
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

NEW GENERATION OF OPEN-SOURCE TOOL

STRANGER STRINGS

NOVÁ GENERACE OPEN-SOURCE NÁSTROJE STRANGER STRINGS

BACHELOR’S THESIS

BAKALÁŘSKÁ PRÁCE

AUTHOR MATEJ KŇAZÍK

AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.

VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Kňazík Matej
Programme: Information Technology
Title: New Generation of Open-Source Tool Stranger Strings
Category: User Interfaces
Assignment:

1. Study and describe the history and the current version of the tool Stranger Strings.
2. Identify opportunities and needs for radical rebuilding of Stranger Strings.
3. Propose necessary changes and implement them.
4. Test the created solution on users and improve it iteratively.
5. Evaluate the properties of the modified solution in a testing or preferrably production use.
6. Evaluate the achieved results and propose possibilities for continuing the project; create

a poster and a short video for presenting the work.
Recommended literature:

Steve Krug: Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability,
ISBN-13: 978-0321965516
Steve Krug: Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding and Fixing
Usability, ISBN-13: 978-0321657299
Susan M. Weinschenk: 100 věcí, které by měl každý designér vědět o lidech, Computer
Press, Brno 2012
Nitish Singh: Localization Strategies for Global E-Business, Cambridge University Press,
2011, ISBN 9780511920226
 Dan Jurafsky and James H. Martin: Speech and Language Processing,
https://web.stanford.edu/~jurafsky/slp3/

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Herout Adam, prof. Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: June 23, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22739/2019/xknazi00 Page 1/1

Abstract
The aim of this bachelor’s thesis is to describe the development process of a web-based
application called Stranger Strings. This project got its name from in-house software but
apart from the name everything was changed. The purpose of Stranger Strings shifted, the
whole code-base was rewritten and turned into an open-source project. The same applied
to the user-interface which was redesigned to target a much broader spectrum of users. This
paper provides in-depth insight into the aforementioned process and also explains how user
testing was used during the development process to identify main problems. The outcome
of this work is an open-source localization analyzing tool that helps users to improve the
quality of their localization.

Abstrakt
Cieľom tejto bakalárskej práce je opísať vývoj webovej aplikácie s názvom Stranger Strings.
Projekt si ponechal svoje meno po internom firemnom nástroji, avšak vo všetkom ostat-
nom prešiel kompletnými zmenami. Účel Stranger Strings sa pozmenil, kód bol od základu
prepísaný a celý projekt bol zmenený na open-source. Rovnako bolo redizajnované aj uží-
vateľské prostredie za účelom rozšírenia cieľovej skupiny užívateľov. Táto práca podrobne
popisuje tento proces a tiež vysvetľuje, akú úlohu zohralo užívateľské testovanie pri iden-
tifikácii hlavných problémov aplikácie. Výsledkom tejto práce je open-source nástroj na
analýzu lokalizácie, ktorý pomáha užívateľom zlepšovať jej kvalitu.

Keywords
Stranger Strings, localization, quality, inconsistencies, mistakes, analysis, QA, testing, style,
translations, visualization, web, app, Firebase

Klíčová slova
Stranger Strings, lokalizácia, kvalita, nekonzistentnosti, chyby, analýza, QA, testovanie,
štylistika, preklady, vizualizácia, internet, aplikácia, Firebase

Reference
KŇAZÍK, Matej. New Generation of Open-Source Tool Stranger Strings. Brno, 2020. Bach-
elor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
prof. Ing. Adam Herout, Ph.D.

Rozšířený abstrakt
Lokalizázia sa v globálne prepojenom svete stala neoddeliteľnou súčasťou mnohých pro-
duktov, spoločností či služieb. Lokalizácia má významný dopad na užívateľov a preto je
dôležité ju nezanedbať a urobiť ju správne. Je pomerne bežné naraziť na chybu v obsahu
alebo v lokalizácii pri prehliadaní webových stránok.

Táto bakalárska práca popisuje vývoj aplikácie Stranger Strings, ktorá je určená na
analýzu a správu lokalizácie. Stranger Strings dokáže detekovať rôzne formy chýb a nekonzis-
tentností. Prostredníctvom ďalších nástrojov upozorňuje na dodržiavanie overených pos-
tupov, aby sa predišlo lokalizačným chýbam aj v budúcnosti. Nástroj poskytuje aj nástroj
na nahlasovanie nájdených chýb, čím zjednodušuje a urýchľuje celý proces opravy chýb
v lokalizácii.

Vznik Stranger Strings bol inšpirovaný interným nástrojom, určeným na vyhľadávanie
a nahrávanie prekladov do lokalizačnej databázy, po ktorom si ponechal názov. Pôvodný
Stranger Strings bol určený len pre úzku skupinu programátorov, ktorí si chceli zjednodušiť
prácu súvisiacu so lokalizáciou webstránky. Bol vyvinutý na mieru pre špecifické požiadavky
užívateľov. To sa odzrkadlilo ako na zdrojovom kóde, tak aj na samotnom užívateľskom
rozhraní.

Nová verzia Stranger Strings je určená pre omnoho širšiu skupinu používateľov. Cieľová
skupina už nie sú len samotní programátori, ale aj menej technicky zdatní užívatelia ako
testeri, prekladatelia, produktoví či lokalizační manažéri. Účelom tejto aplikácie už nie je
len poskytnutie nástroja na prehľadávanie lokalizačnej databázy, ale aj jej analýza za účelom
detekcie chýb a nekonzistentností. Od Stranger Strings sa očakáva, že dokáže pomôcť zvýšiť
kvalitu lokalizácie. Cieľom projektu bolo poskytnúť túto aplikáciu komukoľvek formou
open-source tak, aby bola využiteľná pre ľubovoľný lokalizačný projekt.

Pri tvorbe novej verzie Stranger Strings boli využité poznatky z praxe, týkajúce sa
častých chýb v lokalizácii. Na ich základe boli odvodené možné príčiny a pravidlá, ktoré
zamedzujú výskytu najčastejších chýb v lokalizácii. Na implementáciu bolo využitých
množstvo najnovších technológií z oblasti webového vývoja. Stranger Strings je navrhnutý
tak, aby dokázal spoľahlivo fungovať aj pri veľkých lokalizačných projektoch. Celý projekt
bol od samého začiatku vyvinutý a zdokumentovaný tak, aby sa verejnosť mohla podieľať
na jeho ďalšom vývoji.

Pri návrhu a tvorbe uživateľského rozhrania bola využitá iterácia užívateľských testov.
Vďaka nim boli odhalené zásadné užívateľské problémy a odvodené rozhodnutia pri vývoji
jednotlivých funkcií. Aplikácia bola následne nasadená do firmy, kde bola sledovaná ana-
lytickými nástrojmi, ktoré zbierali dáta o jej užívaní.

Zozbierané záznamy o užívaní ukazujú, že projekt Stranger Strings napĺňa účel, ku
ktorému bol vytvorený. Meranú aplikáciu navštívi v priemere 7.97 jedinečných užívateľov
za týždeň a 16.53 jedinečných užívateľov za mesiac. V rámci jedného lokalizačného projektu
Stranger Strings odhalilo 51 problémov, ktoré boli cez túto aplikáciu nahlásené na okamžitú
korektúru.

Výsledkom bakalárskej práce je nástroj, ktorý je úspešne overený v praxi. Samotný
nástroj je k dispozícii komukoľvek ako open-source projekt na stránke https://github.com/
kiwicom/stranger-strings.

https://github.com/kiwicom/stranger-strings
https://github.com/kiwicom/stranger-strings

New Generation of Open-Source Tool Stranger
Strings

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of prof. Ing. Adam Herout, Ph.D. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

. .
Matej Kňazík
June 23, 2020

Acknowledgements
I want to express great gratitude to my supervisor prof. Ing. Adam Herout, Ph.D. for giving
me the opportunity to make Stranger Strings my bachelor’s thesis and also for guidance
and much valuable advice in the last 2 years. My sincere thanks also go to Kiwi.com, which
provided me with resources and support in this project. A big thank you goes to my mentor
and friend Pavel ’Strajk’ Doleček, who introduced me to Stranger Strings and mentored
me during the whole course of its development. Last but not the least, I am grateful to my
family and friends for unceasing support and encouragement.

Contents

1 Introduction 2

2 Localization 3
2.1 Why is Localization Important . 4
2.2 Common Problems in Localization . 5
2.3 Previous Version of Stranger Strings . 5

3 Design of the New Stranger Strings 8
3.1 Requirements & Key Features of Stranger Strings 10
3.2 UI Design . 11
3.3 Technologies Used in Stranger Strings . 14
3.4 Indications of Success . 16

4 Implementation 18
4.1 Open-Source Project Overview & Installation 21
4.2 Inconsistencies Computation . 24
4.3 Database . 36
4.4 Front-end of Stranger Strings . 38

5 User Testing 46

6 Conclusion 52

Bibliography 53

1

Chapter 1

Introduction

This thesis is about the transformation of project Stranger Strings. Stranger Strings began
as a small internal tool that provided an overview of localization data taken from an external
translation management system (TMS). Seeing the whole localization at one place led to
a realization that there are many mistakes and inconsistencies with repeating occurrence.
This brought an idea about detecting those mistakes and inconsistencies and that is exactly
when this project started.

After a thoughtful discussion with previous Stranger Strings authors, we concluded that
old Stranger Strings is not suitable for this kind of purpose and it requires the development
of a whole new project. The creation of a brand new tool from scratch provided new
opportunities, such as a purely Open-source approach with modularity and customization
in mind for future development. But before the whole development process, I needed to get
some insight into the topic of localization and properly analyze all the possible mistakes and
their causes. Another challenge was to learn how to create the app itself. What technologies
should be used and also how to design Stranger Strings to be used by numerous people on a
daily basis. Especially knowledge about the user testing later turned out as really valuable
and changed the way how Stranger Strings was developed. The challenge was to display a
lot of data and information without too much distraction that will discourage the user from
using the tool. Also, the development itself brought many challenges such as performance
issues and implementation difficulties. This thesis describes all of them and also provides
explanations of how Stranger Strings solves them.

At the end of this thesis, you can learn about the usage stats of Stranger Strings and if
the tool delivers the expected results.

2

Chapter 2

Localization

Many businesses reach a certain point, when they need to expand to foreign markets in
order to grow further. To do so, they first need to know the market, the culture, local
regulations, legal requirements, and of course local language. Only then they can bring
their products or services closer to their client or customers. This process is also called
localization.

According to the Globalization and Localization Association (GALA) term localization
can be defined as a process of adapting a product or content to a specific locale or market.
Localization aims to give a product the look and feel of having been created specifically for
a target market, no matter their language, culture, or location [6].

Localization is more than just translating string from one language to another. The
translation is only one of the many localization processes like units of measure conversion,
currency conversion, date formats, design adaptation, and many more. A great example
of localization is in Figure 2.1 which demonstrates localization of Pixar Animation Studios
movie ”Inside out“ for the Japanese audience.

Figure 2.1: In one scene, Riley’s dad struggles to feed his daughter broccoli. Like most
toddlers, she is disgusted by the vegetable, refusing to eat it. In Japan’s cut for the film,
broccoli is replaced by bell peppers. This is because kids in Japan usually love broccoli,
but instead they don’t like bell peppers. (source: Business Insider [1])

3

Another important requirement of a good localization is a good knowledge of the prod-
uct or service itself. If someone doesn’t know the purpose, meaning, or purpose of their
product then they cannot properly localize it. Some companies emphasize on high quality
copywriting, which can be easily ruined by improper localization. That is because for cer-
tain businesses the wording behind their products is very sensitive and even small differences
in wording can cause a different perception of their brand.

Therefore it is important to periodically verify whenever the localization is being done
properly. For this purpose there are many content management systems (CMS) or trans-
lation management systems (TMS) that groups all the localization in one place and helps
users navigate through it.

2.1 Why is Localization Important
Is it enough to localize just for an English speaking audience? Is it worth bothering about
other than non-native English markets? Do even users care about other localization once
English localization is available to them?

First of all, according to a survey from 2006 with 2400 participants from 8 different
non-Anglophone countries [4]. About 72.1% of internet users are more likely to stay on
the website if the content is in their native language. More than half (52.4%) buys only
at websites where the information is presented in their language. Even though two-thirds
(67.4%) visit English-language sites frequently, just quarter (25.5%) regularly purchase
goods or services at those properties. Even with information available in the local language,
the inability to use their own credit cards or currency is enough for discouragement. The
vast majority (85.3%) of respondents feel that having pre-purchase information in their
own language is a critical factor in buying important purchases such as insurance or other
financial services. Three out of four respondents (74.7%) agreed that they are more likely to
repeat the purchase of the same brand again if the after-sales care is in their own language.

