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Abstract
The goal of this bachelor’s thesis was to compute the optimal lunar descent trajectory for
the Beresheet spacecraft and develop a visualization environment for interpreting lunar
descents. The optimal descent trajectory was computed using Bocop, an optimal control
problem solver, and the environment was implemented in Java, using the LibGDX 3D
engine. The optimal descent trajectory was found and it enables soft landing with 29.2 kg
(6.8%) of fuel left. Created environment enables users to see lunar descent trajectories in
an intuitive way and to interact with the visualization.

Abstrakt
Cílem této bakalářské práce bylo vypočítat optimální trajektorii sestupu na Měsíc pro
kosmickou loď Beresheet a vyvinout prostředí pro vizualizaci sestupových trajektorií na
Měsíc. Optimální trajektorie byla vypočtena použitím programu Bocop, který řeší prob-
lémy optimálního řízení, a prostředí bylo vytvořeno v Javě s použitím 3D enginu LibGDX.
Byla nalezena optimální trajektorie, která splňuje všechna kritéria použitelnosti, umožňu-
jící hladké přistání s palivovou rezervou 29.2 kg (6.8%). Vytvořené prostředí umožňuje
uživatelům vidět trajektorii sestupu na Měsíc v intuitivním zobrazení a také jednoduše
zasahovat do probíhající vizualizace.
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Rozšířený abstrakt
Na začátku roku 2019 se Izraelská soukromá firma SpaceIL pokusila přistát na Měsíci

s kosmickou lodí Beresheet. Byl to velmi sledovaný pokus o přistání, jelikož by se jednalo
o první Izraelské přistání na Měsíci a první přistání soukromé firmy vůbec. Mise byla
bohužel neúspěšná – při závěrečném sestupu k povrchu došlo k selhání a kosmická loď byla
zničena.

Tato bakalářská práce se zabývá výpočtem optimální sestupové trajektorie pro kos-
mickou loď Beresheet z kruhové oběžné dráhy 210 km nad povrchem Měsíce a návrhem
a implementací vizualizačního prostředí pro vizualizaci přistání na Měsíci.

V první části práce byla nastudována mise Beresheet a z dostupných zdrojů byly získány
technické parametry kosmické lodi Beresheet a astronomických těles vyskytujících se ve
výpočtech – Měsíce a Země. Přistávací manévr byl omezen na pohyb v jedné rovině se
třemi stupni volnosti, čímž došlo ke značnému zjednodušení výpočtů. Pro výpočet byly
definovány dvě vztažné polární souřadné soustavy – jedna inerciální se středem v těžišti
Měsíce a druhá rotující se středem v těžišti kosmické lodi. Trajektorie byla rozdělena na
čtyři fáze – deorbitace, plutí, brzdění a vertikální sestup. Toto rozdělení umožnilo definování
milníků trajektorie a odlišných omezení jednotlivých stavových a řídicích veličin v každé fázi.
Pohybové rovnice byly odvozeny s použitím literatury z Newtonovy klasické mechaniky.

Výpočet optimální sestupové trajektorie byl identifikován jako problém optimálního
řízení. Řídicími prvky jsou tah motoru a úhlové zrychlení způsobené systémem řízení nák-
lonu. Tento výpočet byl proveden nástrojem Bocop1, který je k výpočtu takových prob-
lémů určený. V nástroji bylo nutné definovat stavový a řídicí vektor, meze jednotlivých
veličin, počáteční a koncové podmínky, konstanty, pohybové rovnice a užitkovou funkci.
Jako užitková funkce byla zvolena maximalizace finální hmotnosti kosmické lodi. Výsledná
optimální trajektorie splňuje všechny podmínky proveditelnosti, minimalizuje rizika, která
by mohla vést k neúspěšné misi a zajišťuje palivovou rezervu 29.2 kg (6.8%) po přistání.
Pro kontrolu byly zkoumány alternativní trajektorie, ale žádná lepší nebyla nalezena, což
zvyšuje pravděpodobnost, že nalezená trajektorie je optimální. Pro zajímavost byla opti-
mální sestupová trajektorie porovnána se skutečnou trajektorií z mise Beresheet.

Vizualizační prostředí bylo implementováno v Javě s použitím frameworku LibGDX2,
který poskytuje abstrakce grafické knihovny OpenGL a umožňuje jednoduchý vývoj 2D
i 3D aplikací. Vyvinutou aplikaci lze spustit na počítači s operačním systémem Linux
nebo Windows R○. Aplikace umožňuje uživateli nahrát trajektorii a následně vizualizovat let
kosmické lodi Beresheet po této trajektorii ve 3D prostředí. Navíc je možné do vizualizace
zasahovat a měnit parametry jako čas a rychlost animace, úhel pohledu a další.

Trajektorii lze nahrát jako sled souřadnic ve 3-rozměrném prostoru buď v polární nebo
kartézské souřadné soustavě. Je nutné doplnit sled časů, ve kterých se kosmická loď v
jednotlivých souřadnicích nachází. Rozšířením je poté možnost nahrání sledu hmotnosti,
rychlosti a otáčení v průběhu trajektorie. Tato data jsou pak zobrazena v čase během
vizualizace pro lepší přehled o trajektorii. Otáčení je navíc promítnuto i do vizualizace.

Během práce byly vypracovány všechny zadané úkoly a bylo dosaženo uspokojivých
výsledků. Výsledná optimální trajektorie minimalizuje jak spotřebu paliva, tak i rizika
spojená s misí. Vyvinuté prostředí pro vizualizaci umožňuje pochopení trajektorie intuitivní
cestou a naplňuje záměr určený před započetím práce.

1http://www.bocop.org/
2https://libgdx.badlogicgames.com/index.html

http://www.bocop.org/
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Chapter 1

Introduction

More than sixty years have passed since humans first started to send objects to the outer
space. Beginning with the Sputnik 1, which became the first artificial satellite of the Earth
in 1957 and Gagarin, who became the first human to orbit the Earth in 1961. In 1966,
man managed to soft land a spacecraft on another celestial body for the first time, when
the Luna 9 landed on the surface of the Moon. Then in 1969, the Apollo program set a
great milestone with placing men on the surface of the Moon for the first time in history, in
their Apollo 11 mission. To date, the last human mission to the Moon took place in 1972.
After that, the human exploration fast growing trend came to a surprising halt. Since then,
over forty successful and unsuccessful uncrewed missions to the Moon took place, including
impactors, orbiters and landers, bringing China, Japan, India, ESA1 and recently even
Israel to the scene. Though only China has managed to join USA and USSR in having
successfully soft landed on the Moon.

Today, the Moon is receiving more attention again. NASA2, for example, is planning
to land humans on the surface of the Moon again by 2024 in their Artemis program [16],
for the first time in fifty-two years, and use the Moon as a springboard for exploring
other astronomical bodies. We now find ourselves in an era, when space travel will likely
become more usual than ever before. Until recently, the space has been a domain only for
government institutions. Now, however, even private companies can be seen in this field,
increasing the number of planned space missions even more.

Astrodynamic computations are essential for these missions. Trajectory is one of the
main factors that influences spacecraft’s proportions and components when it is being
designed. Knowing the optimal trajectory minimizes the amount of fuel and life support
supplies needed for the mission and enables optimal use of spacecraft’s cargo space.

It can be seen, that simulating a lunar landing is a relevant topic. In this work, the
optimal descent trajectory of the Israeli Beresheet mission is researched. In addition, a 3D
environment is developed for visualization of the resulting optimal descent trajectory. The
goal is to find an optimal solution and create an intuitive environment, that would ease the
process of understanding the trajectory data.

In chapter number 2, the Beresheet mission is described, including the spacecraft’s
specifications and launch information. Chapter number 3 presents the Lunar landing prob-
lem, descent trajectory phases and orbital mechanics definitions, relevant to the thesis. In
chapter number 4, the equations of motion, needed for computing the optimal trajectory,

1European Space Agency
2National Aeronautics and Space Administration
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are derived. Chapter number 5 presents the documentation of optimal descent trajectory
computation using Bocop optimal control problem solver, and presents computed results in
form of graphs. In chapter number 6 the visualization environment, implemented with the
LibGDX 3D engine, is presented and its implementation details are described. In chapter
number 7 the reader can find evaluation of achieved results and comparison with real trajec-
tory of the Beresheet mission. Conclusion can be found in chapter number 8. Appendix A
shows specifications of the Earth, the Moon and the launch vehicle of the Beresheet mis-
sion – the Falcon 9 rocket. Appendix B lists tables with specifications, that would not fit
the text continuity. In appendix C the contents of associated media drive are listed.
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Chapter 2

Commercial Lunar Lander
Mission: Beresheet

This chapter begins with the overview of the Google Lunar XPRIZE competition. Then
the Beresheet mission overview is described, along with launch configuration and brief
introduction of the launch vehicle. At the end the planned trajectory of the Beresheet
mission is described in detail.

2.1 Google Lunar XPRIZE
The XPRIZE is a nonprofit foundation since 1994, which has, to this day, designed and
operated seventeen competitions in the domain areas of Space, Oceans, Learning, Health,
Energy, Environment, Transportation, Safety and Robotics. Their goal is to inspire and
guide scientists, engineers, academics and other innovators to spur new ideas and break-
through technology, which will create a positive future across a set of domains [29].

In 2007, XPRIZE announced the Google Lunar XPRIZE competition, sponsored by
Google, with a mission to

“spur affordable access to the Moon and give space entrepreneurs a legitimate
platform to develop long-term business models around lunar transportation and
to inspire the next generation of scientists, engineers, space explorers and ad-
venturers to enter the STEM1 fields” [30].

Offering a $30-million prize purse to private companies, that would take part and succeed
in the program. The objective for the competitors is to:

∙ Soft-land a craft on the Moon.

∙ Move 500 m along a deliberate path on or above the surface.

