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Abstract
Nowadays, the process of analyzing malicious software is an important part of information
technologies. One of the crucial techniques is decompilation of malicious binary programs.
The decompilation is a complex process, and there are multiple projects with such a goal.
The project RetDec aims to develop retargetable and flexible decompiler. The goal of this
research is to improve the decompilation of advanced instruction sets for architecture x86.
The new optimization for FPU register stack manipulation is designed, and the support of
FPU and SSE instruction set translation is extended. The new extensions are implemented
and tested in the manner of decompilation efficiency and quality.

Abstrakt
V dnešnej dobe je proces analýzy nebezpečného softvéru dôležitou súčasťou informačných
technológií. Jedna z kľúčových techník je spätný preklad škodlivých binárnych programov.
Spätný preklad je komplexný proces, ktorý rieši niekoľko projektov. Projekt RetDec sa za-
meriava na flexibilný návrh a riešenie spätného prekladača s možnosťou znovupoužiteľnosti.
Cieľom tejto práce je zlepšenie spätného prekladu pokročilých inštrukčných sád pre architek-
túru x86. Bola navrhnutá nová optimalizácia pre FPU registrový zásobník. Bola rozšírená
podpora prekladu inštrukčných sád jednotiek FPU a SSE. Nové rozšírenia boli implemen-
tované a otestované z hľadiska efektivity a kvality spätného prekladu.
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Rozšířený abstrakt
Táto práca sa zaoberá využitím reverzného inžinierstva v oblasti softvérových technológií.
Reverzné inžinierstvo je všeobecne metóda získavania informácií alebo plánov o akýchkoľvek
objektoch vytvorených človekom. V oblasti informačných technológií je význam tejto dis-
ciplíny najmä v rámci kybernetickej bezpečnosti. Táto technika je využívaná tvorcami
škodlivého softvéru (tzv. malvér). Malvér využíva reverzné inžinierstvo na získavanie
citlivých informácií o operačnom systéme s potenciálnym cieľom získať kontrolu nad zari-
adenim. Ďalšia rozšírená oblasť je softvérové pirátstvo, kedy sa útočník snaží prelomiť
ochranu komerčného digitálneho obsahu ako sú knihy, filmy, hudba, hry alebo rôzne platené
programy. Na druhej strane môže pomôcť práve pri analýze malvéru za účelom zvýšenia
bezpečnosti voči danému softvéru.

Jedna z kľúčových techník pre analýzu malvéru je analýza pomocou programu všeobecne
nazývaneho spätný prekladač. Spätný prekladač je program, ktorý analyzuje spustiteľné
binárne súbory a zrekonštruuje vysoko úrovňový výstup, napríklad v podobe grafu alebo
kódu v programovacom jazyku. V dnešnej dobe existuje niekoľko projektov spätných
prekladačov. Projekt RetDec sa zameriava na vytvorenie open-source nástroja, ktorý je
rozdelený na viacero knižníc. Takýto návrh má za cieľ umožniť znovupoužiteľnosť jed-
notlivých nástrojov spätného prekladača.

Cieľom tejto práce je rozšíriť podporu spätného prekladu v projekte RetDec o špe-
cializované inštrukčné sady FPU a SSE (procesorová architektúru x86). Bol vytvorený
návrh nových rozšírení na základe zhodnotenia aktuálnej podpory inštrukčných sád FPU
a SSE. Inštrukčná sada FPU bola v rámci práce rozšírená na 100 % inštrukcií. RetDec
už v súčasnosti novú implementáciu podporuje. Pre sadu SSE bol vytvorený a čiastočne
implementovaný návrh, ktorý rozlišuje inštrukcie na skalárne a vektorové.

Druhé rozšírenie sa zameriava na optimalizáciu spätného prekladu FPU registrov, ktoré
tvoria zásobníkovú štruktúru. V rámci práce bola navrhnutá nová optimalizácia, ktorá
transformuje prácu s FPU zásobníkom na preurčenú sústavu lineárnych rovníc. V ďalšej
časti práce sa zhodnotili rôzne aproximačné metódy na riešenie získaného systému. Bol
vykonaný výkonnostný experiment, ktorý bol meraný na spätnom preklade stoviek sku-
točných binárnych spustitelných súborov. Experiment porovnal efektivitu skutočnej im-
plemntácie pre jednotlivé navhované metódy a zvolil najoptimálnejšiu, ktorá bola následne
integrovaná do novej optimalizácie.

Záver práce popisuje testovanie implementácie nových rozšírení v spätnom prekladači
RetDec. V rámci testovania boli použité tri testovacie nástroje. Prvé dva nástroje testovali
nové rozšírenia pomocou jednotkového a regresného testovania. Do jednotkových testov
boli pridané testy zvlášť pre každú novo podporovanú inštrukciu (a jej varianty). Nástroj
regresných testov otestoval nové rozšírenie na 822 skutočných binárnych programoch, ktoré
boli preložené pre architektúru x86 a manipulovali FPU zásobník. Nástroj vyhodnotil
spätný preklad pre zvolenú testovaciu sadu za úspešný. Tretí nástroj sa v rámci projektu
RetDec nazýva ako nočné testy. Tento nástroj otestoval nové rozšírenia na tisíckach reál-
nych spustitelných súboroch. Výsledky nočných testov zaznamenali výkonnostný pokles
spätného prekladu. Nové spracovanie FPU registrov je priemerne šesťkrát pomalšie oproti
originálnemu riešeniu. Avšak takýto výkonnostný pokles bol očakávaný a je akceptovateľný
vzhľadom na komplexnosť novej optimalizácie.
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Chapter 1

Introduction

Nowadays, the process of analysing malicious software is an important part of informal
technologies. One of the essential methods is decompilation of malicious binary programs.
The decompilation is a complex process, and there are many projects with such an intent.
The project RetDec intends to develop retargetable and flexible decompiler. The research
proposes designs and tests new extensions for RetDec that improve the decompilation of
advanced instruction sets for architecture x86. The support of FPU and SSE instruction
set translation is extended. The new optimization for FPU register stack manipulation is
designed. These extensions are tested in term of decompilation efficiency and quality.

The thesis, besides the general introduction, is split into eight logical Chapters. Chap-
ter 2 introduces the concept of reverse engineering. Expressly, it presents the typical process
of decompilation and explains the usual difficulties.

The Chapter 3 discusses the project RetDec, presents its architecture, and technologies
applied in this decompiler (LLVM, Capstone, Keystone, and others).

Chapter 4 discuses the processor architecture Intel x86 supported by RetDec decom-
piler. The Chapter discusses the floating-point extensions FPU and SSE. The Chapter
offers information that explains the problems and obstacles of this processor extension
decompilation.

The Chapter 5 analyse actual state and potential obstacles of RetDec with the support of
FPU and SSE instruction sets. It reviews these deficiencies in term of information obtained
from the previous Chapter.

The Chapter 6 proposes a new advanced FPU optimization. It presents several methods
for solving the designed task. It also proposes better support of SSE instruction set for Ret-
Dec decompiler. At last, the modifications to decompiler necessary for the implementation
of the new extensions are discussed.

The Chapter 7 reviews the final implementation of the proposed extensions. The Chap-
ter examines the newly proposed optimization implementation efficiency for various method
of task solution, and it selects the best alternative. It also shows the result of the imple-
mentation for the advanced support of SSE instruction set.

The Chapter 8 tests implemented extensions in term of efficiency and functionality. The
Chapter introduces three testing framework and shows the results of these tests.

Finally, the Chapter 9 summarize the entire work and point out the proposed and actual
results.
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Chapter 2

Reverse engineering

The concepts of reverse engineering, actual and historical reasons and conditions are pre-
sented at the base of the following book [8].

Reverse engineering, in general, is a method of obtaining information or blueprints about
any object created by human. The idea of reverse engineering does not associate only to
modern computer technologies. The concept has already existed in the era of the industrial
revolution. The method has been typically used to examine commercially available technical
products. Such a product has been physically decomposed, and each part was investigated
to figure out its purpose. The process reveals the secrets of merchandise design without
owning the original blueprints. Retrieved designs were commonly used to improve the
product of the competing company.

The reverse engineering, in the domain of software technologies, is commonly named
just reversing. Reversing is a fully abstract process of looking inside a computer program.
There is not any physical object but only binary data, which are executable on a specific
processor. Reversing requires knowledge of computers and software development processes.

The software reversing exploitation is useful for a variety of different purposes, the most
significant are security-related reversing, and software development reversing. Both of these
reversing purposes has discussed in the following Chapter. Software reversing considerably
relates with a low-level layer of software architecture. Terms associated to low-level software
describe this Chapter. At last, the Chapter introduces the concept of automatized reversing
of software by the special program intended for this purpose.

2.1 Reversing in area of software security
In the area of software security, the reversing is used by both malware developers and by
those creating security measures. In the area of computer security, the typical application of
reversing is to analyses of malicious software. Also reversing of the cryptographic algorithms
can discover implementation-dependent deficiency. Analysing of proprietary software pro-
gram binaries, and searching for security vulnerabilities. Some of these applications are
discussed in this Section.

2.1.1 Malicious software

In the beginning, a malicious software spread was fairly slow, and the precautions were much
simpler because the human intervention was required to infect computer device. Internet
network expansion dramatically changes the security character of computer technology.
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Nowadays, nearly every computer on earth is connected to this virtual network. The mali-
cious software spreads much faster, and the protection of computer devices is considerably
more difficult. Computer attackers use reversing to capture vulnerabilities of the operating
system or some other software. The reversing allows attackers to locate sensitive informa-
tion about users, or even to take over control of the system. On the contrary, developers
of antivirus software use reversing for analyzing malicious programs. They monitor every
step of the malicious program to determine the damage it could cause and to find a possible
method of protection.

2.1.2 Reversing cryptographic algorithms

Cryptography is a method of preserving information by transforming it into a human un-
readable format. Protection of e-mails, credit cards information, or any other sensitive data
are obtained by cryptography. [15]

The specific method of data transformation is called a cryptographic algorithm. Cryp-
tographic algorithms in the manner of reversing purposes divide into two groups: key-base
and restricted algorithms. The restricted algorithms are secret because the knowledge of
the algorithm allows encryption and decryption of the message. Further, the key-based
algorithms are typically public and well-known, but it uses the secret key. The secret key
is necessary for encrypting and decrypting the message. Reversing try to analyses the re-
stricted algorithm. The restricted algorithms are weak protection of information because
exposing the algorithm makes it unsafe. Reversing of the key-based algorithm can look
like ineffective. However, there are cases where it makes sense. Understanding of specific
implementation can offer some interesting security details.

2.1.3 Digital Rights Management

In contrast with the past, providers of the most kinds of copyrighted materials turned their
products into digital content. The products, like books, music, films, or games, are now
available digitally. This produces huge benefits for customers, but also enormous compli-
cations for providers and content owners. The duplication of digital information, between
consumers, is easy and unfortunately common practise. Commonly, the software owners
wrap their product with additional copy protection software. Over the years, piracy pro-
tection technologies become more advanced, and this type of software are collectively called
Digital Rights Management (DRM). DRM technologies are active protection, which decides
about the availability of protected digital media. Software pirates use reverse engineering
techniques to defeat DRM protection. Reversing of DRM technologies allow pirates to un-
derstand the inner secrets of software protection. Their goal is to find out how to modify
it to disable the protection.

2.2 Reversing in area of software development
Reversing has as well great importance in the field of software development. Developers
use reversing techniques to analyse partially documented or undocumented software, to
improving competitive software, or to evaluating software quality and robustness.

6



2.2.1 Proprietary software documentation

Proprietary software documentation is almost always insufficient. Vendors of proprietary
software can make a huge effort to provide adequate documentation. But customers typ-
ically encounter a problem with an unclear, or an undocumented solution. Developers in
such a situation have to contact the vendor, which is a time-consuming solution. Differ-
ently, a developer can use reversing. Reversing can solve several of these problems with
small effort. Typically, third-party software contains undocumented proprietary file for-
mats, or networking protocols, which has to be reversed. Consider a famous Microsoft
Word document format .doc. This format is also undocumented. But there is a lot of
programs, which wants to support this format. Someone had to reverse the Microsoft Word
file format, to provide support of it.

2.2.2 Development of competitive software

The development of a competitive product is, without a doubt, the most leading utilization
of reverse engineering. Although, software engineering industry creates considerably com-
plex products. Reversing whole software to create a competing product is almost always
worthless. More often then not, it is effortless to create a new product from scratch or
integrate the third-party libraries for more complex parts. Nevertheless, there are excep-
tions where the application of reversing is reasonable. Some extremely complex algorithms
might be reversed, because of time-saving reasons. The legal aspect of reversing competitive
software discuss the following book (see [8], Chapter 1, Section ‘Is Reversing Legal?’).

