
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

RECOGNITIONOFMULTI-TALKEROVERLAPPINGSPEECHUSING NEURAL NETWORKS
ROZPOZNÁVÁNÍ ŘEČI PŘEKRÝVAJÍCÍCH SE ŘEČNÍKŮ POMOCÍ NEURONOVÝCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR JAROMÍR HRADIL
AUTOR PRÁCE
SUPERVISOR Ing. KATEŘINA ŽMOLÍKOVÁ
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Hradil Jaromír
Programme: Information Technology
Title: Recognition of Multi-Talker Overlapping Speech Using Neural Networks
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with automatic speech recognition of overlapping speech with permutation
invariant training.

2. Get acquainted with convolutional neural networks and attention mechanism.
3. Implement the method using appropriate toolkit (e.g. PyTorch).
4. Train and evaluate on a conventional dataset, compare with published results.
5. Evaluate the results and suggest ways to further improve them.

Recommended literature:

Chang, Xuankai, Yanmin Qian, and Dong Yu. "Monaural Multi-Talker Speech Recognition
with Attention Mechanism and Gated Convolutional Networks." Interspeech. 2018.

dle doporučení vedoucího
Requirements for the first semester:

Items 1 to 3.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Žmolíková Kateřina, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: November 5, 2019

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/23005/2019/xhradi15 Page 1/1

Abstract
This work deals with the speech recognition of overlapping speakers using a neural net-
work. It examines the problem of speech recognition from multiple speakers and the ways
in which this problem is solved. Specifically, in addition to traditional components such as
convolutional neural networks, LSTM, etc., it is also an application of special components:
attention mechanism and gated convolution. And also the application of a technique called
permutation invariant training. Part of this work is to apply these approaches to assigned
training data, which consists of artificially created mixtures of two speakers reading articles
from the Wall Street Journal. The next step was to train the respective architectures using
the combinations of the elements mentioned above. The models in this work replace the
acoustic model. There were two architectures using different types of attention mechanism
and one without it. Experiments have shown that architectures using the attention mecha-
nism in this type of task have not surpassed more traditional architecture by suffering from
gated convolution. Nevertheless, they showed potential.

Abstrakt
Tato práce se zabývá rozpoznáváním řeči překrývajících se řečníků pomocí neuronové sítě.
Zkoumá problém rozpoznávání řečí od vícero řečníků a způsoby, jimiž se tento daný prob-
lém řeší. Jedná se konkrétně o aplikaci kromě tradičních komponentů jako konvoluční
neuronové sítě, LSTM atd. také speciálních komponentů: attention mechanismus a gated
konvoluce. A dále také aplikace techniky zvanou permutation invariant training. Součástí
této práce je aplikování těchto přístupů na přidělená trénovací data, která jsou tvořena
uměle vytvořenými směsmi dvou řečníků předčítající články z Wall Street Journal. Dalším
krokem bylo natrénování příslušných architektur používající kombinující prvky zmíněné na-
hoře. Modely v této práci nahrazují akustický model. Jednalo se o dvě architektury užívající
různé typy attention mechanismu a o jednu bez něj. Experimenty ukázaly, že architektury
užívající attention mechanismus v tomto typu úlohy něpřekonaly tradičnější architekturu s
užitím gated konvolucí. Přesto ale ukázaly potenciál.

Keywords
speech recognition,neural networks,attention mechanism,overlapping speech

Klíčová slova
rozpoznávání řeči,neuronové sítě,attention mechanismus,překrývající se řeč

Reference
HRADIL, Jaromír. Recognition of Multi-Talker Overlapping Speech Using Neural Networks.
Brno, 2020. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Kateřina Žmolíková

Rozšířený abstrakt
Díky technologickému pokroku učiněném v posledních letech, zvláště v oblasti umělé in-
teligence a strojového učení, zaznamenala technologie automatického rozpoznávání řeči
značný pokrok. Stále však jsou oblasti, kde rozpoznávání řeči nečiní tak velké pokroky.
Jedna z těchto oblastí je překrývající se řeč vícero řečníků.

V rámci této práce je rozebrán jeden z možných přístupů, jak tento problém řešit. Jedná
se o techniku nazvanou permutation invariant training (PIT), navrženou pro řešení právě
tohoto typu úloh. Tato technika se aplikuje v rámci trénování neuronových sítí. Tato práce
popisuje aplikaci této techniky na neuronové síti, která v rámci rozpoznávání řeči nahrazuje
akustický model a přímo klasifikuje jednotlivé rámce. Model v této práci kombinuje tradiční
prvky jako je např. konvoluční neuronová síť, LSTM, dopředná neuronová síť apod. a
novější prvky využívané právě v rámci tohoto a podobných typů úloh. Jedná se o tzv.
gated konvoluce a attention mechanismus.

Společně s těmito jednotlivými prvky pak byl příslušný model neuronové sítě trénován,
aby dokázal rozpoznat překrývající se řečníky z datasetu WSJ0, kde jednotliví řečníci
předčítají články z Wall Street Journal, a jejich směsi poté slouží jako základ pro onen
model.

Příslušný model neuronové sítě byl implementován v jazyce Python s využitím knihovny
pro strojové učení PyTorch. Jak již bylo zmíněno výše, neuronová síť na svém vstupu bere
akustické příznaky, které posléze klasifikuje do příslušných tříd. Implementovaný model
neuronové síťě nevyužívá attention mechanismus, který autoři navrhli v původním článku
[3]. Místo toho byl vybrán jiný druh, který je méně náročný na výpočetní prostředky, navíc
ve dvou variantách. V rámci experimentování byly trénovány celkem tři variace modelu s
různou learning rate.

Experimenty s těmito modely ukázaly velmi zajímavé výsledky. V rámci trénování byly
trénovány dva modely s attention mechanismem a jeden bez, který místo toho dispono-
val jednou vrstvou obousměrné LSTM navíc. Modely byly trénovány na jiném datasetu,
než který byl použit pro evaluaci. Dataset pro evaluaci neobsahoval stejné řečníky jako
tréninkový dataset. Hlavní metrikou pro určení úspěšnosti modelu byla široce užívaná
metrika v rámci rozpoznávání řeči, WER (Word error rate). V rámci experimentů bylo
zjištěno, že všechny modely mají tendenci se v pozdějších fázích trénování přetrénovávat
(angl. overfitting).

Mimo to ale ještě předtím bylo také zjištěno, že příslušné modely kromě jednoho pro-
dukují překvapivé výsledky. Jedná právě o jeden z attention mechanismů, tzv. Multihead
attention, který si v rámci experientů vedl nejhůře, jinak řečeno, neprodukoval tak dobré
výsledky jako dvě zbylé varianty. Ty právě naopak vyprodukovaly velice dobré výsledky.

Nad všechna očekávání se jedná právě o model bez attention mechanismu, který vypro-
dukoval ze všech modelů nejlepší výsledky. Nejlepší výsledek tohoto modelu v rámci ex-
perimentů činí 28.4% WER, což je o 2.6% lepší, než nejlepší varianta modelu z původního
článku, který dosáhl hodnoty 31%. I nejlepší varianta s tzv. Scaled Dot-Product attention
mechanismem překonala nejlepší výsledek původního článku s celkovými 29.8% WER, tedy
o 1.2% lepší. Nejlepší Multihead attention varianta naopak zaostávala s celkovými 34.5%
WER.

Tyto experimenty ukázaly, že v rámci této úlohy mohou tradiční prvky společně s Gated
konvolucemi a se správnou technikou dosáhnout lepších výsledků než modely s attention
mechanismem. Ačkoliv attention mechanismus by mohl vykazovat lepší výsledky s vetším
modelem, jelikož všechny modely obsahovaly z důvodu výpočetní náročnosti menší kompo-
nenty o jednu vrstvu BLSTM méně, než model bez attention mechanismu.

Modely by mohly dosáhnout ještě lepšího výsledku při aplikaci tvz. regularizačních
technik, které se právě používají jako prevence jevu přetrénování.

Recognition of Multi-Talker Overlapping Speech
Using Neural Networks

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Kateřina Žmolíková.

I have listed all the literary sources, publications and other sources, which were used
during the preparation of this thesis.

. .
Jaromír Hradil

May 27, 2020

Acknowledgements
I would like to express my eternal gratitude to my supervisor Ing. Kateřina Žmolíková
for her great support, inestimable advices, patience and time she dedicated me during
consultations and mainly during experimental stage of the work.