∙ Transmit two “mooncasts”.

∙ Complete a data uplink exercise as set by XPRIZE.

According to [30], 45 teams have registered to the competition, five of which have become
finalists, including Israeli SpaceIL. Unfortunately, none of the competitors was able to make

1Science, Technology, Engineering and Mathematics
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Figure 2.1: The Beresheet spacecraft and the Nusantara Satu launch configuration with a
13.1 meters tall Falcon 9 payload fairing in the background. Taken from [23].

a launch attempt to reach the Moon before the March 31, 2018 deadline and XPRIZE
has terminated the program with the prize unclaimed. Regardless, many of the teams
have continued to pursue the goal and planned to launch in following years. First of
them to launch became SpaceIL on February 22, 2019 when they launched their Beresheet
spacecraft on top of the SpaceX Falcon 9 rocket. Unfortunately, on April 11, 2019, the
Beresheet crashed into the Moon’s surface during a soft landing attempt. Although the
Google Lunar XPRIZE was no longer taking place, XPRIZE has decided to recognize
SpaceIL’s achievement with a $1 million Moonshot award for becoming the first privately
funded company to enter the lunar orbit and to attempt a lunar landing [30].

2.2 Mission launch
The Beresheet spacecraft was launched on top of the SpaceX Falcon 9 rocket. It shared the
Falcon 9 with the Nusantara Satu Indonesian geostationary communications satellite and
United States Air Force Research Laboratory S5 satellite, which was to be deployed by the
Nusantara Satu later. The Beresheet was mounted directly on top of the Nusantara Satu,
as it can be seen in Figure 2.1. Thanks to this configuration SpaceIL mission designers
were able to choose the launch time, because it was possible to meet designated orbit for
all three spacecrafts, if proper time of day was selected [22].

8



Falcon 9 vehicle

The Falcon 9 is a two-stage rocket vehicle powered by liquid oxygen (LOX) and rocket-grade
kerosene (RP-1). The Falcon 9 can be flown in two configurations: either with fairing, or
with SpaceX Dragon spacecraft. The current version is called Block 5 and is operating
since spring 2018. It is 70 meters tall and 3.7 meters wide at its diameter. It is capable
to deliver a 22,800 kg payload to LEO2, 8,300 kg to GTO3 or 4,020 kg to Mars. The first
stage is propulsed by nine Merlin engines with a total thrust of 7,686 kN at lift-off. It is
unique by its ability to soft land on ground or on autonomous drone ship in ocean, after its
primary mission is done, and be re-used. This ability greatly reduces cost of each launch.
The second stage is propulsed by one Merlin Vacuum engine with a thrust of 981 kN in
vacuum and this stage is not recovered after mission. Specifications taken from [7]. For
picture of the Falcon 9 rocket and more specifications see Appendix A.

Nusantara Satu

The primary payload of the launch was the 4,100-kilogram communication satellite Nusan-
tara Satu. Expected to operate for at least 15 years it will provide communications links
to rural parts of Indonesia and expand broadband internet services to this regions. After
the Falcon 9 drops the satellite off at a super-GTO, it will use its own engines to reach its
final geostationary slot. Once it arrives there, it will deploy its subsatellite, S5, which is
a 60-kilogram spacecraft, that will detect and track objects near and in the geostationary
belt [10].

Beresheet spacecraft

The Beresheet is a Lunar Lander spacecraft designed to reach the Moon with its own propul-
sion system, once deployed at Geosynchronous Transfer Orbit (GTO). It is a four-legged
circular craft, measuring 1.5 meters in height and 2 meters in diameter. Launch mass is
582 kg with dry vehicle mass of 150 kg. The main propulsion system is the LEROSTM2b
engine with 456 N of thrust and 318 s specific impulse. For more specifications of the engine
see Table B.1. Additional 8 small thrusters are used for attitude control. The spacecraft
is equipped with solar panels on top deck, that provide power. It also carries imagers,
magnetometer to study the Moon’s magnetic field and a laser retroreflector – a small ex-
perimental tool, provided by NASA – intended for testing its navigation capabilities. Taken
from [13, 15]. A photograph of the Beresheet spacecraft can be seen in Figure 2.2.

Launch

The Beresheet was launched on February 22, 2019 at 01:45 UTC from Cape Canaveral
Air Force Station launch pad SLC 40 in Florida. After about 157 seconds, at about 67 km
altitude, the first stage engines were cut off and stage separation occurred. The second stage
engine was then ignited and continued to burn for another 319 seconds, which brought the
vehicle into LEO, 165 km above the Earth. After coasting for almost 19 minutes, at t+27:03,
the second stage engine ignited for the last time and burned for 65 seconds, injecting the
satellites into a super-GTO with an apogee of about 60,000 km. The Beresheet deployment

2Low Earth Orbit
3Geostationary Transfer Orbit
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Figure 2.2: The Beresheet spacecraft at advanced stage of development. Taken from [22].

was executed about 6 minutes later at t+33:39 at about 720 km altitude. The Nusantara
Satu deployment occurred 11 minutes later at t+44:38 at about 3,250 km altitude [6].

2.3 Mission trajectory
In this section the planned trajectory for the Beresheet spacecraft from super-GTO to lunar
orbit is described and compared to the actual as-flown trajectory.

Planned trajectory

The Beresheet mission trajectory was designed to use a series of phasing orbits to accomplish
an encounter with the Moon. It included four different apogee altitudes with multiple
revolutions at each altitude to precisely time the encounter. The plan included slight
changes in maneuvers and number of phasing loops for different launch days to arrive at
the Moon on the same day. For launch on February 22, 2019 the spacecraft was planned
to spend 4 loops in the initial super-GTO with ∼60,000 km apogee, 5 loops in orbit with
∼111,000 km apogee, 2 loops in orbit with ∼275,000 km apogee and 1.5 loops in orbit with
∼390 000 km apogee. Figure 2.3 (left) shows planned phasing loop trajectory.

When the lunar encounter, planned for April 4, 2019, would occur, the plan was to
execute a lunar orbit insertion (LOI) maneuver (see Figure 2.4) and capture the spacecraft
into a 290 × 10, 000 km lunar orbit. Over the course of next seven days the Beresheet
would perform several maneuvers to reach lunar parking orbit 210 × 210 km. Finally the
periselene would be lowered to 15 km, where the terminal descent would begin. The landing
was targeted for April 11, 2019 at about 20:00 UTC in Mare Serenitatis [22]. Table 2.1
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Figure 2.3: The Beresheet phasing loop trajectory planned (left) and actual (right) in the
Earth-Moon rotating coordinate frame with the Moon always at the top. Taken from [22].

Table 2.1: Maneuvers as planned before launch. Taken from [22].

Separation 2/22/2019 70,000 215
Start Time ApoAlt aft PeriAlt aft

# Maneuver [UTC] [km] [km]
1 AM1 2/22/2019 68,715 215
2 AM2 2/24/2019 68,710 600

Earth 3 PM1 2/25/2019 117,300 530
Orbit 4 PM2 3/07/2019 275,000 1,600

5 PM3 3/20/2019 390,000 1,500
6 OPM 3/21/2019 392,000 1,800
7 LOI1 4/04/2019 10,000 290
8 LOI1A 4/05/2019 10,000 285

Lunar 9 LOI2 4/07/2019 750 285
Orbit 10 LOI2A 4/08/2019 750 210

11 LOI2B 4/09/2019 210 210
12 DM1 4/10/2019 210 15

11



Figure 2.4: Lunar orbit insertion and circularization maneuvers.

shows an overview of planned Beresheet maneuvers. Apogee maneuvers AM1 and AM2
raise perigee. Perigee maneuvers PM1–PM3 raise apogee. Out-of-plane maneuver OPM
adjusts the arrival time at LOI. LOI1–LOI2B refer to maneuvers in lunar orbit. DM1 is
the descent maneuver.

As-flown trajectory

The actual followed trajectory varied from nominal. The phasing loop trajectory offers
good amount of flexibility and can be re-planned when mission anomalies occur. The time
and date of lunar encounter is fixed so in case of anomalies orbit periods of phasing loops
are adjusted such that the spacecraft arrives at lunar encounter at correct time.

After launch, the AM1 maneuver was waived, because perigee altitude was satisfactory
after insertion. The AM2 maneuver was executed as planned and raised perigee to about
650 km. The PM1 maneuver was delayed twice due to spacecraft performance issues, but
it did not cause a threat to the mission. The trajectory was adjusted by adding loops in
the super-GTO orbit and raising apogee values of subsequent loops, as it can be seen in
Figure 2.3 (right).

LOI1 maneuver was executed nominally and the Beresheet was captured into a lunar
orbit with 10,000 km apolune height. The rest of LOI maneuvers were executed nomi-
nally [22].

Landing

The landing started according to plan on April 11, 2019 and for 11 minutes was nomi-
nal. Then a failure was indicated by one of the two inertial measurement units, which led
to a series of events including mission computer resets and main engine shutdown. Un-
fortunately the mission was lost, as the Beresheet impacted the surface at much greater
velocity than it could withstand. The last telemetry from the Beresheet sent just before
impact showed vertical velocity of 143.3 m/s, horizontal velocity of 946.7 m/s and altitude
of 149 meters [22].
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Chapter 3

Lunar Landing Problem

The lunar landing problem is defined by first stating the assumptions. Reference frames
are then defined for the problem and the descent trajectory phases are introduced. At the
end, orbital dynamics, needed for later computations, are presented.

Assumptions

As in [12], pages 41–42, the Moon will be assumed to be spherical, without an atmosphere.
It rotates about its axis once in every 27.3217 days [17], which results in surface velocity of
approximately 4.6 m/s. This rotation would be a factor if the goal was to target a specific
landing site, because the site would move relative to the inertial frame. Since the target
is not considered, it is reasonable to neglect the Moon’s rotation, because the difference in
fuel-usage would be no more than 0.3%.

