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Abstract
The goal of this thesis is to propose an evaluation metric that includes computational
costs. Computational costs generally do not pose a problem in research, but it can become
problematic in a commercial production system, where speed is essential. The proposed
metric extends existing evaluation framework from NIST and adds parameter for time
unit and time unit cost. These metrics are applied on real ASV and experiments show
the potential for further research and possible use. The experiments focus on reducing the
computational cost by posing a limit on maximum length of the utterance, but also limiting
number of frames for x-vector extraction. Both optimizations reduced the computational
costs and reached favorable results for the new metrics. Finally, experiments’ results are
compared and each system modification is ranked according to the new metrics.

Abstrakt
Cieľom tejto práce je navrhnúť hodnotiacu metriku, ktorá zahŕňa výpočetné náklady.
Všeobecne výpočetné náklady nepredstavujú vo výskume problém, ale môžu byť problema-
tické v komerčnom produkčnom systéme, kedy je rýchlosť dôležitá. Navrhnuté metriky
rozširujú existujúci rámec pre hodnotenie od NIST a pridávajú k nim parametre pre časovú
jednotku a náklady pre časovú jednotku. Tieto metriky sú aplikované na skutočný ASV a
experimenty ukazujú potenciál pre hlbší výskum a možné použitie. Vrámci experimentov
bola limitovaná maximálna dĺžka nahrávok, ale aj maximálne dĺžka rámcov pre spracovanie
pri extrakcii x-vektorov. Obe optimalizácie znížili celkové výpočetné náklady a dosiahli
priaznivé výsledky pre nové metriky. Na záver sú výsledky z experimentov porovnané a
jednotlivé modifikácie ohodnotené a zoradené podľa nových metrík.

Keywords
speaker recognition systems, speaker recognition evaluation, speaker recognition optimization,
computational costs, evaluation metrics

Kľúčové slová
rozpoznávanie rečníka, evaluácia systémov na rospoznávanie rečníka, optimalizácia systémov
na rozpoznanie rečníka, výpočetné náklady, evaluačné metriky

Reference
GREGUŠOVÁ, Sabína. Evaluation and Optimization of Computational Costs in Speaker
Recognition Systems. Brno, 2020. Bachelor’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor Dr. Johan Rohdin



Rozšírený abstrakt
V posledných rokoch sa zvýšil záujem o možnosť použitia systémov na rozpoznávanie rečníka
aj v proprietárnych (komerčných) softvéroch. Hlavné uplatnenie takýchto systémov je v
dnešnej dobe najmä vo forenznej vede, vďaka čomu je možné potvrdiť alebo vyvrátiť identitu
poodzrivého práve na základe zvukovej nahrávky získanej počas vyšetrovania. Momentálne
sa do popredia dostáva myšlienka využitia týchto systémov aj vo sfére bezpečnosti a autenti-
zácie. Je však potrebné takýto systém zaistiť od možnosti zneužitia inou osobou, ktorá by
aktívne menila svoj hlas, aby napodobila niekoho iného, alebo využila nahrávku danej osoby
pre falošnú autentizáciu.

Každý systém pre rozpoznávanie rečníka má svoje nedostatky a preto existujú prípady,
kedy by podľahol takémuto útoku. Preto je potrebné skúmať takéto situácie a ich následky
v komerčnej sfére. Systémy na rozpoznávanie rečníka predstavujú binárny problém. Systém
porovná hlas hovoriaceho (vstup) s nahrávkou hovoriaceho cieľovej identity, ktorá je prijatá
(enrolled) v danom systéme. Rozhodnutie systému je teda potvrdenie (accept) alebo
vyvrátenie (reject) tohto hovoriaceho. Z toho vyplýva, že systém môže urobiť 2 možné
chyby, a to potvrdiť indetitu podvodníka (false accept), alebo vyrátiť identitu skutočného
hovoriaceho (false reject).

Práve v komerčnej sfére je potrebné priradiť týmto chybám určitú peňažnú hodnotu,
“cenu”. Rozhodovacia hranica bude vždy kompromisom medzi tým, čo je pre nás dôležitejšie,
napr. pre banku je oveľa dôležitejšie vyvrátiť identitu podvodníka, ktorý by mohol ďalej
vykonávať transakcie v mene niekoho iného, ako to, že niektorý zákazník bude otrávaný z
toho, že ho nevedia identifikovať. Priradenie takejto “ceny” je však problematické, pretože
sú to situácie, ktorým sa ťažko umelo priraďuje cena. Pre banku je určite výhodnejšie, aby
odhalila podvodníka, no môže sa stať, že bohatý zákazník bude otrávený z toho, že jeho
autorizácia je zdĺhavá a rozhodne sa presunúť svoje peniaze do inej banky, ktorá má lepší
systém. Preto je potrebné hľadať balans medzi takýmit situáciami a nepribližovať sa do
extrémov preferovania jedného rozhodnutia nad druhým.

Práve rozhodnutie systému v týchto okrajových situáciach slúži ako vhodný ukazateľ pre
porovnanie výkonu jednotlivých systémov. Okrem prideľovania peňažnej hodnoty dôsledku
týchto rozhodnutí je taktiež potrebné prihliadať aj na výpočetný čas. Vo výskume nie
je až tak potrebné brať na čas ohľad, pretože cieľom je dospieť k najlepšiemu možnému
riešeniu.V komerčnej oblasti je ale aj čas rozhodujúcim faktorom, a preto je potrebné aj
ten zakomponovať do celkového hodnotenia takéhoto systému.

V tejto práci sú vytvorené nové metriky, ktoré vo svojich výpočtoch zahŕňajú aj časový
údaj. Nové metriky vychádzajú z existujúcich rámcov pre hodnotenie a porovnanie systémov
a rozširujú ich o čas. Navrhnuté metriky sú použité v experimentoch na reálnych systémoch.
Jedná sa o nástroj Kaldi, ktorý je voľne dostupný pre vedecké účely. Pri experimentoch boli
využité dáta z databáze VoxCeleb, ktorá obsahuje obrovskú škálu audio súborov celebrít
voľne dostupných na internete. Cieľom experimentov je simulovať stav systému v reálnych
aplikáciach, preto je použitý predtrénovaný model a na vyhodnotenie PLDA.

Meraný čas predstavuje iba čas, ktorý program strávi v CPU (nezahŕňa čas potrebný
na ostatné operácie, ako na vstup/výstup, alebo čas, kedy bol proces blokovaný iným
procesom). Pre objektívne hodnotenie sú rovnaké experimenty vykonané viackrát a finálny
časový údaj je priemerom týchto experimentov. Následne sú aplikované navrhnuté metriky
pre porovnanie systémov.

Cieľom optimalizácie bolo upraviť existujúci systém tak, aby pre nové metriky dosahoval
čo najlepšie výsledky. Zároveň sa pri celkovom hodnotení systémov zohľadnovali aj pôvodné
metriky, aby bol nájdený vhodný systém, ktorý produkuje čo najviac správnych výsledkov



a zároveň má znížené výpočetné náklady. Jednou z možností bolo skrátiť dĺžku vstupných
súborov (výpovede rečníka). Takáto modifikácia prirodzene vedie na zníženie výpočetných
nákladov. Výsledkom tohto experimentu bolo ohodnotenie systému s rôznou maximálnou
dĺžkou vstupov.

Druhý experiment sa zameriava na skracovanie počtu rámcov pre x-vektor extrakciu.
Keďže sa jedná o výpočetne najnáročnejšiu časť skriptu, je to vhodný objekt optimalizácie.
Tieto experimenty úspešne zredukovali celkový výpočetný čas a zachovali dobré ohodnotenie
výkonu aj pomocou pôvodných metrík.