To put previous data into perspective, we need to look at Internet user distribution
across the world. Figure 2.2 shows that vast majority of Internet users are from non-
Anglophone countries. More than half of Internet users come from Asia. What is even
more surprising, only 7.6% of Internet users are coming from the North America region.

Figure 2.2: Distribution of Internet Users in the world by continents. (source: Internet
World Stats: https://www.internetworldstats.com/stats.htm)

Undoubtedly, localization can bring significant value. The value can be in the form of
higher sales, bigger audiences, more satisfied users, or even bigger global influence.

4

https://www.internetworldstats.com/stats.htm

2.2 Common Problems in Localization
The easiest and cheapest way how to localize something is by using some form of machine
translation. Even though services like Google Translate made a lot of progress in recent
years, they are still far from perfect. Machine translation can get the job done for some
use cases, however, it still cannot be considered as a proper localization solution. For
now, machine translation is not able to produce translation while taking into consideration
variables like the context of translation, intended mood, targeted audience, culture, legal
affairs, etc.

Therefore most businesses decide to use human translations for their localization projects.
Usually, each locale requires a different translator, as it requires deep knowledge of both
original and targeted languages and respective cultures. This means that localization is
usually outcome from the collaboration of multiple people. A collaboration of multiple
translators can result in inconsistencies between translations. For example, each of the
translators can choose different approaches in translating the same thing, while one of the
approaches might be undesired. Localization teams try to avoid these scenarios by intro-
ducing some internal guidelines or glossaries but they can never cover all edge cases that
eventually happen.

It is not easy to hire translators for each country, so the majority of companies tend to
outsource localization to companies that are specializing solely on localization. This can
introduce other issues, caused by unfamiliarity with the product that is being translated.

Another important thing to take into consideration is that human translators simply
make mistakes because of their human nature. Translators daily translate a lot of sentences
so it would be surprising if they never create some typo or just forget some colon.

It is not uncommon to find malformed HTML tags being part of the displayed content
on some websites. The reason is that sometimes it is unavoidable for developers to include
some HTML tags in the translation itself. Combined with the fact that it is usually not
expected from translators to have deeper computer knowledge. Then it is not surprising
that this kind of mistake can happen.

And it is not just an HTML tag that can be malformed. It is good practice to use place-
holders in translation for dynamically changing values such as currencies, price, amounts,
etc.. They are usually in some form of a variable that follows a certain pattern that can
be recognized by computer via regular expressions or parser. This means that placeholders
are equally sensitive to changes like HTML tags.

2.3 Previous Version of Stranger Strings
Stranger Strings was initially developed as an internal TMS tool. It was developed with an
in-house software development approach. In-house software development means leveraging
company resources to develop or implement software according to the company-specific
requirements [15].

Even though the company used external TMS applications, it was limited by the number
of accounts that can access it. Therefore Stranger Strings was dependent on another TMS
as it took all the data from it. The tool was intended to be used primarily by developers
so they could search and upload new translation keys with it.

The landing page was just a simple banner with a navigation bar and login button. It
can be seen in Figure 2.3. The access to Stranger Strings was limited in the app only for
users with company domain email.

5

Figure 2.3: Landing page in the first version of Stranger Strings

After successful authentication, the site led to a scene containing a table with all of
the translation keys representing strings that are being translated. Apart from that table
contained the English translations and the progress bar indicating how many locales are
covered. The table can be seen in Figure 2.4. There was also a possibility to do search
some keys and filtering based on some metadata from external TMS.

Figure 2.4: Table of translation keys in the first version of Stranger Strings

Click on any translation key opened modal that contained another table with all of the
translation under the selected translation key. Additionally there were displayed metadata
from external TMS with links redirecting to the external TMS.

Seeing all of the localization in one place revealed many inconsistencies and even er-
rors that could be easily fixed by simple scripts. This led to an idea of detecting those
inconsistencies with the Stranger Strings.

6

As an experimental feature there were added 4 checks. All of them were represented by

”Suspected errors“ column in main table (Figure 2.4) and each of them had own column in
table of translation key modal (Figure 2.5). For example Placeholder check was meant to
detect whenever all of the translations under single translation key have the same number
of placeholders. If not the placeholder badge was added to the main table. In the transla-
tion key detail table, column ”Placeholders“ listed all of the placeholders inside respective
translation. The same principle was applied to the other 3 checks, which were supposed to
detect inconsistent character in the begging and end of translations and prohibited HTML
tags.

Figure 2.5: Modal of selected translation key displaying all translations in the first version
of Stranger Strings

As this tool was only used by developers these features were not being used. Apart
from developers, nobody used Stranger Strings as they did not understand it. Therefore,
the experimental features did not have any effect on how the Stranger Strings was used.

This bachelor thesis is about a complete transformation of this tool into one that will
not just serve to another purpose but also will be available for everyone.

7

Chapter 3

Design of the New Stranger Strings

Previously Stranger Strings was intended to be used just by developers to find translations
keys and add new ones. But new Strangers Strings will target primary translation man-
agers, QA testers, and copywriters but still will be valuable for people who just want to
search for translation keys and analyze translations. One of the main features of future
Stranger Strings will be mistake and inconsistency detection. And not just that it will
try to ensure that responsible users are seeing them and can easily resolve them. This is
probably the biggest challenge for the front-end part of the application and will require
careful UI/UX (user interface/user experience) design along with user testing. Finding
mistakes in translations is quite hard and categorizing the severity of those mistakes is even
harder especially since every user may have different needs even within the same localiza-
tion project. To sum up, the new Stranger Strings aims to provide a tool that will help to
manage translation projects and improve the quality of localization in multiple areas.

Intended redesign of Stranger Strings might sound like proposing the creation of another
Translation Management System (TMS) when there are already many others TMS like
Phrase1 or Pontoon by Mozilla2. The difference is that those tools are usually expensive
or do not provide the detection of inconsistencies and mistakes in translations. Stranger
Strings will be more like a translation analyzer tool and at the same time, it will offer
a free and open-source alternative to other TMS. Additionally, anyone using some TMS
with API or anyone with the possibility to export translation data will be able to insert
Stranger Strings into their translation workflow with the existing module or create new and
contribute to Stranger Strings project.

Old Stranger Strings was custom-tailored for specific needs which made the code impos-
sible to reuse for new open-source versions. For instance, the architecture of the previous
version was a bit chaotic. The company used a localization management tool Phrase. Ad-
ditionally, GitHub was used for translation versioning and also as a cache to solve some
problems with API restrictions of Phrase. Therefore front-end of the previous version of
Stranger Strings was fetching data (mainly metadata) from TMS service (Phrase) and
rest (translations, translation keys, and computed data) from Firebase Realtime Database.
Firebase Realtime Database was filled with data by Google Cloud Functions which worked
with data solely from GitHub repository and performed some basic computing what are
the starting characters and what placeholders are represented in translation. Addition-

1TMS by Phrase: https://phrase.com/
2TMS from Mozilla called Pontoon: https://pontoon.mozilla.org/

8

https://phrase.com/
https://pontoon.mozilla.org/

ally, there was also a possibility to report issues from Stranger Strings to Slack3. The old
Stranger Strings architecture can be seen of Figure 3.1.

Google Cloud Platform

Cloud Functions
old

Stranger Strings

Figure 3.1: Old Stranger Strings architecture

At first sight, there is an evident problem that Stranger Strings are dependent on single
TMS which is Phrase. Another problem could be the format of translation data stored in
GitHub. Also Slack as a reporting destination could be useless for some users. The aim is to
create an open-source tool that would be easily integrated into anyone’s workflow. Therefore
new Stranger Strings required a more general and modular approach to architecture design.

Google Cloud Platform

Cloud Functions

Data Source

...

Reporting

...

Figure 3.2: New Stranger Strings architecture

The new version of Stranger String will not be dependent on external services like
GitHub or Phrase. Instead, it will always take data from a single data source selected by
users. This approach will allow users to connect Stranger Strings to various external services
providing translation data. This will be provided by data source modules which will create
a clear interface for communication with Stranger Strings. Modules demonstrating this
interface will be represented by the GitHub module and Phrase module. Those modules
will provide an example for future open-source contributors on how to implement other
data-source modules. Another module (e.g. FTP module, Mozilla Pontoon module, etc...)
may follow in the future. Reporting translation bugs will be also solved with a modular
interface. As a demonstration for this modular interface, there will be implemented Slack
module. Also, an email module will be considered in the close future. The front-end and

3Slack: https://slack.com/

9

https://slack.com/

back-end of the application will be the same for every Stranger Strings instance. Front-end
will display data taken only from its back-end database and apart from that, it will only
be generating reports submitted by users. Back-end will consist of two parts, computation
engine, and database. The computation engine will compute all inconsistencies and errors
found in translations and write them into the database. It will also be responsible for
detecting new versions of translations and keeping the database up-to-date. The proposed
modular approach is visually represented in Figure 3.2.

3.1 Requirements & Key Features of Stranger Strings
As already mentioned the key features of the new Stranger Strings can be identified as
a simple translation overview with the ability to search and mistake and inconsistency
detection with an interface that helps to resolve those issues. Old Stranger Strings was able
to search through translation keys but could not search for translation themselves at the
same time. New Stranger Strings will have this ability to help the user easily map searched
translation to its translation key and vice versa. The mistake and inconsistency detection
will be performed by features called checks. In total there will be 9 different checks:

∙ Placeholders check detects missing / excess / inconsistent placeholders

∙ HTML tags check detects invalid / inconsistent / prohibited HTML tags

∙ Values check detects values, that could be replaced by placeholders, because values
are likely to change over time and is easy to forget update all occurrences of specific
value

∙ First character check detects inconsistencies of first character (e.g. translation
begins with letter instead of dash)

∙ Last character check detects inconsistencies of last character (e.g. translation end
with question mark instead of exclamation mark)

∙ Length check detects suspicious variations in length between same translations

∙ Spelling check detects spelling mistakes

∙ Style check detects usual stylistic issues (e.g. weasel words, repeated words, cliches...)

∙ Insensitiveness check detects words that might be considered as offensive or insen-
sitive (e.g profanities, gender favouring, race related...)

In the previous version of Stranger Strings, there were experimentally implemented 4
of these checks (Placeholder check, HTML tags check, and first/last value check). Place-
holder check was implemented quite well but it was hard-coded to only detect placeholders
with double underscore notation. However, there are many other notations widely used in
other translation projects. New Stranger Strings will not limit users who want to use this
feature to only one notation but instead it will provide a fully configurable interface to fully
customize this feature to their needs. An HTML tags check was implemented differently
from the previous specification. It only detected HTML tags that were prohibited. And
prohibited HTML were as well hard-coded. Similarly, as in the case with placeholders, this
check will make selecting undesirable HTML tags configurable and will expand this check

10

with detecting missing or invalid tags. The First and Last character check was implemented
quite well but still had one issue. It was detecting too many false alarms (6/10 false alarms
for Last character check). The new version will try to solve this problem by reducing false
alarms as much as possible.

Broadly speaking, some checks like Insensitiveness check or Style check are more useful
for copywriters but other checks like Placeholder check or HTML tags check might be
preferred by QA or translation managers. New Stranger Strings should allow users to
personalize this tool to their specific needs. Additionally, every translation project will
require a different setting. This means that the tool should be personalizable on multiple
levels. Stranger Strings will distinguish three different levels of access:

∙ Maintainer level – represented usually by software engineer or IT-support etc.

∙ Administrator level – represented usually by project managers, localisation man-
agers, platform team members etc.

∙ User level – can be anyone but usually translators, QA testers, front-end developers

Maintainer level will usually be assigned to only one person. This person will be respon-
sible for creating the instance of Stranger Strings and will be able to choose who will have
access to it as users or as administrators. The maintainer will also have responsibility for
setting up data sources or loading custom spellchecking dictionaries. Administrators will
be able to configure project-related settings such as modifying spellchecking dictionaries,
white-listing allowed HTML tags or choosing reporting channels. And all users will be able
to turn off checks they do not want or configure their importance.

