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Abstract
This thesis presents a design of a new static analyser focused on deadlock detection, imple-
mented as a plugin of the Frama-C platform. Together with the core algorithm of deadlock
detection, we also present a light-weight method that allows one to analyse (not only for
the purposes of deadlock detection) multi-threaded programs using sequential analysers of
Frama-C. Results of experiments show that our tool is able to handle real-world C code
with high precision. Moreover, we demonstrate its extensibility by so-far experimental
implementation of data race detection.

Abstrakt
Tato práce se zabývá návrhem nového statického analyzátoru pro detekci uváznutí, im-
plementovaného jako plugin platformy Frama-C. Kromě samotného algoritmu pro detekci
uváznutí představuje také odlehčené řešení, které umožňuje využít platformu Frama-C pro
analýzu vícevláknových programů s využitím analyzátorů Frama-C podporujících pouze
sekvenční programy. Výsledky experimentů ukazují, že implementovaný nástroj je schopný
analyzovat reálné programy s vysokou přesností. Pro demonstraci další rozšiřitelnosti je
představeno experimentální rozšíření umožňující detekovat také časově závislé chyby nad
daty.
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Rozšířený abstrakt
Testování je v dnešní době neodmyslitelnou součástí procesu vývoje softwaru. Dynamická
analýza a automatizované testování mohou být využity k detekci široké škály chyb, ale
z principu je obecně nelze použít k prokázání jejich absence. Na druhou stranu statické
analyzátory založené na formálních metodách mohou dokázat korektnost programu vzhle-
dem ke specifikaci, ale jejich škálovatelnost je často omezená a může se projevit například
velkým množstvím falešně nahlášených chyb. Jako kompromis lze navrhnout statické an-
alyzátory, které nejsou korektní (neodhalí všechny reálné chyby) ani úplné (můžou hlásit
falešné chyby), ale dokáží dobře škálovat, na rozdíl od dynamických nástrojů nevyžadují
kompletní spustitelný program a v některých případech mohou být také rychlejší.

Tento přístup lze využít například při analýze vícevláknových programů, které vzhledem
k jejich nedeterministické povaze, mohou obsahovat chyby těžko odhalitelné dynamickými
přístupy, a zároveň pokud se jedná o komplexní programy, jejich korektní analýza může být
příliš náročná. Na druhou stranu odlehčené statické analyzátory mohou umožnit rychlou
analýzu schopnou odhalit i vzácně se objevující chyby.

V tomto duchu je navržený i Deadlock, analyzátor představený v této práci. Jak jeho
jméno naznačuje, je zaměřený na detekci uváznutí. Konkrétně se zaměřuje na uváznutí
způsobená nesprávným používáním zámků, nízkoúrovňových synchronizačních mechanismů
často používaných v programovacím jazyce C. V tomto konkrétním případě lze uváznutí
definovat jako situaci, kdy pro každý proces z dané množiny procesů platí, že vlastní zámek
a čeká na uvolnění dalšího zámku, který vlastní proces z dané množiny.

Deadlock je implementován jako plugin prostředí Frama-C, které nabízí širokou škálu
analyzátorů, zaměřených ovšem především na analýzu sekvenčních programů. Společně
s algoritmem pro detekci uváznutí, je tedy představena i metoda, která nejprve vypočítá
počáteční stavy vláken programu tak, že pak mohou být analyzovány jako samostatné
sekvenční programy. Tato metoda pak může být použita i pro další analýzy vícevláknových
programů, nejen uváznutí, jak ukazuje i naše prototypová analýza pro detekci časově závis-
lých chyb nad daty (data race). Za účelem vyšší efektivity tento přístup zanedbává veškerou
komunikaci mezi vlákny. Vzhledem k tomu, že další analýzu zajímají především možné
zámky použité v programu, o kterých předpokládáme, že v praxi příliš mezivláknovou ko-
munikací ovlivněny nejsou, lze tuto pod-aproximaci tolerovat.

V další fázi pak Deadlock počítá množiny vlastněných zámků pro všechna místa v pro-
gramu a konstruuje graf, který zachycuje pořadí, ve kterém jsou zamykány. Tento al-
goritmus vychází z existujícího nástroje RacerX [12] a v některých ohledech se inspiruje
nástrojem CPROVER [16]. Z cyklů detekovaných ve výsledném grafu, které reprezentují
potenciální uváznutí, jsou poté vyfiltrovány ty, které s vysokou pravděpodobností nemohou
nastat v paralelní exekuci programu. Následně je provedena jejich klasifikace a hlášení
uživateli.

Deadlock byl ověřen na rozsáhlé sadě programů z linuxové distribuce Debian. Na těchto
programech dosáhl vysoké přesnosti, ale ukázalo se, že je v některých případech limitován
dlouhou dobou běhu pluginu EVA, který počítá možné hodnoty proměnných, nad nimiž
Deadlock poté pracuje. Z tohoto důvodu je představena také heuristika, které analýzu
hodnot nevyžaduje. Za cenu snížení přesnosti tak lze dosáhnout mnohem rychlejší analýzy,
která navíc nevyžaduje manuální nastavení uživatelem.
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Chapter 1

Introduction

Nowadays, various forms of testing are an inseparable part of the software development
process. Dynamic analysers and automated testing can be used to detect a wide range of
bugs, but in principle, they cannot prove their absence, at least not in the general case.
On the other hand, static analysers based on formal methods can be used to prove the
correctness of a program with respect to a specification, but often with a limited scalability
that can result in a huge number of false alarms, making results of the analysis unusable.
As a compromise, static tools that are neither sound (can miss some bugs) nor complete
(can report false alarms) may be designed.

Such static tools can be particularly advantageous for the analysis of concurrent pro-
grams. Due to the non-deterministic nature of concurrent programs, some concurrency-
related bugs may remain hidden for dynamic tools, and for sound tools, the analysis can be
too demanding. However, light-weight static analysis that does not directly reason about
all possible interleavings can be used to find some classes of such bugs, potentially much
more faster than dynamic tools would.

In this thesis, we present an analyser designed in such a way, called Deadlock. As its
name suggests, it focuses on detection of deadlocks, synchronisation errors caused by incor-
rect usage of locks, low-level synchronisation primitives, often used in the C programming
language. Deadlock is implemented as a new plugin of the Frama-C framework. Its design
is inspired by analyses underlying two existing tools: RacerX [12] primary designed for
the analysis of huge code bases and therefore resigning on soundness, and the CPROVER
framework [16] that, on the other hand, targets primarily soundness. Deadlock tries to com-
bine both approaches using existing analyses of Frama-C to improve precision, but with
the stress put on detection of likely deadlocks rather than soundness. The experimental
evaluation of Deadlock shows its capabilities to handle real-world C programs with a high
precision.

Structure of the thesis The rest of the thesis is structured as follows. Chapter 2 gives
a brief introduction into concurrency-related errors and abstract interpretation. Existing
static and dynamic tools for deadlock detection are presented as well as the Frama-C
framework. In Chapter 3, the design of a new deadlock analyser in Frama-C is presented,
followed by its implementation details in Chapter 4. Chapter 5 shows experimental results
obtained on a set of real-world C programs, and Chapter 6 presents a so-far experimental
extension of our tool for detection of data races. Section 7 then concludes the thesis and
discusses possible directions for future work.
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Chapter 2

Preliminaries

This chapter presents the theoretical background for the thesis. First, it discusses concur-
rency errors, particularly deadlocks and data races that are subjects of this thesis. Although
it does not use it directly, our analyser works on the top of results computed by abstract
interpretation and we therefore briefly introduce it. The next section is devoted to a de-
scription of the architecture and capabilities of the Frama-C platform. Existing analysers,
mainly EVA – Frama-C’s value analysis plugin and existing solutions for analysis of multi-
threaded programs implemented within the platform, are also mentioned. Finally, existing
solutions for deadlock detection are presented, especially RacerX and the analysis imple-
mented in the CPROVER framework, which we are inspired by.

2.1 Concurrency Errors
Concurrency errors can be roughly classified into two categories. The first is caused either
by an insufficient or completely missing synchronisation among concurrently running tasks.
As a result, some operations can be done in an invalid order, e.g., a file can be written
to before opened (order violation), or data can become inconsistent as a result of non-
atomic manipulation (data race and atomicity violation). A possible solution is to use some
synchronisation mechanism, for example low-level locks (also referred to as mutexes) that
are frequently used in the C programming language to guarantee mutual exclusion of code
parts manipulating shared data or their atomicity.

However, if synchronisation mechanisms are not used correctly, they can give rise to the
second category of concurrency errors. Examples are starvation, a situation when a process
is waiting for an event that is not guaranteed to ever happen, or a deadlock that causes a
program to freeze forever. This is, in fact, another trickiness of concurrency-related bugs,
fixing one may easily introduce another. While starvation, or sometimes even data races
on some not so important variables (e.g. computing some statistics), can be in some cases
tolerated, a deadlock is usually considered as a serious problem due to its irrecoverability.

In this thesis, we particularly target deadlocks and present an extension for the detec-
tion of data races, we therefore provide their exact definitions from [18]:

Data race A program execution contains a data race iff it contains two unsynchronised
accesses to a shared variable and at least one of them is a write access.
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1 int i = 0;
2

3 void *thread1 (void *v) {
4 i++;
5 }
6

7 void *thread2 (void *v) {
8 i++;
9 }

1 thread1: LOAD i
2 thread2: LOAD i
3 thread2: INC i
4 thread2: STORE i ; STORE 1
5 thread1: INC i
6 thread1: STORE i ; STORE 1

Listing 1: A simple C program with a data race and its execution that will trigger it

A simple example of a data race is given in Listing 1. It may not be obvious at the first
sight, but after both threads executes their code, the value of the variable i does not have to
be necessarily one, but also two, depending on a concrete way how threads are interleaved.
The reason is that incrementation is, in fact, not atomic and involves three steps: loading
the value of the variable i, increasing it, and storing it back. If this sequence is interleaved
with another manipulation with the same variable as demonstrated in the second part of
the example, inconsistent values of the variable can be created.

Deadlock A program state contains a set S of deadlocked threads iff each thread in S is
blocked and waiting for some event that could unblock it, but such an event could only be
generated by a thread from S.

In the rest of the thesis, we will consider solely deadlocks caused by an incorrect usage
of locks. In this particular case, each blocked thread is waiting for a release of a lock that
is held by (possibly the same) thread from the set of blocked threads. Such deadlocks can
be alternatively defined in terms of the Coffman conditions [6]. The Coffman conditions
are sufficient and necessary, but they indicate only the possibility of a deadlock. Whether
a concrete execution of the program will lead to a deadlock depends on interleaving of
threads. The conditions are as follows:

• Mutual exclusion: Shared resources requiring mutual exclusion are used.