Contents

1 Introduction 3

2 Neural networks 4
2.1 Inner structure . 4
2.2 Training process . 5

2.2.1 Cross-validation and overfitting . 6
2.3 Convolutional neural network . 7

2.3.1 Gated convolution . 8
2.4 Recurrent neural network . 9

2.4.1 Long short-term memory network 9
2.4.2 Bidirectional LSTM . 10

2.5 Attention mechanism . 10

3 Multi-talker speech recognition 13
3.1 Overview of Automatic speech recognition system 13
3.2 Acoustic model . 13

3.2.1 Neural networks in acoustic model 15
3.3 Multi-talker acoustic model . 15

3.3.1 Speech separation . 15
3.3.2 Direct multi-talker acoustic model 16

4 Dataset 17
4.1 CSR-I (WSJ0) . 17
4.2 Test evaluation dataset . 18

5 Implementation 20
5.1 PyTorch . 20
5.2 Parts of the system . 21

5.2.1 Data collector . 21
5.2.2 Data loader and preparation . 21
5.2.3 Network modules . 23
5.2.4 Model loader module . 23
5.2.5 Training, cross-validation, and test modules 24

6 Experiments 25
6.1 Metrics for model evaluation . 25
6.2 Neural network models . 25

6.2.1 The model without attention mechanism 26

1

6.2.2 The model using Scaled Dot-Product attention mechanism 27
6.2.3 The model architecture using Multihead attention mechanism 27

6.3 Model experiments . 29
6.3.1 Experiments with the model without attention mechanism 29
6.3.2 Experiments with Scaled Dot-Product attention mechanism model . 32
6.3.3 Experiments with Multihead attention mechanism model 34

6.4 Summary of experiments . 36
6.4.1 Possible improvements . 37

7 Conclusion 39

Bibliography 40

A Content of attached CD 43

2

Chapter 1

Introduction

As modern deep learning technology research progresses, there are more and more require-
ments from it, including a field of speech recognition. Today’s level of speech recognition
is very high when compared to the past decade yet there are still various cases, where the
advancement of speech recognition is not so great. One of these cases in this field is an
overlapped speech from multiple speakers at the same time. While speech recognition of
one person is well-developed, multi-talker speech recognition is not. It is due to its greater
complexity when compared to the speech recognition of one person.

However, with mentioned technological advances there are developed various approaches
on how to resolve the problem of multi-talker speech recognition. One of the possible strate-
gies was developed by researchers in [3]. They propose the use of a neural network with a
new architecture containing new elements, namely gated convolutional layers and attention
mechanism. This type of architecture along with a training technique called permutation
invariant training should be able to improve the level of the multi-speaker speech recogni-
tion. The main goal of this thesis is to implement a neural network architecture using these
new elements with the use of the machine learning library and to evaluate it on a standard
dataset.

The thesis is structured into various chapters. Chapter 2 introduces the concept of
neural networks and their use in speech recognition. Chapter 3 describes the principles
and basic methods of speech recognition and multi-talker scenario. Chapter 4 describes the
nature and characteristics of a dataset used for the training and evaluation of the network.
Chapter 5 contains information about the implementation of the network based on the
mentioned article [3] and chapter 6 summarizes experiments realized with implemented
network.

3

Chapter 2

Neural networks

This chapter describes a concept of the neural network, the type of neural networks that are
used in Automatic speech recognition(ASR), and the other elements used to improve their
overall performance. Information in this chapter about a structure of the neural network
and its training mechanics were derived from publications [2, 7, 17].

2.1 Inner structure
The concept of the neural network started in the 1950s and 1960s when scientists discovered
an artificial neuron. They called it perceptron. This unit is connected to several inputs.
These inputs can be equal only to one or zero. Perceptron then takes these inputs and
multiplies them with a set of parameters called weights. They represent the strength of the
individual connections, i.e. how much these connections will influence the output. In the
case of the perceptron, the output can only be equal to either zero when the weighted sum of
its inputs is lesser or equal to zero or one when the weighted sum is greater than one which
causes the perceptron to be activated. Today the artificial neurons are more sophisticated
and can produce more outputs than only zero or one when other functions are used for
their activation. These neurons can then be put together and influence each other. There
are in total three different possibilities of how to connect neurons. This depends on their
position in the model.

The first possibility is to use them as inputs of the model inside the input layer. Here
they take input information and send it more forward into the model. The second possibility
is to connect them in the part of the model which is referred to as hidden layer. In this layer
neurons forward the inputs they receive further through the model. There can be multiple
hidden layers. The number of the hidden layers then determines what ”depth“ model has.
The final possibility of how to connect neurons is to use them as the output units, which
form the output layer. These principles described above are typical for one class of neural
networks called a feed-forward network or multilayered perceptron. This type is typical for
having all the connections only in one direction, i.e. it does not have any connections which
would feed the output of any of the neurons back to the model. This is depicted in figure
2.1.

Neurons can use linear or non-linear activation functions. Linear functions have lim-
ited capabilities over those non-linear. Non-linear functions allow to perform non-linear
transformations. Mathematically this process can be expressed for concrete neuron by the
following formula:

4

𝑦 = 𝑎(
𝑛∑︁

𝑖=1

𝑥𝑖𝑤𝑖 + 𝑤0) (2.1)

where 𝑎 stands as the activation function, 𝑤0 represents a bias value which is a value not
connected to any input and which can influence the activation of the neuron. 𝑥 is a vector
of the inputs, 𝑤 is a vector of the weights and 𝑛 is a number of the input connections.
Currently one of the most recommended activation function is called ReLU or rectified
linear unit. Others quite popular are logistic sigmoid and hyperbolic tangent.

The output neurons also use activation function on their outputs depending on how
they should be interpreted. For example, if outputs of the neurons are to be interpreted as
probabilities they use a softmax function. To learn, the model must compute the gradients of
the selected activation functions. The next section describes the characteristics of learning
during the training process.

Figure 2.1: An example of a feed-forward network with one hidden layer, inspired by figure
from [17].

2.2 Training process
Training is defined as a process, during which the model runs iteratively through the set
of training data and modifies the weights of the neurons. These modifications allow the
model to learn and to improve its performance after each iteration.

The whole process of training can be divided into three steps:

1. Forwarding of the data through the network and calculation of the loss value indicat-
ing how well model performs, calculated by a cost function.

2. Backpropagation algorithm for a calculation of the gradient of the cost function with
respect to the weights of the neural network.

3. An update of the weights with a method called gradient descent which is an opti-
mization algorithm used to minimize a loss. Gradient descent modifies weights in a
direction of decreasing the value of the cost function.

5

There are various types of the cost functions used in neural network models, the most
commonly used are mean squared error function and cross-entropy function. Loss 𝐿 of
the cross-entropy function for produced n-th output probability 𝑦𝑛𝑘 and 𝐶 target classes is
defined by following formula:

𝐿 = −
∑︁
𝑛

𝐶∑︁
𝑘=1

𝑡𝑛𝑘 ln 𝑦
𝑛
𝑘 (2.2)

Where 𝑡𝑛𝑘 is probability indicating that the target value equals to the class 𝐶.

Every model has various parameters called hyperparameters which are used to tune the
model’s performance. One of these hyperparameters is learning rate. This hyperparameter
needs to be tuned correctly. It determines the size of a step used in the optimization
algorithm when moving towards a minimum of the cost function. Otherwise, the training
could diverge or its progress would be too slow.

2.2.1 Cross-validation and overfitting

To discover whether the model is capable of learning and recognizing new related data not
present in the training dataset, a technique called cross-validation is performed. During
this process, the model encounters a new type of data separated from the training dataset.
Apart from that during this process, the model does not use the backpropagation algorithm.

This technique is very beneficial because it can indicate the behavior of the model
through the calculated loss of the cross-validation dataset. Then it can be compared with
the loss of the training dataset from the corresponding iteration and the comparison can
reveal if the model is training the right way or not. Typically is very distant from the loss
of training data. One of the typical problems is called overfitting, a situation when the
model produces correct predictions on the training data but incorrect for data not present
in the training dataset.

There exist some techniques to prevent this phenomenon. These techniques are com-
monly known as regularization techniques. There are various regularization techniques used
among the field, here are some of the most used:

∙ Dataset augmentation - augmentation of the training dataset causes that the network
will not overfit so easily due to the larger number of data. However, because obtaining
more data for training can be expensive and difficult, there is a possibility to enlarge
the dataset artificially. This means that it is possible to take training data and then
modify them to be the same with a slightly different form. However, this approach is
not fitted for every task, for example, a density estimation task.

∙ Parameter norm penalties - these techniques add a parameter norm penalty into the
cost function. The penalty is chosen so that only the weights are penalized, not the
biases. The reason behind it is that the biases require fewer data to fit and as a
result, they do not add much of the variance. One of the most widely applied is 𝐿2

regularization or weight decay. These techniques cause the model to learn smaller
weights and the larger ones will be included only if their inclusion will reduce the loss
of the cost function.