A purely Newtonian gravity model is used, therefore gravity perturbations due to gravity
of the Earth and the Sun are neglected, as well as the perturbations caused by oblateness
of the Moon, which is assumed spherical.

Constant vehicle exhaust velocity will be assumed, as the properties of the engine do
not change drastically during the maneuvers of lunar landing.

Constant values used for computations, such as the lunar equatorial radius and the
lunar gravitational parameter, can be found in Table A.2.

3.1 Lunar Lander in coordinate system
In order to be able to determine the exact position of the Lunar Lander, it must be placed
in a frame of reference. For purposes of this thesis, three frames of reference are used: an
inertial polar frame of reference for determining the Lunar Lander’s position, a rotating po-
lar frame of reference for determining the Lunar Lander’s attitude and an inertial cartesian
frame of reference. The first two are used, when the optimal descent trajectory is being
computed, because it provides mathematical simplifications for that task. The last one is
used for displaying the descent trajectory in the developed visualization environment, as
the LibGDX 3D engine uses cartesian coordinate system.

The Lunar Lander is simplified to a point mass. The motion is restricted to three degrees
of motion (single plane), because the trajectory remains in one plane, when optimal solution
is researched. This will simplify the computations. The x-y plane was selected as the plane
of motion.
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Figure 3.1: Cartesian coordinate system (left) and polar coordinate system (right).

Cartesian coordinate system

The cartesian coordinate system, (illustrated in Figure 3.1), is a system of 𝑛 axes, which are
mutually perpendicular. Two-dimensional coordinate system has two axis, usually denoted
as 𝑥 and 𝑦. The 𝑥 and 𝑦 coordinates may lie anywhere in the interval (−∞,∞). Ordered
pair of (𝑥, 𝑦) is called a vector. The system is defined by an origin (0, 0) and two unit
vectors – �̂� and 𝑦. Position vector 𝑝 is defined as:

𝑝 = 𝑥�̂�+ 𝑦𝑦 (3.1)

where 𝑥 and 𝑦 are the values of perpendicular projection from the point 𝑃 to the axis [26].

Polar coordinate system

The polar coordinate system, (illustrated in Figure 3.1), is a system where a point 𝑃 in
space is represented as an ordered pair (𝑟, 𝜃), where 𝑟 is the radial distance from origin and
𝜃 is the counterclockwise angle between positive part of 𝑥–axis and the vector going from
the origin to the point 𝑃 [27]. The 𝑟 and 𝜃 lie within the intervals:

𝑟 ∈ ⟨0,∞⟩ , 𝜃 ∈ ⟨0, 2𝜋⟩ (3.2)

Conversion between cartesian and polar coordinate systems is made using following equa-
tions:

𝑥 = 𝑟 · cos 𝜃 (3.3)
𝑦 = 𝑟 · sin 𝜃 (3.4)

Frames of reference

The inertial polar frame of reference is defined by unit vectors �̂�𝑥 and �̂�𝑦, with origin in
the Moon’s center of gravity 𝐺𝑀 . The rotating frame of reference shares origin with the
inertial frame and is defined by unit vectors �̂�𝑟 and �̂�𝜃, while �̂�𝑟 always points at the direction
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of Lunar Lander’s center of mass and �̂�𝜃 remains perpendicular to �̂�𝑟. It is referred to as
“rotating polar frame”, because it uses polar coordinate system and rotates. It rotates with
the same rate the Lunar Lander 𝐿𝐿 revolves around the Moon. Both frames of reference
are illustrated in Figure 3.2. The position vector �⃗� of the Lunar Lander is defined in inertial
and rotating frames respectively:

�⃗� =

√︁
(𝑥�̂�𝑥)2 + (𝑦�̂�𝑦)2 (3.5)

�⃗� = 𝑟�̂�𝑟 (3.6)

Figure 3.2: Two-dimensional inertial and rotating polar frames of reference.

Beresheet spacecraft attitude

The Beresheet spacecraft is free to rotate in three dimensions. According to aircraft prin-
ciples these rotations are called roll, pitch and yaw and are rotations about x, y and z axes
respectively. The x, y and z axes originate in spacecraft’s center of mass. The Beresheet’s
rotation axes are demonstrated in Figure 3.3. For purposes of this thesis the Beresheet’s
rotation was restricted only to its y axis.

3.2 Descent trajectory definition
The descent trajectory computation in this thesis begins at a lunar parking orbit 210 ×
210 km, in other words 210 km above the Moon’s surface. It is convenient to partition
the descent into four phases: de-orbit, coast, brake and vertical descent phase, as suggested
in [12], page 124. Partitioning enables to propose different constraints for each phase and
makes the descent profile safer with bigger margin for errors. Illustration of the descent
phases can be seen in Figure 3.4.

De-orbit phase

The descent begins with a de-orbit burn. The objective of de-orbit phase is to place the
Lunar Lander on an elliptical orbit with a perilune altitude 15 km above the Moon’s surface.
As researched in [12], the chosen value 15 km is reasonable for couple reasons: On one hand,
the lower the targeted perilune is, the more fuel is saved, but on the other hand, the higher
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Figure 3.3: The Beresheet rotation axes demonstrated on the 3D model used in the devel-
oped visualization application. 3D model taken from [20].

the targeted perilune is, the safer the coast is. Perigee lower than 15 km could result in a
collision with mountainous terrain. It is desired, that the Lunar Lander has an option to
safely fly by, if, for any reason, an error occurs during the coast phase or braking phase
initiation. Minimizing the time, the spacecraft is on a collision course with the Moon,
increases mission success chances.

Coast phase

The coast phase begins with shutting the main engine down. During this phase, the altitude
is lowered from 210 km to 15 km, while main engine remains shut down. For braking
purposes, the spacecraft needs to arrive at the end of this phase in engine-first position.

Braking phase

The braking phase starts near perilune and its main task is to greatly decrease the Lunar
Lander’s velocity and bring it just 500 m above the Moon’s surface in vertical legs-down
position, so the Lunar Lander is prepared to soft land.

Vertical descent phase

The objective of vertical descent phase is to slowly descent, while measuring its altitude. At
start of this phase the Lunar Lander is already moving slow enough to be able to land right
away in case of wrong measurements. In this thesis it is assumed that the measurements
are correct and the Beresheet will soft land at planned altitude.
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Figure 3.4: The four descent phases (left) and orbital dynamics definitions (right).

3.3 Orbital dynamics definitions
When a spacecraft is orbiting a celestial body in an elliptical orbit, the main body occupies
one of the focus points of that ellipse, called occupied focus. The spacecraft’s state can
be described by a following set of variables: radius 𝑟, central angle 𝜃, and velocity, defined
by its radial 𝑣𝑟 and tangential 𝑣𝜃 components. The maximum width of ellipse is major
axis, and its length is 2𝑎. The maximum width in direction perpendicular to major axis
is minor axis, with length 2𝑏. The closest orbit approach point the to the occupied focus
is called periapsis. In case of the Moon this point is called perilune. The vector from the
occupied focus to perilune is the perilune radius vector, 𝑟𝑝, and the distance from perilune
to the Moon’s surface will be referred to as perilune altitude, ℎ𝑝. The farthest orbit point
is apoapsis and for the Moon is called apolune. Similarly we define apolune radius vector,
𝑟𝑎, and apolune altitude, ℎ𝑎. Defined variables can also be seen in Figure 3.4.

Orbital period

The orbital period is computed using the following equation from [4], page 16:

𝑇 = 2𝜋

√︃
𝑎3

𝜇
(3.7)

where 𝑎 is the length of semi-major axis and 𝜇 is gravitational parameter of main body.

Orbital velocity

The orbital velocity on elliptical orbit is computed using following equation from [11],
page 6:

𝑣 =

√︃
𝜇

(︂
2

𝑟
− 1

𝑎

)︂
(3.8)

which can be, for circular orbit, simplified to:

𝑣 =

√︂
𝜇

𝑟
(3.9)
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Figure 3.5: Examples of orbital maneuvers.

Orbital maneuvers

An efficient way of changing periapsis or apoapsis radius is to provide velocity increment
at the opposite apsis. When the variation ∆𝑟 of apsis radius is known, new length of semi–
major axis can be computed as 𝑎2 = 𝑎1 + ∆𝑟/2 and subsequently the required ∆𝑣 can be
computed as:

∆𝑣 = 𝑣2 − 𝑣1 (3.10)

where 𝑣1 and 𝑣2 represent the spacecraft’s velocity before and after the burn respectively.
Examples of orbital maneuvers are illustrated in Figure 3.5.

The relationship between velocity change, caused by thrust, and mass can be, according
to [12], expressed as an integral of thrust acceleration magnitude:

∆𝑣 =

∫︁ 𝑡𝑓

𝑡0

𝑇𝑚𝑎𝑥𝑘𝐸
𝑚

𝑑𝑡 (3.11)

where 𝑚 represents spacecraft’s mass, 𝑇𝑚𝑎𝑥 spacecraft’s maximum thrust and and 𝑘𝐸 space-
craft’s thrust command. 𝑘𝐸 ∈ ⟨0, 1⟩ ∧ 𝑘𝐸 ∈ R.

Periapsis altitude

Being able to compute periapsis altitude is necessary for knowing when to terminate the de-
orbit burn. To compute periapsis radius with knowledge about spacecraft’s current state,
a following equation from [12], page 104, is used:

𝑟𝑝 =
𝑟2𝑣2𝜃

𝜇

(︃
1 +

√︂(︁
𝑟𝑣2𝜃
𝜇 − 1

)︁2
+
(︁
𝑟𝑣𝑟𝑣𝜃
𝜇

)︁2)︃ (3.12)

where 𝑣𝑟 and 𝑣𝜃 are spacecraft’s vertical and tangential velocity components respectively.
Computing the periapsis altitude is then rather simple:

ℎ𝑝 = 𝑟𝑝 −𝑅𝑒𝑞 (3.13)

where 𝑅𝑒𝑞 is the equatorial radius of the main body.
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Chapter 4

Descent Trajectory Physics

Physical description of the problem, needed for computing the optimal descent trajectory,
is derived in this chapter. First, the Newton’s laws of motion are presented, then the
derivation steps are described, and in the end, the equations of motion are introduced.