2.2.3 Software quality metrics

Software development includes techniques and metrics that evaluate software robustness,
security and other general qualities of source code. Such techniques require access to the
source code of the software. The disadvantage of the proprietary software is that there is
no access to source code for customers. The users have to trust the vendor or apply revere
engineering. Of course, reversing will never be as effective as analysing of source code itself,
but it can be highly informative. The need for evaluating source code of critical software
by users is even confirmed by large companies. For example, Microsoft gives access to
Windows sources for large customers.

2.3 Low-level software
Generally, software is composed of layered architecture (see [8]). The bottom layer relates
with the physical hardware. Hardware control provides assembly language. Usually, the
assembler is different for each processor architecture and specific hardware device. Above
physical layer is low-level software layer. It consists of an operating system and development
tools such as compilers, linkers, or debuggers. The operating system encapsulates specific
hardware architecture dependency, and development tools encapsulate assembly language
dependency. Today, low-level software is encapsulated by another layer. At the top layer,
there are some high-level languages, which greatly simplify development.

Reverse engineering strongly relates with low-level software layer. The reason is that
the low-level details about the original program are typically the only pieces of information
obtainable from the executable binary program. The Section introduces key aspects of
low-level software.

7



2.3.1 Assembly language

Assembly language (or simply assembler) is a family of languages. Each processor architec-
ture has its assembly language. And these languages usually significantly differ from each
other. The knowledge of chosen architecture assembler is the necessary basis for the reverse
engineer.

Assembler is a representation of processor instructions in a human-readable form. On
the other hand, the machine code, or binary code is a representation of processor instruc-
tions in a sequence of bits, which is more effective for the processor itself. The machine
code and assembler are just a different representation of the same object.

The illustrative example presents the translation process of assembler instruction to
machine code. The instruction belongs to processor Intel 8086 (see [14], Chapter 12, Section
‘x86 Instruction Encoding’). The process of encoding instruction example from Table 2.1
includes the following steps:

1. The unique code for instruction PUSH with 16-bit register operand is 0x50.

2. The unique identification for register CX is 0x01. Addition of 0x50 and 0x01 produces
0x51.

Assembly instruction Machine instruction
PUSH CX 0x51

Table 2.1: Mapping assembler instruction to machine code for Intel 8086 processor.

For the reversing purposes, the opposite (or backward) process of translation is important.
A disassembler is a specific type of program that transforms the input binary executable
program into a text file. Such a file contains assembler code equivalent to input machine
code. It is a relatively simple process that maps binary code into assembler.

2.3.2 Compilers

As described in Section 2.3.1, the software consists of layered architecture, where the as-
sembly language creates the bottom layer. High-level language is an abstraction over the
assembly language. However, the high-level languages (for example Java, or C++) have
to be transformed into machine code at the end. The reason is that machine code is the
only language executable at the processor. The transformation performs a program called
a compiler. The resulting machine code classifies into two categories. Either it is standard
platform-dependent binary code, which is straight executable by a processor. Or it is a
platform-independent format of code that is called bytecode. The specific program called
a virtual machine process the bytecode and executes the specific hardware functionality.

Compilers of standard programming languages convert source code into machine code,
which is directly executable at the processor (for example C or Pascal). During the con-
version, a lot of optimizations over the machine code is applied. They increase program
performance, but reversing of the optimized program is considerably more challenging. The
reconstruction of the original high-level programming constructions from the optimized ma-
chine code is a complicated process. It is not an exception that the reconstruction is not
achievable.

On the contrast, the second class of compilers transforms source code into bytecode (for
example Java). In comparison to reversing of the standard binary code, the reversing of
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bytecode is a completely different process. In general, it is a more straightforward process,
because bytecode offers higher abstraction.

2.4 Decompilation
The process of reversing binary executable software into high-level programming language
is called decompilation. The decompiler program reverses the executable binary file and
produces high-level language code output. The Section introduces common decompiler
architecture. It also describes the widely used techniques such as an intermediate repre-
sentation of the program and static single assignment form of code representation. Finally,
the Section discusses existing decompilers and compares them.

2.4.1 Intermediate Representations

Section 2.3.2 introduces the concept of compilers. The result of compilation is machine code
that depends on the processor architecture (see Section 2.3.1). Intermediate Representation
(IR) provides a generic set of instruction independent from architecture but with the ability
to adequately represent the reversed program. Some decompilers transform source program
to IR and just iteratively eliminate low-level detail. Other decompilers use more IRs,
typically one for low-level representation and another for higher-level representation in
later stages. Generally, the IR contains the following instruction set: assignment, push,
pop, call, ret, branch, and unconditional jump (for more detail information about typical
IR instruction set see [8], Chapter 13.). The IR instruction set is considerably smaller than
the usual assembler instruction set. However, IR instructions typically represent complex
expressions. For the representation of such complex expressions, the decompiler uses a
structure called an expression tree. An expression tree effectively represents the sequence
of arithmetic instructions. Expression tree provides reasonably more accessible input for
generating high-level language expression.

Decompilers must create a Control Flow Graph (CFG) to reconstruct high-level control
flow information from low-level IR. The CFG always represents the control flow of a single
procedure. The reason for CFG representation is a simple transformation to high-level
control flow constructs like loops and branches.

2.4.2 Static Single Assignment (SSA) form

SSA is a naming convention for variables in low-level program representation. Program
code is in SSA form if each variable is a target of exactly one assignment statement. This
lead to referential transparency, which means that for a variable with exactly one definition,
the variable value is independent of its position in code. This knowledge is used for code
optimizations such as data-flow analysis. For example, the dead code elimination in the
fourth version of the GCC compiler is based on SSA intermediate representation, and an
earlier version of the GCC compiler does not use SSA. The fourth version of the GCC
compiler analyses around 40 % less of code lines then the equivalent optimizer pass with
the third version of the GCC compiler. [27]

2.4.3 Typical Decompiler Architecture

The compiler is a special program, which transforms high-level programing language repre-
sentation of program into a binary executable program. On the other hand, the decompiler
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Compiler

Frontend Midend Backend

High-level
source code
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binary
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IR

IR

optimized IR

optimized IR

Figure 2.1: The typical architecture of compiler in contrast to decompiler.

reconstructs high-level language representation from some binary program. Decompiler
typical architecture consists of similar parts as compiler architecture but in reversed order.

The compiler frontend is a component that parses input source code. The decompiler
frontend decodes assembler instructions into some IR. In the beginning, there is only an
input binary executable program, which has to be parsed. Frontend also provides seman-
tic analysis because a lot of these assembly instructions hardly make sense individually.
Instead, many of them create architecture-specific sequences. The output of frontend ad-
ditionally represents control flow. The IR creates blocks of instructions where each block
reference to some other part of code.

The midend of both architectures performs a set of optimizations over IR but with
opposite goals. The compiler performs a code analysis to increase the performance speed
of the final executable program. On the contrary, the decompiler code analysis aims to
transform code into the more abstract form. At this stage, the decompiler eliminates the
hardware concepts (registers and low-level conditional code) and converts it into the high-
level programming constructions (variables, loops, branches and others). Typically for CFG
analysis, the SSA notation is used (see Section 2.4.2). Data flow analysis can also provide
information about data type propagation (e.g., the data type propagation of function return
value). But before the data type propagation, the decompiler has to find out data types
by itself. Registers often do not define data type information, but some instructions are
data type sensitive. This information allows decompiler to scan for primitive data types.
Decompilers also reconstruct complex data types. For such purposes, decompiler applies
various advanced code scanning techniques:

∙ Certain registers are analysed to find out a memory address pointing to some data
structure.

∙ The program commonly uses a hard-coded constant for manipulating data structure.
Identification of such constant allows access to the analysed data structure.

∙ Detection of an array provides identification of standard loop iteration sequence and
others.

Usually, the analysed program contains a lot of library functionality. Identification of such
code is very beneficial. It provides very accurate information about data types without
type-analysis process.
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Finally, the backend takes this improved IR and generates output. Separation of
output generation brings flexibility benefits. The generator produces various programing
language output but always work with the same IR input. Such an approach allows an easy
way to generate different programming language product.

2.5 Existing reversing tools
The Section introduces some decompiler projects and discusses their comparison. The goal
of this thesis is to design new extensions for RetDec decompiler. As a result, the comparison
of existing decompilers relates to this reference project (RetDec is detailed in Chapter 3).

IDA (Interactive Disassembler)1 is cross-platform, multi-processor disassembler and
debugger developed by Hex-Rays company. The part of the project is also the Hex-Ray
Decompiler2. It generates human-readable C-like pseudocode. Currently, the supported
input processor architectures are x86, x64, ARM32, ARM64, PowerPC, and PowerPC64.
Nowadays, Hex-Rays offers one of the best decompilers on the market, but it is a paid tool,
and because it is proprietary software, it cannot be used commercially.

Ghidra3 is open-source reverse engineering framework developed by The National Se-
curity Agency of the U.S. Government. The framework was released in 2019, but it presents
functionality comparable to the IDA project. It provides support of multiple processor ar-
chitectures and operating systems. On the other hand, it is a robust tool, and it does not
allow the use of individual framework tools separately.

1IDA project: https://www.hex-rays.com/products/ida/index.shtml
2Hex-Ray Decompiler: https://www.hex-rays.com/products/decompiler/index.shtml
3Ghidra project: https://www.nsa.gov/resources/everyone/ghidra/
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Chapter 3

Retargetable Decompiler (RetDec)

RetDec decompiler project is a set of open-source reversing tools that are chained together.
The goal of the decompiler is to become architecture, operating system and executable file
format independent. The Chapter introduces RetDec architecture and software technologies
used by this framework. Figure 3.1 shows the schema of RetDec and technologies used in
each part of the decompiler. The core technologies used in decompiler are LLVM IR (see
Section 3.1.1) and Capstone (see Section 3.1.2).

Preprocessing Core Backend

Capstone

LLVM IR
BIR

fileformat

par2yara

unpacker

binary
input

high-level
output

Figure 3.1: The architecture of RetDec and software technologies used by decompiler.

3.1 Technologies used in decomplier
Decompiler contains various open source technologies. The core of the decompiler design
uses LLVM project. Capstone and Keystone libraries perform binary parsing and assembler
generating. The Section explains details about these technologies.

3.1.1 LLVM IR

Low Level Virtual Machine (LLVM) IR defines common, low-level code representation. It
is freely available under a non-restrictive license. LLVM representation uses an SSA form
(see Section 2.4.2). LLVM code representation resembles an abstract RISC instruction set
with high-level information for efficient analyses. For example, language-independent type
system, control flow graphs or typed register set in SSA form. LLVM IR representation is
independent of source language because it uses low-level instruction set slightly richer than
common assembly language. It is important to note that LLVM IR has not intended to be a
universal compiler IR. In particular, it does not provide high-level language features such as
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classes, inheritance or exception handling. These features could be provided only indirectly.
It also does not guarantee type or memory safety any more than assembly language. LLVM
is complementary to high-level virtual machines such as in Self and Smalltalk. Benefits of
LLVM are ideal for statically compiled languages like C and C++. [20]

The Section describes the basic concept of LLVM syntax and representation. For further
details about LLVM syntax, see the official documentation of the project1, or book [22].
LLVM representation of the program consists of the following data structures:

1. Module: The module is a top-level abstraction. It defines the content of an entire
LLVM file. Naturally, the program can consist of multiple modules combined with
the language linker. Each module consists of a sequence of functions. It also contains
external entities, such as global variables, external function prototypes, or definition
of data structures.

2. Function: The function representation is similar to C language syntax. There are
function definition and a declaration signature syntax. The function declaration sig-
nature begins with declare keyword followed with the return type, name of the func-
tion and argument list. The function name is the global identifier and always begin
with @ prefix. Each argument consists of a data type and argument label. The argu-
ment label needs % prefix because it is a local identifier. The body of the procedure
sets function definition, which explicitly breaks the function into a sequence of basic
blocks.

3. Basic Block: The basic blocks form the CFG for the function. Each block begins
with a unique identifier. Such identification can be explicitly defined, or an implicit
numeral label is assigned. A block represents a sequence of instructions with a single
entry point (first instruction) and a single exit point (last one). The terminating
instruction changes control flow to another basic block or returns from the function.

4. Instruction: The instructions classification split instruction set into several classes:
terminator instructions, binary instructions, memory instructions, and other instruc-
tions. Terminating instruction are explained previously, together with the basic block
concept. Binary instructions perform general operations, for example, arithmetic op-
erations, bitwise shifting, bitwise logical operations, etc.. Memory instructions read,
write, or allocate memory. The remaining instructions cover mixed functionality
(comparations, special constants, a function call, etc.). Typically, the instructions
form a three-address code with two sources and one destination operand.

