
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

COLLECTION OF SENSOR DATA INTO CLOUD
SBĚR SENZOROVÝCH DAT DO CLOUDU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MATEJ ZÁHORSKÝ
AUTOR PRÁCE

SUPERVISOR Ing. SVETOZÁR NOSKO
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Záhorský Matej
Programme: Information Technology
Title: Collection of Sensor Data into Cloud
Category: Embedded Systems
Assignment:

1. Study the literature and approaches for reading data from sensors. Focus on connection of
sensors to the cloud, including data protection by signing, timestamping, etc. The examples
include temperature/humidity (low data rate), cameras (high data rate), or other sensors.

2. Select a suitable platform for sensor data collection and propose an implementation of data
transfer from the selected sensors to the cloud.

3. Implement the selected method and discuss the achieved results.
4. Implement and demonstrate the protection of sensor data (confidentiality, authenticity, and

integrity).
5. Discuss the obtained results and present possible continuation of your work.

Recommended literature:
Based on instructions from the supervisor.

Requirements for the first semester:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Nosko Svetozár, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: May 18, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22718/2019/xzahor04 Page 1/1

Abstract
The primary objective of this thesis is data collection from selected sensors to a remote
Cloud with the use of STM32MP1. The first part of this thesis includes theory about data
collection options, their cryptographic security and functions of the given microcontroller.
The second part is about design and implementation of proper software solution for effective
and secure data collection from specific sensors. A thorough assessment of this particular
solution is described in the last part, which includes cryptographic signing performance in
a real world application.

Abstrakt
Primárnym účelom tejto práce je zber dát z vybraných senzorov do vzdialeného Cloudu
prostredníctvom platformy STM32MP1. V prvej časti práce je popísaná teória ohľadom
možností zberu dát, ich kryptografického zabezpečenia a funkcie daného mikrokontroléra.
V druhej časti je navrhnuté a implementované vhodné softvérové riešenie pre efektívne
a bezpečné zbieranie dát z vybraných senzorov. Na koniec sú vyhodnotené vlastnosti rieše-
nia, čo zahrňuje i rýchlosť kryptografického podpisovania v reálnej aplikácií.

Keywords
STM32MP1, data signing, hardware acceleration, MySQL, ECDSA, SHA-256, Python,
HTU21D, OpenSSL, Google Cloud, I2C, RPMsg, OpenAMP

Kľúčové slová
STM32MP1, podpisovanie dát, hardvérová akcelerácia, MySQL, ECDSA, SHA-256, Python,
HTU21D, OpenSSL, Google Cloud, I2C, RPMsg, OpenAMP

Reference
ZÁHORSKÝ, Matej. Collection of Sensor Data into Cloud. Brno, 2020. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Svetozár
Nosko

Rozšírený abstrakt

Úvod
Zber dát zo senzorov a ich následné odoslanie do vzdialeného Cloudu má v dnešnej dobe
mnoho implementácii, v ktorých sa väčšinou využíva viacero spolupracujúcich zariadení.
Vďaka novej platforme zo série STM32MP1 je možné na jednom mieste čítať, spracovať,
zabezpečiť a odoslať dáta do vzdialeného Cloudu. Cieľom tejto práce je oboznámenie sa
s danou platformou a navrhnúť adekvátny spôsob pre efektívny a bezpečný zber dát.

Výsledkom práce je softvér schopný zozbierať dáta z jednoduchého teplotného senzoru
a z inteligentnej kamery detekujúcej špecifické objekty v obrázkoch. Následne sú zozbierané
dáta podpísané a odoslané do Cloudu šifrovanou komunikáciou, čo je možné vďaka mnohým
softvérovým a hardvérovým komponentom dostupným nielen z operačného systému Linux
bežiaceho na tejto platforme.

Návrh
Z dôvodu prítomnosti dvoch procesorov tvoriacich heterogénny multiprocesorový systém je
vhodné rozdeliť implementáciu a vyvážiť ich využitie. Teplotný senzor, ktorý je schopný
zbierať dáta aj o vlhkosti využíva I2C rozhranie na komunikáciu. Senzory s daným rozhraním
je možné pripojiť cez GPIO alebo Arduino konektory a s použitím procesora Cortex-M4
zozbierať relevantné dáta.

Tento procesor však nemá prístup k úložnému priestoru a ani k internetu, v dôsledku
čoho je nutné zozbierané dáta predať procesoru Cortex-A7. K tomu je možné využiť
medziprocesorový komunikačný kontrolér. Softvérová knižnica OpenAMP na strane ko-
procesoru a framework RPMsg na strane hlavného procesora sú dostupné k vytvoreniu
komunikačného kanálu, ktorý zároveň využíva zdieľanú pamäť pre predávanie informácii.

Pred zahájením sieťového prenosu je nevyhnutné dáta zabezpečiť proti krádeži či pod-
vrhnutiu. Knižnica OpenSSL implementuje široký výber algoritmov pre tvorbu podpisov,
ktoré zaručia integritu a autenticitu dát i po dokončení sieťového prenosu. Vhodným al-
goritmom je ECDSA z dôvodu využitia menšieho súkromného kľúča a menších podpisov,
čo šetrí procesorový čas, pamäť a dátové úložisko. Súčasťou podpisovania je i hashovanie,
ktoré sa dá hardvérovo akcelerovať pomocou dedikovaného hashovacieho modulu.

K zozbieraniu dát z inteligentnej kamery a uloženiu detekcí sú potrebné dodatočné
knižnice, ktoré nie sú k dispozícií v štandardnej distribúcii. K tomu je možné využiť dis-
tribučný balík, s ktorým sa dajú pridať, odobrať, či upraviť softvérové komponenty podľa
potreby a skompilovať novovytvorený obraz systému.

V tomto bode sú dáta zabezbečené a pripravené na odoslanie. Na záver sa musí vybrať
vhodná služba poskytujúca vzdialené úložisko, či už vo forme databázy alebo súborového
systému. Pre dáta z jednoduchého senzoru, dodatočné metadáta a vygenerované podpisy je
vhodné využiť relačnú databázu z dôvodu jednoduchej analýzy dát. Pre veľké množstvo in-
formácií v podobe obrázkov predstavujúcich neštruktúrované dáta je štandardným riešením
súborový systém namiesto databázy. Cena za využitú diskovú kapacitu je podstatne nižšia
v porovnaní s databázou, pričom sa zároveň predchádza problémom so škálovaním a po-
malému spracovaniu dát. Informácia o existencií obrázka v úložisku spolu s metadátami
a podpismi sa ukladajú do databázy rovnako ako v prípade teplotného senzoru.

Implementácia
K vyvíjaniu koprocesorového firmvéru je možno použiť softvér STM32CubeIDE, ktorý
ponúka konfiguračný nástroj pre automatické generovanie kódu. Vďaka tomu je k dispozícii
inicializačný kód pre I2C, piny a aj medziprocesorovú komunikáciu. Hardvérovou abstrakč-
nou vrstvou HAL je ďalej naimplementovaný zber dát z teplotného senzoru k jednoduchšiemu
prenosu kódu medzi rôznymi platformami. OpenAMP knižnica prijíma správy vo forme
príkazov od procesora Cortex-A7 a inicializuje zber dát, ktoré nakoniec odošle ako odpoveď.

Zozbierané dáta sú dostupné na strane hlavného procesora, ktorý ich kryptograficky
podpíše a pripraví k odoslaniu. V procese podpisovania bola naimplementovaná funkcionalita
hardvérovej akcelerácie SHA-256 hashovania použitím užívateľského rozhrania AF_ALG.
V kombinácii s OpenSSL vytvára podpisy pre detekcie z inteligentnej kamery, pretože akcel-
erácia má prínos až pri rozsiahlych dátach. V prípade menšieho množstva dát je použitý
softvérový algoritmus pre SHA-256 a abstrakčná vrstva EVP v OpenSSL.

Softvér na strane ARM Cortex-A7 bol naimplementovaný v jazyku Python. Skripty
nadväzujú komunikáciu s koprocesorom, prijímajú, podpisujú a odosielajú zozbierané dáta
do Cloudu. K správnej funkcionalite boli Pythonu dodané balíky pre komunikáciu s ARM
Cortex-M4, MySQL databázou a Google úložiskom. Skripty sú schopné udržiavať auto-
matické pripojenie k databázi a úložisku, pričom v prípade nedostupnosti sú dáta zbierané
a ukladané v lokálnom úložisku. Python knižnica pre OpenSSL však nepodporuje ECDSA,
preto bola vytvorená zdieľaná knižnica v C a následne importovaná do Pythonu.

Vyhodnotenie
Platforma použitá v tejto práci má obmedzené množstvo výkonnostných testov, a preto je
na záver vyhodnotená rýchlosť hashovania a podpisovania v OpenSSL. Počas implementá-
cie riešenia bolo nevyhnutné urobiť určité kompromisy. V prípade hardvérovej akcelerácie
je k dispozícii i modul známy ako cryptodev, ktorý ponúka vyšší výkon ako jeho AF_ALG
alternatíva. V čase implementácie však nebol schopný akcelerovať SHA-256, a preto bola
táto chyba predaná prostredníctvom fóra integračnému týmu v STMicroelectronics. Vďaka
rozsiahlej komunite, v ktorej sú i zamestnanci tejto firmy bolo možné odovzdať daný prob-
lém zodpovednému personálu. V dôsledku toho bude v novej softvérovej verzii ekosystému
plánovanému v júni 2020 tento modul schopný akcelerovať i výpočet SHA-256. Jeho pred-
bežné výsledky boli poskytnuté zamestnancom firmy a sú taktiež popísané v tejto kapitole.
Na koniec boli pridané aj výsledky zberu dát z oboch senzorov a ich prítomnosť v Cloude.

Záver
V konečnom dôsledku bolo možné vytvoriť softvérové riešenie, ktoré do vysokej miery
využíva potenciál tejto platormy, čo osobne považujem za úspech. V budúcnosti by bolo
vhodné využiť aj bezpečné prostredie ARM TrustZone pre zber, zabezpečenie a odosielanie
dát. Operačný systém OP-TEE alebo Trusted Firmware-A, ktoré je možno spustiť
v bezpečnom prostredí nepodporujú spúšťanie Python skriptov. Z tohoto dôvodu by sa
musela implementácia kompletne presunúť do jazyka C, čo vyžaduje alternatívnu databázu
využívajúcu SQLite a SFTP úložisko (knižnice sú štandardne podporované na platforme)
alebo podporu dodatočných knižníc potrebných pre súčasné Cloudové riešenie (MySQL
a Google Cloud Storage).

Collection of Sensor Data into Cloud

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of Ing. Svetozár Nosko. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Matej Záhorský

May 27, 2020

Acknowledgements
I would like to express my sincere gratitude to Ing. Svetozár Nosko for giving me useful
advice, feedback and will to help, my family and friends for their support and everyone in
the STMicroelectronics community and staff for their effort to help with some of the issues
encountered during the implementation process of this thesis.

Contents

1 Introduction 2

2 Data collection and security 3
2.1 Sensor communication interfaces . 3
2.2 Inter-processor communication . 5
2.3 Cloud . 10
2.4 Software . 13
2.5 Security . 17

3 Design 22
3.1 Software environment . 22
3.2 Sensor selection . 23
3.3 Connecting sensors . 24
3.4 ARM Cortex-M4 firmware development . 24
3.5 OpenSSL and data signing . 24
3.6 Relational database design . 25
3.7 Cloud setup . 26
3.8 Data collection . 27
3.9 Assessment of results . 27

4 Implementation 28
4.1 Custom distribution image . 28
4.2 Cloud database and storage . 31
4.3 Co-processor firmware . 33
4.4 Inter-processor communication . 37
4.5 Signature generation and verification . 38
4.6 Data transmission . 39
4.7 Offline processing . 40

5 Assessment 41
5.1 Hashing and signing performance . 41
5.2 Data collection results . 43

6 Conclusion 45

Bibliography 46

1

Chapter 1

Introduction

People everyday are surrounded by a wide variety of microcontrollers (MCUs) and sensors
that make their lives easier without even knowing about their presence. As the days are
passing by, many things are being automated and for that reason, requirements for them
are quickly rising.

Many people think of a computer when it comes to the term microcontroller and tech-
nically, they are not wrong. As an example, these tiny computers might be controlling
electric windows in your car or the automatic brake system, which means that generally,
there are many of them in the whole system. Besides car industry, they are also a part
of medical devices, office machines, computer peripherals, televisions, alarm clocks and the
list could go on for a very long time. However, these systems are built for simple tasks
where they often react to an user input, such as a button click and perform the desired
operation by sending a signal to the controlled unit. In many cases this is the only thing we
want and thanks to simplicity of the device we can achieve our goal while using only a tiny
bit of power. With that comes a problem with potential future upgrades and flexibility.
Once a decision is made, it is quite expensive to make changes later due to fixed design of
the system. Additional upgrades such as statistics collection of the controlled devices state
and possible prediction of failures might be too much to process by the MCUs Central Pro-
cessing Unit (CPU). If we further want to collect the data on a server we need additional
components for network connectivity and protection, because once we are online we are in
danger of unauthorized access to our system.

If that is what we need, then it is necessary to opt for a more robust system with more
power and features, such as an STM32MP11 from STMicroelectronics. This MCU offers
two CPUs, the ARM Cortex-A7 which is focused on high computational power for more
complex tasks and the more efficient ARM Cortex-M4, that is used for small operations in
real-time, such as reading data from a sensor. Besides offering high performance, it also
provides support for Linux operating system, many useful libraries for development, graph-
ical processing unit for easier interaction and most importantly advanced security features
for better protection.