3.2 UI Design
The shift in the purpose of Stranger Strings required a completely different approach to
designing new UI. The first step was to change the landing page. Old one (see Figure 2.3 in
Section 2.3) was rather dull with a ton of unused space and at the same time it contained
too much unnecessary information. These issues are highlighted in Figure 3.3. I wanted to
change it to something much more simple but also intrigue users about what this tool can
offer.

11

Figure 3.3: Screenshot with the landing page of old Stranger Strings with highlighted design
issues. Most of the screen is unused and half of the displayed information is unnecessary.

Another important part is the view that I named Items view. This view shows af-
ter sign in to Stranger Strings and contains a list of translations keys with its attributes
(e.g. progress, English translation, detected inconsistencies...). The previous version of
the ’items’ view provided an overview of all translations and allowed the user to search in
them. It also showed some badges as indications that checks detected some issues in trans-
lation. At first sight, there was too much information and this can be confusing to users.
Moreover, when I added more checks, the page became perplexing and its purpose unclear.
These conclusions were not done by me personally, but instead, they were concluded by
repeated user testing performed during the development process. More information about
user testing can be found in Chapter 5.

As I was planning to add even more checks that problem would only get worse. Based
on this information and consultation with my mentors I figured out that the table in the
items view needs to be reorganized and the functionality of checks is not intuitive therefore
needs to be explicitly explained on the Items view page. For this purpose, there were many
created many mock-ups to see how the possible approaches might look like. One of them
can be seen in Figure 3.4.

12

https://stranger-strings.io

STRANGER STRINGS
Last update: 2018/09/10 22:28:37

Translations Collections user@gmail.comHelpGitHub

Keys search… Fi
rs

t

La
st

Lo
re

m

Va
lu

es

Le
ng

th

G
lo

ss
ar

y

D
yn

am
ic

St
yl

e

XM
L

Sp
el

lin
g

Translations Default translation Soft wrap

actions.add

common.button

common.click_on_button

common.continue

common.error

company.guarantee

help.not_good

personal.first_name

personal.last_name

test.spelling

1

5

3

2

1

1

1

1

1

1

1

1

1

1

1

2

3

1

3

2

2

1

2

4

2

3

2

1

2

1

1

2

1

3

1

3

1

2

3

Add __what__

Button

Click on Button

Continue

Sorry, an error occurred.

Worried about something? The __companyName__ Guarantee has you covered.

Doesn't answer my question

First name

Last name

Wery vrong speling

Spelling
en, cs, de

Figure 3.4: One of the early mock-ups for the new Stranger Strings items page, showing
the reorganized table. The main difference is showing each check-in single column instead
of putting all check inside a single column as badges. This approach enables showing more
checks more simply.

There are 2 possible approaches to solve this problem. The first one is to create a quick
tutorial for new users consisting of several steps that explain different attributes on-page
and their functionality. The other one is to insert a description to the page itself. Stranger
Strings is supposed to be a lightweight simple tool so providing tutorials would not feel
like a step in the right direction. Additionally, in my own experience, I usually skip those
tutorials and want to figure out everything on my own. Therefore I decided to go with
the other solution. The only challenge with the description solution is to figure out how
to provide this information simply and without spamming users with more unnecessary
information. The idea is to put this brief description inside the tool-tip alongside example
(image or even interactive component).

After clicking on the translation key, a key detail view will show up. The main purpose
of a key detail view is to show the content of all translations for the selected translation key
along with additional information about inconsistencies and mistakes. Old Stranger Strings
also displayed a lot of data that were company-specific and also contained features that were
useless for the majority of users. The same problems as previously mentioned in items view
were relevant for the key detail view. There was too much information that needed to be
removed and at the same time, I needed to inform users about detected inconsistencies
and mistakes. Figure 3.5 shows elements that should be removed and highlights important
elements that need to be more noticable. The solution I choose has similarities with the
previous one. The idea is to highlight problems directly in translations and provide tool-tips
that would further explain the problems. The key detail view would only display languages
and translation content, which is the main purpose of this view. Everything else should be
displayed through highlighting and with tool-tips.

13

Figure 3.5: Screenshot with the key detail view of old Stranger Strings with highlighted
design issues. The red square highlight elements that are unnecessary and should be re-
moved. The orange square highlight secondary elements (checks) that should not take a lot
of space. Blue square highlights important elements (translation key, translations, locales,
missing translations) that should be visible at first sight.

At the beginning of creating the new version of Stranger Strings I was playing with an
idea about the collection view with a collection detail view (as equivalent to items view
with key detail view). The point of this view was to create a collection of keys with the
same attributes and check consistency across these translations keys. But to fulfill the
possibilities of this idea this project would require machine learning. Therefore when I
found out during testing that users are not able to understand this feature and even cannot
grasp the idea behind it when I explained to them, I decided to drop this feature.

The last part of the design is the configuration settings. As mentioned before Stranger
Strings will be configurable on 3 different levels. Two of them (administrator and user
levels) will have settings directly in the Stranger Strings app. I decided to go with two
different setting pages one for users and another for administrators. To keep transparency
in possibilities of Stranger Strings, everyone will be able to see admin settings but changes
will be locked for them. This will be useful mainly when providing demo Stranger Strings
to the public.

3.3 Technologies Used in Stranger Strings
This application is quite simple and making it easily adoptable by everyone is in the main
requirements of this project. Therefore web platform was a clear choice. As this project
requires some form of database, hosting, and remote server for lightweight computation, I

14

decided to learn how to work with Google Firebase4 platform which provides a solution for
all of these requirements.

Firebase offers two types of databases: Firebase Realtime Database5 and Firebase Cloud
Firestore6. Although it is recommended to use a more robust NoSQL Cloud Firestore
database for the majority of new projects, I decided to go with Realtime Database. The
reason was that Realtime Database is based on JSON and Stranger Strings would only need
to visualize this JSON, which made me conclude that the implementation would be easier.
Additionally, with expected use cases of Stranger Strings, this option will be eventually
cheaper for the majority of Stranger Strings instances.

Google Cloud Functions7 will be used for server-side computation. As a runtime envi-
ronment, I would like to use Node.js8 because that would allow reusing some parts of the
code with front-end part which will use JavaScript as well. And not just that. This also
introduces the possibility to set up front-end and back-end parts under a single package
manager and share dependencies and overall configuration. This will not just improve the
developer experience for future contributors but hopefully will simplify deployment and
installation flow.

As acknowledged earlier, JavaScript will be used for the front-end part too. The old
version of Stranger Strings used Vue.js9 as JavaScript framework. Since I decided to create
new Stranger Strings from scratch I could choose any other JavaScript framework. However,
I decided to stick with Vue.js. The main reason behind this choice is that Vue.js is known
for being a very lightweight framework and lately is getting quite popular [2]. This is
proven by many libraries created by community around Vue.js, including those that are
used by the new version of Stranger Strings. For example BootstrapVue10 was chosen as
design framework to provide Stranger Strings with uniform design and help keeping basic
responsiveness. Another important library in the new Stranger Strings is Vuefire11 that
provides a binding between Vue.js app and Firebase Database (both Realtime Database
and Firestore) which ensures data synchronization in real-time. Vue Material Design Icons
Components12 and Vue Octicons13 were used as libraries for icons and Vue Country Flag14

for flag icons. There are even more Vue.js exclusive community maintained libraries used in
new Stranger Strings, but those will be described later in chapter 4 about Implementation.

Jest15 will be used as a unit testing framework across this project and will be crucial
to keep this maintainable in future and might help provide potential contributors. Old
Stranger Strings used different bundlers for back-end part (Parcel16) and front-end part
(Webpack17). The reason behind this choice was due to some problems that occurred
during the Webpack configuration for Node.js. However, this is not aligned with planned

4Google Firebase platform: https://firebase.google.com/
5Firebase Realtime Database: https://firebase.google.com/products/realtime-database
6Firebase Cloud Firestore: https://firebase.google.com/products/firestore
7Google Cloud Function: https://firebase.google.com/docs/functions
8Node.js: https://nodejs.org/en/
9Vue.js JavaScript Framework: https://vuejs.org/

10BootstrapVue framework: https://bootstrap-vue.org/
11Vuefire library: https://vuefire.vuejs.org/
12Vue Material Design Icons Components library: https://www.npmjs.com/package/vue-material-

design-icons
13Vue Octicons library: https://www.npmjs.com/package/octicons-vue
14Vue Country Flag library: https://github.com/P3trur0/vue-country-flag/
15JavaScript testing framework Jest: https://jestjs.io/
16Web application bundler Parcel: https://parceljs.org/
17Web application bundler Webpack: https://webpack.js.org/

15

https://firebase.google.com/
https://firebase.google.com/products/realtime-database
https://firebase.google.com/products/firestore
https://firebase.google.com/docs/functions
https://nodejs.org/en/
https://vuejs.org/
https://bootstrap-vue.org/
https://vuefire.vuejs.org/
https://www.npmjs.com/package/vue-material-design-icons
https://www.npmjs.com/package/vue-material-design-icons
https://www.npmjs.com/package/octicons-vue
https://github.com/P3trur0/vue-country-flag/
https://jestjs.io/
https://parceljs.org/
https://webpack.js.org/

unification between all parts of this project. According to (Webpack) documentation, it
should be possible to have a single configuration for both parts. Therefore new Stranger
Strings will tackle this problem and will only use (Webpack) across the whole project. To
be able to write both front-end and back-end part in the newest ECMAScript standard,
JavaScript compiler Babel18 will be used. This should be especially helpful for cross-browser
compatibility and Google Cloud Functions limitations regarding supported Node.js versions.
To improve developer experience, even more, the whole project will have configured its
ESLint19 setup.

New Stranger Strings aims to be a proper open-source contribution-friendly project. For
this purpose GitHub20 will be used as a public repository. Repository will have integration
with CircleCI 21 pipeline to ensure all that all contributions are in line with code style rules
and all unit tests are working.

3.4 Indications of Success
To consider project successful it would need to fulfill multiple expectations. Some of those
are quite hard to track and evaluate but others can be objectively assessed when correctly
specified.

The most important expectation of this project is its usefulness. This means that
new Stranger Strings should be able to help users improve the localization quality of their
websites or other similar products. It should be clear and simple enough to transfer all of
that information to users in a straightforward way. It should prove its value to future users
that might consist of QA testers, translators, translation managers, developers, project
managers, etc... As new Stranger Strings will be open-source projects accessible for anyone
to create their instance it would be hard to keep track of all users using this project. Another
thing to take into consideration is the fact that translation content might be considered
very sensitive for some users. Therefore I decided not to put any kind of tracking into this
project. However, I have the possibility to set up Stranger Strings in a Czech company
Kiwi.com. Their product is oriented to the travel industry therefore, it is localized to
35+ different languages. For this specific instance of Stranger Strings, I will set up Google
Analytics22 to track usability data. It is important to mention that I will not take any
steps to enforce or even push people to use this tool. The reason is that enforcing this tool
would introduce bias to usage stats and users will not use this tool because they want to,
but because they have to. Those measures should help to only see users that use Stranger
Strings because they see the value in it a helps them do their job better.

To put those expectations into the perspective of measurable metrics, the aim for weekly
users in the tracked instance of Stranger Strings is 10 different users/week. About 20 users
will visit this tool once in a month. If there will be a possibility to check the type of users
based on their position in the company, the expectation is that there will be a representation
of at least 3 different positions across the company (e.g. developers, QA testers, product
managers or translation team members). Additionally, I will integrate Stranger Strings
with the company Slack channel dedicated to reporting translation bugs. I the end I will
provide statistics about how many translation bugs were reported via Stranger Strings to

18JavaScript compiler Babel: https://babeljs.io/
19JavaScript linting utility ESLint: https://eslint.org/
20GitHub: https://github.com/
21CircleCI : https://circleci.com/
22Google Analytics: https://marketingplatform.google.com/about/analytics/

16

https://babeljs.io/
https://eslint.org/
https://github.com/
https://circleci.com/
https://marketingplatform.google.com/about/analytics/

this Slack channel. Success would be considered when there will be more than 20 unique
bugs reported with Stranger Strings by at least 5 different users.

Another expectation from new Stranger Strings is its code quality, easy adaptability,
and code-base setup for good developer experience. Evaluation of these aspects would go
above the scope of this bachelor thesis because it requires external propagation and building
community around open-source projects takes years.