The code Listing 3.1 shows possible content of LLVM IR module. This module contains
one definition of a function with a globally unique label @foo . The function has two
arguments with explicit type definition (a 32-bit wide integer), and return data type is also
an integer. The model also defines one global variable @GLOBAL_VAR . The body of the
function contains three basic blocks: %label0 , %label1 , and %label2 . The basic blocks
%label1 and %label2 are terminating blocks of function, and basic block %label0 ends
with branching instructions. The expressive ability of instructions inside the basic block is
very similar to assembler, but besides, it explicitly defines data types and variables. Lines
4 and 8 shows a characteristic load/store architecture.

1Official documentation of LLVM project: https://llvm.org/docs/
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1 @GLOBAL_VAR = global i32
2 define i32 @foo(i32 %arg0, i32 %arg1) {
3 label0:
4 %flag = load i1, i32* @GLOBAL_VAR
5 br i1 %flag, label %label1, label %label2
6 label1:
7 %x = add i32 %arg0, %arg1
8 store i1 false, @GLOBAL_VAR
9 return i32 %x

10 label2:
11 %y = mul i1 %arg0, %arg1
12 return i32 %y
13 }

Listing 3.1: Example of LLVM IR syntax.

3.1.2 Capstone

Capstone is a disassembly framework for reverse engineering. It is an open-source project
under a BSD license. The framework is compatible with multiple platforms. Accord-
ing to the official documentation (see [2]), the engine supports the following hardware
architectures: x86 (16-bit, 32-bit, 64-bit), ARM, ARM64, MIPS, PowerPC, Sparc, Sys-
temZ and XCore. Capstone has native support for the Windows operating system and
it also supports Linux, OSX, iOS, Android, BSD, and Solaris. The disassembler engine
provides architecture-independent Application Programming Interface (API). As shown in
Figure 3.2, Capstone disassembler is complementary to Keystone assembler project (see [3]).
Keystone is an assembler framework, which compile assembly instructions to binary. Ret-
Dec decompiler uses Capstone library for disassembling, and Keystone library as a testing
framework.

binaryassembly

Keystone

Capstone

Figure 3.2: Complementary reverse engineering engines Capstone and Keystone.

3.2 Decompiler structure
The Section describes the architecture of the decompiler (for further details see [18]). The
decompiler is structured into three main blocks. Every block consists of smaller units.
Such a design makes the project units reusable because each unit works as the library with
its interface. The three main blocks chains framework into the pipeline in the following
sequence:

1. Preprocessing part unifies and analyses binary files. Unified binary files and ex-
tracted metadata are input for the core block.
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2. The core block creates an IR and applies dozens of analyses and optimizations. The
optimized IR is the output of the core block.

3. The backend block creates an Abstract Syntax Tree (AST). It applies optimizations
over AST and generates a final high-level representation.

3.2.1 The preprocessing

The structure of the preprocessing part describes Figure 3.3. The input of the preprocessing
phase is a set machine code files. There are a lot of different formats for different platforms.
The File format library analyses and unifies various file formats into uniform representation.
Currently, the library supports the following machine code formats: ELF, PE, Mach-O,
COFF, AR (archive), Intel HEX, and raw machine code.

Typically, the executable binary program additionally includes debugging data. This
metadata creates a relationship between source code and binary data. Such relation is
originally created for the debugger program, but also decompiler makes use of it. The
Debug Format library parses this data and transforms them to debug representation used
in next phases of decompilation. The library support DWARF and PDB format. [7]

The compiler that creates analysed binary program might use a tool so-called packer.
The packing of binary files is done for two main reasons - code compression and code
protection. As a consequence, the decompiler uses Unpacker library, which examines and
identifies possible compression of the binary file. The library contains third-party tool
YARA2. YARA tool helps identifies and detects binary patterns. The output of prepro-
cessing is a metadata file in JSON format and uniform representation of machine code.
The JSON metadata file contains information like compiler type and version, or processor
architecture.

Preprocessing

...
File format

libraryELF PE raw

debug
representation

Debug format
library

unified binary

JSON
metadata

Machine code files

dwarfpdb

Unpacker
library

Figure 3.3: Preprocessing phase of decompilation.

3.2.2 The core

The functionality of the decompiler core illustrates Figure 3.4. The core block receives as
an input JSON metadata, unified and unpacked machine code, and debug representation.
Firstly, the machine code is transformed into LLVM IR. The transformation process per-
forms the Decoder library. Decoder starts traversing binary data from the entry point of the
program, and it follows the control flow of the reversed program. Capstone library maps
the binary code into Capstone IR, which is transformed into LLVM IR.

2YARA tool: https://yara.readthedocs.io/
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RetDec core
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machine code
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debug
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Figure 3.4: Transformation of binary code into LLVM IR by RetDec core.

The main part of the decompiler core performs modifications over obtained LLVM IR.
The sequence of passes modifies IR. There are two types of passes: analysis and optimization
passes. Analysis passes do not modify IR, but they obtain additional information. For
example, analysis helps identify global variables, data types, function arguments, or return
types of functions. The optimization passes iterate over IR and modify it. At last, the
transformed LLVM IR is dissasembled. The result of this process is optimized LLVM IR,
which is the output of the decompiler core block.

3.2.3 Backend

Backend does not operate with LLVM IR but transforms it into special IR so-called Backend
IR (BIR). This transformation is done because LLVM IR is a rather low-level representation
similar to the assembler. On the other hand, BIR is a high-level representation based on the
AST. AST allows better reconstruction of high-level control-flow patterns like conditional
branches and loops. Backend restructures BIR when it identifies high-level constructs like
if-else, for-loop, while-loop, switch, break, or continue.

Backend performs many high-level optimizations. It removes redundant variables, re-
duces constants in arithmetic expressions to simpler form. Backend optimization converts
expressions to form more readable for programmers. Consider the following C source code:

sock_id = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

As you can see, there are used constants defined in the standard C library. The mean-
ing of this literals depends on the context. But the context of this literals is lost after
disassembling. The decompiled code looks like:

var_fff = socket(2, 1, 6)

The optimizer searches for context literals and refactors them. Backend can generate the
output in the following formats: C, Control-Flow Graph (CFG), or Call Graph. [19]
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Chapter 4

Floating-point extensions of
architecture Intel x86

In the beginning the Intel x86 architecture was developed to manipulate only with integer
values. The floating-point calculation was possible to emulate through software but with a
considerable performance penalty. As a consequence, a separate floating-point coprocessor
unit was introduced. Nowadays, the Floating-Point Unit (FPU) is typically part of the
main processor. The Section 4.1 explains details about FPU registers and instruction set,
and Section 4.2 details calling conventions of function with floating-point values.

Next, the architecture extends support of the floating-point calculation with parallel
processing of floating-point vectors. The Section 4.3 introduces SSE extension, the instruc-
tion set and their manipulations.

4.1 Floating-point unit x87
The Section details FPU registers and instruction set according to assembly language doc-
umentation for x86 processors (see [14]). FPU does not operate with x86 general-purpose
registers because it contains its own set of registers. Floating-point instructions manipulate
with these registers similarly to the stack data structure.

4.1.1 Floating-point registers

FPU has eight 80-bit general-purpose data registers named R0 through R7. These registers
handling differs from manipulation of general-purpose data registers for integer evaluations.
Hardware registers like EAX, EBX, ECX, etc., are direct operands of assembly instructions.
But floating-point data registers forms an abstract stack data structure, and they cannot be
accessed directly. Access to such hardware register is relative as explained in Section 4.1.2.
As an addition to floating-point data registers, the unit has six special-purpose registers:

∙ Control register determines the rounding method and precision of FPU.

∙ Status register contains condition and exception flags. A three-bit field of status
word so-called TOP identifies the register that is currently at the top of the stack.

∙ Tag register indicates the contents of data registers (valid number, zero, or special
value like NaN, infinity, denormalized number, etc.). Register has a three-bit field for
each data register.
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∙ Opcode register contains the last executed instruction opcode.

∙ Last instruction pointer register points to the last executed instruction.

∙ Last data (operand) pointer register points to operands used by the last executed
instruction (if the instruction has any data operand).

4.1.2 Register stack

FPU loads and stores values from the register stack where it performs floating-point arith-
metic calculations. The x87 instructions evaluate arithmetic expressions in postfix form due
to stack evaluation advantages of this form. Consider the following infix expression:

(𝐴+𝐵) * 𝐶

And equivalent postix expression:

𝐴𝐵 + 𝐶*

The postfix format does not require parenthesis to override precedence rules. The transfor-
mation algorithm from infix to postfix form is not a subject of this thesis.

Figure 4.1 shows the abstraction of FPU stack data manipulation. Stack operands are
labelled ST(0) through ST(7), where ST(0) label points to data register on the top of the
stack. The value of TOP points to data register labelled ST(0). A push (alternatively load)
instruction decrements TOP and moves the content of operand to ST(0) register. Overriding
of existing data in the stack generates a floating-point exception. Decrementation of TOP
with value 0 (ST(0) points to R0) leads to underflow TOP value to 7 (ST(0) points to
R7). A pop (alternatively store) instruction moves content of ST(0) register to operand
and increment TOP. Incrementation of TOP with value 7 (ST(0) points to R7) leads to
overflow TOP value to 0 (ST(0) point to R0).

R7
R6
R5
R4
R3
R2
R1
R0

ST(2)
ST(1)
ST(0)
ST(7)
ST(6)
ST(5)
ST(4)
ST(3)

TOP = 5
POP

PUSH

079

Figure 4.1: FPU data register stack abstraction. [14]
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4.1.3 FPU instructions

The floating-point instruction operands allow only one addressing mode. Operands are
always in general-purpose data registers. An instruction can inherently manipulate with
register stack (implicit push, or store). The set of floating-point instructions contains the
following basic instructions categories:

∙ Basic arithmetic instructions.

∙ Constant loading instructions.

∙ Data transfer instructions.

∙ Exponential, logarithmic and trigonometric instructions.

∙ Data comparsion instructions.

∙ FPU control instructions.

4.2 Floating-point conventions for calling functions
The procedure, alternatively function, or subroutine is a fundamental abstraction for general-
purpose procedural programming languages. The program is divided into various parts, and
such part of code could be used several times. The procedure abstraction eliminates rep-
etitions of program code segments and allows their reusability. An execution of program
subroutine is known as a procedure call. The Section explains details about procedures
with the floating-point interface and their calling conventions.

4.2.1 Standardization of procedure calls

In past, procedure calling interface differed for every operating system or compiler. It
led to compatibility problems. Nowadays, there is an effort on the standardization of
the procedure calling interface. The calling conventions determine the following low-level
details:

∙ For interaction between caller (calling program) and callee (a subroutine), the pro-
gram reserves specific hardware registers.

∙ The system of arguments transfer between calle and caller. Arguments are typically
passed within registers, on the stack or in shared memory.

∙ Caller has to pass arguments in the right order. Typically, arguments are passed from
the first to the last or in the reversed order.

∙ Arguments could be passed by value or by reference.

∙ The result of procedure execution (return value) has to be passed to the callee.

∙ The method of stack pointer restoration after the procedure execution.
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Architecture Calling convention Passing registers

16 bit

cdecl
pascal
fastcall

AX

watcom Inconclusive.

32 bit

cdecl
stdcall
pascal
fastcall
thiscall

ST(0)

watcom Inconclusive.

64 bit Windows SSE registersLinux, BSD, Mac OS

Table 4.1: Usage of registers for passing floating-point values across calling conventions for
x86 architecture.

4.2.2 Architecture x86 calling conventions

Architecture x86 has three modes: 16-bit, 32-bit, and 64-bit mode. The bit-wide of mode
specifies wide of registers, memory address, etc. in bits. The 16-bit and 32-bit mode have
usually calling conventions independent on operating systems. Instead of the operating
system, the calling convention is defined by the compiler. The thesis assumes Microsoft,
Borland, Watcom and Gnu compilers brands. On the other hand, the 64-bit mode has a
default calling convention for each operating system, while other calling conventions are
rare in 64-bit mode. The thesis considers calling conventions for Windows, Linux, BSD,
Unix and Mac OS X operating system. [9]

For 16-bit mode, there is calling conventions so-called cdecl, pascal, fastcall and wat-
com. Watcom is inconclusive because the method of registers usage depends on options
in effect. All others calling conventions do not return floating-point value in ST(0). The
called function is expected to allocate space for value in memory and write the return value
to this address. The address where is the result stored is passed in AX register. [5]

System V (see [30]) application binary interface for a 32-bit mode of x86 architecture
defines the usage of floating-point stack registers. In case that procedure returns a floating-
point value, then the value is stored in ST(0) register. It does not matter if the floating-
point value is in the representation of single or double precision. If the procedure does not
return floating-point value, then register ST(0) must be empty. Also, register ST(0) must
be empty before every procedure call. Registers ST(1) through ST(7) are unused in the
standard calling sequence of the procedure with floating-point arguments or return value.
The standard defines that these registers must be empty before and upon every procedure
call. Most used calling conventions for architecture x86 in 32-bit mode are cdecl, stdcall,
pascal, fastcall, thiscall and watcom. System V standard follows all of these conventions
except watcom. Watcom same like in 16-bit mode is inconclusive.