• No preemption: Resources are always returned only after the thread that owns
them finishes their usage (they cannot be removed forcibly).

• Hold and wait: When already holding a resource, a thread can ask for another.

• Circular wait: There exists a cyclic dependency among waiting threads.

For a typical implementation of locks, e.g., POSIX mutexes, the first two conditions are
always satisfied just by their usage. The third one is also usually unavoidable when a thread
needs to acquire more than one lock. The possible solution is to use the so-called locking
discipline that defines an order in which locks are acquired and hence ensures acyclicity
and denies the fourth condition. This principle is also often used in tools that try to find
deadlocks or prove their absence by showing that the program contains or cannot contain
a cyclic dependency among locks, respectively.
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1 void *thread1 (void *v) {
2 lock(&mutex1);
3 lock(&mutex2);
4 unlock(&mutex1);
5 }
6

7 void *thread2 (void *v) {
8 lock(&mutex2);
9 lock(&mutex1);

10 unlock(&mutex2);
11 }

1 thread1: lock(&mutex1)
2 thread2: lock(&mutex2)
3 thread2: lock(&mutex2)
4 thread1: lock(&mutex1)
5

6 // Unreachable code:
7 thread1: unlock(&mutex1);
8 thread2: unlock(&mutex2);

Listing 2: A simple C program with a deadlock and its execution that will trigger it

An example of a deadlock is given in Listing 2. Two threads try to obtain two locks
in a different order and if they are interleaved like in the right part of the example, they
remain blocked forever. Despite the fact that such a simple deadlock could be spotted
easily, it would be extremely hard to find it by repeated running of the program because
both threads are short, and switching the context after the execution of a single line is very
unlikely, but still possible.

2.2 Abstract Interpretation
Abstract interpretation is one of the approaches to static program analysis. It was first
introduced by Peter Cousot and Radhia Cousot in [9]. The main idea behind abstract
interpretation is that the concrete semantics of a program is over-approximated by the ab-
stract semantics such that its properties are decidable. Abstract interpretation is a generic
framework, i.e., it can be instantiated to many different concrete analyses. To design an
analysis, usually following components need to be defined [17, 21]:

• The abstract domain represents possible abstract states that over-approximate
concrete states of the program. An example is an interval domain that represents a
single variable using an interval of its possible values. For higher precision, relational
domains that take into account relationships among variables can be used: an example
is the convex polyhedra domain that represents values of n variables as a polyhedron
in the n-dimensional space.

• Abstract transformers model the effect of program instructions on abstract states.

• The join operator (∘) combines abstract states into a single one when several
program branches meet.

• The widening operator (▽) is used to ensure that the computation of a fixpoint
on program loops will terminate. When the abstract domain is finite, it can be still
used to accelerate the computation.

• The narrowing operator (△) can be used to refine results after widening. This
operator does not have to be necessarily defined for all analyses.

6



Formally, an abstract interpretation 𝐼 of a program 𝑃 with an instruction set Instr is
defined as a tuple [17]:

𝐼 = (𝑄, ∘,⊑,⊤,⊥, 𝜏)

where

• 𝑄 is the abstract domain (set of abstract states),

• ∘ : 𝑄×𝑄 −→ 𝑄 is the join operator,

• ⊑ ⊆ 𝑄×𝑄 is an ordering on the abstract domain defined as 𝑥 ⊑ 𝑦 ⇔ 𝑥 ∘ 𝑦 = 𝑥, such
that (𝑄,⊑) is a complete lattice,

• ⊤ ∈ 𝑄 is the supremum of the abstract domain,

• ⊥ ∈ 𝑄 is the infimum of the abstract domain,

• 𝜏 : Instr × 𝑄 −→ 𝑄 defines abstract transformers for particular instructions.

2.3 Frama-C
This section is devoted to a description of the Frama-C platform. The description is based
on papers [2, 23], various user manuals [4, 22, 8], and the API documentation [5]. The
reference version is Frama-C 20.0 (Calcium).

2.3.1 Architecture

Frama-C is an open-source platform for analysis of source codes written in the C program-
ming language. Frama-C has a modular, plugin-based architecture based on a kernel that
provides general services for plugins. Plugins can be loaded both statically and dynami-
cally and can communicate in several ways. There are three heavy-weight plugins in the
current distribution of Frama-C: Jessie and WP for deductive verification, and EVA over-
approximating possible values of variables using abstract interpretation techniques. While
the the first two are not relevant in the context of this thesis, EVA is described in its own
section because our analyser runs on top of its results.

The Frama-C’s kernel is based on a customised version of CIL [20]. CIL (C intermediate
language) is a high-level representation of the C code together with tools that can be used
for its analysis and transformations. CIL first parses the source code to a normalised form
to decrease the number of situations that analysers have to reason about. For example,
all loop constructs are normalised to a single form, and expressions are transformed to
have no side effects. Besides ANSI-C, CIL also supports some of GNU C and Microsoft C
extensions. CIL represents a program as an abstract syntax tree (AST), but it also provides
support to work over the control flow graph (CFG) of a program by computing predecessors
and successors for all statements.

The kernel also provides general services for plugins including a unified way for handling
parsing of command-line parameters, printing, and debugging. More high-level services in-
clude a system of so-called projects that enables analyses to switch between several ASTs and
register properties to be updated when a project is changed (which is useful, e.g., for code
transformations), and mechanisms for collaboration of plugins using code annotations [23].

7



2.3.2 Memory Model

Several memory models exists in Frama-C, but from the point of view of this thesis, only
the model implemented in the Location_Bytes module [5] and used by EVA is interesting.
In this model, addresses are represented as pairs consisting of a base and an offset in bytes
with respect to the base. Each variable defines its own base address (for example, arrays
and structures define a single base and their members are represented using an offset), and
new bases can be also created by dynamic allocation. While there is always a finite number
of statically allocated bases, dynamic allocation can produce a possibly unbounded number
of bases, and therefore so-called weak bases are introduced to represent several bases to
ensure termination. EVA relies on the following hypothesis about base separation: “it is
possible to pass from one address to another through the addition of an offset if and only if
the two addresses share the same base address” [4]. This hypothesis does not hold for the
C language itself, but it is necessary for the efficiency of the analysis. The user is required
to provide a special treatment for programs breaking the hypothesis.

The memory model is untyped and parametrised by the so-called machine dependency
model that defines low-level details of the target platform, e.g., endiannes or sizes of C
types [4].

2.3.3 EVA – Evolved Value Analysis

EVA computes an over-approximation of sets of possible values of variables at each program
point. Its results can be used for proving absence of generic errors, undefined behaviours, or
assertions written in a specialised assertion language. They can also serve as the input for
other plugins. EVA uses abstract interpretation extended by a novel method that enables
communication of several abstract domains in a modular way. A detailed description of
this method is, however, far beyond the scope of this thesis and can be found in [2].

From the user point of view, EVA provides its results using two modules that can be
seen as abstract domains. The module Cvalue.V is used to represent possible values of
a single variable by using the memory model presented in the previous section, and the
module Cvalue.Model represents possible values of a set of variables and therefore a state
of the program memory.

Some examples of other Frama-C plugins are Metrics for automated computation of
code metrics, e.g., cyclomatic complexity, PathCrawler for automatic test-case generation,
or various plugins implementing code transformations – Slicing, Spare code, or Semantic
constant folding. Those usually use results computed by EVA to improve their precision.
An example of a plugin cooperating with the part of the Frama-C platform for deductive
verification is the Aoraï plugin that can be used to verify properties written in the linear
temporal logic.

2.3.4 Concurrency Analysers in Frama-C

The current version of EVA is limited to analysis of sequential programs only. In the past,
there have appeared the following analysers for concurrent code:

• Simple concurrency1 is a light-weight plugin for inspection of interrupt-driven pro-
grams. It can be used to identify interrupt service routines, variables shared between

1https://bitbucket.org/adelard/simple-concurrency/src/default/
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the main function and some routine, and accesses to these variables. It targets pro-
grams for embedded devices without an operating system and does not take into
account pointer aliasing.

• Conc2Seq rather than analysing the original concurrent code transforms it and its
annotations into an equivalent sequential simulation [1]. This approach assumes that
the input code is sequentially consistent, i.e., it does not contain any concurrency-
related errors. It is primarily designed for collaboration with deductive verification
plugins.

• Mthread is built on the top of EVA and computes an over-approximation of the
behaviour of all threads based on detection of threads and the fixpoint algorithm
described in [24]. It can be used for detection of run-time errors as well as data races.

Unfortunately, both Simple concurrency and Conc2Seq are no longer under active de-
velopment, and Mthread is available under a proprietary licence only (and, as far as we
know, is not being actively developed either). As a result, Frama-C still lacks a reasonable
support for analysis of concurrent programs.

2.4 Deadlock Detection
In this section we present existing solutions for deadlock detection. First, we give examples
of dynamic tools and approaches behind them. Apart from this approach, we further
describe three static analysers, which use quite different approaches but are in fact based
on the common underlying principle of the computation of locksets and building the lock-
order graph.

2.4.1 Dynamic Tools

In the introduction, we have mentioned that dynamic analysis tools can have problems to
detect some concurrency bugs, especially those that manifest only very rarely. However,
that does not mean that those tools cannot be used at all, and in fact, there is a lot of dy-
namic analysis tools using different approaches to increase their chances to find concurrency
errors – in particular, deadlocks.

A classical approach to dynamic deadlock detection is the Goodlock algorithm intro-
duced in [15]. It constructs a tree for each thread denoting its locking patterns and searches
for lock cycles between two threads. The work also presents a problem caused by the so-
called gatelocks – a lock cycle is protected by a common lock and the deadlock therefore
cannot happen.

A possible way to increase chances of finding deadlocks or other concurrency-related
bugs is noise injection. This technique is implemented, e.g., in the IBM ConTest [11] and
FIT BUT’s ANaConDA [14] tools. These tools try to inject various forms of forced context
switches or other forms of disturbance of the usual way how threads are scheduled in order
to increase chances to spot a rare behaviour and thus rarely occurring bugs (or at least
their symptoms).

2.4.2 RacerX

RacerX [12] is explicitly designed to handle large code bases and therefore resigns on sound-
ness and does not perform any pointer analysis to identify locks. It uses a generic lockset
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algorithm do detect both deadlocks and data races based on top-down, context- and flow-
sensitive, interprocedural depth-first traversal of the CFG. During the traversal, locksets,
i.e., sets of locks held at particular program points, are computed and the graph denoting
ordering in which locks were acquired is iteratively built. Caching on the level of statements
as well as on the level of functions is performed to speed-up the analysis. Various techniques
are used to eliminate false positives. For example, an unlockset analysis, a backward anal-
ysis that computes unlocksets analogically to the way how locksets are computed is used to
eliminate invalid locksets. These techniques are motivated by analysing huge projects like
Linux or FreeBSD and specific situations arising when operating systems are analysed.

