
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

WEB APPLICATION FOR CERTIFICATE MANAGE-
MENT
WEBOVÁ APLIKACE PRO SPRÁVU CERTIFIKÁTŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SIMON KOBYDA
AUTOR PRÁCE

SUPERVISOR Ing. RADEK BURGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Kobyda Simon
Programme: Information Technology
Title: Web Application for Certificate Management
Category: Web
Assignment:

1. Study current technologies for creating applications with a thick web client focusing on
React.js and related technologies.

2. Learn about Cockpit project, its architecture, and the way of plugin development.
3. Design a Cockpit plugin for managing Linux certificates via the web interface.
4. Implement the proposed solution using appropriate technologies. Also implement a set of

tests to verify the functionality of the plugin.
5. Perform testing of the implemented solution.
6. Evaluate the results.

Recommended literature:
Banks, A.: Learning React: Functional Web Development with React and Redux, O'Reilly,
2017
Projekt Cockpit: https://cockpit-project.org/

Requirements for the first semester:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Burget Radek, Ing., Ph.D.
Consultant: Papadourakis George, prof., TEI of Crete
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 31, 2020
Approval date: April 20, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22969/2019/xkobyd00 Page 1/1

http://www.tcpdf.org

Abstract
The aim of this work is to create software to request and manage X.509 certificates. Its
main emphasis is to provide a smart and intuitive user interface, which would enable ad-
ministrators, who do not have much knowledge about certificate, to request and manage
them. The work is implemented using React as a plugin for Cockpit, which by extension
will fit it into a bigger picture of Red Hat’s portfolio.

Abstrakt
Cieľom tejto práce je vytvorenie softvéru na získanie a správu X.509 certifikátov. Hlavný
dôraz je na poskytnutie múdreho a intuitívneho uživateľského rozhrania, ktoré by dovolilo
spravovať certifikáty aj administrátorom, ktorí nemajú o nich veľa znalostí. Práca je imple-
mentovaná s technológiou React ako plugin pre Cockpit, vďaka čomu si nájde svoje miesto
aj vo väčšom obraze Red Hat portfólia.

Keywords
certificates, web, application, Cockpit, Red Hat, SSL, TLS, X.509, user interface, React

Klíčová slova
certifikáty, web, aplikácia, Cockpit, Red Hat, SSL, TLS, X.509, uživateľské rozhranie, React

Reference
KOBYDA, Simon. Web Application for Certificate Management. Brno, 2020. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Radek Burget, Ph.D.

Web Application for Certificate Management

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Radek Burget, Ph.D The supplementary information
was provided by Matej Marušák from Red Hat and consultant George M. Papadourakis
from Hellenic Mediterranean University. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Simon Kobyda

July 30, 2020

Acknowledgements
I would like to give special thanks to my supervisor Ing. Radek Burget, Ph.D., consul-
tant at Red Hat Matej Marušák and consultant George M. Papadourakis from Hellenic
Mediterranean University.

Contents

1 Introduction 3
1.1 Public key infrastructure . 3

1.1.1 Certificates . 4
1.2 Cockpit and problems of Linux administration 6

2 Technologies 7
2.1 Javascript . 7
2.2 React . 7

2.2.1 Javascript XML . 7
2.2.2 Stateless components . 8
2.2.3 Stateful components . 8

2.3 Patternfly . 9
2.3.1 Fundamentals . 10
2.3.2 Designer Guidelines . 10

2.4 D-Bus . 11
2.4.1 Objects . 11
2.4.2 Messages . 12

2.5 Certmonger . 12

3 Design 14
3.1 Listing certificates . 14
3.2 Requesting a certificate . 16
3.3 Importing a certificate . 17
3.4 Resubmitting a certificate . 17
3.5 Removing a certificate . 18
3.6 Error handling . 19

4 Implementation 20
4.1 Application core . 20
4.2 Empty State . 22

4.2.1 EmptyState Component . 23
4.3 Listing of certificates . 23

4.3.1 General . 24
4.3.2 Keys . 24
4.3.3 Cert . 25

4.4 CertificateActions . 26
4.5 Requesting, importing and resubmitting a certificate 26

4.5.1 RequestCertificate . 27

1

4.5.2 RequestCertificateModal . 27
4.5.3 ResubmitCertificateModal . 30
4.5.4 CAsRow . 32
4.5.5 StorageRow . 32
4.5.6 NicknameRow . 32
4.5.7 CertFileRow . 32
4.5.8 KeyFileRow . 32
4.5.9 SetSigningParametersRow . 33
4.5.10 SubjectNameRow . 33
4.5.11 DNSNameRow . 33
4.5.12 PrincipalNameRow . 33

4.6 Removing a certificate . 33
4.7 Error handling . 34

5 Testing 35
5.1 Empty state . 35
5.2 No certificates available . 36
5.3 Warning of expired certificates . 36
5.4 Modifying auto-renewal . 36
5.5 NSSDB stored certificate . 37
5.6 File stored certificate . 37
5.7 Updating after receiving D-Bus signal . 37
5.8 Removing a certificate . 37
5.9 Importing a certificate . 38
5.10 Requesting a certificate . 39

6 Conclusion 40

Bibliography 41

2

Chapter 1

Introduction

Certificates play a crucial role in today’s IT industry. They are an important part of
SSL/TLS1 and by extension security on internet. They are there to identify parties partici-
pating in secure communication and to prevent impersonation of any party by an impostor.
Yet the way how they are requested and managed is often hard to grasp by administrators
who are not proficient in this topic or users who are not even administrators. A command-
line tool used to generate certificate request may be too confusing for many users and
therefore a clear and simple user interface is needed. A result of this work should be an
application that would allow a user to request and manage certificates with a smart user
interface. This work would be part of a bigger project called Cockpit2, which provides a
user interface for managing Linux servers. The final application would be a part of the big-
ger Red Hat’s portfolio. Therefore the main aim is to fit with Red Hat’s3 existing identity
management system FreeIPA4.

The following sections are going to explain the basics of security certificates and prob-
lems of modern Linux administration. Most of the information there comes from Red Hat
documentation[11] and Symeon Xenitellis book The Open–source PKI Book[14].

1.1 Public key infrastructure
When establishing a secure connection it’s important to authenticate that the other side of
communication is the entity we mean to send data to. This authentication tries to resemble
real-life situations when we can identify a person by their face, physical characteristics, or
signature to establish communication with correct entity. In the digital age, it’s equally
important to identify that transfer was established with the correct entity in order to prevent
a leak of sensitive data into an incorrect place.

Public key infrastructure is a system for an identification of entities in secure communi-
cation by digital certificates. It is used in such areas as emails, SSL/TLS protocols (which
is the basis for HTTPS), electrical signatures, smart cards, etc.

Prevention of eavesdropping Public key cryptography, also known as asymmetric
cryptography is a method for encrypting information before sending it and decrypting

1Protocols for encrypting data to provide communication security. Widely used for internet, e-mails,
messaging, etc.

2https://cockpit-project.org/
3A software company specializing in providing an open-source Linux oriented solutions
4https://www.freeipa.org/page/Main_Page

3

https://cockpit-project.org/
https://www.freeipa.org/page/Main_Page

information after receiving it to prevent reading of the data during transfer. It is used in
SSL/TLS protocols. It uses two keys to accomplish this during the process:

∙ Public key is key used to encrypt data. It can be shared publicly without danger of
compromising data.

∙ Private key is key used to decrypt data. It is important to keep this key hidden to
prevent compromising it.

This ensures that only intended receiver, the owner of the private key, can read encrypted
data and nobody else has read the data during the transfer.

Prevention of tampering Another problem that needs to be addressed is to ensure that
received information is information which the sender sent and have not been replaced by
an intruder with their own. This is solved by digital signatures using the following method:
A one-way hash of data is created which is then encrypted by a private key and sent. To
validate the integrity of data the receiver has to decrypt the hash using the public key and
then create their own hash from received data. If these two hashes match, it means data
has not been tampered with since it was signed.

Prevention of impersonation An impersonation is an act during which a party pre-
tends to be the intended receiver of information and supplies the sender with its own public
key. Public key cryptography uses certificates to confirm the other party is who they claim
to be.

1.1.1 Certificates

A certificate is an electronic document that provides proof of identity and confirms the
public key. While parties can establish a secure connection with their private keys, they
need to verify that they are communicating with intended entities. To ensure this, each
party presents a certificate of identity which was signed by a certificate authority (CA)
which party trusts. There are many standards for defining a format of certificates. In this
work, we will talk about X.5095 certificates.

Certificate authority

A certificate authority is an organization that issues digital certificates. Certificate authority
identifies an individual by name, such as organization name, person’s name, or server’s
hostname. This name is then bound to a public key. This ensures that ownership of the
public key can be verified. Furthermore, a certificate authority also inserts its own digital
signature into the certificate which makes sure that certificate was truly signed by that
certificate authority and can be valid for users who trust the certificate authority.

Issuing a certificate

Issuing a certificate is a non-unified process that differs from one certificate authority. Some
certificate authorities may only require email address and password, others may require a
background check or a personal interview.

5a standard for a format of certificates

4

To obtain a certificate, an applicant has to create a certificate signing request (CSR). The
most common format for this request is PKCS 10, which describes a syntax for certification
requests and its attributes. According to this standard, certificate signing request may
contain information described in table 1.1.