∙ Dropout [23] - this technique changes the model itself by temporarily dropping a few
neurons from the hidden layers by multiplying their outputs by zero. The model

6

calculates a random binary mask for each training sample. This mask then decides
what particular neurons will participate in the training process. Because training
with the Dropout technique will cause more of the hidden neurons to be active after
training due to larger weights, the weights are scaled by 1

𝑝 , where 𝑝 is a probability
that determines if the neuron is to be retained. This is called the weight scaling
inference rule.

∙ Early stopping - this technique involves an observation of the validation loss. If the
validation will get only worse with further training, the training is stopped and the
best state of the model is stored.

2.3 Convolutional neural network
Another widely used type of neural network, besides the feed-forward network, is called
convolutional neural network (CNN).

Neighboring neurons from the output layer are connected to other neighboring neurons
from the input layer [16]. The whole operation can be understood as extracting features
from the input data by performing a convolution operation with a set of learnable kernels,
a feature extractor of a certain size moving all along the input data and scanning them
[7]. The convolution can be performed along vectors or matrices [14]. The convolution of
matrices which is also used in the implemented model is defined by the following formula
[14]:

𝑐𝑥𝑦 =
∑︁
𝑢

∑︁
𝑣

𝑎𝑢𝑣𝑏𝑥−𝑢+1,𝑦−𝑣+1 (2.3)

where the convolution operation with matrix 𝐴 of 𝑛 × 𝑚 size representing kernel is
performed over the input matrix 𝐵 of 𝑘 × 𝑙 size produces the output matrix 𝐶 is of the
(𝑛+ 𝑘 − 1)× (𝑚+ 𝑙 − 1) size, 𝑢 and 𝑣 represent ranges of all legitimate moves of convolu-
tion for elements 𝑎𝑢𝑣 and 𝑏𝑥−𝑢+1,𝑦−𝑣+1.

Then in the next layer, called subsampling layer, the network will reduce the dimen-
sionality of the produced output [16]. This operation, also referred to as pooling, helps to
prevent output values from getting affected by small translations of the input [7]. This
process is illustrated in figure 2.2. It is also worth to mention that neurons in the CNN
layer share a single vector of weights among them [16].

Figure 2.2: An example of convolutional neural network, Inspired by figure from [16]

7

2.3.1 Gated convolution

Details about the gated convolutional layer were derived from [3]. In the article [3] authors
proposed the use of a special type of the convolutional layer, called gated convolutional
layer displayed in figure 2.3. The layer consists of two separate convolutional layers each
one having their weight parameters. One of the layers is using sigmoid activation function
on its output, while the other uses linear activation. The outputs are then merged using
element-wise multiplication thus producing the final output of the layer. This process is
described by the following formula:

ℎ(𝑋) = (𝑋 *𝑊 + 𝑏)⊗ 𝜎(𝑋 * 𝑉 + 𝑑) (2.4)

where 𝑋 is the input matrix, 𝑊,𝑉 are weight parameters, 𝑏, 𝑑 are biases, 𝜎 is the
sigmoid function, * is the convolution operation and ⊗ is the element-wise product. One
of the capabilities of this layer is that it can control the data stream of its output.

Figure 2.3: A Gated convolutional layer structure taken from [3]

8

2.4 Recurrent neural network
Details about the Recurrent neural networks were derived from [7, 18]. Recurrent neural
network (RNN) is a type of neural network that is capable to use its previous outputs to
produce new ones. It does so by sending the produced output through the connection back
to itself. The RNN can be also seen as a chain-like structure, as depicted in figure 2.4.
Here, block 𝐴 corresponds to the computation performed in one time-step, with input 𝑥𝑡
and output ℎ𝑡. The outputs are reused in the next time step. Reusing these outputs helps
RNN to learn the patterns between the elements of the input sequence.

RNNs are due to their characteristics widely used in tasks like speech recognition, lan-
guage modeling, etc. However, RNNs have a problem in cases of Long-Term Dependencies,
i.e., memorization of the previous inputs for a longer period of time.

Figure 2.4: Aa example of the RNN structure schematic taken from [18]

2.4.1 Long short-term memory network

Details about Long Short-Term Memory (LSTM) were derived from [6, 18]. Long short-
term memory (LSTM) is a subclass of RNN. It was created to counter the shortcoming of
the RNN. Like the RNNs, LSTM also can be depicted as the chain-like structure as shown
in figure 2.5. A calculation of a next state is realized in one time step by block 𝐴, but in
case of the LSTM, the block is more complex, when compared to the RNN block in the
figure 2.6.

In comparison with RNNs, LSTM additionally contains a cell state value 𝐶𝑡, a horizontal
line running through the top of the figure 2.5. It is a value capable of storing information,
which is transferred between particular time steps. It realizes this with the use of a com-
ponent called a memory block, a structure containing a cell state. Then there are gating
units, units with a sigmoid neural net layer, and pointwise multiplication operation, as can
be seen in 2.5, which can let pass information through that particular block. These gating
units are responsible for the protection and control of the cell state in the block. Cell state
is in every step modified depending on the actual input and hidden state, with the use
of forget gate (forgetting the information) and input gate (inserting the new information).
The output is then calculated from the actual input, hidden state, and the actual cell state
with the use of an output gate.

9

Figure 2.5: An example of the LSTM block structure taken from [18]

Figure 2.6: An example of the normal RNN block structure taken from [18]

2.4.2 Bidirectional LSTM

Apart from the standard RNNs, there also exists another type of RNNs architecture called
Bidirectional RNN (BRNN). It is a type of RNN network, processing input sequence in
two directions - forward and backward [7]. This allows them to capture not only the
past but also the future context of the input information [7]. Into this group also belongs
Bidirectional LSTM (BLSTM), originally introduced in [8]. BLSTM type is also used in
the model of the proposed architecture from [3].

2.5 Attention mechanism
Attention mechanism is used in machine learning, especially in language translation, image
captioning, dialog generation, etc. as a component capable of showing to the network
where to concentrate its focus when making predictions of an element by his relations to
the others. It does so by creating an attention vector, a vector carrying pieces of information
about relations of the element to other elements in the form of the attention weights [25].
Description of the attention mechanism was derived from [24, 25]

Although a different type of attention mechanism is proposed in the original article
[3], we use a different type in this work because of its computational efficiency. It is the
attention mechanism based on the paper [24] which proved to produce state-of-art results.
Its main advantage over the other types of mechanisms consists of the possibility to realize
the process without the use of RNN, a common element among the other types.

This architecture uses linear transformations to produce three different vectors called
keys, queries, and values from the input. Keys and queries have the same size of dimension
𝑑𝑘 and values are of dimension 𝑑𝑣. Attention function then maps key-value pairs and

10

queries to output as shown in figure 2.7. At the start, a vector of weights is calculated
by a compatibility function of the keys and queries to assign a score in this type of the
architecture defined by the following formula:

score(𝑄,𝐾) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝑑𝑘

) (2.5)

where 𝐾 and 𝑄 are packed matrices of the keys and queries vectors. 1√
𝑑𝑘

represents
a scaling factor where dimension 𝑑𝑘 is an input sequence length. Its use is motivated by
a possibility of the long input which could cause that softmax function will produce a
very small gradients which are ineffective for learning. Then all weights are assigned to
the corresponding values from packed matrix 𝑉 and after that, a result is calculated as a
weighted sum of the values, producing the Scaled Dot-Product attention:

Attention(𝑄,𝐾, 𝑉) = score(𝑄,𝐾)𝑉 (2.6)

Figure 2.7: A Scaled-Dot attention mechanism principle, Figure modified from [24]

This principle is then developed further in the [24]. It proposes to use Multihead At-
tention. This principle proposes instead of using only a single attention function to use
linear projections of the queries, keys and the values h times with different projections to
the dimensions of the keys and values, shown in figure 2.8. This approach is defined by
following formula:

MultiHead(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ℎ𝑒𝑎𝑑3....ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 (2.7)

where the head is defined as:

ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑊𝑄
𝑖 ,𝐾𝑊𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖)

where 𝑄𝑊𝑄
𝑖 ,𝐾𝑊𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 , and 𝑊𝑂 are projection matrices to be learned.

11

This principle allows calculating multiple outputs by different layers called heads, which
are then concatenated into the final output. This allows the model to learn to attend with
every single head to the different parts of the input information. This is according to [24]
inhibited when using only a single Scaled Dot-product layer, by an averaging of the output.