Na záver sú oba experimenty porovnané a systémy sú ohodnotené a zoradené podľa
výsledkov nových metrík. Druhý experiment mal konzistentne lepšie výsledky – priemerný
čas spracovania bol nižší a aj korektnosť výsledkov bola lepšia. Vykonané experimenty
dokazujú, že je možné systém optimalizovať tak, aby dosahoval lepší čas a stále produkoval
dobré výsledky.
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Chapter 1

Introduction

In recent decades, there has been a tremendous spike in the technological field, which was
accompanied by deeper interest in using machine learning and classification in practical
applications.

The research on speaker recognition systems involves the study of many disciplines,
such as signal processing, machine learning etc. In order to evaluate, access and compare
performance of different systems, there has been an continuous effort to develop standardized
evaluation methodology.

The goal of this thesis was to conduct a research on existing evaluation and optimization
techniques of speaker recognition technology, look into the possibility of taking the compu-
tational costs into account, the possibility of its improvement and a development of new
metrics for improved assessment of its performance and potential future use. The organi-
zation of this thesis is as follows.

Chapter 2 introduces the basic state-of-the-art systems and its fundamental theoretical
knowledge.

Chapter 3 presents the existing evaluation frameworks and standards, its mathematics
and proposes new protocols and metrics used in the experiments. It is based on the idea that
practical application of speaker recognition technology often requires not only accuracy, but
speed as well. Therefore, these metrics are developed with the intention of improving the
ranking of the systems with the inclusion of processing costs as well.

Chapter 4 applies the proposed metrics on a toolkit Kaldi, which is used for research
on speaker recognition licensed under collaborative open source software development. The
experiments show, how the inclusion of time essentially changes the evaluation process. It
also focuses on developing a new system that is optimized for the new metrics.

Chapter 5 concludes the thesis by presenting the obtained results of different approaches
and comparing the proposed concept with the pre-existing evaluation framework.
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Chapter 2

Speaker recognition systems

The primary goal of speaker recognition systems is to recognize a speaker from their voice.
Each speaker has their unique characteristics, which include the physical features, manner
of speaking, choice of vocabulary, accent etc. It is important to realize, that although very
close in fields, speaker recognition and speech recognition have different goals, modeling
strategies and practical applications.

There is a wide range of practical uses for these systems. Forensics often utilizes speaker
recognition systems in order to confirm or deny the identity of a suspected criminal in front
of the court from the recordings obtained as evidence (e.g. phone conversation). Voice
and speech, as a bio-metric feature, also has potential to be used for authentication and
security. Such systems, however, must be capable of clearly distinguishing between a true
voice of a speaker and speaker, who is trying to mimic and impersonate somebody else by
consciously changing their high-level voice features. The system also cannot be susceptible
to accepting recordings, as this could also lead to breach in the safety and security.

Currently, it is not a good strategy to purely rely on the speaker recognition systems,
but it can be used to enhance an already existing security system as another supporting
form of bio-metric authentication among others.

2.1 System types and classification
We generally distinguish the speaker recognition systems into 3 separate types according
to its goals as:

∙ Diarisation: successfully segment the input signal according to speaker’s identity;
the goal of this segmentation is to correctly determine ”who spoke when“

∙ Verification: either to confirm or refute the identity claim of a speaker by comparing
the speaker’s utterances with the utterances of the speaker whose identity is being
claimed; the target identity template must be already enrolled (1:1 match)

∙ Identification: speaker’s utterance is compared with multiple enrolled utterances;
in order to correctly verify the speaker’s identity, their speaker model must be already
enrolled (1:n match)

The speakers’ utterances for training and testing can be recorded in various situations,
but we can consider two types of speakers:

3



∙ Cooperative speaker: speakers, who wish to be recognized; speakers are willing to
repeat the utterances and speak more clearly if needed, they are often requested to
use pre-determined phrases

∙ Non-cooperative speaker: speakers, who do not wish to be recognized; this type
of recognition systems is considered to be particularly challenging, as the utterances
are often recorded in a more hostile environment, thus making the speaker model
more complex

There are also 2 types of speaker recognition systems, which are closely bounded to the
types of speech we use in the utterances:

∙ Text-dependent: the speakers have limited word/phrases they can use; oftentimes,
there are restricted words (lexicons) that are known beforehand, so the system has
more data and information about the possible utterance, it generally performs better
than it’s counterpart; these utterances are most commonly performed by a cooperative
speaker

∙ Text-independent: the speakers can freely use any words/phrases; the testing data
and production data can be completely different, the system must be able to deal
with various manners of speaking, for example in forensics, the speaker is usually
non-cooperative and the conditions of such audio is harsher

It is possible to deduce many potential applications of such technology if we look at
this classification. The speaker recognition systems usually tend to be more focused on
processing audio from telephony-based conversations, which is generally speaking text-
independent with non-cooperative speakers. Further explanation and examples are discussed
in [9], [7] or [6].

2.2 Architecture of speaker recognition systems
The speaker recognition system consists of 3 phases, development phase, enrollment phase
and verification phase/evaluation phase. The main goal of the enrollment phase is to extract
the speaker-specific features and create a speaker model. Development phase refers to
learning/estimating parameters from scratch (often also called training phase). Lastly,
Evaluation phase is used for evaluating the created model. The term adaptation is used for
slightly tuning the existing parameters of an existing model. The same data should not be
used in multiple phases, as it jeopardizes the system and distorts the results of performance
evaluation [14].

Figure 2.1: Stages of Speaker Recognition
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Even when the same speaker utters the same sentences, the extracted features can still
slightly vary for each utterance. Therefore, our goal is to create a model, that captures the
main characteristics, while it is still capable of dealing with a feature variation. The features
are divided into various categories, from high-level features (learned) to short-term spectral
and voice source features (physiological). There is no feature category, that is considered
the best – the choice depends on computational resources, complexity and practicality.
Whatever feature is chosen for the system, there will always be a trade-off [9].

The aim of feature extraction is to convert a complex speech waveform to reasonable
number of parameters, that can be used for further processing and analysis of the signal. In
speaker recognition, we typically want to remove the noise (pre-processing of the data) and
only extract the important features of the speech. One of the most widely used approaches
in speaker recognition systems are the mel-frequency cepstrum coefficients (MFCC).
The MFCC was inspired by the function of human ear. The function rises linearly up to
1000 Hz, but logarithmically above that. The signal is firstly segmented into frames of
about 20-30 ms, windowed by a window function that boosts the higher frequencies. Fast
Fourier Transform (FFT) is applied to find the frequency components – we transform
the time domain speech signal into spectral domain signal. The log of the frequency
components is taken, because it is easier to do summation instead of multiplication. Finally,
the Discrete cosine transform is applied to get the MFCC. The MFCC are the amplitudes
of that spectrum [7].

Figure 2.2: MFCC process of feature extraction (from [2])

For enrollment of the speaker, it is sufficient to have around 30 seconds of audio per
speaker. In the development (training) phase, the chosen model is trained with the training
data. It is essentially trained with a large data-set, which ideally represents the real data
distribution. Training data are required to contain large number of speakers with multiple
recordings per speaker. The model must be then verified with evaluation data, which cannot
be the same as the training data. The choice of the model is based on the system objectives,
because each model has its advantages and disadvantages. Models, according to how they
are trained, are divided into:

∙ Generative models: the goal is to find the feature distribution within each speaker
(GMM, VQ)

∙ Discriminative models: the goal is to find the boundary between the speakers
(SVM, NN)

Each speaker is characterized by a speaker model and the most common models are
introduced later in this chapter. There are various models and their alternations. Although
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there has been a recent trend of shifting the focus from the traditional models to neural
networks, it is essential to be familiar with the older models as they provide a good basis
for understanding the state-of-the-art speaker recognition systems.