This thesis will focus on how this particular unit works, what are the possibilities of
sensor data transfer to the MCU and then to a remote cloud. This needs to be done while
maintaining high performance and emphasis on security with data signing to avoid potential
data forgery.

1STM32MP1 Series. STMicroelectronics. [online]. [cit. 2020-04-23]. Retrieved from:
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html

2

https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html

Chapter 2

Data collection and security

While the more robust and powerful ARM Cortex-A7 is suitable for more complex tasks,
the ARM Cortex-M4 co-processors purpose is to provide additional computing power for
real-time applications. Due to the reason of both processors having different characteristics,
which means that they create a heterogeneous environment, it is important to implement a
way for them to communicate and exchange information. This chapter describes methods
used for transmitting data from sensors to the STM32MP1 unit using the co-processor and
how it is possible to transfer the collected data to the ARM Cortex-A7 master CPU, which
is running Linux operating system and has an active internet connection. The master is
then capable of running heavier tasks for securing the data with signing and ciphering
algorithms and afterwards sending them over the network to a remote cloud, which is also
a part of this chapter.

2.1 Sensor communication interfaces
As different sensors require different hardware interfaces for communication with the board,
it is important to select the more suitable one based on the characteristics of the particular
sensor. As some sensors are intelligent and are capable of communication via Ethernet
or USB, they won’t be included as every implementation differs from model to model.
Following hardware peripherals can be found on many different platforms including the
STM32MP1.

UART and USART
One of the most common communication modules is UART (Universal Asynchronous Re-
ceiver/Transmitter). Asynchronous communication is done without using a synchronization
signal, which means that a different approach is required to let the receiver know when the
data are being transmitted. UART does this by creating a data packet, which consists of
a start bit, data bits, zero or one parity bit and one or two stop bits. Start bit marks the
beginning of the communication between the transmitter and receiver, parity bit is used
to detect errors during transmission and a stop bit (or two stop bits) marks the end of
the transmission. By specifications of UART present on the MCU, the packet size is pro-
grammable for either 7, 8 or 9 data bits [16] plus start, parity and stop bits, which results
in high data overhead and relatively slow effective transfer speeds.

3

It also needs to be ensured that both communicating sides are properly configured to avoid
any potential data loss. One of the most important settings is transmission speed, which
is called baud rate. Its value represents amount of symbols transmitted per second, which
in case of 2 symbols (zeroes and ones) is equivalent to bit rate [2]. Big differences in baud
rate can cause one side to receive corrupted data, because it is unable to process them at
the same speed as the other side.

To avoid this problem, the synchronous mode can be used as well and it is supported by
USART on the MCU. It is able to communicate with the receiver asynchronously like UART,
but also synchronously by using a separate clock signal. It can be used for connecting an
SPI sensor, which also uses this communication mode. However, this fact does not ensure
higher transfer speeds, because start and stop bits are still being sent [16]. The biggest
disadvantage of both UART and USART is unsupported communication with multiple
devices that SPI and I2C do support, which is the reason why it is not very commonly used
with sensors.

I2C
I2C module (Inter-Integrated Circuit) is a serial interface that communicates with devices
over a single data channel. As opposed to UART/USART, it is commonly used to control
sensors since more of them can be connected at the same time.

The controlling unit, which initializes the communication is called master, while con-
nected devices or sensors are slaves. Because the communication is synchronous, master
needs to generate a clock signal to synchronize with its slaves. If UART/USART was to
be used, it would use two data channels for communication, one for transmission and one
for reception. This is where I2C also differs, because it uses a single data channel to com-
municate bidirectionally (half-duplex) with all connected slaves. Before the communication
with a slave begins, it is first necessary to select it by sending each slave an address and a
read or write bit. After the address is received by a slave, it compares the address with its
own and responds with an acknowledgement bit if it matches. Afterwards, the master can
start sending data to the slave or slave to the master.

However, some sensors have a fixed address, so it is not possible to differentiate them.
For that reason, sensors which can have a programmable address or a different model of the
sensor should be selected. In addition to that, the modules transmission speed is signifi-
cantly lower (1 Mbit/s) [16] in comparison to other interfaces, such as SPI (on STM32MP1
up to 100 Mbit/s).

SPI
If the previous modules are not suitable for use, the SPI (Serial Peripheral Interface) can
be selected instead. Thanks to a clock synchronization signal it can communicate syn-
chronously just like I2C.

Although that’s where the similarities end, since it is a four-wire bus unlike I2C, which
is only two-wire. The extra wires are necessary for full duplex communication, because it
is achieved using separate data channels for each direction [16].

As both I2C and SPI support multi-slave systems, the selection of a slave is done dif-
ferently. The fourth channel of SPI module is called a slave select (SS) channel, which is
set to a logical 0 and kept in this state until the communication has ended and then the

4

value is restored back to a logical 1. Since this system only controls when the slave can
receive or transmit data, a single SS wire is connected to only one slave unlike I2C. For
large amounts of devices it becomes problematic since there are only a limited amount of
SS wires. In that case either GPIO pins can be used to act like a SS channel or a decoder
has to be obtained, which of course increases the overall cost of the system.

In some specific scenarios, in which there are multiple LEDs or shift registers, a single
SS wire can be used. This is known as ”daisy-chaining“, [16] where master communicates
with all slaves simultaneously. The masters data output is connected to the input of the
first slave, which then outputs the data to the next slave. The last slave is then outputting
data to the masters input and the chain is closed.

However, daisy-chaining is often not a viable option, because in most cases a direct
communication between master and slave is required. This is why the first option with
multiple SS wires would need to be used to achieve communication with multiple sensors.

2.2 Inter-processor communication
The main problem in heterogeneous systems is their cooperation and communication, which
isn’t straight-forward and requires some software solutions in order to accomplish their syn-
ergy. The more robust Cortex-A7 in this system is referred to as ”host“ or a ”master“, which
means that the Cortex-M4 (referred to as a ”co-processor“ or a ”remote“ processor) is ini-
tialized, programmed, debugged through this processor and the communication between
them is also initiated on the masters side. For this reason, most of the software solutions
are present in the kernel of Linux operating system, which offers several drivers and frame-
works designed for this purpose. As these solutions can be different on specific platforms,
most of the following information in this section are gathered from STMicroelectronics wiki
pages, which are created and approved by official employees of this company and they are
considered reliable and accurate. Each subsection contains a reference to the respective
page for more details.

IPCC
The drivers and frameworks require a hardware peripheral called inter-processor communi-
cation controller (IPCC) [10]. This controller provides a communication support on hard-
ware level, where both parties (sender and receiver) have their own register banks and
interrupts. The message that is being transmitted is stored in RAM as a shared mem-
ory buffer, which is not a part of the IPCC peripheral [16]. In total there are 6 channels
available for communication, where each of them consists of two sub-channels:

∙ Processor 1 to Processor 2 sub-channel

∙ Processor 2 to Processor 1 sub-channel

Since the memory containing the message is shared, it is important to ensure that the
processors do not simultaneously access this memory and cause unwanted errors. For that
purpose all 12 sub-channels have a flag for controlling the communication. A flag can be of
two values, generating two different interrupts:

∙ TXF - The sending processor is notified about a sub-channel being ready for new
transmission.

5

∙ RXO - The receiving processor gets an interrupt about sub-channel being occupied,
which indicates an incoming message.

These 6 channels can operate in 3 different modes:

∙ Simplex - Only one sub-channel is used. The sender checks if its free based on the
channel flag, then it posts the data in shared memory and sets the flag to occupied.
This generates an interrupt on the receivers side, so it can read the data from memory.
Afterwards, the flag is cleared and a free channel interrupt on the senders side is
generated for a new transmission to begin.

∙ Half-duplex - Only one sub-channel is used. The sender stores required data in mem-
ory, sets the flag and waits for response. After the message is processed by the receiver,
it first stores the response in memory and then clears the flag.

∙ Full-duplex - Both sub-channels are used, it can be considered as a combination of
two simplex channels where both parties are communicating asynchronously, which
means they are not waiting for a response.

Following figure illustrates how the channels and their sub-channels can generate an in-
terrupt that notifies the receiving processor about an incoming message or the sending
processor about a free channel.

Figure 2.1: IPCC communication channels and interrupts1.

1IPCC internal peripheral. STMicroelectronics. [online]. [cit. 2020-04-23]. Retrieved from:
https://wiki.st.com/stm32mpu/nsfr_img_auth.php/thumb/8/8e/IPCC_peripheral.png/800px-
IPCC_peripheral.png

6

https://wiki.st.com/stm32mpu/nsfr_img_auth.php/thumb/8/8e/IPCC_peripheral.png/800px-IPCC_peripheral.png
https://wiki.st.com/stm32mpu/nsfr_img_auth.php/thumb/8/8e/IPCC_peripheral.png/800px-IPCC_peripheral.png

Linux mailbox framework
The mailbox framework is used for exchanging messages or signals between the host pro-
cessor and the co-processor. This framework is defined and operational in the Linux kernel
space and it is separated into two parts [11]:

∙ The mailbox controller is a driver for the IPCC hardware peripheral, which means
that it configures and handles the IPCC interrupts.

∙ The mailbox client is in charge of messages themselves, which are going to be sent
or received. A client can be defined by the user, but mostly it is used by other
frameworks for message exchange purposes.

In the following figure the mailbox client is the remoteproc (rproc) framework driver, which
in turn forwards messages to the RPMsg framework. Both frameworks will be described in
the next sections, since they will be key to this thesis.

Figure 2.2: Linux mailbox framework2.

2Linux Mailbox framework overview. STMicroelectronics. [online]. [cit. 2020-04-23]. Retrieved from:
https://wiki.st.com/stm32mpu/nsfr_img_auth.php/a/aa/Mailbox_overview.png

7

https://wiki.st.com/stm32mpu/nsfr_img_auth.php/a/aa/Mailbox_overview.png

Linux remoteproc framework
The key software component for developing real-time applications in production mode is the
remoteproc framework. It allows the master processor to initialize, configure, debug and
monitor the co-processor when an application is deployed [17]. It uses a remoteproc driver to
contol the initialization, such as clocks, memories, registers or watchdogs. The framework’s
generic part is responsible for loading the firmware image into the co-processors memory,
parsing the resource table and starting/stopping the execution while offering monitoring and
debugging services if they are required. The Linux mailbox framework client is also being
used here, since it is responsible for sending notifications to the co-processor. As already
stated earlier, the remoteproc framework creates some sort of an interface for sending
messages with the RPMsg framework as shown on the following figure.

Figure 2.3: Linux remoteproc framework3.

3Linux remoteproc framework overview. STMicroelectronics. [online]. [cit. 2020-04-23]. Retrieved from:
https://wiki.st.com/stm32mpu/nsfr_img_auth.php/e/ef/Remoteproc_overview.png

8

https://wiki.st.com/stm32mpu/nsfr_img_auth.php/e/ef/Remoteproc_overview.png

RPMsg framework and/or OpenAMP
If the data which are available on the remote processor (in its memory) need to be further
processed, stored on a disk or sent over the network, they first need to be ”sent“ to the mas-
ter processor. The Linux RPMsg framework is designed to provide information exchange
mechanism via shared memory buffers [19]. A RPMsg client can be identified, registered
and associated to by a textual service name. Once an identical service name is announced
by a remote processor, the RPMsg client driver is probed by the framework, communica-
tion channel is established and ready to start. The whole process is initiated by the remote
processor by creating an endpoint with a unique source address and an associated callback
function. However, on remote processor there is no kernel module or framework available,
which would be in charge of the communication. A recommended solution by STMicroelec-
tronics is OpenAMP middleware library, which handles all RPMsg related configuration
and message exchanging. All the frameworks and drivers described earlier have lead to
a somewhat complex solution for communication. It requires the remoteproc framework
which forwards services to the mailbox framework, that in turn controls the IPCC periph-
eral. It is used to send notifications about a new message, which has been stored by the
RPMsg framework in a shared memory. On the remote processors side, the IPCC HAL
driver is used to implement mailbox framework and the OpenAMP library for RPMsg. The
complete diagram of all used software solutions and how they cooperate can be seen on the
following figure.

Figure 2.4: Linux RPMsg framework and/or OpenAMP4.

4Linux RPMsg framework overview. STMicroelectronics. [online]. [cit. 2020-04-23]. Retrieved from:
https://wiki.st.com/stm32mpu/nsfr_img_auth.php/3/35/Rpmsg_overview.png

9

https://wiki.st.com/stm32mpu/nsfr_img_auth.php/3/35/Rpmsg_overview.png

2.3 Cloud
Data captured at a certain point by a sensor might not have a meaning by themselves.
They need to be correlated and compared to further data that will be obtained sometime
in the future or that are currently available on a remote MCU or storage. This section is
about bringing them together on a single storage where they can be properly analyzed.

Database or file storage?
A specific sensor have a unique output which defines a lot of factors that need to be consid-
ered before selecting a remote storage. Simple sensors that measure temperature, humidity
or pressure give us structured data, which can be represented by either float or double data
type depending on how precise they have to be. A simple relational database using SQL is
capable of storing structured data where data size is known along with additional metadata
about their origin.

A single row in a relational database should be as small as possible in terms of its size to
keep its price as low as possible. Storing massive data results in scalability issues and low
response times [5], which would be easy to accomplish with a camera. Even a tiny image
that consists of only white pixels with a resolution of 50x50 is enormous in comparison
to a simple decimal number. For this reason, a simple relational database would be very
expensive to maintain and a lot of expensive storage would be required. Images themselves
are unstructured data, as they do not have a fixed size and a dedicated data type that
could represent them. Databases can store large binary objects (BLOB), which can take
up to 65 KB of unstructured binary data, which in many cases is not sufficient. As it is not
impossible to do this, it is considered a bad practice to insert large unstructured data into
a database.