Information Description Example
Common Name (CN) This is the fully qualified domain

name (FQDN) of the device to be
secured.

www.example.com
*.example.com
mail.example.com

Business Name/Orga-
nization (O)

The legal incorporated name of the
organization. The name shouldn’t
be abbreviated, and it should in-
clude suffixes like .Ltd, .Inc.

AppViewX, Inc.

Department
Name/Organizational
Unit (OU)

The department in your organiza-
tion handling the certificate.

IT, Finance

City/Locality (L) The city/town your organization is
located in.

New York City

Province, Region,
County, or State (S)

This should not be abbreviated New York

Country (C) The two-letter ISO code of your
country

US

Email Address
(MAIL)

The primary point of contact in your
organization for certificate-related
operations, usually the IT depart-
ment

helpdesk@example.com

Table 1.1: Distinguished names[3]

The process of requesting and issuing a certificate is the following:

1. The applicant generates a key pair consisting of a private key and public key. They
keep the private key secret.

2. The applicant generates a certificate signing request containing information identify-
ing the applicant. It also contains the public key generated in the previous step.

3. The certificate signing request is sent to the certificate authority, which sends back a
certificate signed by the private key of this certificate authority.

Tracking and renewing a certificate

Each certificate is issued only for a certain period of validity. It’s important to keep track of
issued certificates to know if a certificate is about to expire, so they could renew it. Renewal
of certificate is a process with the same steps as the initial requesting of a certificate, where
a signing request must be created, submitted to the certificate authority which then issues a
new certificate. This certificate then replaces the old one. The process of renewing however
reuses the existing key pair. The renewed certificate also keeps the properties of the old
certificate, with the difference of new expiration. This allows the user to smoothly transition
from the old certificate to the new one.

5

Alternatively, the applicant may want to revoke certificate. This may be a desired action
in a situation such as when identifying properties for a certificate are no longer current or
if the private key associated with the certificate has been compromised. This can be done
by adding a certificate into Certificate Revocation List (CRL)6.

1.2 Cockpit and problems of Linux administration

”Cockpit is an open-source web-based solution for administering Linux servers“[2]. As a
project, it aims to make Linux administration easier, more accessible, and beginner-friendly.
It mainly serves as a smart user interface to manage server resources. It aims to provide
help to beginner system administrators or system administrators who are not native to a
Linux environment. They might be Windows administrators who just need to do few tasks
in Linux or administrators who just decided to switch from Windows to Linux. This target
market is usually not very familiar or uncomfortable with the Linux command line world
and they might prefer simple intuitive UI. Cockpit tries to make it’s UI understandable
without a need to read manual pages or documentation. The UI should ideally navigate
the user to achieve the desired outcome. Cockpit aim is to show the real-time state of a
resource and it to apply server changes immediately when the user does so through user
interface. Therefore Cockpit doesn’t save any configuration on the system nor does it
impose any predefined state on the server. Each field of its administration is defined in
encompassed in an insertable plugin, which acts as an independent part of the software
and can be developed independently even outside of the cockpit project itself. There are
plugins for administering various resources in various fields such as storage, networking,
virtual machines, containers. It’s common for each plugin to use one main technology for
administering a type of resource and therefore act as a UI for this preexisting backend. For
example, the containers plugin mainly uses Podman, the virtual machines plugin uses the
Libvirt virtualization library. A Result of this work, a plugin for administering certificates,
will be developed in the same manner and will act as a UI mainly for preexisting library
Certmonger.

Cockpit also provides various D-BUS and file APIs which are used. They can be found
at Cockpit’s documentation 7 It also provides its own implementations of some design
components.

6A list of certificates which has been revoked by their certificate authority
7https://cockpit-project.org/guide/latest/

6

https://cockpit-project.org/guide/latest/

Chapter 2

Technologies

This chapter describes various languages, libraries, and frameworks used for the develop-
ment of frontend, communication with backend, and testing.

2.1 Javascript

”JavaScript is a lightweight, interpreted, object-oriented language with first-class functions,
and is best known as the scripting language for Web page“[7]. It’s dynamically typed and
based on standard ECMAScript. Mainly used for the development of a website’s client-side
part. It is now widely supported by common web browsers.

Javascript has a wide variety of libraries popular for web development, such as React.

2.2 React

”React is a Javascript open-source library meant for building user interfaces“[10]. Created
in 2013 and developed by Facebook and the open-source community it is now one of the most
popular JavaScript libraries for building web-based user interfaces. React is component-
based. It means that each part of UI can be encapsulated into a component and broken
down into many other smaller components, creating a hierarchy, with a top component
added into a DOM of a website using:

ReactDOM.render(App, document.getElementById(’root’));

Where App is the top component of the hierarchy which renders the whole React application.
Each component is able to manage its own state and re-render parts of UI when the

state changes. It also has the ability to contain the markup part and logic part of UI
together in the same file.

2.2.1 Javascript XML

Javascript XML, or JSX, is a syntax extension of Javascript introduced as part of React.
Thanks to JSX, React is able to present both markup and rendering logic together in the
same component. It might look like a mix between Javascript and HTML, there are few
differences and unique things when compared to each respectively. JSX allows you to embed
an expressions inside it’s markup elements:

const element = (<h1>My favorite number is {2 + 2}</h1>);

7

Similarly you could use variables or function calls in middle of markup.
It also allows you to use conditions for rendering certain elements in markup. For

example:

let element;
if (showGreeting)

element = <h1>Hello!</h1>;

Can be written as:

const element = showGreeting && <h1>Hello!</h1>;

Similary you can use ternary condition when rendering elements in if-else manner. Instead
of writing:

let element;
if (isTextBold())

element = {renderedText};
else

element = {renderedText};

Can be written as:

const element = isTextBold() ? (Text}) : (Text);

2.2.2 Stateless components

Stateless components are components that do not store data about themself. They usually
pass their data to a parent component or are used just to render read-only data without
any expectation of receiving input from the user.

An example of a typical stateless component which only renders properties passed to it
is:

const NameRow = ({ name, surname }) => {
return (<>

Your name is {name}.
Your surname is {surname}.

</>);
};

2.2.3 Stateful components

Stateful components are on the other hand components which store data in its state store
which operates as a JavaScript object. Thus the object remembers information about itself.
These state stores are used to store information that is expected to change dynamically.
For example, it can be used to store user inputs or other values which are the result of user
actions. Whenever the state of a component changes, the component itself is re-rendered
including all children components. A result of this is a reactive UI that dynamically reacts
to user actions or to outside changes, like a signal from outside of the application, without
a need to reload the page. The trigger of this change is when a function setState is called
which sets new values of component’s state store. A stateful component is implemented
as an extension to JavaScript’s class, which means it can have its own class properties

8

and methods. These components also have ”life-cycle methods“ you can override such as
ComponentDidMount which is called when the component is is inserted into the tree and is
good to be used for fetching data from asynchronous calls or to set up subscriptions.

Below is an example of a typical stateful component. It defines the initial content of
state store in the constructor, defines a helper method, and returns a renderable content
which re-renders every time state updates:

export class Name extends React.Component {
constructor(props) {

super(props);
this.state = {

name: "",
surname: "",

};
this.onValueChanged = this.onValueChanged.bind(this);

}

onValueChanged(key, value) {
this.setState({ [key]: value });

}

render() {
const { name, surname } = this.state;

return (<>
First name: <input type=’text’ value={name} onChange={e =>

onValueChanged("name", e.target.value)} />
Last name: <input type=’text’ value={name} onChange={e =>

onValueChanged("surname", e.target.value)} />
Hello {name} {surname}!

</>);
}

This example has, of course, some undesirable behavior from UX point of view, such as
the greeting sentence will re-render as the user will type their name. For purpose of this
demonstration, it is sufficient.

2.3 Patternfly

”Patternfly is an open-source design system created to enable consistency and usability
across a wide range of applications and use cases.“[8]

Its library exports a variety of design components (such as Button, Form, Accordion,
etc.) and Layouts (such as Grid, Flex, Stack, etc.) in HTML/CSS or as React components.

The project is heavily supported by Red Hat and the open-source community. Pattern-
fly, its components, and guidelines are used for a variety of Red Hat products in order to
offer consistency among the design of its products.

9

Figure 2.1: An example of page build with Patternfly

2.3.1 Fundamentals

∙ Flexibility: This means components are flexible to be arranged and customized in
different ways. Patternfly offers space for adding custom CSS to its components.

∙ Accessibility: Patternfly makes sure its components are accessible for various groups
of users. It makes sure the color scheme is suitable for color-blind users, it makes sure
its components are labeled in order to be analyzed by screen readers used by blind
users, buttons are large enough for users with hand-motor disabilities, etc.

∙ Consistency: helps to create unified applications and interfaces. All products in a
company portfolio have unified design and users can switch between products without
having to adapt to a different design and learn to use a new product from scratch.

∙ Scalability: This means its components are designed for business of all sizes.

∙ Make it open: It means Patternfly is developing its library according to open-source
principles.

2.3.2 Designer Guidelines

Pattenfly also comes with a series of designer guidelines. These guidelines are divided into
3 areas:

∙ Styles: This section explains matters like correct usage of colors for various states
(like danger, success, warning), color contrast ratio, correct usage of icons, and stan-
dardization of fonts and spacing.

∙ Usage and behavior: This describes correct usage for various design components pro-
vided by Patternfly. It explains how to use components in certain situations, where
they should be placed, when to use alternative components instead, etc.