In verification, the speaker’s voice is compared against the speaker model of the claimed
identity; whilst in identification, the speaker’ s voice is compared to all the enrolled speaker
models and the best one is selected.

While technologies used in these sub tasks are essentially the same, the thesis focuses
on verification for 3 reasons:

∙ The U.S. National Institute of Standards and Technology (NIST) has conducted
several speaker verification evaluations, which means large quantities of data as well
as standardized experimental protocols for this task are available.

∙ Automatic Speaker Verification (ASV) has a large number of applications. In particular
within access control, surveillance and forensics. In access control, ASV is used to
authorize access to a resource such as a bank account or a building. In surveillance
applications, it is used for detecting a wanted criminal in a collection of telephone
recordings. In forensics, ASV is used for comparing a voice recording from a crime
scene with the voice of a suspect or a victim.

∙ The modeling of the “claimed identity is false” case poses some additional difficulties
over speaker identification because in this case, the utterance could have been spoken
by a person that the system has no reference data for

The final decision of the recognition systems is based upon the distance from the
reference speaker model, i.e the matching score. Ultimately, it is a binary decision, either
to accept or deny the claimed identity of a speaker.

There is a threshold that determines, what distance is considered as acceptable for
finding a match for the speaker (target trial). Any distance below the threshold is then
considered to be an impostor (non-target trial). Real-life data will be overlapping at
certain points [6]. In practice, the threshold is set by the evaluation script in the evaluation
phase. The metrics used for evaluation, such as Equal Error Rate (EER) and Decision Cost
Function (DCF), are further discussed in Chapter 3.
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Figure 2.3: Visualization of scores for targets and non-targets and the decision
threshold (from [10])

2.3 Gaussian mixture model (GMM)
A probabilistic generative model which is often used as a reference model for speaker
recognition. It relies on the fact that its means depends on the speaker’s identity and
the channel effects. The concatenated means are referred to as super-vector. Ideally, we
want to extract the features, but remove the channel effect on the data [11].

GMM is composed of a finite mixture of multivariate Gaussian components. Let
𝒩 (𝑥;𝜇𝑐,Σ𝑐) be the probability density function (PDF) for a multivariate Gaussian dis-
tribution. The probability density function (PDF) of a multivariate Gaussian mixture
model is then given as [3]:

𝑃 (𝑥|𝜆) =
𝐶∑︁
𝑐=1

𝒩 (𝑥;𝜇𝑐,Σ𝑐)𝑃𝑐 (2.1)

𝒩 (𝑥;𝜇𝑐,Σ𝑐) =
1√︀

(2𝜋)𝐷|Σ|
𝑒−

1
2
(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇) (2.2)

𝜆 = {𝑃𝑐, 𝜇𝑐,Σ𝑐} (2.3)
𝐶∑︁
𝑐=1

= 1 (2.4)

where 𝐶 is the number of Gaussian components in the mixture, 𝜇𝑐 is the mean vector and
Σ𝑐 is the co-variance matrix of the 𝑐-th Gaussian component; 𝑃𝑐 is the mixing weight, i e.
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the a priori probability for the 𝑐-th Gaussian component. Usually, we assume that feature
vectors are independent, so the GMM likelihood is computed as:

𝑃 (𝑥|𝜆) =
𝐶∏︁
𝑐=1

𝒩 (𝑥;𝜇𝑐,Σ𝑐) (2.5)

log𝑃 (𝑥|𝜆) =

𝐶∑︁
𝑐=1

log𝒩 (𝑥;𝜇𝑐,Σ𝑐)) (2.6)

Training of GMM consist of estimating the 𝜆 = {𝑃𝑐, 𝜇𝑐,Σ𝑐} for each component from
the training data. Most commonly used algorithm is Maximum-likelihood (ML). It looks for
the model parameters by maximizing the likelihood of GMM from the training data. The
ML parameters can also be estimated from the iterative expectation-maximization (EM)
algorithm, although its likelihood increases with every iteration, it has a slow convergence
rate and only converges to local optimal points [9].

Since the process of text-independent speaker verification is a difficult task, GMM can be
altered by adding some functions that improve its performance. One example is extending
the GMM with one model that represents all the speakers with general, speaker-independent
feature characteristics. This model is referred to as Universal Background model
(UBM). Such approach has shown the best results compared to the other adaptations
[14].

The main disadvantage of using the GMM is that it cannot handle high-dimensional data
very well, and with the number of features, the number of training data grows exponentially,
so-called ”the curse of dimensionality“ [9].

2.4 I-vector, x-vector and PLDA
The i-vector model, firstly introduced by [4], stems from GMM UBM in Section 2.3 and
simplifies it. It has been discovered, that the channel factors also contain some information
about the speaker. Typically, (probabilistic linear discriminant analysis) PLDA is used as a
backend model for removing channel effects and comparing two i-vectors or x-vectors. The
model M is then represented as follows:

M = m + Tw (2.7)

where m is the global mean of UBM super-vector, that is speaker and channel independent.
T is a model parameter (i-vector extractor), w is a variable with standard normal distri-
bution, and its MAP estimate is called the i-vector. The PLDA does the comparison
between i-vectors or x-vectors to obtain the verification score. It assumes the distribution
of x-vectors, 𝜑 as [11]:

𝜑 = 𝜑 + Vy + 𝑒 (2.8)

In this distribution, 𝜑 is the global mean of observed data, y being a latent speaker
variable with normal prior probability, and e is a latent channel variable with prior probabil-
ity of 𝒩 (0,W). I-vectors are usually pre-processed by centering and are projected by linear
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discriminant analysis (LDA), that reduces the dimensionality. The representations are then
length-normalized and modeled by PLDA. The scores are normalized using adaptive s-norm
[16]. X-vector shares the same concept as presented here but it is based on neural networks
and usually outperforms i-vectors.

Huge advantage of using i-vectors or x-vectors is the fact that it maps variable-length
utterances to fixed-dimensional embeddings. X-vectors often benefits from data augmen-
tation by increasing the amount of training data, which improves robustness of the whole
system. Because of that, x-vectors tend to achieve better performance on the evaluation
data-set. X-vectors are extracted from Deep Neural Networks (DNN) introduced in Section
2.5. DNN uses supervised training, and that’s why it successfully exploits the data augmen-
tation [16].

2.5 Neural Networks
Neural networks have been playing important role in the speaker recognition technology for
the past years. It is beneficial to use Neural Networks, as there is no exact function, that
maps speaker-specific features to the speaker identity.

The main 2 kinds of neural networks that have been considered for use in the speaker
recognition technology is the multi-layer perceptron (MLP) and neural tree network (NTN).

Multi-layer perceptron (MLP) is a neural network classifier, usually consisting of one
input layer, one hidden layer and one output layer, which is trained with back-propagation.
It is beneficial to use MLP for problems with only limited information about the character-
istics of the input. Each addition or deletion of nodes or hidden layers results in different
solution of the problem and the optimal solution is usually found by trial and error, which
is not very efficient. MLP is a subset of Deep Neural Netowrks (DNN), often referred to
only as Neural Networks, which is the most recent trend in speaker recognition technology.
The main difference between MLP and DNN is that MLP is always feed-forward, while
general DNN can have loops [5], [16].

