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Abstract
The goal of this thesis is to create a system, which is able to generate guitar tracks.

This problem consists of two main parts: acquisition of a training dataset and training of
a suitable deep learning model. The first part of the problem was solved by series of scripts
which filter and transform a set of songs with many instruments in Guitar Pro format
to a set of guitar tracks in pianoroll format. The second part of the problem was solved
by training a few convolutional and recurrent neural networks on the created dataset of
guitar tracks. Guitar tracks generated by these networks were compared to each other and
evaluated. Although, the generated tracks are not very harmonic and pleasing to the ear,
they show that convolutional networks are more suitable for generation of polyphonic music
than other types of neural networks.

Abstrakt
Cieľom tejto práce je tvorba systému schopného generovať gitarové stopy. Tento problém

pozostáva z dvoch hlavných častí: získanie trénovacieho datasetu a trénovanie vhodného
deep learning modelu. Prvá časť tohto problému bola vyriešená sériou skriptov, ktoré vy-
filtrovali a transformovali sadu skladieb s viacerými hudobnými nástrojmi z Guitar Pro
formátu na sadu gitarových stôp vo formáte pianoroll. Druhá časť problému bola vyriešená
natrénovaním niekoľkých konvolučných a rekurentných neurónových sietí na vytvorenom
datasete gitarových stôp. Gitarové stopy generované týmito sieťami boli navzájom porov-
nané a ohodnotené. Hoci vygenerované stopy nie sú veľmi harmonické a príjemné na
vypočutie, ukázujú, že konvolučné siete sú vhodnejšie na generovanie polyfónnej hudby
v porovnaní s inými typmi neurónových sietí.
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Rozšírený abstrakt

Cieľom tejto práce je tvorba systému schopného generovať gitarové stopy. Tento problém
pozostáva z dvoch hlavných častí: vytvorenie trénovacieho datasetu a následné natrénovanie
vhodného deep learning modelu na generovanie hudby.

Prvá časť tohto problému bola vyriešená nasledovným spôsobom. V prvom rade som
získal databázu, ktorá obsahovala okolo 55000 skladieb v Guitar Pro formáte. Každý z
týchto Guitar Pro súborov obsahoval niekoľko rôznych stôp s odlišnými hudobnými nástro-
jmi. Guitar Pro súbory tiež obsahujú takzvané značky (markers), ktoré označujú rôzne
sekcie skladby (napríklad: refrén, sloha, sólo, atď.). Mojím prvým cieľom bolo vytvoriť
dataset, ktorý by pozostával z gitarových stôp, ktoré by mali vyznačené jednotlivé sekcie
(napríklad: refrén, sólo, atď.). Po analýze databázy 55000 skladieb sa však ukázalo, že
takýto dataset nebude možné vytvoriť. Namiesto toho som sa rozhodol vytvoriť 2 datasety,
ktoré bolo možné vytvoriť z mojej databázy – dataset refrénov a dataset slôh. Tvorba
týchto datasetov bola úspešná. Vytvorený dataset refrénov pozostáva zo 7840 gitarových
stôp a dataset slôh pozostáva z 7030 gitarových stôp v pianoroll formáte. Vytvorené riešenie
tiež poskytuje jednoduchý spôsob tvorby nových datasetov gitarových stôp z Guitar Pro
skladieb.

Druhá časť problému bola vyriešená natrénovaním niekoľkých konvolučných a rekurent-
ných neurónových sietí na vytvorenom datasete refrénov. Celkovo som natrénoval 5 rôznych
neurónových sietí. Každá z týchto sietí bola trénovaná po dobu 20 epoch na celom datasete
refrénov. Najlepšiu presnosť: 51.6% na trénovacom datasete dosiahla rekurentná LSTM
sieť. Po natrénovaní každej siete som vygeneroval niekoľko testovacích gitarových stôp a
navzájom ich porovnal. Napriek očakávaniam, vygenerované stopy neboli veľmi harmon-
ické a príjemné na vypočutie. Prekvapivo sa však ukázalo že rekurentná LSTM, ktorá
dosiahla najvyššiu presnosť generovala jedny z najhorších výsledkov. Po zhodnotení vy-
generovaných stôp som usúdil, že vytvorené konvolučné siete sú vhodnejšie na generovanie
polyfónnej hudby v porovnaní s rekurentnými sieťami.
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Chapter 1

Introduction

Computational creativity is one of the fast growing areas of research in the field of artifi-
cial intelligence. This term can be loosely defined as an automated analysis and synthesis
of works of art. Unlike many other practical applications of artificial intelligence, such as
natural language and speech processing and face and object recognition, computational cre-
ativity is hampered by our inability to define it in objective terms. Questions like ”How do
we evaluate computational creativity?“ and ”What counts as creativity in a computational
system?“ are some of the still unanswered questions which motivate research in this area.

This thesis is focused mainly on a specific type of computational creativity: algorithmic
composition – interpreted literally, the use of algorithms to compose music. The concept
of algorithmic composition is nothing new. Musicians have been proposing methods that
can be considered algorithmic for centuries but the true algorithmic composition developed
only in recent years with advancement in computers and information technology as a whole.
State-of-art music generation systems are capable of generating very interesting musical
pieces. Songs generated by the state-of-art MuseGAN project [9] may serve as an example
to the reader.

This work summarizes different approaches to algorithmic composition, mainly musical
composition by neural networks. Neural networks are currently the fastest growing field
of artificial intelligence and they seem to outperform other machine learning methods in
many areas, including algorithmic composition. The next part of the work consists of the
description of different musical formats which were used in this work and an assessment of
current situation and plan of work.

In the following chapters I describe my own approach to the problem of algorithmic
composition utilizing neural networks. This can be broken down to two different tasks: the
acquisition of a dataset of guitar tracks with specific properties and training of some neural
networks on the created dataset. In my work, I try to take advantage of information about
different song sections (eg. intro, verse, bridge, chorus, solo, ...) and information about
song tracks (eg. rhythm or lead guitar, bass, drums, ...) contained in songs in Guitar Pro
format and use them for narrowing down a task of generating music for a neural network.
The final chapter describes experiments with trained networks and evaluates musical pieces
generated by the created neural networks.
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Chapter 2

Algorithmic composition

Algorithmic composition could be described as: ”a sequence (set) of rules (instructions,
operations) for solving (accomplishing) a [particular] problem (task) [in a finite number of
steps] of combining musical parts (things, elements) into a whole (composition)“ [7]. From
this definition it is apparent that it is not crucial to use computers for algorithmic com-
position as we often infer. Mozart, for example, created a system called Musikalisches
Würfelspiel (Musical Dice Game) which used dice to randomly generate music from pre-
composed options. [17] This game may be considered a type of algorithmic composition
too.

The first computational model for algorithmic composition was created only in 1959,
when Hiller and Isaacson used random number generators together with Markov chains to
generate music. [17] Since then researchers have been addressing the problem of algorithmic
composition from many different angles. The different methods for algorithmic composition
can be categorised based on their most prominent feature, into these sections:

2.1 Grammars

2.2 Symbolic, Knowledge-Based Models

2.3 Markov Chains

2.4 Evolutionary Models

2.5 Self-Similarity and Cellular Automata

2.6 Artificial Neural Networks

These methods will be described in detail in next subsections. The categorization and
descriptions of methods were loosely adopted from [17] and [10].