10

∙ Content: This section touches on issues of correct usage of terminology (e.g. when
to use the word ’Remove’ and when to use the word ’Delete’), sets rules for using
abbreviations, acronyms. It specifies in which situation to use sentence-style capital-
ization and in which situation to use title style capitalization. It recommends formats
for date and time and many other things. It also talks about writing effective text
according to UX principles.

2.4 D-Bus

”D-Bus is a message bus system, a simple way for applications to talk to one another“[4].
It allows for inter-process communication on the same host between 2 applications with
the possibility of routing between 1 and 0-N applications. The purpose of D-Bus is mainly
to simplify communication between desktop applications or between desktop session and
the operating system. It has multiple wrappers and implementations for other languages
or frameworks such as Python, Qt, cockpit-dbus. These implementations are what most
people use because it simplifies the usage of D-Bus. The specifics of D-Bus which will be
described here might slightly differ from one D-Bus framework implementation to the other,
but most of them should contain similar same basic principles:

2.4.1 Objects

D-Bus objects give the means to refer to instances and specify methods and
signals which can be used on such instances. Objects are referred by ob-
ject paths, which look like file system paths. An example of object path is
/org/fedorahosted/certmonger/requests/Request6 Objects also support interfaces,
which represent a group of methods and signals. Each object also contains interface
org.freedesktop.DBus.Introspectable with method Introspect. This is useful to find
out available methods, interfaces, and signals of an object.

Object method

Object methods are instances that can be invoked on an object with optional inputs and
outputs. To call a method, the call message is constructed containing bus name, name of
the method, arguments, object path, and optionally the interface of that method. This
message is then sent to the bus daemon, which is forwarded to the destination process or
error message is returned. The destination process receives and evaluates the method and
sends back a reply message to the bus daemon. The bus daemon forwards it to the process
which invoked the method call.

Object signals

Signals are event-like messages which are broadcasted by the emitted (only if the user
subscribes to them). To receive a signal, a receiver has to subscribe to the bus daemon
by registering ”match rules“ which tells which signals ts is interested in. When the event
emitting signal happens, the emitter creates a special type of signal message consisting of
the signal name, the bus name of the emitter process, and arguments. This message is
sent to the bus daemon, which determines which processes it should be broadcasted to and
forwards the signal.

11

2.4.2 Messages

Messages send with D-Bus are formatted, consisting of header, body, and data payload.
Routing of these messages is done trough the bus daemon. Types of messages:

∙ Invocation of a method

∙ Result of an invoked method

∙ Exception in case of an error of an invoked method

∙ Signal method, which is emitted when an event has occurred

Details about D-Bus were taken from Freedesktop D-Bus documentation[5] and Python
D-Bus documentation[6].

2.5 Certmonger

”Certmonger is a service that attempts to simplify interaction with certifying authorities
(CAs) on networks that use public-key infrastructure (PKI).“[1] Certmonger simplifies this
interaction by encompassing multiple steps of issuing, renewing, re-keying, resubmitting,
and revoking a certificate in a single utility. Certmonger also offers the ability to track and
automatically renew a certificate before expiration without the need for any user interaction.
Taking into account steps described in subsection Issuing a certificate and need to track a
certificate described in subsection Tracking and renewing a certificate, certmonger simplifies
this process and helps with the problematic by offering the functionality:

∙ It generates a certificate signing request from identifying information supplied by the
user. It can also generate a key-pair as part of a certificate requesting process or allow
the user to supply their own key-pair.

∙ It can submit the generated request to a CA, wait for CA to issue a certificate, and
store it.

∙ It can track a certificate, notify a system administrator when a certificate is about to
expire, and automatically renew a certificate before it expires.

∙ It can resubmit with new identifying properties, in case they need to be amended, or
if user wishes to renew a certificate manually.

∙ It can manage a list of certificate authorities it can communicate with, allowing the
user to add new certificate authorities if they provide needed configuration or SCEP1

interface.

It also provides command-line tool getcert which served as inspiration for this appli-
cation. Certmonger also offers D-BUS APIs so it’s functionality can be exploited by other
applications. Table 2.1 contains a list of APIs offered by certmonger relevant to this work’s
implementation:

1A protocol for enrolling a certificate using URL

12

Interface Method name Description

org.fedorahosted.certmonger

add_request Requests or imports a
certificate

find_request_by_nickname Finds certificate re-
quest by its nickname

get_requests Returns a list of D-
BUS paths of certifi-
cate requests tracked
by certmonger

remove_request Stops tracking a cer-
tificate request. This
however does not re-
voke it.

org.fedorahosted.certmonger.request
modify Modify properties of

the certificate request.
Changes will come into
effect with next resub-
mitting.

rekey Generate a new key-
pair

resubmit Resubmit request to
the CA using the same
key-pair

Table 2.1: Certmonger APIs

13

Chapter 3

Design

This section described problems, use cases, and proposed designs for each functionality.
A Patternfly’s guidelines, which were described in section 2.3.2 were taken into account

while developing a design in order to provide a unified approach which would fit with other
Red Hat’s user interface solutions.

The main aim here is to design a UI, which would be easy to understand for beginner
administrator. It would not overwhelm users with overcrowded forms. It would try to
navigate the user to get a result that would satisfy most users, in case the user is not
familiar with technical details concerning a topic of certificates. It would also try to be
faster to go through as existing command-line solutions.

It tries to address problems of a unified approach to error handling, and provide designs
for functionalities of requesting, resubmitting, importing, and removing a certificate.

Several similar solutions are available, such as certmonger’s command-line utility
getcert. This design was created after reviewing an existing command-line utility getcert
provided by certmonger was used many times as inspiration while designing UI to find out
what parameters are important for each action and what behavior is expected in certain
situations.

3.1 Listing certificates
If users have a certificate enrolled in their system, it’s important for them to track it. A
certificate can exist in a state of just being a file somewhere on a system, but in this scenario,
the user cannot easily get information about the certificate itself. Some information can be
critical, such as the expiration date, so the administrator doesn’t miss the expiration date.

The following design is proposed: Have a list of certificates available. Each certificate
will have a header with these values:

∙ Identifying value of a certificate: In the case of NSSDB stored certificate, it’s a nick-
name. In the case of file stored certificate, it’s an ID of a certificate.

∙ Certificate’s expiration date. If the certificate expires the next day, that day or has
expired the previous day, use strings ”tomorrow“, ”today“ or ”yesterday“. It should
also show if it’s going to automatically renew or expire. Examples: ”Expires today
at 14:15“, ”Auto-renews before 21/06/2021“ If it’s going to expire soon, meaning in
less than 28 days, show a warning icon. If it already expired, show an error icon.

∙ Certificate authority which issued the certificate.

14

∙ A drop-down available with a certificate’s actions. These actions are resubmitting a
certificate and removing a certificate.

Users can introspect the certificate by clicking on it. Here more properties of the said
certificate can be listed. If a property can be amended, such as automatic-renewal, it
should be allowed for the user to update. Certmonger tracks dozens of properties for each
certificate which are available through its D-BUS interface. The full list can be found at
Pagure website1. Rendering all of these properties would crowd the page. Therefore only a
few properties were chosen to be rendered, which can be divided into multiple categories.
Each category should be shown separately from each other in the UI, ideally by tabs:

∙ Properties of a certificate request itself:

– Status - A certificate request’s status. If certificate is stuck, a warning icon is
shown next to it signalizing that request got stuck at certain undesirable state.

– Validity - Here is shown a whole validity range by combining not-valid-before
and not-valid-after values. An example: ”10/06/2020 to 12/05/2021“.

– CA - Again a certificate authority which issued a certificate is shown here.
– Auto-renewal - Shows if certificate will be automatically renewed before it ex-

pires. User can change this property here. Therefore a checkbox should be
present where user can select if they wan automatic renewal or not.

– Subject name - A name of a subject which is being secured. It can consist of
values such as common name, organization name, etc.

– DNS names - A list of DNS names which are part of subject alternative names.
– Principal name - A name used for Kerberos2.

∙ Private key properties:

– Nickname - Nickname used to identify a private key in NSSDB.
– Type - Type of algorithm used to create a private key.
– Token - NSSDB token.
– Storage - Storage type used for this key. Can be either ”NSSDB“ or ”File“.
– Location - Location of private key’s file or NSSDB where it’s stored.

∙ Certificate properties:

– Nickname - Nickname used to identify a certificate in NSSDB.
– Storage - Storage type used for this key. Can be either ”NSSDB“ or ”File“.
– Location - Location of a certificate file or NSSDB where it’s stored.

This list made by looking which properties are exposed by command:

#getcert list

.
1https://pagure.io/certmonger/blob/master/f/src/tdbus.h
2cryptography authentication protocol

15

https://pagure.io/certmonger/blob/master/f/src/tdbus.h

3.2 Requesting a certificate
Probably the most important action is requesting a certificate itself. Let’s have a use case
where a system administrator administers a server with a website of a bank. This server
is also enrolled with FreeIPA3. It’s vitally important that users trying to load this website
are connected to the right party, and not somebody who is trying to impersonate the bank
website. (an act of impersonation is described in section 1.1).

