intrusions.
The classifier’s game strategy is based on a cost-sensitive Bayes learner, which searches
for the minimum cost of its action while expecting the adversary to use the best possible
strategy.

4.2.5 Obfuscated Attacks

The obfuscation principle is changing adversary network traffic characteristics in order to
appear as legitimate traffic. Hence the obfuscated attack cannot be detected by the classifier
and is falsely classified as legitimate [41].

Tunneling

In the work [40] is discussed an idea of an intruder having a machine that is cooperating
with him before he starts attacking the network hosts. In such a situation the tunneling
method might be quite useful for the adversary. The adversary is using buffer overflow
attacks which are tunneled through HTTP or HTTPS traffic in order to evade the IDS and
Network Behavioral Analysis (NBA) system. The attack uses two modules: the cooperat-
ing machine called the Callback in the target network and the adversary’s outer machine
called the Fake HTTP Server, which waits for connection by the Callback. The attack
is performed through the Callback, which is controlled by the Fake HTTP Server, while
all communication between them, which is protocol independent, is camouflaged in the
HTTP/HTTPS traffic. There was discovered that the classifier, which was trained on di-
rect attacks and legitimate traffic only, was incapable to detect tunneled attacks and there
was a very significant improvement when the classifier was trained on dataset extended of
tunneled attacks.

Non-payload-based

These attacks are focused against legitimate behavior model. Data is not important in
this attack, but it achieves obfuscation by modifying packets’ headers and communication
behavioral characteristics.
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In [41] were performed experiments, where the obfuscation tool was used in order to
improve the classification intrusion detection system. The obfuscation tool was based on
Advanced Security Network Metrics. Experiments proved that training the classifier on a
dataset including obfuscated attacks improved its capability to detect the same or similar
obfuscated attacks.

4.3 Poisoning attacks
Poisoning attacks are used to contaminate the training data set and influence the network
intrusion system. Here are listed some of the evasion and poisoning attacks. This section
based on a survey in the article ”Adversarial Attacks and Defences: A Survey“ by Anirban
Chakraborty et al. [25].

4.3.1 Attack on Support Vector Machines

SVM’s training and testing data are provided from the same distribution, but in adversarial
learning, it is possible to exploit the system using data modification. For adversary, it may
not be possible to get access to the SVM’s training dataset, but he might find datasets with
similar distributions.

4.3.2 Poisoning attacks on Collaborative Systems

There are poisoning attacks, which require a thorough knowledge of the learning system,
that are able to generate data which significantly decreases the system’s effectiveness.

Three types of these attacks have been announced: Availability Attack, where the at-
tacker tries to raise the error of the collaborative filtering system as much as possible.
Integrity Attack, where the adversary’s goal is to maneuver the acceptance of a subset of
items. And Hybrid Attack, which is the combination of both mentioned attacks.

4.3.3 Adversarial attacks on Anomaly Detection Systems

The aim of these attacks is to move the centroid of the normal behavior space to the
distribution of prepared intrusion characteristics. The adversary’s goal is to include its
intrusion into the set of negatively classified items.
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Chapter 5

Non-Payload-Based Obfuscation
Framework

In this chapter, there are described Advanced Security Network Metrics (ASNM) features,
and the Non-Payload-Based Obfuscation (NPBO) framework is specified. This chapter is
based on two articles: ”Improving Network Intrusion Detection Classifiers by Non-payload-
Based Exploit-Independent Obfuscations: An Adversarial Approach“ by I. Homoliak et
al. [42] and ”ASNM Datasets: A Collection of Network Traffic Features for Testing of
Adversarial Classifiers and Network Intrusion Detectors“ by I. Homoliak et al. [39].

The obfuscation framework was designed in order to create a non-payload-based obfus-
cation tool, which can modify the exploit a remote attack in such a way that the target
classifier is not able to detect it as an intrusion. The Behavioral state diagram of the obfus-
cation tool is depicted in Figure 5.1. Then a new classifier is trained on the dataset, which
includes obfuscated exploits’ features and thus it is better at detecting other obfuscated at-
tacks. The mentioned hypothesis has been proven to hold in [42]. The ASNM features are
extracted from the observed network communication by the framework in order to describe
network traffic characteristics.

5.1 ASNM
The original ASNM feature list was introduced in the Master’s thesis [37] including 167
features, and it was formally described in [36]. Then the content of the ASNM features list
was expanded to the number equal to 194 features in [38]. These features were split up into
five categories based on their principle.

5.1.1 Statistical Features

In this category, there are features that express the statistical properties of TCP connec-
tions. Statistical operations are being used in this approach, such as count, mode, median,
mean, standard deviation, there are also some other features like ratios of specific packet
header fields or whole packets. In these features there are is also information about their
incidence time, but there is no context available for them, unlike in the dynamic features
category. There is also a dichotomy of some features based on if they were going inward or
outward.
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5.1.2 Dynamic Features

The role of features in this category is to present the dynamic properties of TCP connec-
tions. These features do not have to be necessarily real, but they also might be simulated.
Some dynamic features respect the context of the inspected TCP connection. The main
difference between dynamic and static features is that dynamic features reflect speed or
error rate of the analyzed TCP connection, and also this category pays attention to how
many acknowledgment packets were delivered, etc. Some of these features discriminate the
direction of observed packets as well.

5.1.3 Localization Features

Features in this category represent information about communicating endpoints of the
inspected TCP connection. They all share an aspect that they do not change in time,
but stay static until the connection ends. Most of these features also respect directions of
analyzed TCP connection flows. Another characteristic of these features is they do not deal
with the context of the TCP connection.

5.1.4 Distributed Features

The most important trait of distributed features is the fact they are distributed into time
intervals. These intervals lengths are constraint in logarithmical scale, for example, 1s,
2s, 4s, or 8s. Measured features distributed in a constant count of intervals might be for
instance count or lengths of packets observed. Distributed features respect the context of
the inspected TCP connection and packets’ directions as well.

5.1.5 Behavioral Features

Behavioral features express properties related to the behavior of an analyzed TCP con-
nection. For instance successful or prohibited connection closing, a number of new TCP
connections since the beginning of a TCP connection. There are also some more compli-
cate operations over captured data about inspected TCP connection, such as the polyno-
mial approximation of packet lengths in a time domain or a packet index number domain,
coefficients of Fourier series with respect to the direction of a TCP connection, etc. [39]

5.2 NPBO Framework Specification
The NPBO Framework description, which also includes all the following definitions in this
section is from the article: ”Improving Network Intrusion Detection Classifiers by Non-
payload-Based Exploit-Independent Obfuscations: An Adversarial Approach“ by I. Homoliak
et al. [42].

The framework looks at internet communication as a session between two sides: the
client and the server. Both participants of a session communicate using the application
protocol of the TCP/IP stack, which intervenes in data transfer between them. The ap-
plication data transfer TCP/IP stack is represented as 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑘, which is bounded to
connection-oriented protocol TCP at L4, Internet protocol IP at L3 and Ethernet protocol
at L2. The connection 𝑘 consists of start and end timestamps, ports of the client and the
server, IP addresses of the client and the server, sets of packets by the 𝑐𝑙𝑖𝑒𝑛𝑡 𝑃𝑐, and by
the 𝑠𝑒𝑟𝑣𝑒𝑟 𝑃𝑠.
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5.2.1 Features Extraction

The features extraction process is defined as a function that maps a connection 𝑘 into space
of features 𝐹 :

𝑓(𝑘) ↦→ 𝐹,

𝐹 = (𝐹1, 𝐹2, . . . , 𝐹𝑛),
(5.1)

where 𝑛 means the count of defined features. Every particular function 𝑓𝑖, which extracts
feature 𝑖 is defined as a mapping of a connection 𝑘 into feature space 𝐹𝑖:

𝑓𝑖(𝑘) ↦→ 𝐹𝑖, 𝑖 ∈ {1, . . . , 𝑛}, (5.2)

and each element1 of codomain 𝐹𝑖 is defined as

𝑒 = (𝑒0, . . . ,𝑒𝑛), 𝑛 ∈ N0,

𝑒𝑖 ∈ N | 𝑒𝑖 ∈ R | 𝑒𝑖 ∈ Γ+, 𝑖 ∈ {0, . . . , 𝑛},
Γ = {𝑎− 𝑧,𝐴− 𝑍, 0− 9},

(5.3)

where Γ+ denotes positive iteration of the set Γ.

5.2.2 Intrusion Detection Classification

Let us define 𝑉 as the space of samples, where a sample means the vector of the network
features, which were extracted from a specific connection. And let 𝑌 be the space of
possible labels. Then let us define 𝑋 = 𝑉 × 𝑌 as the space of labeled samples. Let
𝐷𝑡𝑟 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a training dataset consisting of 𝑛 labeled samples, where 𝑥𝑖 =
(𝑣𝑖 ∈ 𝑉, 𝑦𝑖 ∈ 𝑌 ). The classifier 𝐶 maps unlabeled sample 𝑣 ∈ 𝑉 to a label 𝑦 ∈ 𝑌 :

𝑦 = 𝐶(𝑣), (5.4)

and learning algorithm 𝐴 maps the given dataset 𝐷 to a classifier 𝐶:

𝐶 = 𝐴(𝐷𝑡𝑟). (5.5)

The notation 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝐴(𝐷𝑡𝑟, 𝑣) stands for the label assigned to an unlabeled sample 𝑣 by
the classifier 𝐶, build by learning algorithm 𝐴 on the dataset 𝐷𝑡𝑟. All features extracted
from the connection 𝑘 can be used as an input of the trained classifier 𝐶 which predicts the
target label:

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝐴
(︀
𝐷𝑡𝑟, 𝑓(𝑘)

)︀
, (5.6)

where 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∈ {Intrusion,Legitimate}.

5.2.3 Non-Payload-Based Obfuscations

When a remote not obfuscated attack occurs, its communication is expressed as a connection
𝑘𝑎. Then, features extracted from 𝑘𝑎 can be defined as

𝑓(𝑘𝑎) ↦→ 𝐹 𝑎 = (𝐹 𝑎
1 , 𝐹

𝑎
2 , . . . , 𝐹

𝑎
𝑛 ). (5.7)

They are distributed to the formerly trained classifier 𝐶. Let us assume that the target
label is predicted by the classifier 𝐶 as an intrusion correctly. Because the connection 𝑘𝑎,

30



Figure 5.1: Behavioral state diagram of the obfuscation tool from [42].

or connection with similar behavior properties to 𝑘𝑎, was included in the dataset 𝐷𝑡𝑟 and
the classifier 𝐶 was trained on the dataset 𝐷𝑡𝑟.

When the non-payload-based obfuscator is used to create obfuscated version of a remote
attack with connection 𝑘𝑎, its connection is defined as 𝑘′𝑎. The connection 𝑘′𝑎 differs from the
original connection 𝑘𝑎 by its modifications, which changed its network behavioral properties.

The obfuscation tool uses operations, such as insertion, removal, and transformation of
the packets, in order to modify the 𝑃𝑐 and 𝑃𝑠 packet sets of the modified connection 𝑘𝑎.

The modifications of packet sets 𝑃𝑐 and 𝑃𝑠 of the connection 𝑘𝑎 might transform its
features 𝐹 𝑎 to different ones. Therefore, features, which are extracted from connection 𝑘′𝑎
are defined as

𝑓(𝑘′𝑎) ↦→ 𝐹 𝑎′ = (𝐹 𝑎′
1 , 𝐹 𝑎′

2 , . . . , 𝐹 𝑎′
𝑛 ) (5.8)

Hence, here is an assumption that the likelihood of a correct prediction of features 𝐹 𝑎′

by the classifier 𝐶 is lower than the likelihood of a correct prediction of features 𝐹 𝑎. In
addition to the previous assumption, let us assume that the classifier 𝐶 ′ trained by learning
algorithm 𝐴 on training dataset 𝐷′

𝑡𝑟, which includes some obfuscated intrusions, is going
to be better at the prediction of unknown obfuscated intrusions than classifier 𝐶, which
was not trained on any obfuscated intrusions. These assumptions have been fulfilled with
experiments in [42].

1Representing a specific dimension of a feature.
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Figure 6.1: Network infrastructure for capturing attacks and legitimate traffic.

Chapter 6

The Novel Dataset

The goal of this work is to construct a novel dataset intended for the evaluation of net-
work intrusion detection systems. Beside plain versions of network attacks, the dataset
should contain obfuscated attack instances, which makes the detection more challenging.
Although such a dataset has been already proposed in the literature [42], the vulnerable
services that were exploited in that dataset are obsolete, and thus the detection of contem-
porary obfuscated attacks by classifiers using ASNM features is questionable. We aim to
address this limitation by creating a novel dataset with the most recently discovered remote
vulnerabilities (i.e., years 2018 and 2019).