17

Chapter 4

Implementation

From the perspective of used technologies, there is not too much difference between old and
new Stranger Strings. The composition of both technological stacks might be even the same
apart from dependencies and libraries. However, that is not the case for implementation.
Both front-end and back-end parts were re-implemented from scratch. The main reasons
for not reusing code from old Stranger Strings were a shift in the purpose of new Stranger
Strings and the fact that old Stranger Strings was basically in-house software indented for
internal use only. The problem of turning in-house software into open-source software was
not just about the removal of credentials and tokens. Rather it was about changing the
way of thinking and solving different challenges that popup along with many possible edge
cases that future users might require. In other words, the implementation in old Stranger
Strings was not scalable for the needs of the open-source project with a different purpose.

The previous chapter mentioned changes in the architecture (Chapter 3) that consisted
of separating parts of applications into individual modules and taking into consideration
that each user might prefer different configurations. The same applied to the implemen-
tation. Meaning that whenever there was a possibility to introduce configurable variables
instead of constant value Stranger Strings should go with a configurable variable. Stranger
Strings is meant to be an open-source application that anyone can set up for their spe-
cific needs. From the implementation point of view, it would be much easier to provide
Stranger Strings as a web service where users just log in to the application and choose the
data source of their translations. Unfortunately, many companies consider their localization
data as sensitive and would never provide access to third parties. Hence the first challenge
for new Stranger Strings was to create user-friendly setup experience that would be close to
website service experience and would avoid discouraging future possible users. All of this
is needed to be done without compromises on security.

Few things deny automation of the installation process into a single step/command and
are needed to be done manually. First of all, the project is heavily dependent on Google
Firebase and each instance of Stranger Strings requires its own Firebase project which
requires ownership of Firebase account. Firebase offers 2 pricing plans1 Spark plan (free) &
Blaze plan (billed monthly based on data usage)2. Spark plan which is free does not allow
API calls outside of other Google services3. New Stranger Strings depends on outbound

1At the time of implementation there was a 3rd price plan called Flame plan that is not available since
January 2020. More info: https://firebase.google.com/support/faq#flame-plan-legacy

2Firebase pricing plans: https://firebase.google.com/pricing
3Docs mentioning outbound API calls restrictions: https://firebase.google.com/docs/functions/

get-started

18

https://firebase.google.com/support/faq#flame-plan-legacy
https://firebase.google.com/pricing
https://firebase.google.com/docs/functions/get-started
https://firebase.google.com/docs/functions/get-started

API calls because its data source modules are basically interfaces between different servers
containing translation data. That means that the project requires the monthly billed Blaze
plan, which might be discouraging for some users. However, the good news is that Stranger
Strings is a very lightweight application and is also very good optimized, which means that
costs of running are usually below minimum billed limits so the application has zero or close
to zero costs for a majority of users 4. Another thing that needs to be set up manually is
translation data-source. Currently, there are 2 data-source modules available:

∙ Phrase data-source module gets translation data from specified translation project
through Phrase API

∙ GitHub data-source module gets translation data from GitHub repository con-
taining JSON files in from of keys and values. The repository needs to have certain
structure which can be seen in Figure 4.1. Supported are both flat (Figure 4.2) and
nested (Figure 4.3) JSON formats.

.
en-GB.json # file containing en-GB localization
...
xx-XX.json

Figure 4.1: The required directory tree structure for repositories containing translation
for Stranger Strings. The name of JSON files must be a combination of an ISO 639 two-
letter lowercase code associated with a language and an ISO 3166 two-letter uppercase code
associated with a country or region separated by a dash.

{
...
"translation.key": "Translation content 1.",
"translation.keyTwo": "Translation content 2.",
"another.translation.key": "Another translation content.",
...

}

Figure 4.2: Supported flat JSON format of translations in xx-XX.json file.
4The billing for Stranger Strings instance with 6000 translation keys and with 140 database updates

per month cost 0.15 $

19

{
...
"translation": {

"key": "Translation content 1.",
"keyTwo": "Translation content 2."

},
"another": {

"translation": {
"key": "Another translation content."

}
},
...

}

Figure 4.3: Supported nested JSON format of translations in xx-XX.json file.

Localization data-sources are usually based on servers that require some form of authen-
tication to access their data. To be specific in case of GitHub, it is username and password
(or generated token with specified access restrictions)5. For Phrase API it is project ID
and access token6. An access token is highly sensitive data and security is very important
for Stranger Strings. Stranger Strings stores all token as environment variables inside /.env
file. This ensures that tokens are always separated from code. Therefore it is expected that
during installation each user create their own /.env file. The template for creating /.env
file can be found in /.env.example (Figure 4.4).

5GitHub API documentation regarding authentication: https://developer.github.com/v3/auth/
6Phrase API documentation regarding authentication: https://developers.phrase.com/api/

#authentication

20

https://developer.github.com/v3/auth/
https://developers.phrase.com/api/#authentication
https://developers.phrase.com/api/#authentication

###
####################### DATA SOURCE #######################
###

note: must uncomment one data source to use it

######################### \textit{GitHub} ##########################
#VUE_APP_GITHUB_USER=""
#VUE_APP_GITHUB_PASSWORD=""
#VUE_APP_GITHUB_REPO=""

######################## PhraseApp ########################
#VUE_APP_PHRASEAPP_PROJECT_ID=""
#VUE_APP_PHRASEAPP_TOKEN=""

###
#################### FIREBASE PROJECT ####################
###

VUE_APP_FIREBASE_MESSAGING_SENDER_ID=""
VUE_APP_FIREBASE_API_KEY=""
VUE_APP_FIREBASE_AUTH_DOMAIN=""
VUE_APP_FIREBASE_DATABASE_URL=""
VUE_APP_FIREBASE_PROJECT_ID=""
VUE_APP_FIREBASE_STORAGE_BUCKET=""
VUE_APP_FIREBASE_APP_ID=""

Figure 4.4: Content of ./.env.example file which contains template for user’s .env file.
User needs to complete missing authentication tokens for Firebase project along with the
authentication tokens for either GitHub or Phrase data-source.

Based on those restrictions and requirement it is supposed that the person responsible
for creating an instance of Stranger Strings will have advanced computer skills and will be
considered the maintainer for Stranger Strings. In the installation, process maintainer will
also be able to restrict access rights to a specific email address or email domain. There is
also a possibility to choose users with administrator right by their emails or choose sign
in methods. Currently, Stranger Strings support 3 different sign in methods: Google signs
in, sign in by email link, and anonymous access (access for everyone without restrictions).
These configurations can be made by adjusting the /common/config.js file before each
deployment.

4.1 Open-Source Project Overview & Installation
Project Stranger Strings can be found on GitHub7 under MIT licence. Everyone with
GitHub account is welcomed to contribute to this project via Pull Requests.

When requirements for setting up Stranger Strings instance are met (user has Firebase
project with Realtime database on Firebase Blaze account and owns Phrase project or has
GitHub repository with translation data in the correct format), then after downloading
or cloning repository can proceed to installation. The installation process consists of the
following steps.

7Stranger Strings repository on GitHub: https://github.com/kiwicom/stranger-strings

21

https://github.com/kiwicom/stranger-strings

1. Configure .env file with authentication tokens for Firebase along with authentica-
tion tokens for either GitHub or Phrase.

2. Install project dependencies with the following command:

$ yarn install --all && yarn --cwd ./functions

3. Login to Firebase and select a project where you want to host your Stranger
Strings instance:

$ firebase login
$ firebase use <your_Firebase_project_ID>

4. (Optional) Adjust access rights and sign-in method in /common/config.js.
The file also contains some other default configurations (f.e. there is a possibility to
enable spellchecking for various languages8)

5. Deploy:

$ yarn deploy

6. Enable sign-in providers accordingly to configuration constant SIGN_IN_METHOD
in /common/config.js in Firebase Console (default is Anonymous sing-in provider)

For more detailed installation description with images see README on Stranger Strings’s
GitHub9. Once the application is deployed, the front-end part can be run locally as well.
This can be done with the following command:

$ yarn start

This might be especially handy for development or debugging purposes. Running back-
end modules locally is a little bit more tricky. The whole back-end part is located under
/functions folder. The files in /functions can be run under Node.js environment. Most files
there also contain conditions that recognize that file is run locally and then adjust setup
regarding environment variables for easier debugging.

To avoid bugs or unintended behavior in code-base, Stranger Strings project uses Jest10

as a unit testing framework. Although this project does not have very high test coverage,
the crucial and error-prone parts of code should be covered. To run all of the unit tests use
the command:

8By default spellchecking is allowed for en-GB, sk-SK, and cs-CZ. The reason is that many dictionaries
used in other languages have poor quality and cause many false alerts and I was only able to verify those 3
languages properly. There is also a possibility to use custom dictionaries, more info at https://github.com/
kiwicom/stranger-strings/tree/master/functions/dicts

9Stranger Strings’ GitHub README with detailed installation description: https://github.com/
kiwicom/stranger-strings#stranger-strings

10More info about JavaScript testing framework Jest can be found here: https://jestjs.io/

22

https://github.com/kiwicom/stranger-strings/tree/master/functions/dicts
https://github.com/kiwicom/stranger-strings/tree/master/functions/dicts
https://github.com/kiwicom/stranger-strings#stranger-strings
https://github.com/kiwicom/stranger-strings#stranger-strings
https://jestjs.io/

$ yarn test

For checking bugs that are caused by syntax errors, Stranger Strings uses ESLint11.
JavaScript, being a dynamic and loosely-typed language, is especially prone to developer
error. Without the benefit of a compilation process, JavaScript code is typically executed to
find syntax or other errors. Linting tools like ESLint allow developers to discover problems
with their JavaScript code without executing it [12]. Many modern code editors have ESLint
plugins available for real-time code linting or automatic fixes. This hugely improves the
developer experience. Another big feature of ESLint is that apart from static syntax check
it can also enforce certain code style across code base and even allow creation of custom
rules12. Stranger Strings does not have any custom ESLint rules but has a configuration
that will enforce a specific code style. To run ESLint static check use command:

$ yarn lint

Stranger Strings repository uses CI/CD from CirceCI 13 to make sure that repository
stays free from bugs which can be detected by static analysis or by unit tests. ClircleCI
also runs ESLint to ensure that the same code-style is kept in the git master branch across
the codebase. The complete configuration of CircleCI can be seen in Figure 4.5.

version: 2
jobs:

test:
docker:

- image: circleci/node:10.11.0
working_directory: ~/repo
steps:

- checkout
- run: yarn
- run: yarn lint
- run: yarn test
- run: yarn build

workflows:
version: 2
master:

jobs:
- test

Figure 4.5: Content of /.circleci/config.yml file that contains configuration for CircleCI
pipeline. To allow the merging of some pull requests into the master branch, each pull
request must first pass few commands without errors. Firstly pipeline installs all depen-
dencies and then runs ESLint check. Than trigger, all unit tests and finally tries to build
the whole project. When everything passes successfully without errors PR can be merged
into the master branch.

11More info about JavaScript linting utility ESLint: https://eslint.org/
12More info about creation of custom ESLint rules: https://eslint.org/docs/developer-guide/

working-with-rules
13More info about CircleCI : https://circleci.com/

23

https://eslint.org/
https://eslint.org/docs/developer-guide/working-with-rules
https://eslint.org/docs/developer-guide/working-with-rules
https://circleci.com/

4.2 Inconsistencies Computation
It is not unusual that localization projects contain hundreds or even thousands of translation
keys and tens of different languages. Doing operations big data-sets takes a significant
amount of time and memory usage. Especially when translations are in the form of strings
and the majority of operations are some form of regex search. The only logical choice was to
do all computations on translations only when necessary and on the server-side. There are
only two scenarios where computation is necessary. First is when the content of data-source
is changed and the second is when some adjustable variable that is used for computations
is changed.

Therefore all computations that Stranger Strings needs are done on Google Cloud Func-
tions that serve as the back-end for this project. On deployment, functions/index.js is up-
loaded on Firebase. In this file, it can be seen that Stranger Strings has 3 different functions
that provide computations:

∙ update

∙ inconsistenciesUpdate

∙ collectionsUpdate

When update function is triggered, firstly it checks whenever there is some change on
data-source (for GitHub data-source it compares commit ID (also known as SHA) of the
last commit and for Phrase it compares last update date). If no change in data-source is
detected the function ends. Otherwise the function will continue with downloading whole
content from data-source.

Each data-source module takes care of data downloading independently and the duration
can vary as there might be API limitations. In the case of the Phrase data-source module
there were limitations regarding the maximum number of concurrent (parallel) requests
and the requests for translations were paginated14. This meant that per request only 100
translation can be obtained from the server and only 4 requests 15 can be served at once.
To be able to download all the data at once, Stranger Strings uses bluebird16 library for
concurrency coordination. The full implementation of the Phrase data-source module is
located in /functions/loaders/PhraseappLoader.js.