Usually, to request a certificate, an administrator would use some tool, such as
OpenSSL4. They would have to go through the process of generating a private key. In
most cases, this can be done automatically, as most users are satisfied with the 2048-bits
RSA key. Then they would have to generate a signing request where they need to specify
signing request properties such as common name and subject alternative name. It might
be confusing to the administrator which of these parameters are compulsory and which are
optional. Some parameters, like common name, can be generated automatically from the
server’s hostname. Next, they have to submit the request to a certificate authority, obtain
the certificate, and store it somewhere.

Certmonger deals with the problem of submitting a request to a certificate authority,
obtaining it and storing it. However, it’s command-line interface offers a lot of options
with a lot of parameters and sometimes it’s not clear which parameters are to be used.
This might be discouraging for a beginner administrator or administrator who’s primarily
working with Linux.

To solve the above-mentioned problems, the following design is proposed: Have a way,
ideally a ”Request Certificate“ button, visible at all times and easy to find. It would be
placed on the top right corner above the certificate listing. This place would create an

”action area“ of some sort. The button would open a dialog with a form for requesting a
certificate. The form would allow the user to choose the following inputs:

∙ Certificate authority: User can choose from a list of certificate authorities pre-
configured by certmonger.

∙ Storage type: User can choose if they want to store a certificate in NSSDB (default
option since it requires the least amount of configuration)

∙ Additional signing request parameters like common name, DNS name, and principal
name. Make visible that these parameters are optional. These 3 parameters were
chosen out of many others because they occur the most at documentation and user
issues related to certificates at Red Hat Customer Portal5.

Immediately after requesting a certificate, leave the dialog open to wait for either a
success or an error. In case of an error, leave the dialog open and print an error message
at the foot of the dialog. In case of success, close the dialog. At this point, a successfully
added certificate should in the list of certificates.

Also, pre-generate inputs with default values, if possible, for the user in order to navigate
this functionality with the least amount of time required.

3Open-source identity management system
4OpenSSL is a cryptography library that can be used to generate private keys and certificate signing

requests
5https://access.redhat.com/

16

https://access.redhat.com/

3.3 Importing a certificate
Let’s have a case where the user already has obtained a certificate from certificate authority
beforehand and has a certificate and key-pair stored on their system either in the NSS
database or in files. They have the certificate itself but they do not track it nor they have
an automatic renewal setup. Therefore it should be possible to allow them to add their
own certificate into the system so they could have a way to track it, renew it, or set up
automatic renewal. This process should be very similar to that of requesting a certificate
described in 3.2. The difference is that the first steps of requesting a certificate: creating
a private key, creating a signing request, submitting a request are skipped, as in this case
user has already done it beforehand and we go straight to storing, tracking, and managing
an imported certificate.

Therefore the following design is proposed: Place an ”Import Certificate“ button next
to a button for requesting a certificate. Together these buttons make up an ”action area“
described in 3.2. Clicking this button would open a dialog. This dialog again would be
almost identical to one for requesting a certificate and would differ only in the following
points:

∙ Default storage type would be ”File“. After studying documentation and issues at
Red Hat Customer Portal6 it seems that when user import certificate, in most cases
they have a certificate stored in a file. This is in contrast to when users request a
new certificate, they mostly store it in NSSDB. That’s why the default storage option
should be ”File“.

∙ Paths for the certificate file and key-pair file must always lead to an existing file on
file system. This is again in contrast to requesting a certificate where the user can
specify a location of a non-existent file as certmonger will later create a new certificate
at this location.

∙ User cannot specify signing request parameters such as common name, DNS names,
and principal name. When importing a certificate, the process of creating and sub-
mitting a signing request has already been done and these properties are already part
of certificate which user is trying to import.

The similarity between requesting a certificate and importing a certificate could raise the
question: Why split this into two modals? Alternatively, we could have one button which
opens one dialog where the user could select a ”mode“ if they want to import an existing
certificate or request a new certificate. However one of the main things which is trying to
be avoided is to not make a dialog for requesting a certificate too large and overfilled with
various inputs that would overwhelm a user when they open the dialog. That’s why from a
UI standpoint it’s better to have two separate modals for these functionalities even though
they may share most of the code.

3.4 Resubmitting a certificate
Resubmitting a certificate is an action where the user wants to renew an existing certificate
or amend some properties of an existing certificate. They already have enrolled certificate

6https://access.redhat.com/

17

https://access.redhat.com/

with existing key-pair and defined signing request parameters such as subject name, prin-
cipal name, and DNS names. In this case, they would like to resubmit the same certificate
request as last time. This is a use case on many occasions. For example, if the user does not
have automatic renewal set up and wants to renew such certificate manually. Technically
there is no such action as certificate renewal. If one person wants to renew a certificate,
they have to generate a new signing request using the parameters and key-pair of the old
one, submit it to a certificate authority and then replace the old certificate with the new
one. Such procedure can be done by resubmitting a certificate. Another case when resub-
mitting a certificate comes in handy is when the user wants to update some parameters of a
certificate. For example, they want to add or remove some domains from list of DNS names,
but leave everything else intact. In that case, it’s useful to allow editing some parameters
when resubmitting a certificate.

So in order to comply with above-mentioned problems, the following design was pro-
posed: Each certificate will have a button present to resubmit it. This button will open
a dialog that will allow to amend some properties of the certificate. Properties such as
storage, which cannot be amended will be shown as read-only information in the dialog.
Then a certificate authority, subject name, dns names and principal name will be filled
with values from the old certificate. It will be available for editing, but ideally, users might
skip doing any changes and just click on ”Resubmit“ button without doing any additional
changes if they do not need to.

3.5 Removing a certificate
If a user wants to get remove a certificate, they can do multiple things. They can just
merely tell certmonger to stop tracking. Certmonger then doesn’t keep the certificate in
its list of certificate and doesn’t automatically renew it. However if users have a certificate
and private key stored in files somewhere on their system, this doesn’t remove those files.
Usually to do full cleanup users have to delete those files too. On the other hand there are
use cases when they would like to keep those files, for example if they want to move them or
import them again into certmonger with a different configuration. All of this functionality
can be implemented into this application. There are other things users should do when
they delete a certificate. If the said certificate is used by some other application, let’s say
an Apache server, they would probably want to update the configuration of that server so
it won’t try to use a certificate which was removed. Also if the removed certificate was
compromised, users would want to add said certificate into a certificate revocation list.
These actions however cannot be presented in the UI, since the application doesn’t have
a way to know which processes use a certificate which user wants to remove. Also adding
a certificate into a certificate revocation list is a process that is unique for each certificate
authority and thus this process goes beyond the capabilities of this application.

After explaining problems and what options are available, the following design is pro-
posed:

Each certificate will have a button present to remove it. Since removing a certificate
can be a very destructive operation, this button will open a confirmation dialog. This
dialog will render the certificate’s identifying properties. In case of a certificate stored in
the NSS database, this will be a path to the NSS database itself and a nickname used to
identify a certificate in this database. In case of a certificate stored in a file, the identifying
property is a location of this certificate’s file. Showing a location of the certificate’s private
key is also welcomed. Furthermore, in case of a certificate stored in a file, there will be an

18

option, ideally, a checkbox, which will allow a user to choose if they want to also remove a
certificate file and certificate’s private key file.

3.6 Error handling
An important part of the application was a unified approach to handling errors. The design
here tries to solve 2 problems: where to display errors and how to display multiple errors
at once. The first problem offers multiple approaches. An error can be displayed ”on spot“
inside the component which caused the error. That means that if an error for example was
caused by some action from a modal, it should be displayed in the modal. This however
would cause problems if the user is no longer focused on that part of UI. Most of the
backend calls are asynchronous, so it’s possible that backend call that can cause error can
take several seconds to evaluate. The user in meantime could no longer be at that part of
UI.

The other approach is to show errors at an application-wide shared spot. This could be
some side panel or pop-up. The benefit of this pop-up is that it’s possible to stack multiple
errors on top of each other if the situation demands. In this implementation, I decided on
a combination of both approaches. Places like modals are not closed until asynchronous
action is fully evaluated, thus it’s impossible for a user to leave modal until we are sure
there was no exception. In every other place, a pop-up is used.

19

Chapter 4

Implementation

The implementation of this application derives from Cockpit’s starter-kit1, which serves as
a template for Cockpit’s plugins. Most of the implementation was done in React (section
2.2) using components provided by Patternfly (section 2.3. As such, whole application
can be systematically divided into React components. Most of components usually try to
implement topics described in design section 3.

Therefore it’s convenient to explain the implementation of each design topic by explain-
ing its React components.

4.1 Application core
The Application component, which can be found in src/app.jsx, is the core of the
application. It’s directly inserted into a DOM and it’s the parent component for all the
other components which are part of the application. At this place a lot of logic, which
can be most comfortably done at the uppermost level of the application, is taking place.
Here can be found logic for managing a list of certificates, certificate authorities, rendering
application-wide error messages, subscribing to and monitoring the state of certmonger
service. Each of these processes is explained here:

Monitoring certmonger service - When Application component is mounted, a method
subscribeToSystemd is called which subscribes the application to systemd client. The
process of how subscribing to dbus client works is described in 2.4.1. This then listens
to any changes to certmonger service and updates a state of the service which application
tracks. A change to this service can trigger EmptyState component described in section
4.2 to allow to troubleshoot inactive or dead certmonger service. There is also method
this.updateCertmongerService which tries to start certmonger service if it’s not active.
However, it tries it exactly once, when the application mounts and the service is not active
at the moment. It does it only once to prevent cyclical booting of certmonger service or to
prevent automatic booting of the service in case user tries to deliberately kill it.