Figure 2.8: A multihead attention mechanism principle taken from [24]

12

Chapter 3

Multi-talker speech recognition

This chapter describes the functioning and architecture of the Automatic speech recognition
(ASR) system. As next, it explains the basics of functioning of an acoustic model and its
importance in ASR, methods that are used in the field of speech recognition, separation of
speech, and an application of the acoustic model in the multi-talker scenario.

3.1 Overview of Automatic speech recognition system
The main sources of information about Automatic speech recognition (ASR) architecture
were derived from [4, 22]. Automatic speech recognition (ASR) refers to a transformation of
input speech waveform into a sequence of recognized words. In practice, there are various
approaches to how to process the speech signal. One approach is called Dynamic Time
Warping. Although this technique proved to be efficient in matching words, it does not
perform so well in case of recognition of a continuous speech. Due to this fact, a different
approach is used in the recognition of continuous speech.

Figure 3.1 demonstrates the ASR system, where a decoder aims to find a sequence �̂� of
words 𝑊 which best matches 𝑋 representing an acoustic feature sequence extracted from
the input data. This can be expressed by the following formula:

�̂� = argmax𝑊 𝑃 (𝑊 |𝑋) (3.1)

where
𝑃 (𝑊 |𝑋) =

𝑃 (𝑋|𝑊)𝑃 (𝑊)

𝑃 (𝑋)
(3.2)

In this formula 𝑃 (𝑋|𝑊), which is modeled by an acoustic model represents how well
sequence 𝑋 corresponds with a word sequence 𝑊 . 𝑃 (𝑊) represents the probability of
the word sequence to appear in the current language. This probability is computed by a
language model. 𝑃 (𝑋) represents a prior probability of the feature sequence independent
from the acoustic and language model and can be ignored. Valid words of the particular
language are composed of the sequences of the basic unit of sound called phonemes. They
are specified by a pronunciation lexicon.

3.2 Acoustic model
Details about the acoustic model were derived from publications [11, 22]. Before sending
a speech signal into the acoustic model, the extraction of the features must be performed.

13

Figure 3.1: An architecture of the ASR system, inspired by figure from [4]

This transforms the signal into the form better fitted for speech recognition. The signal
is divided into frames representing approximately 25 ms of time of the signal with time
shift between successive overlapping frames being typically 10 ms. After that, a vector of
features is extracted from each of these frames.

After the extraction, the features are sent into the acoustic model. In ASR, the acoustic
model is a component that can greatly affect the overall accuracy. Upon the extracted
features, the acoustic model creates their statistical representation. One of the most ap-
plied acoustic models is the Hidden Markov Model (HMM). HMMs are used due to their
capability of representing the acoustic features and matching sequences of variable length.

HMM, can be viewed as Finite-State automaton. It is displayed in figure 3.2. This
automaton has probabilistic transitions between individual states, i.e. their total sum must
be equal to one. Let 𝑎𝑖𝑗 be a transition probability between i-th and j-th states. Following
formula explains this relationship for 𝑁 possible transitions from i-th state:

𝑁∑︁
𝑗=1

𝑎𝑖𝑗 = 1 (3.3)

The model can transition into another state or stay in the current one. Transitions
occur every time frame of time 𝑡. Each of the states, when entered, generates an observed
acoustic feature vector.

HMM also contains two special states. Both are reached only once when the model
starts and terminates its task. Apart from these two every state as mentioned generates
an observation vector 𝑥𝑡 through the emitting probability distribution 𝑏𝑗(𝑥𝑡). Using these
elements it is possible to formulate a calculation of the likelihood of acoustic feature vector
𝑋 given 𝜆 which represents acoustic components representing concrete words from sequence
𝑊 by the following formula:

𝑃 (𝑋|𝜆) =
∑︁
𝑠

𝑃 (𝑠,𝑋|𝜆) (3.4)

Here 𝑠 represents a vector of the states of HMM.
The joint probability of vector 𝑋 and states in 𝑠 given 𝜆 is formulated this way:

𝑃 (𝑠,𝑋|𝜆) =
𝑇∏︁
𝑡=1

𝑏𝑠𝑡(𝑥𝑡)𝑎𝑠𝑡𝑠𝑡+1 (3.5)

14

Here 𝑠𝑡+1 represents an exit state of the model.

Figure 3.2: Model of phoneme states using HMMs, inspired by figure from [11]

3.2.1 Neural networks in acoustic model

The main sources of information for this subsection were derived from the [10].
As mentioned in the previous section, HMMs are a very popular tool in ASR sys-

tems. HMMs began to be used widely in this field with the discovery of the Expectation-
Maximization algorithm. This method is used for training HMMs. This algorithm allowed
to represent the probability density for each HMM state through Gaussian mixture mod-
els [10]. ”A Gaussian Mixture Model (GMM) is a parametric probability density function
represented as a weighted sum of Gaussian component densities.“ [21]. GMMs and HMMs
were since then used in combination as GMM-HMMs.

However, GMMs aren’t very successful when the data require a non-linearity for their
representation. Because of this, the neural networks began to be used instead. The neural
networks are used because of their capability of modeling complex systems requiring a
non-linearity and they showed to outperform GMM-HMMs.

In current time, neural networks as the acoustic model consist of many hidden layers
and produce large outputs where each output corresponds with a certain state of the HMM.

3.3 Multi-talker acoustic model

3.3.1 Speech separation

As was mentioned in the introduction chapter, despite great advances in speech recognition
tasks there are still scenarios really difficult to handle. One of them is the ability to recognize
the speech from the noisy environment along with other people talking simultaneously. This
problem is often addressed as a cocktail-party problem [26]. It tends to get even worse in
the case of a single-channel speech mixture [12]. This is also the case when there is no prior
information about speakers themselves, a speaker-independent scenario [12]. Here come
monoaural speech separation techniques, whose goal is to extract the individual source of
each speaker from the mixture.

One of the approaches how to deal with the multi-talker scenario is to separate individual
signals from the mixture and then send those separated signals as the input into a classic
single-speaker acoustic model.

For the separation process, there are two most popular approaches. One of them is called
Deep Clustering [9]. ”Deep clustering is a recently introduced deep learning architecture

15

that uses discriminatively trained embeddings as the basis for clustering.“[12]. However,
this method has its shortcomings because of the clustering step, it takes as a prerequisite
that the time-frequency bin is dominated by only one speaker and although it proved to
produce good final approximations, it is not an optimal way [26].

The second approach is called Permutation invariant training (PIT) [26] Using this
approach, as can be seen in figure 3.3, at first, the neural network model produces the
output masks from the multiple output layers and then these masks are used to produce
individual signals [26]. Then using the cost function, the total losses of separated signals
and targets are computed, however, because there is no prior information about speakers,
there is no possibility to determine to which separated signal corresponds to which targets,
a situation known as a label permutation problem [26]. To counter this situation PIT
approach calculates loss for each permutation between all predictions and targets, then
summing those obtained losses to produce a total loss of that permutation [26]. Then total
losses of those permutations are compared and the least loss value is selected to optimize
the model [26].

Figure 3.3: Process of permutation invariant training of 2 speakers, Figure modified from
[26]

3.3.2 Direct multi-talker acoustic model

Instead of realizing the process of separation separately from the acoustic model, there is
a possibility to design the acoustic model in a way, that it can recognize the speech of two
speakers. In [3] authors use the neural network with the PIT cost function, however, this
time it does not estimate the separated signal, it directly classifies the individual frames
into phonemes. This whole process for 𝑆 speaker sources can be formulated this way [3]:

𝐽 =
1

𝑆
min

𝑠′∈𝑝𝑒𝑟𝑚𝑢(𝑆)

∑︁
𝑠

∑︁
𝑡

𝐶𝐸(𝑙𝑠
′

𝑡 , 𝑂
𝑠
𝑡), 𝑠 = 1, ..., 𝑆 (3.6)

where 𝑝𝑒𝑟𝑚𝑢(𝑆) is the set of permutations of the 1...S, 𝐶𝐸 is cross-entropy function,
𝑂𝑆 , 𝑠 = 1, ..., 𝑆 are output predictions produced by the model and 𝑙𝑠

′

𝑡 are corresponding
targets.

16

Chapter 4

Dataset

This chapter describes the main characteristics of a speech dataset used for training and
evaluation of the implemented models.

4.1 CSR-I (WSJ0)
CSR-I (WSJ0) [5] is the name of a corpus that was used for the creation of another dataset,
originally introduced used by MERL in the paper [9]. The complete corpus also known as
LDC93S6A consist of two parts: LDC93S6B and LDC93S6C [5]. LDC93S6B part contains
utterances captured by a close-talking Sennheiser HMD414 microphone and LDC93S6C
part contains utterances captured by a secondary microphone [5]. Both parts mainly consist
of recorded utterances of persons reading Wall Street Journal articles and texts selected
for reading for both parts had to satisfy a requirement to fall within a 5,000-word or a
20,000-word subset of the Wall Street Journal text corpus [5].