2.1 Grammars
In broad terms, a formal grammar may be defined as a set of production rules for strings
in a formal language. Strings are generated by repeatedly applying rules, in a sequence of
so-called derivation steps. Because of the repeated application of the same rules, grammars
are well suited for representation of systems with hierarchical structure. This property is
ideal for the problem of algorithmic composition as hierarchical structures are present in
most styles of music.
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The most important step for algorithmic composition by grammars is the definition of
the set of rules. While early authors derived these rules by hand from principles grounded
in music theory, other methods are possible. These methods usually distill a grammar
by examining a corpus of pre-existing musical compositions (for example by evolutionary
algorithms). Another important aspect of the automatic composition process is the selection
of the grammatical rules which will be applied. Common solution is the use of activation
probabilities for the rules (so called stochastic grammars).

The main disadvantages of formal grammars are:

∙ Difficulty to manually define a set of grammatical rules to produce a good composition.

∙ On the other hand, generation of the rules of grammar automatically (eg. by evolu-
tionary algorithms) does not produce great results.

∙ Grammar can usually generate a large number of musical strings of questionable
quality.

2.2 Symbolic, knowledge-based models
Knowledge-based system (KBS) is an umbrella term unifying various rule or constraint-
based systems. These systems represent knowledge as more or less structured symbols.
The use of KBS for algorithmic composition seems to be a natural choice because the
knowledge about musical composition has traditionally been structured in the form of a set
of rules for manipulating musical symbols. Their main advantage is their explicit reasoning
(they can explain their choice of actions). Although, the rules implemented in KGB are
usually static, part of the knowledge may also be dynamically changed or learned (eg. using
evolutionary algorithms).

In spite of looking like the most suitable choice for algorithmic composition, KBS still
exhibit some problems:

∙ Formation of rules and constraints for algorithmic composition is very difficult and
time consuming and depends on the ability of an expert to clarify the base concepts
and find a usable representation.

∙ KBS might become overly complicated when adding all the ”exceptions to the rule“
which is necessary in this domain.

KBS are often combined with other methods for algorithmic composition to provide better
results.

2.3 Markov chains
Markov chain is a stochastic model describing a sequence of possible events (states) in
which the probability of each event depends only on the previous event (state). Markov
chains can be represented as labeled directed graphs (nodes represent states, edges represent
transitions and edge values represent their probability), or as probability matrices, which
are more common. For the task of algorithmic composition, these probability matrices
may be either induced by training from a corpus of pre-existing compositions, or derived
manually from music theory. The former is a more common way to use them in research.

4



The states of Markov chain are usually mapped to a single note or a sequential group of
notes played for a certain time.

Some of the main problems of the Markov chains for algorithmic composition are:

∙ Necessity to find the probabilities of notes by analysing many pieces when creating
Markov chain by hand.

∙ Markov chains generated from corpus of pre-existing compositions often capture just
local statistical similarities and they are not able to capture higher or more abstract
levels of music.

Among others, Hidden Markov Models, generalizations of Markov chains, were used
extensively for algorithmic composition too.

2.4 Evolutionary models
Evolutionary algorithms (EAs) use mechanisms inspired by biological evolution, where
a changing set of candidate solutions (a population of individuals) undergoes a repeated cy-
cle of evaluation, selection and reproduction with variations (eg. mutations or combination
of individuals). These algorithms have proven to be very efficient for problems with large
search spaces, such as the problem of algorithmic composition. This property together with
their ability to provide multiple solutions makes them suitable for algorithmic composition.
EAs may be divided into two groups based on the type of their fitness function.

Use of an objective fitness function. The candidate solutions are evaluated by some
formally stated fitness function. This type of EAs depends heavily on the amount of
knowledge that the system possesses (in form of a complicated objective fitness function).

Use of a human as fitness function (so-called Interactive Genetic Algorithms). In
this case, a human replaces the fitness function and performs the evaluation of candidate
solutions. This type of EAs suffers from two main problems:

∙ Subjectivity of users (evaluators).

∙ Efficiency – the user must hear all potential solutions to evaluate a population.

2.5 Self-similarity and cellular automata
According to research, the spectral density of an audio signal (for music of many different
styles) usually follows a 1/𝑓 distribution, where 𝑓 is the frequency of the signal. This
type of signal is usually referred to as pink noise and it occurs naturally in many different
data series, eg. meteorological data. It was discovered, that random compositions where
the pitches of notes were determined by pink noise were perceived as more musical and
pleasing by an audience. It is believed, that this is caused by self-similarity in the structure
of pink noise.

A self-similar object is an object which is exactly or approximately similar to a part
of itself. This is the defining property of fractals and also a common feature of many
classical music compositions. That is why the fractals and chaotic systems (which have
fractal characteristics) have been extensively used as a source of raw material for com-
positions. Commonly used techniques for generation of self-similar musical patterns are
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iterated function systems, non-linear maps, non-linear dynamical systems, L-systems or
musical rendering of fractal images. These techniques also include cellular automata which
are a discrete version of chaotic dynamical systems and can be used to generate fractal
patterns.

A cellular automaton (CA) is a discrete model consisting of a regular grid of cells, each
in one of the finite number of states. In each time step, each cell’s state is updated according
to some deterministic rules. These rules are usually defined by a composer but there were
also attempts to learn the rules of CA by a neural network or evolutionary algorithms.

Overall, the methods that produce self-similar patterns and cellular automata are not
suitable for generation of full-fledged algorithmic compositions and are more commonly
used to generate raw material for composition or used together with other methods for
algorithmic composition.

2.6 Artificial neural networks
Artificial neural networks or simply neural networks (NNs) are computational models
vaguely inspired by biological neural networks that constitute animal brains. They are
composed of interconnected sets of artificial neurons (imitation of a biological neuron)
which transform some inputs to certain outputs. They are typically used in supervised
learning, where a set of examples (inputs with corresponding outputs) is used to train the
network.

As for the problem of algorithmic composition, this means that NNs need a pre-existing
corpus (dataset) of music compositions (preferably in a similar style), to be able to ”learn“
and imitate the style of these compositions. One of the most important aspects of algorith-
mic composition by NNs is the mapping between the music notation and inputs/outputs
of the network. Mapping of music notation to pianoroll format (see 4.3) is among the most
frequently used mappings. The type and the architecture of the NN is also very important
as each architecture exhibits different behavior. Both feed-forward and recurrent networks
were used to compose music in the past.

Neural networks are very often coupled with other approaches to algorithmic composi-
tion, for example:

∙ creation by refinement – gradient-descent algorithm (or similar) used to create
a composition from a random pattern with NN used as critique (NN was trained to
return a musicality score of a given composition)

∙ NN + agents – NN generates basic melody by segments and rule-based agents
elaborate and extend the melody.

∙ Markov Chain + NN – Markov chain creates motifs with relative pitch and after
that NN assign absolute pitch to each motif.

∙ NN + chaotic system – NN trained with pre-existing composition together with
pseudo-random musical input from a chaotic system (goal was to generate more com-
plex compositions).

∙ NN + evolutionary algorithms (most popular) – NN trained to act as a fitness
function of an evolutionary algorithm for selection of best candidates.
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Chapter 3

Neural networks

This chapter is dedicated to more detailed description of neural networks (NNs) as this
thesis is focused on algorithmic composition by neural networks.

Neural networks are, as defined by Dr. Robert Hecht Nielsen: ”...a computing system
made up of a number of simple, highly interconnected processing elements, which process
information by their dynamic state response to external inputs.“ [6]. In simple words,
a neural network is a computational model loosely inspired by the way biological neural
networks in animal brains process information.