Monitoring certificates and certificate authorities - Similar to the previous paragraph, a
method subscribeToCertmonger is called which subscribes the application to a certmonger
client. This then listens to any signals which could mean a change in a list of certificates
or certificate authorities. If a change happens, a list of certificates or certificate authorities
kept in the application’s state is updated accordingly.

1https://github.com/cockpit-project/starter-kit/

20

https://github.com/cockpit-project/starter-kit/

Figure 4.1: A project structure consisting of React components

Setting warning in Cockpit’s navigation - While all certificates are fetched, their expira-
tion date is also checked with method checkExpiration. If there is any expired certificate,
an error is set using Cockpit’s page_status API, which shows in a form of error icon next
to page’s item in Cockpit’s menu. Similarly, if a certificate is close to expiration, a warning
is set.

Keeping a list of certificates and certificate authorities - When components mounts,
methods getCertificates and getCertificateAuthorities are called which load these
lists and save them into application’s state. These lists are kept in this component, at the
top level of the application so they could be passed down to any child component which
might need them or updated by a callback.

Managing application-wide error messages - This component also keeps a list of error
messages.

Its state has these properties:

∙ alerts - a list of error messages.

∙ certmongerService - an object which keeps properties of certmonger service, so
service’s state can be checked at any moment. It is set by updateCertmongerService
method.

∙ initialPhase - a boolean flag initially set to true, which is used to ensure that
inactive certmonger service is tried to start only once - after mounting the application.
It is then set to false and the service is not tried to start anymore.

∙ cas - a list of certificate authorities. New certificate authorities are added by
getCertificateAuthority method.

∙ certs - a list of certificates. New certificate are added by getCertificate method.

∙ expiredCerts - a number that keeps a track of how many certificates have already
expired. Set by checkExpiration method.

21

∙ toExpireCerts - a number that keeps a track of how many certificates are going to
expire soon. Set by checkExpiration method.

It consists of several methods:

∙ onValueChanged - a helper method used to update the component’s state. It’s
used as a callback which is passed down to CertificateList component as
appOnValueChanged parameter. This way application’s state properties, such as list
of certificates, can be updated from some child component.

∙ componentDidMount - React method which is called when component mounts.
Here it’s used to call methods subscribeToCertmonger, subscribeToSystemd,
updateCertmongerService, getCertificateAuthorities and getCertificates.

∙ subscribeToSystemd - Method which subscribes over a Sys-
temd client org.freedesktop.systemd1 using Cockpit’s
cockpit.dbus.subscribe() API. It listen signals which match an ob-
ject path /org/freedesktop/systemd1/unit/certmonger_2eservice on
org.freedesktop.DBus.Properties interface. This way, every time a state of
certmonger service changes, the updateCertmongerService method is triggered and
the application is updated with a new state of certmonger service.

∙ updateCertmongerService - Method which fetches and updates a state of certmonger
service using Cockpit’s service.proxy method. If the application is in initial phase
and service is stopped, it tries to start it.

∙ subscribeToCertmonger - Method which subscribes over a certmonger client
org.fedorahosted.certmonger using Cockpit’s cockpit.dbus.subscribe() API.
It listen any signals on org.freedesktop.DBus.Properties interface, which
then triggers a callback. This handler checks if interfaces for certifi-
cates or certificate authorities, org.fedorahosted.certmonger.request and
org.fedorahosted.certmonger.ca respectively, triggered these signals. If it updates
properties of these objects which has changed, or adds an entirely new object in case
a new certificate or certificate authority was added using methods getCertificate
and getCertificateAuthority.

∙ getCertificates - Calls a function getRequests to get a list of certificate requests
D-BUS paths and for each request calls a method getCertificate

∙ getCertificateAuthorities - Calls a function getCAs to get a list of certificate
authority D-BUS paths for each authority calls a method getCA

∙ getCertificate - Calls a function getRequest to get an object of certificate request
and updates application’s state with this object.

∙ getCertificateAuthority - Calls a function getCA to get an object of certificate
authority and updates application’s state with this object.

4.2 Empty State
Before even the body of the application that handles certificate related functionality is
even rendered, it’s important to check if certmonger.service is present and running. In

22

case it’s not present, running or there is any other problem related to this service which
would disable the functionality needed to manage certificates, the EmptyState component
is rendered.

4.2.1 EmptyState Component

This component is contained in src/emptyState.jsx. It uses cockpit’s general implemen-
tation of empty state from lib/cockpit-components-empty-state.jsx, which in turn is
wrapper of Patternfly’s React EmptyState component.

This component can be in 3 states according to the state of certmonger.service:

∙ Loading the certificate service: This is usually shown in a few seconds long time
window when the application is still subscribing to systemd to monitor

∙ Starting the certificate service: This state is shown in a small time window when
systemd is only starting the service. certmonger.service or fetching information
about the service, therefore application doesn’t have any information its state.

∙ The certificate service is not active: This is shown when the state of service is other
than ”running“ or ”starting“. It usually means the state of this unit according to
systemd is inactive (it may mean that it crashed or was stopped). In this case, 2
action button to start the service is provided. One start the service and the other
offers the user to troubleshoot the problem by redirecting them to cockpit’s services
page where they can inspect systemd unit logs and do some further actions.

Figure 4.2: A of EmptyState component

4.3 Listing of certificates
This is the part of the application that can be considered a homepage. It greets a user
when they enter the application (if they do not have any trouble with service) and serves
as a bridge to all the other functionalities related to management of certificates.

It is implemented in src/certificateList.jsx as a stateful component
CertificateList. It uses cockpit’s wrapper component for listing multiple expand-
able rows - ListingTable. It’s mainly used to list resources, in this case, certificates.

23

https://www.patternfly.org/v4/documentation/react/components/emptystate#component-title

Each certificate row has a header which shows identifying and most important proper-
ties, such as certificate nickname, validity period and a certificate authority which issued
the certificate.

An important function of this section is semantics done for rendering an expiration time
for each certificate. It’s important to show the difference between an expired certificate,
which might be a security vulnerability, a certificate that is going to expire soon, which
would need a system administrator’s attention and a certificate that has an automatic
renewal setup or has a long time until its expiration.

To show an expired certificate, a combination of a red-colored Font Awesome Icon fa-
exclamation-circle and date, when certificate expired, is shown.

If the certificate is going to expire soon, meaning no automatic renewal is setup and the
certificate expires in less than 28 days, a combination of a yellow-colored Font Awesome
Icon fa-exclamation-triangle and date, when certificate will expire, is shown.

The value of 28 days is derived from certmonger’s 28 days policy ”The certmonger
service automatically renews the following certificates 28 days before their expiration date:

∙ CA certificate issued by the IdM CA as the root CA

∙ Subsystem and server certificates issued by the integrated IdM CA that are used by
internal IdM services“[12]

After expanding the row, 3 tabs are present: General, Keys, and Cert

4.3.1 General

Explains general information about the certificate request itself. The properties shown here
are:

∙ Status: Shows certificate status in form of a state name and tooltip explaining details
about the state. During the process of requesting or resubmitting a certificate, the
request goes through multiple states. The full list of these states can be found at
manpages2 and a state logic found at Pagure website3. It’s possible for a request to
get stuck at some stage during the process. In that case, a warning icon is shown
with a state at which it got stuck.

∙ Validity: This field combines certificate’s not-valid-before and not-valid-after.
Formatted using https://momentjs.com/docs//parsing/string-format/ library to give
a nice string of not-valid-before to not-valid-after

∙ Auto-renewal: Shown in a form of checkbox. Users can customize here if the certificate
request will be automatically renewed 28 days before expiration.

∙ Signing request properties: These properties consist of Subject name, Principal name
and DNS name.

4.3.2 Keys

Explains details about a key of the certificate. If a certificate is stored in a NSS database,
properties here are mostly identical with properties in a Cert tab.

2https://manpages.debian.org/stretch/certmonger/getcert-list.1.en.html
3https://pagure.io/certmonger/blob/master/f/doc/design.txt

24

https://fontawesome.com/v4.7.0/icon/exclamation-circle
https://fontawesome.com/v4.7.0/icon/exclamation-circle
https://fontawesome.com/v4.7.0/icon/exclamation-triangle
Moment.js
https://manpages.debian.org/stretch/certmonger/getcert-list.1.en.html
https://pagure.io/certmonger/blob/master/f/doc/design.txt

∙ Nickname: This property is present only if NSS database is used for storage to identify
the key in a database.

∙ Type: Type of encryption of the generated key-pair. The default value of RSA4 with
DSA5 and EC also available.

∙ Token: Optional token used only for NSS database.

∙ Storage: Specifies storage type. Possible values are only NSSDB or FILE.

∙ Location: Specifies the location of key-pair. In case of NSSDB storage type, this
specifies a path to the database itself. In case of FILE storage type it specifies a path
on file system to key-pair file.

4.3.3 Cert

Explains details about a certificate file of the certificate request. If certificate is stored in a
NSS database, properties here are mostly identical with properties in a Key tab.

∙ Nickname: This property is present only if NSS database is used for storage to identify
the certificate in a database.

∙ Token: Optional token used only for NSS database.

∙ Storage: Specifies storage type. Possible values are only NSSDB or FILE.