After downloading translations Stranger Strings performs all of the computations. Fi-
nally after computations, it uploads all the translations along with its computed metadata
to Stranger Strings database. Similarly old Stranger Strings used to update as the only
function, but after introducing checks feature there was a need to recompute everything
without downloading data from data-source. And that is exactly what inconsistenciesUp-
date does. It takes data that is already in Stranger Strings database and recompute incon-
sistencies or errors of every translation and translation key and then update the metadata
in the database. For example, this is helpful when there is an update of the dictionary for
spellchecking, there is a change in settings of computation sensitivity for some checks. Sim-
ilar to inconsistenciesUpdate works the collectionsUpdate but instead of doing compu-
tations for translations and translations keys it computes inconsistencies across a collection
of multiple translation keys. Unfortunately this feature called collection was later hidden

14Phrase API documentation: https://developers.phrase.com/api/#intro
15At the time of implementation the limit for the concurrent request was just 2 requests at once.
16More info about bluebird library: http://bluebirdjs.com/

24

https://developers.phrase.com/api/#intro
http://bluebirdjs.com/

on front-end because it was not fulfilling its potential and was just confusing users. Anyway
it is still persistent on the back-end side and can be easily revisited later.

All of the 3 functions are using HTTP triggers17. This means that each function can be
invoked with an HTTP request. Each function has its HTTP endpoint which is generated
during deployment. From the caller’s perspective, HTTP invocations are synchronous,
meaning that the result of the function execution will be returned in the response to the
HTTP request. However none of those 3 functions use the response to send data back to the
caller. In this case HTTP endpoints are only supposed to be used for invocations. Because
there is no point passing information about running or finished function to the only caller
when multiple users are using Stranger Strings at the same time. Instead the information
about running function is directly uploaded to the database so every user can see that some
update is running in real-time. Another advantage of chosen approach is that it serves as
a semaphore to avoid running multiple functions at once. Because each of these functions
is first deleting the data and then updating them. Upon invocation each function checks
the database whenever there is another running function and if yes the function ends. The
implementation of this semaphore can be found in /functions/dbMutex.js, thanks to this
the database always remains stable.

As previously mentioned in Section 3.1 Stranger Strings features 9 different checks.
Some of them are checking whenever there is a problem in some translation or whenever
there are inconsistencies between translations under one specific translation key. And some
of those checks are checking both at the same time. Implementations of each check consist of
two steps. In the first step, there are computed metadata18 for each translation under single
translation key. In the second step, each translation key is evaluated based on metadata of
its translation, whenever it contains some inconsistencies or if there are translations with
some problems. To see implementation check file functions/dbUpdates.js.

4.2.1 Placeholders Check

Placeholders check is a feature that detects errors regarding placeholders. This check is
especially valuable for a bigger localization project. Usually, there are some values (f.e.
numbers, dates, currencies) that are appearing multiple times across many pages where
they are part of different contexts and translations keys. It is a good practice to keep them
represented under some variables. Particularly when those values are prone to change over
time. In localization those variables are usually represented by placeholders. Unfortunately
there are multiple notations used to mark placeholders in translations. Many companies use
different localization services or providers which use their own custom notation. However
they always follow patterns that can be parsed by some localization tool with some form
of a regular expression. Placeholder check relies on this. Stranger Strings expects that its
maintainer or administrator will enter placeholder pattern via regex.

Once regex for placeholder pattern is known it will be then used in all computations
to detect placeholders in translations. A list of placeholders is stored in the database
as translation metadata in the form of an array. In the second step of computation the
translations under each translation key are compared whenever all of them contain the same

17Documentation of Google Cloud Function HTTP triggers: https://cloud.google.com/functions/
docs/calling/http?hl=en

18Metadata of translations contains information such as present placeholders, present HTML tags, type
of starting/ending character, letters that are unknown for spellchecking, length of translation, etc.

25

https://cloud.google.com/functions/docs/calling/http?hl=en
https://cloud.google.com/functions/docs/calling/http?hl=en

placeholders. The result is then stored in the form of Boolean value inside translation key
metadata.

Figure 4.6: Demonstration of placeholders checks functionality. It can be seen that place-
holders are not consistent for all translation under one translation key (placeholders are
missing in translations for el-GR and es-MX locales).

The idea about detecting inconsistencies in placeholders was inspired by reoccurring
translation bug reports caused by placeholders. This check served as inspiration for the
future of Stranger Strings that new Stranger Strings follows. In old Stranger Strings, this
was the first implemented check, still, it had some limitations. As expected from the in-
house tool it was hardcoded to detect certain placeholder patterns. There were even some
problems that went under the radar of this check. It was detecting placeholders correctly
but the consistency comparison of placeholders under translation key was only based on
whenever each translation has the same number of placeholders. In reality, this meant that
when two translation under the same translation key had two different placeholders, the
check did not consider it as inconsistent.

26

Figure 4.7: Example of placeholder inconsistency that old Stranger Strings was not able to
detect. This kind of mistake is quite normal for a big translation project with placeholders.
It is usually caused when translators are not completely understanding the concept of
placeholders.

4.2.2 HTML Tags Check

It is not rare to spot messed up HTML tags as part of some content on websites. It
is obvious when someone looks at it on the website, but that not always the case from
the content management system’s point of view. Usually, it is detected by QA testers or
end-users and it can be seen on many popular websites. When wondering how to detect
broken HTML tags in websites the first thing that usually comes in mind is to use machine
learning. But it can be done much more easily by comparing translation that should have
the same content. And that is exactly what this check does. The principle is the same as for
Placeholders check. In the first step, it computes HTML tags via regex for all translations.
Then in the second step, it compares a list of HTML tags for all translations under the
same translation key. If there is at least one translation with correctly used HTML tags
under some translation key than Stranger Strings will be able to detect whenever there is
some broken, missing, or excess HTML tag under this translation key.

27

Figure 4.8: Demonstration of ability to detect broken HTML tags in translations. The
displayed translation is taken from a production website belonging to one of the biggest
low-cost airlines in the world.

When we look closer to what is the root cause of broken HTML tags, we realize that
it is a result of mixing scopes of front-end development and localization. Knowledge of
HTML is out of the scope of localization and usually it is not required from translators to
know HTML. Ideally HTML tags should not be part of localization and should be avoided
if possible. In practice, not including HTML tags into localization is usually impossible
or would bring unnecessary complications. Even when it is decided to use HTML tags
in localization it should be used consistently. For example when styling text to bold is
part of localization it should be done with the same HTML tag across whole localization
project (e.g. use only and than never use). And these recommendations are
represented in another feature this check offers. By default HTML tags checks only allow
usage of few HTML tags19 and the rest is considered as disallowed. Allowed HTML tags
can be adjusted in the UI of Stranger Strings by users with administrator rights.

Figure 4.9: It is not a good practice to use multiple HTML tags for the same purpose across
the localization project. Stranger Strings offers a solution that helps to enforce consistent
usage of HTML tags across the project.

The old version of Stranger Strings featured similar check but it only warned about the
usage of certain hard-coded HTML tags. So it was not detecting any broken, missing, or
excess HTML tags.

19Currently by default only allowed HTML tags are
, <a>, , , and <i>
(together with their closing equivalents)

28

4.2.3 Values Check

Subsection 4.2.1 about Placeholder check already described the value of placeholders and
why it is a good practice to use them over values that are likely to change over time. Since
Stranger Strings is supposed to be a tool that helps to improve the quality of localization,
it makes sense to warn or even enforce good practices. And that is exactly what Values
check does. It detects dynamic values in translations and recommends replacing them with
placeholders. Basically, all occurrences of numbers can be considered as dynamic values.
Even when the numbers are considered to be never changing, this approach can save money
and time that eventual change might require.

Figure 4.10: Demonstration of values check. This check detects dynamic values (numbers)
and recommends usage of placeholder. For this particular case, it is very likely that some
business decisions will affect this value in the future. This would mean changes in multiple
translations which can cause some other mistakes, takes time, and usually cost money.

Values check was introduced in the new version of Stranger Strings. In the future,
this check can be improved by detecting another dynamic value apart from numbers (e.g.
currencies, names, URLs, etc.). Upon consultation of this feature with translation manager
from Kiwi.com, I realized that values check might not be ideal for everyone as the changing
of values without noticing translators might lead to wrong declensions of words as many
languages are very sensitive for just minor changes in numbers. However, there was a
mutual agreement that this check is still valuable as a suggestion rather than an error.

4.2.4 First and Last Character Check

The first character check and Last character check are two different checks, however, they
have similar functionality. It can be apparent from the name, that these features check
the consistency of character in the beginning and end of each translation under the same
translation key.

29

Figure 4.11: Example of inconsistency detected by First character check. The translator
responsible for es-AR translation decided to use the word ”plus“ instead of plus sign char-
acter ”+“. As plus sign character was used in all of the other languages, it was probably
an intentional copywriter’s choice. In some edge cases this kind of inconsistency can result
in distorted UI.

The implementation is quite simple. In the first step, the first and last characters from
each string are evaluated and categorized into groups such as letters, colons, exclamation
marks etc.. To see how the categorization works see the determineCharType function inside
/functions/utils.js file. In the second step, the characters are compared while multiple
exceptions are applied.

Figure 4.12: Example of Last character inconsistency. Translation for cs-CZ was the only
one missing exclamation mark. Most likely the exclamation mark has been simply forgotten
by the translator responsible for cs-CZ language.

Those two checks were also part of the initial 4 checks in old Stranger Strings. But
in most cases they were reporting false alarms. Those alarms were caused by syntax dif-
ferences between languages, which caused uncertainty whenever those checks are valuable.
After experimenting with real translation data and adding multiple exceptions to the eval-
uation the false alarms were drastically reduced. For instance Thai language does not have
sentence-ending punctuation [9] or Japan language does not need question mark [3]. An-
other repeating pattern was falsely reported inconsistency caused by brackets or digits that
resulted from syntax differences across languages. Including all of these exceptions inside
Last and First character checks made them reliable for most of the cases.

30

4.2.5 Length Check

Length check is a feature that detects an inconsistency in the length of the translation. Big
length differences can mean that the context of translations can slightly differ or even have a
completely different meaning. Translating requires ingenuity as you cannot always translate
something word to word. Sometimes there are no equivalent words and translators must
use several different words to describe one specific thing. The skilled translators can usually
cope with this and translate it without using much more character than the original text.
Using too much character compared to the original text can result in unintended behavior
and a broken UI. Another common situation that happens is that some translation is
changed and the rest of the translation under the same translation key is not. The length
check is able to detect both of these problems.

Figure 4.13: Example of big translation length difference detected by Length check. The
English translation is clearly smaller and less wordy compared to others. Upon further
investigation we can see that even when the context might be similar the content of trans-
lation is different. The translation in Czech can be translated back to English following:

”The Majority of traditional airlines offer an option to pre-order snacks for your flight.
The price depends on snack selection. To be able to complete your order, we need a few
additional information. Please write down all your dietary requirements, like a vegetarian
on a gluten-free diet.“

The implementation is quite simple. This check just compares the expansion ration
between the English translation and any other translation and determines whenever it is
higher than allowed. The function that calculates the maximum allowed expansion ratio can
be found in /common/maxExpansionRatio.js. This function is inspired by data provided
by IBM about additional space required for translations in relation to number of characters
in text [8] (see Table 4.1). Using cubic spline interpolation, I created a function that
approximates this data. Additionally after experimentation with real data, this function
was optimized to ignore texts that consist of less than 3 characters and further adjusted
sensitivity to allow even more expansion.

31

Number of characters
in text

Additional space
required

Additional expansion
allowed by Length check

<3 100 to 200% -
3 to 10 100 to 200% 1360 to 180.6%
11 to 20 80 to 100% 175.5 to 148.4%
21 to 30 60 to 80% 146.4 to 133.1%
31 to 50 40 to 60% 132 to 116.2%
51 to 70 31 to 40% 115.6 to 106.1%
71 to 500 30% 105.6 to 58.5%
501 to 1000 30% 58.4 to 45.3%
1001 to 5000 30% 45.3 to 20.4%

Table 4.1: Table showing translation length expansion based on character length of U.S.
English translation. Column ”Additional space required“ is maximum expansion estimation
provided by IBM Knowledge Center [8]. Column ”Additional expansion allowed by Length
check,“ tells how much expansion is allowed by the Length check.