In cases like this it is very common to use a separate storage, which is designed exactly
for this purpose. The image or any other binary object is first sent to a specific folder in
a Cloud storage with a specific file name and file extension. The information about the
objects presence on the Cloud is then sent to the relational database in a form of full path
to the file in the storage. Additional metadata captured during the image processing are
also being sent to the relational database for future analysis. However, with this solution
there is a high chance of inconsistency between the database and storage, so extra precau-
tions need to be done to make sure that the object is really present on the storage if it is
referenced in the database.

Cloud services
It is important to know what benefits does cloud computing and cloud storage bring to the
table. However, these services are not free, so it is necessary to select the best option for
implementation while keeping the price as low as possible.

There are many database and storage services that are offered for low prices, but their
availability, performance and support are questionable. Among many different companies
the most known are Google and Amazon. Both of them offer relational database and stor-
age services that are broadly used by many companies. The price of each service depends
on actual usage, either if its storage size, database operations, server region, CPU and
RAM utilization or network usage. For a direct comparison between the two services, an

10

identical setup was created and using their proprietary calculators it was simple to figure
out required expenses for each service.

It can be assumed that if an imaging sensor is being used, the total cost of the service
is going to be higher in comparison to a temperature sensor, which outputs very little data.
If a single camera captures an image every second with an average image size of 50 KB, the
total storage size needed is around 4,32 GB per day. With every added device the number
is multiplied and storage requirements quickly rise. These images become outdated after
some time and if a month old images are automatically removed from the cloud, the total
requirements for a time span of one month per device is around 130 GB. Database oper-
ations are also being taken into account since both services charge extra for them. Each
image insertion into database is one POST operation, which means that around 260 thou-
sand insert operations are done on both database and storage monthly.

For storing images on Amazon Web Services a standard S3 storage service has been
selected, whereas on Google’s side it was a Cloud Storage option. Based on previous cal-
culations, the total storage requirements for 1000 concurrently running cameras is 130 TB
of storage, 260 million insert operations (Class A operations) and for purpose of analysis,
a 100 million GET operations (Class B operations) was given as an example for compari-
son, because it depends purely on the application. Except for storage requirements, many
operations are required to be done as fast as possible and a server located thousands of
kilometers away can cause higher transmission delays. Both companies are offering their
services on multiple continents, including Europe, which is why a server based in Frankfurt
was selected in their respective calculators. The instance on Google’s side had 4 virtual
CPUs (vCPUs) and 15 GB of RAM, while on Amazon RDS there is the same amount of
vCPUs and 16 GB of RAM. In case of data storage, Google’s Cloud Storage price is lower
by 5% [2.5] in an equal scenario than Amazon S3 storage [2.6]. Along with storage prices,
the relational database from Google [2.5] came out being cheaper by around 24% in a very
similar specification than Amazon RDS [2.6].

After researching both of these platforms, it is safe to say that their differences are
very minor, which can be also seen on some online blogs5. Both are offering very compa-
rable availability and security, so everything comes down to the final price based on the
configuration.

5Google Cloud vs AWS in 2020 (Comparing the Giants). Brian Jackson. [online]. [cit. 2020-04-23].
Retrieved from: https://kinsta.com/blog/google-cloud-vs-aws/

11

https://kinsta.com/blog/google-cloud-vs-aws/

Figure 2.5: Google Cloud Storage and SQL pricing.

Figure 2.6: Amazon S3 Storage and RDS database pricing.

12

2.4 Software
The STM32MP1s software consists of multiple solutions in order to create a working ecosys-
tem, that is capable of using all the resources available while keeping the system and user
programs safe, powerful and in perfect synergy. The hardware is without any doubt impor-
tant, but without software it would be very complicated for developers to work and create
something useful on this platform. There are some software implementations, which can
simplify the process of developing software solutions. Similarly to section 2.2, this section
will mostly contain information from STMicroelectronics wiki pages, which will be linked
in each sub-section for more information.

STM32MP1 boot sequence
The platform can be booted in either engineering mode or production mode, where the
engineering mode allows us to flash the co-processor firmware on the board and debug it.
In this case, the Linux operating system is not booted and the Cortex-A7 is in an infinite
loop, but it can be debugged as well if needed. This mode can be entered by switching the
boot pin 0 to position 0 and pin 2 to position 1 on the back side of the board [18]. In the
production mode, the Cortex-A7 is used to boot the Linux operating system and initialize
all necessary features. The boot sequence in this mode consists of multiple stages where all
the components are progressively initialized in order to run and use the Linux operating
system.

ROM Code
The first stage is executed in both boot modes, where the master processor initializes only
the basic system clocks [18]. In engineering mode, the Cortex-A7 allows the co-processor
to use some of its functions and also enables full debugging capabilities of both CPUs. The
debugger is an external function and it can be used even when only a single CPU has to be
debugged. Afterwards the master goes to an infinite loop and the co-processor may begin
software execution. In production mode it is needed to find the boot source from which a
bootloader will be initialized. The default boot device is the SD card, which can be selected
by switching boot pins 0 and 2 to position 1. The STM32MP157C-DK2 board used in this
thesis has only two switchable boot pins, 0 and 2, whereas pin 1 is set to 0 by a pull down
resistor [23]. This means that if a different boot source needs to be selected, it has to be
specified in the primary boot source field of One Time Programmable (OTP) fuse box used
for on-chip non-volatile storage [16]. When the clock initialization is done and boot pins are
correctly set, the ROM code loads the first stage bootloader (FSBL) from the boot device
into embedded RAM. On the trusted boot chain, a loaded image needs to be authenticated
before an execution begins to ensure it is legitimate [3]. The initialization procedure by the
ROM code can be seen on the following figure.

13

Figure 2.7: ROM Code Overview6.

FSBL
In the FSBL, the entire clock tree is initialized and external RAM is prepared for loading
secondary stage bootloader (SSBL) [3]. The FSBL bootloader depends on the boot chain
which has been flashed onto the board. On the trusted boot chain, the Trusted Firmware-A
(TF-A) is used as the FSBL to initialize all security features available on this board, which
is also the default and recommended boot chain. The basic boot chain is available as well,
which provides only a limited set of features. In that case, the U-Boot SPL (Secondary
Program Loader) is loaded by the ROM code.

SSBL
The secondary stage bootloader is running in the external RAM, so it is able to load more
complex devices and features such as USB, Ethernet or display [3]. U-Boot is commonly
used in embedded systems and it is used as SSBL in both trusted and basic boot chains.
In this stage, the boot file system is loaded from storage with kernel image and device
tree blobs. In addition to Linux operating system, the co-processor firmware running on
Cortex-M4 can be initialized and booted by the SSBL, which is referred to as ”early boot“.

6ROM Code overview. STMicroelectronics. [online]. [cit. 2020-04-23]. Retrieved from:
https://wiki.st.com/stm32mpu/nsfr_img_auth.php/1/17/ROMCodeOverview.png

14

https://wiki.st.com/stm32mpu/nsfr_img_auth.php/1/17/ROMCodeOverview.png

Linux kernel
In the last stage of boot sequence the kernel initializes all peripherals and devices that are
needed by the system, which means that the root file system is mounted and the user space
initialized [3]. In addition to SSBL, the co-processor firmware can also be booted by the
Linux remoteproc framework [17].

Device Tree
During the boot process of operating system, the kernel needs to locate all hardware devices
and map them to their respective kernel drivers, so that the system can use them when
they are needed. This process is called hardware probing and usually it is done dynamically
by ACPI [1]. On embedded systems there are hardware components that can’t be probed
and without any information about their existence, the operating system wouldn’t be able
to address and use them. All modules that have been described earlier (UART, SPI, and
I2C) must be registered manually, which can be done by the device tree. According to the
device tree specification [7], it is a tree data structure with nodes that describe devices in
the system. Each device has its own characteristics which are described by property/value
pairs. Each node has exactly one parent except for the root node, which has no parents.
Some of the characteristics of a device can include their registers, clock speed, state and
many more, which may be relevant for a specific hardware component.

These specifications may need to be changed by developers to match their application
needs. The files that contain all the required information about available devices are called
device tree source files with a .dts file extension or device tree source include files with .dtsi
file extension. Once modifications are completed, the device tree compiler creates a device
tree binary file, which is then parsed to the bootloader during boot sequence.

Each software component (U-Boot, TF-A and Linux kernel) has its own device tree
bindings in order to correctly initialize the system. From the description of boot sequence,
the trusted firmware (TF-A) is a first stage bootloader, which indicates that it initializes
some components first. In this stage, system wide characteristics that apply to all domains
can be specified. This is especially important if some resource has to be isolated for the
Cortex-M4 domain only or if a secure peripheral must be available for non-secure environ-
ment. It is required for the Linux kernel device tree to be configured accordingly, because
probing a device which is unavailable to the non-secure environment would cause the system
to freeze and the boot sequence fails.

The Yocto Project and OpenEmbedded project
STMicroelectronics offers 3 different packages to use for preparing the software and devel-
opment environment:

∙ Starter package7 - It’s purpose is to provide default OpenSTLinux images with 3
different boot chains [3]:

– Basic boot chain - U-Boot bootloader is used as FSBL with only limited features,
which means that also security features are missing from the image.

7STM32MP1 Starter Package - images. STMicroelectronics. [online]. [cit. 2020-04-23]. Retrieved from:
https://wiki.st.com/stm32mpu/wiki/STM32MP1_Starter_Package_-_images

15

https://wiki.st.com/stm32mpu/wiki/STM32MP1_Starter_Package_-_images

– Trusted boot chain - Trusted Firmware-A is used as FSBL, it is a recommended
boot chain with many security features.

– OP-TEE boot chain - It is basically a trusted boot chain with support for OP-
TEE secure OS.

∙ Developer package - It is used by developers for cross-compilation of their applications
in a Linux operating system. It sets all necessary variables in a terminal, such as the
default compiler or target architecture for easier development.

∙ Distribution package - The starter package does not provide all software components
that might be required, so a distribution package can be used to build a custom
distribution image with some packages added or even removed.

OpenEmbedded project is a build framework which enables developers to cross-compile
their own custom distribution for embedded devices according to their needs. The starter
pack uses the official ”st-image-weston“ image [14] with a basic Wayland/Weston display
framework included on all 3 boot chains. It can be built using a tool named ”bitbake“ [13],
which functions similarly to ”make“. Instead of a Makefile, it is provided with a recipe or
a set of recipes, where each of them represents a software component. Usually, a recipe
contains following metadata:

∙ Source code location - It can be an URL address from which the source code can be
downloaded or a local directory.

∙ Package dependencies - A list of packages which need to be built and deployed along
with the selected package for proper functionality.

∙ Configuration, build, install and remove instructions - Specific options on how the
package needs to be treated during each phase (eg. build options).

These recipes are often organised in a collection called a layer. Each layer represents one
major software component such as a kernel or a board support package (BSP), which are
basically a combination of all the recipes contained in the layer. Developers are also able to
create their own layers for their applications and build them into the distribution. A single
image can be built from multiple layers, including a core layer provided by OpenEmbedded
or platform specific layers such as the BSP from STMicroelectronics.

The Yocto Project is is an open source collaboration project that grew from and works
closely with the OpenEmbedded project and it helps developers with creating Linux-based
systems for embedded devices. It provides additional software metadata and development
tools (devtool8) for adding, modifying, building and deploying software without the need of
re-flashing the board. Nowadays, the difference between the OpenEmbedded project and
Yocto project is insignificant with both focusing on software contributions to the community.

The OpenSTLinux is a distribution based on the OpenEmbedded build framework,
that contains the BSP (boot chain, Linux kernel and OP-TEE secure OS) and application
frameworks (eg. the Wayland-Weston display framework) [14]. STMicroelectronics develops
several layers (like the BSP layer) which are combined with the OpenEmbedded core layer
to provide a starting point for developers to create user applications on the platform.

8Devtool. Yocto Project. [online]. [cit. 2020-04-23]. Retrieved from:
https://www.yoctoproject.org/software-item/devtool/

16

https://www.yoctoproject.org/software-item/devtool/

2.5 Security
Once the sensors are connected and running along with the MCU sending data to a Cloud
storage, it is mandatory to ensure secure connection while maintaining data authenticity,
integrity and confidentiality to avoid data theft or forgery. There are some specific security
measures for accomplishing this goal while securing internal peripherals as well and they
will be described in this section.

Extended TrustZone protection controller
As mentioned before, sensors can be connected through various interfaces that are supported
by the board. These interfaces are available through either GPIO or Arduino pins and they
can be easily isolated from every component and used only by the ARM Cortex-M4 domain.
For this purpose, an Extended TrustZone protection controller (ETZPC) [16] can be used
to configure security attributes that will allow or block accesses to the specified interface.
All peripherals are connected to the Advanced Peripheral Bus (APB) or an Advanced High-
performance Bus (AHB), on which they can be configured as:

∙ Secured - The communication with a secure peripheral can be only done from a
secure environment, while other non-secure accesses are being ignored. The OP-TEE
secure OS9 and Trusted Firmware-A10 (TF-A) running in the ARM TrustZone secure
environment can communicate with interfaces configured as secure.

∙ Non-secured - The Linux operating system and the co-processor firmware are consid-
ered as non-secure environments and they can only access non-secure interfaces.

∙ Isolated - Only the co-processor has access to isolated hardware modules, whereas
everything else including both ARM Cortex-A7 domains are blocked.