4.1 Newton’s laws of motion
The three Newton’s laws of motion and the law of universal gravitation are used as a base
for deriving the equations of motion. Rest of the section is taken from [4], page 3.

First law

Every object continues in its state of rest or of uniform motion in a straight line
unless it is compelled to change that state by forces impressed upon it.

The first law requires the identification of an inertial system with respect to which it is
possible to define the absolute motion of the object.

Second law

The rate of change of momentum is proportional to the force impressed and is
in the same direction as that force.

It can be expressed as:

𝐹 =
𝑑𝑝

𝑑𝑡
(4.1)

where 𝐹 is the resultant of the forces acting on the object and 𝑝 = 𝑚�⃗� is its momentum.
For a constant-mass system, it is:

𝐹 = 𝑚�⃗� (4.2)

and for a variable-mass system, it is:

𝐹 = 𝑚�⃗�+ �̇��⃗� (4.3)

where �⃗� is the acceleration of the mass measured in an inertial frame of reference.
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Third law

To every action there is always opposed an equal reaction.

Newton’s law of universal gravitation

Two bodies, the masses of which are 𝑀 and 𝑚, respectively, attract one another
along the line joining them with a force proportional to the product of their
masses and inversely proportional to the square of the distance between them.

𝐹 = 𝐺
𝑀𝑚

𝑟2
(4.4)

where 𝐺 is the universal gravitational constant and 𝑟 mutual distance.

4.2 Derivation of the equations of motion
The Moon landing can be simplified to a two-body problem, where the two bodies are the
Moon and the Lunar Lander. These bodies interact with each other and the equations of
motion can be derived from Newton’s laws of motion. Section inspired by [4], pages 5–13.

Figure 4.1: Two-body system in an inertial frame of reference. Taken from [4], page 4.

Having a system of two bodies of masses 𝑚1 and 𝑚2, 𝑚1 > 𝑚2, where the bodies are
spherically symmetrical and no other forces than gravitational are present, the position of
𝑚2 relative to 𝑚1 can be described as:

�⃗� = 𝑅2 −𝑅1 (4.5)

where 𝑅1 and 𝑅2 describe the positions of 𝑚1 and 𝑚2 respectively in an inertial frame
F𝑖 (Figure 4.1). Their mutual distance is 𝑟 = ‖�⃗�‖ and following equations describe their
mutual velocity and acceleration:

˙⃗𝑟 =
˙⃗
𝑅2 −

˙⃗
𝑅1 (4.6)

¨⃗𝑟 =
¨⃗
𝑅2 −

¨⃗
𝑅1 (4.7)

Using Newton’s second law of motion (eq. 4.2) and law of universal gravitation (eq. 4.4),
and considering that �⃗�⇔ ¨⃗

𝑅, the motion of each mass can be described as:

𝑚1
¨⃗
𝑅1 = 𝐺

𝑚1𝑚2

𝑟3
�⃗� (4.8)

𝑚2
¨⃗
𝑅2 = −𝐺𝑚1𝑚2

𝑟3
�⃗� (4.9)
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By subtracting eq. 4.9 from eq. 4.8, one obtains:

¨⃗𝑟 = −𝐺𝑚1 +𝑚2

𝑟3
�⃗� (4.10)

As stated in [4], since one of the masses is several orders of magnitude larger than other,
it is possible to let 𝑀 be the mass of the Moon and 𝑚 be the mass of the Lunar Lander,
𝑚1 = 𝑀 and 𝑚2 = 𝑚, with 𝑀 ≫ 𝑚. and simplify the equation of relative motion 4.10 to:

¨⃗𝑟 = − 𝜇

𝑟3
�⃗� (4.11)

where 𝜇 = 𝐺𝑀 is the primary body gravitational parameter.
The unit vectors of rotating polar frame, relative to inertial frame, are defined as:

�̂�𝑟 = cos(𝜃)̂𝑖𝑥 + sin(𝜃)̂𝑖𝑦 (4.12)
�̂�𝜃 = − sin(𝜃)̂𝑖𝑥 + cos(𝜃)̂𝑖𝑦 (4.13)

taking the time derivative, one gets:

˙̂𝑖𝑟 = 𝜃�̂�𝜃 (4.14)
˙̂𝑖𝜃 = −𝜃�̂�𝑟 (4.15)

The position vector is defined simply as:

�⃗� = 𝑟�̂�𝑟 (4.16)

The velocity vector is defined as a sum of its radial and tangential components:

�⃗� = 𝑣𝑟 �̂�𝑟 + 𝑣𝜃 �̂�𝜃 (4.17)

By computing the first derivative of position vector, and applying equations 4.16, 4.14 and
4.17:

�⃗� =
𝑑�⃗�

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑟�̂�𝑟) = �̇��̂�𝑟 + 𝑟 ˙̂𝑖𝑟 = �̇��̂�𝑟 + 𝑟𝜃�̂�𝜃 (4.18)

the radial and tangential components of the velocity vector can be defined as:

𝑣𝑟 = �̇� (4.19)
𝑣𝜃 = 𝑟𝜃 (4.20)

In a similar way by computing the first derivative of the velocity vector:

�⃗� =
𝑑�⃗�

𝑑𝑡
=
𝑑2�⃗�

𝑑𝑡
= (𝑟 − 𝑟𝜃)̂𝑖𝑟 + (𝑟𝜃 + 2�̇�𝜃)̂𝑖𝜃 (4.21)

the radial and tangential components of the acceleration vector can be defined as:

𝑎𝑟 = 𝑟 − 𝑟𝜃 (4.22)
𝑎𝜃 = 𝑟𝜃 + 2�̇�𝜃 (4.23)

As stated in [4], page 12, when there are other forces acting upon the spacecraft besides
the gravitational pull from the primary body, such as thrust of the engine in this case, and
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Figure 4.2: The Lunar Lander in the frame of reference.

gravitational perturbations due to other celestial bodies are neglected, the equation 4.11
can be extended to:

¨⃗𝑟 = − 𝜇

𝑟3
�⃗� + �⃗�𝑡 (4.24)

where �⃗�𝑡 is the acceleration caused by engine thrust (see Figure 4.2). The �⃗�𝑡 can be split
into its components using equations 4.22 and 4.23:

𝑎𝑟 = − 𝜇

𝑟2
+ 𝑎𝑡 cos𝜓 (4.25)

𝑎𝜃 = 𝑎𝑡 sin𝜓 (4.26)

where 𝜓 is the spacecraft pitch angle, defined as the counterclockwise angle between axis
𝑖𝑟 and acceleration vector �⃗�𝑡 (see Figure 4.2).

As stated in [12], page 54, with the use of Newton’s second law of motion (eq. 4.2), the
acceleration vector can be described as:

�⃗�𝑡 =
𝑇𝑚𝑎𝑥𝑘𝐸
𝑚

(4.27)

where 𝑇𝑚𝑎𝑥 is the maximum engine thrust, 𝑘 is the engine throttle command and 𝑚 is the
Lunar Lander mass.

Remembering that:

𝑣𝑟 = �̇� ⇒ �̇�𝑟 = 𝑟 (4.28)
𝑣𝜃 = 𝑟𝜃 ⇒ �̇�𝜃 = �̇�𝜃 + 𝑟𝜃 (4.29)

the system of first-order ordinary differential equations, describing the evolution of the state
of the spacecraft, can be defined. It can be found in the following section.

4.3 The equations of motion
Equations presented in section below are used for the computation of the optimal descent
trajectory.
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Translational dynamics of motion in polar form

In polar form, the position of the spacecraft is defined by 𝑟, the distance from main body’s
center, and 𝜃, the central angle (see Figure 4.2). The velocity of the spacecraft is defined by
its radial and tangential components, 𝑣𝑟 and 𝑣𝜃. The translational dynamics, as presented
in [12], page 57, are then governed by:

�̇� = 𝑣𝑟 (4.30)
𝜃 =

𝑣𝜃
𝑟

(4.31)

�̇�𝑟 =
𝑣2𝜃
𝑟

− 𝜇

𝑟2
+
𝑇𝑚𝑎𝑥𝑘𝐸
𝑚

cos𝜓 (4.32)

�̇�𝜃 = −𝑣𝑟𝑣𝜃
𝑟

+
𝑇𝑚𝑎𝑥𝑘𝐸
𝑚

sin𝜓 (4.33)

Last two equations were derived using equations 4.25 and 4.27. Terms 𝑣2𝜃
𝑟 and 𝜇

𝑟2
represent

centrifugal and gravitational acceleration respectively. Fractions with goniometric functions
represent acceleration caused by engine thrust.

Rotational kinematics

As stated in [12], page 58, in cases where the vehicle rotates about an axis, which is normal
to the plane of translational motion, the rotational equations of motion can be described
as:

�̇� = 𝜔 − 𝑣𝜃
𝑟

(4.34)

�̇� = 𝛼 (4.35)

where 𝜔 is the inertial angular velocity and 𝛼 the inertial angular acceleration, which can
be regulated by firing the attitude control system (ACS) thrusters.

Loss of mass

Finally the mass flow needs to be accounted for. Mass flow due to main engine firing is
significantly larger than mass flow due to ACS firing. According to [12], page 58, the ACS
can thus be neglected in the mass flow equation and an indirect method of accounting for
ACS firing is presented later during implementation of objective function (section 5.3). The
mass flow equation is:

�̇� = −𝑇𝑚𝑎𝑥𝑘

𝑉𝑒𝑥
(4.36)
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Chapter 5

Optimal Descent Trajectory
Computation

The optimal descent trajectory is computed in this chapter. First, the optimal control solver
Bocop is presented. Then the optimization problem theory and methods for solving these
problems are discussed. Follows description of implementation of the problem in Bocop
and presentation of the results.