Neural tree network (NTN) is hierarchical hybrid classifier, that combines feed-forward
neural networks (neural network where nodes does not form a cycle) and a binary decision
tree. The decision tree then consists of single-layer perceptrons (SLP) and child nodes.
The NTN is trained for a target speaker - it iteratively labels nodes with either 0 (non-
target speaker) and 1 (target speaker) respectively until all leaf nodes are labeled [8]. The
resulting NTN has a 100% performance on the training set, but may not achieve optimal
generalization for other data-sets [5].
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Chapter 3

Evaluation of speaker recognition
systems

Being able to evaluate the performance of various algorithms is essential to ensure meaningful
comparison. In the past years, there has been an effort to standardize the evaluation
methodology used in speaker verification systems. The National Institute of Standards and
Technology (NIST) has provided a standardized evaluation framework in order to correctly
access and compare text-independent speaker recognition systems.

Since 1996, NIST has been conducting Speaker Recognition Evaluations (SRE) to
measure the performance of current state-of-the-art text-independent speaker recognition
systems. These evaluations provide objective comparison and feedback on currently used
speaker recognition technology. NIST provides the corpora for training and testing the
model [15].

3.1 Verification errors
Let there be a test utterance and enrollment utterance in the trial that are from the same
speaker, then we denote it as a target trial. If the test utterance does not come from the
same speaker, we denote it as non-target trial. Since the goal of speaker verification is
to determine whether the two utterances come from the same speaker or not, there are two
possible errors that can occur:

∙ False accept (FA): system determines that two recordings from different speakers
come from the same speaker, therefore classifies non-target trial as a target trial; it is
also referred to as false positive

∙ False reject (FR): system determines that two recordings from the same speaker
come from different speakers, therefore classifies target trial as a non-target trial; it
is also referred to as miss or false negative
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Correct Result System Result
Target Non-Target

Target True Accept False Reject
Non-target False Accept True Reject

Table 3.1: Possible outcomes from comparing the system result with the
correct results

The rate of these errors is measured and calculated from the evaluation data-set. Two
different error rates complicates the evaluation process, since it is hard to compare the
performance of different systems.

3.2 Detection Error Trade-off (DET)
One of the visual tools for speaker evaluation is undoubtedly the detection error trade-off
(DET). The resulting graph of DET is capable of showing the system performance at many
different operating points. NIST uses DET for plotting the performance of various systems
over many operating points. The system that produces the leftmost DET curve is deemed
to have the best performance. The weakness of using DET is, however, that they do not
provide a single scalar value that could be used for comparison. Therefore, it cannot be
used directly for evaluation [9].

Figure 3.1: Detection error trade-off (DET) graph from NIST SRE 2016 for
primary submissions (from [15])

There will always be the trade-off between false accepts and false rejects and it needs to
be properly adjusted according to the costs. If the application has very high costs for false
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accepts, the threshold can be adjusted so that it only accepts those trials, that produce a
very high score, but will, in return, produce a lot of false rejects and vice versa.

Therefore, NIST established a detection cost function (DCF) as the primary evaluation
metrics for accessing the performance of text-independent speaker verification (Section 3.4).
The goal of DCF is to minimize the cost for our decision, which would inherently help us to
set a threshold for our decision-making, that is application dependent. DCF is often shown
as an operating point on DET.

3.3 Equal Error Rate (EER)
We need to note that trying to strive for a ”zero-tolerance“ policy for one type of error will
cause the other rate of error to skyrocket, which is not very recommended. At some point
in the DET, the probability of False accept (FA) equals the probability of False reject (FR);
this value is referred to as an Equal Error Rate (EER) [10].

EER is expressed as a percentage value of error for given data-set. If the decision
threshold is set from EER threshold, then the two types of error become equal. Operating
point for EER is shown on the DET curve, such as in Figure 3.2.

3.4 Detection cost function (DCF)
One of the most frequently used evaluation metrics for text-independent speaker recognition
systems is the Detection cost function (DCF). DCF is as follows:

𝐷𝐶𝐹 = 𝐶𝐹𝐴𝑅𝐹𝐴(1 − 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)) + 𝐶𝐹𝑅𝑅𝐹𝑅𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡) (3.1)

where 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡) is an a priori probability for a target trial as we expect in our application
before we observe the trial. 𝐶𝐹𝐴 is the cost of false accept and 𝐶𝐹𝑅 is the cost of false reject.
Both of these costs must be chosen according to the application, therefore are application
dependent. The rates of errors are computed from the evaluation database as:

𝑅𝐹𝐴 =
Total False Accepts

Total Non-target Trials (3.2)

𝑅𝐹𝑅 =
Total False Rejects
Total Target Trials (3.3)

which is an estimate of 𝑃 (𝐸𝑟𝑟𝑜𝑟|𝑁𝑜𝑛) and 𝑃 (𝐸𝑟𝑟𝑜𝑟|𝑇𝑎𝑟𝑔𝑒𝑡).
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Figure 3.2: Graph of DET with DCF, minDCF and EER (from [10])

Given the cost parameters and a prior of the DCF, we wish to set the threshold so that
the expected cost is minimized. Therefore, decision threshold can be set by minimizing
the DCF. In NIST 2016 Speaker Recognition Evaluation Plan1, the minDCF is computed
by iterating over rates for false accept and false reject and finding the lowest DCF value.
Finally, the the cost is normalized by 𝐶Default, which is minimum of following values:

𝐶Default = min
{︂

𝐶FalseReject × 𝑃Target
𝐶FalseAccept × (1 − 𝑃Target)

The cost is normalized by dividing it by 𝐶Default, which is the best cost that could be
obtained without processing the input data (i.e., by either always accepting or always
rejecting the segment speaker as matching the target speaker, whichever gives the lower
cost).

𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎) is the probability of target given data after we observe the trial. A perfect
system would output 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎) = 1 for a target trial and 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎) = 0 for a non-
target trial. However, bad system would output 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎) = 1 only for very easy target
trial, 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎) = 0 for very easy non-target trial and in most cases, it would output
𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎) = 0.5. Our goal is to minimize the cost, so we will accept the decision that
involves the lowest possible cost. In other words, if the expected cost of accepting a trial is
smaller than the expected cost of rejecting it, we should accept it. The optimal threshold
on the Log Likelihood Ratio (LLR) can be derived as follows:

1Available at https://www.nist.gov/system/files/documents/2016/10/07/sre16_eval_plan_v1.3.pdf
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Expected cost of accepting the trial
Expected cost of rejecting the trial < 1 (3.4)

𝐶𝐹𝐴(1 − 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎))

𝐶𝐹𝑅𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎)
< 1 (3.5)

We can use the Bayes’s rule to rewrite it as:

𝐶𝐹𝐴
𝑃 (𝑑𝑎𝑡𝑎|𝑛𝑜𝑛)𝑃 (𝑛𝑜𝑛)

𝑃 (𝑑𝑎𝑡𝑎)

𝐶𝐹𝑅
𝑃 (𝑑𝑎𝑡𝑎|𝑡𝑎𝑟𝑔𝑒𝑡)𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)

𝑃 (𝑑𝑎𝑡𝑎)

< 1 (3.6)

𝐶𝐹𝐴𝑃 (𝑑𝑎𝑡𝑎|𝑛𝑜𝑛)𝑃 (𝑛𝑜𝑛)