All attacks were performed using Metasploit framework [66] on a machine with Kali
Linux [57] operating system. All target machines are virtual appliances running on Or-
acle VM VirtualBox [58] and during attacks, they were connected to the host machine
using Host-Only Adapter [59]. The scheme with devices used in order to record attacks
and legitimate traffic is depicted in Figure 6.1. All used obfuscation techniques and their
instances, which are supported by the NPBO framework, are listed in Table 6.1. Several
attacks were performed and recorded using tcpdump, each of them generated multiple TCP
objects, which however included some legitimate connections as well, because always there
was a legitimate connection to a created shell, so they are listed in the Other Legitimate
Traffic row. Some legitimate communications with vulnerable services were simulated in
the virtual environment using the same machines as were used for attack simulations. All
TPC objects are listed in Table 6.2.

6.1 Data Capture and Metrics Extraction
Whole metrics extraction procedure is depicted in Figure 6.2. All attacks were recorded
using the NBPO framework, which uses tcpdump [81] as a tool for packet transfer captur-
ing. Thus every attack corresponds to one pcap TCP dump file [81]. These files are stored
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Technique Parametrized Instance ID

Spread out packets
in time

∙ constant delay: 1s (a)
∙ constant delay: 8s (b)
∙ normal distribution of delay with 5s mean 2.5s standard deviation
(25% correlation)

(c)

Packets’ loss ∙ 25% of packets (d)

Unreliable network
channel simulation

∙ 25% of packets damaged (e)
∙ 35% of packets damaged (f)
∙ 35% of packets damaged with 25% correlation (g)

Packets’ duplica-
tion

∙ 5% of packets (h)

Packets’ order
modifications

∙ reordering of 25% packets; reordered packets are sent with 10ms delay
and 50% correlation

(i)

∙ reordering of 50% packets; reordered packets are sent with 10ms delay
and 50% correlation

(j)

Fragmentation

∙ MTU 1000 (k)
∙ MTU 750 (l)
∙ MTU 500 (m)
∙ MTU 250 (n)

Combinations

∙ normal distribution delay (𝜇 = 10𝑚𝑠, 𝜎 = 20𝑚𝑠) and 25% correla-
tion; loss: 23% of packets; corrupt: 23% of packets; reorder: 23% of
packets

(o)

∙ normal distribution delay (𝜇 = 7750𝑚𝑠, 𝜎 = 150𝑚𝑠) and 25% corre-
lation; loss: 0.1% of packets; corrupt: 0.1% of packets; duplication: 0.1%
of packets; reorder: 0.1% of packets

(p)

∙ normal distribution delay (𝜇 = 6800𝑚𝑠, 𝜎 = 150𝑚𝑠) and 25% corre-
lation; loss: 1% of packets; corrupt: 1% of packets; duplication: 1% of
packets; reorder 1% of packets

(q)

Table 6.1: Experimental obfuscation techniques with parameters and IDs [42].

in a specially ordered folder structure, which defines what type of attack it is and on which
service was the attack directed against. There is also a folder structure for legitimate com-
munication, which was captured using tcpdump as well. And the purpose of the structure
is similar to the attacks’ folder structure, it identifies which services were used in the packet
communication.

Both file structures were passed to special scripts collection called recurs-walker, which
was supplied to me by the supervisor of this thesis. The recurs-walker read all the data,
connected to PostgreSQL service [80] running on the host machine, and created a database
with connections.

Then the second script used (called metrics-extractor) was intended for extraction of
ASNM features and collection was also supplied to me by my supervisor. The metrics-
extractor fetched connection data from the PostgreSQL database and performed the ex-
traction of ASNM metrics. Extracted metrics were then saved in a new table in the database
and written into an output file using CSV format [72]. The CSV file was then imported
into RapidMiner Studio [70] local repository. In the importation process, some unnecessary
data were removed and datatypes of other data were set. The imported dataset was then
fixed in RapidMiner Studio using processes described in Section 7.2.
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Service Legitimate Direct
Attacks

Obfuscated
Attacks Summary

Confluence 99 275 275 649
Drupal 67 177 399 643

FTPShell Client 80 65 98 243
GetSimple CMS 63 396 1173 1632

GitStack 447 296 398 1141
jQuery-File-Upload 79 230 318 627

LibreNMS 76 264 368 708
Nagios XI 5.4.12 145 572 657 1374
Nagios XI 5.5.6 224 205 145 574

rConfig 650 136 232 1018
Webmin 831 168 276 1275

Other Legitimate
Traffic 6827 N/A N/A 6827

Summary 9588 2784 4339 16711

Table 6.2: Number of TCP objects in the dataset

6.2 Vulnerable Services
Vulnerable services were found in the National Vulnerability Database [55], where are listed
Common Vulnerabilities and Exposures (CVE). In order to make an up-to-date dataset of
vulnerabilities and exploits, CVEs from the years 2018 and 2019 were searched. Hence two
NVD JSON Data Feeds, each corresponding to one year, were downloaded [55]:

• dataset from 2018 in file nvdcve-1.1-2018.json with last modification on 25th Novem-
ber 2019 and with SHA-256 checksum:
𝑒𝑓87𝑑6𝑓377𝑏𝑏𝑒𝑓6𝑒035504𝑎𝑐605𝑑088𝑎𝑐𝑒𝑐𝑒09𝑑𝑒𝑓𝑏511𝑎2𝑑0036𝑐231𝑒79𝑑7𝑎2𝑐

• dataset from 2019 in file nvdcve-1.1-2019.json with last modification on 12th Novem-
ber 2019 and with SHA-256 checksum:
653𝑓95912𝑒8𝑐𝑑𝑎06𝑐𝑎1𝑑4𝑓𝑎𝑐𝑐𝑑05𝑎𝑎𝑏𝑐4𝑑4𝑑98𝑓𝑎02𝑑969136𝑏𝑒𝑓𝑐24𝑓6𝑒𝑑40𝑐84

Also corresponding Official Common Platform Enumeration (CPE) Dictionary file official-
cpe-dictionary_v2.3.xml was downloaded [55]. CPEs include important information about
vulnerable technology systems, software, and packages, which are mentioned in each CVE
record. An example of CVE JSON record can be found in Appendix B [55]. In order to pro-
cess information in CVE JSON objects and in CPE XML objects a parser was implemented
and will be described later.

After finding suitable vulnerabilities (i.e., remote, critical, compatible with Windows or
Linux operating systems, etc.) it was necessary to find exploits for them, which was per-
formed using Exploit Database by Offensive Security [56]. When CVEs and corresponding
exploits were found, some of those which had the vulnerable version easily and were freely
accessible were chosen to be added to the new dataset. In the following, we describe all
remotely vulnerable services that were found in the selected NIST CVE dataset files.
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Figure 6.2: Attacks and legitimate traffic recording network infrastructure [38].

CVE JSON and CPE XML Parser

The parser was developed using Python programming language and consists of couple of
classes. The main class is called CVEReader, whose constructor requires two parameters
with names of input CVE JSON file and CPE XML file. In the constructor two more
objects are initialized, which are instances of ParserJSON and ParseXML classes. Next
the parse method is launched. The method parse invokes methods in both parser objects,
which are called the same as the calling method. After parsing is finished the lookup method
is called. The lookup method performs infinite loop, which listens to new commands from
the standard input of the program and executes them. Three simple lookup commands are
implemented: CPE, CVE and index. These commands search for records with given CPE,
CVE or index of the record in given dataset and then print it. ParserJSON and ParseXML

35



classes implement methods which parse or print given CVE JSON files or CPE XML files.
ParseXML class also uses CPEHandler and CPE_XML classes, which handle individual
CPE objects.

6.2.1 Drupal

Drupal is an open-source project, which provides a content-management system [24]. Dru-
pal is used in the development of 1.6 % websites worldwide and its content-management
system market share is 2.8% [64].

In this dataset, the attack is based on Metasploit exploit 44557 [73], which is used to
exploit CVE-2018-7602 [7] vulnerability. The exploit requires an attacker to be authen-
ticated as Drupal user and be able to delete a node, then the malicious POST method
request [33] can be crafted and sent to the server. The vulnerability allows an attacker to
remotely execute code on the machine running Drupal [23, 73]. The target machine with
Debian 4.9.130-2 is running Drupal 7.57.

6.2.2 FTPShell Client

FTPShell Client is a program, which enables an user to connect to a SFTP [88] or FTPS [34]
server and upload or download files. The application is compatible with Windows operat-
ing system and it supports LDAP based Active Directory [50] and Windows NTLM [51]
authentication.

This attack is based on Metasploit exploit ftpshell_cli_bof [65], which is used to exploit
CVE-2018-7573 [6] vulnerability. An attacking machine starts listening on port 21 and
pretending it is FTP [63] server. Then its target has to try to connect to the attacker’s
exploit. The exploit sends a response consisting of 400 characters of ’F’ together with the
FTP 220 response code, which leads to the target’s application crash caused by the buffer
overflow. After the overflow, the attacker is able to execute code on the target machine [6].
The target machine with Windows 10 Enterprise Evaluation is running FTPShell Client
6.70.

6.2.3 GitStack

Gitstack is an open-source git [35] server for the Windows platform. The application is
based on msysgit [52] and apache web server [78] [74].

This attack is based on Metasploit exploit gitstack_rce [77], which is used to exploit
CVE-2018-5955 [5] vulnerability. In the authentication process, the password is not being
sanitized and still, it is passed to the exec function. Therefore an attacker might execute
code on target system [76]. The target machine with Windows 7 Professional SP1 is running
GitStack 2.3.10.

6.2.4 jQuery-File-Upload

jQuery File Upload is a file upload widget, which supports chunked and resumable file
upload and download. The program was developed in order to support multiple server
platforms. It is also possible to preview images, videos, and audio [84].

This attack is based on Metasploit exploit jquery_file_upload [85], which is used to
exploit CVE-2018-9206 [12] vulnerability. Due to default configuration in Apache 2.3.9 [78]
and newer versions the .htaccess file in this widget might not be enabled. Hence the attacker
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is able to upload arbitrary PHP file with payload to the server and then execute it using
GET method [33]. The target machine with Windows 10 Enterprise Evaluation is running
jQuery File Upload 9.22.0.

6.2.5 LibreNMS

LibreNMS is an open-source network management software, which supports several operat-
ing systems and network hardware. The application automatically discovers network using
multiple protocols and is accessible via the web interface and API [17].

This attack is based on Metasploit exploit librenms_addhost_cmd_inject [49], which is
used to exploit CVE-2018-20434 [4] vulnerability. The exploit module requires LibreNMS
user credentials to authenticate to the application. The attacker injects his payload into the
community parameter, which is used in the POST request [33]. The community parameter,
which was not sanitized is then passed to popen function, thus attacker’s code is executed
on the target machine. The target appliance with Ubuntu 18.04 is running LibreNMS 1.46.

6.2.6 Nagios XI 5.4.12

Nagios XI is an open-source application, service and network monitoring software. It mon-
itors network devices, application and database servers, etc. It is able to communicate
with its users via the web interface, emails, short messages, and other communication
channels [32].

This attack is based on Metasploit exploit nagios_xi_chained_rce_2_electric_boogaloo [75],
which is used to exploit CVE-2018-8733 [8], CVE-2018-8734 [9], CVE-2018-8735 [10] and
CVE-2018-8736 [11] vulnerabilities.

At first, the attacker sends specially crafted POST method request [33] to a vulnerable
PHP file, which sets the database user to root [8]. Then he sends another crafted POST
method request, which takes advantage of SQL injection vulnerability in selInfoKey1 pa-
rameter in another PHP file, which allows the attacker to enumerate API keys [9]. The next
step is an addition of new Nagios administrative user with the next POST method request
using gained API keys [10]. Then the attacker authenticates as the created user. When
authenticated the attacker sends another crafted POST method request, which injects a
command with nopasswd sudo to a PHP file causing root shell creation for him [11]. The
last step is to remove database user and Nagios administrative user, which were created
during exploitation [75, 43].

The target machine with CentOS 7 is running Nagios XI 5.4.12.

6.2.7 Nagios XI 5.5.6

Nagios XI is described in Section 6.2.6. This attack is based on Metasploit exploit na-
gios_xi_magpie_debug [47], which is used to exploit CVE-2018-15708 [2] and CVE-2018-
15710 [3] vulnerabilities.