A basic building block of neural networks is artificial neuron. It is a mathematical
function with an arbitrary number of inputs and a single output, modeled after biological
neurons [2]. Scheme of artificial neuron (later only neuron) is shown in Figure 3.1. Input
of the neuron is a vector 𝑥⃗. For each of the inputs 𝑥0, 𝑥1, ..., 𝑥𝑛 there is a corresponding
weight 𝑤0, 𝑤1, ..., 𝑤𝑛 in the vector of weights 𝑤⃗. The input 𝑥0 is usually referred to as bias
and is fixed to a value of 1. Upon receiving inputs, each of the inputs 𝑥𝑖 is multiplied by its
corresponding weight 𝑤𝑖. The products are then summed and an activation function 𝜙 is
applied to the sum. Output of the activation function is the output of the whole neuron 𝑦.
Mathematically speaking, the output of neuron 𝑦 is a function:

𝑦 = 𝜙

(︂ 𝑁∑︁
𝑖=0

𝑤𝑖𝑥𝑖

)︂
where 𝜙 is an activation function, 𝑁 is a number of inputs, 𝑥𝑖 is i-th input and 𝑤𝑖 is
i-th weight. There exist a number of different activation functions. The most commonly
used functions are sigmoid activation function and rectified linear activation function – also
called ReLU (Rectified Linear Unit).

Neural network is formed by connecting artificial neurons: output of a neuron is con-
nected to input of another neuron. Neurons are usually organised into layers of three basic
types: input layer, output layer and hidden layer. Input layer is composed of ”passive“
neurons (they do not modify the input data) and it brings data into the network for further
processing by subsequent layers. Output layer is the last layer in NN that produces outputs
for the program. Hidden layer is a layer in between input and output layers, which neurons
take in a set of inputs and produce a set of outputs. NN with multiple hidden layers is
called deep neural network. In Figure 3.2, there is an example of a deep neural network
with an input layer, three fully connected hidden layers and a fully connected output layer.
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Figure 3.1: Artificial neuron with input vector 𝑥⃗, weights 𝑤⃗, activation function 𝜙 and out-
put 𝑦.

Figure 3.2: Deep neural network with input layer, output layer and 3 fully connected hidden
layers. Source: [15].

3.1 Convolutional neural networks
Convolutional neural networks (CNNs) are a class of deep neural networks, most commonly
applied to processing of data that has a known grid-like topology. They are primarily used
for processing of visual imagery. By their definition convolutional networks are: ” ... neural
networks that use convolution in place of general matrix multiplication in at least one of
their layers.“ [11]. Traditional layers (usually referred to as dense layers) multiply the
input matrix by a matrix of parameters. This means that the value of every output unit
of a layer depends on every input unit. On the other hand, convolutional layers have
sparse connectivity, which means that each output unit depends solely on inputs selected
by convolutional kernel.

Convolutional layer can be favourably used when it is expected that two inputs
that are close to each other are more related than inputs that are further apart from each
other. Convolutional layers are also shift invariant, which means that they are able to
detect features/objects even if these features/objects do not exactly resemble the training
examples. It is worth noting that a dense layer could perform the same transformation
of input as a convolutional layer, but compared to dense layers, convolutional layers are
more efficient – they require way less parameters and perform less floating point operations.
Convolutional layer has following attributes:

∙ shape of convolutional kernels – defines their width and height, eg.: (3, 3), (5, 5), etc.
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Figure 3.3: Typical architecture of CNN. Source: [3].

∙ number of input channels (usually defined by num. of output channels of previous
layer)

∙ number of output channels – defined by number of filters (structures of multiple kernels
stacked together)

∙ stride – describes the size of the convolutional step of the kernel, eg.: (1, 1), (2, 2),
etc.

∙ padding – describes the type of padding of the input

Architectures of convolutional networks usually contain so-called pooling layers too.
Pooling layer replaces the output of the network at a certain location with a summary
statistic of the nearby outputs [11]. By this it reduces the dimensions of the data received
from the previous layer. One of the most common types of pooling layers is max-pooling,
which downsamples the input representation by taking the maximum value over the window
which is shifted over the whole input. A max-pooling layer has following attributes:

∙ pool size – defines a shape of the pooling window, eg.: (2, 2), (2, 1), etc.

∙ stride – describes shifting of the pooling window, eg.: (1, 1), (2, 2), etc.

A typical architecture of CNN is portrayed in Picture 3.3. This network consists of
two pairs of convolutional layer + pooling layer (subsampling) and final dense layer which
produces output. Networks like these are usually used for classification or detection of
objects in images.

Convolutional networks can be favourably used for the generation of music. Each mu-
sical piece can be represented as an ”image“, which is referred to as pianoroll (see 4.3).
Properties of pianorolls are very similar to properties of normal images. Notes/chords close
to each other are more related than notes/chords further apart and notes/chords are in-
variant of their position in the pianoroll. The convolutional kernels are expected to detect
different kinds of chords or notes and their alteration in time.

3.2 Recurrent neural networks
Recurrent neural networks (RNNs) are a family of neural networks used mainly for pro-
cessing of sequential data. They are designed to recognize data’s sequential characteristics
and predict the next likely scenario [11]. These networks can be described as directed cyclic
graphs with feedback loops, which allow information to persist (often described as a memory
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of the network). Classic RNNs, however, suffer from a so-called vanishing gradient problem
which causes the drop of performance of the networks and their inability to ”remember“
information for longer periods of time. One solution to this problem is usage of Long-short
Term Memory units in the recurrent network.

Figure 3.4: Long short-term memory unit. Source: [4].

Long-Short Term Memory networks

Long-Short Term Memory (LSTMs) RNNs belong to a special group of gated RNNs. Net-
works from this family are one of the most effective models for sequence modelling. A com-
mon LSTM unit (shown in Figure 3.4) is composed of 4 cells, an input gate, an output gate
and a forget gate. The cell remembers values over arbitrary time intervals and the three
gates regulate the flow of information into and out of the cell [4]. The gates enable the
network to figure out what data is important and should be remembered and looped back
into the network, and what data can be forgotten.

Musical pieces are basically a type of sequential data, so the usage of a recurrent network
for music generation is an obvious choice. Among many types of RNNs, LSTM networks
are the most suitable for generation of musical pieces because of their ability to remember
important information about notes/chords played in the past and use this knowledge to
predict what is played in the next time step. It was also proven that these networks
perform better than other types of RNNs.
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Chapter 4

Overview of different music
formats

This chapter provides a quick overview of different music formats which were used during
the creation of a training dataset.

4.1 MIDI
MIDI (acronym for Musical Instrument Digital Interface) is a technical standard describ-
ing communications protocol and digital interface used for recording, playing, editing and
synthesis of music in a computer. A MIDI file contains one or more tracks, each containing
a list of events (messages) with time information for each event. Each MIDI event contains
3 basic parameters: time information (relative to previous event), track number, and type
of MIDI event [12]. The most important MIDI events are:

∙ Note On and Note Off events: MIDI key press and release signalization. Both of
them have 2 parameters:

– key (note) number - from 0 (𝐶−1, about 8.18𝐻𝑧) to 127 (𝐺9, 12500𝐻𝑧)
– velocity - force with which a note is played

∙ Time Signature meta-event: sets the time signature of a MIDI song, eg. 4/4, 3/4,
7/8, etc.

∙ Key Signature meta-event: sets the key of a MIDI song, eg. C dur, e moll, etc.