5.1 Optimal control problem solver: Bocop
The Bocop1 is an open-source toolbox for solving optimal control problems. It implements
a local optimization method. The direct approach transforms optimal control problem into
a finite dimensional optimization problem (NLP). This is achieved by discretization in time
applied to the state and control variables and the dynamics equation. Taken from [2],
page 6. An optimal control problem in Bocop is defined as:

(𝑃 )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀𝑖𝑛𝐽(𝑡0, 𝑦(𝑡0), 𝑡𝑓 , 𝑦(𝑡𝑓 ), 𝜋) Objective
�̇�(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑦(𝑡), 𝑦(𝑡), 𝜋) Dynamics
Φ𝑙 ≤ Φ(𝑡0, 𝑦(𝑡0), 𝑡𝑓 , 𝑦(𝑡𝑓 ), 𝜋) ≤ Φ𝑢 Boundary conditions
𝑦𝑙 ≤ 𝑦 ≤ 𝑦𝑢, 𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢, 𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑢, 𝜋𝑙 ≤ 𝜋 ≤ 𝜋𝑢 Bounds
𝑔𝑙 ≤ 𝑔(𝑡, 𝑢(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝜋) ≤ 𝑔𝑢 Path constraints

where 𝑦(·) represents the state variables, 𝑢(·) the control, 𝑧(·) the optional algebraic vari-
ables and 𝜋 the optional variables to be optimized. Taken from [2], page 10.

Bocop GUI

The Bocop features a user-friendly GUI (see Figure 5.1) for easier manipulation. There are
four tabs, which lead the user through the process of defining and solving the problem.

Definition tab enables user to define the optimal control problem by providing dimen-
sions and names for variables and constants and setting bounds, initial and final conditions
to variables. It also includes a choice of discretization method, where in this thesis the
midpoint method was selected.

Starting Point enables user to set a starting point for the discretized NLP problem,
which may strongly influence the result, since the solver uses a local method.

1http://www.bocop.org/
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Figure 5.1: The Bocop GUI in a definition tab and boundary conditions settings.

Optimization has various options settings for the NLP solver, for example batch opti-
mization or choosing existing solution as a starting point.

Visualization finally enables user to preview the contents of a solution file, generated
after optimization, in graphical representation, such as state and control variables in time.
Taken from [2], pages 7–8.

As stated in [2], page 10, the problem 𝑃 in Bocop is defined by:

∙ 4 functions (C/C++) corresponding to 𝐽, 𝑓,Φ, 𝑔:
criterion, dynamics, boundarycond and pathcond.

∙ 3 definition files in plain text, that are automatically filled when using the GUI:
problem.def for general definition and settings
problem.bounds for setting bounds
problem.constants contains optional constant variables and values.

At first, in Definition, the state vector from equations 4.30–4.36 is defined:

𝑦(𝑡) = [𝑟(𝑡), 𝜃(𝑡), 𝑣𝑟(𝑡), 𝑣𝜃(𝑡), 𝜓
𝑟(𝑡), 𝜔(𝑡),𝑚(𝑡)] (5.1)

and then the control vector is defined:

𝑢(𝑡) = [𝑘𝐸(𝑡), 𝛼(𝑡)] (5.2)

5.2 Optimization problem theory
Optimization is the act of achieving the best possible result under given circumstances.
Decisions are made in order to either minimize effort or maximize benefit. The effort or
the benefit can usually be described as a function of certain variables. Optimization is
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the process of finding the maximum or minimum value of that function. If a point 𝑥*
corresponds to the minimum value of a function 𝑓(𝑥), it also corresponds to the maximum
value of a function −𝑓(𝑥). Optimization can be thus taken as minimization [1], page 2.

Optimization problem statement

An optimization problem is in [1], page 3, stated as:

Find
𝑥 =

(︀
𝑥1, 𝑥2, . . . , 𝑥𝑛

)︀
(5.3)

which minimizes
𝑓(𝑥) (5.4)

subject to the constraints
𝑔𝑗(𝑥) ≤ 0 (5.5)

for 𝑗 = 1, . . . ,𝑚, and
𝑙𝑗(𝑥) = 0 (5.6)

for 𝑗 = 1, . . . , 𝑝.
The vector 𝑥 is variable, 𝑓(𝑥) is the objective function, 𝑔𝑗(𝑥) are the inequality constraints
and 𝑙𝑗(𝑥) are the equality constraints. The number of variables 𝑛 and the number of
constraints 𝑝+𝑚 need not to be related. If 𝑝+𝑚 = 0 the problem is called an unconstrained
optimization problem.

Objective function

If the objective function is globally convex, then found local minimum is also global min-
imum. If the function is non convex, found local minimum is not necessarily the global
minimum. The objective function for the optimal descent trajectory problem is nonconvex.
Thus more optimal solutions exist, one of which is global optimum, other are local optimum
solutions [12], page 22. A graphical representation of this phenomenon is shown in Figure
5.2.

There is a local minimum at point 𝑥* if 𝜀 > 0 exists such that 𝑓(𝑥*) ≤ 𝑓(𝑥) for all 𝑥
within interval ⟨𝑥* − 𝜀, 𝑥* + 𝜀⟩. There is a global minimum at point 𝑥* if 𝑓(𝑥*) ≤ 𝑓(𝑥)
for all 𝑥 within 𝑋, where 𝑋 is the domain of 𝑥.

Finding a minimum

A local minimum of a single-variable function can be found by computing its first and
second derivative. If a function has local minimum at 𝑥*, then the first derivative at that
point 𝑓 ′(𝑥*) must either be equal to 0 or be non–existing. That point would be called
a critical point. Critical point can correspond to any local extremum, therefore the Second
Derivative Test needs to be performed. The test states that if 𝑓 ′′(𝑥*) > 0, there is local
minimum at point 𝑥*.

In multivariable case a point 𝑥* is critical, if the gradient is equal to zero: ∇𝑓(𝑥*) = 0.
The Second Derivative Test is now generalized: first, the Hessian is formed, which is
a matrix of second partial derivatives at 𝑥*. For a function of 𝑛 variables, the Hessian is
a 𝑛× 𝑛 matrix 𝐻, and the entry in 𝑖-th column and 𝑗-th row of 𝐻 is

𝐻𝑖𝑗 =
𝛿2𝑓

𝛿𝑥𝑖𝛿𝑥𝑗
(𝑥*) (5.7)
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Figure 5.2: Global convexity of function. Taken from [12], page 22.

The multi-variable Second Derivatives Test is now stated as: If 𝑥* is a critical point of 𝑓
and the Hessian 𝐻 is positive definite, then 𝑥* is local minimum of 𝑓 . A positive definite
matrix is symmetrical and its determinant and eigenvalues are positive. From [14].

Optimal control problem

Optimization problems, that include input or control, fall into a subset called optimal
control problems. Therefore finding the optimal trajectory is an optimal control problem
with the control being thrust and attitude control system.

Let 𝑥(𝑡) ∈ R𝑛 be the state of continuous system and 𝑢(𝑡) ∈ R𝑚 be the control. The
system is governed in time by a following differential equation:

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) (5.8)

To solve the optimal control problem, we are trying to find such history of control 𝑢(𝑡),
that minimizes the objective function, which can be defined as

𝐽 =

∫︁ 𝑡𝑓

𝑡0

𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 (5.9)

where 𝑡0 and 𝑡𝑓 are beginning and end of the problem respectively [12], pages 25–26.

Solving optimal control problem

Optimal control problems can be solved either analytically or numerically. The analytical
solution is most of the times very difficult or impossible. Therefore the latter is used
commonly. Numerical methods are divided into two categories: direct and indirect. Indirect
methods use estimate of the costate which may be also very difficult or impossible to make.
Direct methods optimize the objective function directly, and are used most often. These
methods start from an initial guess of the state and control and proceed to find a local
minimum of the objective function. If the problem is proven to be convex, then the found
local minimum is also global minimum. It has to be kept in mind, that if the problem is
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Figure 5.3: Illustration of midpoint method. Taken from [8].

highly nonconvex, a good initial guess is crucial in finding good local optimum solution.
A direct method is also used in this thesis [12], pages 28–29.

Midpoint method

The used optimal control problem solver offers a selection between multiple methods for
solving differential equations. In this thesis the midpoint method was selected.

It is a modification of the Euler’s method, that is one-step, which means the new state is
determined only by the state in previous step. Its objective is to solve following differential
equation:

�̇� = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (5.10)

where 𝑦 is function of 𝑥. Following equations are used in midpoint method:

𝑘1 = 𝑓(𝑥𝑖, 𝑦𝑖) (5.11)

𝑘2 = 𝑓(𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
ℎ𝑘1) (5.12)

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑘2 (5.13)

where ℎ is size of the step and 𝑖 = 0, . . . , 𝑛− 1.
Midpoint method is geometrically represented in Figure 5.3. First, the point 𝑃 (mid-

point) is found by computing the derivative at [𝑥𝑛, 𝑦𝑛] and finding a point in this direction
at 𝑥𝑛 +ℎ/2. Approximate value at 𝑥𝑛+1 can be then obtained by using the derivative at 𝑃
as a direction to head from [𝑥𝑛, 𝑦𝑛]. Red arrows represent directional field. Taken from [8],
page 149.

5.3 Optimal control problem implementation
The problem implementation in Bocop is described in this section.
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Trajectory segmentation

The trajectory is segmented into four phases as mentioned before: de-orbit, coast, brake
and vertical descent. To compute the optimal descent trajectory with such segmentation,
each phase will be computed separately with different constraints for each phase and 3
knots linking the phases. The variables 𝑡1, 𝑡2 and 𝑡3 represent the time locations of the
first, second and third knot respectively. Variables 𝑡0 and 𝑡𝑓 represent start and end.