𝐶𝐹𝑅𝑃 (𝑑𝑎𝑡𝑎|𝑡𝑎𝑟𝑔𝑒𝑡)𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)
< 1 (3.7)

𝐶𝐹𝐴𝑃 (𝑛𝑜𝑛)

𝐶𝐹𝑅𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)
<

𝑃 (𝑑𝑎𝑡𝑎|𝑡𝑎𝑟𝑔𝑒𝑡)
𝑃 (𝑑𝑎𝑡𝑎|𝑛𝑜𝑛)

(3.8)

We want the system to output the (logarithmic) likelihood ratio rather than the posterior
probability, because we want to be able to set the prior probability 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡). Therefore,
the prior probability 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡) should not be included in the model at all. Instead, it
should exist as an input parameter [14].

log
𝐶𝐹𝐴𝑃 (𝑛𝑜𝑛)

𝐶𝐹𝑅𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)
< log

𝑃 (𝑑𝑎𝑡𝑎|𝑡𝑎𝑟𝑔𝑒𝑡)
𝑃 (𝑑𝑎𝑡𝑎|𝑛𝑜𝑛)

(3.9)

Since it is a binary decision, if we do not accept the decision, then we will reject the
decision according to the above rule.

We can also scale the DCF for optimization and it stays equivalent to the original DCF
as:

𝐷𝐶𝐹 ′ = 𝑃𝐸𝐹𝐹𝑃𝐹𝑅 + (1 − 𝑃𝐸𝐹𝐹 )𝑃𝐹𝐴 (3.10)

𝑃𝐸𝐹𝐹 =
𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)𝐶𝐹𝑅

𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)𝐶𝐹𝑅 + (1 − 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)𝐶𝐹𝐴)
(3.11)

By doing so, we can use 𝑃𝐸𝐹𝐹 (effective prior) to find the threshold for the log likelihood
ratio, as mentioned in [14]:

𝜏 = −
(︁

log
𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)

1 − 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)
+ log

𝐶𝐹𝑅

𝐶𝐹𝐴

)︁
(3.12)

𝜏 = − log
𝑃𝐸𝐹𝐹

1 − 𝑃𝐸𝐹𝐹
(3.13)

If the speaker verification system outputs the scores that can be interpreted as the log
likelihood ratio, the threshold can be set for any 𝑃𝐸𝐹𝐹 .

3.5 Proposed metrics
The goal is to develop metrics, that would accurately measure and evaluate the performance
of the speaker recognition systems, whilst taking the computational costs into account. In
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general, taking computational costs and time into account is very subjective task, since the
output can drastically change depending on the used hardware.

Therefore, the evaluation process will be carried out on the same machine so the results
can be compared objectively. During our research, we proposed two metrics that could
be used for the evaluation process, that are based on the NIST evaluation framework and
extended by the cost of time.

It is important to note, that the above mentioned evaluation strategies are sufficient
for the research, that is result-oriented. My goal is, however, to explore the possibility of
extending such metrics for use in speaker recognition systems, where computational
time (computational cost) is important as well.

The systems’ performance will be judged according to the new metrics and the best one
will be deployed with normal decision threshold. New metrics will not affect the decision
threshold itself, but it will rather help us choose the best system for given application.

3.6 Time Constraint Protocol (TCP)
The goal of the Time Constraint Protocol (TCP) is to set an upper limit for the computa-
tional time. We can safely assume that the threshold for the computational time should be
adjusted based on the expected costs of error. For example, a banking system that would
use speaker recognition technology in order to verify the identity of the client would have
high monetary costs if it accepted an impostor, but rejecting a target speaker would only
result in an annoyance of the client with no monetary costs for the bank.

As a base of this protocol, the maximum available time will be denoted as Θ. The
variable Θ can be set arbitrarily, but it makes sense to set it more objectively when possible.
Many similar applications, such as the banking system mentioned above, use an Software
agent that communicates with the user. In this particular scenario, the user will have to
verify their identity and the system will start processing. The software agent usually informs
the user, that the input is being processed. The time it takes to convey this information
will become the Θ value, which would ensure, that the system must make the decision by
the time the agent has finished the communication.

For better decision making process, we will establish 𝜀, which is a variance from Θ and
it was experimentally chosen to be 5% of the Θ value, but can be changed arbitrarily. The
requirements are:

Θ > 0 (3.14)
𝜀 > 0 ∧ 𝜀 < Θ (3.15)

Θ is the computational cost we strive to achieve. The purpose of the variance 𝜀 is to
show the range that is very close to Θ. It is the extra time that we are willing to sacrifice,
which is also application specific. It is possible to visualize the TCP results on numerical
axis with pivotal timestamps and current system position.
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Figure 3.3: Visualization of TCP on time axis

The axis is divided into 4 intervals. The colors represent state of the system in given
interval. Multiple systems’ results can be plotted onto this axis, with clear visual comparison
for evaluation of the system. In order to obtain a scalar value for the evaluation, we can
do so by subtracting Θ from the system processing time (𝑇 ) :

𝑇 − Θ = ∆ (3.16)

where ∆ is used for the evaluation of the constraint fulfillment.

∆ > 𝜀 Did not fulfill the constraint
𝜀 ≥ ∆ > 0 Almost fulfilled the constraint

0 ≥ ∆ > −𝜀 Fulfilled the constraint
−𝜀 ≥ ∆ Fulfilled the constraint very well

The reason for finding ∆ instead of comparing 𝑇 against Θ directly is because we want
to able to compare systems and their result of TCP for different Θ and 𝜀 values.

3.7 Modified Detection Cost Function (MDCF)
The original Detection Cost Function (DCF) introduced in Section 3.4 creates solid basis
for evaluation of speaker recognition systems, but does not take the computational time
into account. My goal is to propose a modified DCF (MDCF), that is based on the original
DCF, but introduces time cost variable into it.

The modification of the DCF involves appropriately adding the time cost into the
function. My proposed function is

𝑀𝐷𝐶𝐹 = 𝐶𝐹𝐴𝑅𝐹𝐴(1 − 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡)) + 𝐶𝐹𝑅𝑅𝐹𝑅𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡) + 𝑇𝐶𝑇 (3.17)

MDCF uses the same input parameters as in the original DCF and introduces 2 new
parameters

∙ 𝑇 : average time needed to make a final decision

∙ 𝐶𝑇 : cost for one time unit

Product of these parameters is added to the function. Parameter 𝑇 does not depend on
the final decision, so we do not need to measure time differently for accepting and rejecting.
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Time 𝑇 represents the time it takes for the system to process and compare two utterances
against each other (because we are doing verification). Units for time must be consistent
over all experiments for easier comparison. This thesis will be using seconds as a time unit.
Cost 𝐶𝑇 is set manually and has the value of 1 by default.

MDCF can be minimized to find minMDCF – the lowest possible cost including the
computational time. MDCF is expected to rank systems with lowest DCF and lowest
computational time the highest. It will make the biggest difference with ranking systems,
that have similar DCF values, but different computational time.
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Chapter 4

Experiments

This chapter focuses on experiments, presents their results and compares different approaches.
The experiments have been conducted using Kaldi [13].

Kaldi is a toolkit for speech and speaker recognition written in C++, licensed under the
Apache License v2.0, with the intended use by the research community.1 Kaldi provides
excellent basis for speaker recognition – it contains many recipes and examples that are
open to modification and optimization. The biggest advantage of Kaldi is that it provides
a huge base of source files for the speaker recognition systems.