The attacker sets up his own web server, which responds to access requests with PHP
code payload. Then he injects crafted parameters into URL he accesses on the target
system, which are passed to curl [1] command that is executed on the target server. The
attacked application accesses the attacker’s web server with PHP payload and writes it into
a new local PHP file. Now the attacker is able to execute commands as a local user by
accessing crafted URL on the target system via uploaded PHP file [2, 46].
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The second part of the exploitation is privilege escalation on the target server. It is
possible to run commands as root by running a specific PHP file on the server, which is
enabled to be runnable as root without a password. The PHP file is vulnerable to command
injection into one parameter, which leads to launching a new process executing the attackers
command with root privileges [3, 46].

The target appliance with Ubuntu 14.04 is running Nagios XI 5.5.6.

6.2.8 Confluence

Confluence is collaborative software and covers 1.38 % market share [29]. It is useful for
new project organization, decision making, setting goals, etc. The Confluence Server can
be accessed using a web interface and is compatible with multiple platforms [19].

This attack is based on Metasploit exploit confluence_widget_connector [31], which is
used to exploit CVE-2019-3396 [16] vulnerability. There is a vulnerability in some renders,
where their parameters including Velocity Template [79] file path are not sanitized and
run. The attackers starts his own FTP [63] server with Velocity Template files. Then he
injects 2 crafted Velocity Template files with Java code payload into _template parameter
using the POST method request [33], which enables him to remotely execute his code. The
attacker does not need to be authenticated [31, 26]. The target machine with Ubuntu 14.04
is running Confluence 6.9.0.

6.2.9 GetSimple CMS

GetSimple CMS is an open-source content management system. The philosophy of the
program is a simple web interface, which includes everything needed, but does not cover
unnecessary features. This software has already been downloaded over 120,000 times [27].

This attack is based on Metasploit exploit getsimplecms_unauth_code_exec [82], which
is used to exploit CVE-2019-11231 [13] vulnerability. Due to the new default configuration
in Apache [78] the .htaccess file does not override the Apache configuration. The attackers
get multiple files with sensitive information from the target server. The sensitive informa-
tion such as apikey is then used to calculate hashes, which are necessary to create a cookie.
The cookie is then used to access CSRF [60] nonce from a php page using POST method
request [33]. The PHP page is vulnerable to path traversal, however, it is not even neces-
sary for the exploit, because there is already the .htaccess file vulnerability. The vulnerable
PHP page allows the attacker to upload his crafted file and does not check it. Therefore the
attacker uploads crafted file with his payload and then accesses it, in order to execute his
code on the target machine [13, 82, 83]. The target appliance with Debian 8.11 is running
Getsimple CMS 3.3.15.

6.2.10 rConfig

rConfig is an open-source network device configuration management software. It is possible
to create snapshots of network device configurations, automate miscellaneous tasks, etc.
The tool also supports customization addition. The software has over 8,000 users and
manages over 2 million network devices [71].

This attack is based on Metasploit exploit rconfig_install_cmd_exec [48], which is used
to exploit CVE-2019-16662 [15] vulnerability. The exploit requires the install subdirectory
to not be removed, which does not happen automatically. The attacker crafts the GET
method request [33] to a vulnerable PHP page, which is accessible for unauthenticated
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users. The page uses the rootUname parameter from the GET method in 2 commands,
while not being sanitized. Therefore the attacker can remotely execute code on the target
machine. Note that since the payload is executed in 2 commands it is executed twice, thus
with default configuration 2 meterpreter sessions are opened [48, 18]. The target appliance
with CentOS 7 is running rConfig 3.9.2.

6.2.11 Webmin

Webmin is a utility for system administration of Unix-like operating systems. A user
controls the system using a web interface. It is possible to manage services, system config-
uration, sharing, open-source applications, etc. The software removes the need for manual
modification of operating system configuration files. Webmin has been downloaded over a
million times [86].

This attack is based on Metasploit exploit 47230 [54], which is used to exploit CVE-
2019-15107 [14] vulnerability. The user password change must be enabled for exploitation
to be working. An administrator of the target system has to have ”Prompt users with
expired passwords to enter a new one“ option checked. The attacker sends crafted POST
method request [33] to a vulnerable CGI file. There is a command injection vulnerabil-
ity in parameter old processing while trying to change the password of a user. It is not
necessary for a user to exist and password to be correct. Note that the vulnerability was
injected intentionally into the Perl source code by an unknown attacker, who created this
backdoor [54, 53]. The target appliance with Ubuntu 14.04 is running Webmin 1.910.
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Chapter 7

Data Preprocessing, Forward
Feature Selection and DL Models

In this chapter, we describe the RapidMiner tool and classifiers used in our experiments.
Data preprocessing, which consists of several tasks, is spread across multiple sections. The
first task, which prepares data is described in Section 7.2, then interesting features are
selected using Forward Feature Selection (see Section 7.3), and finally some of the data
preprocessing techniques are performed in process of model training, which is described
in Section 7.4. Finally, Cross-Validation was performed with models of classifiers trained
on direct and legitimate traffic (also referred to as DL models), which we focus on in
Section 7.5.1.

7.1 RapidMiner
RapidMiner is a data mining platform used in over 40,000 organizations [70]. All classifiers
and processes, which prepare data, train classifiers, and test them are implemented us-
ing RapidMiner Studio. In this chapter are described individual processes implemented in
RapidMiner. Sections are organized by specific tasks, which were performed using Rapid-
Miner processes. Information about operators in sections in this chapter were derived from
RapidMiner documentation [69] and RapidMiner operator manual [68].

Notation

For the purpose of unified explanation, we adopt the following terminology from the Rapid-
Miner Studio [67]:

• Example represents a TCP connection data with ASNM features, i.e. a row in a
table.

• Attribute represents an ASNM feature, i.e. a column in a table.

• Operator is a node in a graph inside a process that can be run, by the process, and
thus perform some specific task, which depends on the operator’s type.

• Process is a collection of operators, which can be run and thus launch them in a
defined order.
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• Subprocess is a process inside some operator, so when the operator is launched the
subprocess starts.

7.1.1 Classifiers

We used 6 classifiers for dataset evaluation: Naïve Bayes (Kernels), Naïve Bayes, Decision
Tree, Random Forest, Support Vector Machine and Logistic Regression.

Naïve Bayes is a parametric model, which uses Bayes’ theorem in order to learn and
classify data. It is a simple probabilistic classifier, which does not require very much data to
learn. The classifier is also one of the faster ones. A fundamental property of the classifier is
the fact it assumes that all learned features are independent [69]. In performed experiments
is also used Naïve Bayes with Kernel Density Estimation, i.e. Naïve Bayes (Kernels), which
makes it non-parametric.

Decision Tree is a classifier that creates a tree structure, where each node corresponds
to a feature of the data. In every node, there is also a condition, which depends on the
related feature. The result of the condition evaluation determines which child node to go
when classifying the data using already trained Decision Tree. Leafs of the tree represent
the final decision of the classifier [69].

Random Forest’s training starts with splitting the input dataset into random subsets.
Then for each subset, a new Decision Tree is generated. Each example of data given to the
Random Forest in order to get classified is classified by all Decision Trees. The result of
classification is then voted by all trees [69].

Support Vector Machine’s basic principle is described in Section 2.3.1.
Logistic Regression is a method that estimates one dependent variable, which has only

two possible values. The estimated variable depends on multiple independent variables,
which might be miscellaneous data types. The Logistic Regression uses an S-shaped logistic
distribution function in order to model the data classifier [87].

7.2 Data Preparation
Data preparation is divided into two separate parts. One of them, described in Section 7.2.1,
transforms the data into a form with better readable information about services and attack
types. In the case of the second part, we filter the data and label their attack types (see
Section 7.2.2).

7.2.1 Data Transformation

The first process is called Data-Transformation-A, which uses several operators with miscel-
laneous functionalities. At first, the Retrieve operator is used to fetch a table with ASNM
metrics, which was imported to RapidMiner from a CSV input file, that was generated
using metrics-extractor described in Section 6.1. Then the id role is set to id attribute
in the table using a Set Role operator. Two next operators of Replace type rename label
attribute in all examples of Nagios XI service because there are two versions of the service
each with different vulnerabilities and exploits. It is useful to rename them into an easily
readable form, which discriminates each version of the service. Then there are some new
attributes generated using Generate Attributes operator, which include attack information
of each example. The process continues setting label role to a label attribute, which signifies
that label attribute is the information about what class is the attack in. So the classifier
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Figure 7.1: Dataset-Repairment-B process scheme

is trained to guess the label attribute. Next, there are removed some no more needed at-
tributes and renamed recently created attributes. In the end, the attributes are reordered,
in order to make it easier to work with the dataset, some are renamed to a better form and
the final table is written to an output file using Store operator.

7.2.2 Data Repairment

The second process for data preparation is called Dataset-Repairment-B, which is depicted
in Figure 7.1. At the beginning of the process, a Retrieve operator reads the input file
with a data table, which was the output of the Data-Transformation-A process. Then the
table is passed into two parallel subprocesses All Attacks and Legitimate processes using a
Multiply operator.

The All Attacks subprocess starts with filtering its input data using Filter Examples
operator, which matches examples with attack data only. The filtered table is then dis-
tributed to 11 subprocesses, each corresponding to one of the attacked services. These 11
subprocesses all do almost the same thing. Each of them starts by filtering examples with
data related to its service only. Then each one’s data is filtered by the destination port
of the attack and unmatched data, which has different destination port number is labeled
as other traffic using three Replace attributes. Therefore the attack data is detached from
other traffic, which was captured by tcpdump [81] during attack realization. All data from
each subprocess is then united into one table with all attacks and then the data labeled as
other traffic is labeled as legitimate as well.

The Legitimate process includes only 1 operator of Filter Examples type, which filters
only traffic labeled as legitimate. Both processes outputs are then united into one table
with all labeled data and saved in the output file using the Store operator.

7.3 Forward Feature Selection
In order to increase efficiency of classifiers Forward Feature Selection was performed. There
are two types of classifiers in this thesis, the ones trained on legitimate traffic and direct
attacks’ data and the ones, which are trained on a dataset including obfuscation attacks.
Therefore each group of them is trained on different datasets, so the feature selection has to
be performed twice. Selected features from direct attacks and legitimate traffic are called
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DL-FFS. Features from the second run were selected from all data, hence they are called
DOL-FFS, where O stands for obfuscated attacks.

All selected features are listed in Table A.1. Both tasks were performed using classifiers
of type Naive Bayes (Kernels). The number of DL-FFS is 11 and 14 features were selected
during the DOL-FFS selection process. The only feature, which was selected in both pro-
cesses is intervalsIPsSig, which represents the standard deviation of time intervals between
consecutive connections of the two hosts running on the same IP addresses as an analyzed
connection [38]. Both sets include mostly features based on approximation of communica-
tion by polynomials, Fast Fourier Transformation of packet sizes, and normalized products
of packet sizes with some Gaussian curves and lengths of packets in intervals of time.

7.3.1 Implementation

Forward Feature Selection is implemented in process 2cl-FFS, which works with label that
has 2 classes. As input there can be used DOL data, i.e. direct attacks, obfuscated attacks,
and legitimate traffic data, or DL data, i.e. DOL without obfuscated attacks. At first 2 Set
Macros operators set necessary macros for the process, then DOL112 or DL12 file is read
using Retrieve operator and the data is passed to a Remove Useless Attributes operator,
which has same settings as described in Section 7.4.1. Then the data is fixed in operator
Nominal to Binominal, which sets label attribute type to binominal. The fixed data table
is passed to the Forward Selection operator.

The Forward Selection operator has a subprocess, that returns a Performance Vector.
The selection process starts with an empty list of selected features. The process consists
of rounds, which have to be performed in order to construct a list of selected features. In
each round, unused features are appended to a new list. For each feature in the current
round, the performance is measured using some operators included in the subprocess. In
the case of forward feature selection in this theses, the cross-validation technique was used.
The Cross-Validation operator parameters are configured the same way as described in
Section 7.5.1 with the only difference in local random seed attribute, which is here set to
1987. The Cross-Validation operator includes the same operators as in Section 7.5.1 as well,
but the main criterion in the Performance operator in the testing phase is set differently.
The main criterion is accuracy and other calculated criterions are AUC (optimistic), AUC,
precision, and recall. The outputs of the Cross-Validation operator are then passed to a
Branch operator using Multiply operator and at the same time, the number of currently
selected attributes is extracted into attribs macro.

The Branch operator compares the attribs macro with the counter macro and if they
are equal it performs its Then subprocess, else Else subprocess is performed instead. In the
Then subprocess the model and performance vector are saved to files using Store operators
and then the counter macro is incremented using Generate Macro operator. In the Else
subprocess, there are 2 Store operators, which write the model and performance vector to
files.