4.2 Guitar Pro format
Guitar Pro is a tablature editor software for guitar, bass and other fretted instruments. It
allows creation of musical scores and backing tracks for other instruments eg. drums and
piano, too [14]. Files composed in the Guitar Pro editor are saved as .gp, .gpx, .gp5,
.gp4 and .gp3 file formats, each corresponding to different versions of software. It is worth
noting that there exist other free, open source alternatives to Guitar Pro like Tux Guitar,
that use Guitar Pro file formats. Example of a song opened in Guitar Pro editor is shown
in Figure 4.1.
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Figure 4.1: Song in GPX format opened in Guitar Pro editor. Source: [1].

Same as a MIDI file, a Guitar Pro file contains one or more tracks. Each track consists of
measures and each measure consists of beats. A single beat contains notes that are played in
that beat. A measure can also contain other meta information like: time signature, tempo,
information about repetitions of measure, length of measure, lyrics or markers. Each of
these information can be visualized or played using Guitar Pro editor (or other open source
editor) as shown in Figure 4.1. Markers are used for providing additional text information
and they usually contain name of the section of the song, eg. Intro, Chorus, Verse, etc..
Marker Intro can be seen in the Figure 4.1 in the beginning of the song.

Compared to MIDI, Guitar Pro divides song into measures, which then contain notes.
Because of this, notes in Guitar Pro do not contain time information compared to notes in
MIDI. The relative time of a note in a measure can be determined from type of the note
(eg. half, quarter, etc.) and tempo with time signature of the measure.

Figure 4.2: Example pianoroll. Source: [8].
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4.3 Pianoroll
Pianoroll is a music storing format which represents a musical piece as a score-like matrix.
The vertical axis represents pitch and horizontal axis time. Pitch has 128 different values,
from 0 – 𝐶−1 to 127 – 𝐺9 (same range as MIDI). The values in pianoroll matrix represent
the velocities of the notes. Velocity of a note can be simply interpreted as the loudness of
the note when it is played. Time axis can be represented in absolute timing or symbolic
timing. For absolute timing, the actual timing of note occurrence is used. For symbolic
timing, the tempo information is removed and thereby each beat has the same length. [8]
Example of a pianoroll is shown in Figure 4.2.
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Chapter 5

Assessment of the current state
and work plan

Suitable training dataset of musical pieces is one of the most important things for a success-
ful training of a neural network. There already exist plenty of datasets with eg. classical
songs, jazz songs, etc. in MIDI format – for example [20]. Songs in MIDI format usually
contain a few tracks, each with a different instrument. Each of the tracks contain some
notes which are played by the instrument. Aside from these information, songs in MIDI for-
mat usually do not contain any additional information which could be useful for algorithmic
composition.

On the other hand, songs in Guitar Pro format often do contain some additional in-
formation. These information are for example: information about repetitions, detailed
information about an instrument in a track and mainly information about song sections.
The song sections specified in songs in Guitar Pro format are for example: chorus, bridge,
solo, outro, etc.. The information about song sections could be favorably used to train
a neural network (or some other method of algorithmic composition) to generate music
which resembles certain song sections.

Almost every song in Guitar Pro format also contains one or more guitar tracks which
are usually described as eg. lead guitar, rhythm guitar or distortion1 guitar and acoustic
guitar. This concrete description of the type of guitar could be also beneficial for the
training of a network on a specific type of guitar track. Another advantageous aspect is
that most songs in Guitar Pro belong to the following genres: Rock, Metal, Punk, Blues –
which are all pretty similar to each other.

Because of these properties (of Guitar Pro songs) I initially wanted to create my own
dataset of guitar tracks with time-aligned description of song sections. This
turned out to be the wrong approach and a dataset like this would be impossible to create
– described in Section 6.2. So instead of the dataset with time-aligned descriptions of song
sections I decided to create datasets of guitar tracks of specific song sections. This
approach was successful and is described in Section 6.3.

It is very important to select some mapping of music notation (of songs from a dataset)
to input/output of a neural network. I decided to use one of the simplest: mapping of
Guitar Pro songs to pianoroll matrices. Pianorolls can be fed directly into the neural
network without any additional changes. This mapping provides a lot of variability and

1Distortion is a special type of guitar effect which changes the sound of electric guitar. It is used mainly
in rock and metal songs.
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does not restrict neural networks which could be both advantageous and disadvantageous.
The whole dataset, which I created, is therefore saved in the form of pianorolls.

After the creation of the dataset, I planned to design and experiment with different
neural networks, mainly convolutional neural networks and LSTM networks. These are the
networks that I planned to train on my dataset:

∙ Dense-only NN [implemented – see 7.2]

∙ CNN with 1-dimensional output [implemented – see 7.2]

∙ CNN with 2-dimensional output (autoencoder) [not implemented]

∙ LSTM [implemented – see 7.2]

∙ LSTM Sequence-to-sequence (autoencoder) [implemented – see 7.2]
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Chapter 6

Creation of a training dataset from
Guitar Pro files

To create a dataset of guitar tracks with desired properties I required a sufficient amount
of Guitar Pro songs from which I could filter out the suitable ones. The database of Guitar
Pro songs that I eventually used can be accessed on this website: Guitar Pro database1. It
contains 52512 Guitar Pro files that are sorted according to artists. It is one of the largest
freely available databases of Guitar Pro songs that I found.

I used Python 3.7 together with Jupyter notebook for the analysis and the preprocessing
of songs. Python 3.7 was an ideal choice because it contains libraries that are able to process
Guitar Pro and MIDI files. The libraries, which I eventually used, are: NumPy [16], pretty-
midi2 and PyGuitarPro3.

6.1 Analysis of Guitar Pro files
After acquiring the database of Guitar Pro songs I proceeded with analysis of the songs
using Python library PyGuitarPro. My first objective was to find out how many songs in
this dataset contain markers (see 4.2). Presence of markers in a song was essential for the
creation of a dataset of guitar tracks with time-aligned description of song sections. Using
a Python script (see dataset_creation/stats.py) I found out that out of 52512 total
songs, 16747 contained at least one marker – 31.89% of songs contained a marker.

To simplify the analysis of Guitar Pro files, I also saved all available information about
songs with at least one marker to a JSON file. The saved information were: title, artist,
key, number of measures, tempo, information about tracks (name, actual play time), in-
formation about measures (serial number of measure, markers, time signature info, tempo
info, repetition info). Actual play time (percentage) of a track was calculated by counting
all the measures with at least one note and dividing it by the total number of measures in
the song. These statistics were later used for analysis and filtration of songs.

From now on, I focused solely on songs that contained at least one marker. After
examining the markers in songs I found out that there are many synonymous markers,
which described the same section of the song eg.: Chorus and Refrain, Solo and Guitar Solo,
etc., or synonymous markers with serial numbers eg.: Verse and Verse 1 or 1st Verse, etc..

1https://uloz.to/file/15ox6Hq7
2https://github.com/craffel/pretty-midi
3https://github.com/Perlence/PyGuitarPro
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Section / Marker category Num. of songs with the section1

Chorus approx. 10500
Verse approx. 10500
Intro approx. 10000
Solo approx. 7500

Outro approx. 6500
Bridge approx. 4500

Interlude approx. 3000
Pre-chorus approx. 2500

Figure 6.1: Different song sections / marker categories with the number of occurrences in
the dataset of Guitar Pro songs. These song sections / marker categories are also referred
to as recognized markers.

Because of that, I tried to put the most frequent markers into certain categories. Each of the
markers was changed to lowercase and white spaces and other unnecessary characters were
removed. Synonyms like eg.: Chorus and Refrain were united to the single category named
Chorus using a simple logic. This way, I was able to determine the marker categories / song
sections shown in Table 6.1. They are later referred to as recognized markers. Markers,
which do not belong to one of these categories, are referred to as unrecognized markers.