2.4.3 Analysis in the CPROVER Framework

In contrast to RacerX, the analysis implemented in the CPROVER framework [16] imple-
ments a deadlock analysis for C/PThreads that is sound, i.e., misses no deadlocks. The
analysis itself is built on top of a context- and thread-sensitive framework proposed in [16]
using abstract interpretation techniques. To speed up the pointer analysis that takes up
to 93 % of its running time, the tool uses a dependency analysis that helps ignore assign-
ments and functions calls that do not affect parameters of locks, unlocks, and thread-related
operations. To reduce the number of false positives, a non-concurrency analysis based on a
graph search is used.

2.4.4 L2D2

A completely different method than above is implemented in the L2D2 (Low-Level Dead-
lock Detector) [19] plugin of Facebook Infer. Following the philosophy of Infer, it uses a
compositional approach that analyses each function without any calling context. While this
approach promises to be more scalable since every function is analysed exactly once, it can
also produce more false alarms as well as true negatives since it does not use any pointer
analysis.
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Chapter 3

Design of a Deadlock Detector

We base the design of our analyser on the lockset algorithm used in RacerX [12]. However,
since it does not use any pointer analysis and we want to use capabilities of the EVA plugin
of Frama-C to get may-points-to relations to help us to reason precisely about locks, we need
to extend it in several ways. We also use concurrency checking inspired by CPROVER [16]
but in a less precise way since our lockset analysis is not thread-sensitive, i.e., we analyse
each thread separately without information which other thread created it.

The analyser runs in three logical phases. In the first phase, we need to deal with a lack
of support for a concurrent analysis by EVA. Our approach to this problem is based on
a computation of initial states of threads, which are later analyse as sequential programs
without considering any interleavings, and it is presented in Section 3.1. In the second
phase, described in Section 3.2, we use the computed information and analyse each thread
separately. We perform a lockset analysis that computes sets of locks held at particular
program points and builds a lock-order graph (further referred to simply as a lockgraph).
Section 3.3 describes the last phase that detects cycles in the lockgraph, denoting possible
deadlocks, and filters out those that very likely cannot happen in a concrete execution of the
analysed program due to non-concurrency (caused, e.g., by create-join relations between
threads). Finally, we use a ranking to choose deadlocks that are reported to the user.
Section 3.4 presents a simple heuristic that avoids the described use of EVA, which makes
the analysis more scalable for the price of precision.

All examples in this chapter use the Pthreads API with simplified names of locking
functions and simplified signatures of thread-related functions. We assume that all used
locks are properly initialised. Parts of the tool design described below were presented in
our paper [10].

3.1 Thread Analysis
As was mentioned in Section 2.3.4, support for analysis of concurrent programs is currently
limited in Frama-C, and, as far as we know, there is currently no solution that would enable
one to run EVA or other analysers within Frama-C on multi-threaded code in a scalable
way. For example, if one tries to analyse a multi-threaded program using EVA, only the
main thread will be analysed because, without knowledge of the multi-threaded execution
model, other threads will be marked as unreachable and therefore not further analysed. In
the rest of the thesis, we use the term thread as an abstraction representing all threads
(instances that could be created during an execution of a program) with the same entry
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Algorithm 1: Computation of initial states of threads
Input: 𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑡𝑚𝑡𝑠 ... statements where threads can be created

𝑚𝑎𝑖𝑛 ... representation of the main thread with already computed initial state
1 function build_graph(threads)
2 𝐺 = empty_graph()
3 foreach 𝑡ℎ𝑟𝑒𝑎𝑑 ∈ 𝑡ℎ𝑟𝑒𝑎𝑑𝑠, 𝑠𝑡𝑚𝑡 ∈ 𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑡𝑚𝑡𝑠 do
4 𝑠𝑒𝑡_𝑎𝑐𝑡𝑖𝑣𝑒_𝑡ℎ𝑟𝑒𝑎𝑑(𝑡ℎ𝑟𝑒𝑎𝑑)
5 if is_reachable_by_thread(𝑠𝑡𝑚𝑡, 𝑡ℎ𝑟𝑒𝑎𝑑) then
6 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = get_threads(𝑠𝑡𝑚𝑡)
7 foreach 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
8 𝐺.add_edge(𝑡ℎ𝑟𝑒𝑎𝑑, 𝑠𝑡𝑚𝑡, 𝑐ℎ𝑖𝑙𝑑)
9 end

10 end
11 end
12 return 𝐺

13
14 function analyse_threads()
15 𝑖 = 0
16 𝐺0 = build_graph({𝑚𝑎𝑖𝑛})
17 do
18 𝑖 = 𝑖+ 1

19 ̂︁𝐺𝑖 = compute_fixpoint(𝐺𝑖−1)

20 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = ̂︁𝐺𝑖.get_nodes()
21 𝐺𝑖 = build_graph(𝑡ℎ𝑟𝑒𝑎𝑑𝑠)
22 while 𝐺𝑖 ̸= ̂︁𝐺𝑖

23 return 𝐺𝑖

point (and hence the same control). The reason is minimisation of the number of threads
to be analysed by EVA (which is usually the most demanding part of the whole analysis).

Our approach is based on computing which threads can be created and with which ini-
tial states in terms of possible values of global variables and values of arguments passed to
threads. The main idea is to use a fixpoint algorithm that runs as long as new threads are
discovered. Each iteration of this fixpoint computation employs a nested fixpoint computa-
tion that iterates over so-far known threads, analyses them through EVA, and propagates
information between them through thread creation statements only. This way, the possi-
bility of creating new threads may be discovered. These threads will then be analysed in
another iteration of the outer loop.

Note that this approach under-approximates the real behaviour of the threads since
no thread interleaving is considered. This is a design decision which we have done for
the sake of efficiency of our analysis. While the analysis can indeed under-approximate
the real behaviour, in the second phase, we are mainly interested in the parameters of
lock/unlock functions, i.e., identifiers of locks, which are usually not that much influenced
by thread interleaving in practice. The approach is similar to the one used in Mthread
that also discovers threads and computes a fixpoint, but it considers all possible values of
variables (taking into account possible interleavings of threads and communication among
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1 int i = 0; int j = 0;
2

3 void *worker (void *v) {
4 lock(&mutex);
5 if (i < THREAD_MAX) {
6 i++;
7 unlock(&mutex);
8 create(worker);
9 }

10 else {
11 unlock(&mutex);
12 }
13 return NULL;
14 }
15

16 int main(int argc, char **argv) {
17 create(worker);
18 j++;
19 }

Listing 3: A program consisting of a main thread and a worker thread. The worker thread
is created by the main thread and repeatedly creates itself until a certain limit (unknown
at the compilation time) is reached.

threads). However, only a sketch of its fixpoint algorithm is given in [24], so a more detailed
comparison, concerning, for example, scalability, is not possible.

Our method of computing a thread graph and initial states is formalised in Algorithm 1.
The function build_graph is used to construct a graph encoding which thread can create
which other threads through which thread-create statements based on the current approx-
imation of the possible initial states of the threads. The function set_active_thread
(line 4) is implemented as a part of a wrapper over EVA (described in Section 4.1) and
used to set its context according to the so-far computed initial states of the given thread.
For each create statement that is found reachable by EVA from the initial state of the thread
being examined, we use EVA to find threads it can create and add corresponding edges to
the graph. The function analyse_threads first builds a graph based only on the initial
state of the main thread, containing every thread that can be created from the main. Once
new initial states are computed, new graphs are iteratively computed on line 21. To update
initial states of the threads, we propagate states of their parents in the create statements
(line 19). To handle programs with nested or even cyclic dependencies between threads, we
compute a fixpoint of a function propagating states over the graph. The implementation of
the fixpoint computation is more described in Section 4.2. For programs where threads are
created in the main thread only, one iteration of the loop between lines 17 and 22 suffices.
However, for more complex programs where the computation of the initial states leads to
discovering new threads or dependencies, more iterations of the loop are necessary – we
loop until the computed graphs stop changing.

We illustrate the algorithm on the program from Listing 3. In this example, the main
thread creates a worker thread that creates itself repeatedly until a certain limit, unknown at
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the compilation time, is reached. The algorithm starts with the set 𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑡𝑚𝑡 containing
𝑠𝑡𝑚𝑡8 and 𝑠𝑡𝑚𝑡17. Only the first one is reachable by the main and the initial thread-graph
therefore contains a single edge 𝑚𝑎𝑖𝑛

𝑠𝑡𝑚𝑡17−−−−→ 𝑤𝑜𝑟𝑘𝑒𝑟. The fixpoint computation over this
graph is trivial – the state of 𝑚𝑎𝑖𝑛 at 𝑠𝑡𝑚𝑡17 ({𝑖 ↦→ {0}, 𝑗 ↦→ {0}}) is propagated as the
initial state of 𝑤𝑜𝑟𝑘𝑒𝑟. Afterwards, we build a new graph based on new initial states. We
find that the edge 𝑤𝑜𝑟𝑘𝑒𝑟

𝑠𝑡𝑚𝑡8−−−→ 𝑤𝑜𝑟𝑘𝑒𝑟 was added. Now the computation of the inner
fixpoint is not trivial anymore since there is a self-loop in the graph. It would eventually
terminate because the underlying CVALUE domain is finite, but the computation would
have to perform a huge number of steps, each of them containing possibly expensive re-
analysis of the 𝑤𝑜𝑟𝑘𝑒𝑟 thread by EVA. Hence, after a small number of steps, a widening
operator is used to accelerate the computation by using all positive integers up to 𝑚𝑎𝑥𝑖𝑛𝑡
according to a size of integer defined in the Frama-C’s machine dependency model. Since
there is no other thread and the graph remains unchanged, we return the initial state of
𝑤𝑜𝑟𝑘𝑒𝑟 computed as follows (thread arguments are ignored):

𝑤𝑜𝑟𝑘𝑒𝑟 : {𝑖 ↦→ {0, 1, ...,𝑚𝑎𝑥𝑖𝑛𝑡}, 𝑗 ↦→ {0}}

Note that the incrementation of the variable j on line 18 is not reflected in the initial state
of 𝑤𝑜𝑟𝑘𝑒𝑟 because it is done after the thread creation.

3.2 Lockset Analysis
The lockset analysis is performed for each thread detected in the previous phase by a depth-
first traversal of its control flow graph. The traversal is implemented as path-insensitive,
i.e., all conditions are resolved non-deterministically, and it does not join locksets coming
from different paths to improve precision. The path-insensitivity was originally used in
RacerX that has no information about possible values of variables. Despite the fact that
we have this information computed by EVA, we use a path-insensitive approach to reduce
the under-approximation that we have introduced in the thread analysis phase.