The feature with the best performance is then selected at the end of the round and
added to the selection list.

The Forward Selection operator contains parameters, which define stopping the behav-
ior, maximal number of attributes, and speculative rounds count. The stopping behavior
parameter was set to ”without increase“ value, which influences an operator’s behavior to
make it stop when a round does not increase classification performance. This setting was
combined with the second parameter, which was set to the maximal number of 15 attributes
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and there are 2 speculative rounds enabled. Speculative rounds parameter is the count of
rounds that are allowed to be performed without any increase of performance, which is
useful in order to deal with local optimums.

In the end, final selected attributes are saved to the output file using a Store operator.

7.4 Model Training
In this section are models trained on direct attacks and legitimate traffic, i.e. DL data, and
on a dataset including both DL data and obfuscated attacks, i.e. DOL data. And that is
also the reason why these models are called DL Models and DOL Models. Forward Feature
Selection algorithm was also used on that data, so DL-FFS and DOL-FFS features were
selected. Therefore all models in this section were trained on DL or DOL data limited to
DL-FFS or DOL-FFS features, which means that all testing data passed to these models
are limited to such features as well.

At first splitting train data is done in 2cl-Split-Train-Data-attALL process and is de-
scribed bellow in Section 7.4.1. Then the data is filtered and normalized if needed (see Sec-
tion 7.4.2). After it is done there are three data tables with fixed DL12, OL12, and DOL112
data, which are prepared for classification. Before training processes can be launched the
data needs to be split into subsets and forward feature selection has to be done. The for-
ward feature selection is described in Section 7.3. Next, the model training phase can start,
because three data tables are prepared and features as well. The training phase is described
in Section 7.4.3.

7.4.1 Split train data

In the beginning, the process read input data using the Retrieve operator. Input data is the
data table, which was produced by Dataset-Repairment-B process described in Section 7.2.2.
Then some necessary macros are set using 2 Set Macros operators. The next step is to
remove all attributes, which contain information about the attack and service type of the
connection using Select Attributes operator and label role is set to a special attribute
label to define what the classifier should learn. The next operator is to Remove Useless
Attributes, which removes attributes from the table based on user-specified thresholds,
which are defined in the operator’s parameters.

The numerical min deviation parameters are set to 0, which means numerical attributes,
which have the standard deviation less than or equal to this deviation threshold are re-
moved. Therefore all attributes, where all examples have the same value are removed. The
nominal useless above parameter sets the threshold for the ratio of most frequent values
to the total number of examples and removes all nominal attributes above the user-defined
ratio. However it is set to 1.0, thus latter mentioned parameter does not remove anything.
The nominal useless bellow parameter is similar to the latter one, but it removes nominal
attributes with the ratio of least frequent values to the total number of examples, in other
words, attributes with most different values. The latter parameter was set to 0, hence it
removed nothing.

The process continues with Filter Examples operator, which performs removal of all
examples, which have missing values. Then the data is stored in the DOL123 file, which
signifies, that the file includes direct attacks with label 1, obfuscated attacks, which are
labeled as 2 and legitimate traffic, which is labeled as 3. And after saving to the file the
data is distributed to 3 subprocesses using the Multiply operator.
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The first subprocess is called (DL->12), which means it filters direct attacks and legiti-
mate traffic only and assigns their label to 1 and 2 in that order. It consists of 2 operators,
where the former one filters obfuscated attacks out of the data and the second, which
changes legitimate traffic label to 2. The second subprocess is called (OL->12), which
filters obfuscated attacks and legitimate traffic only and changes their labels to 1 and 2
in that order. It uses 3 operators, where the first one filters the communication based on
the type of attack/legitimate label and the other two operators change labels in a proper
way. The third subprocess is called (DOL->112) and thus the direct attack is labeled 1,
the obfuscated attack is labeled as 1 as well and legitimate communication is labeled as
2. Thus the latter subprocess loses information about the type of each attack. However,
the information about what type of attack the specific example is might be later acquired
using join operations with data from the original table because all examples still have their
id attribute kept. Each of the 3 mentioned subprocess passes its output to a Retrieve oper-
ator, which saves the data table into a file. The first one, with data table from (DL->12)
subprocess saves it in the file called DL12. The next one, with data table from (OL->12)
subprocess writes the table into the file called OL12. The last one, with data table from
(DOL->112) subprocess uses the file called DOL112 to store it.

7.4.2 Data Filtering and Normalization

Training processes both start by reading prepared DOL123 data using Retrieve operator,
then 2 Set Macros operators prepare necessary macros and the data is passed to Select by
Weights operator. Then the attributes file is read using another Retrieve operator and then
delivered to the Select by Weights, which has a weight relation parameter set to ”greater
equals“ value, and the weight parameter is set to 1 value. Since the attributes file contains
only 1 or 0 values only attributes with value 1 are selected and these values correspond only
to attributes that were selected by forward feature selection processes. Then the data with
FFS features are distributed using Multiply operator to 3 subprocesses called Prepare DL,
Prepare OL, and Prepare DOL. Mentioned subprocesses are same as subprocesses called
(DL->12), (OL->12) and (DOL->112), which are described in Section 7.4.1 bellow. Then
the data prepared in these processes are stored in files the same way as in the mentioned
paragraph. Next, each of 3 data tables is passed to the corresponding Nominal to Binominal
operator, which changes the type of label attribute from nominal to binominal, and thus
the data fit for binary classifiers.

In case of usage of the SVM model or Logistic Regression model, two more operators
are performed in order to prepare data for the classifier. The first is Nominal to Numerical
operator, which changes data types of attributes defined by its parameters. Its parameter
coding type is set to dummy coding, so for every value of an attribute with nominal data type
except comparison group a new attribute is created. The created attribute has value 1 in
case of all examples, which have the created attribute’s ancestor value and 0 if the ancestor’s
value is different. The second is the Normalize operator, which performs normalization of
examples.

7.4.3 Training Phase

The training phase starts with 3 data table lines with fixed DL12, OL12, and DOL112
data, which are prepared for classification. In the case of 2cl-Train-on-DL-attDLFFS the
fixed DL12 data table is distributed using the Multiple operator to two operators, based
on their purpose. In case of 2cl-Train-on-DOL-attDOLFFS the fixed DOL112 data table
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is distributed instead. The first of those operators with a given data table is an operator,
which generates a model, for instance, Naïve Bayes and the second is an Apply Model
operator. The model generating operator uses these data for training a new model and
puts the model into its output. The trained model is then distributed using the Multiply
operator to three Apply Model operators. Generally, Apply Model operators use their input
models to label their input data. Each of the mentioned 3 Apply Model operators has the
trained model as its input model and different data. The first one uses the supplied model
to label DL12 data, the second uses the same model to label OL12 data and the last one
uses the model to label DOL112 data. Labeled data from each operator is then passed to
its Performance (Binominal Classification) operator, while all of them are set up the same
way.

Performance operators calculate a bunch of criterions and their outputs are Performance
Vectors [69]. The main criterion is recall, which means it is used for Performance Vector’s
comparison. There were set up to be calculated these criterions: recall, accuracy, AUC
(optimistic), AUC, AUC (pessimistic), precision and f measure.

• The recall criterion is calculated as follows:
𝑟𝑒𝑐𝑎𝑙𝑙 = (𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

• The accuracy criterion is calculated as follows:
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

• The AUC (optimistic), AUC and AUC (pessimistic), where AUC stands for Area
Under the Curve, the curve is from ROC graph. In the beginning predictions are
sorted by their score from highest to lowest and then the graph is plotted example
by example. The optimistic AUC plots positive examples before negative ones. The
pessimistic AUC plots negative examples before positive ones. The AUC plots plots
average between optimistic and pessimistic AUCs.

• The precision criterion is calculated as follows:
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑎𝑙𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

• The f measure criterion is calculated as follows:
𝐹1 = 2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙)

The process finishes by saving all three Performance Vectors and the trained model to files
using four Store operators.

7.5 DL Cross Validation
Cross Validation is a method to rank the accuracy of a model on a given dataset. The
dataset is split into 𝑁 subsets with an equal count of samples. Then subsets are iterated in
order to train and validate a model. There are two phases of each iteration, the first is the
training phase and the second is the testing phase. In the training phase, 𝑁 − 1 subsets
are used for training a new model. When the model is trained the testing phase launches.
Testing data, which is the last subset of the dataset that was not used for training, is passed
to the prepared model. Therefore the model is tested on the data unknown for it. Then the
next iteration is performed with another combination of training and testing data. Cross
validation implementation is described in Section 7.5.1.
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Classifier TPR FPR F1 (↑) Avg. Recall
Random Forest 99.98% 0.09% 99.84% 99.95%

Naïve Bayes (Kernels) 99.34% 0.02% 99.63% 99.66%
Decision Tree 98.94% 0.58% 98.49% 99.18%

Logistic Regression 97.63% 0.60% 97.79% 98.52%
Support Vector Machine 97.66% 0.97% 97.17% 98.35%

Naïve Bayes 100.00% 60.57% 48.97% 69.72%

Table 7.1: Cross validation of direct attacks and legitimate traffic

Because the classification is binary the 5-fold cross-validation is used in order to evaluate
the classifiers. Cross validation of DL data is presented in Table 7.1. The table is sorted by
the F1 score in descending order. In the table can be seen that the most successful is the
Random Forest classifier with 99.84% F1 score and the least successful is Naïve Bayes with
48.97% F1 score. However, Naïve Bayes classifier has the highest TPR, which is 100.00%,
but probably on behalf of FPR, that is 60.57%, which is abnormally bad compared to other
classifiers, because they all have FPR under 1%.

• TPR stands for True Positive Rate and is calculated as follows:
𝑇𝑃𝑅 = (𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

• FPR stands for False Positive Rate and is calculated as follows:
𝐹𝑃𝑅 = (𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

• F1 stands for F1 score, i.e. F measure, which is harmonic mean of precision and
sensitivity and it is definition can be found in Section 7.4.3.

• Avg. Recall stands for Average Recall, which is described in Section 7.4.3.

7.5.1 Cross Validation Implementation

Cross-validation is implemented in 2cl-X-val-inDL and 2cl-X-val-inDOL processes. From
these processes’ names can be derived that the classification is binary and data are a set
of direct attacks and legitimate traffic of services with DL-FFS attributes only in 2cl-X-
val-inDL process and all data including the mentioned and obfuscated attacks as well, but
limited to DOL-FFS attributes only are in 2cl-X-val-inDOL process. Most operators in
both processes are the same and therefore they are both described in this section. There
are two parts of cross validation processes, the first is Data Preparation, and the second is
Cross Validation Loop.

Data Preparation

The process starts with two Set Macros operators, which set macros with information about
the model and working folders of the process. Then a Retrieve operator DL12 or DOL112
input data, which are data labeled with numbers depending on the type of attack as can
be seen in the name of input data, e.g. in DOL112, direct and obfuscated attacks are
labeled as 1 and legitimate traffic as 2. The data table is then fixed for a binary classifier
using Nominal to Binominal operator. In the case of usage of the SVM model or the
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Logistic Regression model, two more operators are performed in order to prepare data for
the classifier as described in Section 7.4.2.

Normalization is a process of data example values modification in order to make them
fit into the required range, which is necessary for some types of classifiers to work properly.
The Normalize operator supports four methods for normalizing data, and in this case, it
was configured to use the Z-Transformation method. Z-Transformation, i.e. Statistical
Normalization is a method that at first subtracts the mean of given data from each value
and then divides every value by the standard deviation. As a result, the mean of values is
zero and the variance is one. Z-Transformation is a widely used normalization method.

Cross Validation Loop

A fixed data table is passed to the main Loop operator, which has a number of iterations
parameter set to iteration macro, so it loops for as many times as is set in the iteration
macro. The iteration macro is set to 100, because the macro is used the number iterations
is accessible to inner subprocesses, which are executed within every iteration.

In the loop subprocess in the beginning the Generate Macro operator calculates seed
macro from iteration macro as follows: 𝑠𝑒𝑒𝑑 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 100. The subprocess continues
by passing its input to Cross-Validation operator, which includes 2 subprocesses, one for
training and one for testing a trained model. The number of folds parameter, which defines
the number of subsets that are iterated, is set to 5. The sampling type parameter is con-
figured to stratified sampling, so the subsets are built randomly, thus the class distribution
is the same as in the whole dataset. In the case of this classifier, which is binominal the
stratified sampling creates subsets that have approximately the same number of samples
with label attribute of its two values. The Cross-Validation operator is also using a local
random seed value, which is defined by prepared seed macro.