As described in Section 4.3, the x86 platform over time introduced extensions the
Streaming SIMD Extensions (SSE). SSE adds new instructions and registers, which also
manipulates floating-point values. System V for the 64-bit mode of architecture x86
defines that function with floating-point arguments, or return value does not pass these
values through FPU registers (see [10]). Preferably, it uses SSE registers. The convention
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is followed in Linux, BSD, Unix, and Mac OS X operating system. The Windows operat-
ing system uses different conventions then System V. Nevertheless, the Microsoft function
calling convention with floating-point values also uses only SSE registers, and it does not
specify any convention for FPU registers. [25]

The x86 architecture function calling conventions are summarized in Table 4.1.

4.3 Streaming SIMD Extensions (SSE)
Over the years, the architecture x86 includes multiple extensions, which operate in mode
commonly called the Single Instruction Multiple Data (SIMD). These technologies have
dedicated to the parallel processing of data. The first extension was MMX, and it created
support of basic SIMD processing for the integer arithmetic. The successor of MMX is
the Streaming SIMD Extension (SSE), which is a set of the hardware improvements. SSE
regularly increases the CPU ability of SIMD processing. It increases integer arithmetic with
new registers and instructions, and it extends processor with floating-point SIMD facilities.

Eventually, SSE multiple time upgrades hardware facilities and functionality. The orig-
inal SSE gradually evolves to SSE2, SSE3, SSE4, AVX (Advanced Vector Extensions),
AVX2, and AVX-512. However, this research discusses the general aspects of this hardware
extension, and it uses the general label SSE. When the specific version of SSE has discussed,
the version name is used.

Following Subsections details SSE, and also explains the standard of compilers built-
in functions. The SIMD technology details are obtained from the publication of the x86
assembler programming guide (for further details see [17]).

4.3.1 Idea of SIMD processing

This Subsection introduces the general concept of SIMD technology. The hardware unit
allows executing the same operation on the collection of the data elements at the same
time. Typically, the performed operations are basic arithmetic computation, for instance,
subtraction, addition, multiplication, division, bitwise operations, and conversion. Such
parallelism achieves specific interpretation of the register, or memory location content.

To illustrate considers Figure 4.2 that shows 32-bit width register intended to integer
data processing. The register can hold the single 32-bit integer value, but SIMD allows
to reinterpret it as two 16-bit integers, or four 8-bit integers. The processor handles each
subsequence of register separately, but simultaneously. The hardware supports the usual
service of data processing for each bit pattern individually, for example, integer overflow,
underflow, rounding, and others.

The effectivity of SIMD strongly depends on the compiler. The compiler must correctly
detect and splits the program data that can process simultaneously. The Intel provides
documentation for the developers of the compilers that allows them to optimize the effi-
ciency of the resulting program binary. The documentation also contains a guide for the
Intel built-in functions, as closely explained in Section 4.3.4.

4.3.2 SSE register set and data types

SSE extends the 32-bit architecture of x86 with eight general-purpose registers, which are
128-bit width. The 64-bit architecture appends another eight registers. They are labelled
XMM0 through XMM15 . These registers allow carrying floating-point values. The original
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Figure 4.2: SIMD processing demonstration for integers addition with 32-bit width regis-
ters. [17]

SSE supports single-precision, but SSE2 starts supporting double-precision floating-point
data. As a contrast to FPU, SSE uses direct addressing of registers. SSE does not operate
with register as a stack structure (see Section 4.1.2).

SSE supports various integer and floating-point data types. These data types create
two categories:

∙ Scalar data types: The XMM register or memory location holds 32-bit (single-
precision), or 64-bit (double-precision) floating-point value. As mentioned before,
the XMM register is 128-bit width, but SSE supports maximally 64-bit width floating-
point data types. Suppose that SSE performs some double-precision floating-point
scalar operation and saves the result value into specific XMM registers. In such a case,
SSE saves the result value into lower 64-bits of a destination XMM register, while the
rest of the register content stay untouched.

∙ Packed data types: The register or memory location holds four 32-bit or two 64-bit
floating-point values. Also, it can hold integers with various bitlength: 16 bytes, 8
words, 4 doublewords, or 2 quadword integer values.

4.3.3 Instruction set

As detailed in Section 4.3.2, SSE support two categories of data types. In consequence, also
SSE instruction set split instructions into these two categories: instructions with scalar, or
packed operands. SSE floating-point instruction has typically four modes:

∙ Scalar Single-precision mode with instruction suffix SS .
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Compiler Built-in ADDPS
GCC v4sf __builtin_ia32_addps(v4sf, v4sf)
Clang v4sf __builtin_ia32_addps(v4sf, v4sf)

Microsoft VS __m128 _mm_add_ps(__m128, __m128)
Intel __m128 _mm_add_ps(__m128 a, __m128 b)

Table 4.2: The example of the built-in function for the assembly instruction that performs
vector addition of four float operands.

∙ Packed Single-precision mode with instruction suffix PS .

∙ Scalar Double-precision mode with instruction suffix SD .

∙ Packed Double-precision mode with instruction suffix PD .

SSE support following basic functionality for floating-point data (always in packed and
scalar version): data transfer, arithmetical and logical operations, and data type conver-
sions. For packed mode only, it allows data shuffle, data unpack or element insertion.

SSE supports only packed processing of integer operands. The integer processing in-
structions offer almost the same functionality, as for packed floating-point operands, but
each instructions differs four modes (byte, word, doubleword, and quadword). At last, SSE
supports text string processing. It performs string compares, and string length calculation.
It can accelerate a pattern search and replaces algorithm. For full information about all
instructions read Intel Software Developer Manual (see [1]).

4.3.4 Compilers built-in functions

Compilers built-in functions (also known as intrinsic functions) are C/C++ functions that
allow calling assembler instruction in the high-level programming language. Built-in func-
tions are equivalent to the inline assembler. However, the built-in functions offer benefits
of high-level programming: better code readability, or advantages of debugging. In general,
the developers use these functions when they need some very low-level assembly function-
ality. In the case of the architecture x86, the built-in functions offer instructions related to
MMX, SSE or AVX. Typically, these instructions work with vector operands. [1]

The method of use built-in functions in the program source depends on the compiler.
The GCC compiler offers built-in functions for architecture x86 with 32-bit mode and 64-bit
mode (see [28]). Clang compiler offers very similar built-in functions with the same syntax
(see [29]). On the contrary, the Microsoft Visual Studio defines their built-in functions with
different syntax (see [26]). The Microsft includes a definition of the x86 built-in functions in
header <intrin.h> . However, the Intel defines manufacturer-specific built-in functions in
header <immintrin.h> . The Intel also offers a detailed guide 1 for compiler developers that
describes the semantic meaning of these built-in function. These Intel built-in functions are
most general equivalent because of their definition shares between all common compilers.
Table 4.2 illustrate the example of the built-in function for the assembly instruction that
performs vector addition.

1The Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide
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Chapter 5

Review of RetDec deficiencies

The chapter reviews the design and implementation details of RetDec core. The chapter
analysis the flaws and deficiencies of the current RetDec core design. The process of trans-
lation Capstone IR into LLVM IR is introduced, and specific problems and restrictions with
the translation of FPU instruction set are presented.

5.1 Decoder of Capstone into LLVM IR
The section generally explains the model of RetDec for the mapping of disassembled in-
structions into LLVM IR. The section demonstrates Decoder library (briefly introduced in
Section 3.2.2) that controls this process. The possible modes of translation and reasons for
such a design are presented. [23]

5.1.1 Translation modes

RetDec decompiler does not aim to entirely translate the semantic meaning of the disas-
sembled machine code. The goal of the decompiler is to generate easy and understandable
C/C++ output. Such output can be effectively analysed by a reverse engineer. Decoder
library performs mapping of assembly instructions in four modes:

1. Full translation mode: Instructions are simple enough to capture their full seman-
tics with a sequence of LLVM IR. This mode captures mostly the core instruction set
(basic arithmetic and data transfer instructions).

2. Pseudo assembly functions: Some instructions cannot be represented through
LLVM IR sequence. For example, instruction FWAIT checks for pending floating-point
exceptions. Library represents instruction like a self-explanatory pseudo function
@__asm_fwait() .

3. Partial translation mode: Some assembler instructions are too complex in LLVM
IR representation. As an example, consider instruction FXSAVE [addr] , which saves
the state of FPU, MMX, SSE units, and their registers to 512-bytes in memory to
address addr . Entirely mapped instruction produces dozens of LLVM instructions.
On the contrary, partial conversion mode produces pseudo assembly function as de-
scribed previously. But this mode also explicitly informs about storing 512-bytes to
memory.
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Figure 5.1: Class diagram of the decoder library (Capstone2LlvmIr [23]) implementation
in RetDec core.

4. Ignore instruction: Instruction FNOP performs no FPU operation. The occurrence
of this instruction in C output is unnecessary, and decompiler skips it.

RetDec project is developed mainly for decompilation purposes. For some other use-
cases, where full semantic meaning is needful, there are other projects like QEMU1 or
McSema2, which allow better alternative in such situations.

5.1.2 Decoder library structure

As mentioned in Section 3.2.2, the first unit of RetDec core is Decoder library, which
transforms Capstone IR into LLVM IR. The library design illustrates the class diagram in
Figure 5.1. The library encapsulates design into two parts:

∙ Public interface: The library provides public headers without data members and
implementation.

∙ Private implementation: The implementation of the decoder (source code and
hidden headers) is hidden for the library users.

Also, the design divides library, by inheritance, into the two types of modules. Such library
design allows simple and flexible expandability by another processor architectures.

∙ Generic translator: Module with common translation interface and implementation
that is independent from processor architecture. It includes LLVM, Capstone, general
translation and configuration related methods and data members (Translator_impl,
see Figure 5.1).

1QEMU project: https://www.qemu.org/
2McSema project: https://github.com/lifting-bits/mcsema
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∙ Processor architecture-specific translator: It includes individual modules for
each supported processor architecture by a decompiler. For example, there are spe-
cific modules for ARM, MIPS, or x86 architecture TranslatorArm_impl, Transla-
torMips_impl, TranslatorX86_impl, see Figure 5.1).

5.1.3 Translation process

The translation process of Capstone IR into LLVM IR work similarly for each specific pro-
cessor architecture module of the decoder library. The Section demonstrates the translation
process of two x86 instructions: sub eax, ebx and je 0x1000 .

In the first place, decoder creates the instance of the translator module for x86 archi-
tecture. The constructor of decoder instantiation accepts an empty LLVM IR module. It
initializes a Capstone engine and other internal structures. LLVM IR module initializes
with the architecture-dependent environment:

∙ The specific global variables have been created. They represent concrete hardware
registers. Listing 5.1 shows an example of generated global variables. Some registers
have internally divided into bit sequences with special meaning. Such special bit is
commonly called a flag. A typical example represents the EFLAG register (see [14],
Chapter 2). This register consists of flags that crucially control the operation of the
processor. Due to the importance of these bits, the equivalent global variables in
LLVM IR are generated.

1 @_asm_program_counter = internal global i64 0
2 @eax = internal global i32 0
3 @ebx = internal global i32 0
4 ; ...
5 @st0 = internal global x86_fp80 0xK00000000000000000000
6 @st1 = internal global x86_fp80 0xK00000000000000000000
7 ; ...
8 @cf = internal global i1 false ; The Carry flag (CF)
9 @pf = internal global i1 false ; The Parity flag (PF)

10 @ac = internal global i1 false ; The Auxiliary Carry flag (AC)
11 @zf = internal global i1 false ; The Zero flag (ZF)
12 @sf = internal global i1 false ; The Sign flag (SF)
13 @of = internal global i1 false ; The Overflow flag (OF)

Listing 5.1: Example of the specific architecture-dependent global variables.

Special attention belongs to the global variable @_asm_program_counter . The global
variable value is updated at the beginning of each translated assembly instruction.
It stores integer value that denotes an address of the current reversed assembler
instruction in the program. Every sequence of LLVM IR that represents one assembly
instruction begins with such a store operation. For example, instruction at address
1234 begins with the following store operation:

store volatile i64 1234, i64* @_asm_program_counter

∙ Except for architecture-specific global variables, the module also generates the control
flow pseudo functions (see Listing 5.2). These pseudo functions represent control
flow operation: function call, return from the function, branching, and conditional
branching. Naturally, LLVM IR provides build-in instructions for such functionality.
But this stage of decompilation cannot use them, because they accept targets only
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in the form of a label. However, the labels reconstruction is subject of advanced
optimization at later stages of decompilation. Currently, the library has only integer
address of destination targets.

