
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

TRACKING PEOPLE IN THE VIDEO CAPTUREDFROM A DRONE
SLEDOVÁNÍ OSOB V ZÁZNAMU Z DRONU

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. JAKUB LUKÁČ
AUTOR PRÁCE
SUPERVISOR Ing. TOMÁŠ GOLDMANN
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2019/2020

 Master's Thesis Specification

Student: Lukáč Jakub, Bc.
Programme: Information Technology Field of study: Intelligent Systems
Title: Tracking People in Video Captured from a Drone
Category: Artificial Intelligence
Assignment:

1. Get acquainted with different methods of tracking people in video. More importantly, focus on
people tracking in aerial video captured by a drone camera. Ascertain which methods can be
used to estimate the distance between a drone and persons based on telemetry data and
camera parameters.

2. Study available algorithms to detect and track people in video.
3. Design and implement a client and a server application in Python programming language.

The client application that is intended for the drone, should be capable of preprocessing
video and send it to the server side. Recognition of people in the video frame and conversion
of their positions to local coordinates will be ensured by the server application. Use TCP / IP
to communicate between the server and the client application. Perform a visualization of
trajectories based on obtained coordinates.

4. Perform experiments focused on determining the accuracy of obtained trajectories.
Recommended literature:

CIPOLLA, Roberto, Sebastiano BATTIATO a Giovanni Maria FARINELLA. Computer vision:
detection, recognition and reconstruction. Berlin: Springer, 2010, 350 s. : il., fot. ISBN
978-3-642-12847-9.
Růžička M., Mašek P. (2014) Real Time Object Tracking Based on Computer Vision. In:
Březina T., Jabloński R. (eds) Mechatronics 2013. Springer, Cham

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Goldmann Tomáš, Ing.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: April 15, 2020

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23056/2019/xlukac09 Page 1/1

Abstract
This thesis deals with the problem of determining the location of a person and its approxi-
mation. The location is derived from video which is captured using a drone. The goal here is
to propose and test existing solutions, and state-of-the-art algorithms for each encountered
subproblem. This means overcoming challenges such as object detection, re-identification of
persons in time, estimating object distance from camera and processing data from various
sensors. Then, I am using the methods to design the final solution which can operate in
nearly real-time. Implementation is based on the use of Intel NCS accelerator unit with the
cooperation of small computer Raspberry Pi. Therefore, the setup may be easily mounted
directly to a drone. The resulting application can generate tracking metadata for detected
individuals in the recording. Afterwards, the positions are visualised as paths for better
end-user presentation.

Abstrakt
Práca rieši možnosť zaznamenávať pozíciu osôb v zázname z kamery drona a určovať ich
polohu. Absolútna pozícia sledovanej osoby je odvodená vzhľadom k pozícii kamery, teda
vzhľadom k umiestneniu drona vybaveného príslušnými senzormi. Zistené dáta sú po ich
spracovaní vykreslené ako príslušné cesty. Práca si ďalej dáva za cieľ využiť dostupné rieše-
nia čiastkových problémov: detekcia osôb v obraze, identifikácie jednotlivých osôb v čase,
určenie vzdialenosti objektu od kamery, spracovanie potrebných senzorových dát. Následne
využiť preskúmané metódy a navrhnúť riešenie, ktoré bude v reálnom čase pracovať na uve-
denom probléme. Implementačná časť spočíva vo využití akcelerátoru Intel NCS v spojení
s Raspberry Pi priamo ako súčasť drona. Výsledný systém je schopný generovať výstup
o polohe osôb v zábere kamery a príslušne ho prezentovať.

Keywords
image processing, image recognition, object detection, tracking, drone, distance estimation,
Intel Movidius, Raspberry Pi, YOLO

Kľúčové slová
spracovanie obrazu, rozpoznávanie, rozpoznávanie objektov, sledovanie, odhad vzdialenosti,
dron, Intel Movidius, INCS, Raspberry Pi, YOLO

Reference
LUKÁČ, Jakub. Tracking People in the Video Captured from a Drone. Brno, 2020. Mas-
ter’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Tomáš Goldmann

Rozšírený abstrakt
Sledovanie polohy ľudí pomocou kamerového záznamu bolo a stále je zložitým problémom.

Prebiehajúci výskum však v pravidelne poskytuje nové metódy, ktoré zlepšujú presnosť
detekcie objektov a zároveň znižujú potrebný výpočtový výkon na ich fungovanie. Dnes sa
pochopenie snímaného obrazu počítačom stáva vďaka pokroku takou bežnou súčasťou, ako
fungovanie počítačov samotných.