The depth-first traversal of the CFG of a thread is started with the empty lockset,
which is modified in each step by applying a transfer function that models the effect of
the encountered statement on the lockset. The high-level schema of the traversal is given
in Algorithm 2. The function traverse_function first checks whether 𝑓𝑛 has already
been analysed with 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡 and, if so, it returns the matching result from the cache.
Otherwise it starts analysing the first statement of 𝑓𝑛. The analysis of a statement first
computes its effect to 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡 by applying a transfer function, and calls analysis
recursively on its successors. During the recursive call, the analysis is forked for each pair
consisting of a successor and a possible lockset. The transfer function, mapping a statement
and a lockset to the set of possible locksets after an execution of the statement, is defined
as follows ([[𝑝]] denotes the set of possible values of the variable 𝑝):

𝑡(𝑠𝑡𝑚𝑡, 𝑙𝑠) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{𝑙𝑠 ∪ {𝑙𝑜𝑐𝑘} | 𝑙𝑜𝑐𝑘 ∈ [[𝑝]]} if 𝑠𝑡𝑚𝑡 is lock(𝑝) ∧ |[[𝑝]]| > 0

{𝑙𝑠 ∖ {𝑙𝑜𝑐𝑘} | 𝑙𝑜𝑐𝑘 ∈ [[𝑝]]} if 𝑠𝑡𝑚𝑡 is unlock(𝑝) ∧ |[[𝑝]]| > 0

{𝑙𝑠 ∖ {𝑙𝑜𝑐𝑘} | 𝑙𝑜𝑐𝑘 ∈ 𝑙𝑠} ∪ {𝑙𝑠} if 𝑠𝑡𝑚𝑡 is unlock(𝑝) ∧ |[[𝑝]]| = 0

{𝑙𝑠} otherwise
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Algorithm 2: Schema of the lockset analysis
1 rec function 𝑎𝑛𝑎𝑙𝑦𝑠𝑒_𝑠𝑡𝑚𝑡(𝑠𝑡𝑚𝑡, 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡)
2 if stmt is locking operation then
3 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑜𝑛_𝑙𝑜𝑐𝑘(𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡)
4 else if stmt is unlocking operation then
5 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑜𝑛_𝑢𝑛𝑙𝑜𝑐𝑘(𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡)
6 else if stmt is call of fn then
7 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠 = 𝑎𝑛𝑎𝑙𝑦𝑠𝑒_𝑓𝑛(𝑓𝑛, 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡)
8 else
9 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠 = {𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡}

10 end
11
12 if stmt is end of path then
13 return 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠
14 else
15 𝑎𝑐𝑐 = ∅
16 foreach (𝑠𝑢𝑐𝑐, 𝑙𝑠) ∈ 𝑠𝑡𝑚𝑡.𝑠𝑢𝑐𝑐𝑠× 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠 do
17 𝑎𝑐𝑐 = 𝑎𝑐𝑐 ∪ 𝑎𝑛𝑎𝑙𝑦𝑠𝑒_𝑠𝑡𝑚𝑡(𝑠𝑢𝑐𝑐, 𝑙𝑠)
18 end
19 return 𝑎𝑐𝑐

20 end
21
22 function 𝑎𝑛𝑎𝑙𝑦𝑠𝑒_𝑓𝑛(𝑓𝑛, 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡)
23 if (𝑓𝑛, 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡) ∈ 𝑐𝑎𝑐ℎ𝑒 then
24 return 𝑐𝑎𝑐ℎ𝑒_𝑓𝑖𝑛𝑑(𝑓𝑛, 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡)
25 else
26 𝑠𝑡𝑚𝑡 = 𝑓𝑛.𝑠𝑡𝑚𝑡𝑠[0]
27 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠 = 𝑎𝑛𝑎𝑙𝑦𝑠𝑒_𝑠𝑡𝑚𝑡(𝑠𝑡𝑚𝑡, 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡)
28 𝑐𝑎𝑐ℎ𝑒_𝑎𝑑𝑑(𝑓𝑛, 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡, 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠)
29 return 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠

30 end
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1 void f() { // 𝑒𝑛𝑡𝑟𝑦_𝑙𝑜𝑐𝑘𝑠𝑒𝑡 = {}
2 lock(mutex_ptr); // [[𝑚𝑢𝑡𝑒𝑥_𝑝𝑡𝑟]] = {𝑚𝑢𝑡𝑒𝑥1,𝑚𝑢𝑡𝑒𝑥2}
3 unlock(mutex_ptr); // [[𝑚𝑢𝑡𝑒𝑥_𝑝𝑡𝑟]] = {𝑚𝑢𝑡𝑒𝑥1,𝑚𝑢𝑡𝑒𝑥2}
4 } // 𝑒𝑥𝑖𝑡_𝑙𝑜𝑐𝑘𝑠𝑒𝑡𝑠 = {{𝑚𝑢𝑡𝑒𝑥1}, {𝑚𝑢𝑡𝑒𝑥2}}
5

6 void g() {
7 f();
8 f();
9 }

Listing 4: An example of usage of the transfer function when multiple locks can be locked
at a single statement

In the most simple case, when the analysed statement is neither lock nor unlock, the
transfer function returns a singleton set containing the current lockset. When the statement
is lock(p), it returns the set of locksets that arises by adding one of possible locks from
[[𝑝]] to the current lockset. The case of unlocking is almost the same with one exception. As
mentioned later, sometimes the set of may-points-to locks can be empty. In this case, we will
simply ignore any effect of locking (the fourth case). A sound analysis would use a special
indeterminate lock and replace it by all possible locks in the resulting lockgraph, but this
would lead in most of the cases to creating a complete lockgraph and hence a huge number
of reported deadlocks. We rather report such statements as a source of imprecision at the
end of the analysis. However, since we want to use the lockset analysis to compute also
must-locksets (for detection of gatelocks), we have to ensure that indeterminate unlocking
will not result in false must-locksets. Hence, the situation is handled such that any lock
from the current lockset can be removed, or no lock is removed at all (the third case). After
applying the transfer function, the analysis is forked for each pair consisting of a successor
statement and a possible lockset.

Locks are represented as pairs consisting of a variable and an offset with respect to the
base of the variable. The may-point-to information is computed using queries to results
of EVA, which are simplified into the mentioned representation. During the simplification,
logical bases that do not correspond to any variable, e.g., NULL, are removed. The result
can be an empty set when a lock pointer is evaluated either to top (any possible lock) or
bottom (the analysed statement is unreachable). The second case can rise when (1) due to
path-insensitivity, an unreachable path is analysed, (2) the under-approximation introduced
during thread analysis made the analysed statement unreachable, or (3) after some serious
error, possibly caused by an insufficient parametrisation, had been reported, EVA stopped
the analysis at some point and did not compute any information for the given statement.
Hence, we cannot assume that the statement is truly unreachable.

Due to the way the transfer function is defined, it works with may-locksets by analysing
every possible combination of locking and unlocking. After the analysis is finished, may-
and must-locksets of statements may be obtained using the domain of the statement cache
that contains all evaluations of the transfer function:

𝑚𝑎𝑦_𝑙𝑠(𝑠𝑡𝑚𝑡) =
⋃︁

(𝑠𝑡𝑚𝑡,𝑙𝑠)∈𝐷𝑜𝑚(𝑐𝑎𝑐ℎ𝑒)

𝑙𝑠 𝑚𝑢𝑠𝑡_𝑙𝑠(𝑠𝑡𝑚𝑡) =
⋂︁

(𝑠𝑡𝑚𝑡,𝑙𝑠)∈𝐷𝑜𝑚(𝑐𝑎𝑐ℎ𝑒)

𝑙𝑠
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1 void f() {
2 lock(&mutex1);
3 lock(&mutex2);
4 unlock(&mutex2);
5 unlock(&mutex1);
6 }
7

8 void g() {
9 lock(&mutex2);

10 lock(&mutex1);
11 }

12 void *thread(void *v) {
13 f();
14 }
15

16 int main (int argc, char **argv) {
17 create(thread);
18 f();
19 g();
20 }

mutex1 mutex2

{𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒3}

{𝑡𝑟𝑎𝑐𝑒2}

𝑡𝑟𝑎𝑐𝑒1 = ([𝑚𝑎𝑖𝑛, 18 : 𝑓(), 2 : 𝑙𝑜𝑐𝑘(mutex1)], [𝑚𝑎𝑖𝑛, 18 : 𝑓(), 3 : 𝑙𝑜𝑐𝑘(mutex2)])
𝑡𝑟𝑎𝑐𝑒2 = ([𝑚𝑎𝑖𝑛, 19 : 𝑔(), 9 : 𝑙𝑜𝑐𝑘(mutex2)], [𝑚𝑎𝑖𝑛, 19 : 𝑔(), 10 : 𝑙𝑜𝑐𝑘(mutex1)])
𝑡𝑟𝑎𝑐𝑒3 = ([𝑡ℎ𝑟𝑒𝑎𝑑, 13 : 𝑓(), 2 : 𝑙𝑜𝑐𝑘(mutex1)], [𝑡ℎ𝑟𝑒𝑎𝑑, 13 : 𝑓(), 3 : 𝑙𝑜𝑐𝑘(mutex2)])

Listing 5: An example of a program and a lockgraph computed by our lockset analysis
(function calls and lock acquisitions are prefixed by numbers of corresponding lines)

In other words, the must-lockset of a statement contains locks that were locked on all
paths through the statement, while a single path suffices for the may-lockset. Listing 4
demonstrates the approximation together with the sensitivity of the lockset analysis to
errors. Applying the transfer function on the first statement of the function 𝑓 results into the
set of locksets {{𝑚𝑢𝑡𝑒𝑥1}, {𝑚𝑢𝑡𝑒𝑥2}}. The rest of the function is then analysed separately
for {𝑚𝑢𝑡𝑒𝑥1} and {𝑚𝑢𝑡𝑒𝑥2}. In both cases, after applying the transfer function on the
second statement, we assume that both {𝑚𝑢𝑡𝑒𝑥1} as well as {𝑚𝑢𝑡𝑒𝑥2} can be unlocked
despite the fact that one of them was not locked. In other words, we over-approximate the
real behaviour considering all combinations of locking and unlocking in such a case. The
exit set of locksets of 𝑓 will then be {{𝑚𝑢𝑡𝑒𝑥1}, {𝑚𝑢𝑡𝑒𝑥2}} instead of the expected empty
set. The locksets created by 𝑓 will probably stay until the exit point of the whole program
(since the appropriate unlock has already happened) and possibly create a huge number of
false dependencies. In such a case, just another call of 𝑓 suffices to create a cycle in the
lockgraph.