1 ; address is 64-bit integer because of 64-bit architecture
2 declare void @__pseudo_call(i64 %addr)
3 declare void @__pseudo_return(i64 %addr)
4 declare void @__pseudo_branch(i64 %addr)
5 declare void @__pseudo_cond_branch(i1 %condition, i64 %addr)

Listing 5.2: Example of the specific architecture-dependent (x86-64) control flow pseudo
functions.

∙ A module defines an architecture-specific data layout string that determines the format
of stored data in memory. As an example, the data layout string specifies if the data
lays out in big-endian, or little-endian form. It specifies the size of the memory address
pointer, or it defines an alignment of various integer and floating-point types.

∙ At last, it specifies individual settings intended for particular processor functionality.
For instance, the pseudo functions that manipulate FPU stack (see Section 5.2.1).

After module initialization, the translator traverses over binary data and transforms
them. Put simplistically, the Decoder processes particular binary data of specific size and
at the exact address and the result of transformation places at the relevant position in
LLVM IR module. The transformation process utilizes Capstone engine. To illustrate,
Capstone receives the binary data 29 d8 (hexadecimal represention) of size 2 bytes at
address 0x1000 . The library performs the following steps:

1. Capstone disassembles 29 d8 into sub eax, ebx . But, disassembler offers much
more metadata about reversed instruction than just textual assembler representation.
In particular, it provides detail information about operands like which processor sup-
porting units are active for this instruction (e.g. SSE, AVX), or general info about
reading and writing into registers.

2. Each Capstone instruction has a unique ID. The module defines the mapping for each
Capstone ID into specific translation routine. The module executes the corresponding
routine that implements LLVM IR template for the given Capstone IR. Capstone ID
is mapped into one of the three types of translation routine:

a) Mapping one ID into one specific routine. In case of similar instructions, the
more IDs have mapped into one routine. Such routine implements full, or partial
semantic meaning of assembler instruction.

b) Mapping Capstone ID into particular pseudo assembly generation routine. These
type of routine generates pseudo assembly function call, but with additional
information about instruction data flow.

c) The last possibility is that there is no specific service routine for Capstone ID. In
such a situation, the translator executes universal routine that generates pseudo
assembly function call.

3. After execution of the selected translation routines, the two representative assembly
instructions would transform into LLVM IR sequence in Listing 5.3.
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1 ; ...
2 ; sub eax, ebx
3 store volatile i64 4096, i64* @_asm_program_counter
4 %0 = load i32, i32* @eax
5 %1 = load i32, i32* @ebx
6 %2 = sub i32 %0, %1 ; eax - ebx
7 %3 = and i32 %0, 15
8 %4 = and i32 %1, 15
9 %5 = sub i32 %3, %4

10 %6 = icmp ugt i32 %5, 15
11 %7 = icmp ult i32 %0,%1
12 %8 = xor i32 %0, %1
13 %9 = xor i32 %0, %2
14 %10 = and i32 %8, %9
15 %11 = icmp slt i32 %10, 0
16 store i1 %6, i1* @az
17 store i1 %7, i1* @cf
18 store i1 %11, i1* @of
19 %12 = icmp eq i32 %2, 0
20 store i1 %12, i1* @zf
21 %13 = icmp slt i32 %2, 0
22 store i1 %13, i1* @sf
23 %14 = trunc i32 %2 to i8
24 %15 = call i8 @llvm.ctpop.i8(i8 %14)
25 %16 = and i8 %15, 1
26 %17 = icmp eq i8 %16, 0
27 store i1 %17, i1* @pf
28 store i32 %2, i32* @eax
29
30 ; je 0x1000
31 store volatile i64 4096, i64* @_asm_program_counter
32 %0 = load i1, i1* @zf
33 call void @__pseudo_cond_branch(i1 %0, i32 4096) ; 32-bit target addresS
34 ; ...

Listing 5.3: Result of translation.

The resulting LLVM IR sequence for the subtraction instruction describes the full se-
mantic of equal assembly instruction. The subtraction itself represents lines 4 to 6 (see
Listing 5.3), but the rest of the IR sequence describes evaluating of flags in EFLAG reg-
ister. The second translated instruction is a conditional jump (or branching instruction).
As described earlier, the control flow pseudo function was generated instead of LLVM IR
build-in branching instruction. The simple generation branch to target address 0x1000
(or 4096 in decimal format, which is used in Listing 5.3, line 33) instead of a particular
label does not require the expertise of the entire module context. Designed Decoder library
translates without control flow context, which is much more straightforward and effective
in this stage of the reversing process.

5.1.4 Advanced instruction sets of x86 architecture

As shown in Figure 5.1, there is support for x86 architecture in Capstone into LLVM
IR decoder. Decoder of x86 module supports entire architecture instruction set with all
specialized extensions. However, the decoder translates most of the advanced instruction
sets (like FPU, SSE, MMX, or AVX instruction sets) into pseudo assembly functions. In
other words, there are not service routines for the majority of x86 extension units. It is
important to note that we cannot evaluate such translation support as a huge decompiler
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1 .data
2 float0 REAL8 0.0
3 float1 REAL8 1.0
4 float2 REAL8 3.1415
5 .code
6 FLD float0 ; ST(0) = R7
7 FLD float1 ; ST(0) = R6, ST(1) = R7
8 FADD ST(0), ST(1) ; ST(0) + ST(1) == R6 + R7
9 FLD float2 ; ST(0) = R5, ST(1) = R6, ST(2) = R7

10 FADD ST(0), ST(1) ; ST(0) + ST(1) == R5 + R6

Listing 5.4: Example of x87 assembler FPU stack usage.

deficiency. The x86 processor family is CISC assembly architecture, which means that the
majority of instructions provides a very specific functionality, and they are rarely used in
general. Yet, larger support of partial (or even full) semantic translation of these extensive
instruction sets is beneficial.

The goal of this research is to extend support of advanced instruction, especially for FPU
and SSE units. Currently, the decoder supports 65 % of FPU instruction set and 20 % of
SSE instruction set. An instruction is marked as a supported when there is a service routine
that implements it, and also there is at least one unit test for this instruction. The extension
aims to add full support of FPU instruction set and SSE floating-point instructions. Full
semantic description of packed SSE instructions (see Section 4.3.3) is beyond the facility
of LLVM IR. Still, this thesis investigates the possible improvements of scalar instruction
representation.

5.2 LLVM IR optimization for FPU instruction set
As described earlier (see Section 4.1.2), FPU instructions manipulate operands through the
register stack. Such relative indexing of data registers leads to the problems with mapping
of disassembled instructions to LLVM IR semantic model. The section describes currently
implemented optimization that tries to solve this problem. At last, the section analyses
defects and potential disadvantages of the current implementation.

5.2.1 Semantic model of FPU instruction set

Straightforward mapping of FPU instruction with register operands into LLVM IR sequence
template is not possible, therefore correct mapping requires more advanced analysis. To
illustrate, let us consider the assembler code in Listing 5.4. An instruction at line 8 manip-
ulates with registers labelled as ST(0) and ST(1). These labels refer to concrete hardware
data registers (let us assume that they are R6 and R7). Following instruction, at line 9,
loads constant to FPU register stack and decrements the value of an actual stack top. As
a result, labels ST(0) and ST(1) now refer to different data registers than before. At last,
an instruction at line 10 is syntactically identical to instruction at line 8, but this time
they refer to different hardware registers (R5 and R6). This leads to a problem because,
without the stack top context, disassembled code represents different registers with equal
labels. Therefore, RetDec semantic model cannot represent shown assembler instruction at
line 10 as LLVM IR sequence in Listing 5.5.
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1 @st0 = internal global x86_fp80
2 @st1 = internal global x86_fp80
3 ; ...
4 ; FADD ST(0), ST(1)
5 %op0 = load x86_fp80, x86_fp80* @st0
6 %op1 = load x86_fp80, x86_fp80* @st1
7 %res = fmul x86_fp80 %op0, %op1
8 store x86_fp80 %res, x86_fp80* @st0

Listing 5.5: Incorrect LLVM IR of instruction FADD ST(0), ST(1) .

1 @fpu_stat_TOP = internal global i3 0
2 ; ...
3 ; FADD ST(0), ST(1)
4 %0 = load i3, i3* @fpu_stat_TOP
5 %1 = add i3 %0, 1
6 %2 = call x86_fp80 @_pseudox87DataLoad(i3 %0)
7 %3 = call x86_fp80 @_pseudox87DataLoad(i3 %1)
8 %4 = fmul x86_fp80 %2, %3
9 call void @_pseudox87DataStore(i3 %1, x86_fp80 %4)

Listing 5.6: Correct LLVM IR of instruction FADD ST(0), ST(1) .

To represent correct FPU registers, load/store instructions have to contain information
about FPU stack top. Decoder library, which maps Capstone IR into LLVM IR, translates
these instructions into pseudo functions similarly to control-flow pseudo functions (as de-
scribed in Section 5.1.3). Decompiler has metadata about these pseudo functions and passes
them into later analyses. The core of RetDec contains dozens of optimizations passes (see
Section 3.2.2). One of them reconstructs FPU stack context for each function. It replaces
pseudo functions call for load/store instruction with particular FPU registers. The decoder
generates four pseudo functions:

∙ The pseudo function stores float value into FPU register denoted by TOP value:
void @_pseudox87DataStore(i3 %TOP, x86_fp80 %ST)

∙ The function stores tag value (see Section 4.1) of FPU register denoted by TOP value:
void @_pseudox87TagStore(i3 %TOP, i2 %TAG)

∙ The pseudo function returns the float value of the register from FPU stack with po-
sition TOP: x86_fp80 @_pseudox87DataLoad(i3 %TOP)

∙ The pseudo function returns the value of the tag register adequate to FPU register
denoted by the TOP: i2 @_pseudox87TagLoad(i3 %TOP)

5.2.2 The current state of FPU stack optimization

As explained in Section 5.2.1, the decompiler core optimization contain the all necessary
data to restores FPU physical register operands. The problem is that existing implemen-
tation maps pseudo functions straight to instructions for each reversed function without
knowledge about function control flow. The current optimization assumes that FPU stack
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Figure 5.2: Illustration of the incorrect manipulation with FPU stack value.

is empty at the beginning of every function. The optimization performs one sequential
traverse over instructions and tracks FPU stack position. Each occurrence of a pseudo
function replaces with the calculated value. A potential error of such solution demonstrates
Figure 5.2, which presents the control flow between basic blocks in some function. The basic
block B pushes the value to FPU stack, and block C pops a value from the stack. However,
these two basic blocks form alternative branches. The control flow always visits only one
of these blocks. As a consequence, the stack state at the exit block is nondeterministic.
However, the sequential pass through basic blocks ignores control flow dependency. As a
result, such an algorithm does not detect this type of error.
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Chapter 6

Proposed extensions of RetDec

The chapter proposes extension for RetDec support of architecture x86 advanced instruction
sets (FPU and SSE). Section 6.1 introduces the idea of SSE translation extension in the
manner of vector and scalar floating-point instructions. Section 6.2 outlines advanced FPU
instruction set optimization that reconstructs register stack.

6.1 The x86 decoder extends of the advaced instruction set.
As described in Section 5.1, RetDec core contains the library that decodes Capstone into
LLVM IR. As mentioned in Section 5.1.4, the decoder offers many upgrade opportunities
for the advanced instruction sets of the architecture x86. This section proposes semantic of
the floating-point related instruction within SSE.

6.1.1 SSE extension

Section 5.1.1 describes the dilemma of semantic complexity for some advanced instructions.
The decompiler tries to simplify the description of the instruction hardware behaviour.
As explained in Section 4.3, SSE allows manipulating the single register operand as a
vector of the values. For example, consider a simple vector addition of two registers, as
illustrated in Figure 4.2. Such a simple hardware operation is nontrivial for the software
emulation. Section 4.3.4 explains built-in functions that are equivalent to the C inline
assembler. The proposed extension translates SSE vector instructions into the call of the
built-in functions. On the contrary, the scalar instructions can translate with a full semantic
meaning. Figure 6.1 illustrates both variants of instruction translation. The vector addition
of floats (instruction ADDPS ) translates into the built-in function (see line 4).