However, interfaces that are available on the GPIO and Arduino pins can not be set as
secure in this context, which is why the focus will be isolation only [16]. The ETZPC
security attributes can be configured by modifying the TF-A device tree. Peripherals that
are securable are by default available only in the secure environment and isolable modules in
the non-secure environment. If the default value needs to be changed, it can be done in this
device tree by adding a DECPROT line with 3 parameters, where the first parameter is the
required peripheral. The second and third parameters then configure security attributes:

∙ DECPROT_S_RW - For usage in the OP-TEE OS or TF-A (secure).

∙ DECPROT_NS_RW - For usage in the Linux OS or the co-processor firmware (non-
secure). In this case a 3rd parameter can be set as well:

– DECPROT_LOCK - Generates an error once the Cortex-M4 attempts to use a
peripheral which is already used by Cortex-A7.

– DECPROT_UNLOCK - In contrast, it allows continuous accesses by both do-
mains, but it may cause errors so a hardware semaphore should be used.

∙ DECPROT_MCU_ISOLATION - Only the Cortex-M4 can access these peripherals.
9Open Portable Trusted Execution Environment (OP-TEE). Linaro Limited. [online]. [cit. 2020-04-23].

Retrieved from: https://www.op-tee.org/
10Trusted Firmware - Open Source Secure World Software (TF-A). Linaro Limited. [online]. [cit. 2020-

04-23]. Retrieved from: https://www.trustedfirmware.org/

17

https://www.op-tee.org/
https://www.trustedfirmware.org/

OpenSSL
OpenSSL is an open source software library11, which can be used in applications that
require secure connections or that are manipulating secure data. It is a full featured toolkit
for Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols, licensed
under Apache License 2.0, which means it can be used for commercial and non-commercial
purposes under some conditions. The toolkit contains multiple libraries and tools that can
be used for specific needs:

∙ libssl - Contains an implementation of all TLS protocols up to version 1.3.

∙ libcrypto - A cryptographic library, which includes data encryption and signing
methods.

∙ openssl - A command line tool used for creating, analyzing and testing certificates,
keys, encrypted and decrypted data, message digests and many more.

There are a wide variety of algorithms that can be used in OpenSSL, which can be listed
by using the aforementioned utility. To name a few from each type:

∙ Message digest algorithms - MD4, MD5, SHA-1, SHA-2, SHA-3, BLAKE2, RIPEMD-
160, SM3, GOST

∙ Cipher algorithms - AES, DES, RC4, SM4, SEED, ARIA, CAMELLIA, CAST5

∙ Public key algorithms - RSA, DSA, DH, EC, HMAC, CMAC, X25519, POLY1305,
SIPHASH

Data signing
The data that have been obtained from a sensor and transferred to the master processor
need to be further processed and secured before sending them over the network to a remote
cloud. The 3rd party which will be reviewing the data must be ensured that their source is
legitimate. The data (message), which can be either in form of a textual string or a file in
form of a document or an image, must keep its integrity and authenticity in order for them
to be successfully verified by the public. The data integrity is only accomplished when
a message could not have been possibly altered during transmission. Hashing (message
digest) algorithms are one-way functions, which transform messages into unique strings of
values that are very hard to decode back to their original form. There is only one hash for a
specific message, which means that everyone who computes a hash from the same message
will get the same result. When the message is sent over the network, its hash is included
with it, so it can be compared and verified when it arrives to the recipient. This only solves
the integrity part, because the receiver could still have obtained a message from a different
source than expected and a hash alone wouldn’t be able to detect it.

As the data can be modified along with the hash, the problem becomes the authentic-
ity. It can be accomplished by using a signature algorithm to modify the hash before it
is sent through the network. These algorithms generate a pair of keys in the first stage
of signature generation, a private and a public key. The private key is known only to the

11OpenSSL. The OpenSSL Project. [online]. [cit. 2020-04-25]. Retrieved from:
https://github.com/openssl/openssl

18

https://github.com/openssl/openssl

creator of the message and it is used to modify the calculated hash. Giving access to the
private key would mean that anyone could generate valid signatures. The public key is, as
its name suggests, available to the public for decoding signatures. The verifier then takes
the message, signature and public key, decodes the signature using the public key, generates
a new hash using the same hash algorithm as the message sender and compares the results.
A match of message digests indicates a successful verification, otherwise the message has
been tampered with. Following diagrams roughly describe how signatures can be generated
and verified through a Cloud database.

Message

Hash
algorithm

Message
digest

Signature
generator

Signature

Message
Signature
Public key

Key
generator

Private key Public key

Internet

Cloud

Figure 2.8: Signature generation process.

Message
Signature
Public key

Message

Hash
algorithm

Message
digest

Signature

Public key

Signature
verify

Cloud

Internet

Figure 2.9: Signature verification process.

19

Hash algorithms
A message which was produced by a sensor can be signed by a signature algorithm using a
unique private key, which is generated and stored safely on the platform. However, the data
are inconsistent and usually of a significant size, which implies that the signature would
be large and slow to generate [4]. A more effective way is to first create a hash of the
message, which is of fixed size and it uniquely represents the original data. The emphasis
on uniquely is important, because some hashing algorithms are obsolete and their insecurity
has been proven. Algorithms that are not suitable are MD5 [12] and SHA-1 [21], which
were found insecure by using a collision attack. In this kind of attack two different messages
can be found with the same hash value. This means that data, which used a hash from one
of the aforementioned algorithms could be counterfeit and it would not be detected. The
most common algorithms in 2020 are from the SHA-2 family and the fact that the SHA-256
has been adopted by the Transport Layer Protocol in version 1.2 (TLSv1.2) [22] only proves
its strength. Size of the output hash from this algorithm is bigger in comparison to MD5
or SHA-1, which means that there is very slim, almost non-existent chance of generating
the same hash for different messages and creating a collision. The stronger SHA-384 or
SHA-512 algorithms use even larger digests, but are also taking longer to generate. It is
important to note that the STM32MP1 is capable of hardware acceleration of SHA-256
algorithm, which improves compute performance and will be described later in this thesis.

Signature algorithms
One of the oldest available methods that can be used to secure data is RSA (Rivest–Shamir–
Adleman). It is a cryptosystem which is mostly used for data encryption, where the public
key is used for encryption and only the private key can decrypt it. In case of signing, the
process is exactly opposite, because it is not confidentiality that is being implemented, but
authenticity and integrity. The RSA is based on factorization of large numbers, which means
that the larger the private key is, the better protection it offers. The NIST and ECRYPT-
CSA recommendations [15] for RSA key size to ensure short term protection (approximately
10 years) in 2020 are at least 2048 and 3072 bits respectively. However, large keys require
more memory, storage and CPU cycles for creating a signature in comparison to what
ECDSA offers. ECDSA is based on DSA (Digital Signature Algorithm) which is a standard
for digital signatures based on the mathematical concept of modular exponentiation and the
discrete logarithm problem. Whereas original DSA offered the same key lengths as RSA,
the elliptic curve DSA (ECDSA) is using a lot smaller keys while being as secure as the other
two mentioned alternatives. A key length of 192 and 256 bits is equivalent to a RSA/DSA
key length of 1024 bits and 2048 bits respectively [8]. This makes the requirements for
computation a lot smaller and more suitable for embedded systems with limited resources
in comparison to personal computers. However, speed tests that have been conducted
to compare RSA and ECDSA show that the signature verification procedure is executed
faster by the RSA, whereas signature generation is faster by ECDSA [8]. The Montgomery
reduction algorithm can be used to optimize the ECDSA sign and verify process by using
shift operations instead of modular reductions [8]. ECDSA is also used on the platform for
verification of the FSBL before the boot process begins12.

12STM32MP15 secure boot. STMicroelectronics. [online]. [cit. 2020-04-25]. Retrieved from:
https://wiki.st.com/stm32mpu/wiki/STM32MP15_secure_boot

20

https://wiki.st.com/stm32mpu/wiki/STM32MP15_secure_boot

Hardware acceleration and Crypto API
The STM32MP1 discovery kit offers many security modules and their respective software
components for user applications. On microcontrollers including the STM32MP1 there is
generally smaller computation power, so offloading any complex tasks would leave space for
other applications that require more CPU power. Fortunately this can be done by taking
advantage of hardware acceleration for either ciphering, message digest or CRC calculation
by modules referred to as CRYP, HASH and CRC respectively. Their Linux kernel drivers
are available to be used by the Crypto API framework, which in turn can be accessed by
two user interfaces:

∙ AF_ALG13 - This interface is based on a socket user interface, which can be bound
to an AF_ALG data structure containing information about the required operation.
The communication is then done by either ”read“ and ”write“ functions or ”send“ and

”recv“ functions, which are commonly used with BSD sockets. It can also be used as
an engine in OpenSSL software library, which makes it more user friendly and easier
to implement.

∙ Cryptodev - It is a kernel module which provides access to the Crypto API and
can as well be used as an engine in the OpenSSL software. The main page of the
module states that it is faster than aforementioned AF_ALG interface, however the
comparison graphs might be outdated at this point14.

Refer to the following figure for better understanding of how the user interfaces, framework
and kernel drivers are connected to provide hardware acceleration for user applications.

Figure 2.10: Crypto API framework.

13User Space Interface - The Linux Kernel documentation. The Kernel development community. [online].
[cit. 2020-04-25]. Retrieved from: https://www.kernel.org/doc/html/v4.10/crypto/userspace-if.html

14Cryptodev-linux module [Comparison]. Phil Sutter, et al. [online]. [cit. 2020-04-25]. Retrieved from:
http://cryptodev-linux.org/comparison.html

21

https://www.kernel.org/doc/html/v4.10/crypto/userspace-if.html
http://cryptodev-linux.org/comparison.html

Chapter 3

Design

The goal of this thesis is to implement a data collection software while taking advantage of
the STM32MP1s potential. The data shall be collected from various sensors that use dif-
ferent communication techniques, where most of them communicate via common interfaces
such as SPI or I2C. It is not unusual to collect data from these sensors with the Cortex-M4
as it is a part of many MCUs. It only makes sense to use it for sensor communication to
balance the utilization of computing resources on this platform. The most important part
of the solution is cryptographic security to ensure data authenticity, integrity and confiden-
tiality after they are sent over the network. Accomplishing this goal is a computationally
intensive task, which means it should be done on the Cortex-A7 instead. For this purpose,
there is a built in support for an OpenSSL library, which simplifies the implementation
and can take advantage of hardware acceleration to even further optimize the performance.
The Cortex-A7 runs a custom distribution of Linux, which means there is a file system for
storing collected data as well as internet connection capability, which are key for collecting
data to a remote Cloud. Speaking of Cloud, Google provides solutions with comparable
specifications for a lower price than Amazon making it the Cloud of choice. The connection
can be automatically encrypted with the use of TLS and SSL to ensure data confidential-
ity during transmission, which is of course supported in their solutions as well. At last,
the platforms hardware acceleration as well as signing and verifying performance shall be
assessed to gain knowledge of its capabilities in real world applications.

3.1 Software environment
The software environment on the platform consists of bootloaders, Linux kernel, kernel
space drivers and frameworks and user space applications. The STM32MP15 starter pack-
age offers 3 different builds (boot chains) with Weston/Wayland display framework that can
be flashed onto the board, but they are lacking some key components that will be required
later in the implementation. Fortunately, the distribution package can be taken advantage
of to modify an image with needed software packages. The Yocto project and OpenEmbed-
ded project build system allows developers to select, modify and deploy software components
that are not available in the default starter pack or are improperly configured.

STMicroelectronics provide a remote repository that can be used to obtain all available
distributions. Every layer and recipe is downloaded to a local directory on a computer
for building selected images with included packages. The build environment must be ini-
tialized first by an environment setup script included in the repository. The first package

22

required is ”opencv“ package, which in this implementation will be used for manipulating
raw image data. Another package that needs to be modified is the TF-A software compo-
nent, specifically its device tree configuration of ETZPC. By default, I2C peripherals are
configured as non-secure, but the one used for collecting data on the Cortex-M4 domain
has to be isolated. For signing messages a hash has to be calculated, which can be done
with a software algorithm or a dedicated hardware module. The hash peripheral also has
to be enabled in the kernel device tree, so its corresponding recipe must be loaded and its
device tree modified accordingly.

Since the OpenCV library had to be included, the entire image had to be built before
flashing it onto the board by STM32CubeProgrammer software. It is necessary to put the
board in programming mode by switching both boot pins to value 0. The software is then
able to connect to this board via USB and flash a selected boot chain on the board. The
boot chain of choice is ”trusted“ boot chain, which uses TF-A secure firmware as the first
stage bootloader. After the flashing process is complete, both boot pins have to be set to
value 1 for SD card boot and it may be powered up. After a power cable is plugged in, the
Linux operating system is booted up and ready to be used.

3.2 Sensor selection
The main factor for choosing a sensor should be the communication interface that it uses.
Of course, it also depends on what kind of data and how much of them are expected to be
received over the interface, how many sensors will be connected simultaneously, what is its
accuracy or price and so on.

For the purpose of this thesis, a HTU21D sensor has been provided for measuring
temperature and humidity. The measurement range is from -40 to 125 degrees Celsius and
0 to 100 % relative humidity (RH). It uses the I2C communication interface, which supports
speeds of up to 1 Mbit/s on the STM32MP1. The amount of data received from this sensor
are expected to be only a few bytes, in fact the data are sent over 3 8-bit data packets (3
bytes of data), where the last byte is checksum and it can be skipped. The transmission
speed is considered to be more than sufficient and it won’t cause any slow-downs. However,
this particular sensor has a fixed I2C address, which means it can not be changed and used
with multiple identical sensors simultaneously, at least not over the same interface. It is
not a problem either as in this implementation there is only a single sensor, but in case
more of them are needed, a different type should be selected with an option to change the
address or use a SPI sensor instead.