To reduce the number of false deadlock warnings created by such situations, we use a
heuristic that assumes that locks and unlocks that happen within a single function and that
work with (syntactically) identical expressions do indeed lock/unlock the same lock.
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3.2.1 Lockgraph Construction

Lockgraphs are used to represent the orders in which locks are acquired. An edge 𝑎 −→ 𝑏
denotes a situation when a thread holds the lock 𝑎 and tries to acquire the lock 𝑏. According
to this definition, whenever a lock 𝑙 is added to a nonempty lockset 𝑙𝑠, the set of edges
computed as 𝑙𝑠 × {𝑙} is added to the lockgraph. To allow us to track how an edge was
created, each edge is labelled by a set of traces, which lead to its creation at different
program points. For each lock, we store information about the call stack of the analysis
at the time of its acquisition. The call stack can be described by the regular expression
⟨𝑡ℎ𝑟𝑒𝑎𝑑⟩⟨𝑓𝑛− 𝑐𝑎𝑙𝑙⟩*⟨𝑙𝑜𝑐𝑘 − 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛⟩. The label of an edge is a set of pairs of such call
stacks (a single call stack cannot describe the exact trace of an edge – after acquiring the
first lock, the program may return from some calls, call other functions and then try to
acquire the second lock). Listing 5 shows an example of a program and its lockgraph.

At the end of the lockset analysis, all smallest cycles of the obtained lockgraph are
computed as an input of the deadlock analysis phase. The so-called self-deadlocks, i.e.,
deadlocks caused by a single thread on a single lock, are ignored by default because they
could lead to many false positives.

3.2.2 Function Summaries

Function summaries are an efficient way to speed up interprocedural analysis by avoiding
repeated analysis runs on the same function for the same parameters. In our analysis,
function summaries are represented by a mapping from pairs (function, entry lockset) to
pairs (exit locksets, created edges). The interpretation is the following: for the case when
function is called with entry lockset, exit locksets is the union of the sets of locksets at each
of its exit points, and created edges is the set of edges emitted during its analysis.

The structure of summaries is inspired by RacerX, but we also have to track the edges
that are created and add them to the lockgraph when a summary is used instead of a
function analysis. Otherwise, we could not filter out non-concurrent traces in the next
phase. In the example in Listing 5, the edge 𝑚𝑢𝑡𝑒𝑥1

𝑡𝑟𝑎𝑐𝑒1−−−−→ 𝑚𝑢𝑡𝑒𝑥2 is created during the
analysis of the function f called from main, and its analysis will produce the following
summary:

(𝑓, ∅) ↦→ ({∅}, {𝑚𝑢𝑡𝑒𝑥1
𝑡𝑟𝑎𝑐𝑒1−−−−→ 𝑚𝑢𝑡𝑒𝑥2}).

Later, when thread is analysed, the call of f at line 13 meets the precondition of the
above summary, and it can be therefore used instead of a new analysis of the function.
However, without creating the new trace 𝑡𝑟𝑎𝑐𝑒3 and adding it to the set of traces of the
edge 𝑚𝑢𝑡𝑒𝑥1 −→ 𝑚𝑢𝑡𝑒𝑥2, the only possible deadlock represented by traces 𝑡𝑟𝑎𝑐𝑒1 and 𝑡𝑟𝑎𝑐𝑒2
would be filtered out as non-concurrent in the next phase, and the real deadlock between
main and thread would be missed. The new trace is created by replacing its prefix up to
the call of a cached function (including the call itself) of the old trace by the current call
stack of the analysis.

3.2.3 Context Sensitivity

So-far we have been considering a context-insensitive evaluation of locking parameters, i.e.,
we analysed functions without any information about their calling context. This approach
enables us to efficiently use function summaries, but it can be a source of imprecision. This
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1 void lock_wrapper(pthread_mutex_t *mutex) {
2 pthread_mutex_lock(mutex);
3 }
4

5 void *thread(void *v) {
6 lock_wrapper(&mutex1);
7 lock_wrapper(&mutex2);
8 }

Listing 6: An example of a lock wrapper

happens, e.g., when wrappers of locking functions or generally functions taking locks as
arguments, are used. This scenario is demonstrated in Listing 6. The context-insensitive
evaluation of the variable mutex used inside the lock wrapper will merge information from
all of its calls. As a result, the analyser will assume that the wrapper can lock any mutex
used in the program. Then, on line 7, besides the real dependency mutex1 −→ mutex2, the
dependency mutex2 −→ mutex1 will also be created. Generally, such a situation results in a
graph containing all possible edges.

For that reason, we allow such wrapper functions to be analysed in a different way.
Namely, during the analysis of such functions, the call stack is taken into account when
evaluating variables using the algorithm described in Section 4.3. The section also describes
how function summaries are used in such cases. A list of wrapper functions can be provided
by the user of the analysis, but we also try to detect them automatically. To identify them,
we check parameters of all functions, and if any of them is either a type representing a lock
or a structure containing (possibly recursively) a lock, we mark the function as context-
sensitive.

3.3 Deadlock Analysis
The input of the last phase is a set of cycles detected in the lockgraph. Each of these
cycles can have its edges labelled by multiple traces. Each cycle therefore represents a set
of possible deadlocks with the same involved locks. For each such a set, we want to choose a
single deadlock that will be reported to the user. First, we try to filter out those deadlocks
(possibly all of them) that are very likely impossible due to the involved lock actions cannot
happen in concurrently running threads. If the resulting set still contains more than one
deadlock, we perform a ranking to choose the most likely one. The schema of this phase
is illustrated in Algorithm 3. For each cycle, the algorithm first creates a work list as a
product of labels of all edges (labels are sets of possible traces for given edges) in the cycle.
Then it filters out non-concurrent deadlocks from the worklist and chooses a deadlock with
the highest rank from among the remaining ones. Currently, the process is implemented
only for deadlocks on two locks, which is, however, the majority of the cases in practice.

3.3.1 Concurrency Checking

Our approach to concurrency checking is inspired by the CPROVER tool. However, un-
like CPROVER, our analysis is not thread-sensitive. Instead of representing threads using
their identifiers, which represent concrete instances of threads, we use the notion of ab-
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Algorithm 3: Deadlock analysis
Input : cycles ... a set of cycles detected in the lockgraph, each cycle represents a

set of deadlocks with the same involved locks
Output: deadlocks ... a set of deadlocks with different involved locks that will be

reported to the user
1 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑠 = ∅
2 foreach 𝑐𝑦𝑐𝑙𝑒 ∈ 𝑐𝑦𝑐𝑙𝑒𝑠 do
3 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 = {

∏︀
𝑙𝑎𝑏𝑒𝑙𝑠(𝑒𝑑𝑔𝑒) | 𝑒𝑑𝑔𝑒 ∈ 𝑐𝑦𝑐𝑙𝑒} ◁Product of labels of a cycle

4 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = ∅
5 foreach 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘 ∈ 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 do
6 if 𝑖𝑠_𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘) then
7 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∪ {𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘}
8 end
9 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑠 = 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑠 ∪ {𝑓𝑖𝑛𝑑_𝑚𝑎𝑥_𝑟𝑎𝑛𝑘(𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡)}

10 end
11 end
12 return 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑠

stract thread that possibly merges several identifiers. Consequently, we do not have precise
information how threads involved in deadlocks were created, and we therefore have to use
some approximation, which makes our approach necessarily less precise. We will use the
following notation of graph dominators, which we assume to be computed for the CFG of
the whole program:

A statement 𝑠1 dominates a statement 𝑠2 (𝑠1 ≫ 𝑠2) iff all paths from the entry node of the
given CFG to 𝑠2 must go through 𝑠1.

To list situations we check, let us consider a simplified representation of two edges
𝑒1 = (𝑡ℎ𝑟𝑒𝑎𝑑1, 𝑠𝑡𝑚𝑡1) and 𝑒2 = (𝑡ℎ𝑟𝑒𝑎𝑑2, 𝑠𝑡𝑚𝑡2), each of them consisting of a thread entry
point and a statement in which the edge was created, and a set 𝑖𝑑𝑠(𝑡) that denotes identifiers
of all instances of the abstract thread 𝑡. Moreover, let 𝑐𝑟𝑒𝑎𝑡𝑒(𝑖𝑑) and 𝑗𝑜𝑖𝑛(𝑖𝑑) denote all
statements that create and join a thread identified by 𝑖𝑑, respectively. The two given edges
are considered to be non-concurrent if any of the following conditions holds:

1. Same instances. Both threads are represented by the same abstract thread
(𝑡ℎ𝑟𝑒𝑎𝑑1 = 𝑡ℎ𝑟𝑒𝑎𝑑2) that is not created multiple times during the execution of the
program. A special case is the main thread that is always created once only.

2. Non-concurrent threads. Threads 𝑡ℎ𝑟𝑒𝑎𝑑1 and 𝑡ℎ𝑟𝑒𝑎𝑑2 can never run concur-
rently, i.e., 𝑡ℎ𝑟𝑒𝑎𝑑1 is always joined before 𝑡ℎ𝑟𝑒𝑎𝑑2 is created or vice versa. This can
be approximated as:

∀𝑖𝑑1 ∈ 𝑖𝑑𝑠(𝑡ℎ𝑟𝑒𝑎𝑑1) ∀𝑖𝑑2 ∈ 𝑖𝑑𝑠(𝑡ℎ𝑟𝑒𝑎𝑑2)

∀𝑐2 ∈ 𝑐𝑟𝑒𝑎𝑡𝑒(𝑖𝑑2) ∃𝑗1 ∈ 𝑗𝑜𝑖𝑛𝑠(𝑖𝑑1) : 𝑗1 ≫ 𝑐2

3. Before creation. The creation of 𝑒1 always precedes the creation of 𝑡ℎ𝑟𝑒𝑎𝑑2 (ana-
logically for 𝑒2 and 𝑡ℎ𝑟𝑒𝑎𝑑1). The precedence can be checked using an ordering on
statements.
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4. After join. Analogically to the previous case, the creation of 𝑒1 is always preceded
by the join of 𝑡ℎ𝑟𝑒𝑎𝑑2 (analogically for 𝑒2 and 𝑡ℎ𝑟𝑒𝑎𝑑1). A possibility that the thread
is joined only on some paths or is not joined at all must be taken into account. This
can be approximated as follows (for all creations there is a join that dominates 𝑠𝑡𝑚𝑡1):

∀𝑖𝑑 ∈ 𝑐𝑟𝑒𝑎𝑡𝑒_𝑖𝑑𝑠(𝑡ℎ𝑟𝑒𝑎𝑑2) ∃𝑗 ∈ 𝑗𝑜𝑖𝑛(𝑖𝑑) : 𝑗 ≫ 𝑠𝑡𝑚𝑡1

5. Gatelock. Statements 𝑠𝑡𝑚𝑡1 and 𝑠𝑡𝑚𝑡2 are protected by a common lock and conse-
quently their mutual exclusion is granted. This is the case when:

𝑚𝑢𝑠𝑡_𝑙𝑠(𝑠𝑡𝑚𝑡1) ∩𝑚𝑢𝑠𝑡_𝑙𝑠(𝑠𝑡𝑚𝑡2) ̸= ∅

Note that cases (2) and (4) are indeed approximations because (a) there could a path
on which a thread was not created at all and therefore it does not need to be joined,
(b) a thread can be always joined, but using other statements, (c) we currently identify the
identifiers only as strings and therefore some restrictions on their usage are assumed, e.g.,
they are not manipulated nor reused, and (d) if the thread creation is inside a loop, we
assume that if its join is also in a loop, both loops perform the same number of iterations.
The approach is also sensible to thread wrappers because string identification will merge
together all real identifiers used by the wrapper, and so we currently limit it in such a
way that creating and joining a thread must happen directly in the main thread (there are
also technical reasons for this requirement that are related to the fact that dominators are
computed only on the level of functions by Frama-C).