In the training phase, there is one model generating operator, which trains the model
on given training data and then passes it to the training phase subprocess output. In
the testing phase, the model given from the previous phase is applied to the testing data
using the Apply Model operator. The labeled testing data is then passed to Performance
(Binominal Classification) operator that is configured to calculate these criterions: AUC,
precision, recall, and f measure, while the recall criterion is set as the main criterion.
The criterions are described in Section 7.4.3. All Performance Vectors produced from the
mentioned Performance operator in each iteration of the validation are averaged into single
Performance Vector, which is then stored in an output file using a Store operator and passed
into the output of the whole Loop operator.

Therefore the output of the loop subprocess is a collection of averaged Performance
Vectors, which is passed to the Average operator that produces a final Performance Vector
with averaged values of the collection. The final Performance Vector is in the end stored in
an output file using a Store operator.
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Chapter 8

Obfuscated Attacks Detection

Several experiments were performed in order to evaluate the dataset. There are experi-
ments, which tested classifiers with knowledge about legitimate traffic and direct attacks
and their performance of obfuscated attacks classification (see Section 8.1). Then experi-
ments with classifiers with knowledge widened of obfuscated attacks (DOL Models), were
performed in Section 8.2 to test their improvement of obfuscated attacks classification, and
there are also experiments testing their durability against unknown obfuscation techniques
and instances. And Finally Cross-Dataset Evaluation is summarized in Section 8.3.

8.1 Prediction of Attacks by DL Models
Experiments comparing all attacks prediction and obfuscated attacks prediction are sum-
marized in Section 8.1.1. The results for successfully obfuscated attacks are described in
Section 8.1.2. Attacks prediction implementation is described in Section 8.1.3. An analy-
sis of predicted data implementation is described in Section 8.1.4. Three experiments were
performed in order to evaluate DL Models trained on the novel dataset described in sections
below.

8.1.1 All Attacks vs Obfuscated Attacks Prediction

Models trained on direct attacks and legitimate traffic were tested on all attacks, containing
obfuscated attacks, which are unknown for them. In Table 8.1b are listed results of the
experiment, including the difference of TPR compared to the Table 7.1 with cross-validation
on direct attacks and legitimate traffic. There is a significant difference, which shows that
all attacks struggled to detect data, which contained unknown obfuscations. Only in case
of Naïve Bayes with difference 0.21% the problem is not as serious as in case of other
classifiers.

The second experiment was the classification of obfuscated attacks only using the same
classifiers. As can be seen in Table 8.1a with the result of the experiment, which contains
a comparison with cross-validation as well, all classifiers were doing even worse than in
the case of the combination of direct and obfuscated attacks. Therefore we can state that
obfuscated attacks successfully evaded the classification. Again similar situation with all
classifiers took place as in the case of the previous experiment, Naïve Bayes stayed as the
best at TPR and other classifiers did not get better than any other one.
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Classifier TPR ΔTPR

Naïve Bayes 99.65% -0.35%
Random Forest 88.61% -11.37%

Decision Tree 87.44% -11.50%
Naïve Bayes (Kernels) 70.02% -29.32%

Support Vector Machine 55.24% -42.42%
Logistic Regression 14.08% -83.55%

(a) Obfuscated attacks only.

Classifier TPR ΔTPR

Naïve Bayes 99.79% -0.21%
Random Forest 93.06% -6.92%

Decision Tree 92.31% -6.63%
Naïve Bayes (Kernels) 81.74% -17.60%

Support Vector Machine 60.14% -37.52%
Logistic Regression 15.27% -82.36%

(b) All attacks.

Table 8.1: Prediction of attacks including obfuscated ones.

8.1.2 Obfuscated Attacks Evasions per Service

This experiment show how much prone are individual services to obfuscation attacks’ eva-
sions. All classifiers were trained on direct attacks and legitimate traffic, and the training
set was limited to attributes, which were selected by forward feature selection also without
knowledge about obfuscated attacks. Therefore classifiers have no knowledge about obfus-
cations and in the experiment can be seen how did classifiers struggle with obfuscations
depending on individual services.

Every obfuscated attack, which was classified as legitimate traffic is considered as eva-
sion, thus the more evasions the less successful classification was. The results of this experi-
ment are listed in Table 8.2, where are samples counts of obfuscated attacks, the percentage
of evasions for each classifier per service, and finally average of all classifier evasions for each
service. In two last rows in the table are calculated aggregation functions per each classifier,
which show how successful obfuscations were.

The most prone service to obfuscated attacks is FTPShell, which is different from all
other services in one feature. The FTPShell exploit nuance is that the vulnerable application
is on the client’s side, in every other attacks’ cases the vulnerability in on the server’s side.
However, other attacks evasions rate is between 26.8% and 36.78%, so the difference in the
obfuscation proneness between them and the FTPShell with 44.61% is not significant.

8.1.3 Attacks Prediction by DL Models Implementation

Attacks prediction is implemented in two processes based on what attack data are tested.
These two processes are called 2cl-Prediciton-inDO-attDLFFS and 2cl-Prediction-inOL-
attDLFFS, which means the former one applies given model to all attacks, and the latter
one tests obfuscated attacks only.

In the beginning, the process reads the input model file using a Retrieve operator and
passes it to the Apply Model operator through two Set Macros operators. Therefore the
model file is read and before it goes to the next usage, macros with information about input
data, model, and output folder are set. Then another Retrieve operator launches and reads
OL12 in case of obfuscated attacks prediction or DOL112 data files in case of all attack
prediction.

In the process, intended for prediction of all attacks, the data is passed to Filter Ex-
amples operator, which removes legitimate traffic from it, and hence there are attacks only
left all with label 1. Next, in both processes, the label attribute in data is fixed for bi-
nary classifiers using Nominal to Binominal operator. Then the data is copied using the
Multiply operator to the Apply Model operator, which already has an input model. The
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Service Samples
Count

Naïve
Bayes

(Kernels)

Naïve
Bayes

Decision
Tree

Random
Forest

Support
Vector

Machine

Logistic
Regression Average

FTPShell 98 35.33% 0.00% 16.70% 15.65% 100.00% 100.00% 44.61%
Nagiosb 145 19.33% 0.00% 6.00% 4.67% 90.67% 100.00% 36.78%

Confluence 275 28.57% 0.00% 27.03% 10.47% 59.04% 94.51% 36.60%
Drupal 399 41.48% 0.75% 20.03% 18.25% 64.43% 68.89% 35.64%

Gitstack 398 22.07% 0.98% 4.33% 7.57% 75.08% 100.00% 35.00%
LibreNMS 368 40.72% 1.30% 16.61% 15.05% 36.84% 88.18% 33.12%
GetSimple 1173 29.58% 0.00% 11.95% 13.96% 37.75% 88.88% 30.35%

Webmin 276 38.73% 0.00% 35.38% 25.53% 23.60% 52.03% 29.21%
jQuery-File

-Upload 318 25.55% 2.85% 7.93% 12.48% 37.21% 88.94% 29.16%

Nagiosa 657 31.46% 0.00% 7.28% 6.92% 35.28% 92.53% 28.91%
rConfig 232 38.85% 0.00% 11.24% 10.57% 27.87% 72.27% 26.80%

Average 31.97% 0.53% 14.95% 12.83% 53.43% 86.02%
Std. Dev. 7.67% 0.91% 9.58% 5.87% 26.14% 15.36%

Table 8.2: Evasions of Obfuscated Attacks per Service.

Apply Model operator uses the model to classify the data and passes labeled data to the
Performance operator, which calculates these criterions, which are listed in Section 7.4.3,
while the AUC criterion is set as the main one. A Performance Vector is created from
calculated criterions and passed to the Store operator, which stores them in an output file.
The Performance operator also passes labeled examples to the second Store operator, which
saves them in a file and passes them to the Wrong predictions filter operator of type Filter
examples with configured condition class parameter to wrong predictions value. In so far as
obfuscated attacks prediction process is concerned there is also a Filter Examples operator,
that is configured to remove all examples with label attribute set to 2, thus legitimate traffic
is removed from the data. Then the wrong predictions data is stored in the third output
file using Store operator.

8.1.4 Analysis of Predicted Data

The analysis starts in 2cl-AnalysisO-inOLres process by defining macros with data and
directories information using two Set Macros operators. Then the Retrieve and Split sub-
process, is performed and its five outputs are connected to five branches.

The first branch stores data with obfuscated attacks and legitimate traffic to an output
file using a Store operator, which also passes it to the Nominal to Binominal operator, which
prepares the data for Binominal Classification Performance operator. The Performance
operator calculates these criterions: accuracy, classification error, AUC, precision, recall,
and 𝐹1 measure. All mentioned criterions except classification error defined bellow are
described in Section 7.4.3 [69].

• 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 = (𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

The Accuracy criterion is configured as main criterion. The Performance operator produces
a performance vector, which is passed to the Store operator and written to an output file.

The second branch uses a Store operator to save the collection of data sets, which include
obfuscated attacks and are split by obfuscation instances. Then the data are delivered
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using Multiply operator to Loop (O-split-perfs) Collection operator and Loop, Store and
Log subprocess, that are described in their own subsections bellow. All outputs of both
operators are then connected to Store operators, which save them in files. The third branch
only saves wrong obfuscated attacks’ data into a file using a Store operator. The forth
branch does the same thing as the previous one, except the data is wrong obfuscated
attacks split into a collection of data sets. Finally, the fifth branch consists of the same
operators as the first branch, the only difference is data, which is limited to obfuscated
attacks only.

After 2cl-AnalysisO-inOLres process is done the process called 2cl-Analysis-PrintToConsole,
which is described in Analysis Print To Console subsection bellow, can be run in order to
extract important information from all generated files and print it in a usable form.

Retrieve and Split

The Retrieve and split subprocess begins by reading 3 files with input data by launching
3 Retrieve operators. The first one reads labeled OL12 data, which were produced by
obfuscated attacks prediction process (see Section 8.1.3) and passes them to the first of
2 Join operators. The second Retrieve operator reads wrong labeled data, that were also
produced by the process for prediction of all attacks (see Section 8.1.3) and deliver them
to the second Join operator. The third one reads the data file, which contains all data
information about examples including attack types and services, produced by the data
preparation process described in Section 7.2.2.

The third Retrieve operator passes the data to a Set Role operator, that defines the
role of the id attribute. Then the data is passed to Select Attribute operator, which selects
only attributes with information about attack type, service, and id of each example. Next,
the selected data go to the Generate Attributes operator, which creates a new attribute
with obfuscation information. Later the data is delivered to the right inputs of mentioned
2 Join operators using Multiply operator.

Therefore the first Join operator has all classified OL data on its left input and the
data with attack type, services, and label information on the right input. The operator
is configured to perform left join operation with the data. Then the joined data is passed
to a Reorder Attributes operator, which puts the data in the correct order for easier work
with it and passes it to a Multiply operator. Next, the Multiply operator delivers the data
to the three following operators. The first of them is the Sort operator, which sorts the
data by obfus_label attribute and puts it into the first output of the Retrieve and Split
subprocess. The second operator of type Loop is called Split obfuscations, and in each of
its 17 iterations, 2 operators are performed of these types: Generate Macros and Filter
Examples. The Generate Macros operator sets the ob (i.e. obfuscation) macro based on
the current iteration, which is read from iteration macro. Then Filter Examples operator
then uses mentioned ob macro in order to filter only examples with one type of obfuscation
corresponding to the current iteration. Hence Split obfuscations Loop operator’s output
is a collection of selected example sets, which were selected in each iteration. Next, the
collection is passed to a Loop Collection operator, which iterates over the collection and
performs its subprocess for each example set. In each iteration, the example set is passed
to the Generate Attributes operator in order to generate the wrong attribute, and then
attributes are reordered using the Reorder Attributes operator. The processed data from
all iterations constitute a new collection of example sets, which is put into the second
output of Retrieve and Split subprocess. The third operator is of Filter Examples type
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and is configured to select obfuscated attacks only and then pass it to the fifth output of
Retrieve and Split subprocess.

The second Join operator in Retrieve and Split subprocess has all wrong OL data on its
left input and on the right input is connected the data with attack type, services, and label
information. The operator is configured to perform left join operation. The joined data is
treated the same way as the first Join operator’s data as described in the previous paragraph.
The only difference is that there are only 2 branches, the one with Sort operator and the
one with Split obfuscations Loop operator and Loop Collection operator. Both branches
are configured the same as in the case of the previous paragraph, however, obviously, their
outputs are connected to different outputs of Retrieve and Split subprocess. The sorted
data goes from the Sort operator to the third output and the collection of data sets going
from the Loop Collection operator is connected to the fourth output of Retrieve and Split
subprocess.