Except for a simple I2C sensor there is also an intelligent camera present for collecting
and transmitting images with some additional metadata over an Ethernet interface. This
communication can potentially reach the highest speeds of them all, but implementation will
be done on the Cortex-A7 side unlike the first sensor, which is going to be communicating
with Cortex-M4. The camera runs a TCP server, which waits for a client connection (from
the MCU) and starts sending encoded images in base64 format along with some additional
metadata in a JSON structure. It is important to note that the image data are raw. This
means that it has to be reconstructed with the use of metadata, which include an image
width and height required for correct image shaping. Received images are 8-bit images, so a
single pixel consists of 8 data bits resulting in 256 different colors (28 possible combinations).
The OpenCV library mentioned earlier shall be used to shape the image and save it in a
bitmap file format with 8 bits per pixel.

23

3.3 Connecting sensors
Since the camera sensor is using an Ethernet interface, its connection is quite straight-
forward. It only requires an Ethernet or Ethernet-over-USB cable connection. However,
the I2C sensor is trickier, because there is no standard cable for connecting to this interface.
I2C needs two wires for communication, but also voltage input and grounding as well. Some
GPIO connectors on the board can be used for plugging in this sensor via ”I2C1“ or ”I2C5“
peripherals. According to HTU21D data sheet1, the input voltage is typically 3V and it
can handle up to 3,6V maximum. GPIO pins can supply either 3,3V or 5V and because
5V is too high, the first variant must be chosen to avoid sensor damage. The user manual
provided for STM32MP1 lists all GPIO pins and their functions, so the only thing to do is
to wire corresponding pins to the sensor and solder them together. It is better to use an
external connector which can be later unplugged if a different sensor has to be used or for
protecting aforementioned GPIO connectors.

3.4 ARM Cortex-M4 firmware development
Now that the sensor is connected via an I2C interface, the next step is to develop software
for collecting data and sending them over the RPMsg framework to the master. There
are many programs and IDEs that can be used to develop a co-processor firmware, such
as SW4STM32 or the more recent STM32CubeIDE. The latter one seems to be a better
option, because it contains STM32CubeMX software for automatic code initialization and
generation. It has multiple perspectives (window configurations for a specific purpose)
including a CubeMX perspective, which can be used to configure pins, peripherals, libraries
and clocks in a graphical user interface (GUI). This is a very important feature, because it
makes the development a lot quicker by requiring programmers to write only a few lines of
code. A hardware abstraction layer (HAL) and OpenAMP libraries are also available for
sending and receiving data via I2C and communication with master via RPMsg respectively.

3.5 OpenSSL and data signing
At this point all data are collected and accessible from Linux. Before they are sent to a
remote Cloud, they need to be protected from unauthorized access, data theft and forgery.
The first step is to sign the data with a signature algorithm, which is a computationally
intensive task. Any opportunity for improving performance and lowering processor usage
would be welcome. Fortunately, the board has multiple modules available for hardware
acceleration of these tasks. An important part of creating signatures is hashing, which can
be hardware accelerated by a dedicated hash peripheral. Two user interfaces that have
access to this peripheral have already been described and a better option seems to be the

”cryptodev“ module due to offering higher performance than its ”AF_ALG“ alternative
often by a significant margin. It can also be used by OpenSSL as an engine, which means
that OpenSSL has access to its functions and can use the hash peripheral for hash calcu-
lation. The OpenSSL C library allows for defining an engine in the program, which can
afterwards be used by the high level abstraction interface called ”EVP“. With this interface
it is quite simple to create a pair of keys, generate hashes and sign data with only a few

1HTU21D Sensor – Miniature Relative Humidity and Temperature Sensor. Measurement Specialties.
[online]. [cit. 2020-04-28]. Retrieved from: https://www.cdiweb.com/datasheets/te/htu21d.pdf

24

https://www.cdiweb.com/datasheets/te/htu21d.pdf

lines, just like with the HAL library for peripheral communication.
As both SHA-1 and MD-5 algorithms are vulnerable to collision attacks and are not

recommended for creating hashes today, a stronger alternative has to be selected. The
SHA-256 algorithm matches this requirement and it is also commonly used in the TLS
protocol since version 1.2. It is less intensive for computation and requires less storage than
SHA-384 or SHA-512, which makes it ideal for use in embedded systems. ECDSA signature
algorithm is being used on the platform for verifying the first stage bootloader and it uses
smaller keys equivalent to a lot larger RSA keys in terms of their strength. ECDSA relies
on a secure elliptic curve key and thanks to OpenSSL there is a wide selection of them.
Elliptic curves used for signing and verifying the FSBL on the platform are NIST P-256 and
Brainpool 256 [20]. The NIST P-256 curve is also listed in Federal Information Processing
Standards (FIPS) under recommended curves making it an ideal choice [9].

The OpenSTLinux (version 1.2.0) distribution comes with OpenSSL C libraries and
Python version 3.5 installed by default. Having more alternatives gives developers more
choices, since there are multiple software wrappers for OpenSSL including one for Python.
The problem with official Python wrappers is lack of support for ECDSA signature algo-
rithm. Hardware acceleration functionality is also complicated to confirm in these wrappers.
The best option would be to use the original C library which already has support in the
default distribution and contains every functionality that might be necessary.

There are 3 scenarios of data collection, which means that received data and their signa-
tures are always different. When a user chooses to collect both temperature and humidity,
it is more efficient to sign both values at once and store only one signature instead of two.
With that in mind, it is always necessary to select both values from the database for suc-
cessful verification. For this reason there are 3 different options, so if only humidity or
temperature is selected separately, they can be collected, signed and stored separately as
well.

3.6 Relational database design
Collected data and their signatures have to be stored either in a file on a remote storage
or a database. Relational databases are capable of data analysis in order to obtain a useful
information. It is important to design the system to be as efficient as possible with no
redundancy. It is already known that collected data and their metadata have to be stored,
but also signatures and public key/keys for verification. There is also an expectation of
simultaneous data collection by multiple MCUs, which requires a table containing unique
device IDs. Created signatures are also unique, but they correspond to only a single row.
It means that creating separate table would not only have no benefit, it would also be
ineffective due to the need of joining multiple tables. On the other hand, public key is
expected to be only one and storing it in each row would cause the database to scale very
quickly.

Since there is a choice for collecting data at once or separately, all database tables must
be created accordingly. A single table would be able to do the trick, with a possibility
of a ”null“ value in both temperature and humidity columns. If a mistake happens and
the data are missing, there would be rows with only signatures and metadata. A database
trigger can be created to check if there is at least one value, which would be executed
after every single insert operation, thus impacting performance. Even with a trigger, the
developer would always have to check for a ”null“ value in either of these columns, which
seems ineffective as well. If both columns are occupied with data strings, they have to be

25

concatenated and only then they may be verified, because that is how they were signed
in the first place. Signing them separately would require twice as much storage for two
separate signatures. To simplify this process with no performance or storage impact, the
solution can be done with 3 tables for each scenario. The design might seem redundant,
but in terms of performance and simplicity it seems to be the best option. In conclusion,
there are 5 tables in total:

∙ Device - Contains a unique ID of a device that collects data to the database and its
public key. In case a private key is lost and a new one has to be generated along with
a new public key, there may be more entries for the ability to verify older signatures
as well as new ones.

∙ Temperature, Humidity and SensorData - All 3 tables for 3 scenarios of collecting
data from the HTU21D sensor.

∙ Image - A single row contains an image path in storage, its metadata and a signature.

3.7 Cloud setup
In chapter 2.3 some services offered by Amazon and Google for Cloud storage were described
and compared. It may be assumed that the better choice of those two is Google due to it
being offered for a lower price on an almost identical configuration. At the time of software
implementation, Google also provided free credits worth of 300$ in a time span of one year,
that can be used on most of their services including database and storage options. This
seemed like a good opportunity to learn about how it works without the risk of financial
loss. After all credits are spent or the time limit passes, the price per month is expected to
be similar to the initial estimation in Figure 2.5.

The Cloud SQL service is their name for relational databases, which can be based
on either PostgreSQL, MySQL or SQL Server 2017. Unfortunately, SQLite that has an
available C library on the STM32MP1 can not be selected. This is also not an option on
Amazon RDS services, so a good alternative could be MySQL. Data stored in the database
are expected to be of a relatively insignificant size. Temperature and humidity or image
path with additional metadata such as timestamps do not take a lot of storage space.
Queries where this kind of data will be retrieved with a public key and a signature can
also be considered as simple, since they only require a single join operation. This kind
of analysis can be easily handled by both MySQL and PostgreSQL, but in simple queries
MySQL is faster and PostgreSQL also consumes a lot of memory per connection [6]. Since
the database system is expected to have only a small amount of tables with simple analytical
operations executed on them and hundreds of connected devices, the MySQL seems to be
a better option.

The database can be set to only allow secure SSL connections, which are encrypted
and thus allowing data to be confidential during transmission. However, connections from
public IP addresses are disabled and only devices with an address in exceptions list can
connect. For this reason, it would be better if the MCU had a static IP address, so the
setting would have to be done only once. If only SSL connections are enabled, the device
has to provide SSL server certificate, client certificate and client private key. Only then the
connection may be established and data collection can begin.

In terms of remote storage, securing the connection works similarly. Only a user with
authorization key can obtain data from this storage, because otherwise anyone could have

26

access to collected data. A file with authorization key can be created and downloaded from
the cloud management system and loaded by the Google Cloud storage library when the
program is executed. The connection is also encrypted and secured via TLS, so even images
remain confidential during transmission.

3.8 Data collection
The cloud is prepared, database tables are ready and authentication is enabled. Data,
metadata and signatures are ready to be sent over the network. That is a simple task with
the use of MySQL and Google storage libraries, but the connection may not be stable.
It can time out and be unreachable for an unknown amount of time. All collected data
can be stored offline during the service unavailability. They can be simply stored in local
files in defined directories and sent over the network once a connection is established. For
that purpose, a multiprocessing capability needs to be implemented for simultaneous data
collection and connection manipulation. The main process, which is called a parent process
can be in charge of connection and in the meantime all processes it creates (child processes)
can be used to collect data. However, child processes have their own memories and they
can only access their own variables. This means that a process, which was collecting data
before a connection was established has no information about it, so it is unable to send
the data. It could use a shared memory to communicate or keep writing them into a file.
The parent process then retrieves them from shared memory or accesses written files in a
selected directory. However, it may cause errors and inconsistencies if they are accessed
simultaneously. The control can be implemented with semaphores, which allow only a single
process at a time to execute some part of code. If one process is writing into a file, the
second one should wait until writing is complete and only then access the file. This way
there is a perfect synergy where each process takes care of its own code. A better option
is to save the data to a file instead of using a shared memory, because if connection times
out it has to be written locally anyway.

3.9 Assessment of results
Reviews of hardware acceleration support on this platform are limited, so it is important to
assess its performance. The ”cryptodev“ module is supposed to be faster than its AF_ALG
user space alternative and it should be properly analyzed to see what the differences really
are. Better results with higher computation speeds shall improve the overall signing perfor-
mance allowing for many more generated and verified signatures per second. The OpenSSL
command line utility can be used to measure speeds of different software algorithms for
hashing, ciphering or CRC calculation. As both user space interfaces can be used as en-
gines in OpenSSL, the hardware acceleration performance can be also measured with the
utility. If engines are not available, the AF_ALG interface can be simply implemented
with the use of sockets in a separate program and tested manually.

In addition to hashing and signing performance, the results of data collection should
also be assessed at the end. With some minor effects on the temperature sensor, it can be
seen how it reacts to environment changes and how the database looks after the collection
is done. For the camera sensor, some results with collected images on a remote storage can
be displayed as well.

27

Chapter 4

Implementation

The key part of this thesis is the software solution implementation, which includes prepa-
ration of software environment and cloud, data reading, securing transmission over the
network and more. Every single part will be described in this chapter under following
sections.

4.1 Custom distribution image
During the implementation, there was a need for compromises due to several issues that
have been encountered. One of the issues was a problematic building and installation of
external packages, that are not included in the distribution package. The MySQL library
that is needed for connecting to a database and the Google Cloud Storage library for remote
storage connection have to be built from an external source. Unfortunately, this process has
always failed and a different approach had to be chosen. The distribution includes Python
by default, which had to be used as an alternative. Installation process of both Python
packages was simple and a connection could be successfully established. These packages
are not installed by default, but they might be downloaded with Python package installer
(pip). However, it is not a requirement as packages can be installed manually, but since the
image has to be built with OpenCV and modified device trees anyway, adding one more
package would not make a big difference.
As already mentioned, there is a repository that can be used to download all distributions
and modify them. The environment setup script is included and it needs to be run with
some environment variables for proper workspace initialization:

∙ DISTRO - Defines a distribution with a selection of images that can be built and
flashed on the machine [14]. The default distribution is ”openstlinux-weston“, which
features the Weston display framework and is used in the starter package. The frame-
work support is not necessary for the implementation, but it may be useful in the
future for displaying information on the screen.

∙ MACHINE - Selects a series of devices for which an image from the distribution will
be built. It has to be set to ”stm32mp1“ since the platform used is an STM32MP157C-
DK2.

After running the environment script a workspace is initialized and changes can take place.
For the default distribution an ”st-image-weston“ image can be used, which is also the same
as the image used in starter package. A basic core image without the Weston framework

28

support can be selected as well, but as mentioned earlier it might be needed later. At this
stage some additional software components can be added. The setup script generated a few
directories and files based on distribution and machine selection. In order to include addi-
tional packages, a file called ”local.conf“ located in ”conf“ directory of the workspace must
be modified. Both ”python3-pip“ and ”opencv“ recipes for Python package installer and
OpenCV respectively are included in this configuration file separated with a white space.