The final function for estimating maximum character length expansion ration in relation
to character length is the following:

𝑓(𝑥) =
14.1

1 + (𝑥−3
0.002)

0.2
+ 0.5 (4.1)

4.2.6 Spelling Check

Spelling check is one of the most complex features of Stranger Strings. One of the most
famous open-source spellcheckers is Hunspell20 created by László Németh. It is used by
LibreOffice, Mozilla Firefox, Google Chrome, or even can be found on operating systems
like macOS or Linux distributions. If Hunspell is provided with right dictionaries it can
do spellchecking for any language. But Hunspell is just a command-line tool implemented
in C++/C which is not suitable for this project. Luckily Titus Wormer created Hunspell
compatible spell-checker in plain-vanilla JavaScript called nspell 21. Author of nspell also
maintains repository22 that groups 90 open-source dictionaries accessible as npm pack-
ages. Unfortunately some of those dictionaries do not have the quality to provide reliable
spellchecking as this would result in marking too many valid words as unrecognized by
the spellchecker. Spelling check uses nspell along with those dictionaries, but by default it
only checks en-GB, sk-SK, and cs-CZ. This can be changed before deployment in ‘./com-
mon/config.js‘. If someone owns access to better dictionaries they can update them inside
./functions/dicts/ folder23. Stranger Strings always prioritizes custom dictionaries over
default ones.

Before each spellchecking the translation is stripped from HTML tags and placeholders
based on provided placeholder regex. Spelling check also counts with the possibility that
users often use product-related terms that are not part of dictionaries. Therefore after each

20More information about Hunspell: http://hunspell.github.io/
21More info about nspell: https://github.com/wooorm/nspell
22Repository that groups 90 dictionaries in one place can be found here: https://github.com/wooorm/

dictionaries
23To see more information about how to incorporate custom dictionaries in Stranger Strings for spellcheck-

ing see /functions/dicts/README.md or visit following link: https://github.com/kiwicom/stranger-
strings/tree/a577be404a71215f3ccfcf55aead903bcc6cee62/functions/dicts#custom-dictionaries

32

http://hunspell.github.io/
https://github.com/wooorm/nspell
https://github.com/wooorm/dictionaries
https://github.com/wooorm/dictionaries
https://github.com/kiwicom/stranger-strings/tree/a577be404a71215f3ccfcf55aead903bcc6cee62/functions/dicts#custom-dictionaries
https://github.com/kiwicom/stranger-strings/tree/a577be404a71215f3ccfcf55aead903bcc6cee62/functions/dicts#custom-dictionaries

spellchecking the unrecognized words are compared to those that are in database marked
by the user as white-listed words. This means that in each instance of Stranger Strings
users can build their dictionary expansion for any language with custom words based on
their needs.

Figure 4.14: Apart from detecting possible typos Spelling check also allows users to expand
used dictionary with used terms.

4.2.7 Style Check

Style check is inspired by extension called write-good linter used in multiple code editors
like Atom24 or Visual Studio Code25. As write-good is also available as open-source npm
package26, Stranger Strings uses it to check correct writing style. However this check is
only available for English language and partially for German.

Style check helps to avoid usage of passive voice, lexical illusions, ”so“ at the beginning
of the sentence, ”there is“ or ”there are“ at the beginning of the sentence, ”weasel words“,
common cliches, ”to-be“ verbs, wordy phrases and unnecessary words and lastly it helps to
avoid adverbs that can weaken meaning (e.g. really, very, extremely...). Style check also
uses the German extension for write-good called schreib-gut27. This German extension is
only able to detect wordy phrases and unnecessary words along with ”weasel words“.

24Write-good linter for Atom: https://atom.io/packages/linter-write-good
25Write-good linter for Visual Studio Code: https://marketplace.visualstudio.com/items?itemName=

travisthetechie.write-good-linter
26More info about write-good: https://github.com/btford/write-good
27More info about schreib-gut: https://github.com/timkam/schreib-gut

33

https://atom.io/packages/linter-write-good
https://marketplace.visualstudio.com/items?itemName=travisthetechie.write-good-linter
https://marketplace.visualstudio.com/items?itemName=travisthetechie.write-good-linter
https://github.com/btford/write-good
https://github.com/timkam/schreib-gut

Figure 4.15: Example of style suggestion provided by style check. The check might be more
useful for copywriters to help them in more user-friendly and simpler writing.

All of the checks provided by write-good can be turned off. Before each computation,
style check uses write-good based on settings in the database so the computation is always
according to user options. Style check is not suitable for everybody, but still might be
helpful for some users.

4.2.8 Insensitiveness Check

Functionality of insensitiveness check is similar to style check, but instead of write-good it
is based on library called alex28. In this case only the English language is supported. In-
sensitiveness check can find gender favoring, polarizing, race-related, religion inconsiderate,
or other texts containing unequal phrasing.

Figure 4.16: Insensitiveness check not only detects words that can be considered as insen-
sitive but also suggests alternatives that should be used instead.

The sensitivity can be adjusted on 3 levels (from detecting words that are considered
profanity only in certain cases to words that are very likely to be a profanity). The sen-
sitivity of each computation is based on the setting retrieved from the database. Usage
recommendations for insensitiveness check are the same as for style check. Most likely it
will be useful for copywriters to avoid usage of words that might hurt the feelings of their
customers.

28More info about alex: https://alexjs.com/

34

https://alexjs.com/

4.2.9 Optimisation

After a successful initial implementation of the new Stranger Strings, there was still a big
question regarding the usefulness of this tool in different localization projects. One of the
options on how to answer the question was to try Stranger Strings on external data. With
the help of my mentor Pavel ”Strajk“ Doleček from Kiwi.com, we scraped localization data
from an external website owned by one of the biggest European low-cost airlines. External
localization data contained more than 6400 translation keys translated to 41 languages.
This was a much bigger data sample than what was used for development. The scraped
data were in nested JSON format which is supported by Stranger Strings, so no additional
parsing was required.

After running the computation on these data, Stranger Strings run into a problem. As
the data was too big the computation took a lot of time. The maximum time of computation
for a Google Cloud Function is 540 seconds per invocation29. The computation of checks
for scraped data took even more so it never finished because the process under which the
function ran was terminated.

This was quite a big problem which meant that Stranger Strings is unusable for bigger
localization projects. After debugging the core problem was identified in computeInconsis-
tenciesOfTranslations function located inside /functions/dbUpdates.js file. This function
serves for inconsistency computation in each translation. Computations in each check are
usually based on regex search which is one of the most performance demanding operations
in JavaScript. Usage of regex in JavaScript has a lot of pitfalls and if they are implemented
wrongly it can result in 20 times slower performance [13]. Following the best practices in
regex implementation did not helped much because most of the regular expression are used
inside of external libraries (e.g. nspell, write-good, alex etc.). Even removing functions from
lodash.js that just add abstraction on top of native JavaScript function for better developer
experience did not help.

Looking at the localization data closely, revealed an interesting pattern. A lot of times
content of English translation is identical to other translations. The pattern was occurring
in both external and internal data. The reason is that a lot of localization project uses
English as they fallback alternative to missing languages. Also, 10 couturiers have English
as official languages with just minor grammar variations (e.g. en-GB, en-US, en-CA, en-
AU, etc.). Another reason is that many times the translation key contains just a single
word that is product-related or just some international abbreviation and is intentionally
untranslated (e.g ISO, JavaScript, IATA, Reddit, etc.). Occurrences of this kind of words
are surprisingly very frequent.

Reflecting the pattern in code meant doing computation for English translation first.
During iterations of other languages, firstly content is compared to see whenever it is the
same as in English translation. If yes then the results from computations done for English
computation are used. Only if the content is different the iteration continues to do its own
computations.

29Quotas of Google Cloud Function: https://cloud.google.com/functions/quotas

35

https://cloud.google.com/functions/quotas

Figure 4.17: After optimization the computing done inside computeInconsistenciesOfTrans-
lations function was moved inside new function called computeTranslationInconsistencies.
computeInconsistenciesOfTranslations called this new function only for English translation
and for translations that had different content. As can be seen from the picture, before
optimization the computations were done 91 105 times. After optimization the function
that performed all of the computations was called only 32 838 times (the data was exactly
the same). The difference was evident also on the total execution time that went down
from almost 6 minutes to less than 2 minutes.

Surprisingly after implementing this caching approach resulted in tremendous perfor-
mance improvement which can be seen in Figure 4.17. The performance was profiled with
V8 profiler30. Benchmarks after optimization showed reduced execution time by ≈ 64%.
Thanks to the optimization the function execution time was comfortably below 540second
and it would work even for localization data-sets that would be 3 times larger.

4.3 Database
Stranger Strings uses Firebase Realtime Database. The advantage of this database is that
data is synchronized across all clients in realtime, and remains available even when the app
goes offline. Because of this, it is important to think about how users need to access data
and then structure it accordingly. The Realtime Database is a NoSQL JSON database.

NoSQL databases are not using a relational model and operate without a schema. For
example this allows more freedom when adding fields to database records without having
to define any changes in structure first. The possible reason why Google Firebase offers
only NoSQL based databases might be that they are strongly oriented towards running on
clusters. So they can better utilize their cloud servers with parallelism. Another reason
can be that it just offers a more convenient data interaction style for most of the modern
mobile and web applications [14].

In the case of the Google Realtime database, this means, that it has different opti-
mizations and functionality compared to a relational database. The old Stranger Strings
structured the database rather in a logical way with multiple nested levels. Meaning that
all translation keys were nested under key called items (named after items view) which can
be considered as the root of the whole structure. Each translation key contained a list of
locales that contained its translation content with the rest of the computed metadata.

This structure was wrong for the following reason. According to Firebase documentation
the best practices regarding data structure is to avoid nesting data [5]. After the HTML
request is sent for data at a location in the database, the HTML response will contain all

30How V8 profiler works can be found here: https://v8.dev/docs/profile

36

https://v8.dev/docs/profile

of the child nodes under the requested location. In reality this means that the database
structure should be structured based on the queries not the other way around and the
redundancy should be secondary.

Even though it made sense for old Stranger Strings because it only relied on single data
fetch after each app initialization on the client-side. New Stranger Strings displays and
store much more data. Because of this the structure of the database was changed to be flat
as possible. The data was split based on request calls. The database structure can be seen
in Figure 4.18.

Lists containing words that are not part of used dictionary
but are valid for spellchecking

Configuration for insensitiveness check

Collection of all translation keys

Data about last update

List of all locales

Regex for detecting placeholders

Configuration for reporting

Logs from reports mapped on translation keys
List of allowed HTML tags

Collection of all translations mapped on their translation keys

Configuration for style check (write-good)

Figure 4.18: Database structure of new version of Stranger Strings in Firebase Realtime
Database

The biggest weaknesses of the old Stranger Strings from a database point of view was
its security. The database was completely unprotected. Even non-authenticated users
had assigned read and write access. In reality this meant that anyone was able to obtain
whatever data were in the database or completely delete it. Obviously this was unacceptable
in the new Stranger Strings as security is one of its goals.

37

Firebase provides the possibility to distinguish between authenticated users, non-authenticated
users, and administrators accessing with Firebase SDK31 (in case of Stranger Strings those
are Google Cloud Functions). New Stranger Strings restricts writing access to all users and
only allows it for parts of the database that are connected to configurations. For exam-
ple this means that nobody has writing access to translations or translation keys except
Google Cloud Functions. Apart from that all reading access rights and some writing right
regarding configurations are only available to authenticated users.

4.4 Front-end of Stranger Strings
As was mentioned earlier several times, the front-end part of Stranger Strings is imple-
mented in JavaScript Vues.js framework. In previous version of Stranger Strings the whole
front-end consisted of only 4 Vue files32 and few JavaScript files containing helper func-
tions. In other words, the front-end was a really small part of the whole project. From
the beginning, this was expected to change which should reflect on a more thoughtful code
structure. The UI/UX was quite poor as the application missed a specified purpose and
was intended to be used by only a few users. From the code-side perspective, the better
choice was not to reuse the old implementation and rather start from scratch with a new
purpose in mind. It was hoped that this will not just make the code clearer, the transfor-
mation to open-source easier and future maintenance undemanding. But will also result in
better UI/UX. Lately, this expectation turns out as partially wrong. No significant UI/UX
improvement was revealed during further user testing, however, this topic is covered in the
following chapter 5.