∙ Location: Specifies the location of a certificate. In case of NSSDB storage type, this
specifies a path to the database itself. In case of FILE storage type it specifies a path
on file system to certificate file.

Figure 4.3: A screenshot of a list of certificates

4Rivest–Shamir–Adleman algorithms used for public-key encryption
5Digital Signature Algorithm

25

4.4 CertificateActions
This component handles representing actions which can be done for each certificate. It’s
done in a form of drop down menu presented by three dots called in UI terminology as

”kebab menu“. It’s present as fourth and last column in header of each certificate and
therefore is present without need to open a tab with certificate itself. Two actions are
present inside of this drop down: certificate removal and certificate resubmitting. It also
manages which dialog is opened for each of this action.

It uses Patternfly’s Dropdown, DropdownItem and KebabToggle components.
Its state has these properties:

∙ dropdownOpen - a boolean flag which says if dropdown of options is open. This is
needed because of the nature of Patternfly’s Dropdown and KebabToggle which do
remember the state of drop down is open or not so it has to be kept externally by
those who use this component.

∙ showRemoveModal - a boolean flag which says if dialog for removing a certificate is
open.

∙ showResubmitModal - a boolean flag which says if dialog for resubmitting a certificate
is open.

The class of this component has several methods:

∙ onValueChanged - a helper method used to update the component’s state. It’s mainly
used to clear a callback for changing a state which can be passed to Patternfly’s
Dropdown and KebabToggle components.

∙ onResubmitModalOpen - a helper method used to open dialog for resubmitting a
certificate. It’s passed as onClick callback to DropdownItem.

∙ onResubmitModalClose - a helper method used to close a dialog for resubmitting a
certificate. It’s passed as parameter to ResubmitCertificateModal so user can close
the dialog from inside.

∙ onRemoveModalOpen - a helper method used to open dialog for removing a certificate.
It’s passed as onClick callback to DropdownItem.

∙ onRemoveModalClose - a helper method used to close a dialog for removing a cer-
tificate. It’s passed as parameter to RemoveModal so user can close the dialog from
inside.

4.5 Requesting, importing and resubmitting a certificate
This is probably the most important action of whole application. User can reach this
functionality by finding ”Request Certificate“ and ”Resubmit Certificate“ buttons in a top
right corner above the list of certificates.

It is implemented in src/requestCertificate.jsx as series of stateful and stateless
components.

26

https://patternfly.github.io/v4/documentation/react/components/dropdown
https://patternfly.github.io/v4/documentation/react/components/dropdown/#dropdownitem-props
https://patternfly.github.io/v4/documentation/react/components/dropdown/#dropdown-with-kebab

4.5.1 RequestCertificate

This component deals with a logic of rendering a buttons for opening a modal to request
or import a certificate. It uses Patternfly’s Button component. The component works
in two modes: import or request. Depending on value of mode prop it renders a button
with different text and opens RequestCertificateModal in either mode. It has 2 class
methods: onOpen and onClose which change state property showDialog of the component.
This property determines if the dialog to request/import a certificate is rendered or not. It
might not allow opening of the dialog if it determines no certificate authorities are available.

onOpen method sets showDialog as true and is passed as handler to onClick argument
of the button.

onClose method sets showDialog as false and on the other hand is passed as a callback
to RequestCertificateModal described in subsection 4.5.2 to be used to close the dialog
from inside of the modal component.

4.5.2 RequestCertificateModal

This component renders a dialog containing the form used to request or import a new
certificate. It uses Patternfly’s Modal component for the dialog itself.

A class ct-form imported and saved in lib/form-layout.scss is used for whole form.
It specifies design of the form and layout of the form for row labels and row content.

Figure 4.4: A screenshot of a RequestCertificateModal in ”request“ mode

Its state has these properties:

∙ _mode - determines which functionality the dialog server. This property determines
if some parts of form are not shown. Acceptable values for this property are strings

”import“ or ”request“.

27

https://www.patternfly.org/v4/documentation/react/components/button
https://www.patternfly.org/v4/documentation/react/components/modal

Figure 4.5: A screenshot of a RequestCertificateModal in ”import“ mode

∙ _hostname - the name of host server in form of string. This is used to pre-generate
some form values, such as nickname in component NicknameRow described in section
4.5.6

∙ _userChangedNickname - a boolean flag used to know if user changed the pre-
generated value of nickname.

∙ ca - a string value of a certificate authority. The default value is the nickname of
first certificate authority in a list of CAs provided by certmonger. It is set by CAsRow
described in section 4.5.4

∙ storage - a string value determining the storage type of a new certificate. Acceptable
values are ”nssdb“ for NSS database and ”file“ for storing certificate and key-pair file
somewhere on file system. If user is requesting a new certificate, default value is

”nssdb“, if user is importing an existing certificate, default value is ”file“. It is set by
StorageRow described in section 4.5.5

∙ nickname - a string value used as a nickname for NSS database. In case of file storage
type, this property is irrelevant. It’s value is pre-generated as a combination of host
name, default certificate authority and date. It is set by NicknameRow described in
section 4.5.6

∙ certFile - a string determining a file path where to store newly generated certificate
file. In case of NSS database storage type, this property is irrelevant. It is set by
CertFileRow described in section 4.5.7

∙ keyFile - a string determining a file path to existing key-pair to use when requesting
a new certificate or where to store newly generated key-pair file. In case of NSS
database storage type, this property is irrelevant. It is set by KeyFileRow described
in section 4.5.8

∙ signingParameters - a boolean value determining if user wants to specify additional
values for a signing request. It is set by SetSigningParametersRow described in
section 4.5.9

28

∙ subjectName - an arbitrary and optional string value to used for common name (aka
CN) of certificate. It’s pre-generated as a ”CN=hostname“ using server’s hostname.
It is set by SubjectNameRow described in section 4.5.10

∙ dnsName - an optional string value to used for a list of DNS names of certificate. It
can be only one name, or multiple names separated by a comma. This formatting is
enforced in onValueChanged method. It is set by DNSNameRow described in section
4.5.11

∙ principalName - an optional string value used as a princical name for Kerberos. It
is set by PrincipalNameRow described in section 4.5.12

It consists of several methods:

∙ componentDidMount - a standard React method called when component first mounts.
In this case, it’s used to fetch the hostname of the server and save it into the state
store to _hostname property.

∙ onValueChanged - a helper method used to do additional logic when property of
some state changes. It is used to update the nickname and subject name when server
hostname is fetched, update state _userChangedNickname property when nickname
changes, update nickname when certificate authority is selected or to check if dnsName
state property is a string of multiple dns names divided by a comma.

∙ onAddError - a simple wrapper to add error’s name and message into state.

∙ onRequest - this method is called when user clicks on ”Request“ button. It prepares
parameters filled by user and submits them to the addRequest

The <hr /> HTML tag is used to divide form into 3 groups of related rows. First
group deals with choosing CA authority, second group deals with choosing a storage and
third group deals with setting additional signing request parameters. It’s form has follow-
ing composition. It has been simplified in order to not show unnecessary implementation
details:

<form className="ct-form">
<CAsRow />
<hr />
<StorageRow />
if state.storage == "nssdb"

<NicknameRow />

if state.storage == "file"
<CertFileRow />
<hr />
<KeyFileRow />

<hr />
if state._mode == "request"

<SetSigningParametersRow />
if state.signingParameters

<SubjectNameRow />

29

<DNSNameRow />
<PrincipalNameRow />

</form>

4.5.3 ResubmitCertificateModal

The implementation of this dialog is similar to that of RequestCertificateModal described
in 4.5.2. It also renders a dialog Patternfly’s Modal using containing with a form for
specifying certificate properties.

Class ct-form is imported and saved in lib/form-layout.scss and used for whole
form.

Its state has these properties:

∙ ca - a string value of a certificate authority. This value is filled with a certificate
authority name which issued the resubmitted certificate. It is set by CAsRow described
in section 4.5.4

∙ storage - a string value determining the storage type of the resubmitted certificate.
This value is filled by the storage of the resubmitted certificate and cannot be changed.
It is only used when resubmitting a certificate. It is set by StorageRow described in
section 4.5.5

∙ nickname - a string value used as a nickname for NSS database. This value is filled
by the nickname of the resubmitted certificate and cannot be changed. It is only
used when resubmitting a certificate with NSSDB storage. It is set by NicknameRow
described in section 4.5.6

∙ certFile - a string with a file path to a location of a resubmitted certificate. A
certificate at this location will be replaced by a new certificate. It cannot be changed.
It is only used when resubmitting a certificate with FILE storage type. It is set by
CertFileRow described in section 4.5.7

∙ keyFile - a string with a file path to a location of a key-pair used for a resubmitted
certificate. The key-pair at this location will used again when generating a new signing
request. It cannot be changed. It is only used when resubmitting a certificate with
FILE storage type. It is set by KeyFileRow described in section 4.5.8

∙ subjectName - a string value to used for common name (aka CN) of certificate.
Prefilled by common name of the resubmitted certificate. It is set by SubjectNameRow
described in section 4.5.10

∙ dnsName - a string for a list of DNS names of certificate. Prefilled by hostnames
of the resubmitted certificate and formatted into a a string where each dns name is
separated by a comma. This formatting is enforced in onValueChanged method. It
is set by DNSNameRow described in section 4.5.11

∙ principalName - a string used for a principal name for Kerberos. Prefilled by principal
name of the resubmitted certificate. It is set by PrincipalNameRow described in
section 4.5.12

It consists of several methods:

30

https://www.patternfly.org/v4/documentation/react/components/modal

∙ onValueChanged - a helper method used to update the component’s state. It’s only
additional logic is to enforce a formatting of dnsName state property as a string of
multiple dns names divided by a comma.