Loop (O-split-perfs) Collection

This loop iterates over the given collection and in each iteration it multiplies a given set of
data into two inputs of the Branch operator. The first input is used for condition evaluation,
which is defined by condition type and condition value parameters. Condition type is set to
min_examples and value is set to 1, thus the Then subprocess of the Branch operator will
be performed only if there is at least 1 example in the input data. The Then subprocess
passes input data to the Nominal to Binominal operator, which fixes the data for the next
connected operator of type Performance (Binominal Classification), which is the same as the
Performance operator described at the beginning of Section 8.1.4. The output performance
vector is passed to the output of the Branch operator. The Else subprocess just passes
its input data to the same output, which is then propagated to the output of whole Loop
(O-split-perfs) Collection.

Loop, Store and Log

The subprocess begins by preparing necessary macros using Set Macros operator and pass-
ing its input to the Loop Collection operator called Loop and Store.

Loop and Store operator iterates over a collection of data sets, which were split by
obfuscation instances. In each iteration the input data is passed to the inner Split by
label_polyX subprocess, whose outputs are all connected to outputs of Loop and Store
operator.

Split by label_polyX subprocess starts by sorting input data by label_polyX attribute
using Sort operator. The sorted data is then passed through Set Macros operator, which pre-
pares needed macros, to an Execute Script operator that executes a manually programmed
script. The script goes through the whole data set and finds all label_polyX attribute
values, then they are written into split-label_polyX-list macro. The script also passes its
input data to the output, which is connected to the input of a Loop operator. The Loop
operator’s outputs are all passed to outputs of Split by label_polyX.

The Loop operator includes scripts which are programmed the way to enable it to be
performed collaterally. At first, an Execute Script operator performs a script. The script
extracts a value from split-label_polyX-list macro depending on what the current iteration
of the Loop operator is running, and then sets current-label_polyX macro. The data is
passed to a Filter Examples operator, which selects only data based on prepared current-
label_polyX macro. Selected data is then sent to another Execute Script operator, which
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reads the label_obfus attribute from the data and set obfus-label macro. Next, the data is
delivered to the Nominal to Binominal operator, which fixes data for the following operator
of type Performance (Binominal Classification), which is the same as the Performance
operator described at the start of Section 8.1.4. The consequent performance vector is
then saved to an output file using the Store operator, which uses macros mentioned above
to name the file. The input data of the Performance operator is also delivered to Store
operators, which are configured likewise as the latter one. All the saved data are passed
from Store operators to the output of the Loop operator.

All outputs of the Loop and Store operator are then saved in files using Store operators.

Analysis Print To Console

Process 2cl-Analysis-PrintToConsole starts by performing a Set Macros operator, which sets
the macro with information about the input folder, which contains files with performance
vectors. Then a subprocess called Work is run.

Work subprocess launches a Retrieve operator, which reads a special file, which includes
information about the folder structure, which is organized per services and obfuscations.
The content of the special file is a collection and thus is processed by Flatten Collection
operator. Next, the data is sent to Execute Script operator, which creates a set of examples
with filenames and passes it to a Loop Values operator. The Loop Values operator then
iterates over the filenames and in each iteration sets the current filename to a macro. Inside
the loop, a Retrieve operator reads the current file and passes it to Execute Script operator,
which parses the file and prints important information from it to the console.

8.2 DOL Models
DOL models are models, which were trained on legitimate traffic, direct attacks, and obfus-
cated attacks as well, so they were trained on all data, i.e. DOL data. DOL-FFS features
were selected from the training data using the Forward Feature Selection algorithm. Cross
validation experiment of all data was proceeded (see Section 8.2.1). Other experiments
were performed in order to test how resistant the classifiers are against new unknown ob-
fuscation techniques or instances. In each round, one obfuscation instance or technique
was chosen to be removed from training data for classifiers, and then after the model was
trained, the unknown obfuscation instance was used as testing data. The results of exper-
iments with unknown obfuscation instances are in Section 8.2.2, and the experiment with
unknown obfuscation technique is described in Seciton 8.2.3.

8.2.1 DOL Cross Validation

An implementation of this experiment is described in Section 7.5.1. Two calculations were
performed in order to test both sets of selected features. The first one in Table 8.3a tested
a feature set, which was selected by forward feature selection without knowledge about
obfuscated attacks and the second one in Table 8.3b tested a set of features, which were
selected using forward feature selection with knowledge about all attacks.

The column with ΔTPR in both mentioned tables signs that the results are the difference
between TPR from the current table and the TPR from the table with all attacks classified
by DL models in Table 8.1b. The column with ΔFPR means a comparison of the current
FPR with Table 7.1, which includes results of DL cross-validation.
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Classifier TPR FPR ΔTPR ΔFPR F1 (↑) Avg. Recall
Random Forest 99.94% 0.43% 6.88% 0.34% 99.68% 99.76%

Decision Tree 99.89% 1.15% 7.58% 0.57% 99.17% 99.37%
Naïve Bayes (Kernels) 97.33% 0.80% 15.59% 0.78% 98.11% 98.27%

Logistic Regression 96.32% 2.06% 81.05% 1.46% 96.76% 97.13%
Support Vector Machine 96.79% 2.48% 36.65% 1.51% 96.73% 97.16%

Naïve Bayes 99.83% 60.56% 0.04% -0.01% 70.98% 69.64%
(a) DOL Cross Validation with DLFFS features.

Classifier TPR FPR ΔTPR ΔFPR F1 (↑) Avg. Recall
Random Forest 99.97% 0.11% 6.91% 0.02% 99.91% 99.93%

Decision Tree 99.71% 0.18% 7.40% -0.40% 99.73% 99.77%
Naïve Bayes (Kernels) 98.76% 0.08% 17.02% 0.06% 99.33% 99.34%

Support Vector Machine 92.07% 3.45% 31.93% 2.48% 93.61% 94.31%
Logistic Regression 87.69% 5.57% 72.42% 4.97% 89.87% 91.06%

Naïve Bayes 97.32% 63.25% -2.47% 2.68% 68.93% 67.04%
(b) DOL Cross Validation with DOLFFS features.

Table 8.3: DOL Cross Validation.

8.2.2 Single Unknown Obfuscation Instance Detection

Results of the experiment are listed in Table 8.4. Different classifiers were tested in this
experiment and therefore each row in the table with results corresponds to one unknown
obfuscation instance. At the end of each row, there is an average score of all classifications
of the corresponding obfuscation instance calculated. In two last rows, the average score
and standard deviation of the related classifier can be found.

The most dangerous unknown obfuscation instances seem to be the ones, which use
fragmentation into smaller lengths, unreliable network simulating ones, and the one that
uses the normal distribution of packet transmission delay. The least dangerous probably
are the ones, which reorder packets and instances that simulate slight differences in frag-
mentation. Therefore the amount of fragmentation or packet transmission delay is very
critical for the instance to be successful.

8.2.3 Single Unknown Obfuscation Technique Detection

The purpose of this experiment is to assess the ability of classifiers to detect unknown
obfuscation techniques. This experiment was based on iterating over obfuscation techniques.
In each round, one technique was reserved for testing and other ones were used as training
data for a classifier.

In this experiment, most of the tested classifiers have worse results than in the exper-
iment with unknown obfuscation instances as expected, because more data was unknown
here for the classifiers. Results in this experiment also usually differentiate less than in the
one with obfuscation instances, because instances with most deviated score were arranged
in their techniques’ groups.

As we can see in Table 8.5, where all results from the experiment are stored, the most
successful obfuscation techniques are the ones, which use fragmentation, simulation of un-
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Instance Samples
Count

Naïve
Bayes

(Kernels)

Naïve
Bayes

Decision
Tree

Random
Forest

Support
Vector

Machine

Logistic
Regression Average

(k) 288 94.79% 96.88% 98.96% 100.00% 93.75% 86.46% 95.14%
(i) 303 100.00% 98.35% 98.02% 100.00% 93.07% 80.86% 95.05%
(o) 276 99.64% 97.83% 97.83% 100.00% 92.03% 82.97% 95.05%
(j) 304 100.00% 97.70% 97.70% 100.00% 93.42% 81.25% 95.01%
(l) 281 94.31% 97.87% 100.00% 100.00% 90.75% 86.83% 94.96%
(p) 290 99.66% 98.28% 97.93% 100.00% 92.76% 80.69% 94.89%
(q) 285 99.30% 97.54% 97.19% 100.00% 92.98% 80.00% 94.50%
(b) 18 88.89% 94.44% 100.00% 100.00% 100.00% 83.33% 94.44%
(d) 271 95.57% 95.20% 95.20% 98.89% 87.82% 82.29% 92.50%
(e) 281 97.51% 96.80% 97.87% 100.00% 87.19% 73.31% 92.11%
(h) 320 96.56% 98.13% 96.88% 100.00% 87.81% 73.13% 92.08%
(a) 286 98.25% 97.20% 97.55% 100.00% 84.27% 75.18% 92.07%
(f) 257 94.94% 97.28% 96.89% 99.61% 85.60% 76.27% 91.76%
(m) 281 89.68% 100.00% 92.17% 100.00% 88.97% 78.29% 91.52%
(g) 266 91.73% 95.87% 95.11% 98.87% 85.71% 73.31% 90.10%
(c) 48 72.92% 85.42% 85.42% 100.00% 93.75% 75.00% 85.42%
(n) 284 80.63% 99.30% 92.25% 100.00% 78.52% 59.16% 84.98%

Average 93.79% 96.71% 96.29% 99.85% 89.91% 78.14%
Std. Dev. 7.40% 3.21% 3.57% 0.38% 4.94% 6.58%

Table 8.4: Single Unknown Obfuscation Instance

reliable network channel and the ones which combine multiple obfuscation approaches. The
least successful and thus the most easily detectable obfuscation techniques are the ones,
which use packets’ loss simulation, packets’ duplication, and time delay of the packet trans-
mission.

8.2.4 Implementation of Unknown Obfuscation Instances and Techniques

Evaluation of the obfuscated attacks which differentiates instances and techniques is im-
plemented in 2cl-TrainPrediction-inOL-attDOLFFS-perInstance and 2cl-TrainPrediction-
inOL-attDOLFFS-perTechnique processes. From the names of those processes can be de-
termined that they are designed for binary classification, the input data are expected to be
obfuscated attacks and legitimate traffic and attributes are limited to DOL-FFS only. Both
processes are very similar, thus they are described together and all differences are explicitly
mentioned.

At first, the input data, which was produced by Dataset-Repairment-B process described
in Section 7.2.2, is read using a Retrieve operator. Then in case of use of SVM or LR
operators Nominal to Numerical and Normalize operators prepare the read data, which
are the same as the ones described in Section 7.4.2. Read data is then passed to Prepare
OL subprocess (see Section 7.4.2), which is delivers it to the Generate Attributes operator,
which adds new attribute called label_obfus and delivers the data to the Select attributes
operator. The Select attributes operator filters just attributes that include information
about attack types and services. Selected data is connected to the right input of the Join
operator and on the left input is connected OL12 data, which is read by another Retrieve
operator. Therefore the Join operator, which is configured to perform a left join operation,
takes obfuscated attacks and legitimate traffic from the left input and adds information
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Technique Samples
Count

Naïve
Bayes

(Kernels)

Naïve
Bayes

Decision
Tree

Random
Forest

Support
Vector

Machine

Logistic
Regression Average

(d) 271 95.57% 95.20% 95.20% 98.52% 87.82% 82.29% 92.44%
(h) 320 96.56% 98.13% 96.88% 100.00% 87.81% 73.13% 92.08%

(abc) 352 92.33% 95.74% 95.46% 100.00% 85.23% 75.57% 90.72%
(ij) 607 100.00% 98.02% 71.66% 100.00% 93.25% 80.73% 90.61%

(opq) 851 99.30% 98.12% 73.91% 100.00% 92.60% 77.67% 90.27%
(efg) 804 90.92% 96.52% 96.77% 99.75% 83.83% 70.15% 89.66%

(klmn) 1134 80.60% 98.68% 70.19% 99.12% 85.27% 70.90% 84.13%
Average 93.61% 97.20% 85.72% 99.63% 87.97% 75.78%

Std. Dev. 6.63% 1.36% 12.97% 0.59% 3.68% 4.71%

Table 8.5: Single Unknown Obfuscation Technique

about which obfuscation was used and what service was attacked from the right input.
Then the data is prepared using Reorder Attributes and Nominal to Binominal operators
for the binominal performance evaluation and are sent to the next operator of type Loop.