1 ;; ADDPS
2 %0 = load i128, i128* @xmm0
3 %1 = load i128, i128* @xmm1
4 %2 = call i128 @_mm_add_ps(i128 %0,

i128 %1)
5 store i128 %2, i128* @xmm0

1 ;; ADDSS
2 %0 = load float*, float** @xmm0_f3
3 %1 = load float, float* %0
4 %2 = load float*, float** @xmm1_f3
5 %3 = load float, float* %2
6 %4 = fadd float %1, %3
7 store float %4, float* %0

Figure 6.1: The example of translation SSE floating-point addition for packed and scalar
instruction.
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On the other side, the scalar float addition (instruction ADDSS in Figure 6.1) does not
use a built-in function. The instruction uses lower 32-bits of two SSE registers. However,
extracting of these register subsequences for each instruction call is inefficient, considering
a large number of this specific instruction occurrence in the program. This problem par-
tially solves the following decompiler extension proposal (see [16]). The proposed extension
generates global views to specific subsequences of SSE registers. Listing 6.1 illustrates the
example of such views. The advantage of these register views is that the decoder generates
all of them at the beginning of translation. Next, the specific translated instructions use
them as operands.

1 @xmm0 = internal global i128 0; register XMM0
2 @xmm1 = internal global i128 0; register XMM1
3 @xmm0_f3 = internal global float* bitcast (i8* getelementptr (i8, i8* bitcast (i128*

@xmm0 to i8*), i64 12) to float*) ; pointer to lower 32-bits of XMM0
4 @xmm1_f3 = internal global float* bitcast (i8* getelementptr (i8, i8* bitcast (i128*

@xmm0 to i8*), i64 12) to float*) ; pointer to lower 32-bits of XMM1

Listing 6.1: The example of the generated views to SSE register subsequences. [16]

6.2 Advanced reconstruction of FPU stack
This section proposes FPU instruction set optimization extensions for RetDec with the best
ratio of positive impact for the decompilation quality to the difficulty of their implemen-
tation. The newly designed optimization resolves problems of currently used optimization
that is described in Section 5.2. The section expects basic knowledge of numerical linear
algebra and matrices (for required information, see Elementary Linear Algebra [4], Chapter
1).

6.2.1 Function-based optimization

Reconstruction of FPU stack is always resolved separately for each function. Without
exception, FPU stackis empty at the beginning of each function execution. The premise
is based on the analysis of the standards for function calling conventions (see Section 4.2,
and Table 4.1). All conventions proclaim that before every function call, the stack must
be empty. The precondition is true even when a function contains parameters with any
floating-point data type. FPU stack is at the end of the function call either empty, or it
holds a single value. The stack contains one value in case of function with the floating-
point return type, but only in case of the 32-bit mode for the x86 architecture. Obtaining
this information for the decompiled program is easily achievable because RetDec provides
metadata about the module architecture, and functions calling convention.

As a result, the optimization analyses each function as a separate context. The state of
FPU stack at the entry and exit of this context is predetermined. This approach split the
program module into independent and smaller parts. In case of the optimization fails for
one function, that is an advantage because others function analysis results are not affected.
Also, if a function does not manipulate FPU register, then the optimization skips the whole
function and reduces analysis duration.

6.2.2 Function Control Flow Graph analysis

Proposed optimization tries to find out the state of FPU stack at the entry point of each
basic block. With this information, the optimization can sequentially traverse all instruc-
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Figure 6.2: Example of possible CFG for some function.

tion in the basic block and analyses FPU stack related instructions. These instructions
optimization divides into two categories:

∙ The first category modifies FPU stack. They read and increment, or decrement stack
top and saves the new value of top. Every stack modification has internally saved
with context to the modification position in a basic block. This information uses the
second group of instructions.

∙ The second category read and write to FPU registers (and their tags). As described in
Section 5.2, the register load/store operation represents a pseudo function call. The
optimization mark pseudo call with the current state of the stack related to it.

At this point, the replacement of the pseudo call has not performed because the current
state of the stack is only an offset relative to the start of the basic block. Optimization
calculates the exact stack value at the block entry at the next step. To find out stack state
at the block entry, an optimization forms a linear equation system that reflects CFG of
basic blocks. Each basic block defines two variables:

∙ 𝐵𝐵𝑖𝑛 : Stack value at the entry into the basic block 𝐵𝐵.

∙ 𝐵𝐵𝑜𝑢𝑡 : Stack value at the entry into the basic block 𝐵𝐵.

To demonstrate, suppose CFG in Figure 6.2. It shows basic blocks dependencies for
potential function. Let us consider that function holds floating-point arguments and re-
turns the floating-point value. Then optimization transforms the CFG of function into the
following Equation system (6.1).

𝐵𝑖𝑛 −𝐴𝑜𝑢𝑡 = 0

𝐶𝑖𝑛 −𝐵𝑜𝑢𝑡 = 0

𝐵𝑖𝑛 − 𝐶𝑜𝑢𝑡 = 0

𝐷𝑖𝑛 −𝐵𝑜𝑢𝑡 = 0

𝐸𝑖𝑛 −𝐷𝑜𝑢𝑡 = 0

𝐸𝑖𝑛 −𝐴𝑜𝑢𝑡 = 0

(6.1)

As described in the previous step, each basic block is analysed separately. Independently
on the stack state at the entry point, the analysis can determine the difference between input
and output stack value. Such a computed difference produces one more equation for each
basic block. For the illustrative CFG example (see Figure 6.2), the analysis extends system
with Equations (6.2), where the value 𝐴Δ is a particular constant difference resolved by a
traverse of basic block 𝐴.
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𝐴𝑜𝑢𝑡 −𝐴𝑖𝑛 = 𝐴Δ

𝐵𝑜𝑢𝑡 −𝐵𝑖𝑛 = 𝐵Δ

𝐶𝑜𝑢𝑡 − 𝐶𝑖𝑛 = 𝐶Δ

𝐷𝑜𝑢𝑡 −𝐷𝑖𝑛 = 𝐷Δ

𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛 = 𝐸Δ

(6.2)

The following step encapsulates function context by definition of stack state at the
function entry and exit point (detailed in Section 6.2.1). The optimization creates two and
more equations (more in case that function contains multiple terminating basic blocks).
For our example, it creates Equations (6.3). The stack is empty at the function entry point
(𝐴𝑖𝑛). The stack holds single value at the end of function terminating block (𝐶𝑜𝑢𝑡) because
of the illustrative function (see Figure 6.2) pass floating-point return value through FPU
stack.

𝐴𝑖𝑛 = 0

𝐸𝑜𝑢𝑡 = 1
(6.3)

CFG for each particular function contains a different number of nodes and edges. The
produced system has more equations than variables. Such a system of linear equations
is called overdetermined. An overdetermined system typically has no solution but in this
case, there is a high probability of exactly one solution. RetDec expects that the analysed
binary file is the product of some unknown compiler. In the majority of the cases, such
compiler produces a valid binary. If the system has no solution, then the examined code
contains errors. Optimization transforms extracted equations system to a matrix Equa-
tion (6.4). Equation (6.5) universally represents this system, where the A is a matrix of
system coefficients, and x is a vector of unknowns.

The matrix (A|b) is called the augmented matrix. The analysis determines the rank of
matrix A and the rank of augmented matrix (A|b). The system has exactly one solution if
these ranks are equal. In such a case, the optimizer solves Equation (6.6). Section 6.3 discuss
various methods for solving the overdetermined system of linear equations. Calculated
vector x contains values of FPU stack at the entry and end of each basic block.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 1 0
0 −1 0 0 0 0 0 0 1 0
−1 1 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 −1 1
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴𝑖𝑛

𝐴𝑜𝑢𝑡

𝐵𝑖𝑛

𝐵𝑜𝑢𝑡

𝐶𝑖𝑛

𝐶𝑜𝑢𝑡

𝐷𝑖𝑛

𝐷𝑜𝑢𝑡

𝐸𝑖𝑛

𝐸𝑜𝑢𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
𝐴Δ

𝐵Δ

𝐶Δ

𝐷Δ

𝐸Δ

0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.4)

A x = b (6.5)
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x = A−1 b (6.6)

After analyzing of all functions, optimizer replaces previously marked pseudo function
calls with specific registers load/store instructions. Naturally, substitution is applied only
for successfully analysed functions. The concrete register index is calculated by addition of
previously obtained stack offset relative to the start of the basic block, and value of stack
at the block entry calculated in vector x.

6.3 Methods for solving linear systems
A system of linear equations in matrix notation (see Equation (6.7)), where the A is a
matrix of system coefficients, b is the right-hand side, and x is a vector of unknowns. In
our application, the system is overdetermined because the number of equations is bigger
then number of unknowns (see Section 6.2.2). In general, there are many applications where
the consistent overdetermined system is measured (it has exactly one solution). Such type of
problem is typically solved by approximation methods. There are various methods suitable
for that problem. The Section discusses the most common approximation method called
the least squares solution, and three optimized modification of this method. [6]

Ax = b (6.7)

6.3.1 Least squares solution

Let a given linear system (6.7) be overdetermined. Since the exact solution is improbable,
the method looks for a vector x that is as close as possible to the exact solution. The Ax is
an approximation to b, and ||b−Ax|| is an error in that approximation. Such an x vector
is called the least squares solutions of the system (6.7). The vector b is called the least
square error. In case that a linear system is consistent, then the least squares solutions are
equivalent to the exact solutions. In other words, the least squares error is zero. For our
purposes, we expect that this is our case. [4]

Matrix decomposition is a process that solves linear systems in a numerically stable
way. Additionally, it can provide matrix inversion or reveals matrix rank. The following
subsection describes three commonly used decompositions (Cholesky, QR, and SVD de-
compositions). Cholesky and QR decompositions transform a system of linear equations
(6.7) into a system with an upper triangular coefficient matrix: Ux = b. The SVD de-
composition transforms such a system into a diagonal coefficient matrix: Dx = b. As a
result, the transformed system is easier to solve and even with higher accuracy by back
substitution. [6]

6.3.2 Cholesky decomposition

There is the least squares solution for each linear system (6.7) if and only if it is a solution
of the associated normal system (6.8). [21]

A𝑇Ax = A𝑇b (6.8)

Therefore, to find the least square solution, the system can be reduced to a system of
the normal equations. The normal system (6.8) is always consistent, and all solutions of
(6.8) are least squares solutions of (6.7). The normal equations system solves Cholesky
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decomposition (also called factorization) that transforms the nonsquare matrix A into an
upper triangular matrix U for the system (6.7), where holds A = U𝑇U. The normal
equations system solves the following method:

1. Calculate A𝑇A as a C.

2. Cholesky decomposition of matrix C into U𝑇U.

3. Original system A𝑇Ax = A𝑇b results into U𝑇Ux = A𝑇b

4. Transformed system has a least square solution x = (U𝑇U)−1A𝑇b

The Cholesky factorization is generally the fastest method of solving least squares, but
it is numerically unstable. The method is sensitive to inaccuracy in matrix A. Small
inaccuracy of matrix can lead to large changes in the solution. Generally, this method
offers half accuracy on the contrary to other methods. [21]

6.3.3 QR decomposition

The QR decomposition is a very important matrix transformation that splits general matrix
A to an upper triangular matrix R and an orthonormal matrix Q. Orthonormal matrix
has columns orthogonal to each other and its Euclidian norm equals to 1. If A is substi-
tuted by QR, then for each b in the system Ax = b is a least squares solution given by
Equation (6.9). [6, 4]

x = R−1Q𝑇b (6.9)

The obtaining least squares solution by QR decomposition is more suitable for numerical
computation than the Cholesky decomposition (see Section 6.3.1). In general, the QR
decomposition guarantees numerical stability because it minimizes errors caused by machine
roundoffs. The QR method is more accurate in comparison to Cholesky, but such an
advantage is not beneficial when the system is well-conditioned (our system expects to be
well-conditioned and deterministic). In most cases, the QR decomposition takes twice more
time then Cholesky. [21]

6.3.4 SVD decomposition

The Singular Value Decomposition (SVD) is a method that decomposes a matrix into nu-
merous matrices, revealing important properties of the source matrix. The detailed algo-
rithm of SVD is not presented, but in general, the decomposition obtains pseudoinverse ma-
trix A† (called the More-Penrose pseudoinverse matrix) from matrix A of the system (6.8)
(see [13]). The method proceeds in the following steps:

1. Change linear equations system Ax = b into normal system A𝑇Ax = A𝑇b.

2. Normal system has a least square solution x = (A𝑇A)−1A𝑇b.

3. The matrix (A𝑇A)−1A𝑇 is obtained by SVD as a pseudo inverse matrix A†.

4. Transformed system has a least squares solution x = A†b

The SVD is a robust method, and it evaluates roughly about 10 times slower in compar-
ison to other methods. However, it is numerically stable, and it offers additional properties
about the matrix. It can also handle greater inaccuracy. [21]
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6.3.5 Summary

This section analysed the various method for matrix decomposition. The matrix decom-
position offers a numerically stable method for solving overdetermined systems of linear
equations by the method of least squares. The efficiency and accuracy of three decom-
position methods have discussed. The fastest method is Cholesky decomposition, second
is QR decomposition, and the slowest method is SVD. On the contrary, the most accu-
rate method is SVD, followed by QR decomposition, and the most inaccurate method is
Cholesky decomposition. For our application (see Section 6.2.2), the accuracy lack is ac-
ceptable because the solved system produces only integer results. The efficiency is the most
important parameter because the optimization expects huge functions with hundreds or
even thousands basic blocks. Another factor is the need for matrix rank revealing because
the analysis computes it due to evaluation of system consistency. Matrix rank evaluation
can be a separate process, but the SVD and QR decomposition allow to solve this task.
Merge of these tasks can lead to higher optimization efficiency.
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Chapter 7

Implementation of extensions

Chapter 6 proposes the new extensions of advanced instruction set support for the RetDec
(FPU and SSE). This chapter summarizes the result of new instructions implementation.
Chapter 6 also designs the new FPU stack optimization that transforms FPU stack into a
linear system. This chapter details implementation details, and Section 7.2.2 select solver
of a linear system in term of implementation efficiency.