Control Variable Constraints

0 ≤ 𝑘𝐸(𝑡) ≤ 1 𝑓𝑜𝑟 𝑡0 ≤ 𝑡 ≤ 𝑡1 (De-orbit phase) (5.14)
𝑘𝐸(𝑡) = 0 𝑓𝑜𝑟 𝑡1 ≤ 𝑡 ≤ 𝑡2 (Coast phase) (5.15)

0.4 ≤ 𝑘𝐸(𝑡) ≤ 1 𝑓𝑜𝑟 𝑡2 ≤ 𝑡 ≤ 𝑡3 (Braking phase) (5.16)
0.4 ≤ 𝑘𝐸(𝑡) ≤ 1 𝑓𝑜𝑟 𝑡3 ≤ 𝑡 ≤ 𝑡𝑓 (Vertical descent phase) (5.17)

−0.5∘ ≤ 𝛼(𝑡) ≤ 0.5∘ 𝑓𝑜𝑟 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 (All phases) (5.18)

The throttle bound during coast phase is set to 0, to prevent changes of periapsis during
this phase. Lower throttle bound for last two phases of descent was selected to be non–
zero to prevent a case when the engine is shut down and fails to restart. This would be
fatal when the spacecraft is on a collision course with the Moon. Therefore it is safer to
keep the engine from shutting down. The bounds for angular acceleration were chosen the
same as in [12], page 100, where the reasonable estimate, taking into account the vehicle
specifications, was made.

Event Constraints

𝑦−(𝑡1) = 𝑦+(𝑡1) (5.19)
𝑦−(𝑡2) = 𝑦+(𝑡2) (5.20)
𝑦−(𝑡3) = 𝑦+(𝑡3) (5.21)

𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 < 𝑡𝑓 (5.22)

The state 𝑦 remains unchanged at the knots. The 𝑦− and 𝑦+ denote the values just prior
to and after the knot respectively. The last constraint ensures that events are sequential.

Constants

The constants used for the optimal trajectory computation are presented in Table 5.1.
Engine exhaust velocity 𝑉𝑒𝑥 was computed by using specific impulse 𝐼𝑠𝑝 of the Beresheet
engine (see Table B.1 for engine specifications) and a following equation:

𝑉𝑒𝑥 = 𝐼𝑠𝑝 · 𝑔𝐸 (5.23)

where 𝑔𝐸 is gravitational acceleration of the Earth and is equal to 9.8 𝑚/𝑠2.

Initial values

According to mission plan, the descent is initiated at a 210×210 km circular lunar orbit.
The initial radius 𝑟(𝑡0) can be simply computed as 𝑅𝑀 + ℎ. From radius, the spacecraft’s
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initial speed 𝑣(𝑡0) is computed using equation 3.9. The radial component of velocity 𝑣(𝑡0)
is equal to 0 since the spacecraft is moving about a circular orbit, therefore the tangential
component 𝑣𝜃(𝑡0) is equal to 𝑣(𝑡0). Initial central angle 𝜃(𝑡0) and initial pitch angle 𝜓(𝑡0)
were selected.

Table 5.1: Constant values used in computations. Taken from [9, 17].

𝑇𝑚𝑎𝑥 456 N
𝑉𝑒𝑥 3, 116.4 𝑚/𝑠

𝑅𝑀 1.7381 · 106 𝑚

𝜇𝑀 4.902800076 · 1012 𝑚3/𝑠2

𝑅𝐸 6.3781 · 106 𝑚

𝜇𝐸 3.98600436233 · 1014 𝑚3/𝑠2

Initial mass

Finally it is important to know initial mass 𝑚(𝑡0) of the spacecraft, which, unfortunately,
can not be found in any mission description documents. Therefore at least an approximate
value was computed by computing the values of necessary ∆𝑣 of the spacecraft (eq. 3.8
and 3.10), for executing all maneuvers prior to initiating the lunar descent, and converting
that ∆𝑣 to amount of depleted mass (eq. 3.11).

As seen in Table 2.1, the spacecraft was deployed on an insertion super-GTO of 68, 715×
215 km and it arrived at a circular 210 × 210 km lunar orbit, before initiating the lunar
descent. The change of mass between these two events needs to be computed. Computing
the ∆𝑣 and ∆𝑚 for each of the periapsis and apoapsis maneuvers, both in the Earth’s orbit
and the Moon’s orbit, is quite straightforward with the use of equations 3.8, 3.10 and 3.11.
The maneuvers are considered impulsive burns. The lunar orbit insertion (LOI) burn needs
to be included. In article [24], a LOI ∆𝑣 was researched for a spacecraft with engine thrust
of 450 N, which is very close to the Beresheet spacecraft thrust – 456 N. Therefore it is
safe to use the value from [24] as an approximation for the Beresheet LOI burn. It can be
seen in [24], page 211, that in best case it takes about 355.55 m/s of ∆𝑣 to capture the
spacecraft into a lunar orbit with orbital period of about 12.235 hours, which corresponds
to about 8, 681 × 290 km orbit. From this point the spacecraft executes remaining burns
necessary to reach the target orbit of 210 × 210 km. The mass of burned fuel up to this
point is 192.586 kg, the initial mass 𝑚(𝑡0) is then computed to be 389.414 kg. Table B.2
shows ∆𝑣 and corresponding amount of depleted mass for each maneuver. All initial values
for the computation can be seen in Table 5.2.

State Variable Bounds

The state variable bounds are presented to maintain feasibility of the mission, so the vari-
ables do not reach invalid values at any time. The boundary conditions need to be associated
with specific state variables in boundarycond.tpp file, using few simple C commands. State
variable bounds can be seen in Table 5.3.
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Table 5.2: Initial values of the problem.

𝑟(𝑡0) 1, 948, 100 𝑚

𝜃(𝑡0) 0∘

𝑣𝑟(𝑡0) 0 𝑚/𝑠

𝑣𝜃(𝑡0) 1, 586.414 𝑚/𝑠

𝜓(𝑡0) −90∘

𝑚(𝑡0) 389.414 kg

Table 5.3: State variable bounds of the problem.

Variable Lower bound Upper bound Note
𝑟(𝑡) 1, 738, 100 𝑚 - Above surface, 𝑟(𝑡) ≥ 𝑅𝑀

𝑣𝑟(𝑡) - 0 𝑚/𝑠 Descend
𝑣𝜃(𝑡) 0 𝑚/𝑠 - Move forward
𝜓(𝑡) −90∘ 0∘

𝜔(𝑡) −10∘/𝑠 10∘/𝑠

𝑚(𝑡) 150 kg - 𝑚(𝑡) ≥ 𝑚𝑑𝑟𝑦

Final conditions

Final conditions are set for several variables at time 𝑡𝑓 . The radius condition is set, so
the spacecraft lands on surface. To ensure soft landing, spacecraft needs to land with zero
horizontal velocity and near zero vertical velocity. The attitude of the spacecraft needs to
be near vertical, in legs down position.

𝑟(𝑡𝑓 ) = 1, 738, 100 𝑚 (5.24)
𝑣𝜃(𝑡𝑓 ) = 0 𝑚/𝑠 (5.25)

0 ≤ 𝑣𝑟(𝑡𝑓 ) ≤ 0.5 𝑚/𝑠 (5.26)
−0.5 ≤ 𝜓(𝑡𝑓 ) ≤ 0.5∘ (5.27)

Objective function

The objective function needs to be specified in criterion.tpp file. The objective is to minimize
fuel depletion, in other words maximize mass. In preliminary analysis it was found that
the angular acceleration was fluctuating rapidly, which would unnecessarily deplete fuel
of attitude control thrusters. The cost of angular acceleration command was therefore
included in the cost to be minimized, as suggested in [12], page 100. This is included by
adding an integral of a constant 𝐶, times the square of angular acceleration. The value of
C was given a small value, such as 10−3, to minimize the impact on the cost. The objective
function is following:

𝐽𝑚𝑖𝑛 = −𝑚(𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡0

𝐶 [𝛼(𝑡)]2 𝑑𝑡 (5.28)

Finally the dynamics need to be specified in dynamics.tpp file. That is done by coding the
equations 4.30–4.36 in C language.
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De-orbit phase

The objective of de-orbit burn is to lower the perilune height ℎ𝑝 to a desired value – in
this case 15 km above surface. To meet this objective, an additional state variable ℎ𝑝 is
temporarily added to the state vector and its state is computed by equations 3.12 and 3.13.
The final condition for this phase is:

ℎ𝑝(𝑡1) ≤ 15, 000 𝑚 (5.29)

Coast phase

The objective of coast phase is to bring the spacecraft near perilune. The vehicle follows
the descent coast trajectory until its altitude is below a specified value, then the braking
phase begins. The target altitude is selected slightly above perilune height, to leave some
margin for error of the optimization software. Pitch is constrained so the spacecraft arrives
in engine-first position to the braking phase. Thrust is constrained to 0 in this phase and
final conditions for this phase are:

𝑟(𝑡2) ≤ 𝑅𝑀 + 15, 100 𝑚 (5.30)
𝜃(𝑡2) = −90∘ (5.31)

Breaking phase

The objective of breaking phase is to null most of the velocity and prepare the vehicle for
landing. At the end of this phase, the vehicle should be able to land immediately, in case of
incorrect measurements, therefore near-zero vertical attitude in legs-down position is also
required. Multiple final conditions are introduced for this phase:

𝑟(𝑡3) = 1 738 600 m Altitude 500 m
𝑣𝑟(𝑡3) ≥ −2 m/s Near-zero vertical speed
𝑣𝜃(𝑡3) ≤ 0.5 m/s Near-zero horizontal speed
−0.5∘ ≤ 𝜓 ≤ 0.5∘ Vertical attitude

Vertical descent phase

The objective of vertical descent phase is to finish the descent and ensure soft landing. The
horizontal velocity is constrained to 0 during this phase. Final conditions for this phase
equal to final conditions for the whole descent, at time 𝑡𝑓 , which can be found earlier in
this section 5.3.