The remainder of this Chapter is organized as follows: Section 4.1 describes the ex-
perimental setup. Section 4.2 focuses on measuring the time and calculating the average
processing time. Section 4.3 and 4.4 propose different modifications to the existing system
in order to improve its performance according to TCP and MDCF. Finally, Section 4.5
compares all the systems’ modifications.

4.1 Setup
The goal is to observe a comparable results, whilst taking computational costs into account.
Therefore, in order to compare the experiments objectively, it is essential to obtain the
results from the same hardware. Because of that, I used my personal school laptop with
the following specifications for all the experiments and trials, except for training the Deep
Neural Networks (DNN):

Manufacturer Asus
Edition Zenbook
Model UX410UA-GV018T
Processor Intel Core i5
Clock rate 2.5 GHz
RAM 8 GB DDR4
Operating system Ubuntu
Version 18.04

Table 4.1: Hardware and software used for the experiments
1Available at http://kaldi-asr.org/
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Database called VoxCeleb has been used for training and evaluating the used model.
VoxCeleb is large scale audio-visual data-set of human speech, extracted from various
interviews of celebrities uploaded to YouTube. The data-set has been released in two stages
as VoxCeleb1 and VoxCeleb2. For our use, it was efficient enough to use the VoxCeleb1
data-set, which contains 153 516 utterances from 1251 speakers. The data-set contains
utterances from people of with various ethnicities, accents and ages. The whole data-set is
gender balanced, with around 55% of males and 45% females. The important thing is that
almost all utterances are from real-life environment that contain some background noise,
and also channel noise [12].

For the concrete experiments with the proposed metrics, I used Voxceleb v2 recipe
from Kaldi. This recipe is for speaker verification using the VoxCeleb1 data-set (kaldi/
egs/voxceleb/v2).2 This recipe uses Deep Neural Networks (DNN) (nnet3) source file and
pre-trained x-vector model introduced in Section 2.4. I used pre-trained model, because it
is very time consuming and hardware intensive to fully train the DNN model and it is not
the main goal of this thesis. The used model also contains a PLDA backend for scoring
embeddings.3

The whole recipe consists of 12 stages, first 8 stages focus on preparing the data,
augmenting it, extracting the x-vectors and training the DNN model. I am focusing on
all the stages that are used for evaluation.

The goal was to conduct the experiments in the worst case scenario, i. e. with the
longest possible computational time. That means clearing the cache memory between the
experiments. For time measurement, I used the Unix utility time that measures elapsed
time for each stage [1]. This command outputs the processing time statistics. It outputs
following 3 statistics by default:

∙ Real: “real” time from start of the call until the end of the call, which includes
time when other processes were carried out and time, when processes are blocked and
waiting for other operations to finish, such as I/O

∙ User: CPU time spent in user-mode code (outside the kernel) within the process

∙ Sys: CPU time spent inside the kernel within the process

Adding User time and Sys time together then represents the total time for processing
used by CPU by the measured process. For the purpose of this paper, the time used for
calculations will therefore be the addition of User time and Sys time and it will be referred
to as Processing time.

4.2 Kaldi script evaluation
All stages’ time have been measured and recorded in a simple file. The only stage not
recorded were the stages 6-8, where the model is supposed to be trained, because we used
pre-trained model. This recipe contains a lot of data preparation and data augmentation
with various noises required for training. These steps were ignored, as the aim is to observe
and measure time for steps that would occur at testing time inside production. Because
of that, we will be using VoxCeleb evaluation data-set, which contains 4, 874 utterances.
There is total of 37, 720 trials, with 18, 860 (50%) target trials and 18, 860 (50%) non-target

2Recipe available at https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2
3Model is available at https://kaldi-asr.org/models/m7
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trials. The script together with VoxCeleb data-set are computational heavy tasks, so the
script was run 3 times with the averages represented below:

Stage No. Stage Name
Total

Processing
Time (s)

Average
Time/Utterance

(s)
1 MFCC 159.04667 0.03263
1 VAD 2.95000 0.00061
9 X-vector extraction 3,507.00000 0.71953
11 PLDA Scoring 0.94000 0.00019

Total 3,669.93667 0.75296

Table 4.2: Time measurement for the original Kaldi recipe without any
modifications

In order to produce correct results for Average Time/Utterance, we always need to
realize what data we’re working with. MFCC uses the entire utterances. VAD marks
speech and non-speech frames for the entire utterance. However, x-vector extraction is
using only the speech frames, not the entire utterances.

If we want to correctly measure the processing time, we need to account for the fact
that we are testing 2 utterances against each other, so feature extraction, VAD, x-vector
extraction is done 2 times, while the PLDA scoring is done only once. Making one single
decision therefore takes on average:

Processing time = 2 × (Feature Extraction + VAD + x-vector Extraction) + PLDA (4.1)
Processing time = 2 × (0.03263 + 0.00061 + 0.71953) + 0.00019 (4.2)
Processing time = 1.505731 (s) (4.3)

From these experiments, it can be concluded that comparing 2 utterances and making
a final decision takes approximately 1.5 seconds for this Kaldi recipe. Every conducted
experiment uses this math to obtain the average processing time. Following experiments
will not show such a detailed breakdown for every time measurement, but will only present
the average processing time as a result.

Our optimization goal is to reduce the average processing time for making the final
decision. It has been proven that x-vector extraction and MFCC extraction take the
longest time (almost 99.5% of the total time needed). Therefore, we focus on reducing
the computational costs in those stages.

We can also use the original metrics to evaluate the performance of this system. Experi-
ments will present the new metrics alongside EER and minDCF. This Kaldi recipe produces
DET curve with Equal Error Rate (EER) of 2.359%. minDCF for 𝑃 (𝑡𝑎𝑟) = 0.01 is 0.2504
and minDCF for 𝑃 (𝑡𝑎𝑟) = 0.001 is 0.3848 with all costs having the default value of 1.
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Figure 4.1: DET curve for Kaldi recipe without any modifications

4.3 Utterance length shortening (A)
Very intuitive solution for reducing the computational costs is to shorten the utterance
length. However, that will, naturally, make the system more susceptible to errors, because
it extracts less information from the utterances. Therefore, it is essential to find a good
balance between overall system performance, computational costs and sufficient utterance
length.

Overall, we carried out 33 experiments for utterance shortening – 3 experiments for
each maximum utterance length. The experiments measured time in the same stages as
illustrated in Table 4.2. VoxCeleb1 evaluation data-set was used for these experiments.
The original utterances most commonly have 5 – 15 seconds, and only a few utterances
have exceeded the 30 second mark.

The experiments’ output show the maximum length for utterances in seconds. The
utterances that exceed the maximum limit have been cut to the maximum limit, other
utterances have been kept at their original length. The experiments also record, how many
files have been modified and what percentage it adds up to. Average processing time (PT)
is the average time estimate it takes for the system to make a final decision. The original
evaluation metrics (EER and DCF) are shown together with the new metrics Modified
Detection Cost Function (MDCF) introduced in Section 3.7. Results labeled as (1) use
a priori probability 𝑃 (𝑡𝑎𝑟) = 0.01 and results labeled as (2) use a priori probability of
𝑃 (𝑡𝑎𝑟) = 0.001.
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Max Length (s) Modified files # Modified files (%) Average PT (s)
Original 0 0.00 1.50573

60.0 5 0.10 1.52997
45.0 17 0.35 1.49442
30.0 56 1.15 1.48387
15.0 410 8.41 1.44486
12.5 672 13.79 1.39352
10.0 1088 22.32 1.36499
7.5 1856 38.08 1.24434
5.0 3558 73.00 0.85249
3.0 4874 100.00 0.46655
1.0 4874 100.00 0.23953

Table 4.3: Number of modified files for given utterance length and the average
processing time

As expected, the average processing time is lower for shorter utterances. The most
substantial drop in processing time happens under the 10 second mark. The ranking of
the systems by MDCF is very different compared to the ranking by DCF. There is a slight
difference in ranking the system between MDCF(1) and MDCF(2).