7.1 Decoder support of advanced instruction sets
Section 5.1.4 shows the available support of advanced instruction set for RetDec. The
research focuses on FPU and SSE. In consequence, the full FPU instruction set is imple-
mented. Each instruction is defined by specific translation routine, which generates LLVM
IR sequence (see Section 5.1.3). Every instruction, with each possible type of operands, is
covered with a unit test (see Section 8.1.2). The new implementation is already included
in a stable version of the decompiler.

In the case of proposed SSE extension (see Section 6.1.1), the instruction core is im-
plemented (arithmetic, data manipulation, and comparison instructions). New translation
subroutines are not fully covered with unit tests. The unit test framework used in the
project offers insufficient functionality for reasonable validation (see Section 8.1.2). For
example, it does not allow to check modification of register subsequences, as required with
SSE instructions.

7.2 Linear algebra library
The optimization proposed in Section 6.2.2 transforms FPU stack into a linear system.
For such an approach, RetDec requires efficient module with the support of the linear
algebra evaluation. The implementation of the linear algebra module within RetDec project
is a robust task. The module has to support basic matrix algebraic evaluation and, in
addition, advanced methods (decomposition of overdetermined systems and rank evaluation
for nonsquare matrices). The design, implementation, and maintaining of such a robust
module is too challenging for the entire project when it is used only by one optimization. As
a consequence, the project includes an external library for these purposes. The third-party
project must be C++ open-source library that supports compilation with CMake1 because
the entire RetDec uses this tool to build all components.

1CMake project: https://cmake.org/

39

https://cmake.org/


Figure 7.1: Benchmark comparison of math libraries with Eigen (retrieved from official
project benchmark [11]).

7.2.1 Eigen3 project

The chosen library is called Eigen3 (see official project web page [11]). It is a multiplat-
form (GCC, Clang, x86 SSE, ARM Neon, PowerPC) library for linear algebra: basic vector
and matrix manipulations, evaluating of various decompositions (Cholesky, LU, QR, SVD),
solving of linear systems, least squares solutions, eigenvalues, or singular values. The library
analyses object size and optimize evaluation methods for them. Another optimization in-
creases performance with the classification of matrices to dense and sparse. Figure 7.1 shows
a benchmark comparison of various algebraic libraries (GOTO2, ATLAS3, and others4) for
operation with two matrices. Unit MFLOPS means millions of arithmetic operations per
second. The graph shows Eigen3 as an efficiency favourable tool for large matrices, which
is our use case. RetDec source repository does not include Eigen3 sources, but it links it as
an external dependency (for further detail see CMake external projects documentation5).

7.2.2 Selection of solver for a linear system

Designed FPU optimization proposed three methods for determining the least squares so-
lution of overdetermined linear systems:

∙ Cholesky decomposition: see Section 6.3.2.

∙ QR decomposition: see Section 6.3.3.

∙ SVD decomposition: see Section 6.3.4.
2GOTO project: http://www.csar.cfs.ac.uk/user_information/software/maths/goto.shtml
3ATLAS project: http://math-atlas.sourceforge.net/
4Eigen3 benchmark: http://eigen.tuxfamily.org/index.php?title=Benchmark
5CMake external project https://cmake.org/cmake/help/latest/module/ExternalProject.html
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Figure 7.2: Comparison of computation timing

Eigen3 library supports all three decomposition methods. An empiric experiment, de-
scribed below, measured the performance effectiveness of each method, to select the de-
composition algorithm with the best ratio of performance efficiency and sufficient solution
accuracy. The experimental data were real executable binary files retrieved from the project
regression test framework database (the framework and testing binaries are explicitly dis-
cussed in Section 8.3). The experiment included 822 binaries. These binaries contain
over 4000 functions that manipulate FPU. For each individual function, the experiment
measured the time of the linear system decomposition. The experiment measured each
function three times (separately for each proposed method). The accuracy of the least
squares solution evaluated RetDec regression test framework, which decided about decom-
pilation success (framework supported accuracy criteria are presented in Section 8.3). For
better experiment evaluation, the measured data split into three classes by the number of
equations in the particular function system:

∙ Low: For each function, the number of equations in the system is maximally 100. An
experimental set consists of 3 173 functions.

∙ Medium: For each function, the number of equations in the system belongs to
(100, 600). An experimental set consists of 644 functions.

∙ High: For each function, the number of equations in the system is more than 600.
An experimental set consists of 276 functions.

Cholesky QR SVD
Low 1.29 ms 1.88 ms 43.89 ms

Medium 264.34 ms 345.11 ms 3 948.95 ms
High 18 741.14 ms 23 332.06 ms 125 831.64 ms

Table 7.1: Average time of linear system solving for different methods.
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The Figure 7.2 shows result of experiment. Independently on the number of equations
of the system, the duration of evaluation Cholesky decomposition is very slightly better
than QR decomposition. For small systems, the difference is even unimportant. However,
the SVD indicates significant performance lack that is unacceptable for large systems. Ta-
ble 7.1 shows the average evaluation duration separately for each method and experiment
class. The SVD evaluation duration is around 10 times slower in comparison to the other
two methods. From this point of view, the SVD is not a suitable method. In terms of
solution accuracy, the testing framework successfully decompiles all binaries for Cholesky
and QR decomposition. The SVD solves system with the highest accuracy. But the du-
ration of evaluation is unacceptable, and for huge systems (category with 600 and more
equations) the testing framework terminates decompilation with a failure status. The ac-
curacy of SVD cannot be qualified as a benefit because the system least squares solution
should approximate to integer results. As a result of the experiment, the implementation
of the optimization selects the QR decomposition. In addition to efficient system solving,
QR implementation offers an evaluation of matrix rank with a small performance lack (the
optimization must calculate matrix rank because of the determination of system inconsis-
tency).

7.2.3 Summary

This chapter summarizes the results of FPU and SSE instruction set implementation in
decoder library. Next, due to FPU optimization, the suitable library for linear algebra was
selected. The experiment with real binary programs decompilation compares and select the
most efficient implementation of the proposed system solver method (see Section 7.2.2).
Next chapter tests the functionality of new extensions.
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Chapter 8

Testing of extension

RetDec project uses various methods of testing that try to determine decompiler errors.
The project contains three main utilities that test the decompiler with different goals. The
proposed and implemented extensions, described in Chapters 6 and 7, are tested in the man-
ner of decompilation success, quality, and performance. Section 8.1 describes the project
unit testing framework. Section 8.2 introduces the night test framework, and Section 8.3
describes the regression testing framework. Each section summarizes the testing results of
the new extensions. The notions and definitions related to software testing are retrieved
from [24].

8.1 Unit tests
RetDec applies unit testing as a fundamental testing process. The basic concept is to test
the decompiler subcomponents separately and independently. RetDec is mainly created
in C++ language, and it uses Google Test framework1 that offers unit testing in this
programming language (separate testing of the classes and their methods). In the case
of RetDec core (see Section 3.2.2), each analysis or optimization defines individual class.
Typically, such a class contains an adequate unit test suite.

The approach of unit testing brings many advantages. Firstly, it allows to test part of
the program independently from the rest. Also, it is reasonably a fast testing technique:
RetDec contains 6 819 unit tests, and their execution takes around 6.5 sec for a specific
CPU2. Generally, it allows to detects bugs faster and easier. Moreover, each unit test
offers a sort of documentation for developers because it shows concrete examples of class
instantiation and their methods use.

8.1.1 FPU optimization

Unit testing is an essential key for the agile methodology such as Extreme programming
(see [12]). This methodology applies a technique commonly named Test-Driven Develop-
ment (TDD). The development of the extended optimization for FPU instruction set (see
Section 6.2) applies the key TDD principle:

1. Write unit tests based on the specified requirements, and executes them to check that
their fails.

1Google Testing and Mocking Framework: https://github.com/google/googletest
2Experimental CPU: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
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2. Continuously implement individual requirements and checks improvements in the tests
success ratio.

The input of FPU optimization contains an LLVM IR module and various configuration
properties (processor architecture specification, calling conventions for each function, and
others). The unit test framework must prepare an input LLVM IR module and the entire
environment. Next, it executes unit under tests, which is the new FPU optimization. The
output of the optimizations is modified LLVM IR module and return code (success or fail).
The framework compares the modified LLVM IR module and the return value with the
expected preprepared module and the return value. The detailed approach of FPU unit
test writing is described in Appendix A.

8.1.2 Decoder of Capstone into LLVM IR

Decoder is a considerably large component, and it is inherited by specific CPU architecture
modules (see Section 5.1, Figure 5.1). Each architecture module contains its own unit test
suite (see Table 8.1). In general, RetDec tries to create at least one unit test for each
instruction of every architecture. Within FPU instruction set extension for the x86 archi-
tecture, the test suite is extended by cases for each instruction and its variant (architecture
bit width and all possible instruction operands type combinations).

The unit test framework takes as an input a single LLVM IR module with a single
instruction, the architecture specification and values of registers or memory values that are
necessary for the instruction under test. Next, the framework interprets LLVM IR and
checks postconditions (expected values of registers and memory).

Architecture Unit tests [-]
Arm 422

Arm64 419
Mips 572

PowerPC 766
x86 1749

Table 8.1: The number of the unit tests for each architecture module supported in Decoder
library.

8.2 Night tests
RetDec night tests framework is the largest testing tool used in the entire project. It tests
thousands of program samples. The goal is to check decompilation success and quality. The
project uses night tests to monitor impact of development changes. The test suite consists
of the large pallet of different program samples. The entire testing process is significantly
time-consuming, and it can take dozens of hours. The program test samples are divided
into two groups:

∙ Source files in C: These programs are compiled by the framework for all supported
architectures with different options of optimization used by the specific compiler. The
advantage of these samples is that it allows to evaluate decompilation output quality.
The quality is evaluated by the comparison of the original and decompiled C source.
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∙ Binary executable files: These test samples are large and complex programs. Typ-
ically, it is some obtained malware binary program. The goal is to determine decom-
pilation performance efficiency.

The night tests execution splits into two phases. The first phase performs the decompi-
lation of each sample, and it logs the running process. The second phase evaluates obtained
decompilation logs (the size of these files are generally in gigabytes unit) and the results
are presented as a web page. The web page summarizes each decompilation phase suc-
cess (return code), the decompilation output quality, time summary, memory consumption
summary, and others. The night test samples and the framework itself are proprietary, and
only internal developers of the project have access to this tool. The resulting web page
allows comparing different night test executions. In the case of comparison, the web page
shows which decompilation phases improve or worsen.

8.2.1 FPU optimization evaluation

Figure in Appendix B.1 presents the result of night tests with the new FPU optimization.
The new optimization considerably extends the time complexity of the analysis. As a result,
the runtime of entire decompilation averagely grows by 4.3%. Figure 8.1 shows the most
performance influential operations in the new FPU optimization. The graph summarizes
the result of optimization profiling. Profiler3 measures decompilation executed over one
of the biggest binary programs in the database. The program contains a function with
more than 3 000 basic block that manipulates FPU stack. The graph shows that most of
the time, the optimization evaluates QR decomposition to determine system solution (see
Section 6.2).

As a result, the implementation was modified. Due to decompilation performance re-
quirement, the newly proposed extension does not optimize the huge binaries. If optimiza-
tion detects that the analysed function generates a system with more than 1 000 equations,
then the new optimizations skip the search for a system solution. In such a case, optimiza-
tion decreases to an old optimization algorithm that ignores CFG. After this new approach,
the night tests results show that average FPU optimization runtime decrease by 92.9% in
comparison to optimization without performance restriction (see Figure in Appendix B.2).

To summarize, the final implementation of FPU optimization takes averagely 19 min-
utes while old optimizations around 3 minutes. The results of both night tests run shows
Appendix B.