The last line of this file should look like this:

IMAGE_INSTALL_append += "opencv python3-pip"

Since the OpenCV is required and also can not be deployed afterwards, the image must
be built even if the Python package installer was skipped and all Python libraries were
manually added. This process takes a considerable time, since there are over 8000 recipes,
or more than 8000 software components. Thankfully, this only needs to be done once,
every other time only dependencies or affected components are rebuilt to support a new
package, which is a lot faster process. If its not the first time an image is being flashed, it is
important to backup everything beforehand in order to avoid loss of sensitive data. Some
packages can be also built separately, without the need of building and flashing the entire
image. As already mentioned, this approach was not successful with pip, because Python
version 3 is already included without some pip dependencies. Some applications that are
not in any way dependent to other packages such as OpenSSL can be deployed while the
operating system is running.

At this point all necessary packages are included and and a build process may be started:

$ bitbake st-image-weston

The devtool utility can be used to setup all package sources into a workspace and after-
wards edited, built and deployed onto the boards root file system or flashed through the
STM32Programmer utility. Preparation of software environment includes setting up the
ETZPC isolation of I2C peripheral, which the sensor will be connected to. Security features
including ETZPC are only available in ”trusted“ and ”optee“ builds, but since the OP-TEE
operating system won’t be used, the ”trusted“ version will be flashed instead. All settings
related to ETZPC are done in the TF-A device tree source file, which needs to be edited
using devtool.

The exact package name can be found by issuing a search command in the devtool utility:

$ devtool search tf-a*

There are usually many results when searching with partial names. However, it is quite
simple to figure out that the package is named ”tf-a-stm32mp“. If it is not entirely clear,
all recipes can be found online to read more about their content.

To add a package to the workspace and modify its source, the modify command can be
used:

$ devtool modify tf-a-stm32mp

All device tree source files are now present in a ”fdts“ sub-directory of the TF-A source
folder. Name of the device tree source file is identical to the boards model name, which is
STM32MP157C-DK2. When this file is opened and reviewed, the device tree configuration

29

can not be found. Everything is inherited from STM32MP157A-DK1, because it has the
same TF-A device tree. After examination of this included file, there are already some set-
tings present for other peripherals under ETZPC section, which are required for successful
boot of the Linux operating system. It’s important to note, that if the original source file
is to be used, the entire ETZPC configuration has to be copied from the included file. All
peripheral settings in the original file have precedence over settings in included files, which
means they are overwritten. However, in this implementation it is simpler to modify the
included device tree file instead, because it only requires adding one line and its content
does not have to be preserved.

Isolation of a peripheral can be simply done with a single line:
DECPROT(STM32MP1_ETZPC_I2C5_ID, DECPROT_MCU_ISOLATION, DECPROT_UNLOCK)

The sensor is connected to an ”I2C5“ peripheral (refer to section 4.3 for more information),
which is why the first parameter contains its ID. The other two parameters have been de-
scribed earlier to properly set up isolation.

Now the file can be saved and built using devtool:
$ devtool build tf-a-stm32mp

The output of build process including device tree blobs is now in the workspace. However,
the final image does not contain these changes as they have not been deployed yet. This
is where the bitbake utility is used to update a distribution image, which has already been
built with OpenCV and Python package installer.

The right command to deploy modified software has following syntax:
$ bitbake tf-a-stm32mp -c deploy

The TF-A software is modified and deployed, but the hash peripheral is still needed for
hardware acceleration. Since it is disabled by default, it can be enabled now in the device
tree of Linux kernel before flashing. The process of this operation is very similar to modifi-
cation of the TF-A, except that the modified software component is different and its device
tree file as well. Name of the recipe is ”linux-stm32mp“ and the source file with device tree
configuration is arch/arm/boot/dts/stm32mp157c.dtsi, which is a device tree include
file. The hash peripheral can be found under ”hash1“ section, where only its status needs
to be changed. Setting its value to ”okay“ will enable the peripheral for use in Linux. It
is important to note, that this specific hashing module is enabled by default in ETZPC for
the non-secure environment, so if for some reason its assignment is missing in TF-A device
tree configuration, it needs to be added for the system to boot and use it. Now the Linux
kernel and its device tree can be built with the same devtool and bitbake commands that
were used for TF-A.

At this point, the ETZPC isolation is configured, hash peripheral ready for hardware
acceleration, Python package installer and OpenCV library included in the image. To flash
this image, the board has to be put in programming mode, connected via USB to a com-
puter and the STM32CubeProgrammer utility started. Besides images there are also flash
layout files for all boot chains, STM32MP1 boards and the SD card boot device. They de-
fine partitions, their sizes and offsets for all software components. After a layout is chosen,
the source directory has to be selected as well and flashing may begin.

The isolation can be confirmed by enabling ”I2C5“ in the Linux kernel device tree,

30

which will of course cause the system to hang. In that case, its configuration was successful
and isolation is working. Since the hash peripheral is now running as well, its proprietary
drivers for hashing algorithms of a name beginning with ”stm32“ are also loaded.

Available algorithms can be listed by executing this command:

$ cat /proc/crypto

4.2 Cloud database and storage
The next step before starting data collection is to create a database instance. There may
be more instances that would separate multiple MCUs, but it would result in problematic
data correlation and analysis. One database instance for data collection from both types
of sensors will be enough and support for multiple connected devices will be done through
table management and design instead. In the instance creation form some changes have to
be made from default values. Server region should be changed based on the MCU location
to have as low latency as possible. Some other settings such as disk size, RAM size and
CPU core count can be changed as well, but are not mandatory for simpler queries with low
data volume. Disk size is dynamically resizing when usage is approaching the limit anyway,
so this problem resolves itself. Timing of backups can be also changed to some time during
night when usage is minimal, but this can be modified later if required.

Now that the instance is ready and running, the database itself has to be created. This
process is very simple and requires only a database name and character set, which by default
is UTF-8 and it supports all possible characters that will be stored. In the ”Overview“ page
of the database instance the IP address should be saved, because it will be used for remote
connections. However, if a connection was attempted right now, it would be ignored and
it would simply time out. First, the network to which a MCU is connected has to be
authorized by adding its IP address in the ”Connections“ page. It can also be noticed in
the SSL section of this page that unsecured connections are allowed, which of course is not
recommended. Enabling secure only connections will require all devices to provide a server
SSL certificate and a client SSL certificate. A client SSL certificate is composed of two files,
the client certificate and client private key, that can be downloaded after they are created.
Select a unique name for each client and download all generated files. By default, these
files should be stored in ”auth“ directory, which is a part of the software implementation
root directory. It can be changed to a different path, but it has to be defined in the main
script that will be collecting data as well.

In the SQL directory there is a file with 5 table definitions for data storage. All Python
scripts are programmed to work with these tables:

∙ Device - Each device that connects to the database and wants to collect data needs
to be uniquely identified. Both scripts for data collection have a ”device“ variable
with a unique name to avoid potential inconsistency. The second column is also
unique and it contains a public key for verifying signatures. There may be more
public keys for a single device in case a private key gets accidentally deleted. In that
case, the public key would also have to change, but previous keys are still needed
for verifying older signatures. All keys are stored in a ”PEM“ format for simplifying
the verification process, but it could be optimized in case of limited bandwidth or for
lowering monthly costs. This table is expected to contain only a few rows with one

31

device, so the size of it should not be an issue. However, with increasing amount of
devices and sensors, every opportunity to optimize is important, whether its due to
finances or database performance.

∙ SensorData - The sensor chosen for this thesis is collecting data about temperature
and humidity, which are in range of -40 to 125 degrees Celsius or 0 - 100% relative
humidity (RH) respectively. Data type for this column could be float or double, but
there is a problem with the format in which they are stored. The value is always
converted to a string with 2 decimal numbers and it is also signed in this form.
For example, a value of ”10.10“ would be stored in the database as ”10.1“ if float
or double data type was used, which would result in a failed verification. For this
reason all values are stored as strings instead, so trailing zeroes are not removed and
data can be successfully verified. As there is a possibility of choice between both
temperature and humidity or only one of them, there are two more tables named
Temperature and Humidity for this purpose. The co-processors command with
all related configuration on the masters side is initialized by a command line parameter
passed to the Python script. The ”Signature“ column must contain a signature string
encoded in base64 format with its size usually being 97 characters, but it may not
be the case all the time. There is some overhead to avoid potential problems, so the
column size has been set to 110 characters. Some extra metadata for the time and
date of collection are stored in the ”Created“ column with its ”datetime“ data type.
To verify a signature, a public key is needed as well, which is referenced in the last
column to a row in the ”Device“ table.

∙ Image - Since images are usually of a couple kilobytes in size, it is more effective
to store only a path to the image in a database row. Database storage is a lot more
expensive than a dedicated storage designed for unstructured data, so this approach
seems to be more reasonable. However, the database has no knowledge about the
presence of images in storage, which can lead to inconsistency.

The location type has been changed to a single region in Frankfurt to lower the total
cost, but if there’s a need of backups, multiple regions can be used as well. The standard
storage class is the option of choice since the access frequency is going to be on daily basis.
Retention policy can be enabled as well to make sure that images will not be removed
until they are no longer required. Fine grained access can be used to create permissions
for specific objects, which may not be necessary, but the other option becomes permanent
after some time and changing back would not be possible later. At last, a globally unique
name of the bucket has to be specified for accessing it remotely. However, the access will
be limited to only authorized users with a special token.

This token needs to be generated and downloaded to all devices that will access this
storage. On page ”Service Accounts“ of ”IAM & Admin“ section some specific access
permissions may be defined. A service account can either have full access, edit access
or view access only. As images will be written, there is a need for at least edit access
permissions. It is important to create a private key for such access type and download
it in a JSON format. All storage operations relevant to the implementation are in the

”gstorage“ script inside ”include“ folder. The ”client“ function creates an object used for
accessing remote buckets and the authentication file path has to be passed to this function
as an argument.

32

4.3 Co-processor firmware
Before the software implementation begins, the sensor has to be physically connected. Both
figures shown underneath can be used to help with proper connection of all related wires.
It can be seen that pin number 1 provides voltage input of 3,3V and a ground wire can be
connected to pin 6. Since the HTU21D operates in range from 3,0V to 3,6V, those two pins
are ideal for power supply. Figure 4.1 labels pin 1 as ”CN2 pin 1“, which is on the bottom
left corner of the GPIO connector block.

Figure 4.1: GPIO connectors [23].

Figure 4.2: GPIO connectors pinout [23].

33

Now it is time to head to the STM32CubeIDE and create a new project. The IDE has to
download and prepare the boards firmware package containing all drivers and middlewares,
so a proper model needs to be selected first. Afterwards, the project can be created and
a device configuration tool, otherwise known as CubeMX perspective is displayed. All
necessary components and peripherals for data collection can be configured and enabled in
this perspective.

The I2C interface can be used on multiple pins, so to obtain correctly generated code,
the GPIO pins that are physically connected to the sensor have to be manually selected.
Following figures show how the CubeMX tool can be used to generate necessary initialization
code for the I2C peripheral.

Figure 4.3: The CubeMX perspective pinout configuration.

Both pin names can be found after searching for them in the pinout view search box.
According to figure 4.2, the pin name of a ”I2C5“ clock wire is ”PA11“. Now its correct
functionality can be selected, which in this case is ”I2C5_SCL“. The same process has to
be repeated for the data pin and afterwards the peripheral may be enabled as shown on
the following figure.

34

Figure 4.4: The CubeMX perspective peripheral selection and configuration.

The left side of the perspective provides a peripheral selection and configuration window.
All available hardware modules are listed in logical categories and they can be enabled on
multiple runtime contexts (domains). In this case, the ”I2C5“ peripheral can be enabled
only for Cortex-M4 domain or Cortex-A7 non-secure domain, which means that the secure
environment does not have a direct access to it. It was already mentioned that GPIO and
Arduino pin functions are not securable by ETZPC. Some other settings may be done in
the configuration section, but those have been kept on their default values as changes are
not needed.

As for other drivers and components, there is also a need for HAL, IPCC peripheral
and OpenAMP middleware library. While HAL is available to use right away, both IPCC
peripheral and OpenAMP library have to be enabled from this list. For correct usage of
OpenAMP, both IPCC interrupts need to be enabled first, because RPMsg communication
relies on them. Afterwards, both IPCC hardware module and OpenAMP library can be
initialized. After all changes are saved, the program asks if code should be generated.
After that, it is up to developers to implement data collection and communication with the
Cortex-A7.

The code generator automatically inserts code for initialization of system clocks in
engineering mode, GPIO pins according to the CubeMX pinout and all components that
have been enabled with the use of Hardware Abstraction Layer (HAL). At this point the
sensor can receive a command and obtain response on read request.

35

The HTU21D data sheet lists all necessary information for implementation. It states
that the sensors address is 0x80 and it can respond to following commands:

∙ 0xE3 - Requests a temperature measurement. The data wire is held for this commu-
nication, so the master can not exchange data with other slaves (hold master).

∙ 0xE5 - The humidity measurement command is issued while the data wire is held as
well.

∙ 0xF3 - Similar to 0xE3, but its possible to communicate with other sensors during
temperature measurement.

∙ 0xF5 - Humidity measurement command without holding the data wire.

∙ 0xE6 - Data may be written to the user register for adjusting configuration, such as
measurement resolution (accuracy).

∙ 0xE7 - Reads the user register configuration.