Most of the Guitar Pro songs from my database consisted of more than one track and
did not contain solely guitar tracks but also tracks with other instruments like: bass, piano,
drums, etc.. Because of this, it was necessary to cleverly select the most suitable track in
each song. I aggregated the track names to categories (very similarly to how I aggregated
the markers) and acquired these guitar track categories:

∙ according to type of playing: rhythm guitar | lead guitar

∙ according to type of guitar: acoustic guitar | electric guitar

∙ according to used guitar effect: clean guitar | distortion guitar | overdrive guitar

∙ default category (no additional specification): guitar

6.2 Dataset of guitar tracks with time-aligned description of
song sections

Before I tried to create a dataset of guitar tracks with a time-aligned description of song
sections I defined a few conditions which would ensure that such a dataset would be suit-
able for training. A dataset needs to satisfy these conditions (in order according to their
importance):

1. Each song in the dataset has at least 4 song sections. These song sections are
indicated by time-aligned descriptions, each describing where the song section starts
and where it ends. All of the song sections have to belong to the group of recognized
markers described in Table 6.1.

2. Dataset consists of songs with a guitar track.
1Number of songs which contained at least one occurrence of the section.
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3. Each guitar track in the dataset is played during the whole song from which it was
extracted. This ensures that the guitar plays during each of the song sections and
there is no silent part.

4. Dataset contains at least 5000 different songs. If a dataset contained less songs, it
would not be large enough for training.

Analysis of 16747 songs which contained at least one marker led to the following re-
sults. To satisfy the condition No.1 we have to use only songs which contain at least 4
recognized markers but do not contain any unrecognized markers (see Table 6.1). Songs
with unrecognized markers can not be included in the final dataset because it is impossible
to determine what section does unrecognized marker represent. Number of songs which
contain at least 4 recognized markers is 11356. But the total number of songs with at least
4 recognized and 0 unrecognized markers is only 4753. This shows that although there are
a lot of songs which contain at least 4 recognized song sections lots of them contain some
unrecognized markers.

To satisfy the condition No.2 we have to select only songs which contain a guitar track.
Number of songs which satisfy condition No.1 and contain a guitar track is 3719.

And finally to satisfy the condition No.3 we have to select only songs with a guitar track
which plays during the whole song. Number of songs which satisfy condition No.1, No.2
and contain a guitar track which plays during the whole duration of song is only 1993!
This means that the condition No.4 is not satisfied and therefore a dataset of guitar tracks
with time-aligned description of song sections, which would satisfy these demands, cannot
be created.

Only 11.9% of Guitar Pro songs with a marker and only 3.8% of all Guitar Pro songs
from my database satisfy the first 3 conditions. The database of Guitar Pro songs that I used
was one of the largest freely available databases. Because the whole database contains such
a large amount of Guitar Pro songs (52512 total), it is possible to assume that a different
database of Guitar Pro songs would have a very similar percentage of songs (3.8%) which
would satisfy the first 3 conditions. Therefore, I assumed that the analysis of a different
database would lead to similar results.

6.3 Dataset of guitar tracks extracted from specific song sec-
tions

As it turns out, a dataset of guitar tracks with time-aligned description of song sections
cannot be created. That is why I decided to create a dataset of guitar tracks extracted
from specific song sections instead. Such a dataset would need to satisfy these conditions
(in order according to their importance):

1. Dataset contains exclusively parts of guitar tracks from a selected section of songs.
(eg. only choruses, only verses, etc.)

2. Dataset contains at least 5000 different songs. If a dataset contained less songs, it
would not be large enough for training.

These conditions can be satisfied more easily and the whole process of creation of this
dataset is described in the following paragraphs. Because Verse and Chorus were amongst
the most frequently recognized markers I decided to extract solely verses and choruses and
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Figure 6.2: Creation of dataset of guitar choruses in pianoroll format

create 2 different datasets. Dataset No.1 would consist of verses only and dataset No.2
would consist of choruses only. The following text will describe the creation of the dataset
of choruses in detail – the dataset of verses was created very similarly and therefore it is not
described in the next paragraphs. The whole process of creation of this dataset in pianoroll
format is shown in Figure 6.2 and will be described more closely in the next paragraphs.

As mentioned previously, I focused only on the track category labeled: guitar, especially
on the rhythm guitar category, because rhythm guitars usually have the most important
role during chorus or verse – they often play a main riff. For extraction of chorus guitar
tracks I used following algorithm (see dataset_creation/extract_sections.py):

For each song in dataset:

1. Check if the song contains a marker from category: Chorus. If not, continue with the
next song.

2. Find index of measure marked as Chorus (this is the beginning of chorus). Let’s call
this index – start.

3. Find index of next closest measure with different marker after measure at index start
(this is the end of chorus). If such a measure is not found use the index of the last
measure in the song. Let’s call this index – end.

4. Using function find_best_guitar_track() select the most suitable track, prioritiz-
ing rhythm guitar category over other guitar categories and prioritizing tracks that
are playing most of the time from measure at index start to end.

5. Using function extract_part() cut only measures from start to end from the track,
which was selected in the previous step, and save them as a new Guitar Pro file (.gp5
format) with all the necessary information like tempo and time signatures.

Using this algorithm I obtained around 10000 choruses! The easiest way to convert
these extracted choruses to pianorolls is: 1. convert a Guitar Pro chorus to MIDI and 2.
convert the MIDI to pianoroll and save it as NumPy’s compressed format: .npz.

1https://github.com/alexsteb/GuitarPro-to-Midi
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Figure 6.3: Fade-out and fade-in of notes. Figure 6.4: Thresholding with thresh.: 50.

Script dataset_creation/convert_gp_to_midi.py converts Guitar Pro choruses to
MIDI using this GuitarPro-to-Midi converter1. This program is written in C# as a package
for Unity. It is able to simulate the sound of different guitar effects (eg. different types of
harmonics, vibrato, muted notes, bending, etc.) very precisely [19]. To be able to use it
effectively I modified it slightly, allowing the execution from Python.

After the successful conversion of choruses to MIDI I used Python library: pretty-midi
to convert each of the MIDI files to pianorolls. A pretty-midi’s builtin function:
get_piano_roll() computes a pianoroll matrix (NumPy array) of a given MIDI. This
function computes a pianoroll with absolute timing, which means that the actual timing of
the note occurrence is used. Its parameter fs sets the sampling frequency of the columns
in pianoroll, i.e. each column is spaced apart by 1.0/fs seconds. I decided to set the
parameter fs to 20, which seemed to be sufficient sampling frequency after a number of
experiments. This means that each 20 columns of the pianoroll describe 1 second of the
song.

Pianorolls (NumPy arrays) produced by get_piano_roll() also contain information
about velocity of notes (see 4.3). Velocity of a single note in pianoroll can also change in
time, which simulates some guitar effect eg.: slide, hammer-on, pull-off, etc.. These effects
usually look like a continuous fade-out of one note (the note becomes quieter until it stops
playing) and a continuous fade-in of another note (volume of the note rises until it reaches
a max value), shown in Figure 6.3.

To further simplify the pianorolls, I decided to introduce uniform velocity of notes.
This means that a note is either played – value ”1“ or is not played – value ”0“. It was
achieved by thresholding the pianorolls using a threshold with value 50, which was selected
after examining the pianorolls and finding out that typical velocity of played notes is: 100.
Result of thresholding of the section from Figure 6.3 is shown in Figure 6.4.