To sum up, there is a lot of room for the algorithm to be imprecise, but we believe it
could be useful for some class of rational programs and possibly improved based on further
experiments, e.g., by using EVA to get more precise information about used identifiers.

All situations discussed above are demonstrated in Listing 7. It involves two threads
created from the main thread and two functions that acquire locks in different orders. The
following are examples of pairs of non-concurrent edges (𝑒𝑑𝑔𝑒𝑁 denotes an edge created by
a function call at line 𝑁): (1) Edges 𝑒𝑑𝑔𝑒33 and 𝑒𝑑𝑔𝑒34 are created in threads with the
same entry point that is created only once, (2) 𝑒𝑑𝑔𝑒14 is not concurrent with 𝑒𝑑𝑔𝑒34 since
its creation always precedes creation of thread2, (3) 𝑒𝑑𝑔𝑒28 is not concurrent with 𝑒𝑑𝑔𝑒34
since their threads can never run simultaneously, (4) 𝑒𝑑𝑔𝑒23 is not concurrent with 𝑒𝑑𝑔𝑒28
since thread1 is always joined before line 23 is reached, and finally (5) 𝑒𝑑𝑔𝑒18 and 𝑒𝑑𝑔𝑒28
are both in critical sections protected by a common mutex and therefore not concurrent.

3.3.2 Deadlock Ranking

After non-concurrent deadlocks are removed, there could still be multiple possible deadlocks
over the same locks. In order to choose the most likely one, which will be reported to the
user, a simple ranking based on the computed must-locksets and the length of traces leading
to the deadlocks is performed. For each set of possible deadlocks over the same locks, each
consisting of a set of edges in the form of 𝑙𝑜𝑐𝑘1

𝑠𝑡𝑚𝑡−−−→ 𝑙𝑜𝑐𝑘2, the decision is based on:

1. How many edges of the deadlock were created using locks from must-locksets, i.e., we
count edges where 𝑙𝑜𝑐𝑘1 is a member of 𝑚𝑢𝑠𝑡_𝑙𝑠(𝑠𝑡𝑚𝑡) for the given edge.

2. If we cannot decide according to point 1 above, we pick a deadlock with the shortest
trace to be reported (an example of how a deadlock is reported is given in Section 4.4).
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1 void lock_pattern1() {
2 lock(&mutex1);
3 lock(&mutex2);
4 unlock(&mutex2);
5 unlock(&mutex1);
6 }

13 int main(int argc, char **argv) {
14 lock_pattern1();
15

16 create(&t1,thread1);
17 lock(&gatelock);
18 lock_pattern2();
19 unlock(&gatelock);
20 join(t1);
21

22 create(&t2,thread2);
23 lock_pattern2();
24 join(t2);
25 }

7 void lock_pattern2() {
8 lock(&mutex2);
9 lock(&mutex1);

10 unlock(&mutex1);
11 unlock(&mutex2);
12 }

26 void *thread1(void *v) {
27 lock(&gatelock);
28 lock_pattern1();
29 unlock(&gatelock);
30 }
31

32 void *thread2(void *v) {
33 lock_pattern1();
34 lock_pattern2();
35 }

Listing 7: An example demonstrating all sources of non-concurrency that are checked

3.4 A Heuristic Avoiding EVA
When analysing complex programs using Frama-C and EVA, one usually needs to tune their
input parameters to achieve both precision and a reasonable running time. After reporting
some classes of alarms, EVA will consider the rest of the code unreachable, and the user
must first solve the issue (either by fixing the code, changing parameters of Frama-C/EVA,
or providing models for external functions). To provide a fully-automated alternative,
we implemented a method that completely avoids using EVA and uses purely syntactic
information to identify locks and threads using only syntactic information provided by CIL
API and Frama-C and completely avoiding using EVA. This way, precision of the analysis
is traded for its scalability.

For identification of locks and threads, we use a CIL function that extracts variables from
an expressions used as parameters of locking and thread-related functions. This approach is
equivalent to the original one when only references to global variables are used to represent
locks or threads. For locks that are members of structures or arrays, our approach will
merge information about some locks because they will be represented only by the variable
that corresponds to the base of the given structure or array. On the other hand, aliasing will
create more variables representing a single lock. Another complication is linked with locks
represented by formal parameters of a function. Recall the example of the lock wrapper
from Listing 6, unlike in the case when the value analysis is used, our heuristic will never
create any edge, because it will see only a single lock in this case – the formal parameter of
the wrapper function. If more functions will manipulate locks, e.g., as a part of structures
that are frequently passed among functions, the heuristic will see different locks since they
will be represented by different formal parameters. For dealing with formal parameters, the
method that is described in Section 3.2.3 can be used.
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In the case of identifying threads, an additional complication is that we need to know the
name of the entry point of the thread to find it in the source code by its name. If this is not
possible, we assume that every function with a POSIX threads signature void *(fn)(void *)
can be an entry point of the given thread. Note that this can lead to under-approximation,
because the standard can be abused by, e.g., a thread defined without parameters. For all
other queries to EVA, including those used in the computation of initial states of threads,
top values are returned.
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Chapter 4

Implementation

This chapter is devoted to implementation of the analyser presented in the previous chapter.
Besides implementation details of the analysis phases, it also describes a wrapper over EVA
that we designed to ease communication between our analyser and EVA and that can
be used for easier implementation of further approaches. This was the case of already
implemented heuristic described in Section 3.4.

Our analyser, called Deadlock, is implemented as a plugin of Frama-C and available in a
public repository on GitHub1 under the MIT licence. Same as Frama-C, Deadlock is written
in the Ocaml language. Together with the tool itself, the repository also contains python
scripts for its automatic evaluation and a set of crafted C programs used for its testing.
As we have already said, the current implementation targets multi-threaded C programs
that use the Pthreads API, but one can also provide custom locking and thread-related
functions if they use a similar execution model. Since there is ongoing work on the Frama-
Clang plugin2, future support for C++ is possible.

4.1 EVA Wrapper
The wrapper over EVA is a layer used to hide the sequential character of the underlying
value analysis for the rest of the analyser, enabling it to easily switch analysed threads, and
implementing queries to results computed by EVA. To avoid multiple repeated analyses of
a thread with the same initial context, it uses a cache mapping threads and their initial
states to results obtained by EVA. Same as the interface of EVA, it is implemented in an
imperative way, keeping an internal state consisting of a currently active thread and the
cache.

The wrapper works with a type representing the abstract thread consisting of an entry
point function and an initial state – a join of all states the thread was created with. The
initial state itself can be seen as a product of two abstract domains, Cvalue.Model rep-
resenting possible values of a set of variables (global variables in our case) and Cvalue.V
that represents possible values of a single variable (the argument passed to the thread).
Related operations on initial states are defined component-wise using operations on both
of the domains. Signatures of modules representing an abstract thread and its initial state
are given in Listing 8.

1https://github.com/TDacik/Deadlock
2http://frama-c.com/frama-clang.html
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1 module Thread : sig
2 module InitialState : sig
3

4 type t = {
5 globals: Cvalue.Model.t (* State of global variables *)
6 argument: Cvalue.V.t (* State of thread argument *)
7 }
8

9 val equal : t -> t -> bool
10 val compare : t -> t -> int
11 val join : t -> t -> t
12 val widen : t -> t -> t
13

14 end
15

16 type t = {
17 entry_point : Cil_types.fundec (* Definition of entry point *)
18 initial_state : InitialState.t (* Initial state of thread *)
19 }
20 end

Listing 8: The signature of the module representing an abstract thread and its sub-module
representing an initial state of a thread

The wrapper provides a function to change the context of the currently analysed thread
by calling the function set_active_thread (Listing 9). Depending on whether the thread
was already analysed with its current initial context, it will either use cached results or
instruct EVA to set the initial state of thread and perform the value analysis. Setting the
context of the analysis is done in three steps. First, the program entry point is set to the
entry point of the thread. Then, the state of global variables and the argument of the
thread is set. When setting the argument, we have to check whether the thread entry point
is really defined with a single argument since some entry points may abuse the Pthreads
API and have either none or too many arguments. After the value analysis is computed,
its results are added to the cache. Despite the fact a caching is already done inside EVA,
our experiments showed that analysis of a thread using an already analysed context still
has negative impact on the running time. This could be caused by repeated reporting of
alarms and warnings in each analysis.

The heuristic described in Section 3.4 is implemented as a part of the wrapper. It
implements the interface of the wrapper in a way that does not require running EVA and
also does not change the workflow of the rest of the analyser and therefore makes the
implementation easier as it requires to modify code only inside the wrapper. For example,
despite the fact that the heuristic does not need to compute any initial states of threads,
the thread graph is still computed using the proposed algorithm, but in such a way that it
only trivially add threads and sets initial states to the top values.
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1 let set_active_thread thread =
2 if Cache.mem thread !cache then
3 let results = Cache.find thread !cache in
4 Eva.Value_results.set_results results
5

6 else begin
7 Globals.set_entry_point (Thread.to_string thread)
8 Db.Value.globals_set_initial_state thread.initial_state.globals;
9

10 (** Ignore entry points that does not respect Pthreads API *)
11 let n_args = List.length entry_point.sformals in
12 if n_args = 1 then
13 Db.Value.fun_set_args [thread.initial_state.argument]
14 else ()
15

16 !Db.Value.compute ();
17 let results = Eva.Value_results.get_results () in
18 cache := Cache.add thread results !cache
19 end

Listing 9: A function for switching the currently analysed thread either by using cached
results or by starting a new analysis by EVA

4.2 Thread Analysis
The inner fixpoint computation from Algorithm 1 computing initial states based on the
current thread graph is implemented using the Ocamlgraph library3. The design of Ocaml-
graph is based on using functors (modules that are parametrised by other modules, e.g.,
Set from the Ocaml standard library that is parametrised by a module with a signature
of OrderedType). Their usage allows one to customise graph structures (e.g., by defining
a custom compare function for vertices) and is also used to implement graph algorithms
independently on their underlying representation [7].