As a first step I requested feedback from others how they use old Stranger Strings and
what would they like to have in new Stranger Strings. The answers were put together with
personal observations of usage. This was a good first stepping stone towards building new
Stranger Strings.

The client application was setup via Vue CLI 33. The core /src/App.vue the file contains
the root of the DOM tree and everything regarding authentication. The authentication
method is chosen based on the configuration in /common/config.js. The possible options
are accessible for everyone (useful for demonstration purposes), login by an email link,
and log in with google account. The landing page with the authentication button was
redesigned. In comparison to old landing page (Figure 2.3) the new one (Figure 4.19) is
simpler and more visually appealing at the same time. The background contains moving
particles effect created with particles.js library34.

31More info about security in Firebase Realtime Database: https://firebase.google.com/docs/
database/security/securing-data

32App.vue (core file), Welcome.vue containing landing page, Navbar.vue containing top navigation bar
and Items.vue that contained the rest of the page

33Vue CLI: https://cli.vuejs.org/
34Particles.js library: https://github.com/VincentGarreau/particles.js/

38

https://firebase.google.com/docs/database/security/securing-data
https://firebase.google.com/docs/database/security/securing-data
https://cli.vuejs.org/
https://github.com/VincentGarreau/particles.js/

Figure 4.19: The landing page of the new Stranger Strings. The small particles in the
background are moving and are even interactive on click. This effect is created with parti-
cles.js library. The implementation of landing page can be found in /src/components/Wel-
come.vue.

Even though Stranger Strings is intended for desktops and tablets only, basic respon-
siveness was one of the objectives in new Stranger Strings. Previously it was impossible to
interact with applications on mobile devices. This is not the case in the new version.

After logging in the application users arrive at to so-called ’items’ view displayed in
Figure 4.20. This view contains a table with translation keys and their additional informa-
tion. From a UI perspective the concept is very similar to the previous version. However
all of the filtering options were removed because nobody needed them and only the search
bar persisted. The searching was improved because previously it only worked on searching
in keys and not its English content. The searching in new Stranger Strings is done on both
keys and its English contents at the same time and is performed with a fuzzy searching
technique provided by Fuse.js35 library.

35Fuzzy-search library Fuse.js: https://fusejs.io/

39

https://fusejs.io/

Figure 4.20: Items view of new Stranger Strings. To compare with previous version see
Figure 2.4. The implementation of items view can be found in /src/views/Items.vue

Another big difference between both versions is how data are loaded from the database.
Previously, data were fetched only on ‘items‘ view load and not anymore. This was not
wasting the potential of Firebase Realtime Database, as it offers the possibility to display
data from the database in real-time. New Stranger Strings uses Vuefire36 library. One
of the features that real-time database made possible was a notification about ongoing
computation or data-source update. After the update, all of the data on the client-side are
immediately updated including a timestamp of the last update. This is especially helpful
for big localization projects.

One of the tasks that resulted from observation was the task to improve UX in sharing
translations keys. When users wanted to share some translation key in old Stranger Strings
they simply copied the URL. This is intuitive however the link contained long and confusing
queries that were very hard to read and users could not immediately spot where the link
will redirect. The example of such a link can be seen in Figure 4.21. The idea was to clean
the URL so that once users see the link, they can immediately recognize that it belongs to
Stranger Strings and even identify which translation key will show up after clicking.

36Realtime database binding library Vuefire: https://vuefire.vuejs.org/vuefire/

40

https://vuefire.vuejs.org/vuefire/

Figure 4.21: Example of how translation keys were shared in old Stranger
Strings. In new Stranger Strings the same link looks following https://stranger-
strings.firebaseapp.com/items/seo-landing-social_title

This was accomplished with implementing Vue Router37. The previous URL was cleaned
from the query string and mapped to views and translation keys. So now when someone
wants to share translation key the URL will be <domain>/<view>/<translation_key>.
The view can be either ’items’ view or ’collections’ however the latter is still in development.
The Vue Router also added the possibility to integrate HTML5 history mode which is very
useful since Stranger Strings is a single page application. The full implementation of Vue
Router can be found in /src/router.js.

From the beginning, the new Stranger Strings was meant to offer customization for each
user. The previous version lacked state management patterns because there was no need
for it. Since customization requires keeping certain states across the whole application,
Vuex38 library was used as a centralized store for all of the components in the application.
The only downside of this state management tool is that it is not persistent after closing.
Storing each user setting in the database was intentionally avoided to keep the database size
as possible, but keeping the user setting locally was still desired. The solution was keeping
the Vuex state in the browser via localStorage. Plugin for Vuex called vuex-persist39 helped
to achieve this desired feature. The whole implementation of store in Vuex can be found in
/src/store.js.

Once Stranger Strings was able to keep state across the whole application, the imple-
mentation of settings could follow. During the project setup Stranger Strings separated
maintainer level configuration from user and administrator access levels. Now in the appli-
cation Stranger Strings separates user access level from administrator access level.

Each user can assign custom importance to each check (available are 3 levels of impor-
tance: suggestion, warning, error). The difference between importance levels is in color
highlighting of the text. Each of the checks can be turned off at any time, so the cor-
responding warning is not shown anywhere. Apart from checks configuration users can
configure their language importance preferences and there is also an option to chose how
to wrap the text in the English preview column in the ’items’ view. Additionally, users
that are considered administrators can change settings that directly affect computations.
Both administrator and user configuration are displayed in Figure 4.22. Whenever some
administrator configuration changes, the change is immediately written in the database,
and computeInconsistencies function on Google Cloud Functions is triggered via HTML
trigger hook.

37Vue Router is the official router for Vue.js. More info:https://router.vuejs.org/
38State management pattern + library Vuex: https://vuex.vuejs.org/
39Vuex plugin vuex-persist for saving state of app on persisted browser storage: https://github.com/

championswimmer/vuex-persist

41

https://router.vuejs.org/
https://vuex.vuejs.org/
https://github.com/championswimmer/vuex-persist
https://github.com/championswimmer/vuex-persist

Figure 4.22: Screenshots of user configuration (left) and admin configuration (right).
Screenshots were taken from the administrator point of view, therefore changes are allowed
even in the admin configuration modal.

Each translation key in items view is clickable and opens modal that contains the
translations of the selected translation key. Previous Stranger Strings simply displayed
all of the translations along with their metadata in a simple table. New Stranger Strings
displays only relevant data. For example previously the table contained columns where each
row listed all placeholders that are in corresponding translation. New Stranger Strings first
computes which languages are missing placeholders with the same algorithm that is used
in Google Cloud Functions. Than displays warning about missing placeholders only for
relevant translations.

Another way how new Stranger Strings displays inconsistencies in translation key detail
modal is directly inside text. Whenever some inconsistency or error can be highlighted
directly in the text, Stranger Strings does it. For example, missing placeholder or excessive
translation length cannot be highlighted inside text but that is not the case for spellchecking
error or missing question mark at the end of the sentence. How Stranger Strings highlights
issues directly inside the text can be seen in Figure 4.23.

42

Figure 4.23: Screenshot of the key detail view. All of the red and orange marks are issues
that on mouse hover show further description. Additionally, the red triangles icons before
text indicate other issues that cannot be marked directly inside text.

The component for highlighting is the most complex part of the whole UI. The first
problem was to parse translation into tokens based on computed inconsistencies from the
database. The parser needed to identify each inconsistency (spellchecking error) or entity
(HTML tag) and separate it from the rest of the string while keeping the same order
as in original translation. The initial string was tokenized, and each token got assigned
parameters like content, its position in the order, and its type. It was important to keep in
mind that some languages are written from right to left. Stranger Strings uses rtl-detect40

library to detect RTL languages. There were many edge cases that this component needed
to handle. For instance, it turned out that once the translation is larger than tokenization
approach causes problems with wrapping. This is because, in parsing, Stranger Strings
splits the string containing translation to tokens that are later represented as nodes in the
Document Object Model (DOM) tree. However users should not see that because the text
should behave the same as if it was a single block of text. The solution was to slice the
tokens that did not contain any other information apart from its string content because
those were the largest tokens and caused wrapping problems. These tokens were sliced by
white-spaces in all languages that are by nature segmented by white-spaces. The nature
of the tokenization task in unsegmented languages like Chinese, Japanese, and Thai is
fundamentally different from tokenization in space-delimited languages like English. The
lack of any spaces between words makes it much harder to correctly slice strings into
segments by word boundaries [9]. Since Stranger Strings doesn’t need to tokenize this
words by strictly by word boundaries, it segments these languages character by character.

Even before implementation it was evident that this part will be very complex. There-
fore it was developed with a Test-driven development (TDD) method. TDD helps reduce
the defects in code increases the maintainability of code [11]. TDD method undeniably
helped in this specific case and probably even sped up the whole development process of

40Library for detecting RTL languages: https://github.com/shadiabuhilal/rtl-detect

43

https://github.com/shadiabuhilal/rtl-detect

this feature. The tests can be found in /src/tests/highlighting.spec.js and the highlighting
component in /src/components/Highlighting.vue. The highlighting component is also used
in checks configuration where it serves as a demonstration of each check functionality.

Only downside that resulted from highlighting inconsistencies inside text was that it
was no longer possible to copy the content of translation. Because the copied string will be
malformed with excessive white-spaces. Partially, this was solved by ”copy to clipboard“
button implemented with vue-clipboard2 41 library which provides binding for clipboard.js42

library.
Right next to the ”copy to clipboard“ button, there is another button for reporting bugs.

Clicking this button opens the reporting modal displayed in Figure 4.24. After users spot
some translation mistakes that should be immediately fixed, they can use this reporting fea-
ture to easily report the error. Reporting modal contains a partially predefined report form.
After filling necessary information the user just submits the report and Stranger Strings
will format the whole report and send it. The reporting destination can be configured by
an administrator in the settings.

Figure 4.24: Reporting modal for sending translation bugs reports to Slack.

At the time of writing only supported reporting module was Slack module. Slack report-
ing module was implemented via Webhooks provided by Slack API43. Users only need setup
their Slack app in their desired Slack channel and then generate Webhooks for this specific
Slack app. Once Slack Webhooks is generated, the administrator inserts the URL of this
Webhook in Stranger Strings’ reporting configuration, and everything is set. The reporting
feature in old Stranger Strings worked on the same principle however the formatting of
the report was changed in the same way as the reporting form modal. The comparison of
generated Slack reports of new and old Stranger Strings can be seen in Figure 4.25.

41Vue.js binding for clipboard.js: https://github.com/Inndy/vue-clipboard2
42clipboard.js library: https://clipboardjs.com/
43Slack Webhooks: https://api.slack.com/messaging/webhooks

44

https://github.com/Inndy/vue-clipboard2
https://clipboardjs.com/
https://api.slack.com/messaging/webhooks

Figure 4.25: Comparison of Slack reports generated by new Stranger Strings (top) and old
Stranger Strings (bottom). The new one is better structured and allows the reporting of
multiple locales at once. Additionally, the new Slack report contains a button that opens
the translation key directly in the Stranger Strings.

4.4.1 Optimisation

One of the problems repeated in feedback from users of old Stranger Strings was its perfor-
mance. The loading and response time was unusually long. This problem kept growing in
a new version as multiple components and libraries were added to the application. It was
still somehow tolerated as the translation data were just too big.

Similarly as the back-end part was tested on external data (mentioned in Subsection
4.17) the front-end part was as well. After external localization data were successfully
processed by function and uploaded to the database, the application loaded them. Unfor-
tunately, the app kept crashing on each load so the initial ’items’ view was never shown.
The much larger external data caused that app tried to render so many components that
it simply runs out of memory.

Stranger Strings solved this issue by not rendering the whole table in the ’items’ view.
Instead it only renders as many translation key rows as can be displayed on the screen.
When users scroll the table, the rendered DOM nodes are being reused for other rows of
translation keys. This means that even though only a small subset of rows is rendered on the
screen, it does not affect the user because it is exactly the subset of rows that are currently
visible on the screen. This solution was implemented thanks to vue-virtual-scroller44 library
created by one of the Vue.js core team members Guillaume Chau.

After implementing virtual scrolling in Stranger Strings the app was able to display
data of any size. As a bonus Stranger Strings become faster than ever before.