Figure 6.5 shows what pitches occur the most in the choruses from my dataset – x-axis
shows different pitches, where 0 is 𝐶−1 and 127 is 𝐺9 and y-axis shows how many choruses
contain given pitch (in logarithmic scale). It is clear that the most occurring pitches are
in range 40 to 80. Assuming that most of the choruses from my dataset are played by
guitar and knowing that pitch range of guitar tuned to standard tuning is ⟨𝐸2, 𝐸6⟩1 –
which corresponds to range ⟨40, 88⟩ – I decided to discard all pianorolls which contained
pitches out of this interval. Pianorolls that contained even a single note with pitch in the
red-colored region in Figure 6.5 were discarded from my dataset.

Figure 6.6 shows the length of choruses from my dataset – x-axis shows length in seconds
and y-axis shows how many choruses are in a certain length interval. It is clear that there
are many really short choruses (only a few seconds long) but also choruses which were

1𝐸2 is empty lowest string and 𝐸6 is 24th fret on the highest string in standard tuning. Standard tuning
is the most common tuning of guitars.
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Figure 6.5: Pitch occurrence in choruses. Pitch value 0 corresponds to the pitch 𝐶−1 and
pitch value 127 corresponds to the pitch 𝐺9
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Figure 6.6: Number of choruses with certain lengths.

very long (almost a minute). With the assumption that choruses have usually under 30
seconds and over 8 seconds, I decided to discard all the choruses that have not satisfied
these constraints. Choruses between the two dashed lines in the Figure 6.6 were included
in my dataset – others were excluded from the dataset.

This whole process of filtering and processing of songs resulted in the dataset of 7840
guitar track choruses in pianoroll format. The whole dataset is located in directory:
datasets/chorus_npz. This is a sufficiently large dataset and it is suitable for training
of a neural network. All of the choruses in pianoroll format were compressed and saved
as NumPy’s zipped archives: .npz. A single zipped archive contains 500 choruses in pi-
anoroll format. This number was chosen because of the memory limitations of Google
Colaboratory1, where the created neural networks were trained.

The dataset of verses was created in a similar way as the dataset of choruses. The
dataset of verses contains 7030 guitar tracks in pianoroll format. The whole dataset is
located in directory: datasets/verse_npz. All of the verses are saved in .npz format.

1Google Colaboratory is a hosted Jupyter notebook service that provides free access to Google’s com-
puting resources. URL: https://colab.research.google.com/notebooks/intro.ipynb
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Chapter 7

Training of neural networks

At this point, 2 different guitar track datasets were at my disposal: dataset of choruses and
dataset of verses. Because the dataset of choruses was larger, I decided to train all of the
created neural networks on this dataset.

Implementation of this part of my work is written in Python 3.7 because of many well
documented, easy to use libraries. Deep learning models were created using high-level
machine learning library Keras, included in library Tensorflow 2.0 [5]. Preprocessing of in-
put and postprocessing of output from neural networks was achieved using many libraries,
mainly: NumPy, pretty-midi and midi2audio1. All models were trained in Google Colabo-
ratory.

7.1 Preprocessing, training and generation of musical pieces

Preprocessing and training of NNs

Each of the pianorolls from the dataset of choruses is a matrix with shape: (120, *), where
120 is the pitch range ⟨𝐶−1, 𝐺9⟩ and ”*“ represents the variable length of pianoroll (as each
of the choruses has different length). Because pianorolls contain solely notes which pitch is
in interval ⟨𝐸2, 𝐸6⟩, I decided to reduce the size of pianorolls to include only this interval
of pitches. This resulted in the following shape of pianorolls: (48, *), where 48 is the new
pitch range from ⟨𝐸2, 𝐸6⟩. Reduction of size of pianorolls is beneficial because it reduces
the number of inputs of neural networks and therefore reduces the number of trainable
parameters.

Created neural networks are trained to generate some length of music notes given some
preceding notes. In order to create a training set I used a sliding window which cuts the
pianorolls to smaller parts. I decided to use the sliding window with shape (48, 120), where
120 columns of pianoroll are actually 6 seconds of the song. Sections with shape (48, 120)
created by this sliding window are used as input of neural networks during training. The
column/s which follow an input section are a ground truth (or an expected output of the
network) corresponding to the given input section. Expected output of dense-only NN
7.2, stacked LSTM 7.2 and CNNs 7.2 is a single column which follows the input section.
Single column of the pianoroll transformed back to MIDI has actual length 1/20 of a second.
Expected output of Sequence-to-sequence NN 7.2 are 20 columns that follow the input

1https://github.com/bzamecnik/midi2audio
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section. 20 columns transformed back to MIDI have an actual length equal to 1 second.
Using this sliding window I acquired approximately 2 milion training samples.

All of the created networks were trained in batches, each containing 200 input sections
together with their ground truths. Since the music from my dataset is polyphonic (multiple
notes being on at the same time) this is a multi-label classification problem and hence
the use of binary cross entropy loss [13]. The neural networks were trained using Adam
optimization algorithm. Each of the networks was trained for 20 epochs on the whole
dataset of choruses. After each epoch a checkpoint of the network (a file which contains
learned weights of the network) was saved.

Generation of musical pieces:

To generate a musical piece by a trained network we must prepare a so-called musical seed.
Seed is a small section of a musical piece which is fed into the network at the beginning
of generation. The network then produces an output – a predicted column/s of pianoroll
which contains values between 0 and 1. This is caused by the sigmoid activation function
in the last layer of each network. Each value in the output column/s may be interpreted
as a ”probability“ that a note corresponding to given value is played. Because of that, it is
necessary to threshold the output from NNs to values: 0 (note is not played) and 1 (note is
played). Value of the threshold affects how many playing notes are produced by the neural
network. Adjusted output is then appended to the seed, and the network is once again fed
with new input which now includes output of the network from the last step. By repeating
this procedure it is possible to generate a music piece with any desired length.

After this procedure, the generated output is transformed to proper pianoroll by chang-
ing the shape of generated output from (48, *) back to (120, *) and changing the values

”1“ in pianoroll back to velocity ”100“. Pianoroll is then transformed using the utility
function piano_roll_to_pretty_midi()1 to MIDI format. Using the library midi2audio
and a sound font, the produced MIDI is transformed to playable .wav format.

7.2 Architectures of neural networks

Baseline dense-only NN

This neural network serves as a baseline (a comparison) to other more complicated neural
networks described later. Input of this dense-only NN is a tensor with shape (*, 120, 48),
where ”*“ symbolizes variable size of tensor – this is needed for training in batches with
variable size. 120 is the number of columns in an input pianoroll and 48 is the pitch range
of input pianoroll. Whole architecture of this neural network can be seen in Table 7.1.
Column Output shape describes the shapes of tensors produced by each of the layers.

Input layer of the network is followed by a flatten layer which reshapes the input for use
by dense layers. These initial layers are followed by 3 groups of dense, batch normalization
and drouput layers. Each dense layer has ReLU activation function and is followed by batch
normalization (for improvement of performance) and dropout layer with dropout rate of
0.3 (to avoid overfitting and to make the network more robust). Last layer is Dense with
sigmoid activation function and output shape (*, 48), which represents a single predicted
column of pianoroll (with actual length: 1/20 of a second). This model has exactly 8,855,238
trainable parameters.