5.4 Results
The optimal descent trajectory for the Beresheet Lunar Lander was computed to take
5,025.3 s (a little under 84 minutes) during which the spacecraft burns 210.2 kg of fuel,
and soft lands with a safe margin 29.2 kg of unburnt fuel (about 6.8%). The spacecraft
gradually performs the four planned phases, during which it reduces its velocity and soft
lands with vertical attitude in legs down position, which is considered a successful landing.
Detailed information about each phase can be seen in Table 5.4.
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Table 5.4: Phase breakdown of the computed optimal descent trajectory.

Downrange Vertical
Phase Duration ∆𝑣 ∆𝑚 ∆𝜃 distance distance

[𝑠] [𝑚/𝑠] [𝑘𝑔] [𝑑𝑒𝑔] [𝑘𝑚] [𝑘𝑚]

De-orbit 36 41.2 5.26 1.61 50.28 0.018
Coast 3,499 0 0 176.1 5,341.73 194.91

Braking 1,426.3 2,268.7 198.69 43.2 1,309.05 14.57
Vertical descent 64.3 104.8 6.19 0 0 0.51

Total 5,025.3 2,391.1 210.15 220.93 6,702.11 210

Results shown in Figures 5.4–5.11 were plotted using the open source tool Gnuplot2.
The descent begins by de-orbit phase, coast phase starts at about 𝑡 = 36 𝑠, braking phase
begins at about 𝑡 = 3, 535 𝑠 and vertical descent phase starts at about 𝑡 = 4, 961 𝑠.
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Figure 5.4: The optimal descent trajectory
profile.
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Figure 5.5: Time history of altitude during
the optimal descent trajectory.
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Figure 5.6: Time history of central angle dur-
ing the optimal descent trajectory.
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Figure 5.7: Time history of mass during the
optimal descent trajectory.

2http://gnuplot.sourceforge.net/
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Figure 5.8: Time history of radial velocity
during the optimal descent trajectory.
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Figure 5.9: Time history of tangential veloc-
ity during the optimal descent trajectory.
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Figure 5.10: Time history of throttle com-
mand during the optimal descent trajectory.
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Figure 5.11: Time history of pitch angle dur-
ing the optimal descent trajectory.
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Chapter 6

Design and Implementation of
Visualization Environment for
Descent Trajectory Interpretation

For purposes of visualizing the computed optimal descent trajectory a visualization applica-
tion was developed. In this chapter the design and implementation details of the application
are presented.

6.1 Application overview

Motivation

The general idea of the application is to provide the user with a tool, which would help
him/her to easily understand the trajectory. The application would display the Moon and
the Beresheet spacecraft in 3D space, where all the objects and their mutual distances are
on the same scale. Once the trajectory would be loaded from dataset, the user would be
able to see an animation of the spacecraft following the trajectory from start to end, and he
would also be able to interact with the animation to for example change its pace or jump
into different point in time.

Design

On application startup, a main menu is loaded. Here the user is first asked to provide a path
to directory with trajectory dataset. Then the user can choose to either display the list of
available user interface controls, or to proceed to the visualization screen. If the latter one
is chosen, a screen with a 3D scene is displayed. The scene shows 3D models of the Moon,
the Beresheet spacecraft, and the trajectory on the same scale. For better illustration, the
Moon is covered with a texture, created from real Moon imagery. By default, an animation
of the lunar descent is played in real time, and state variable information is displayed in top
left corner, for better knowledge of current state of the descent. A user interface is provided
in form of buttons and a slider, that enables the user to pause/resume the visualization,
change the time flow to forward/backward, jump to different time using slider, change
the visualization speed and adjust the camera view angle, or return to the main menu.
Application screens can be seen in Figure 6.1.
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Figure 6.1: Application’s visualization, main menu, controls and loading screens.

6.2 Application implementation
The application was developed using the LibGDX framework built on top of Java SE 81

environment. The LibGDX was chosen because it supports creating 3D graphical output
for Java applications. The trajectory is loaded from dataset previously computed by the
optimization and smoothed out using Bézier curve algorithm before being displayed as a
line in space. The Moon and the Beresheet spacecraft are loaded as 3D objects.

LibGDX

The LibGDX2 is a free open source game development framework providing an API that
works on all supported platforms. When the application is targeting multiple platforms at
the same time, including desktop, mobile, and web, the API is abstract enough that the
code and assets can be mostly shared. The LibGDX is using OpenGL (graphics library)
for rendering on all platforms and offers users class abstractions as Mesh, Texture, Shader,
PerspectiveCamera and more.

The main entry point of a LibGDX application is Application interface, which sets up a
window and manages graphics, audio, input and files of the application. Application can
be instantiated as a desktop, android, HTML5 or iOS application. The application logic is

1https://www.oracle.com/java/technologies/javase-jdk8-downloads.html
2https://libgdx.badlogicgames.com/index.html
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implemented in a class implementing ApplicationListener, which provides methods create,
render, pause, resume, dispose and resize, that are called by Application in corresponding
events. For further information please refer to the LibGDX documentation [31].

Discussed application was developed for desktop use, but could easily be extended for
use on other platforms by adding a launcher that uses different Application implementation.
It uses Game abstract implementation of ApplicationListener, which in addition enables to
easily switch between multiple application screens.

Implementation details

The application consists of four screens: main menu screen – which loads on startup,
controls screen – which informs user about ways of controlling the visualization, loading
screen – which is only displayed while assets are being loaded and 3D models created, and
visualization screen – which is the main screen, displaying the visualization.

The visualization screen consists of 3D scene, representing the bodies and trajectory in
space, which uses PerspectiveCamera to be displayed, and a 2D layer, rendered on top of the
3D scene, which provides a user interface and displays additional information about current
state of the descent. Perspective cameras are commonly used in 3D graphics, because they
display the world in an intuitive way to the user, as more distant objects appear smaller.
Opposed to that orthographic cameras display more distant objects the same size as the
closer ones, which can be used for example for creating 2D games, but would feel very
unintuitive in 3D world.

The Moon is represented by a sphere covered with color texture, downloaded from [28],
which was created by NASA’s Scientific Visualization Studio from real images taken by
LRO3. The Beresheet spacecraft is represented by a 3D model, downloaded from Thingi-
verse [20], created by royyehu, licenced under CC BY 4.0. The model was painted gold
to represent golden layers of insulation, the spacecraft was covered in before launch. Both
of the 3D models are loaded into the application using the LibGDX AssetManager, which
enables asynchronous loading.

The trajectory is loaded from a file in form of three-dimensional points in polar or
cartesian coordinate system. If the input is in polar coordinate system, the points are
converted to cartesian coordinate system using equations 3.3 and 3.4. Then the trajectory
is smoothed out using the Bézier curve algorithm (discussed later). For this purpose the
LibGDX offers class Bezier, which supports linear, quadratic and cubic curves. Obtained
points are then used to create a mesh and the trajectory is displayed in form of line.

A time history (list of times) needs to be provided to the application in order for it to
know how fast to clear individual sections of the trajectory. Additional state information
about the spacecraft during lunar descent can be loaded, such as mass, pitch and velocity
in time, and displayed in top left corner during the visualization.

The user interface in whole application was created with the use of VisUi4 user interface
toolkit for the LibGDX, which provides skin for typical ui elements such as buttons, labels,
etc. and also FileChooser class – a window in which the user provides the path to trajectory
source files. The application is using model-view-controller (MVC) architecture, which
ensures that the user input changes the model first, and the change effects the view displayed
to the user.

3Lunar Reconnaissance Orbiter is a NASA spacecraft mapping the Moon’s surface.
4https://github.com/kotcrab/vis-ui
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Bézier curve algorithm

The input trajectory may not always have sufficient amount of points and if such trajectory
would be displayed, sharp changes of direction could be observed at certain places. To
improve user experience, the input trajectory is approximated by a smooth curve. For this
purpose a Bézier curve algorithm was used in the application.

From [3]: Bézier curve (also called Bézier spline) is a line, that passes through a set of
points, or knots. It is a collection of polygonal segments, which can be linear, quadratic,
cubic or higher order polynomials. The cubic Bézier curve is in [3] defined as

B(𝑡) = (1 − 𝑡)3P0 + 3(1 − 𝑡)2𝑡P1 + 3(1 − 𝑡)𝑡2P2 + 𝑡3P3, 𝑡 ∈ [0, 1] (6.1)

where points P0 and P3 correspond to the knots and points P1 and P2 are control points,
which determine the curve’s shape. To create a smooth curve, the first and second deriva-
tives must be continuous across the spline boundaries, which for the left boundary of i–th
segment can be written as:

B′
𝑖(0) = B′

𝑖−1(1) (6.2)
B′′

𝑖 (0) = B′′
𝑖−1(1) (6.3)

The first and second derivatives are defined as:

B′(𝑡) = −3(1 − 𝑡)2P0 + 3(1 − 4𝑡+ 3𝑡2)P1 + 3(2𝑡− 3𝑡2)P2 + 3𝑡2P3 (6.4)
B′′(𝑡) = 6(1 − 𝑡)P0 + 3(−4 + 6𝑡)P1 + 3(2 − 6𝑡)P2 + 6𝑡P3 (6.5)

After simplifying these equations and taking into account that P0,𝑖 = P3,𝑖−1 = K𝑖, the
following pair of equations is obtained:

2K𝑖 = P1,𝑖 + P2,𝑖−1 (6.6)
−2P1,𝑖 + P2,𝑖 = P1,𝑖−1 − 2P2,𝑖−1 (6.7)

These equations are only defined at the internal knots, therefore two following boundary
conditions are defined for the end knots: B′′

0(0) = 0 and B′′
𝑛−1(1) = 0 (the spline is linear

at the end knots). The equations for the endpoints are:

K0 − 2P1,0 + P2,0 = 0 (6.8)
P1,𝑛−1 − 2P2,𝑛−1 +𝐾𝑛 = 0 (6.9)

The set of equations 6.6–6.9 can be used to compute the individual segments of Bézier
curve. For illustration of Bézier curve see Figure 6.2.