In the case of training and prediction per instance process, the Loop operator is called
Predict per Instance and has 17 iterations set in its parameters, because there are 17
obfuscation instances. However, in the case of a process, that trains and predicts per
technique, the operator is called Predict per Technique and is configured for just 7 iterations,
because there are just 7 obfuscation techniques. Both variants of the Loop operator are
quite similar, so they are described together with the same as the processes.

Predict per Instance/Technique

Each iteration of the loop starts with 2 Set Macros operators, which prepare necessary
macros, and then 2 most important operators, which constitute the core of the process
proceed. The first one is a Generate Macro operator, that reads the iteration macro, uses it
to determine which obfuscation should be selected in this iteration, and writes it to ob macro
in case of prediction per instance. In so far as prediction per technique is concerned the
Generate Macro operator sets 4 macros with information about what instances are present
in the current technique. The second core operator is Filter Examples operator, which uses
generated macros in order to select the right instance or instances of obfuscation attacks for
the current iteration and also sends all unmatched examples to its second output. Thanks
to this design it is possible to run the whole loop collaterally.

Both matched and unmatched data are then saved in files using Store operators and then
passed to Select Attributes operators, which remove excrescence labels about services and
attack types, which could also corrupt learning and prediction procedures. The unmatched
data, which do not include current obfuscation instances are passed to the model generating
operator, which trains a model on them. Next, the model is stored using a Store operator
and then delivered to the Apply Model operator. The matched data is connected to the
Apply Model as well, so the model is tested on them. Resulting labeled data is then sent to
Performance (Binominal Classification) operator, which calculates criterions described in
Section 7.4.3. Then the produced performance vector is saved to a file using Store operator,
and in the end, it is delivered to the Execute Script operator, which performs a script that
extracts critical information from the data and macros and prints results.
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Classifier TPR FPR F1 (↑)

Decision Tree 86.41% 5.54% 61.72%
Random Forest 63.28% 3.24% 58.06%

Naïve Bayes (Kernels) 54.37% 3.02% 52.97%
Naïve Bayes 62.81% 9.40% 39.07%

(a) Classifiers trained on the novel dataset in Section 6
tested on ASNM-NPBO-v1 dataset [39].

Classifier TPR FPR F1 (↑)

Naïve Bayes (Kernels) 37.57% 13.35% 48.31%
Naïve Bayes 28.61% 11.46% 39.73%

Decision Tree 24.67% 2.16% 38.67%
Random Forest 9.20% 0.06% 16.83%

(b) Classifiers trained on ASNM-NPBO-v1 dataset [39]
tested on the novel dataset in Section 6.

Table 8.6: Cross-Dataset Evaluation.

8.3 Cross-Dataset Evaluation
In Cross-Dataset evaluation the novel dataset (described in Section 6) and the state-of-
the-art dataset ASNM-NPBO-v1 [39] are cross evaluated. The Evaluation process consists
of training a classifier on the first dataset and then testing in on the second one and vice
versa. Cross-dataset evaludation experiments implementation is described in Section 8.3.1.
All data including obfuscated attacks were used in this experiment and the result can be
found in Table 8.6. There are significant differences between models of the same classifiers
trained on different datasets, for instance, Decision Tree reaches much better TPR in the
case of testing on ASNM-NPBO-v1 dataset than in the case of doing it vice versa. However,
in the case of Decision Tree tested on the novel dataset, the classifier’s FPR is significantly
better. After sorting the results, no classifier ended on the same “rank” in both tables. An
interesting fact is also that classifiers trained on the novel dataset performed better than
classifiers trained on the ASNM-NPBO-v1 dataset. The reason might be the fact novel
dataset contains more vulnerabilities than the ASNM-NPBO-v1 dataset.

8.3.1 Cross-Dataset Evaluation Implementation

Cross-dataset evaluation is implemented in 2cl-X-Dataset-Evaluation process. The process
starts by reading input datasets with DOL123 data using two Retrieve operators. Then
a file with DOLFFS attributes selected from the novel dataset is read using another Re-
trieve operator. After it is done, the attributes are filtered from the dataset table using
Select by Weights operator, which uses the dataset table and attribute table as its inputs.
DOLFFS attributes selected from ASNM-NPBO-v1 dataset [39] are filtered using the Select
Attributes operator, which includes information about the attributes. There are also two
more DOLFFS filtering operators, which are the same as above, but they filter different
datasets than attributes. Datasets and attributes are delivered using three Multiply oper-
ators. Therefore four branches with data are prepared as a result of previous operations.

Next in the first branch (with DOLFFS and DOL123 from the novel dataset) are per-
formed two Set Macros operators, which prepare macros with model, data, and folders
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information. All four branches continue by passing their data to Prepare DOL112 attFFS
subprocesses, which are all the same. Prepare DOL112 attFFS subprocess consists of two
Replace operators only, which change values of label attribute from 2 to 1 (obfuscated at-
tacks get label 1 same as direct attacks) and 3 to 2 (legitimate traffic gets label 2). Then
Nominal to Binominal operators fix label data types for binary classifiers.

The branches, which include data with attributes both from the same dataset are de-
livered using the Multiply operators to two new branches for each. One of each two sub-
branches passes the data to the model generating operator and the second passes the data
to the Apply Model operator, which got a model from the model generating operator. Both
trained models are delivered using the Multiply operators to two Apply Model operators,
the mentioned ones, which apply the models to their training data and the ones that apply
models to data from different datasets. All labeled data from each Apply Model operator
are passed to Performance (Binominal Classification) operators, which are configured the
same as described in Section 7.4.3. All calculated performance vectors are then saved in
output files using Store operators, and the same is done with trained models. The labeled
data is saved as well, and then it is passed to Filter Examples operators, which are con-
figured to filter wrong classified examples only, which are then stored too. In the end, the
data is analyzed using the process described in Section 8.1.4.

8.3.2 Cross-Dataset Evaluation per Service

In Table 8.7 with obfuscated attacks detected by classifiers trained on the novel dataset in
Section 6 tested on ASNM-NPBO-v1 dataset [39] per services can be seen that Apache,
Samba and DistCC services were detected much more easily than other ones. An average
TPR of mentioned services ranges from 88.97% to 96.76%. The second group consists
of Server and PostgreSQL, which were not detected as well as in the first case, but the
average TPR is significantly influenced by the Naïve Bayes (Kernels), which classified them
hardly with 4.9% and 8.04% only success. The toughest problem for classifiers is obfuscated
attacked targeted to MSSQL. The most successful classifier is Decision Tree with 93.82%
of detected obfuscated attacks.

The second table presents the results of obfuscated attacks detected by classifiers trained
on the ASNM-NPBO-v1 dataset [39] tested on the novel dataset in Section 6 per services.
Most services ranged from 15.3% to 47.39% detection success on average. There are two
obfuscated service attacks hard to detect Confluence and FTPShell. The interesting fact
about FTPShell is that the client application is attacked by the server, maybe that is
the reason no attacks targeted to FTPShell was detected because it phenomenally differ-
entiates from other attacks. The best performance was measured in Gitstack detection
with 70.38%, where was especially successful Naïve Bayes (Kernels) classifier with 91.33%
detected obfuscated attacks.

8.3.3 Cross-Dataset Evaluation per Obfuscation Instance

Obfuscated attacks detected by classifiers trained on the novel dataset in Section 6 tested on
ASNM-NPBO-v1 dataset [39] per obfuscation instances are listed in Table 8.9. The results
per instance on average range from 54.54% to 82.22%. The easiest to detect are obfuscation
instances that modify packets’ order or duplicate packets. The classifiers struggled to detect
instances, which delayed the communication, fragmented packets into low size and instances
that combined miscellaneous obfuscation techniques.
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Service Samples
Count

Naïve
Bayes

(Kernels)

Naïve
Bayes

Decision
Tree

Random
Forest Average

Apache 163 91.79% 96.52% 98.75% 100.00% 96.76%
Samba 44 84.80% 95.10% 94.12% 94.12% 92.03%

DistCC 23 61.76% 94.12% 100.00% 100.00% 88.97%
PostgreSQL 45 4.90% 66.67% 100.00% 77.45% 62.25%

Server 100 8.04% 64.12% 99.02% 62.75% 58.48%
MSSQL 103 48.88% 0.00% 71.01% 1.82% 30.43%

Average 50.03% 69.42% 93.82% 72.69%
Std. Dev. 37.13% 37.04% 11.39% 37.67%

Table 8.7: Obfuscated attacks detected by classifiers trained on the novel dataset in Sec-
tion 6 and tested on ASNM-NPBO-v1 dataset [39] per services.

Service Samples
Count

Naïve
Bayes

(Kernels)

Naïve
Bayes

Decision
Tree

Random
Forest Average

Gitstack 398 91.33% 63.86% 38.75% 11.26% 70.38%
rConfig 232 15.47% 95.56% 13.75% 7.16% 47.39%
Drupal 399 41.34% 34.66% 82.29% 19.37% 45.60%

LibreNMS 368 47.24% 33.68% 38.57% 35.02% 39.20%
Nagiosb 145 18.00% 63.33% 8.67% 0.00% 35.65%
Webmin 276 17.97% 31.12% 33.40% 8.19% 26.18%
Nagiosa 657 36.26% 21.89% 8.86% 7.08% 25.94%

GetSimple 1173 37.08% 13.70% 19.61% 2.79% 24.32%
jQuery-File-Upload 318 33.83% 0.00% 13.10% 0.00% 15.30%

Confluence 275 3.01% 0.00% 0.00% 0.00% 1.24%
FTPShell 98 0.00% 0.00% 0.00% 0.00% 0.00%
Average 31.05% 32.53% 23.36% 8.26%

Std. Dev. 33.06% 25.95% 31.27% 8.05%

Table 8.8: Obfuscated attacks detected by classifiers trained on ASNM-NPBO-v1
dataset [39] tested on the novel dataset in Section 6 per services
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Instance Samples
Count

Naïve
Bayes

(Kernels)

Naïve
Bayes

Decision
Tree

Random
Forest Average

(i) 27 65.00% 83.33% 100.00% 80.56% 82.22%
(h) 30 63.89% 83.33% 100.00% 80.56% 81.94%
(j) 27 50.00% 83.33% 100.00% 83.33% 79.17%
(k) 27 52.78% 83.33% 100.00% 80.56% 79.17%
(g) 26 62.78% 73.33% 94.44% 83.33% 78.47%
(l) 27 52.78% 83.33% 100.00% 77.78% 78.47%
(e) 26 66.67% 77.78% 100.00% 63.89% 77.08%
(o) 28 57.41% 83.33% 83.33% 83.33% 76.85%
(m) 27 49.44% 83.33% 100.00% 66.67% 74.86%
(d) 30 44.44% 72.22% 97.22% 77.78% 72.92%
(a) 28 61.11% 66.67% 83.33% 75.00% 71.53%
(f) 28 40.00% 60.56% 88.89% 77.78% 66.81%
(p) 33 40.15% 48.48% 88.89% 66.67% 61.05%
(q) 35 40.28% 38.89% 91.67% 69.44% 60.07%
(n) 27 36.11% 83.33% 77.22% 33.33% 57.50%
(b) 22 26.67% 40.00% 96.67% 60.00% 55.83%
(c) 30 30.16% 26.11% 92.86% 69.05% 54.54%

Average 49.39% 68.86% 93.80% 72.30%
Std. Dev. 12.50% 19.09% 7.23% 12.47%

Table 8.9: Obfuscated attacks detected by classifiers trained on the novel dataset in Sec-
tion 6 and tested on ASNM-NPBO-v1 dataset [39] per obfuscation instances.