∙ 0xFE - Issues a soft reset command.

The HAL transmit function can be used to send two data packets, where one of them
contains a slaves I2C address with a write bit and a second packet is one of the commands
described above (in this implementation its either 0xE3 or 0xE5). Afterwards, the HAL
receive function sends a read request by sending a data packet with sensors address and
a read bit. The communication is held by the sensor until the measurement is done. It
responds with 3 bytes of data and returns them to the master, who accepts the response
and writes received data into a memory buffer. The 3rd byte is only checksum and it may
be skipped. First 2 bytes are holding measured data and they have to be converted with
a specific formula based on the measurement type (temperature or humidity) to get the
correct value. Last two bits of the response are only status bits and they must be cleared
prior to conversion. At this stage all data are collected in memory and they can be passed
to the Cortex-A7. The I2C communication sequence implemented in this thesis is shown
on the following figure.

Figure 4.5: Communication sequence with hold master1.

1HTU21D Sensor – Miniature Relative Humidity and Temperature Sensor. Measurement Specialties.
[online]. [cit. 2020-04-28]. Retrieved from: https://www.cdiweb.com/datasheets/te/htu21d.pdf

36

https://www.cdiweb.com/datasheets/te/htu21d.pdf

4.4 Inter-processor communication
Collected data are now present in a memory buffer on the Cortex-M4 domain and are ready
to be signed. Even if the Cortex-M4 processor has access to the hash peripheral, it is not
enough to create a signature. Signing will be done on the Cortex-A7s side, which needs to
have access to the data. The RPMsg framework on Linux side and OpenAMP library on the
co-processors side can be taken advantage of to accomplish this goal. The STM32CubeIDE
software can prepare the OpenAMP library and generate some initial configuration code.
Its up to programmers to establish a communication channel with the RPMsg framework
and read incoming messages from the master. There are many ways to implement this
functionality and one of them includes these functions:

∙ VIRT_UART_Init - An OpenAMP endpoint is created and a communication
channel is established.

∙ VIRT_UART_RegisterCallback - An incoming message can be processed in a
callback function, which has to be registered before use.

∙ OPENAMP_check_for_message - As its name suggests, it simply checks for
an incoming message in the Mailbox, which has been initialized by the HAL_IPCC
driver.

The last function is called in an endless while loop, in which the co-processor waits for an
incoming message. Once a new message has been received, the callback function is used for
analyzing it and controlling data collection. In this implementation following messages can
be used as a command for reading data:

∙ TH or HT - These messages trigger collection of both temperature and humidity
from the sensor and are sent together in a response, where the first value is always
temperature and second value humidity.

∙ H or T - Only humidity or temperature respectively is being collected and sent as a
response.

If some other string of characters is received, an error message is sent stating that it is un-
able to recognize the command. An error message can also be received if the data collection
fails, but this is possible only if the RPMsg communication is functional. If an error occurs
in the early stages before a message can be sent, an LED has been configured to blink in
an endless loop.

The Linux RPMsg framework establishes the connection on its own as soon as the co-
processor creates an endpoint. The user interface for sending messages via this framework is
mounted as a virtual terminal. A simple ”echo“ can send a message via this virtual terminal
and the ”cat“ utility can read responses. The communication type seems to be half-duplex
since the remote processor was unable to send a message before a request arrived from
master. The Cortex-A7 has memory access first and it always initiates the communication,
which only makes sense to only receive data when they are requested. However, in some
cases a full-duplex communication is relevant, because some sensors are capable of notify-
ing us about an event. For example, when a temperature rises above or below a defined
threshold, a notice about such event should be received as soon as possible. It is not a part
of implementation since the HTU21D does not support this functionality.

37

At this point, implementation of the Cortex-M4 firmware is complete. Before getting to
data signing, there is a need to address some design choices and compromises. As already
stated before, there is only a library for SQLite database communication, but that was
not an option on neither Google or Amazon cloud services. The database is running on
MySQL for which an external library could not have been built. Since it was not a viable
option and an unknown 3rd party library would not be ideal to use, there is still Python
as an alternative. The Python language has some advantages and disadvantages over C,
but the installation process of all necessary packages was successful and it was ready to
be used. With that in mind, there is yet another issue. The official Python wrapper for
OpenSSL does not support ECDSA signatures and if a 3rd party ECDSA library would be
used, it would still not support hardware acceleration. Either a compromise has to be done
to skip hardware acceleration and use a 3rd party Python package, or the Python ”ctypes“
library can be imported and used. It allows for usage of C libraries in Python, which could
be created to implement signature generation and verification via OpenSSL with hardware
acceleration enabled. The C language is also faster in code execution and the process of
signing can be modified, which is also a disadvantage of wrappers.

In addition to the first issue, the original choice of ”cryptodev“ kernel module could
not be used in the implementation due to lack of support for hash algorithms. The usage
of hash acceleration needs to be implemented on a lower level by using AF_ALG sockets
combined with the ECDSA signature generation process in OpenSSL. Even though it does
not perform as well as ”cryptodev“, it still provides higher calculation speed than a software
hashing algorithm with less CPU utilization in some particular cases.

So, the co-processor firmware is ready, but its not running yet. As already mentioned, it
could be initialized manually with the ”echo“ tool prior to running the script, but it is very
simple to implement it in Python. In the ”include“ directory there is a script with name

”firmware“, which controls the remoteproc framework. With basic file functions commands
like ”stop“ and ”start“ can be executed along with the firmware name that can be found
in the ”/lib/firmware“ directory. This is a default path where the remoteproc framework
searches for firmware files, but a new path may be defined if needed [17].

4.5 Signature generation and verification
Since the hardware acceleration and ECDSA procedures can only be done in C, functions
for signing and verifying will be called from a custom library that can be imported with
the ”ctypes“ package and used in Python scripts.

The co-processor firmware is now capable of sending responses with measured data,
they just need to be accessed from the program. The ”pyserial“ package for Python can be
installed and imported for opening a communication via a virtual terminal, from which the
RPMsg messages can be obtained. After that, a command of choice may be written to the
virtual terminal with a simple write method. Each response contains a new line character
at the end, so it can be read line by line and stripped from white characters. Functions that
control the communication fill an array with data passed through an argument and return
a string, which has to be signed. In case of ”TH“ command, temperature and humidity are
simply concatenated together and passed to a function for creating signatures. The array
is filled with data that will be later sent to the database.

There are multiple C functions that can be called from within the script. There are
default algorithms for signing and verifying strings and files implemented with the ”EVP“
abstraction layer. These functions use a software algorithm for hash calculation. Signing

38

strings can only be done with this implementation, since hardware acceleration would be
slower with only around 5 to 20 bytes of data [5]. On the other hand, files are usually of
a greater size and hardware acceleration would be useful. The ”cryptodev“ kernel module
does not support SHA-256 hardware acceleration, which is why it must be implemented via
the AF_ALG user interface instead. Functions that use this interface does not cooperate
with the ”EVP“ layer as it works on a different basis. Instead, the AF_ALG socket is
created, bound to a structure defining the algorithm to access a corresponding peripheral
and finally it is opened. Then, the file content is pushed via a socket ”send“ function to the
peripheral with a flag ”MSG_MORE“, which is necessary for updating the hash multiple
times. This has to be done due to the fact that the entire file might be too large to be
loaded and sent at once, which means it has to be divided into smaller parts called ”chunks“.
When all data are sent, the ”recv“ socket function can finalize the calculation and provide
the final hash. The only thing remaining is to allocate memory for the signature, generate
it, convert it to a base64 format and return it to the Python script. However, the procedure
is not finished yet, because data had to be allocated on a heap and now the memory has
to be freed. The signature was returned as a pointer, so it has to be cast to a string and
decoded for further use. All data are now saved in a Python variable and the received
pointer can be passed to a function for freeing the allocated memory in the C library.

Verification functions have also been created to verify strings and files via ”EVP“. They
have to be called with 3 parameters, which is again a string of data or a file name, signature
and a public key. The signature is converted back to its original binary format from base64,
the public key is loaded to an OpenSSL structure for keys and the ”EVP“ layer is used to
calculate a hash and verify the signature. Since there is an AF_ALG alternative for signing,
it can also be used in verification. It uses the same principle of hash calculation as in the
signing procedure and it passes all 3 arguments with a hash to an OpenSSL verification
function without the use of ”EVP“.

4.6 Data transmission
The last part of data collection is to send them securely to the remote cloud. Python
libraries used to connect to the database and storage were ”pymysql“ and ”google-cloud-
storage“ respectively. The official MySQL connector for Python was not suitable due to
an exception that could not have been fixed in the phase of disconnecting. Its alternative
is working without any issue and it supports secure connections with the use of SSL cer-
tificates. A timeout can also be configured in case the database is not reachable, so it is
possible to process data offline until the connection is established again. All data, metadata
and a signature are saved in a data array, which is simply passed to a function that executes
an insert query to the database. However, data can be obtained offline without the knowl-
edge of a public key ID. Due to this problem, the public key is saved in a local file and its
ID has to be obtained once a connection is established. In case of image files, the storage is
updated prior to the database, because the other way around the connection could be lost
and an image would not be present in the storage. However, if the file is manually removed
from the storage, it has to be removed from the database as well, because otherwise it has
no knowledge about such operation. It is possible to make a synchronization procedure
on program startup, but with thousands of files it would take an unreasonable amount of
time. It is in the interest of developers to not lose any important data, so a backup can
be automatically scheduled in the Cloud console. In terms of remote storage, the Python
library provided by Google can be used to connect and send or receive files securely with

39

TLS. The storage connection is initiated once a user is authorized with a private token
obtained after creating a service account. It can be accessed through a client object, which
executes all requests on the storage. First of all, it is important to create an object of a
unique name on the remote storage, which represents a directory to which the program will
upload files. Afterwards, the content of a local file can be sent to the storage. Its full path
is stored in a data array with metadata such as a timestamp or a date and time of data
arrival on the MCU. The image file that has been uploaded was also signed with the use of
hardware acceleration and the signature along with the public key ID is saved in the array
as well. As already mentioned, the file is first uploaded to the storage and only then the
database is updated.

4.7 Offline processing
In order to collect data even when a connection is not available, they need to be kept
somewhere until the connection is available again. In order to accomplish that, the program
needs to do two things at once, which requires a multiprocessing technique. While one of
the processes attempts to connect to the cloud and maintains this connection, the other
process (or processes) can take care of data collection independently. This is due to the
fact that the camera is automatically sending images and the process could be busy with a
different operation. This is why there are multiple nested processes, which are forked after
the initialization of all components. At first, the parent process creates a child process for
collecting data, which in turn creates a new process every time a new detection is received on
a socket (in case of camera). In this kind of environment, there is a high risk of simultaneous
access to shared resources, which is why there is a need for a semaphore. If this semaphore
is open and the child process receives data, it creates a new child process, which locks the
semaphore and writes all data and metadata into a file. This file is considered a shared
resource and it can not be accessed by any other process until the semaphore is unlocked.
Before the process finishes, it unlocks the semaphore for another process to continue, which
can be either another child process with received data, or the parent process that wants to
synchronize with the Cloud. With this solution, child processes can simply keep writing
data even if the parent process is unable to synchronize due to unavailable connection.
To simplify the implementation, data are always saved into a file and the parent process
periodically checks for new files in a directory for synchronization. The camera can also
get disconnected, so the first child process that was created after initialization attempts to
connect to this camera again and it keeps trying periodically until its successful.

40

Chapter 5

Assessment

The STM32MP1 series of microcontrollers is relatively new and there are limited per-
formance reviews regarding its hardware acceleration capabilities. Besides performance
assessment, final results of data collection into a remote cloud are also reviewed in this
chapter.

5.1 Hashing and signing performance
Since a part of the implementation is a signature generation and verification process, it is
a good opportunity to take advantage of the hash peripheral available on this platform.
However, in some cases with low data volume it is not the most effective option, because
the time it takes to transfer data to an external peripheral is longer than it takes a software
algorithm to calculate a hash. Before proceeding to signing performance with ECDSA, the
hashing performance needs to be assessed first. All hash calculation results are described
in the following table.

Block size Software SHA-256 (OpenSSL) Hardware SHA-256 (AF_ALG)
16 bytes 4.062 MB/s 0.189 MB/s
256 bytes 16.825 MB/s 2.229 MB/s
1024 bytes 21.040 MB/s 8.159 MB/s
8192 bytes 22.694 MB/s 38.398 MB/s
16384 bytes 22.817 MB/s 52.447 MB/s

Table 5.1: Hash calculation assessment.

After conducting numerous tests there are a few notes to be made. It is interesting to see
how much slower the acceleration is compared to a software algorithm with data blocks of
size 1024 bytes and less. At the same time, a drastic improvement can be seen with blocks
of 8192 bytes and larger and at some point it becomes infeasible to opt for a software
solution. The OpenSSL speed assessment has been conducted using its integrated speed
tester and it does not include blocks of 4096 bytes. The AF_ALG test has been created
for the purpose of this thesis and it can be run with any block size defined. With 4096 byte
blocks, the speed is equivalent to 24.971 MB/s, which means that it pulls ahead of software
hashing at this point. The camera used in this thesis produces images of size between 3
to 5 KB, which is unfortunate as there is no major improvement for this particular case.
However, the calculation speed is not everything as hardware acceleration also keeps the

41

CPU utilization considerably lower even with the smallest block size of 16 bytes. It starts
at around 43% and goes down to 18% with increasing block size, which makes it a more
viable option if processing time is limited.