These recordings were then artificially mixed under the name ”wsj-2mix“ by MERL in
[9]. This mixtures form in total three datasets: training, cross-validation and test dataset
of various lengths shown in table 4.1:

Dataset type Length in hours

Train 30

Cross-validation 10

Test 5

Table 4.1: Table of dataset lengths

The process of creation of these datasets is the same is practically the same for all
of them [9]. It consists of selecting randomly individual utterances of different speakers
from the particular dataset and then these utterances are paired and mixed at various
random signal-to-noise ratio in a range between 0dB and 10dB [9]. For the creation of
the first two datasets was used the WSJ0 si_tr_s dataset [9]. For the creation of the
test evaluation dataset were used the WSJ0 development dataset si_dt_05 and evaluation
dataset si_et_05 where the utterances were selected from 16 different speakers which are
not present in other datasets [9].

17

4.2 Test evaluation dataset
The test dataset used for the evaluation of models during the experiment stage contains
different speakers from those in training and cross-validation datasets as mentioned in the
previous section. There are in total three different groups of overlapped utterances: 1.
mixtures containing only male speakers, 2. mixtures containing only female speakers and
3. mixtures where one speaker is male and the other one is female. The total share of each
of the groups can be seen in the following table:

Gender Number of utterances
Men 867

Women 530
Mixed 1603

Table 4.2: A distribution of utterances from test dataset by gender of speakers

During the experiments with test validation set the whole utterances were kept in the
original state and processed individually, i.e. they weren’t segmented by cutting procedure
explained in subsection 5.2.2. It was because otherwise the WER metric couldn’t be applied
as it measures whole words and in addition, there would not be otherwise possible to observe
if models did learn continuity patterns in the utterances. The following figure 4.1 shows
the length of individual utterances used in experiments.

Figure 4.1: Histogram of lengths of utterances of test dataset.

18

As mentioned in section 4, the mixtures were created by mixing utterances at various
SNR. Figure 4.2 shows an overall distribution of utterances regarding the values of SNR of
the first speaker over the second.

Signal-to-noise ratio (SNR) [13] is the measure which is used to determine how is the
signal powerful over the background noise. It is measured in decibels (dB). It calculated
by the following formula:

𝑆𝑁𝑅 = 10 log10
𝑃𝑆

𝑃𝑁
(4.1)

where 𝑃𝑆 is the power of the signal and 𝑃𝑁 is the power of the noise.
It is possible to observe various levels of SNR in the utterances. This imitates the

cocktail party scenario.

Figure 4.2: Histogram of SNR of one speaker over the other from test dataset.

19

Chapter 5

Implementation

This chapter describes an implementation of the described neural network elements, tools
used for development, and overall approach to the task. As mentioned in the introduction,
the model, shown in figure 5.1, is inspired by [3] and uses some alternative approaches. As
first, the chapter describes PyTorch [19], a machine learning library used to implement the
model. As next, it describes individual parts of the implemented system.

Figure 5.1: Scheme of the implemented architecture modules

5.1 PyTorch
PyTorch1 [19] is an open-source machine learning library. It is primarily developed by
Facebook’s AI Research lab. It has a Python interface along with highly optimized C++
and CUDA2 core.

1https://pytorch.org
2https://developer.nvidia.com/cuda-zone

20

 https://pytorch.org
 https://developer.nvidia.com/cuda-zone

As a basic unit for computation tasks PyTorch uses a tensor, an n-dimensional array of
the base data types. To perform calculations it uses a computational graph, a graph repre-
senting a flow of the data between corresponding tensors representing specific operations to
obtain the output. PyTorch can perform its calculations on CPUs and GPUs, where GPUs
are used for faster computations.

PyTorch allows special handling and loading of the data through classes Dataset and
Dataloader. A Dataset class is used for the preparation of data into a format for class
Dataloader. Dataloader is then used to serve data to the model when required, allowing to
use features like data shuffling, setting a batch size or mechanism called collate function, a
function, or a class executed before serving the particular portion of required data.

Many well known neural network classes like CNN, LSTM, or feed-forward networks
are already implemented in this library. This allows creating models and building layers of
those types. It also provides utilities needed for training like activation and loss functions.
To train a model PyTorch offers a module containing optimizers to update weights of the
neurons.

It is also worth mentioning that PyTorch allows saving parameters of the trained model
in the form of a Python dictionary. It can also convert it into formats such as ONNX3.

5.2 Parts of the system
This section contains a detailed description of individual implemented components and
their role in the models.

5.2.1 Data collector

A data collector module creates necessary files and folders for the data collection of the
training, cross-validation, and evaluation process. These files are always created in a sym-
bolic path from which the system is executed. It collects total accuracy and total loss from
every epoch as well as the accuracy and loss of every batch in the training and validation
processes. The collected data are stored in the form of a Python list with a Python module
called Pickle4.

5.2.2 Data loader and preparation

A data loader module uses a PyTorch classes Dataset and Dataloader, mentioned in section
5.1 above. With the use of the PyTorch class Dataset, a module loads data from provided
files and then prepares the loaded data into a format for the system to process. The datasets
are composed of various acoustic feature vectors with variable lengths, as can be seen in
figure 5.2. However, to process them they all must be of the same length.

To achieve this, the module has at its disposal two different approaches available. First
consists of an use of zero-padding where all sequences and corresponding targets with shorter
lengths than the longest one from a batch are padded with zero frames to fill in the missing
space, shown in figure 5.3.

The targets are padded with frames containing a value equal to -100 because it serves for
PyTorch as an indicator for overlooking the padded parts of sequences during the calculation

3https://onnx.ai/
4A module used for saving and loading Python object structure, https://docs.python.org/3/library/

pickle.html

21

 https://onnx.ai/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

Figure 5.2: Original acoustic feature vectors

Figure 5.3: Zero-padded acoustic feature vectors

of the loss. It is important to realize this, otherwise, the model would include them into
the learning process and they could corrupt it.

This approach, while sufficient, carries with itself a complication though. It is very
demanding on computational resources because it creates padded sequences based on the
length of the longest one and it can occupy a considerably large part of the memory.
This situation is solved by the second approach. The approach in some ways is similar to
the first one. It also creates frames for padding, however, these frames are not omitted.
Furthermore, this method divides the input sequences and targets into smaller fragments
of the selected size.

Figure 5.4: Uncut original speech sequence

Vectors smaller than the selected size of the cut are dropped. In the case of vectors
bigger than the size of the cut there almost always remains a piece smaller than the size of
the cut. This piece is not dropped, however. Instead, the module cuts an additional part
from the particular sequence to fill missing frames. The module obtains this additional
part by selecting the appropriate point in the particular input sequence, from which the
number of frames is equal to the selected size of the cut. This part is then separated and
added to the others. This process is illustrated in figure 5.5 where the original sequence
from figure 5.4 was divided into pieces with a size of the cut being equal to three. This
approach minimizes the memory requirements as well as the required computational power.

22

To explain why the smaller sequences than the size of the cut are dropped is that they could
create invalid conjunction because there is no valid part to fill the missing space.

Figure 5.5: Sequence-padded acoustic feature vectors with size of the cut being equal to
three.

The size of the cut, however, must be selected wisely as if it is too small, the model
might not learn continuity patterns from the cut sequences and if it is too large, it might
suffer from the same problems as the zero-padding method.

5.2.3 Network modules

As mentioned at the beginning of the section, the implementation contains two modules
with different sizes. The first one has a size that is smaller when compared to the model
variations in [3], at least in the case of the BLSTM layers. and then the larger one. It
allows choosing between the models depending on the available computational resources.

The module is capable to run three different modes: 1. with Scaled Dot-Product atten-
tion, 2. with Multihead attention and 3. run without attention. When running in the first
two modes, the module can save attention weights from selected attention mechanism in the
form of NumPy5 arrays for further analysis. The attention mechanisms are implemented
as Python classes. If the mode without attention mechanism is selected, the mechanism
part is substituted by the linear layer. The module produces two outputs for each speaker.

5.2.4 Model loader module

This module is responsible for saving and loading the current state of the network model.
It saves the state depending on the selected type of model. There are in total of two types
of saving model states: 1. saving of the best state - the state of the model is saved based
on the collected statistics. The calculated train loss from the particular iteration must be
lower than it was during the iteration when the model produced the best results and the
same condition must be satisfied in case of the cross-validation loss. This prevents saving
overfitted states and helps to preserve the best performance. 2. saving of the next state
- the state of the model is saved directly after the completion of the particular training
iteration. It saves them separately, thus allowing more experimenting with different states.
Similarly, it allows the loading of the desired status of the model, the best, or from the last
iteration.