Figure 6.2: Bezier curve with knots and control points.
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Chapter 7

Evaluation

In this chapter the optimal descent trajectory is evaluated first, then it is compared to the
real trajectory, followed during the Beresheet mission, and in the end short evaluation of
visualization environment is given.

Optimal descent trajectory

The computed optimal descent trajectory meets all proposed criterions and is considered
feasible, thus can be evaluated as successful. To verify the correctness of computational
model, the best way would be to compare the trajectory to the Beresheet mission planned
trajectory, or to real flight data. Unfortunately the former is not available and the latter
can not be used for verification, since the descent resulted in a crash. Follows a best effort
verification. The optimal descent trajectory consists of four phases, each of which will be
evaluated separately.

The de-orbit phase was expected to lower the perilune height to about 15 km and last
only few dozens of seconds. The perilune was lowered successfully and the maneuver took
36 seconds to complete, therefore the result shows no signs of errors.

The coast phase has brought the vehicle near the perilune as expected. Since the
spacecraft travels during this phase almost 180∘ in longitude, roughly from apolune to
perilune, without applying any thrust, the duration of the phase can be expected to be
slightly less than a half of orbit period. The spacecraft is orbiting a 210×15 km ellipse,
the period is thus 7,143 s (eq. 3.7). The coast phase takes a little less than half of that
time – 3,499 s – which suggests the model is correct. The difference is caused by phase
start 36 seconds after apolune and phase ending sooner than reaching the perilune.

The braking phase of the optimal descent trajectory begins with a horizontal section,
lasting for about 600 seconds, during which the vertical velocity remains zero. This solution
appeared to be unintuitive and sub-optimal, therefore some alternatives were examined to
verify the solution. The flatness of the section was caused by setting the upper bound for
vertical velocity to 0. When the bound was removed, a 10 km raise in altitude appeared
instead of the flat section, but it did not result in additional fuel savings. Next a variant
with initiating the braking phase up to 800 seconds earlier was examined, but this also
did not result in additional fuel savings. Neither of alternatives resulted in better solution,
therefore the presented solution appears to be optimal.

To see whether the flat section would disappear if higher thrust was available, two
fictional scenarios were examined: first with twice the Beresheet’s thrust – 912 N – and
second with four times the Beresheet’s thrust – 1824 N. The optimal braking phase for
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Figure 7.1: Braking phase comparison with nominal, double and quadruple thrust.

both of the scenarios was computed and compared to the original braking phase of the
optimal descent trajectory. As it can be seen in Figure 7.1, with higher engine capabilities
the trajectory would actually look more intuitive, which suggests that the long horizontal
section is only a coincidence, but not a fault in model.

The vertical descent phase remains vertical and takes about 64.3 seconds, which seems
adequate.

The best effort to evaluate the computed optimal descent trajectory was made and no
irregularities were found that would suggest the model is incorrect.

Comparison with the real trajectory followed during the Beresheet mission

The real descent trajectory was obtained by sampling the telemetry displayed in live broad-
cast from the Beresheet lunar landing [25] on youtube. The sampling begins about 33.5 km
above surface, because at that moment the telemetry first appeared in the live broadcast. It
is imperfect, because the telemetry was unavailable several times in the broadcast, but it is
good enough for visual comparison. The comparison of trajectories starts at a point, where
the optimal descent trajectory reached 33.5 km altitude. As Figure 7.2 shows, compared
trajectories differ significantly, but that was expected since the real one led to a crash.
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Figure 7.2: Comparison of the optimal descent and the real Beresheet mission trajectories.

Visualization environment

The goal was to create an environment, that would enable to visualize a lunar descent
trajectory while enabling the user to interact with the visualization. The environment
was tested by loading the computed optimal descent trajectory. It was observed, that the
trajectory, relative to the Moon, was displayed as expected, confirming correct scale of
the Moon in the scene. A user interface enables interactions with the visualization, as
planned. The environment is ready to be used for intended purpose and therefore the goal
is considered as fulfilled.
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Chapter 8

Conclusion

The goal of this bachelor’s thesis was to compute the optimal descent trajectory for the com-
mercial Lunar Lander Beresheet and develop an environment for visualizing the Beresheet
lunar landing. Both of these goals were fulfilled. The assignment also included research of
the Beresheet mission, research of orbital mechanics, derivation of equations of motion and
evaluation of achieved results. All of the assignments were also fulfilled.

The computed optimal descent trajectory meets all feasibility criterions, reduces risk
that could endanger mission success and brings the Beresheet spacecraft to a safe landing
with 29.2 kg (6.8%) of fuel left. The descent maneuver takes about 84 minutes to complete.
Alternative trajectories were examined, but no better was found. In the end it was compared
with the real Beresheet mission trajectory.

Developed visualization environment is a desktop application that can be launched on
Linux or Windows R○ operating systems. It provides an intuitive trajectory visualization
enabling users to easily understand computed lunar descent trajectories. Relevant 3D
model of the Beresheet spacecraft and a Moon texture created from real LRO1 images
were downloaded and used to provide the best experience.

This assignment has taught me many things from astrodynamics, optimization and
implementation of 3D application, which I am grateful for and I would like to use the
gained knowledge to pursue even greater tasks in my master’s thesis.

Future extensions to this thesis may include computing the optimal descent trajectory
in six degrees of motion, taking into account a specific landing site and comparing the
optimal trajectory with the mission plan, if it is released in the future. The visualization
environment could be improved by adding a displacement map to the model of the Moon,
to distinguish mountains and craters, and by adding a flame animation to the spacecraft,
to see when it is applying thrust.

1Lunar Reconnaissance Orbiter is a NASA spacecraft mapping Lunar surface.
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Appendix A

Astronomical Bodies and Launch
Vehicle in Beresheet Mission

The Earth

Figure A.1: The Earth. Source: [18].

Table A.1: Earth specifications. Taken from [9, 17].

Equatorial radius 6, 378.1 𝑘𝑚

Gravitational
3.98600436233 · 1014 𝑚3/𝑠2parameter

Surface gravity 9.8 𝑚/𝑠2

Escape velocity 11.2 𝑘𝑚/𝑠

Atmospheric pressure 1 𝑏𝑎𝑟

The Moon

Figure A.2: The Moon. Source: [19].

Table A.2: Moon specifications. Taken from [9, 17].

Equatorial radius 1, 738.1 𝑘𝑚

Gravitational
4.902800076 · 1012 𝑚3/𝑠2parameter

Surface gravity 1.62 𝑚/𝑠2

Escape velocity 2.38 𝑘𝑚/𝑠

Atmospheric pressure 3 · 10−15 𝑏𝑎𝑟 (vacuum)
Mean orbital radius 378, 000 𝑘𝑚

Mean orbital velocity 1.022 𝑘𝑚/𝑠
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The Falcon 9

Figure A.3: The Falcon 9 rocket in
block 5 version. Taken from [5].

Table A.3: The Falcon 9 specifications. Taken from [7].

Manufacturer SpaceX
Height 70 𝑚

Diameter 3.66 𝑚

Weight (fuelled) 594, 054 𝑘𝑔

Stages 2

Propellant Liquid oxygen & RP-1
Propulsion (1𝑠𝑡𝑠𝑡𝑎𝑔𝑒) 9×Merlin 1D engine
Propulsion (2𝑛𝑑𝑠𝑡𝑎𝑔𝑒) MVac engine
Thrust (1𝑠𝑡𝑠𝑡𝑎𝑔𝑒) 7, 686 𝑘𝑁 (sea level)
Thrust (2𝑛𝑑𝑠𝑡𝑎𝑔𝑒) 981 𝑘𝑁 (vacuum)
Payload to LEO 22, 800 𝑘𝑔

Payload to GTO 8, 300 𝑘𝑔

Payload to Mars 4, 020 𝑘𝑔
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Appendix B

Additional Specifications

Table B.1: LEROSTM2b technical specifications. Taken from [21].

Manufacturer Moog Inc.
Propellant MMH/MON
𝑇 367–456 N
𝐼𝑠𝑝 318 s
Mass 5.0 kg
Diameter 334 mm

Table B.2: The Beresheet maneuvers with computed velocity and mass differences [22].

Separation 70,000 215 - -
ApoAlt aft PeriAlt aft ∆𝑣 ∆𝑚

Maneuver [km] [km] [m/s] [kg]

Earth
Orbit

AM1 68,715 215 0 0
AM2 68,710 600 24.05 4.48
PM1 117,300 530 167.82 30.28
PM2 275,000 1,600 176.87 30.20
PM3 390,000 1,500 39.67 6.54

Lunar
Orbit

LOI1 8,681 290 355.55 55.00
LOI2 750 285 379.67 52.24

LOI2A 750 210 14.80 1.91
LOI2B 210 210 93.78 11.90

Total: 1,251.21 192.586
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Appendix C

Contents of Associated Media
Drive

∙ /xkarpi06-BP.pdf - pdf version of the thesis.

∙ /thesis.zip - compressed source files of the thesis.

∙ /vis_env/ - directory containing source files of the visualization environment

∙ /vis_env/odt/ - directory containing the optimal descent trajectory dataset

∙ /bocop/ - directory containing the source files of the optimization problem

∙ /bin/ - directory containing the executables for running the visualization environment
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