1Source: https://github.com/craffel/pretty-midi/blob/master/examples/reverse_pianoroll.py
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Layer Output Shape
Input Layer (*, 120, 48)

Flatten (*, 5760)
Dense + Batch Norm. + Dropout (*, 1440)
Dense + Batch Norm. + Dropout (*, 360)
Dense + Batch Norm. + Dropout (*, 90)

Dense (*, 48)

Table 7.1: Architecture of the dense-only NN
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Figure 7.1: Training accuracy and loss of the dense-only NN

The model was trained for 20 epochs on the whole dataset of choruses. Model accuracy
and model loss is shown in Figure 7.1. The best accuracy achieved by this model is: 47.2%.
From the first figure it is clear that after the 15th epoch the accuracy of the network was no
longer improving and it began to fluctuate. On the other hand, loss was improving during
the whole training. Because the accuracy stopped improving at 15th epoch it is probable
that it would not improve more with a longer training.

Convolutional neural networks

After creating the baseline dense-only network I experimented with different convolutional
networks. At first I tried to use the architecture of CNNs which are usually used for image
recognition. Architecture of these networks consist of convolutional layers with kernels
shaped: (3, 3) or (5, 5), etc., alternated with max-pooling layers with the typical pool size:
(2, 2). Last layer of these networks is typically a dense layer. Although these networks
achieved training accuracy above 45% in 20 epochs, they did not produce very interesting
results. Songs generated by these networks were very simple and contained only a few notes
or even a single note which was played during the whole song.

Because of that, I tried to use different types of kernels in convolutional layers and
different max-pooling layers. Architectures of the two most interesting networks which I
created are shown in Table 7.2. These two networks are refered to as CNN Maxpool and
CNN Stride in the following paragraphs.

CNN Maxpool was created with the following thoughts in mind: I decided to use
a convolutional layer with 1 dimensional kernels with shape: (1, 5), with assumption that
these kernels would be able to recognize different chords. After the convolutional layer of
this type I decided to use a max-pooling layer with pool size: (2, 1), to reduce the length
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CNN Maxpool CNN Stride
Layer Kernel Filters Layer Kernel Filters
Input – shape: (*, 120, 48, 1) Input – shape: (*, 120, 48, 1)
Conv (1, 5) 16 Conv (1, 5) 16

Maxpool, size: (2, 1) — — Conv, strides: (2, 1) (3, 1) 16
Conv (1, 5) 16 Conv (1, 5) 16

Maxpool, size: (2, 1) — — Conv, strides: (2, 1) (3, 1) 16
Conv (5, 5) 32 Conv (5, 5) 32

Flatten Flatten
Dense – shape: (*, 48) Dense – shape: (*, 48)

Table 7.2: Architecture of the CNNs
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Figure 7.2: Training accuracy and loss of the CNNs

of the pianoroll to half. These conv. + max-pooling layers are repeated two times and
followed by a classic convolutional layer with 2 dimensional kernel with shape: (5, 5). All
of the convolutional layers have ReLU activation function. The last layer is dense with
sigmoid activation function and output shape (*, 48), which represents a predicted column
of pianoroll (with actual length: 1/20 of a second). This model has exactly 1,451,968
trainable parameters.

CNN Stride was derived from CNN Maxpool by the replacement of the max-pooling
layers with convolutional layers with shape: (3, 1) and strides shaped: (2, 1). The use
of convolutional layers with strides for the downsampling was inspired by this machine
learning article [18]. The convolutional layer with strides also performs the reduction of
length of pianoroll (same as a max-pooling), but unlike max-pooling it does not perform
a fixed operation. This could be beneficial because the network can learn a mathematical
operation that could be suitable for detection of chord transitions. This model has exactly
1,453,536 trainable parameters.

The training accuracy and loss are both shown in Figure 7.2. As expected, the CNN
Stride achieved both better training accuracy and better training loss than the CNN Max-
pool, in spite of having only a few thousand more parameters. CNN stride reached accuracy
50.42% while the CNN maxpool reached accuracy 49.15%. Both of them achieved better
accuracy than the baseline dense-only model.
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Layer Output Shape
Input Layer (*, 120, 48)

LSTM + Batch Norm. + Dropout (*, 120, 64/128/256)
LSTM + Batch Norm. + Dropout (*, 120, 64/128/256)

LSTM (*, 64/128/256)
Dense (*, 48)

Table 7.3: Architecture of the stacked LSTM network
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Figure 7.3: Training accuracy and loss of the stacked LSTM network

Stacked LSTM

This model consists of 3 stacked LSTM layers followed by a dense output layer shown in
Table 7.3. Stacking LSTM layers makes the model deeper which is beneficial as depth
of neural networks is generally attributed to the success of networks on a wide range of
prediction problems. Input of the network is the same as the dense-only NN and the
network also contains batch normalization and dropout layers for the same reasons as they
were introduced in the dense-only NN. Output is once again a Dense layer with sigmoid
activation function as in the dense-only NN. I trained 3 different version of this network
differing in number of units1 in LSTM layers:

Num. of LSTM units Num. of trainable parameters
64 98,352
128 360,496
256 1,376,304

These 3 versions of the stacked LSTM were trained for 20 epochs on the whole dataset
of choruses. Accuracy and loss of each version of the network is shown in Figure 7.3. As
expected, all of the versions, including 64 units LSTM with only a fraction of trainable
parameters compared to the dense-only network, reached higher accuracy on training data
compared to the baseline dense-only network. Out of the three, the 128 units LSTM
acquired the highest accuracy: 51.6%. It was unexpected that 256 units LSTM would
reach the same accuracy as the 64 units LSTM in 20 epochs, in spite of having 14 times
more trainable parameters. However, it is probable that 256 units LSTM would reach the
same or higher accuracy than 128 units LSTM after a longer training.

1Increase of the number of LSTM units leads to the increase of the number of neurons in the LSTM cell.
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Layer Output Shape

en
co

de
r Input Layer (*, 120, 48)

LSTM + Batch Norm. + Dropout (*, 120, 64/128/256)
LSTM (*, 64/128/256)

de
co

de
r Repeat Vector (*, 20, 64/128/256)

LSTM + Batch Norm. + Dropout (*, 20, 64/128/256)
LSTM + Batch Norm. + Dropout (*, 20, 64/128/256)

Dense (Time Distributed) (*, 20, 48)

Table 7.4: Architecture of the Seq2seq network
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Figure 7.4: Training accuracy and loss of the Seq2seq network

Sequence-to-Sequence LSTM

This Sequence-to-Sequence (Seq2seq) model which uses multi-layered LSTM was adopted
from Microsoft’s Music Generation example [13]. In this example, the model was trained
on pianoroll matrices of scale-chords dataset. Although the scale-chords dataset is much
simpler and smaller than my dataset of choruses (it contains only 156 scale chords files in
MIDI format), I wanted to try how this model scales to my more complicated task.