5A library written in Python designed for scientific computing, https://numpy.org

23

https://numpy.org

5.2.5 Training, cross-validation, and test modules

These modules start the desired process of training or validation of the model on selected
datasets. The training module comes in two different versions. Each one will launch the
training of the selected model of the corresponding size. The cross-validation process is
launched by the training module every time after each training epoch. Then depending on
the selected saving mode it decides whether to save the current status of the model. The
test module is capable to save more to save can also save predictions of the model for both
speakers in the form of Numpy arrays or accuracies of produced predictions for individual
utterances identified by their name in the form of the Python dictionary.

All modules use a PIT cost function to determine the best permutation of the speakers
and then calculate corresponding accuracies, although they do not scale final loss as in [3]
due to experiments with various learning rates. If input sequences were zero-padded these
padded frames are ignored during the calculation of the accuracy. If it is possible, the
modules switch automatically to perform the computations on one GPU possessing CUDA.

24

Chapter 6

Experiments

This chapter describes performed experiments to evaluate the efficacy of the implemented
model. There were inspected various architectures of the attention modules. First, there
are introduced metrics applied to evaluate the overall performance of the model. Then
chapter describes the evaluation dataset used for experiments and after that, it describes
experiments with each architecture.

6.1 Metrics for model evaluation
To evaluate the performances of the individual models the following metrics were used:

∙ Prediction accuracy - This metric takes a total number of correct predictions of frames
with respect to the permutation with the lowest loss by the total number of frames
in each iteration. If there is zero-padding used, the model will automatically exclude
the padded frames.

∙ Word error rate - Word error rate (WER) [1] is an evaluation metric, used to evaluate
the performances of ASR systems. Value of this metric defines the total percentage of
errors calculated from the alignment of reference words with predicted words produced
by ASR system [1]. It is can be defined by following formula [1]:

𝑊𝐸𝑅 =
𝐼 + 𝑆 +𝐷

𝑁
× 100 (6.1)

where 𝐼 represents a number of the inserted words, 𝑆 represents a number of the
substituted words, 𝐷 represents a number of the deleted of the words and 𝑁 is a
number of the reference words.

Apart from listed metrics we also observed the overall losses of training and validation
sets to determine possible overfitting or other strange behavior of models. To determine, if
the particular attention mechanism works properly there were analyzed produced attention
weights of that mechanism.

6.2 Neural network models
This thesis explores the performances of three different implemented models. Previous
chapters described various components. These three models combine these to determine
their efficacy in dealing with the problem of overlapping utterances.

25

As mentioned in the introduction, the implemented models differ from the proposed
ones. They share almost the same elements from previous chapters with the model varia-
tions from the original article [3]. But they are all of the different sizes, an order of those
elements is different from the variations from [3]. And the major difference comes with
the attention mechanism. The implemented models use the attention mechanism inspired
by the article [24], explained in 2.5, different from the proposed one. Although Multihead
attention differs slightly from the original [24], explained below. The different size is used
mainly due to the extension of the dataset and shortage of computational resources. How-
ever, as mentioned in chapter 5, the system does contain also large-sized variations for
experimenting if there is a sufficient number of resources. However, these variations were
not were used in the experiments.

Apart from the attention mechanisms modules, the variations use a Leaky ReLU as the
activation function. It is a special modification of the ReLU function created to compensate
its drawback in the form of not learning when the activation is equal to zero [7]. To adjust
the network weights with gradient descent the models use Adam optimizer [15].

All models share the same number of two gated convolution layers. The first layer is
comprised of two CNN layers, each of size 20 and in the second the CNN layers have a
size of 100. After them succeeds the convolutional layer. This layer is comprised of 200
neurons. In the end, there are two output linear layers of size 3368 which is equal to the
total number of classes. The rest of the architecture differs in each of the models. These
differences are explained in the following subsections.

The pre-trained systems first produce predictions and save them in the form of a Numpy
array along with a collection of the loss and accuracy statistics from test validation. After
the completion, predictions are then evaluated which will then evaluate the overall level of
WER of the particular model for both speakers.

6.2.1 The model without attention mechanism

This model variation does not possess any of the attention mechanisms described in section
2.5. Instead, it, as can be seen in figure 6.1 contains two BLSTM layers, each one having
a hidden equal to 200 and a linear layer of size 516. This layer does not separate the
predictions as it is in case of attention mechanisms. The separation is done by output
layers. The number of BLSTM layers is higher than in the case of the other variations.

26

Figure 6.1: The model architecture without attention mechanism with individual layers.

6.2.2 The model using Scaled Dot-Product attention mechanism

In this model variation, shown in figure 6.2, the linear layer from the previous variation
is substituted by the Scaled Dot-Product attention layer. This layer first uses three linear
layers of size 200 to produce three different outputs for the creation of keys, queries, and
values. Before this model performs non-linear transformation with ReLU activation func-
tion over these outputs. Then they are sent into the next three linear layers of size 516 to
produce keys, queries, and values sets. This process is performed over the input data for
each speaker separately. It also contains only a single BLSTM layer where its hidden size
is equal to 200, mainly due to a lack of computational resources.

6.2.3 The model architecture using Multihead attention mechanism

This model variation, shown in figure 6.3, as the previous from subsection 6.2.2 also contains
a single BLSTM layer where its hidden size is equal to 200. uses the same process to
produce keys, queries, and values. It, however, uses the Multihead approach explained in
2.5. There are three heads for one speaker, thus six for both, each consisting of the set of six
linear layers of size 172. The first three produce the output more fitted for the creation of
attention vectors. They use also use ReLU activation function for transformation. This is
the difference between the Multihead attention mechanism from [24] and the implemented
model. In [24], there was no activation function used in attention module. The other three
produce the keys, etc. Then their outputs are concatenated and sent to another parametric
linear layer of size 516. This process is also performed over the input data for each speaker
separately.

27

Figure 6.2: The Scaled Dot-Product architecture model scheme with individual layers.

Figure 6.3: The Multihead architecture model scheme with individual layers.

28

6.3 Model experiments
To train and evaluate model variations were from the described datasets extracted 40-
dimensional acoustic features and corresponding targets using Kaldi 1 toolkit [20]. There
are in total 3386 possible output classes.

All of the described models from above were trained on one GPU and each one was
trained for 200 epochs. The following subsections contain detailed descriptions of experi-
ment results conducted on the test evaluation dataset. There were tested various learning
rates for each model. The final results of the best experiments can be found in table 6.5.
The following subsections describe the experiments with each model group. All the figures
containing statistics from experiments in these subsections were created from performances
of the best model instances of each variation.

WER on test dataset was also evaluated using another provided evaluation program
using the Kaldi toolkit. Other statistics were collected directly by the model itself.

6.3.1 Experiments with the model without attention mechanism

Despite having the simplest structure from variations this model showed results beyond
expectations. As can be seen in figure 6.4 in the first picture, the training loss tends to
decrease and training accuracy also increases as can be observed in the second picture of
figure 6.4, so the model trained correctly. However, in the case of cross-validation loss in
the first picture of figure 6.4, it is possible to observe a tendency of a curve to grow in an
increasing number of epochs. In the case of cross-validation accuracy in the second picture
of figure 6.4 it grows but then it settles in level around 45%. These are signs of overfitting.

Figure 6.4: On the left, progress of total train and cross-validation loss from each epoch,
On the right, progress of total train and cross-validation accuracy from each epoch of the
best instance of no attention model.

1A toolkit used for speech recognition, written in C++, https://kaldi-asr.org/

29

https://kaldi-asr.org/

In table 6.1 is possible to observe all experiments performed with no attention model.

Learning rate WER value Avg. frame accuracy

0.001 28.4% 46.3%

0.0006 32.5% 46.5%

Table 6.1: WER level, learning rate and average frame accuracy of each model of no
attention variation.

The model with learning rate being equal to 0.001 produced very good results which
even exceeded all model variations without attention mechanism and even models with
attention mechanism from article [3].

Because experiments with this model produced the very best results from all performed
experiments, it is worth to evaluate regarding this thesis the possible influence of the length
of utterances and SNR to the accuracy of predictions.

The effect of length utterances of the accuracy of predictions of frames is captured
in figure 6.5. It can be observed a certain level linear dependency between them which
was proved by calculation of the Pearson correlation coefficient, a value indicating
how much two variables are dependent on each other. Its value equals 0.24666169 which
indicates a positive correlation, which indicates a certain level of dependency between the
accuracy of the prediction and the lengths of the utterances.