In Table 8.10 there are obfuscated attacks detected by classifiers trained on ASNM-
NPBO-v1 dataset [39] tested on the novel dataset in Section 6 per obfuscation instances.
Most instances’ scores ranged from 29.23% to 32.36%, however, there were significant dif-
ferences between individual classifiers. Most attacks evaded using obfuscation instances
that used the normal distribution of packets transmission delay, packets’ duplication, and
the most extreme fragmentation technique instance, which fragmented the communication
into the smallest data objects.
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Instance Samples
Count

Naïve
Bayes

(Kernels)

Naïve
Bayes

Decision
Tree

Random
Forest Average

(m) 281 32.13% 32.60% 16.72% 4.55% 32.36%
(b) 18 58.75% 25.00% 12.50% 6.25% 32.08%
(e) 281 33.54% 30.61% 26.17% 13.25% 32.08%
(q) 285 30.24% 33.45% 25.50% 8.91% 31.85%
(g) 266 37.35% 31.37% 26.59% 13.80% 31.77%
(p) 290 31.03% 32.11% 25.01% 9.66% 31.57%
(i) 303 31.74% 33.72% 25.76% 9.65% 31.31%
(l) 281 34.64% 32.59% 16.96% 5.68% 31.17%
(o) 276 30.02% 32.23% 24.68% 9.41% 31.13%
(f) 257 33.82% 31.27% 27.81% 14.78% 31.10%
(d) 271 34.36% 31.38% 25.04% 11.09% 30.26%
(k) 288 32.16% 33.40% 24.32% 4.17% 29.96%
(a) 286 36.57% 26.14% 26.01% 6.47% 29.57%
(h) 320 31.32% 31.24% 25.19% 7.63% 29.25%
(j) 304 32.12% 32.52% 25.20% 9.88% 29.23%
(n) 284 23.25% 30.71% 29.55% 4.55% 26.98%
(c) 48 20.54% 23.61% 18.55% 4.17% 20.90%

Average 33.15% 30.82% 23.62% 8.46%
Std. Dev. 7.81% 3.00% 4.57% 3.44%

Table 8.10: Obfuscated attacks detected by classifiers trained on ASNM-NPBO-v1
dataset [39] and tested on the novel dataset in Section 6 per obfuscation instances.
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Chapter 9

Conclusion

In the first part of this work, we focus on the existing taxonomies of intrusion detection
systems. Articles that describe network intrusion systems taxonomy differ in many cases
[45, 20, 30]. Thus it was necessary to split descriptions by the origin of the description, in
cases of those which differentiated from each other, for example, anomaly-based detection
principles. Based on fundamental characteristics the taxonomy was united and extended
from mentioned works.

Adversarial attacks were divided by phases of the intrusion detection system which is
considered as the target of these attacks. The division is based on a taxonomy by Igino
Corona et al. [28], where his general description of intrusion detection system architecture
consists of three parts: event generators, event analyzers, and response units, where each
part represents one functionality phase.

The taxonomy of attacks against classification-based intrusion detection systems con-
sists of three main types of attacks based on their objective as described in [25]. The first of
them is exploratory attack, which is designed to gain as much information as possible from
the attacked system. There is also evasion type of attacks, whose objective is to intrude the
system, and its tactic is based on evasion of the intrusion classifier. The last type of attack
is poisoning attacks, which tries to contaminate the training data set of the target system
in order to manipulate its recognition capabilities.

In the second part of our work, we focus on evasion attacks performed using Non-
Payload-based Obfuscations. In detail, we start by the description of the Non-Payload-
based Obfuscation framework [42] and Advanced Security Network Metrics [39]. The
framework provides an ability to obfuscate exploits in order to evade detection of the
target intrusion detection system. A big advantage of this framework is that it is working
in an exploit-independent way, thus it is able to obfuscate given attack without the need for
manual modification of it. Experiments in [42] showed that by adding obfuscated exploits
into training datasets for the classifier of the IDS, the performance of other obfuscated
attacks detection of such trained IDS was improved. However, these results were obtained
using outdated vulnerabilities and they were not proven for the recent vulnerabilities and
techniques of targeted attacks, which is the goal of this work.

In order to develop, test, and improve classification-based intrusion detection systems,
the novel dataset was created in this work. The dataset consists of ASNM features ex-
tracted from records of legitimate traffic, direct attacks, and obfuscated attacks, which
were targeted against 11 vulnerable services. All vulnerabilities were found in the National
Vulnerability Database [55], where they can be identified as Common Vulnerabilities and
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Exposures (CVE). CVEs in the dataset were published in 2018 and 2019. All exploits
used to attack the vulnerabilities were downloaded from the Exploit Database by Offensive
Security [56].

In our experiments, Forward Feature Selection was used in order to select the best ASNM
features for attack detection. Six classifiers were tested in this thesis. For example, the per-
formance of Naïve Bayes with Kernel Density Estimation classifier, which had knowledge
about direct attacks and legitimate traffic only, achieved 99.34% true positive rate (TPR) of
detecting direct attacks in cross-validation experiment, while the false-positive rate was very
low (i.e., 0.02%). Then obfuscated attacks were classified by the mentioned classifier result-
ing in 70.02% TPR, which worse by 29.32%. Therefore, the obfuscated attacks successfully
evaded the classification process. The improvement of the classifier was accomplished by
widening its knowledge of obfuscated attacks, which were added into training data. The
classifier achieved 98.76% TPR in cross-validation over the whole dataset, which is 17.02%
better than the score of classification of all attacks using classifier without knowledge about
obfuscated attacks, while TPR was deteriorated only slightly (i.e., by 0.06%).

Next, the detection capability of classifiers to unknown obfuscation instance was tested.
For example, the Naïve Bayes with Kernel Density Estimation classifier was on average able
to detect 93.79% of obfuscated attacks, which were obfuscated using obfuscation instance
unknown for the classifier. A similar experiment was performed with obfuscation techniques,
where the classifier scored 93.61% TPR in the case of detecting attacks obfuscated using
an unknown obfuscation technique.

Finally, a cross-dataset evaluation was performed with the novel dataset and ASNM-
NPBO-v1 dataset [39]. The Naïve Bayes with Kernel Density Estimation classifier trained
on the novel dataset achieved 54.37% TPR and 3.02% FPR on ASNM-NPBO-v1 dataset
attacks detection. In the case of the same classifier trained on the ASNM-NPBO-v1 dataset
and validated on the novel dataset, the TPR achieved was equal to 37.57% while FPR
was equal to 13.35%. The best classifier was Decision Tree trained on the novel dataset,
which resulted in 86.41% TPR and 5.54% FPR score when doing validation on the ASNM-
NPBO-v1 dataset. In sum, the “backward” detection achieved better results than the
forward detection. This indicates the importance of retraining the classifiers with the novel
datasets and techniques used in the contemporary attacks, while classifiers trained using
the old vulnerabilities are more susceptible to targeted attacks with obfuscations.

In future work, the research might focus on widening training datasets and comparing
attacks focused on different vulnerable services, because in the cross-dataset evaluation
significant differences between detection ability of unknown attacks focusing on various
services were discovered. For instance, classifiers trained on the novel dataset detected
96.76% Apache attacks on average and just 30.43% MSSQL attacks.
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Appendix A

Employed ASNM Features
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Feature Description FFS
DOL

FFS
DL

MedTdiff2PktsIn Median of packet IAT (inter-arrival times) in inbound traffic. X
InPktLen64s10i[3] Lengths of inbound packets occurred in the first 64 seconds of a

connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 4th interval.

X

Bytes3WH2FIN The number of all transferred bytes from the start to the end of a
communication including session initiation and destruction packets.

X

SigPktLenOut Standard deviation of outbound packet lengths. X
PolyInd5ordOut[2] Approximation of outbound communication by polynomial of 5th

order in the index domain of packet occurrences. The feature
represents the 3rd coefficient of the approximation.

X

PolyInd10ordOut[8] Approximation of outbound communication by polynomial of 10th
order in the index domain of packet occurrences. The feature
represents the 9th coefficient of the approximation.

X

PolyInd13ordIn[10] Approximation of inbound communication by polynomial of 13th
order in the index domain of packet occurrences. The feature
represents the 11th coefficient of the approximation.

X

fourGonModulIn[1] Fast Fourier Transformation (FFT) of inbound packet sizes. The
feature represents the angle of the 2nd coefficient of the FFT in
goniometric representation.

X

fourGonModulOut[1] FFT of outbound packet sizes. The feature represents the angle of the
2nd coefficient of the FFT in goniometric representation.

X

intervalsIPsSig Standard deviation of time intervals between consecutive connections
of the two hosts running on the same IP addresses as an analyzed
connection. The feature assumes only beginnings of connection for
computation of intervals.

X X

gaussProds8Out[1] Normalized products of outbound packet sizes with 8 Gaussian curves.
Packets are divided into 2 slices and products are computed per each
slice by summing of products of relevant packets with fitted Gaussian
function. Each product is normalized by the number of packets in a
slice. The feature represents a product of the 2nd slice of packets.

X

Table A.1: FFS (Part 1/2)
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Feature Description FFS
DOL

FFS
DL

sumSessPerPort The number of TCP sessions in interval ± 5 minutes from the current
session, which have the same port number.

X

InPktLen64s10i[6] Lengths of inbound packets occurred in the first 64 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 7th interval.

X

OuPktLen32s10i[3] Lengths of outbound packets occurred in the first 32 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 4th interval.

X

OuPktLen32s10i[6] Lengths of outbound packets occurred in the first 32 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 7th interval.

X

OuPktLen64s10i[8] Lengths of outbound packets occurred in the first 64 seconds of a
connection which are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of the 9th interval.

X

BytesPerSessIn The number of transferred bytes during TCP session in inbound
direction.

X

MedPktLenOut Median of packet sizes in outbound traffic of a connection. X
MedPktLenIn Median of packet sizes in inbound traffic of a connection. X
ModPktLenIn Mode of packet sizes in inbound traffic of a connection. X
polyInd3ordOut[3] Approximation of outbound communication by polynomial of 3rd

order in the index domain of packet occurrences. The feature
represents the 4th coefficient of the approximation.

X

polyInd5ordIn[4] Approximation of inbound communication by polynomial of 5th order
in the index domain of packet occurrences. The feature represents the
5th coefficient of the approximation.

X

fourGonModulOut[2] FFT of outbound packet sizes. The feature represents the angle of the
3rd coefficient of the FFT in goniometric representation.

X

fourGonModulOut[3] FFT of outbound packet sizes. The feature represents the angle of the
4th coefficient of the FFT in goniometric representation.

X

gaussProds8AllNeg[1] Normalized products of all packet sizes with 8 Gaussian curves. The
feature represents a product of the 2nd slice of packets with a
Gaussian function which fits to the interval of the packets’ slice.

X

Table A.2: FFS (Part 2/2)
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Appendix B

CVE JSON Record Example

1 {
2 "cve" : {
3 "data_type" : "CVE",
4 "data_format" : "MITRE",
5 "data_version" : "4.0",
6 "CVE_data_meta" : {
7 "ID" : "CVE-2018-7573",
8 "ASSIGNER" : "cve@mitre.org"
9 },

10 "problemtype" : {
11 "problemtype_data" : [ {
12 "description" : [ {
13 "lang" : "en",
14 "value" : "CWE-119"
15 } ]
16 } ]
17 },
18 "references" : {
19 "reference_data" : [ {
20 "url" : "https://cxsecurity.com/issue/WLB

-2018030011",
21 "name" : "https://cxsecurity.com/issue/WLB

-2018030011",
22 "refsource" : "MISC",
23 "tags" : [ "Exploit", "Third Party Advisory" ]
24 }, {
25 "url" : "https://www.exploit-db.com/exploits

/44596/",
26 "name" : "44596",
27 "refsource" : "EXPLOIT-DB",
28 "tags" : [ "Exploit", "Third Party Advisory",

"VDB Entry" ]
29 }, {
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30 "url" : "https://www.exploit-db.com/exploits
/44968/",

31 "name" : "44968",
32 "refsource" : "EXPLOIT-DB",
33 "tags" : [ "Exploit", "Third Party Advisory",

"VDB Entry" ]
34 } ]
35 },
36 "description" : {
37 "description_data" : [ {
38 "lang" : "en",
39 "value" : "An issue was discovered in FTPShell

Client 6.7. A remote FTP server can send
400 characters of ’F’ in conjunction with
the FTP 220 response code to crash the
application; after this overflow, one can
run arbitrary code on the victim machine.
This is similar to CVE-2009-3364 and CVE
-2017-6465."

40 } ]
41 }
42 },
43 "configurations" : {

...

52 },
53 "impact" : {

...

93 },
94 "publishedDate" : "2018-03-01T17:29Z",
95 "lastModifiedDate" : "2019-03-01T18:27Z"
96 },
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Appendix C

Contents of the DVD

The enclosed DVD contains the following files:

• 0-exploitator/ - source code of the extended NPBO framework

• cves/ - source code of the CVE JSON and CPE XML Parser

• doc/ - source files of this thesis

• rapidminer/ - RapidMiner repository files including datasets, models, processes sources
and results of all dataset evaluation experiments

• nvdcve-1.1-2018.json.zip - ZIP file with NVD JSON Data Feed 2018

• nvdcve-1.1-2019.json.zip - ZIP file with NVD JSON Data Feed 2019

• official-cpe-dictionary_v2.3.xml.zip - ZIP file with Official CPE Dictionary

• thesis.pdf - PDF of this thesis
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