8.3 Regression tests
RetDec project also includes a regression test framework4. Generally, regression testing
tries to detect errors introduced in the new version of the software (see [24]). Similarly,
RetDec regression test framework checks each new version of the decompiler. Each phase of
decompilation contains a specific subset of the regression tests. Typically, every proposed
and implemented feature in some decompiler component must pass a specific regression
test suite intended for this component. The night tests contain significantly bigger test set
than regression tests, but regression framework also tests the entire decompilation process.

3Performance analysis tool perf: http://man7.org/linux/man-pages/man1/perf.1.html
4RetDec regression tests framework: https://retdec-regression-tests-framework.readthedocs.io/

en/latest/
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Figure 8.1: Profiling summary of large program decompilation (program includes function
with more than 3 000 basic blocks).

Further, the regression test framework is freely available and open-source, on the contrary
to the proprietary night test tool. Regression test utility allows to create tests that check
for errors in the decompilation process by some of the following criteria:

∙ Evaluation of the expected return value in comparison to decompilation result. How-
ever, the framework allows for a finer diagnosis of the return value. It separately
distinguishes the return value for each phase of the decompilation.

∙ The framework tries to compare the original program with the decompiled in terms
of functionality equality. The framework compiles reversed C source and run both,
the original and recompiled program. If programs produce the same outputs, then
it declares the programs equality. This approach can be applied typically only for
simple programs because decompiled programs often contain pseudo-code that is un-
derstandable for humans but not for compilers.

∙ Regression tool can search for key string patterns in decompilation output. It searches
for definitions and usage of identificators, data types, functions and their parameters,
variables and similar structures.

Entire regression test suite contains 5 464 samples, where 822 samples are binaries for
x86 architecture with FPU instruction set usage. The framework tests new optimization
extension with this test suite. All binaries decompilation run successfully and without error
detections.
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Chapter 9

Summary

The thesis outlines the topic of decompilation in term of software reverse engineering. It
describes the typical decompiler structure and corresponding terminology. Next, the open-
source decompiler project called RetDec was introduced. The specific technologies used in
the decompiler were detailed.

Following chapters describe the x86 processor architecture supported by RetDec. The
CPU extensions FPU and SSE were detailed. The research analyses RetDec decompilation
deficiencies, and obstacles in connection with previously explained x86 extensions. As a
result, it proposes the new extension for the reconstruction of FPU stack. Also, it suggests
the extension of decompiler support for the floating-point instructions related to FPU and
SSE.

The support of FPU instruction set in the decoder library was developed and integrated
into the stable version of the decompiler. The decoder now provides semantic translation
routines for 100% of FPU instructions. Additionally, the partial support of core packed
and scalar SSE instructions were implemented. However, the design is not properly tested.

The new FPU optimization extension was implemented and tested. The various exper-
iments determine the best method for the proposed FPU optimization implementation in
the matter of decompilation performance. The three testing framework tests the new ex-
tensions: unit, regression, and night test framework. All three tests suites pass successfully.
The night tests measure performance decrease because of the new analysis complexity. The
new FPU optimization is around six times slower than original, but such a performance
decrease was expected, and it is acceptable concerning analysis improvement.
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Appendix A

FPU optimization unit testing

The single unit test of the FPU optimization performs the following steps:

1. The test parses an input string that contains the LLVM IR module. The module
always holds definitions of the FPU registers and variable function definitions (see
Listing A.1). The content of the functions is the subject of the test. For example,
Listing A.3 shows possible function content. Note that the lines 6, 11, 16, and 24 (in
Listing A.3) carry the FPU pseudo load/store functions. The lines 7, 12, 17, and 25
show the expected substitution.

1 @fpu_stat_TOP = internal global i3 0
2 @st0 = internal global x86_fp80 0xK00000000000000000000
3 @st1 = internal global x86_fp80 0xK00000000000000000000
4 @st2 = internal global x86_fp80 0xK00000000000000000000
5 @st3 = internal global x86_fp80 0xK00000000000000000000
6 @st4 = internal global x86_fp80 0xK00000000000000000000
7 @st5 = internal global x86_fp80 0xK00000000000000000000
8 @st6 = internal global x86_fp80 0xK00000000000000000000
9 @st7 = internal global x86_fp80 0xK00000000000000000000

10
11 declare void @__frontend_reg_store.fpr(i3, x86_fp80)
12 declare x86_fp80 @__frontend_reg_load.fpr(i3

Listing A.1: Example of the specific architecture-dependent global variables.

2. Define the module environment configuration. The RetDec preprocessing generates a
file with JSON metadata that defines processor architecture and their bit width, data
endianity, name and calling convention for each function and other information. The
unit test holds his JSON metadata. To illustrate, see Listing A.2.

1 {
2 "architecture" : {
3 "bitSize" : 32,
4 "endian" : "little",
5 "name" : "x86"
6 },
7 "mainAddress" : "0x1000",
8 "functions" : [
9 {

10 "callingConvention" : "cdecl",
11 "name" : "foo"
12 },
13 {
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14 "callingConvention" : "cdecl",
15 "name" : "boo"
16 }
17 ]
18 }

Listing A.2: Example of the specific architecture-dependent global variables.

3. Unit test associates the predefined pseudo functions with RetDec core metadata be-
cause the core must detect these functions as special-purpose pseudo calls.

4. The test defines the application binary interface. In our case, it associates the FPU
registers to the appropriate global variables:

(a) General-purpose data registers ST0 - ST7 .
(b) Tag registers TAG0 - TAG7 .
(c) Pseudo status register, which indicates the FPU stack top value.

5. The test executes the FPU optimization in the prepared LLVM IR module.

6. Next, it evaluates the return value of executed module with the expected return value.
The optimization modifies the LLVM IR module. Compares the modified module with
the prearranged module. Such a module hold the same functions, but the pseudo
load/store functions are already replaced with the correct registers load/store.

1 define void @foo() {
2 A:
3 br i1 1, label %B, label %C
4 B:
5 %0 = load i3, i3* @fpu_stat_TOP
6 call void @__frontend_reg_store.fpr(i3 %0, x86_fp80 0xK3FFF8000000000000000)
7 ;store x86_fp80 0xK3FFF8000000000000000, x86_fp80* @st0
8 %1 = sub i3 %0, 1
9 store i3 %1, i3* @fpu_stat_TOP

10 %2 = load i3, i3* @fpu_stat_TOP
11 call void @__frontend_reg_store.fpr(i3 %2, x86_fp80 0xK3FFF8000000000000000)
12 ;store x86_fp80 0xK3FFF8000000000000000, x86_fp80* @st7
13 br i1 1, label %D, label %E
14 D:
15 %3 = load i3, i3* @fpu_stat_TOP
16 %4 = call x86_fp80 @__frontend_reg_load.fpr(i3 %3)
17 ;%4 = load x86_fp80, x86_fp80* @st7
18 br label %E
19 E:
20 %5 = load i3, i3* @fpu_stat_TOP
21 %6 = add i3 %5, 1
22 store i3 %6, i3* @fpu_stat_TOP
23 %7 = load i3, i3* @fpu_stat_TOP
24 %8 = call x86_fp80 @__frontend_reg_load.fpr(i3 %7)
25 ;%8 = load x86_fp80, x86_fp80* @st0
26 br label %C
27 C:
28 ret void
29 }

Listing A.3: Example of the specific architecture-dependent global variables.
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Appendix B

FPU optimization night tests

Decompiler Tests
Test Diff With
experimental_-_2020-04-09 (x87_fpu_analysis #1) experimental_-_2020-04-06b (master) Swap

Last update of results: 2020-04-09 05:45:28 
Current commit: e15e349 2019-04-01 17:49:02 +0200

Significant Worsenings

Running Time

x86/pe - gcc/O3: from 00h 22m 49s to 00h 34m 53s (+52.9%)
malware (binary) - x86/elf: from 00h 50m 45s to 01h 05m 18s (+28.7%)
web-service (binary) - x86/pe: from 11h 27m 29s to 15h 09m 42s (+32.3%)
Overall running time: from 04h 12m 50s to 04h 23m 37s (+4.3%)

Phases Runtime

bin2llvmir - x87 fpu register analysis: from 00h 03m 06s to 04h 27m 59s
(+8515.6%)

Program Exits

bin2llvmir - RC 135 (memory): from 0 to 4 (+100.0%)
bin2llvmir - RC 137 (timeout): from 80 to 98 (+22.5%)

Significant Improvements

Program Exits

llvmir2hll - RC 139 (sigsegv): from 2 to 1 (-50.0%)

Value Diff
Test ID: 14
Test name: experimental_-_2020-04-09
Diffing with: experimental_-_2020-04-06b
Test description: x87_fpu_analysis #1
Test series: experimental tests
Tested commit: [e93960]
Start date: 2020-04-09 00:33:59
End date: 2020-04-09 04:57:36
Overall running time: 04h 23m 37s +4.3%
Max active processes: 48 0.0%
Timeout: 300 0.0%
Decompilations: 110039 0.0%

Basic Info Success Running Time Phases Runtime Memory Usage Program Exits Syntax Errors Build Warnings

Figure B.1: Results of night tests without FPU optimization performance restriction.

The significant improvements of second night tests run (see Figure B.2) in other phases
then x87 FPU register analysis are not caused by new FPU optimization. The improve-
ments are the product of the latest developments in the project released since the previous
measured night test run.
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Decompiler Tests
Test Diff With
experimental_-_2020-05-04 (x87-fpu-analysis #2) experimental_-_2020-04-09 (x87_fpu_analysis #1) Swap

Last update of results: 2020-05-05 02:28:29 
Current commit: e15e349 2019-04-01 17:49:02 +0200

Significant Worsenings

Phases Runtime

bin2llvmir - LLVM instruction optimization using RDA: from 00h 00m 00s
to 02h 01m 49s (+100.0%)

Memory Usage

web-service (binary) - arm64/macho: from 650 MB to 826 MB (+27.1%)

Program Exits

llvmir2hll - RC 134 (abort): from 53 to 65 (+22.6%)

Significant Improvements

Success

mips/ihex - gcc/O0 - C syntax result: from 13.8% to 91.4% (+562.2%)
mips/ihex - gcc/O1 - C syntax result: from 13.8% to 91.1% (+560.0%)
mips/ihex - gcc/O2 - C syntax result: from 12.9% to 89.6% (+595.2%)
mips/ihex - gcc/O3 - C syntax result: from 12.9% to 89.0% (+590.5%)

Running Time

mips/ihex - gcc/O0: from 00h 35m 45s to 00h 24m 56s (-30.3%)
mips/ihex - gcc/O1: from 00h 30m 57s to 00h 20m 25s (-34.0%)
x86/pe - gcc/O3: from 00h 34m 53s to 00h 22m 10s (-36.5%)
malware (binary) - x86/elf: from 01h 05m 18s to 00h 39m 48s (-39.1%)
web-service (binary) - arm/pe: from 00h 34m 36s to 00h 24m 24s (-29.5%)
web-service (binary) - x86/pe: from 15h 09m 42s to 10h 15m 00s (-32.4%)
Overall running time: from 04h 23m 37s to 04h 01m 13s (-8.5%)

Phases Runtime

bin2llvmir - Input binary to LLVM IR decoding: from 12h 58m 40s to 09h
28m 46s (-27.0%)
bin2llvmir - Simple types recovery optimization: from 01h 29m 24s to 00h
35m 05s (-60.7%)
bin2llvmir - Assembly mapping instruction removal: from 00h 36m 27s to
00h 20m 52s (-42.8%)
bin2llvmir - x87 fpu register analysis: from 04h 27m 59s to 00h 19m 00s
(-92.9%)

Program Exits

Unpacking - RC 4 (unpacker failed, other not succeeded): from 19 to 5
(-73.7%)
bin2llvmir - RC 134 (abort): from 19 to 17 (-10.5%)
bin2llvmir - RC 137 (timeout): from 98 to 67 (-31.6%)
bin2llvmir - RC 139 (sigsegv): from 13 to 5 (-61.5%)
C Syntax - RC 1 (syntax error): from 17438 to 14431 (-17.2%)

Syntax Errors

Generated C: from 129103 to 101353 (-21.5%)

Value Diff
Test ID: 19
Test name: experimental_-_2020-05-04
Diffing with: experimental_-_2020-04-09
Test description: x87-fpu-analysis #2
Test series: experimental tests
Tested commit: [e93960]
Start date: 2020-05-04 21:19:29
End date: 2020-05-05 01:20:42
Overall running time: 04h 01m 13s -8.5%
Max active processes: 48 0.0%
Timeout: 300 0.0%
Decompilations: 110051 +0.1%

Basic Info Success Running Time Phases Runtime Memory Usage Program Exits Syntax Errors Build Warnings

Figure B.2: Results of night tests with FPU optimization performance restriction.
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