Architecture of Seq2seq consists of two main parts: encoder and decoder which are shown
in detail in Table 7.4. Input of the encoder is the same as the input of the dense-only NN.
Input layer of the encoder is followed by a group of LSTM, batch normalization and dropout
layers – this LSTM layer returns whole sequences. Last layer of the encoder is LSTM layer
which returns only the last output of LSTM cell, hence the shape (*, 64/128/256). Output
of the encoder is an internal representation of an input pianoroll learned by the network.
Decoder contains 2 groups of LSTM, Batch Normalization and Dropout and a single output
Dense layer with sigmoid activation function. Output of the network is tensor with shape
(*, 20, 48) which represents prediction of 20 columns of pianoroll (with actual length: 1
second).
I trained 3 versions of Seq2seq differing in number of units in LSTM layers:

Num. of LSTM units Num. of trainable parameters
64 131,504
128 492,336
256 1,902,128
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All of the 3 versions were trained for 20 epochs on the whole dataset of choruses and their
accuracy and loss is shown in Figure 7.4. Highest accuracy was acquired by Seq2seq with
256 units model: 33.85%, which is less than the accuracy achieved by the baseline dense-only
NN. This could be caused by the fact that the Seq2seq network is more complicated and
takes more time to reach better accuracy or because this network predicts the next second
compared to the dense-only NN which predicts only 1/20 of a seconds. The accuracy and
loss of networks continued to improve steadily over the epochs. It is probable that longer
training could lead to better results.
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Chapter 8

Experiments and evaluation of
results

This chapter describes my experiments and evaluates music pieces generated by created
neural networks. To compare the networks to each other, I selected a few choruses from
my dataset and used the first 6 seconds from each of them as a seed. These seeds were used
to generate new 14 seconds of music by each of the neural networks. Each network was
initialized to weights learned after the 20th epoch of its training. After a few experiments
I decided to set the threshold (see 7.1) to value 0.1 as it produced the best results. After
generating 14 seconds of new music from each seed, by each network, I plotted the pianorolls
and saved them in MIDI and .wav formats.

8.1 Analysis of generated musical pieces
Figures 8.1, 8.2 and 8.3 displayed at the end of this chapter, show pianorolls generated by
each network using 3 different seeds. Blue line separates the seed with a length of 120 time
steps (equal to 6 seconds) and a new, generated part of the pianoroll which is 280 time
steps long (equal to 14 seconds). All of the pianorolls are labeled with the type of network
which generated given pianoroll and name of the song used as seed.

Figure 8.1 shows pianorolls generated from seed (chorus) from song Nothing Else Mat-
ters by Metallica, Figure 8.2 show pianorolls generated from seed (chorus) from song Layla
by Eric Clapton and Figure 8.3 show pianorolls generated from seed (chorus) from song
Hells Bells by AC/DC. These songs were selected because each of them shows a different
style of guitar playing. Nothing Else Matters seed is a simple sequence of 4 chords whilst
Layla seed is a more complicated sequence of chords with muted parts. On the other hand,
Hells Bells seed does not contain chords – it is only a sequence of notes. These 3 songs
should provide a good overview of capabilities of trained neural networks.

The plotted pianorolls contain these labels: label Dense refers to the baseline dense-only
network, label CNN Maxpool refers to CNN which consists of convolutional and max-pooling
layers, label CNN Stride refers to CNN which contains only convolutional layers with stride.
Label LSTM Stacked refers to network with multiple LSTM layers – the version with 128
units, which achieved highest accuracy, and label Seq2seq refers to Sequence-to-sequence
LSTM network – the version with 256 units, which achieved highest accuracy. All of these
networks are described in Chapter 7.2.
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Songs generated from Nothing Else Matters seed:
The pianorolls are shown in Figure 8.1 and MIDI files and WAV files of the generated

songs are located in folder: results/thesis_examples/n_e_m/. Dense and LSTM Stacked
networks continuously play the notes from the last chord in the input sequence, which is
quite uninteresting and unwanted behavior. CNN Maxpool starts playing some additional
notes but after a few seconds it stabilizes and continuously plays the same notes. CNN
Stride and Seq2seq networks show more interesting behavior. CNN Stride plays a few quite
harmonic chords/notes which do resemble the seed to some extent, whilst Seq2seq network
plays many disharmonic notes without any structure. Both of these networks produce
output without a sense of rhythm.

Songs generated from Layla seed:
The pianorolls are shown in Figure 8.2 and MIDI files and WAV files of the generated

songs are located in folder: results/thesis_examples/layla/. Dense and LSTM Stacked
networks produce output very similar to the previous one. They continuosly play the last
notes from the seed. CNN Maxpool starts to play many disharmonic notes which do not
resemble the initial input and after a while stabilizes once again. CNN Stride and Seq2seq
networks both play some chords which were present in the seed but after a while they start
to play random notes without a sense of rhythm.

Songs generated from Hells Bells seed:
The pianorolls are shown in Figure 8.3 and MIDI files and WAV files of the generated

songs are located in folder: results/thesis_examples/hells_bells/. Dense, LSTM
Stacked and CNN Maxpool continuously play a few notes (LSTM Stacked plays only a
single note) and do not produce anything interesting. Seq2seq network plays a few harmonic
notes with two muted parts. CNN Stride produces an interesting melody which however
do not resemble the input seed.

Summary

The baseline dense-only network produced very simple and uninteresting music in each of
the examples. Because the LSTM Stacked reached the highest training accuracy: 51.6%
among the created networks, I assumed that it would produce the best and most musical
results. Despite my expectations, LSTM Stacked produced musical pieces which were very
similar to the baseline dense-only network. This could be caused by a short training (only
20 epochs) or because of the small number of LSTM layers. CNN Maxpool showed more
variations in its output but overall played a lot of disharmonic notes and did not produce
pleasing music pieces. Seq2seq network together with CNN Stride produced the best results.
CNN Stride was arguably the most interesting music generator out of these networks.

However, even the tracks generated by these CNN Stride were not very good sounding.
All of the generated tracks lacked a defined structure and a sense of rhythm. This was
expected as the lack of structure and a sense of rhythm is common among many music
generators [10]. Another problem was that networks often played disharmonic notes and
the generated songs contained completely different notes and chords compared to their
input seed. The output of the networks often stabilized and the network continued to play
the same chord.

Further possible improvements:
Better results could probably be achieved by the following improvements. Deeper neural

networks with more training parameters would probably generate better melodies, as the
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increase in depth of neural networks leads to better results in many machine learning
tasks. On the other hand, such networks would require larger computational resources
for the training. Different mapping of musical symbols to input/output of the network
could also lead to better results. The mapping of musical symbols to pianoroll provides
a lot of variability and the restrictions on what could be and could not be played are
minimal. Mapping of musical symbols to a more strictly defined representation of music
would probably be beneficial.

Figure 8.1: Music pieces generated from seed from song: Nothing Else Matters by Metallica.
See folder: results/thesis_examples/n_e_m/ with MIDI and WAV files of these songs.
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Figure 8.2: Music pieces generated from seed from song: Layla by Eric Clapton. See folder:
results/thesis_examples/layla/ with MIDI and WAV files of these songs.

Figure 8.3: Music pieces generated from seed from song: Hells Bells by AC/DC. See folder:
results/thesis_examples/hells_bells/ with MIDI and WAV files of these songs.
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Chapter 9

Conclusion

The goal of this thesis was to create a neural network which would be able to generate
musical pieces. This task consisted of two different subgoals: creation of a dataset and
training of a neural network.

The first subgoal was fulfilled only partially – I managed to create two separate guitar
track datasets: dataset of choruses and dataset of verses in pianoroll format. Developed
system of scripts is, however, capable of creating similar datasets of other song sections (eg.
intro, solo, etc.) from any set of Guitar Pro songs.

The second subgoal was fully satisfied – I managed to train a few different types of
neural networks – different LSTMs and CNNs – on the dataset of choruses. Each of the
networks was trained for 20 epochs on the whole dataset. Among the created networks,
the recurrent network with multiple stacked LSTM layers achieved the highest training
accuracy: 51.6%. After the training, a few example tracks were generated by each of the
networks. The generated tracks were evaluated and compared to each other. These tracks
were, however, not as pleasing to the ear as expected. In spite of this, the results have
shown that convolutional neural networks seem to be more suitable for the generation of
polyphonic music than recurrent neural networks.

The results could probably be improved by using bigger and deeper neural networks,
which would require more processing power, or by changing the mapping of musical symbols
to input/output of the network.
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