Max
Length

(s)
EER (%) minDCF

(1)
minDCF

(2)
MDCF

(1)
MDCF

(2)

Original 2.35900 0.25040 0.38480 1.75613 1.89053
60.0 2.35400 0.25010 0.38490 1.78007 1.91487
45.0 2.35400 0.25140 0.38480 1.74582 1.87922
30.0 2.34900 0.25140 0.38530 1.73527 1.86917
15.0 2.33800 0.25130 0.38700 1.69616 1.83186
12.5 2.34900 0.25780 0.39170 1.65132 1.78522
10.0 2.40200 0.26650 0.39750 1.63149 1.76249
7.5 2.49200 0.28450 0.37330 1.52884 1.61764
5.0 3.20300 0.35820 0.55770 1.21069 1.41019
3.0 5.70000 0.57750 0.67310 1.04405 1.13965
1.0 23.55000 0.99500 0.99500 1.23453 1.23453

Table 4.4: Metrics results for various maximum utterance lengths

We aim to find optimal length of utterances for the shortest processing time and
sufficient accuracy. MDCF fulfills this purpose, as it uses the original DCF extended by
time. Systems were ranked according to MDCF with time cost for one time unit being 1.
The smaller the MDCF the more optimal the system was in both accuracy and speed. The
most suitable utterance length is therefore 3 seconds. It is reasonably short, so it reduces
the processing time, but at the same time, the system still achieves feasible results.
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Rank Max Length (s) MDCF
1 3.0 1.04405
2 5.0 1.21069
3 1.0 1.23453
4 7.5 1.52884
5 10.0 1.63149
6 12.5 1.65132
7 15.0 1.69616
8 30.0 1.73527
9 45.0 1.74582
10 Original 1.75613
11 60.0 1.78007

Table 4.5: Ranking of the system performance for various utterance lengths
for 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡) = 0.01

Rank Max Length (s) MDCF
1 3.0 1.13965
2 1.0 1.23453
3 5.0 1.41019
4 7.5 1.61764
5 10.0 1.76249
6 12.5 1.78522
7 15.0 1.83186
8 30.0 1.86917
9 45.0 1.87922
10 Original 1.89053
11 60.0 1.91487

Table 4.6: Ranking of the system performance for various utterance lengths
for 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡) = 0.001

These experiments helped to find the most optimal utterance length for this system
that satisfies the new metrics. MDCF proves to be a good metric, because it uses results
from minDCF, which is a good indicator for comparing different systems.

Time limit for Time Constraint Protocol (TCP) was set to 1.35 seconds and variance
was set to 20%. TCP categorized the results according to the ∆ values as follows:
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Max Length (s) ∆ Result
Original 0.15573

Almost fulfilled the constraint

60.0 0.17997
45.0 0.14442
30.0 0.13387
15.0 0.09486
12.5 0.04352
10.0 0.01499
7.5 -0.10566 Fulfilled the constraint
5.0 -0.49751

Fulfilled the constraint very well3.0 -0.88345
1.0 -1.11047

Table 4.7: Results of the TCP

TCP separated the results into 3 categories according to how well it satisfied the
constraint. It is possible to choose any option from given category, but if we look at EER,
minDCF(1) and minDCF(2), then the most optimal length is 7.5 seconds. The system
satisfies the constraint posed by TCP and achieves EER of 2.492%, minDCF(1) of 0.28450
and minDCF(2) of 0.37330.

TCP can also be visualized in a graph. The colors represent how well the system
performed. Black horizontal lines are the borders between intervals. System performance
is then shown as a blue dot on a time axis.

Figure 4.2: Graph of TCP and the system performance

Another possibility is to cut the utterance length after VAD was applied. That would
ensure that the information contains as little silence as possible.
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4.4 Processing files before x-vector extraction (B)
In Section 4.3, we achieved overall lower average processing time by setting a limit for
maximum utterance length. That decreased the computational cost mainly for MFCC, as
well as x-vector extraction. We evaluated the Kaldi recipe and found out that processing
maximum 3 second utterances is the most beneficial for the system in terms of computational
costs by MDCF. However, utterances as short as 3 seconds or less can contain a lot of silence.
In case of the user agent system that directly communicates with people, it may take some
time for the person to realize that it is time to speak, so the utterance can contain a lot of
silence and too little information.

Therefore, the actual amount of speech used to create the x-vectors is different for
different utterances. This experiment would cut the utterances in such a way that the
amount of speech used to create each x-vector is the same. Processing files after VAD will
cause each segment to have equally many speech frames for x-vector calculation, as opposed
to simply restricting the length of utterances, which may results in some files having fewer
speech frames to work with.

The goal is to limit the maximum number of frames in similar manner as illustrated in
Section 4.3, but after VAD. As a result, we expect to observe decline in average processing
time for favorable evaluation by the new metrics.

Figure 4.3: Distribution of the average processing time for different stages of
the Kaldi recipe

If we look at the distribution of processing time for different stages of Kaldi, we can
see that 95.6% consists of x-vector extraction. Therefore, we aim to reduce the processing
time for that stage. This experiment will not affect computational time for any other stages
but the x-vector extraction, which is the most time-consuming stage. Further explanation
about i-vectors and x-vectors can be found in Section 2.4.

We need to cut frames after VAD, which required additional step in the process. This
step involves checking the total number of speech frames in given utterance, comparing
it with maximum number of frames allowed, calculating the final number of frames and
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actually segmenting the required number of frames. This takes roughly 2 seconds for all
utterances and will be added to the total processing time. Average processing time includes
this pre-processing average twice as well (twice because we are comparing 2 utterances), as
to simulate the production system environment.

In this recipe, 1 second of audio is represented as 100 frames. Therefore, we will be
setting the constraint on maximum number of frames for x-vector extraction. Maximum
length in seconds will be denoted as well for approximate comparison to Section 4.3.

This experiment modified less files in each run. Average processing time starts dropping
drastically under 1, 500 frames.

Max Frames (#) Modified files (#) Modified files (%) Average PT (s)
- - - 1.50573

6,000 3 0.06 1.50749
4,500 15 0.31 1.51286
3,000 53 1.09 1.49781
1,500 373 7.65 1.41059
1,250 593 12.17 1.32523
1,000 1,006 20.64 1.21187
750 1,733 35.56 1.00693
500 3,360 68.94 0.59019
300 4,862 99.75 0.22330
100 4,874 100.00 0.13168

Table 4.8: Number of modified files for given frame length and average
processing time

Results of EER, DCF and MDCF are presented in the table below. EER is approximately
the same for 750 frames and larger. DCF gives quite a good score, even for smaller number
of frames. Consequently, MDCF has very good results, with some scores going under the
value of 1.