44vue-virtual-scroller library: https://github.com/Akryum/vue-virtual-scroller

45

https://github.com/Akryum/vue-virtual-scroller

Chapter 5

User Testing

During the early stages of development, almost all of the design choices were based on
intuition. Objectively this was not ideal and to continue further with development, the
project needed some metrics or data that design decisions will rely on. The decision was to
introduce both quantitative and qualitative research into the Stranger Strings development
process. Quantitative research is designed to gather data points in measurable, numerical
form. Qualitative research relies on the observation and collection of non-numerical insights
such as opinions and motivations [7].

Once the prototype version of Stranger Strings was ready, the project was ready for its
first qualitative research iteration in from of usability testing. The idea was to volunteer
who would participate as a testing subject. We were looking for someone who would be
considered as a targeted future user (e.g. QA tester) and had no prior experience with
Stranger Strings. We found exactly someone that matched those expectations and as a
bonus our test subject was familiar with the basics of localization.

The whole user testing including, preparation, testings process itself, and evaluation
were inspired by book Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding
and Fixing Usability Problems by author Steve Krug [10].

The testing was done in meeting room, and the user interaction with Stranger Strings
was screened on the big television screen in front of us. The testing process itself could be
summarized into these steps:

1. Very brief introduction of Stranger Strings and its purpose.

2. Share the goal of user testing with participant so it is clear we are not testing the
participant, but instead the participant helps us with testing the application.

3. Once the participant was comfortable with talking we proceeded to user testing.

4. The participant was asked to freely explore the application while explaining verbally
their interpretation of what they see. (without interruptions)

5. The participant was assigned a few tasks to perform on his own. These tasks were
designed to imitate real-world tasks. (without interruptions)

6. In the end participant was asked to explain some particular choices they made in
previous tasks

7. Debriefing that results in a list of observed usability problems along with a plan on
how to fix them.

46

In total, 2 user testing iterations were made during the development process. The first
user testing was a total shock as it revealed that participants had no clue what the checks
are supposed to do. Apart from a complete misunderstanding of checks users did not what
reporting feature does or was confused by the ’collection’ view. An interesting observation
was, that the first direction user took to learn about Stranger Strings was in user settings.
However, at that time, each little configuration had its own modal so there was no place to
get the bigger picture over whole Stranger Strings. The user was testing Stranger Strings
in a state that is illustrated in Figure 5.1.

Figure 5.1: Collage of screenshots from Stranger Strings at the time of the first user testing
iteration. In the top left corner is the landing page, to the right is the items view. The
translation key detail view can be seen in the bottom right corner and in the bottom left
corner is configuration modal for the style check.

In response to the mentioned findings, the settings were grouped into 2 different modals.
One for user settings and another for administrator settings. Even that non-administrator
users cannot change administrator settings they still remained read-only access to these
settings, so they can better understand all of the features. Additionally, the ‘items’ view
table was changed by replacing the general error column with multiple columns for every
single check. There was added ability to turn off each check by clicking in the header of its
column. The translation key detail modal was cleaned to only contain relevant information.
The outcome of changes can be seen in Figure 5.2, which illustrates the state of Stranger
Strings before the second iteration of user testing.

47

Figure 5.2: Collage of screenshots from Stranger Strings at the time of the second user
testing iteration. The main differences, compared to the version before are the checks
indications in key detail and items view.

The second user testing iteration took place 2 months after the previous one. The
whole process was almost the same. This time the participant immediately understood
the concept of checks, which was a sign of improvement from the previous session. Even
though there were still some misunderstandings regarding some checks, importance levels,
or reporting. The whole list of notes from the second user testing session can be seen in
Figure 5.3.

Figure 5.3: Notes taken during the second iteration of user testing.

After the second user testing, all of the observed issues were rather small. So the
proposed fixes were inspired by Steve Krugs’ advice to fix the usability problem with the
easiest and smallest possible changes [10]. So each of the checks got its own description
and example of how it works, so once the user changes the importance level the change

48

immediately reflects in the example. To include this checks explanations with examples
directly in the ’items’ view, it was simply reused in tool-tip of each check which showed
on mouse hover (see Figure 5.4). Importance settings for languages were solved simply
by added description. The same applied to the report modal, which was solved by adding
multiple tool-tip descriptions and examples in the form of images. After this testing session,
there was a big decision taken regarding the ‘collection’ view. As it still an experimental
feature I decided to hide it in UI to not confuse users.

Figure 5.4: Illustration of how Stranger Strings describes the functionality of checks di-
rectly in items view, by reusing components from check configuration modal. The check
description along with its settings and interactive example can be seen on mouse hover in
the main table header.

For a quantitative part of the research, I choose to track usage stats of Stranger Strings
instance that I maintain at Kiwi.com. So with the release of the first changed version of
Stranger Strings in 20.3.2019 all of the usage stats were tracked via Google Analytics for
this specific instance. The analytic metrics were meant to provide quantitative feedback on
how many and how often users interact with this Stranger Strings instance.

49

Figure 5.5: Screenshot from Google Analytics that tracks usage data of Stranger Strings
in Kiwi.com. Graph showing usage stats by the time of the day clearly indicates the
correlations working hours. The pie chart shows that almost all of the devices accessing
Stranger Strings are desktops.

The usage was tracked in a period longer than one year except for two months during
which the Stranger Strings was in maintenance mode therefore not tracked. This data can
be seen in Figure 5.5. The biggest spike in active users was recorded around 17.9.2019
which correlates with a release that drastically improved performance.

The final statistics numbers were adjusted by this not tracked period. On average 16.53
different users used Stranger Strings at least once in a month. From a weekly perspective
it was around 7.97 unique users per week. On average each user had 6.27 recorded sessions
with an average duration of 4 minutes and 16 seconds per session. The top 3 countries from
which users visited Stranger Strings correlate with the location of company offices. This
means that Stranger Strings was used by multiple teams. From my personal survey I have
received confirmation, that it is being used by developers, QA testers, and even by some
people from product management and members of translation management. In company
Slack channel dedicated to translation bugs, there were in total 51 reports from Strange
Strings reported by 10 different users. The whole Google Analytics report on audience can
be seen of Figure 5.6.

50

 Analytics
Stranger Strings

Všetky údaje webových s… Go to report

Country Users % Users

1. Czechia 107 78.68%

2. Spain 10 7.35%

3. Slovakia 10 7.35%

4. Croatia 2 1.47%

5. Colombia 1 0.74%

6. Finland 1 0.74%

7. India 1 0.74%

8. Iceland 1 0.74%

9. Kazakhstan 1 0.74%

10. Netherlands 1 0.74%

Audience Overview

Apr 17, 2019 - May 16, 2020

Overview

 Users

May 2019 July 2019 September 2019 November 2019 January 2020 March 2020 May 2…

101010

202020

303030

Users

124
New Users

118
Sessions

777

Number of Sessions per User

6.27
Pageviews

2,625
Pages / Session

3.38

Avg. Session Duration

00:04:16
Bounce Rate

46.59%

New Visitor Returning Visitor

37.2%

62.8%

© 2020 Google

All Users
100.00% Users

Figure 5.6: Audience overview report from Google Analytics for monthly usage stats over
year.

51

Chapter 6

Conclusion

This bachelor thesis described development process of tool called Stranger Strings that is
able to improve localisation quality. Firstly it explained problems that are quite common
in localisation project and how it inspired idea to create open-source tool that would help
to fix them. Later this thesis enumerated the resources and design changes that are needed
for development of such tool. It also explained, the approach that was taken for imple-
menting solutions of localisation problems and revealed the caveats that appeared during
the development. Lastly it provided insights in user testings that shaped this project to its
final form.

The aim of this bachelor thesis was to create tool that would prove its value which
can be verified by statistics about it usage and numbers of fixed localisation issues. The
expectations were placed quite high in form of 10 unique users per week and 20 unique users
per month. After an year of monitoring the real usage stats showed on average 7.97 unique
users per week and 16.53 unique users per month. Those numbers are definitely not meeting
the expectations, but are not too far off. It needs to be reminded that usage of Stranger
Strings was only voluntary and people used it because it helped them do their job better
or more efficiently. The fact that this project fulfills its purpose can be seen on 51 observed
reports generated by Stranger Strings, which is 31 more than initially expected. Stranger
Strings is currently being used by multiple teams across various profession including QA
testers, developers, product managers and localisation team members. In comparison old
Stranger Strings was used by just small number of developers. Based on this, the whole
project can be considered as success, because it proves its usefulness.

All of these usage stats were measured only on single localisation project, however as
Stranger Strings became open-source project anyone can use it for themselves. It can
be found on GitHub https://github.com/kiwicom/stranger-strings, and is very much
open for anyone’s contributions. There is also website that demonstrates the possibilities
that Stranger Strings offers: https://stranger-strings-showcase.firebaseapp.com/
items. Hopefully, it will find its way into other localisation workflows and will help improve
the localisation quality of many other products.

52

https://github.com/kiwicom/stranger-strings
https://stranger-strings-showcase.firebaseapp.com/items
https://stranger-strings-showcase.firebaseapp.com/items

Bibliography

[1] Acuna, K. Why Pixar changed several scenes in ‘Inside Out’ for foreign audiences.
Business Insider: Tech Insider. july 2015.

[2] Ahuvia, Y. React vs. Vue (vs. Angular). Medium.com: Fundbox Engineering. june
2018.

[3] Croes, J. K. and Dexter, K. THE ART OF JAPANESE PUNCTUATION
[online]. Tofugu, march 2016 [cit. 2020-05-21]. Available at:
https://www.tofugu.com/japanese/japanese-punctuation/.

[4] DePalma, D. A., Sargent, B. B. and Beninatto, R. S. Can’t read, won’t buy:
Why language matters on global websites. 1st ed. Common Sense Advisory, Inc.,
2006. ISBN 1-933555-30-0.

[5] Developers, G. Structure Your Database. Firebase Realtime Database [online]. [cit.
2020-05-21]. Available at:
https://firebase.google.com/docs/database/web/structure-data.

[6] GALA. What is Localization? Globalization and Localization Association [online].
[cit. 2020-05-22]. Available at:
https://www.gala-global.org/industry/intro-language-industry/what-localization.

[7] Gleason, D. Qualitative vs. quantitative user research: the answers you will (and
won’t) get from each [online]. hotjar, march 2019 [cit. 2020-05-21]. Available at:
https://www.hotjar.com/blog/qualitative-vs-quantitative-user-research/.

[8] IBM. Text translation design. IBM Knowledge Center [online]. [cit. 2020-05-21].
Available at: https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/nls/
rbagstextdatatransdesign.htm.

[9] Indurkhya, N. and Damerau, F. J. Handbook of natural language processing. 2nd
ed. Chapman & Hall/CRC, 2010. ISBN 978-1-4200-8593-8.

[10] Krug, S. Rocket surgery made easy: the do-it-yourself guide to finding and fixing
usability problems. 1st ed. New Riders, 2010. ISBN 0321657292.

[11] Makinen, S. and Münch, J. Effects of Test-Driven Development: A Comparative
Analysis of Empirical Studies. Lecture Notes in Business Information Processing.
january 2014, vol. 166, p. 15. ISSN 1865-1348.

[12] Nguyen, V. ESLint: The Essential Facts About Essential Front End Tools [online].
freeCodeCamp, august 2019 [cit. 2020-05-19]. Available at:
https://www.freecodecamp.org/news/the-essentials-eslint/.

53

https://www.tofugu.com/japanese/japanese-punctuation/
https://firebase.google.com/docs/database/web/structure-data
https://www.gala-global.org/industry/intro-language-industry/what-localization
https://www.hotjar.com/blog/qualitative-vs-quantitative-user-research/
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/nls/rbagstextdatatransdesign.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/nls/rbagstextdatatransdesign.htm
https://www.freecodecamp.org/news/the-essentials-eslint/

[13] Rząsa, M. Performance of Regular Expressions. Medium.com: TextMaster
Engineering. october 2018.

[14] Sadalage, P. J. and Fowler, M. NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. 1st ed. Addison-Wesley, 2013. ISBN
978-0-321-82662-6.

[15] Samanta, J. Outsourcing vs in-house development. Medium.com: Hacker Noon.
may 2019.

54

	Introduction
	Localization
	Why is Localization Important
	Common Problems in Localization
	Previous Version of Stranger Strings

	Design of the New Stranger Strings
	Requirements & Key Features of Stranger Strings
	UI Design
	Technologies Used in Stranger Strings
	Indications of Success

	Implementation
	Open-Source Project Overview & Installation
	Inconsistencies Computation
	Database
	Front-end of Stranger Strings

	User Testing
	Conclusion
	Bibliography