It has been mentioned that the ”cryptodev“ engine does not work with SHA-256 as of
now, but it has been discussed and resolved with the help of STMicroelectronics community
and integration team and a fix is going to be available in the next major software update.
The next software ecosystem release version 2.0.0 is scheduled to be available at the end of
June 2020, which is again unfortunate as it can not be implemented in this thesis. However,
an early test has been conducted by STMicroelectronics staff to show the performance of

”cryptodev“ in OpenSSL. These results are not official and they may or may not be the
same in the final release, so it has to be taken into consideration before looking at the
following table.

Block size Hardware SHA-256 (cryptodev)
16 bytes 1.656 MB/s
256 bytes 39.314 MB/s
1024 bytes 109.589 MB/s
8192 bytes 747.110 MB/s
16384 bytes 1461.288 MB/s

Table 5.2: Early results of SHA-256 hardware acceleration with ”cryptodev“.

If these results are accurate, there would be no advantage of software hashing other than
the smallest 16 byte blocks, which is why both temperature and humidity are always signed
with the default OpenSSL software algorithm.

As one of the most important factors for signing performance is the hash calculation,
the number of created signatures per second also changes depending on hashing and the
next table only proves this fact.

Signatures per second HTU21D data (10 B) Camera image (5 KB) 200 KB file
Generated (OpenSSL) 725 547 87

Verified (OpenSSL) 241 217 70
Generated (AF_ALG) - 466 133

Verified (AF_ALG) - 201 97

Table 5.3: ECDSA signing performance comparison.

Results from the table above are from assessments where 4096 byte data blocks have been
used to get comparable performance. In case of a tiny textual string, the block is almost
empty and from the performance analysis of hashing it would be inefficient to create signa-
tures with AF_ALG as there is an immense difference in speed. Unfortunately, a camera
image is still signed and verified faster with a software algorithm, which may be due to
the fact that the implementation required an external C library. In the implementation all
socket settings have to be done in every function call, thus decreasing overall performance.
In the end, there are still more signatures created and verified using a software algorithm
rather than with a hardware acceleration support. The usage of acceleration only starts
to make sense with larger files and larger data blocks, where the performance can be more
than twice as high. In terms of CPU utilization this has been harder to measure as hashing
is a lot faster process than signing. Signature generation or verification process after a hash

42

is done can not be further accelerated, which means that the CPU had been almost always
fully utilized. During these tests, the average utilization is roughly 93% with hardware
acceleration support and 100% without it. However, in case of a large file that has to be
divided into smaller blocks, the utilization drops to around 55%.

5.2 Data collection results
The HTU21D sensor can be used to monitor temperature and humidity periodically and
in this implementation, a measurement is done once per 5 seconds. The following graph
displays measurement of data during which the sensor has been affected by hot air.

0 15 30 45 60 75 90 105 120
10

15

20

25

30

35

40

45

50

55

60

Time [s]

M
ea

su
re

d
da

ta

Measured data with HTU21D.

Temperature [∘C]
Humidity [% RH]

In a time span of 2 minutes, there have been a total of 25 measurements made. As a result
of hot and dry air there was a spike in both temperature and humidity at the beginning
of measurement, following by slow recovery. All data and metadata with their signatures
have been collected to a remote database table named SensorData. A part of its content
is displayed in the next figure.

Figure 5.1: Collected temperature and humidity in the database.

43

The intelligent camera that sends detections in images is connected via an Ethernet inter-
face. The STM32MP1 connects to this cameras TCP server and processes images as they
are received. Images are reconstructed using metadata and signed with ECDSA. After-
wards, they are sent to the Google Cloud Storage while metadata are stored in a database
table named Image. Following figures display the camera and resulting storage bucket
with some collected images.

Figure 5.2: Intelligent camera sensor connected to the STM32MP1.

Figure 5.3: Google Cloud Storage with collected images.

44

Chapter 6

Conclusion

The purpose of this thesis was to explore capabilities of the STM32MP1 series MCUs and
find a solution for collecting data to a remote cloud while maintaining data security. Even
with a heterogeneous multiprocessing environment, the processing power is somewhat lim-
ited compared to more robust computing systems, such as personal computers. For this
reason, the main goal was to use a solution with as small impact on processor to ensure
the highest performance possible. The data must have been secured by creating a unique
cryptographic signature that ensures their authenticity and integrity. The platform comes
with broad selection of hardware and software components for implementing security mea-
sures. Since creating signatures is a computationally intensive task, the dedicated hashing
peripheral seemed to be a great advantage of this platform that made the signing process
faster in some occasions.

In the end, the data collection mechanism on this platform has been successfully imple-
mented. Thanks to the code generation tool, hardware abstraction layer and OpenAMP
library, the co-processor firmware was the easiest part. On the other hand, the software
on masters side was slightly more complex. Some of the required libraries for establishing
a connection to the Cloud are not available in the standard distribution. For this reason,
the Python language has been chosen for implementing the second part of data collection
as building and importing additional packages was successful. All imported packages had
required functionality except the official OpenSSL Python wrapper, which does not support
elliptic curves at this time. Due to this fact, the signing part of implementation has been
done in C with the original OpenSSL library. As large data volumes have a bigger profit
of the hash hardware acceleration, it is also available as an option for signing files.

There are a lot of issues that need to be resolved in the future, but thanks to the
STMicroelectronics community and integration team, the ”cryptodev“ user space interface
for accessing the hash peripheral is supposed to be capable of SHA-256 calculation in a
new software release version 2.0.0 [5.1]. If the implementation could move from Python
to C, it would not only improve performance, but it would also create an opportunity to
use the software inside the ARM TrustZone secure environment. The OP-TEE OS or the
Trusted Firmware-A are capable of executing C applications securely, which is not possible
for Python scripts at this time. To be able to use only C, the database and storage libraries
would need to be built from source, or the SQLite engine alternative would have to be used
on a different Cloud service with a SFTP file server instead of the Google Cloud Storage.

45

Bibliography

[1] Unified EFI Forum, Inc. Advanced Configuration and Power Interface
Specification [online]. version 6.2. 2017 [cit. 2020-04-24]. Available at:
https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf.

[2] Frenzel, L. E. Principles of Electronic Communication Systems. 4th ed. New York:
McGraw-Hill Education, february 2015 [cit. 2020-01-27]. ISBN 9780073373850.

[3] STMicroelectronics. Boot chains overview [online]. 2019. revised 22. 1. 2020 [cit.
2020-04-23]. Available at: https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview.

[4] Gauravaram, P. Cryptographic Hash Functions: Cryptanalysis, Design and
Applications. Brisbane, Australia, 2007. [cit. 2020-04-25]. Dissertation. Queensland
University of Technology. Available at:
http://eprints.qut.edu.au/16372/1/Praveen_Gauravaram_Thesis.pdf.

[5] Winand, M. Performance Impacts of Data Volume [online]. N.d. [cit. 2020-04-23].
Available at:
https://use-the-index-luke.com/sql/testing-scalability/data-volume.

[6] Yigal, A. Sqlite vs. MySQL vs. PostgreSQL: A Comparison of Relational Databases
[online]. 2018 [cit. 2020-05-05]. Available at:
https://logz.io/blog/relational-database-comparison/.

[7] Linaro Ltd. et al. Devicetree Specification [online]. version 0.3. 2020 [cit.
2020-04-24]. Available at:
https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.3.

[8] Imem, A. A. Comparison and evaluation of digital signature schemes employed in
NDN network. International Journal of Embedded systems and Applications (IJESA)
[online]. 1st ed. june 2015, vol. 5, no. 2, [cit. 2020-04-25]. DOI:
10.5121/ijesa.2015.5202. ISSN 1839-5171. Available at:
http://airccse.org/journal/ijesa/papers/5215ijesa02.pdf.

[9] Standards, N. I. of and Technology. Digital Signature Standard (DSS) [online].
2013 [cit. 2020-05-12]. Available at:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[10] STMicroelectronics. IPCC internal peripheral [online]. 2019. revised 22. 1. 2020
[cit. 2020-04-23]. Available at:
https://wiki.st.com/stm32mpu/wiki/IPCC_internal_peripheral.

46

https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf
https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview
http://eprints.qut.edu.au/16372/1/Praveen_Gauravaram_Thesis.pdf
https://use-the-index-luke.com/sql/testing-scalability/data-volume
https://logz.io/blog/relational-database-comparison/
https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.3
http://airccse.org/journal/ijesa/papers/5215ijesa02.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://wiki.st.com/stm32mpu/wiki/IPCC_internal_peripheral

[11] STMicroelectronics. Linux Mailbox framework overview [online]. 2019. revised
30. 1. 2020 [cit. 2020-04-23]. Available at:
https://wiki.st.com/stm32mpu/wiki/Linux_Mailbox_framework_overview.

[12] Dougherty, C. R. MD5 vulnerable to collision attacks [online]. 2008. revised 21. 1.
2009 [cit. 2020-04-25]. Available at: https://www.kb.cert.org/vuls/id/836068/.

[13] STMicroelectronics. OpenEmbedded [online]. 2019. revised 29. 1. 2020 [cit.
2020-04-24]. Available at: https://wiki.st.com/stm32mpu/wiki/OpenEmbedded.

[14] STMicroelectronics. OpenSTLinux distribution [online]. 2019. revised 10. 10.
2019 [cit. 2020-04-24]. Available at:
https://wiki.st.com/stm32mpu/wiki/OpenSTLinux_distribution.

[15] BlueKrypt. Cryptographic Key Length Recommendation [online]. 2020. revised 8. 4.
2020 [cit. 2020-04-25]. Available at: https://www.keylength.com/.

[16] STMicroelectronics. STM32MP157 advanced Arm R○-based 32-bit MPUs [online].
Reference manual, 4th ed. February 2019, revised 18. 2. 2020 [cit. 2020-04-23].
Available at:
https://www.st.com/content/ccc/resource/technical/document/reference_manual/
group0/51/ba/9e/5e/78/5b/4b/dd/DM00327659/files/DM00327659.pdf/jcr:
content/translations/en.DM00327659.pdf.

[17] STMicroelectronics. Linux remoteproc framework overview [online]. 2019.
revised 28. 11. 2019 [cit. 2020-04-23]. Available at:
https://wiki.st.com/stm32mpu/wiki/Linux_remoteproc_framework_overview.

[18] STMicroelectronics. STM32MP15 ROM code overview [online]. 2019. revised 19.
2. 2019 [cit. 2020-04-23]. Available at:
https://wiki.st.com/stm32mpu/wiki/STM32MP15_ROM_code_overview.

[19] STMicroelectronics. Linux RPMsg framework overview [online]. 2019. revised
31. 1. 2020 [cit. 2020-04-23]. Available at:
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview.

[20] STMicroelectronics. STM32MP15 secure boot [online]. 2019. revised 20. 06. 2019
[cit. 2020-04-24]. Available at:
https://wiki.st.com/stm32mpu/wiki/STM32MP15_secure_boot.

[21] Stevens, M. et al. The first collision for full SHA-1 [online]. N.d. [cit. 2020-04-25].
Available at: https://shattered.io/static/shattered.pdf.

[22] Dierks, T. and Rescorla, E. The Transport Layer Security (TLS) Protocol
Version 1.2 [online]. 2008 [cit. 2020-04-25]. Available at:
https://tools.ietf.org/html/rfc5246.

[23] STMicroelectronics. Discovery kits with STM32MP157 MPUs [online]. User
manual, 1st ed. March 2019 [cit. 2020-04-23]. Available at:
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/
d6/59/df/e0/8f/e7/45/8f/DM00591354/files/DM00591354.pdf/jcr:
content/translations/en.DM00591354.pdf.

47

https://wiki.st.com/stm32mpu/wiki/Linux_Mailbox_framework_overview
https://www.kb.cert.org/vuls/id/836068/
https://wiki.st.com/stm32mpu/wiki/OpenEmbedded
https://wiki.st.com/stm32mpu/wiki/OpenSTLinux_distribution
https://www.keylength.com/
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/51/ba/9e/5e/78/5b/4b/dd/DM00327659/files/DM00327659.pdf/jcr:content/translations/en.DM00327659.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/51/ba/9e/5e/78/5b/4b/dd/DM00327659/files/DM00327659.pdf/jcr:content/translations/en.DM00327659.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/51/ba/9e/5e/78/5b/4b/dd/DM00327659/files/DM00327659.pdf/jcr:content/translations/en.DM00327659.pdf
https://wiki.st.com/stm32mpu/wiki/Linux_remoteproc_framework_overview
https://wiki.st.com/stm32mpu/wiki/STM32MP15_ROM_code_overview
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://wiki.st.com/stm32mpu/wiki/STM32MP15_secure_boot
https://shattered.io/static/shattered.pdf
https://tools.ietf.org/html/rfc5246
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/d6/59/df/e0/8f/e7/45/8f/DM00591354/files/DM00591354.pdf/jcr:content/translations/en.DM00591354.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/d6/59/df/e0/8f/e7/45/8f/DM00591354/files/DM00591354.pdf/jcr:content/translations/en.DM00591354.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/d6/59/df/e0/8f/e7/45/8f/DM00591354/files/DM00591354.pdf/jcr:content/translations/en.DM00591354.pdf

	Introduction
	Data collection and security
	Sensor communication interfaces
	Inter-processor communication
	Cloud
	Software
	Security

	Design
	Software environment
	Sensor selection
	Connecting sensors
	ARM Cortex-M4 firmware development
	OpenSSL and data signing
	Relational database design
	Cloud setup
	Data collection
	Assessment of results

	Implementation
	Custom distribution image
	Cloud database and storage
	Co-processor firmware
	Inter-processor communication
	Signature generation and verification
	Data transmission
	Offline processing

	Assessment
	Hashing and signing performance
	Data collection results

	Conclusion
	Bibliography