∙ onAddError - a simple wrapper to add error’s name and message into state.

∙ onResubmit - this method is called when user clicks the ”Resubmit“ button. It
prepares parameters filled by user and submits them to the modyfiRequest, which
modifies the current certificate. After this operation is done successfully it calls
/verb|resubmitRequest|, which resubmits the certificate request to the certificate au-
thority.

Figure 4.6: A screenshot of a ResubmitCertificateModal used to resubmit a certificate

Compared to the RequestCertificateModal described in 4.5.2 it doesn’t use
NicknameRow, CertFileRow or KeyFileRow which allow user to input values because in
this case nickname, certificate file path and key-pair file path these are only read-only
properties. It’s form has following composition. It has been simplified in order to not show
unnecessary implementation details:

<form className="ct-form">
if storage === "nssdb"

<label>Database path</label>
<samp>{certificateDatabasePath}</samp>
<label>Nickname</label>
<samp>{certificateNickanme}</samp>

if storage === "file"
<label>Certificate file</label>
<samp>{certificateFilePath}</samp>

31

<label>Key file</label>
<samp>{keyFilePath}</samp>

<hr />
<CAsRow />
<hr />
<SubjectNameRow />
<DNSNameRow />
<PrincipalNameRow />

</form>

Each row of the form has it’s own stateless component. Each row consists of label and
way of gathering input from the user.

4.5.4 CAsRow

This row is used to select a certificate authority which the certificate request will be sub-
mitted to. It uses cockpit’s own Select component, which is a wrapper for traditional
<select> and <option> HTML tags. A list of certificate authorities provided by certmon-
ger is mapped as options for this select. This row sets ca state property.

4.5.5 StorageRow

This is a pair of radio buttons where user can choose what type of storage they want to
use for their certificate. Available options are ”NSSDB“ and ”File“. Based on which option
user chooses, next few rows are rerendered. If they choose NSSDB the NicknameRowis
rendered. If they choose File option the CertFileRow and KeyFileRow are rendered.

4.5.6 NicknameRow

This row is rendered only if NSS database is chosen for storage as it sets a nickname to
be used to identify a certificate in NSSDB. It uses Patternfly’s TextInput. This row sets
nickname state property.

4.5.7 CertFileRow

Here user sets a file path where certificate file will be stored once provided by certificate
authority. It uses cockpit’s own FileAutoComplete component, which is aware of filesystem
on a server, not a client, which is convenient for this situation. If no path is specified, a red
alert row will be shown beneath. This row sets certFile state property.

4.5.8 KeyFileRow

Here user sets a path to the key-pair file. If user inputs path to an existing file, certmonger
will use this file as a key-pair for a new certificate. If user inputs a path to a non-existing
file, certmonger will generate the key-pair file and save it at the given location. If user is
importing a certificate, they must provide a path to an existing file. It also uses cockpit’s
own FileAutoComplete component. Same as before, if no path is specified, a red alert row
will be shown beneath. This row sets keyFile state property.

32

https://www.patternfly.org/v4/documentation/react/components/textinput/

4.5.9 SetSigningParametersRow

A simple checkbox where user can choose if they want to set signing request parameters.
If so, rows specifying subject name, dns name and principal name are shown underneath
and indented to the right to represent the hierarchy of those rows relatede to this checkbox.
If user decides not to specify signing parameters, certmonger will automatically generate
some of those parameters. This row sets setSigningParameters state property.

4.5.10 SubjectNameRow

A text input field where user can specify subject name such as common name. It uses
Patternfly’s TextInput. This row sets subjectName state property.

4.5.11 DNSNameRow

A text area input field where user can specify DNS names for subject alternative names6.
It uses Patternfly’s vertically re-sizable TextArea. This row sets DNSName state property.

4.5.12 PrincipalNameRow

A text input field where user can specify principal name to be used for Kerberos It uses
Patternfly’s TextInput. This row sets principalName state property.

4.6 Removing a certificate
This implements the functionality of removing a certificate. It’s important to remember
that there are differences between removing a certificate stored in NSS database and a
certificate stored in a file on file system. This component renders a dialog. Depending on
which storage type is chosen, the dialog has different body. Let’s explain certificate removal
for each storage type.

NSSDB: In this case, only read-only information which identifies a certificate for the
user. There is a row which shows a path for NSSDB and a row which shows a nickname
used to identify a certificate in NSSDB. This way user know which certificate in which
database is being removed. File storage: Here are also two rows of read-only information
which identifies a certificate for the user, but there is also a row which allows user to choose
additional action of removing files associated with a certificate. There is a row which shows
a location of certificate file, a row which shows a location of key file and a row with a
checkbox which allows user to choose if they also want to delete certificate and key files.

It uses Patternfly’s Modal component to render the dialog and Button component.
Its state has only one property:

∙ deleteFiles - a boolean flag which says if user also wants to delete associated certifi-
cate files. It’s by default set to false and is only relevant if certificate which is being
removed is stored in files and not in NSS database.

The class of this component has several methods:

∙ onValueChanged - a helper method used to update the component’s state. It’s mainly
used as a callback for changing a state from <input> checkbox.

6An extension to X.509 certificates allowing user to secure additional domain names with same certificate

33

https://www.patternfly.org/v4/documentation/react/components/textinput/
https://www.patternfly.org/v4/documentation/react/components/textarea#vertically-resizable-text-area
https://www.patternfly.org/v4/documentation/react/components/textinput/
https://www.patternfly.org/v4/documentation/react/components/modal
https://patternfly.github.io/v4/documentation/react/components/button/

∙ onRemove - a callback which is called when user confirms deletion of a certificate.
This is where most of the logic for removing a certificate is taking place. If user
decided to also delete associated certificate files, cockpit.file API is called to to delete
the key file, then delete the certificate file and then function removeRequest is called
to remove the certificate from certmonger. All of these actions are asynchronous,
but are chained using JavaScript’s Promise.prototype.then()7, meaning that next
action is done only after previous one is successfully completed. If the associated
certificate are not to be deleted, the certificate is only removed from certmonger.
After all this, appOnValueChanged is called to manually update the list of certificates
in application’s state, because certmonger doesn’t emit any signal when certificate is
removed.

Figure 4.7: A screenshot of a RemoveModal used to remove a certificate

4.7 Error handling
Most of the error handling is done in src/app.jsx. A list of alerts is kept in state of
Application component. Each alert is an object consisting of 2 properties: error title and
error message. Helper methods are defined to manage these alerts:

∙ addAlert: this method takes an error title and an error message as arguments and
pushes them into the list of alerts.

∙ removeAlert: this method takes index as an argument and removes item from the list
of alerts with same index.

The main idea is that method addAlert is passed to each component as a callback
which triggers an action which could possibly cause an exception.

Patternfly’s AlertGroup and Alert components for rendering errors.

7A method which takes arguments in form of callbacks for success or failure, allowing programmer to
specify what should be done after success or failure.

34

https://www.patternfly.org/v4/documentation/react/components/alertgroup/#toast-alert-group

Chapter 5

Testing

This application is based on Cockpit’s starter-kit1. It provides an easy way to write tests in
Python by just adding test functions into /test/check-application. ”Run make check
to build an RPM, install it into a standard Cockpit test VM (centos-7 by default), and run
the test/check-application integration test on it. This uses Cockpit’s Chrome DevTools
Protocol based browser tests, through a Python API abstraction.“[13] These tests are also
part of testing for continuous integration2 for upstream project. Therefore these tests are
run every time a contributor creates a Github pull request3 for this project. Continuous
integration infrastructure is already provided by Cockpit.

It provides two objects:

∙ self.machine - It’s used as interface to a virtual machine which tests are being
run on. It offer function self.machine.execute to spawn commands on the virtual
machine’s sytem.

∙ self.browser - It’s used as interface to a browser which runs the application inside
the virtual machine. It offer functions such as self.machine.wait_present to check
presence of element in DOM, self.machine.click to click on an element in DOM,
self.machine.wait_in_text to check presence of text in an DOM’s element and
many more functions.

Below is a summary of all unit tests which were written for this application.

5.1 Empty state
Implemented in function testEmptyState. Tests a functionality of implementation de-
scribed in section 4.2. It can be summarized in these steps:

1. It stops certmonger.service by spawning command:

systemctl stop certmonger.service

1https://github.com/cockpit-project/starter-kit/
2A practice of merging code of other developers continuously
3Pull requests let you tell others about changes you’ve pushed to a branch in a repository on GitHub.

Once a pull request is opened, you can discuss and review the potential changes with collaborators and add
follow-up commits before your changes are merged into the base branch.[9]

35

https://github.com/cockpit-project/starter-kit/

and loads the application page to check if page tries to start the service automatically.

2. It stops the service again to check if this time the application doesn’t try to start the
service again and instead it renders EmptyState component.

3. Tries to start the service from UI and checks if UI reacts to change of service’s state.

4. Stops and starts the service to see it a starting of the service from command line is
reflected in the UI.

5.2 No certificates available
Implemented in function testNoCertificates. Test checks an correct behaviour of the
application if no certificate is available on a system. If no certificate was created before the
test was started, a text which is telling a user that no certificates are available should be
rendered.