Figure 6.5: Dependency of the accuracy of predictions on length of the utterance of test
dataset captured from the best model performance.

In the case of the influence of the SNR on the accuracy of predictions, the correlation
coefficient is equal to 0.1392165. This also indicates a positive correlation and a certain
level of dependency between the accuracy of the prediction and the SNR of the utterances.
The effect is displayed in the following figure.

30

Figure 6.6: Dependency of the accuracy of predictions on the SNR of the utterances.

In following table are average accuracies of frame predictions for each group of speakers
based on their gender:

Gender Avg. frame accuracy

Women 48.1%

Men 43.9%

Mixed 46.9%

Table 6.2: Average accuracies of frame predictions for each group of speakers based on their
gender.

31

6.3.2 Experiments with Scaled Dot-Product attention mechanism model

Experiments conducted on this model variation also produced interesting results. The use
of the attention mechanism showed that it learns correctly. The overfitting problem is also
apparent, however, with a closer look at figure 6.7 it is possible to observe that loss of
Scaled Dot-Product variation does not grow so rapidly as in case of no attention variation
meaning the attention model tends to get overfitted slowly. Still, it didn’t perform as well
as its predecessor in terms of accuracy and WER. Here, in figure 6.7 on the right picture,
the accuracy level stops around 40% and even training accuracy is worse than in case of no
attention model but is very close to it.

In figure 6.8 is displayed an array containing the attention weights from the utterance
which scored the highest accuracy. It is possible to observe the attention weights of the
mechanism over concentrated along the main diagonal across the time axes. Figure 6.9
displaying the utterance with worst scored accuracy also shows a major concentration of
the attention weights along the main diagonal meaning the attention mechanism works
correctly even in this case.

Figure 6.7: On the left, progress of total train loss from each epoch, On the right, progress
of total cross-validation loss from each epoch of the best instance of Scaled Dot-Product
model.

32

Figure 6.8: Attention weights of utterances of the best instance of Scaled Dot-Product
model.

Figure 6.9: Attention weights of utterances of the best instance of Scaled Dot-Product
model.

33

The following table shows the results of the performed experiments.

Learning rate WER value Avg. frame accuracy

0.001 29.8% 46.0%

0.0008 31.1% 44.9%

0.0004 36.4% 37.4%

Table 6.3: WER level, learning rate and average frame accuracy of each model of Scaled
Dot-Product attention variation.

From this table is possible to see that model with learning rate being equal to 0.001 pro-
duced the best results. It also exceeded all model variations without attention mechanism
and variations with attention mechanism from article [3].

6.3.3 Experiments with Multihead attention mechanism model

The overall results of the conducted experiments showed that the Multihead attention
mechanism does not outperform the performance of other model variations. Instead, it
produces quite strange levels of WER, shown in table 6.5. Only the model with learning
being equal to 0.001 produced reasonable WER. In terms of accuracy, as can be seen in figure
6.10, the model performs similarly to the Scaled Dot-Product model in cross-validation
accuracy. Observing figure 6.10, cross-validation loss once again shows the overfitting of
the model as did previous models. The curve of the cross-validation loss is more stable in
comparison with no attention cross-validation loss and is more similar to the one of the
Scaled Dot-Product model, i.e. it does not grows so quickly. Although it produces the
highest losses from all variations.

Figure 6.10: On the left, progress of total train loss from each epoch, On the right, progress
of total cross-validation loss from each epoch of the best instance of Scaled Dot-Product
model.

34

The most interesting aspect to watch is, however, the distribution of attention weights
of the individual heads. From figure 6.11 can be seen the attention of the individual
heads of best prediction, each shows to have a different distribution of the weights over
the matrix. Weights in the second and third head show a certain form of attention along
the main diagonal, however, not as clear as in the case of the Scaled Dot-Product model.
They all have a different distribution, proving that each one is concentrating on other parts
of the input sequence. In figure 6.12 are heads containing weights from utterance with
worst accuracy, they also show different distributions and in the first two heads, there
are more concentrated brighter regions than in the case of utterance best accuracy. This
might indicate that in case of this utterance heads attend more to the wrong parts of input
information.

Figure 6.11: Attention weights of individual heads from the best-scoring utterance of the
best instance of Multihead model.

In the following table is possible to observe the results of the individual experiments. It
only outperformed two variations with no attention with the worst WER mechanism and
variation with attention mechanism without Gated convolutions with worst WER equal to
34.6% from [3].

Learning rate WER value Avg. frame accuracy

0.001 34.5% 40.4%

0.0006 40.8% 42.3%

0.0004 39.6% 38.9%

0.0002 40.6% 38.1%

Table 6.4: WER level, learning rate and average frame accuracy of each model of Multihead
attention variation

35

Figure 6.12: Attention weights of individual heads from the worst-scoring utterance of the
best instance of Multihead model.

6.4 Summary of experiments

Model type Learning rate WER value
No attention 0.001 28.4%

Scaled Dot-Product att 0.001 29.8%

Multihead att. 0.001 34.5%

Table 6.5: Best result of each model variation and its learning rate.

With performed experiments with each model variation, it was demonstrated, as can
be seen in the figures 6.4, 6.7 and 6.10 that the case of overfitting was present in all
experiments. However, before it started, all models saved their best status to evaluate the
WER value. One of the possible explanations of why models are overfitting is because the
models weren’t optimally tuned as all models use different learning rates. It is possible to
observe that when learning is equal to 0.001 the WER level of each model decreases. Moving
the level of learning rate only just by one-thousandth of its value can have dramatic results
as can be observed in the case of the Scaled Dot-Product attention model. Experiments
also showed that higher frame accuracy does not guarantee a better WER value.

It was demonstrated that models using the attention mechanism did not produce better
results than the model without it. One of the possible explanations consists of the loss
of the context because the utterances were fragmented during the training procedure due
to the hardware limitations and because of this, the attention mechanisms maybe did not
learn the whole context of where to attend.

What is, however, interesting is the fact that the model using Multihead attention has
the worst results as can be seen in table 6.5. This again can be caused by a low number of
heads as there are only three heads in the Multihead attention model or that one part of the
mechanism uses activation function before producing keys, queries, and values. However,

36

as can be seen in figure 6.11 the Multihead attention does learn some information in each
head. Better results may be achieved by increasing the number of total heads or delete
activation functions entirely from the Multihead attention mechanism, as they may have
affected its performance because they aren’t part of the original. Or it may be caused by
insufficient size.

The following table shows a comparison between the best results of implemented models
and best models from the article [3].

Model type WER value
Implemented

No attention 28.4%

Scaled Dot-Product att. 29.8%

Multihead att. 34.5%

From the article

No attention 32.7%

With attention mech. 31.0%

With attention mech. + gated conv. 31.6%

Table 6.6: Comparison of best results of implemented models with best models from article
[3].

As can be seen in table 6.6, the implemented no attention model outperformed all
best-scoring model variations from [3].

Also, Scaled Dot-Product attention variation produced reasonable WER results. It also
outperformed the best model variations from [3] and it also outperformed the Multihead
attention which might indicate that it is better suited for this type of task, but this might
change with the possible modifications of the model mentioned above. Also, variations with
attention mechanisms had only one BLSTM layer which might have some possible influence
on the final performance.

There might be a suggestion that the system proved to be better due to lower a lower
number of output classes than in the original article. However, the difference is not that
huge as 3368 output classes aren’t much greater than 3429 which is a number of output
classes from [3]. It might have affected the total accuracy of the predictions of frames,
however, it does not affect the WER as the same words were used to get the WER level.

6.4.1 Possible improvements

This subsection contains a list of possible improvements of the implemented models for
future contexts:

∙ Tuning of parameters - as shown in tables of performances of each variation, the learn-
ing rate can have a great impact on the final results of this model. Because the experi-

37

ments are quite expensive to perform, there aren’t results for a wider range of learning
rates. There is also the possibility to experiment with the size of the individual layers
and their order in the model.

∙ Application of overfitting countermeasures - all types of models suffer from over-
fitting. Regularization techniques are key to prevent this, especially in the case of the
larger models. It might be also the key for the attention mechanism to work more
properly as a large-sized model along with regularization techniques could perform
better because in experiments it was shown that the model learned with it some pat-
terns and the layers would prevent the overfitting. Data augmentation is not the way
as there is sufficient data already present in used datasets and adding more would
only cost more time to train the model and more resources. The early stopping is
already partially applied, i.e. models are capable to save their best states.

38

Chapter 7

Conclusion

The main objective of this thesis was to implement neural network architecture using the
combination of the described components and technique used to improve the multi-talker
speech recognition described by the [3]. There were built three different model variations,
one without attention mechanism and two with it. The variations using the attention
mechanism have each one a different type of this mechanism. Both mechanisms are based
on [24]. They are different from the attention mechanism used in [3].