The fixpoint computation uses the module ChaoticIteration that implements a chaotic
iteration strategy with widening based on a weak topological ordering (WTO) on the under-
lying graph [3]. The instatiation of the fixpoint computation is demonstrated in Listing 10,
and the computation itself is demonstrated in Listing 11. The function recurse is called
with the graph and the function initial_data that tells the algorithm how to get initial
data for each node. Additional parameters tell it to choose widening points according the
computed WTO, and to perform widening after two steps. We intentionally use a very low
value to avoid a possibly expensive re-analysis of a thread which is included in each fixpoint
step. The fixpoint step itself takes an edge 𝑝𝑎𝑟𝑒𝑛𝑡

𝑠𝑡𝑚𝑡−−−→ 𝑐ℎ𝑖𝑙𝑑 and 𝑠𝑡𝑎𝑡𝑒 of the parent, sets
the context according to the 𝑠𝑡𝑎𝑡𝑒, performs the value analysis, and returns the new state
at 𝑠𝑡𝑚𝑡 – the new initial state of 𝑐ℎ𝑖𝑙𝑑.

3http://ocamlgraph.lri.fr/index.en.html
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1 (** ThreadGraph is a persistent, directed graph *)
2 module ThreadGraph = Graph.Persistent.ConcreteBidirectionalLabeleld
3 (Thread)
4 (CreateEdge)
5

6 (** Propagation of state by edge *)
7 let fixpoint_step (parent, stmt, child) state =
8 (** Create a new thread to perform analysis with *)
9 let thread = Thread.create parent.entry_point state in

10 Eva_wrapper.set_active_thread thread;
11

12 (** Return new initial state of the child *)
13 Eva_wrapper.stmt_state stmt
14

15 module Fixpoint = ChaoticIteration.Make
16 (ThreadGraph)
17 (struct
18 type t = InitialState.t
19 type edge = ThreadGraph.E.t
20

21 let join = InitialState.join
22 let equal = InitialState.equal
23 let widening = InitialState.widen
24 let analyze = fixpoint_step
25 end)

Listing 10: Initialisation of modules for the thread graph and the fixpoint computation
using functors

1 (** Function telling how to get initial data for a node *)
2 let initial_data t = (t.globals, t.argument) in
3

4 let root = ThreadGraph.get_main g in
5 let wto = WTO.recursive_scc g root in
6 let widening_set = ChaoticIteration.FromWto in
7 let delay = 2 in
8 let initial_states =
9 Fixpoint.recurse g wto initial_data widening_set delay

10 in
11 (** Apply map to the graph *)
12 ThreadGraph.update initial_states g

Listing 11: The fixpoint computation of initial states
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Algorithm 4: Context-sensitive evaluation of locking parameters
Input : 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ... expression to be evaluate

𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘 ... current call stack of the analysis
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑛 ... analysed function

Output: 𝑎𝑐𝑡𝑢𝑎𝑙_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ... set of possible actual parameters
1 rec function 𝑓𝑖𝑛𝑑_𝑎𝑐𝑡𝑢𝑎𝑙𝑠(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘, 𝑓𝑛)
2 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑙𝑜𝑐𝑘_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
3 if 𝑖𝑠_𝑓𝑜𝑟𝑚𝑎𝑙(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) then
4 𝑛 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑜𝑓_𝑓𝑜𝑟𝑚𝑎𝑙(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
5 (𝑠𝑡𝑚𝑡, 𝑡𝑜𝑝_𝑓𝑛) = 𝑝𝑜𝑝(𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘) ◁ top call site
6 if 𝑖𝑠_𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑖𝑛𝑡(𝑡𝑜𝑝_𝑓𝑛) then
7 return 𝑣𝑎𝑙𝑢𝑒𝑠_𝑜𝑓(𝑡𝑜𝑝_𝑓𝑛.𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡)
8 else
9 𝑒𝑥𝑝𝑟 = 𝑛𝑡ℎ_𝑝𝑎𝑟𝑎𝑚(𝑠𝑡𝑚𝑡, 𝑛) ◁ expression from call site

10 return 𝑓𝑖𝑛𝑑_𝑎𝑐𝑡𝑢𝑎𝑙𝑠(𝑒𝑥𝑝𝑟, 𝑐𝑎𝑙𝑙𝑠𝑡𝑎𝑐𝑘, 𝑡𝑜𝑝_𝑓𝑛)

11 end
12 else
13 return 𝑣𝑎𝑙𝑢𝑒𝑠_𝑜𝑓(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) ◁ eval. according to the mode
14 end

4.3 Lockset Analysis
The lockset analysis is implemented using CIL functions allowing one to perform the CFG
traversal and to straightforwardly implement Algorithm 2. In this section we mainly discuss
the implementation of context-sensitive evaluation of locking parameters. The method is
presented in Algorithm 4. It uses a top-down traversal of the call stack searching for a
function call that has passed the actual parameter. In each iteration, it first extracts the
variable representing the lock from the expression that we want to evaluate. If it is a
formal parameter, it finds the corresponding actual parameter in lower levels of the call
stack. In this way, it either finds a variable that is not formal or reaches the entry point
and uses its argument computed in the thread analysis phase. This approach ensures that
the algorithm use only the part of the call stack that contains exclusively context-sensitive
functions (otherwise the algorithm could not iterate through their calls). As a result,
only context-sensitive functions require special treatment (currently no caching at all) and
summaries of other function can be used in the usual way. The algorithm can be used
also when the analyser runs without results computed by EVA – the function values_of
denotes the particular way of parameter evaluation to be used. Value analysis will use the
whole expression and evaluate it using EVA, while our heuristic from Section 3.4 will again
extract the locking variable syntactically.

4.3.1 Extended Semantics of Locking Operations

So-far we have been considering only locking using pthread_mutex_lock functions that,
moreover, never fails. Although this function is most frequently used, the Pthreads API
defines other functions on different types of locks. Spin-locks implement active waiting
for lock acquisition that can be more efficient than switching the context when a critical
section protected by a lock is short, e.g., if it only contains an access to a hardware register.
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1 void f() {
2

3 if (lock(&mutex) != 0)
4 return FAIL;
5

6

7

8

9 if (unlock(&mutex) != 0)
10 return FAIL;
11

12

13

14 return SUCCESS;
15 }

1 void f() {
2 tmp = lock(&mutex);
3 if (tmp != 0) {
4 __retres = FAIL;
5 goto return_label;
6 }
7

8 tmp_0 = unlock(&mutex);
9 if (tmp_0 != 0) {

10 __retres = FAIL;
11 goto return_label;
12 }
13 __retres = SUCCESS;
14 return_label: return __retres;
15 }

Listing 12: An example of a function that checks the return value of a locking operation
and its normalised representation by CIL

Read-write locks can be used to implement the readers–writers scenario, when a lock can be
obtained by a single writer or by multiple readers. There are also non-blocking functions
*_timedlock and *_try_lock that can be combined with the sooner mentioned types
of locks in several ways. Due to their non-blocking nature, such functions cannot cause a
deadlock, but they still can acquire the first lock in a lockgraph edge and should be therefore
considered in the lockset analysis.

Currently, the analyser supports two types of functions to be provided by parameters
– blocking and non-blocking. Read-write locks are currently not supported. An option
for considering all functions from the Pthreads API can be also used. Blocking and non-
blocking functions are treated in the same way, except the deadlock analysis phase when
edges obtained by non-blocking functions are removed.

Programs that we used for testing usually do not check return values of locking op-
erations. However, there are situations in which the pthread_mutex_lock function can
fail and for non-blocking functions, checking the return value is natural. In such a case,
especially when it is followed by returning an error to the caller as demonstrated in List-
ing 12, our analyser will compute the exit lockset containing mutex for path ending at line
4. Obviously, this is incorrect since line 4 can be reached only when locking failed and no
lock was therefore acquired.

Rather than directly modelling a fail of locking, we try to filter invalid locks at function
exit points in the following way: if a function exit point is reached with a lockset containing
a lock that was acquired within the function, we first check whether a return value of its
locking was stored to some variable 𝑣 and, if so, we check possible values of 𝑣 at the exit
point. If the set of possible values does not contain zero, we can safely say that locking
on this path was not successful and remove the lock from the lockset (up to some explicit
manipulation with 𝑣 which we do not assume). The implementation of this heuristic benefits
from normalisation of the source code by CIL, since it will always create a new variable
(tmp at line 2) when the result of a function is taken but not explicitly stored. However,
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1 void f() {
2 lock(&mutex1);
3 }
4

5 void *thread1(void *v) {
6 f();
7 lock(&mutex2);
8 }

9 void g() {
10 lock(&mutex2);
11 f();
12 }
13

14 void *thread2(void *v) {
15 g();
16 }

[deadlock] === Lockgraph: ===
[deadlock] lock2 -> lock1 (1 times)
[deadlock] lock1 -> lock2 (1 times)
[deadlock] ==== Results: ====
[deadlock] Deadlock between threads thread1 and thread2:

Trace of dependency (lock1 -> lock2):
In thread thread1:

Call of f (deadlock.c:6)
Lock of lock1 (deadlock.c:2)

Lock of lock2 (deadlock.c:7)

Trace of dependency (lock2 -> lock1):
In thread thread2:

Call of g (deadlock.c:15)
Lock of lock2 (deadlock.c:10)

Call of f (deadlock.c:11)
Lock of lock1 (deadlock.c:2)

Listing 13: An example of a program containing a deadlock, and how is the issue reported

Frama-C also normalises functions to a single-entry-point form using gotos, which makes
the proposed method unusable since all paths are joined. The solution is straightforward,
whenever the analyser reaches a goto statement, it will check the first statement after the
target label, and if it is a return statement, it will consider the goto statement as the
function exit point.

4.4 Reporting
To be useful in practice, the analyser should be able to provide the user with information
helping to understand every reported issue and easily inspect whether it is a false alarm or
not. Our analyser reports a deadlock by providing a trace for each its edges. Each edge
is reported as the common prefix of the call stacks of both of the locks followed by their
suffixes. An example of how our tools report deadlocks is given in 13. According to the
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level of verbosity given by an input parameter, the output also shows analysis statistics, the
computed thread graph, summaries of functions, and may- or -must locksets for statements.
If the analyser ignored some locking operation (e.g., because its parameter was evaluated
to the top value), this information is displayed as a source of imprecision.