5.3 Warning of expired certificates
Implemented in function testWarningExpiredCert. Tests a correct warning of expired
certificate or a certificate which is going to expire. It’s implementation described in section
4.3.

The test’s structure can be described in following steps:

1. It creates a basic self-signed certificate with a command:

selfsign-getcert request

and it checks that no expiration warning is shown.

2. It changes certmonger’s configuration to issue self-signed certificates only for 2 weeks,
requests a self-signed certificate and checks that a warning about a certificate going
to expire soon is present.

3. It changes certmonger’s configuration to issue self-signed certificates only for 1 second,
requests a self-signed certificate and sleeps for 4 seconds. Then it checks that an error
about an expired certificate is present.

5.4 Modifying auto-renewal
Implemented in function testModifyAutorenewal. Tests a correct functionality of turning
off and turning on a certificate’s automatic renewal. It’s implementation described in section
4.3.1.

The test’s structure can be described in following steps:

1. It creates a basic self-signed certificate with a command:

selfsign-getcert request

2. It reads a value of a checkbox which sets automatic renewal and then negates this
value.

36

3. It checks if value of a checkbox was negated and co-checks this change by looking at
certificate’s ”auto-renew“ property output of a command:

selfsign-getcert list

5.5 NSSDB stored certificate
Implemented in function testNssdbCert. Tests a correct representation of NSSDB stored
certificate. It checks if it correctly shows expected properties of a certificate as described
in section 4.3.

The test’s structure can be described in following steps:

1. It creates a basic self-signed certificate with a command:

selfsign-getcert request

2. It compares rendered values with expected values for tabs ”General“, ”Key“ and

”Cert“.

5.6 File stored certificate
Implemented in function testFileCert. Does the same thing as testNssdbCert described
in section 5.5 but with values expected for a file stored certificate.

5.7 Updating after receiving D-Bus signal
Implemented in function testDbusPropertyChanged. Tests correct subscription to a D-
BUS signal PropertyChanged. Everytime any property of a certificate changes by some
external actions, D-BUS should emit a signal and the UI should update accordingly.

The test’s structure:

1. Create a basic self-signed certificate with a command:

selfsign-getcert request

2. Save certificate’s validity value shown in the UI

3. Renew a certificate by running a command:

selfsign-getcert resubmit

This should result in certificate’s updated validity.

4. Check a certificate’s validity has changed.

5.8 Removing a certificate
Implemented in function testRemoveCert. Tests removing a certificate. Implementation
of this functionality is described in section 4.5.3

The test’s structure:

37

1. Create a basic NSSDB stored self-signed certificate.

2. Remove it using functionality exposed by the UI. Check an option to remove associated
certificate files is not available, since it’s NSSDB stored certificate.

3. Check the certificate is no longer present in the UI.

4. Create a basic file stored self-signed certificate.

5. Remove it using functionality exposed by the UI. Check an option to remove associated
certificate files is available, since it’s file stored certificate, but do not choose it.

6. Check the certificate is no longer present in the UI but files are still available on
system.

7. Create a basic file stored self-signed certificate.

8. Remove it using functionality exposed by the UI. Also choose option to delete asso-
ciated files.

9. Check the certificate is no longer present in the UI and files were deleted.

5.9 Importing a certificate
Implemented in function testImportCert. Tests importing a certificate. Implementation
of this functionality is described in sections 4.5.1 and 4.5.2.

As importing a certificate is action which needs to be tested multiple times with different
parameters. Therefore a class ImportCertDialog for this repetitive testing was created.
This class has following methods:

∙ execute: Executes a single test instance for importing a certificate. It calls following
methods in this order: open, fill, create, verify_frontend, verify_backend,
cleanup.

∙ open: Opens a dialog for importing a certificate

∙ fill: Fills the dialog with inputs

∙ create: Clicks on ”Import“ button which imports a certificate

∙ verify_frontend: Checks if imported certificate is present in the UI with correct
properties.

∙ verify_backend: Checks if imported certificatehas equal properties as those sown by
CLI tool selfsign-getcert.

∙ cleanup: Removes an imported certificate

In order to have a certificate that can be imported, commands are spawned which create
and then remove a certificate. They do not however cleanup certificate files, which can be
then used for importing a certificate.

38

5.10 Requesting a certificate
Implemented in function testImportCert. Tests requesting a new certificate. Implemen-
tation of this functionality is described in sections 4.5.1 and 4.5.2.

Same as with importing a certificate, this is an action that needs to be tested multiple
times with different parameters. Therefore a class RequestCertDialog was created. Al-
though this class has the same methods as ImportCertDialog from the previous section,
their implementation differs significantly. It has following methods:

∙ execute: Executes a single test instance for creating a certificate. It calls following
methods in this order: open, fill, create, verify_frontend, verify_backend,
cleanup.

∙ open: Opens a dialog for requesting a certificate

∙ fill: Fills the dialog with inputs

∙ create: Clicks on ”Create“ button which requests a certificate

∙ verify_frontend: Checks if new certificate is present in the UI with correct proper-
ties.

∙ verify_backend: Checks if new certificate has equal properties as those sown by CLI
tool selfsign-getcert.

∙ cleanup: Removes a certificate

This test runs 4 different test instances, each with a different aim. First, it tries to run
a test without providing any inputs, to see if values available in a dialog for requesting a
certificate by default will result in a proper certificate. Then it tries to request an NSSDB-
stored certificate, file stored certificate and in the end, it tries to request a certificate with
additional signing properties: subject name, DNS name, and principal name.

39

Chapter 6

Conclusion

This work provides a tool with a user interface to manage server’s certificates. During
the designing of the application, it was always taken into account to present functionality
to a user who may be a layman in a topic of X.509 certificates, an administrator who is
mainly working with Windows, or a beginner administrator. These problems were solved
in various ways. The application tries to navigate the user to a desirable outcome that
would satisfy most of the users. This was achieved by setting default options for inputs
every time it was possible. Another way was trying to not overcrowd any component or
modal with too many inputs or data.

It’s aim was also to provide a solution that would fit into Red Hat’s infrastructure.
This was achieved, as the plugin was presented to accepted by Cockpit’s team into its
project portfolio and in the future, its repository will be moved under cockpit-project. A
process of releasing the project as a package into Fedora is ongoing and in near future,
there will be a cockpit-certificates package available.

Project is currently available at its Github repository1. There are plans to extend it.
Currently, it provides solutions mainly for FreeIPA infrastructure, as that’s Red Hat’s
default solution for identity management, but it might be enlarged by another authority
such as Let’s Encrypt2.

1https://github.com/skobyda/cockpit-certificates
2Popular open-source and free certificate authority

40

https://github.com/skobyda/cockpit-certificates

Bibliography

[1] Overview - certkonger [online]. [cit. 2020-06-28]. Available at:
https://pagure.io/certmonger.

[2] Cockpit [online]. [cit. 2020-06-26]. Available at: https://cockpit-project.org/.

[3] What is CSR [online]. [cit. 2020-06-24]. Available at:
https://www.appviewx.com/education-center/certificate-request/what-is-csr/.

[4] Dbus [online]. [cit. 2020-06-28]. Available at:
https://www.freedesktop.org/wiki/Software/dbus/.

[5] D-Bus Tutorial [online].

[6] DBus Overview [online]. [cit. 2020-06-29]. Available at:
https://pythonhosted.org/txdbus/dbus_overview.html.

[7] About JavaScript [online]. [cit. 2020-06-27]. Available at:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript.

[8] About PatternFly [online]. [cit. 2020-06-28]. Available at:
https://www.patternfly.org/v4/get-started/about.

[9] About pull requests [online]. [cit. 2020-07-28]. Available at: https://docs.github.com/
en/github/collaborating-with-issues-and-pull-requests/about-pull-requests.

[10] React - A JavaScript library for building user interfaces [online]. [cit. 2020-06-28].
Available at: https://reactjs.org/.

[11] Planning How to Deploy Red Hat Certificate System [online]. [cit. 2020-06-20].
Available at:
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/9/
html/planning_installation_and_deployment_guide/planning_how_to_deploy_rhcs.

[12] Renewing Certificates [online]. [cit. 2020-07-20]. Available at:
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
linux_domain_identity_authentication_and_policy_guide/cert-renewal.

[13] Automated Testing [online]. [cit. 2020-07-28]. Available at: https://github.com/
cockpit-project/starter-kit/blob/master/README.md#automated-testing.

[14] Xenitellis, S. S. The Open–source PKI Book: A guide to PKIs and Open–source
Implementations. 1999.

41

https://pagure.io/certmonger
https://cockpit-project.org/
https://www.appviewx.com/education-center/certificate-request/what-is-csr/
https://www.freedesktop.org/wiki/Software/dbus/
https://pythonhosted.org/txdbus/dbus_overview.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://www.patternfly.org/v4/get-started/about
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://reactjs.org/
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/9/html/planning_installation_and_deployment_guide/planning_how_to_deploy_rhcs
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/9/html/planning_installation_and_deployment_guide/planning_how_to_deploy_rhcs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/cert-renewal
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/cert-renewal
https://github.com/cockpit-project/starter-kit/blob/master/README.md#automated-testing
https://github.com/cockpit-project/starter-kit/blob/master/README.md#automated-testing