Implemented models were then trained and evaluated on the standard datasets intro-
duced by [9]. On the implemented model variations were then conducted experiments to
explore their capabilities. The models proved to produce good results, especially Scaled
Dot-Product attention variation and no attention variation.

The performed experiments showed, that the model without attention mechanism can
produce better results than those with it. The best no attention model with WER being
28.4% outperformed the best result from [3] by 2.6%, where the best model which contains
attention mechanism produced WER 31.0%. This shows that in this type of task models
with the attention mechanism did not outperform the model without it.

However, the Scaled Dot-Product attention model is very close to the best result of the
no attention model with WER being 29.8%. The difference between their best WER results
is only 1.4% and Scaled Dot-Product attention also outperformed the best result from [3]
by 1.2%.

Multihead attention model did not perform so well as did the first two. Its best WER
result was 34.5% which is not better than the best result from [3]. This, however, might
also be the result, that Multihead attention is not the entirely same as in [24] or that there
is a low number of heads, etc.

However, there is also some space to improve the performance as suggested in 6.4.1,
especially in the case of Multihead attention. The mechanism might also improve its per-
formance with the larger model. However, because it was proved that all model variations
suffer from overfitting phenomenon, the first step to improve them is to apply the regu-
larization techniques. Then, if they improve, it will depend on further experimenting with
the individual parameters of each model. And because models showed certain potential it
might be interesting to explore other possibilities of these architectures.

39

Bibliography

[1] Ali, A. and Renals, S. Word Error Rate Estimation for Speech Recognition:
e-WER. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Melbourne, Australia:
Association for Computational Linguistics, July 2018, p. 20–24. DOI:
10.18653/v1/P18-2004. Available at: https://www.aclweb.org/anthology/P18-2004.

[2] Bishop, C. M. et al. Neural networks for pattern recognition. Oxford university
press, 1995.

[3] Chang, X., Qian, Y. and Yu, D. Monaural Multi-Talker Speech Recognition with
Attention Mechanism and Gated Convolutional Networks. In: Proc. Interspeech 2018.
2018, p. 1586–1590. DOI: 10.21437/Interspeech.2018-1547. Available at:
http://dx.doi.org/10.21437/Interspeech.2018-1547.

[4] Gales, M. and Young, S. The application of hidden Markov models in speech
recognition. Foundations and trends in signal processing. Now Publishers Inc. 2008,
vol. 1, no. 3, p. 195–304.

[5] Garofolo, J. S. et al. CSR-I (WSJ0) Complete LDC93S6A. Web Download.
Philadelphia: Linguistic Data Consortium. 1993.

[6] GERS, F. Long Short-Term Memory in Recurrent Neural Networks. 2001.
Dissertation. Universität Hannover.

[7] Goodfellow, I., Bengio, Y. and Courville, A. Deep learning. MIT press, 2016.

[8] Graves, A. and Schmidhuber, J. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural networks.
Elsevier. 2005, vol. 18, 5-6, p. 602–610.

[9] Hershey, J. R., Chen, Z., Le Roux, J. and Watanabe, S. Deep Clustering:
Discriminative Embeddings for Segmentation and Separation. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). March 2016,
p. 31–35. DOI: 10.1109/ICASSP.2016.7471631. Available at:
https://www.merl.com/publications/TR2016-003.

[10] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r. et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal processing magazine. IEEE. 2012, vol. 29, no. 6,
p. 82–97.

40

https://www.aclweb.org/anthology/P18-2004
http://dx.doi.org/10.21437/Interspeech.2018-1547
https://www.merl.com/publications/TR2016-003

[11] Huang, X. and Deng, L. An Overview of Modern Speech Recognition. Handbook of
Natural Language Processing, Second Edition, Chapter 15 (ISBN: 1420085921)th ed.
Chapman & Hall/CRC, January 2010. 339-366 p. Available at:
https://www.microsoft.com/en-us/research/publication/an-overview-of-modern-
speech-recognition/.

[12] Isik, Y., Le Roux, J., Chen, Z., Watanabe, S. and Hershey, J. R.
Single-Channel Multi-Speaker Separation using Deep Clustering. In: Interspeech.
September 2016, p. 545–549. DOI: 10.21437/Interspeech.2016-1176. Available at:
https://www.merl.com/publications/TR2016-073.

[13] Johnson, D. H. Signal-to-noise ratio. Scholarpedia. 2006, vol. 1, no. 12, p. 2088.
DOI: 10.4249/scholarpedia.2088. revision #126771.

[14] Keller, F. Computational Foundations of Cognitive Science: Lecture 15:
Convolutions and Kernels. 2010. [Online, Cited: 2020-02-26]. Available at:
http://www.inf.ed.ac.uk/teaching/courses/cfcs1/lectures/cfcs_l15.pdf.

[15] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. ArXiv
preprint arXiv:1412.6980. 2014.

[16] LeCun, Y., Bengio, Y. et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks. 1995, vol. 3361, no. 10,
p. 1995.

[17] Nielsen, M. A. Neural Networks and Deep Learning. Determination Press, 2015.

[18] Olah, C. Understanding LSTM Networks. Aug 2015. [Online, Cited: 2019-01-19].
Available at: https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fnref1.

[19] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., Alché Buc, F. d́, Fox, E. et al., ed. Advances
in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,
p. 8024–8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[20] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O. et al. The
Kaldi speech recognition toolkit. In: IEEE Signal Processing Society. IEEE 2011
workshop on automatic speech recognition and understanding. 2011, CONF.

[21] Reynolds, D. A. Gaussian Mixture Models. Encyclopedia of biometrics. Berlin,
Springer. 2009, vol. 741.

[22] Samudravijaya, K. Automatic Speech Recognition. 2004. [Online, Cited: 2020-01-26].
Available at: http://www.iitg.ac.in/samudravijaya/tutorials/asrTutorial.pdf.

[23] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.
and Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research. 2014, vol. 15, no. 56,
p. 1929–1958. Available at: http://jmlr.org/papers/v15/srivastava14a.html.

41

https://www.microsoft.com/en-us/research/publication/an-overview-of-modern-speech-recognition/
https://www.microsoft.com/en-us/research/publication/an-overview-of-modern-speech-recognition/
https://www.merl.com/publications/TR2016-073
http://www.inf.ed.ac.uk/teaching/courses/cfcs1/lectures/cfcs_l15.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fnref1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.iitg.ac.in/samudravijaya/tutorials/asrTutorial.pdf
http://jmlr.org/papers/v15/srivastava14a.html

[24] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L. et al. Attention
is All You Need. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017,
p. 6000–6010. NIPS’17. ISBN 9781510860964.

[25] Weng, L. Attention? Attention! Lilianweng.github.io/lil-log. 2018. [Online, Cited:
2020-02-27]. Available at:
http://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html.

[26] Yu, D., Kolbæk, M., Tan, Z. and Jensen, J. Permutation invariant training of
deep models for speaker-independent multi-talker speech separation. In: 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2017, p. 241–245.

42

http://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Appendix A

Content of attached CD

∙ src folder - folder containing all source files of neural network models.

∙ pre-trained_models folder - folder containing pre-trained neural network models.

∙Hradil_bachelor_thesis_latex.zip file - file containing source code for Latex to gen-
erate bp.pdf.

∙ bp.pdf file - file containing pdf file of the bachelor thesis.

∙ README.txt file - file containing detailed description of individual items on CD and
guide how to use network scripts.

43

	Introduction
	Neural networks
	Inner structure
	Training process
	Cross-validation and overfitting

	Convolutional neural network
	Gated convolution

	Recurrent neural network
	Long short-term memory network
	Bidirectional LSTM

	Attention mechanism

	Multi-talker speech recognition
	Overview of Automatic speech recognition system
	Acoustic model
	Neural networks in acoustic model

	Multi-talker acoustic model
	Speech separation
	Direct multi-talker acoustic model

	Dataset
	CSR-I (WSJ0)
	Test evaluation dataset

	Implementation
	PyTorch
	Parts of the system
	Data collector
	Data loader and preparation
	Network modules
	Model loader module
	Training, cross-validation, and test modules

	Experiments
	Metrics for model evaluation
	Neural network models
	The model without attention mechanism
	The model using Scaled Dot-Product attention mechanism
	The model architecture using Multihead attention mechanism

	Model experiments
	Experiments with the model without attention mechanism
	Experiments with Scaled Dot-Product attention mechanism model
	Experiments with Multihead attention mechanism model

	Summary of experiments
	Possible improvements

	Conclusion
	Bibliography
	Content of attached CD