The analyser also provides an option to store computed initial states of threads to files
in such a way they can be later viewed in the Frama-C GUI application. This could be
used to browse results computed by EVA and fix possible issues.
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Chapter 5

Experimental Evaluation

This chapter presents our experiments on a set of real-world programs preprocessed as
a set of benchmarks for the CPROVER’s deadlock analyser. We compare the achieved
results with the L2D2 plugin of Facebook Infer for low-level deadlock analysis [19] and
the CPROVER’s deadlock analyser [16]. We discuss some specific cases when our analysis
tends to fail as well as the impact that the different phases of the analysis have on the total
running time. Our preliminary experimental results were presented in [10].

5.1 Experimental Setup
Our experiments were conducted on the benchmark originally used in [16]1. The bench-
mark contains 994 programs that are considered to be deadlock-free and 8 programs with
deadlocks, which were introduced by the authors of the benchmark. Programs are taken
from the Debian GNU/Linux distribution and use the POSIX thread API. A huge fraction
of the benchmarks was rejected by Frama-C due to type errors (probably introduced by a
preprocessing step done for the CPROVER tool), and we therefore used only a part of the
benchmark.

Another complication was related to problems with parametrisation of Frama-C/EVA
described in Section 3.4. Since we are aiming at bug detection, we can use our tool even
when the results of EVA are partial only. Consequently, some locking actions or even
creation of a thread can be missed by our analyser. To minimise such situations, we used
a script that tries to run the analysis multiple times with different parameters to suppress
some errors that would otherwise force EVA to stop (assuming, e.g., that all memory
accesses are valid or that all variables are initialised). For each test case, the script tries to
find a combination of parameters of Frama-C/EVA that minimises the number of situations
when EVA returns the top value for a parameter of some locking operation. If there is no
combination of parameters such that at least some locking was encountered and at least
one thread except the main thread was found, we ignore the test case in the comparison.
When Deadlock runs without the value analysis, no parametrisation or special treatment
is required. However, there were cases when no locking or no thread creation was found
even in this mode. Nevertheless, for most of such cases results of CPROVER indicate that
those programs are in fact not concurrent. Only in a few cases, Deadlock missed some
locking reachable only via calls of function pointers that cannot be currently resolved in
the heuristic mode. Such cases are ignored as well.

1http://www.cprover.org/deadlock-detection
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Figure 5.1: The time needed for the analysis (timeouts after 60 seconds are marked by the
red colour)

Table 5.1: Experimental results on 293
deadlock-free test cases that Deadlock can
handle with value analysis

correct
false

positives
no

result
Deadlock 209 4 80

L2D2 273 11 9
CPROVER 92 42 159

Table 5.2: Experimental results on 350
deadlock-free test cases that Deadlock can
handle without value analysis

correct
false

positives
no

result
Deadlock 347 3 0

L2D2 324 18 8
CPROVER 87 45 218

The experiments with our tool were conducted on a machine with 2.5GHz Intel Core i5-
7300HQ processor and 16 GB RAM, running Ubuntu 18.04. To obtain results of CPROVER
on a relevant subset of the benchmark, we reproduced them using scripts included in
the benchmark, running on a machine with 2.9GHz AMD Opteron 8389 processor and
128 GB RAM, running Debian 9. Time and memory limits were set according to [16]: a
timeout of 30 minutes and 24 GB of memory. For L2D2, we use its results from [19].

5.2 Results
Programs with deadlocks. When using value analysis, our tool detected deadlocks in
all 8 cases that actually contain a deadlock. Both L2D2 and CPROVER manage to detect
them too. Our light-weight version missed one deadlock reachable only by call of a function
pointers, which currently cannot be analysed without EVA.

Deadlock-free programs. Tables 5.1 and 5.2 present results that our tool – with and
without using EVA, respectively – achieved on relevant deadlock-free programs (programs
that Frama-C could handle and Deadlock found locking and thread-creating or timeouted)
and their comparison with results of CPROVER and L2D2. The different numbers of
test cases considered in the two tables are related to the fact that test cases that does
not find any locking/thread-creation actions are, as mentioned, ignored. The column no
result includes cases where (a) our tool hit a timeout, (b) CPROVER timeouted, ran out
of memory, or failed to parse the program, and (c) L2D2 hit a compilation error.
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Figure 5.1 shows how the running time of our tool grows with the number of lines of
code of the programs being analysed when used with and without EVA, respectively. The
left part of the graph devoted to the analysis with EVA shows the importance of choosing
the right values of parameters of Frama-C and EVA: programs are either analysed quickly
(often close to cases when no value analysis is done) or the analysis times out. Out of the
80 cases of timeouts, 71 programs hit the timeout in the thread analysis phase (out of them
52 even during the initial analysis of the main thread). When programs were analysed with
EVA, the lockset analysis phase took less than 10 % of the total running time in almost
all cases. The average memory needed for the analysis was about 350 MB without any
significant divergence from this value.

A shortcoming of the benchmark we considered is a small number of programs that
actually contain a deadlock. We therefore used a set of crafted programs to successfully
verify the basic correctness of the methods presented throughout the thesis. The set contains
47 programs and is available in the project repository2.

5.3 Discussion of the Results
When compared to our results from [10], we managed to reduce the numbers of false posi-
tives in both modes and slightly decrease the number of timeouts. In the heuristic mode,
the main factor that contributed to the improvement is implementation of the context-
sensitive evaluation of formal parameters. In the mode using EVA, some false alarms were
excluded using the heuristic that syntactically pairs locking and unlocking statement as de-
scribed in Section 3.2. The implementation of caching inside the wrapper over EVA helped
to finish the analysis within the given time limit in a few cases too. The remaining false
positives seem to be caused by data-dependent locking that we do not handle well due to
the path-insensitivity of our lockset analysis.

During the experiments, we have found a reappearing situation in which our method
of computing initial states of threads does not work well. The scenario is that a thread
is waiting in a loop for a value of some shared variable that can be set only by another
thread. Since this value is not computed by our algorithm, EVA will consider the loop
non-terminating and the rest of the code unreachable, and therefore we will not derive
any information about it. Our further work can focus on detection of such situations and
their elimination by adding non-determinism to a condition of the loop that performs the
waiting. A possible detection of such situations should not be hard since a waiting is usually
implemented using condition variables in programs that use the Pthreads API, namely by
the call of the function pthread_cond_wait.

2https://github.com/TDacik/Deadlock/tree/master/tests
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Chapter 6

Data Race Detection

In this chapter, we present an analyser for data race detection designed as an extension of
our deadlock analysis. It is a so-far experimental implementation of a naive approach to
race detection, but we use it to demonstrate how the modular design of Deadlock can be
used to implement new analyses. Moreover, the analyser can already produce reasonable
results on smaller programs.

6.1 Design
Our data race detector is designed as a new plugin that heavily uses the API provided by
Deadlock. Namely, it first computes initial states of threads and performs lockset analysis
in the same way as in the case of deadlock detection. Then, it starts a flow-insensitive
traversal of the program, computing a set of memory accesses to shared variables using the
EVA plugin. After the computation is finished, the analyser checks whether there exists a
pair of memory accesses satisfying the definition of a data race. During this step, it uses
the concurrency checking implemented in Deadlock. Especially the case referred to as a
gatelock in the context of deadlock analysis is important because it shows whether a pair
of accesses is protected or not.

Besides the code that initialises a new plugin, the data race detector implements only
the flow-insensitive traversal loop and data types representing accesses and data races since
all other necessary functions are already available in Deadlock. Some parts of Deadlock were
extended for this purpose, e.g., cases before creation and after join from the concurrency
checking method from Section 3.3.1 were motivated by situations when shared structures
are initialised and destructed in non-concurrent parts of programs. Moreover the lockset
analysis was modified to compute both may- and must-locksets in a single run.

6.2 Evaluation and Future Work
For an evaluation of our data race detector, we used a set of 277 student programs with
roughly 250 lines of code each. In particular, the programs are from an advance course of
operating systems, and the tasks was to implement a ticket algorithm and simple shell using
the Pthreads API. For 264 of them, we have no information whether they contain a race or
not, but we assume that they are mostly race-free, and 13 of them contain data races that
were detected using dynamic analysis and described in [13]. Our tool has detected 8 out of
the 13 real data races and reported alarms in 77 out of the rest 264 cases. An example of
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an undetected race appears in a program, in which each thread creation initialises a lock
and therefore resets its status. Consequently, more threads can enter a critical section that
should be protected by this lock. Such a situation is not be detected by our lockset analysis
because it does not take into the account initialisation and destruction of locks.

We also tried to run the tool on some programs from the deadlock benchmark. However,
our race detector does not scale well on those programs yet. This is caused by a huge
number of detected memory accesses, followed by a number of concurrency checks. In the
future work, we want to use a more sophisticated algorithm for storing and manipulating
memory accesses, and optimise the concurrency checking, e.g., by using caching. Moreover,
unlike with deadlocks, some data races may be considered harmless, and therefore a more
sophisticated approach is necessary for their ranking.
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Chapter 7

Conclusion

In this thesis, we presented a design and implementation of Deadlock, a new static analyser
focusing on deadlock detection and implemented as a plugin of the Frama-C platform.
Deadlock implements several heuristics that target common programming patterns used
when programming with C/Pthreads (e.g., lock wrappers) and is able to analyse real-world
programs with a minimal number of reported false alarms. Since it is sometimes limited by
the underlying value analysis computed by the EVA plugin of Frama-C, we also designed
a light-weight mode that can be used when the value analysis does not scale well or when
its suitable parametrisation is too demanding.

A part of the Deadlock’s design is a thread analysis that is used to analyse multi-
threaded programs using sequential analysers of Frama-C, mainly EVA. This method can
be used as a base for new analysers, e.g., a data race detector, which we have already
implemented as a prototype tool. Our future work will concentrate on improving it, and
since it shares a significant part with our deadlock analysis, we believe that its development
can help to improve Deadlock as well.

Regarding Deadlock, we want to evaluate its precision and scalability on larger code
bases – if possible, even on the Linux kernel. This will probably require a careful evalu-
ation and possible adaptations of the techniques we use and probably also design of new
techniques to keep the high precision of our analyser but allow it to scale and handle the
low-level code of the Linux kernel. Finally, an interesting area of further experiments is
collaboration with dynamic analysis tools, namely the ANaConDA framework [14]. For
example, information obtained by static analysis can be used to guide noise injection, and
ANaConDA could then, hopefully, confirm possible bugs found by our analyser (while not
requiring so much resources as without the hints that our analysis can provide).
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Appendix A

Contents of the Attached Medium

The attached medium contains:

• /Deadlock/

– /src/ – Source codes of Deadlock.
– /tests/ – Automated tests.
– /include/ – Third-party code (patched files of the Ocamlgraph library)

• /Racer/

– /src/ – Source codes of Racer.
– /tests/ – Automated tests.

• /experiments/ – Results of experiments for both Deadlock and Racer.

• /tex/ – Source codes of this thesis.

• /xdacik00_bp.pdf – This thesis in PDF.
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