Max
Frames

(#)
EER (%) minDCF

(1)
minDCF

(2)
MDCF

(1)
MDCF

(2)

- 2.35900 0.25040 0.38480 1.75613 1.89053
6,000 2.34889 0.24950 0.37790 1.75699 1.88539
4,500 2.34889 0.24930 0.37790 1.76216 1.89076
3,000 2.34889 0.24960 0.37790 1.74741 1.87571
1,500 2.35949 0.24520 0.37990 1.65579 1.79049
1,250 2.34889 0.25550 0.38270 1.58073 1.70793
1,000 2.40721 0.26560 2.37060 1.47747 1.58247
750 2.46023 0.27900 0.39940 1.28593 1.40633
500 3.00636 0.34170 0.53920 0.93189 1.12939
300 5.42418 0.55910 0.64140 0.78240 0.86470
100 20.64160 0.99330 0.99640 1.12498 1.12808

Table 4.9: Metrics results for various maximum frames lengths

26



Max Frames (#) ∆ Result
6,000 0.15749

Almost fulfilled the constraint
Original 0.15573

4,500 0.16286
3,000 0.14781
1,500 0.06059
1,250 -0.02477 Fulfilled the constraint1,000 -0.13813
750 -0.34307

Fulfilled the constraint very well500 -0.75981
300 -1.12670
100 -1.21832

Table 4.10: Results of the TCP

TCP was satisfied for any number of frames that were 1250 and less. Overall, TCP’s
constraint was filled more quickly compared to experiment A. TCP has separated the results
into 3 categories. The best system according to DCF, that also satisfies the TCP constraint,
uses 1, 250 frames (12.5 seconds). It reaches EER of 2.349%, minDCF(1) of 0.25550, and
minDCF(2) of 0.38270.

Figure 4.4: Graph of TCP and the system performance
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4.5 Results comparison
We conducted 2 experiments that pre-process utterance files at various stages. Firstly we
tried to reduce the length of the utterances in order to decrease overall processing time
in Section 4.3 (Experiment A). The second experiment focuses on limiting the maximum
number of frames extracted in the x-vector extraction stage in Section 4.4 (Experiment B).

By reviewing the experiments, we can see that B achieves smaller average processing
time for the same maximum time limit. Every EER (%) is also smaller in experiment B
compared to EER produced in experiment A. Results from MDCF also favor Experiment
B, with few values going lower than 1, which did not happen at all for experiment A. This
is the ranking of all the system modifications by MDCF(1). Maximum limit in seconds
has been used for both experiments, with the conversion rate of 1 second = 100 frames for
experiment B.

Rank Experiment Max Limit (s) minDCF (1)
1 B 3.0 0.78240
2 B 5.0 0.93189
3 A 3.0 1.04405
4 B 1.0 1.12498
5 A 5.0 1.21069
6 A 1.0 1.23453
7 B 7.5 1.28593
8 B 10.0 1.47747
9 A 7.5 1.52884
10 B 12.5 1.58073
11 A 10.0 1.63149
12 A 12.5 1.65132
13 B 15.0 1.65579
14 A 15.0 1.69616
15 A 30.0 1.73527
16 A 45.0 1.74582
17 B 30.0 1.74741
18 - Original 1.75613
19 B 60.0 1.75699
20 B 45.0 1.76216
21 A 60.0 1.78007

Table 4.11: Final ranking of all the experiments by MDCF (1)

Experiment B tends to rank higher compared to the same maximum limit results of A.
We can conclude that experiment B performed little better for the new metric MDCF.

28



Both experiments used the time limit of 1.35 seconds with 20% variance. Almost half
of all the results managed to fulfill the constraint and no value of ∆ was higher than the
variance in seconds, 𝜀.

Since experiment B achieved lower average processing time, it also performs very well for
TCP. Even though experiment B had a pre-processing stage for x-vector extraction added
to it, it still outperforms system in experiment A. The following table firstly separates the
results by ∆ and then ranks them by minDCF within each category.

Rank Exp. Max
Limit (s) ∆

minDCF
(1) Result

1 B 7.5 -0.34307 0.27900

Fulfilled the constraint very well

2 B 5.0 -0.75981 0.34170
3 A 5.0 -0.49751 0.35820
4 B 3.0 -1.12670 0.55910
5 A 3.0 -0.88345 0.57750
6 B 1.0 -1.21832 0.99330
7 A 1.0 -1.11047 0.99500
8 B 12.5 -0.02477 0.25550

Fulfilled the constraint9 B 10.0 -0.13813 0.26560
10 A 7.5 -0.10566 0.28450
11 B 15.0 0.06059 0.24520

Almost fulfilled the constraint

12 B 45.0 0.16286 0.24930
13 B 60.0 0.15749 0.24950
14 B 30.0 0.14781 0.24960
15 A 60.0 0.17997 0.25010
16 - Original 0.15573 0.25040
17 A 15.0 0.09486 0.25130
18 A 30.0 0.13387 0.25140
19 A 45.0 0.14442 0.25140
20 A 12.5 0.04352 0.25780
21 A 10.0 0.01499 0.26650

Table 4.12: Final ranking of all the experiments by TCP and minDCF

Only 4 results from experiment A fulfilled the constraint imposed by TCP, whilst 6
results from experiment B fulfilled the constraint. Therefore, experiment B has shown
better performance for TCP as well. Experiment B also consistently ranks higher for every
category. The best result is for experiment B with 750 frames (7.5) seconds. It fulfills the
constraint very well and still maintains relatively low minDCF.
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This graph shows cumulative results for both experiments, with the original system
marked separately.

Figure 4.5: Final results of all the experiments by TCP

Experiment B has proven that limiting the frames for x-vector extraction improves the
performance more than simply shortening the utterance length as illustrated by experiment A.
Another possibility for future research would be combining the experiments together, i.e.
shortening the maximum utterance length and them posing a limit for maximum number of
frames. Such experiment has potential to reduce the time for MFCC and x-vector extraction
and speeding up the x-vector extraction for the equal number of frames.
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Chapter 5

Conclusion

The goal of this bachelor thesis was to conduct a research on the existing speaker recognition
systems, their evaluation and possible improvements whilst taking computational costs
(time) into account. Firstly, the paper presents existing methods and models used in the
speaker recognition that are later utilized for the experiments. It presents currently used
evaluation metrics and proposes new approaches based on them, with computational cost
included.

The paper introduces 2 new metrics for evaluating the system. First metric (MDCF) is
based on NIST’s DCF and modifies it so that it takes the computation time into account.
Second metric (TCP) poses a constraint on maximum computational time and ranks the
systems according to how they satisfy the constraint.

Experiments are carried out on a collaborative open source software Kaldi. It was
beneficial to use pre-existing system and models, because we wanted to simulate the envi-
ronment of a system used in production. We focus on measuring the time correctly and
establish a new term, processing time, that represents the average time needed by the system
to make a final decision (accept or deny). Rest of the experiments focuses on developing a
system optimized for the new metrics.

Firstly, we focus on setting a limit for the maximum utterance length (Experiment A).
It decreases the computational costs, but the system has less information about the speaker
to make the decision. The ranking is done by MDCF and the lowest score represents the
best possible utterance length. Metric TCP found 4 acceptable utterance lengths that fulfill
the time limit of 1.35 seconds.

Because x-vector extraction is the most time-consuming stage, second experiment focuses
on posing a limit on the maximum number of frames used in the x-vector extraction stage
(Experiment B). X-vector extraction ensures that only voiced frames (frames that contain
information about the speaker) are processed, so we are posing a limit on the maximum
number of frames used for one utterance. This causes each segment to have equally many
speech frames for x-vector extraction. That reduces processing time very well and even
outperforms the experiment A.

The system’s modifications are ranked, with experiment B achieving better results for
smaller maximum number of frames. The experiments have proven that it is possible to
optimize the system so that it has lower processing time, but still achieves good results.
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