Ľudia dokážu pomerne ľahko rozpoznať bežné objekty okolo seba najmä na základe
vizuálnych podnetov. Dva hlavné problémy, ktorým čelí detekcia objektov sú identifikácia
tých častí obrazu, kde sa objekt nachádza a druhým je jeho následná klasifikácia. Tá
z pohľadu dneška už nie je takým vážnym problémom. Aby bolo možné predmety alebo
ľudí v zázname detekovať a následne pozorovať ich pohyb je nevyhnutné vedieť, že daný
obraz obsahuje osoby. Dôležité je ale tiež poznať ich polohu a v ideálnom prípade vidieť
celú siluetu, ktorá poskytuje informácie k ďalším fázam spracovania.

K tomu aby bolo možné zistiť polohu osoby sú potrebné údaje nielen z kamery, ale aj
z ďalších senzorov. Na ich spracovanie sa využívajú metódy strojového učenia, ako napríklad
sofistikované detektory objektov, modely klasifikátorov, detekcia geometrických primitív
a ďalšie. Pod povrchom týchto algoritmov sa najčastejšie skrývajú spôsoby založené na
neurónových sieťach, respektíve ich variante s využitím operácie konvolúcie. Dnes môžeme
tvrdiť, že súčasné architektúry sietí sú takmer porovnateľne presné ako ľudský mozog, pokiaľ
ide o špecifické rutinne činnosti akou je aj detekcia a klasifikácia objektov.

Následne potrebné vstupy zahŕňajú použitie informácií o polohe kamery a jej vlastnosti-
ach, ako napríklad konkrétne natočene a uhol snímania. Všetky tieto premenné parametre
udávajú lepšiu predstavu toho, kam kamera smeruje pri vyhotovovaní záznamu. Jej ori-
entácia je pochopiteľne nevyhnutná kvôli jej obmedzenému zornému poľu kamery. Poloha
musí byť založená na použití správnych meraní údajov opisujúcich stav zariadenia, spolu
so súčinnosťou už spomínanej konkrétnej pozície objektu vo videu. Ideálny výber by mal
zahŕňať sledovanú osobu ako celok od nôh až po hlavu, čo umožní dosahovanie najlepších
výsledkov.

Väčšina metód zaoberajúcich sa meraním vzdialenosti pochádza z oblastí automobilového
priemyslu, či experimentálnej robotiky, kde sa určuje rozostup medzi zariadením a predme-
tom pomocou rôznych senzorov. Z hľadiska tejto práce sú zásadné iba vizuálne prístupy,
ktoré opomínajú technológie založené na ultrazvukových alebo laserových meraniach. Vo
všeobecnosti môžeme tvrdiť, že kamera je tu využitá ako senzor na meranie vzdialenosti,
čo prináša značné nepresnosti a náročnosť spracovania. Na druhej strane je ale kamera
ľahko dostupný a cenovo nenáročný senzor. Prípadne prezentované metódy sa testujú a
skúmajú ako vhodné riešenia asistentov vodičov, údaje získané z jednej kamery sa použí-
vajú na odhad vzdialenosti medzi dvoma účastníkmi cestnej premávky. Tieto znalosti teda
môžu byť zovšeobecnené na určenie vzdialenosti objektu od kamery.

Dostupné metódy odhadu vzdialenosti sú odvodené z princípov elementárnej optiky a
zákonitosti výslednej projekcie. Objektív kamery ukazuje zaznamenaný objekt v rovine
senzora v pomere, ktorý vytvára vzťah medzi veľkosťou objektu a jeho vzdialenosťou od
objektívu. Pri použití jedinej kamery bez dodatočných senzorov je skúmaným spôsobom
merania vzdialenosti objektu práve odhad vzdialenosti podľa známej veľkosti objektu samot-
ného a odhade založenom na pozícii objektu v obraze. Každá z týchto metód má voči tej
druhej niekoľko výhod, pričom každá z nich má špecifické obmedzenia pre samotný objekt
alebo jeho okolie. V prípade odhadu založeného na veľkosti je nutné vedieť rozmery sní-
maného objektu, zatiaľ čo pri druhej metóde je dôraz kladený na nájdenie bodu dotyku
objektu a rovnej plochy, na ktorej sa objekt pohybuje.

Druhou dôležitou časťou sledovania osôb sú teda spôsoby ich nájdenia a zaškatuľkova-
nia. Inšpirácia pre dnešné algoritmy vychádzala z pôvodnej práce, ktorá navrhla kombiná-
ciu odhadu potencionálnych miest obsahujúcich objekt s konvolučnou neurónovou sieťou na
ich klasifikáciu, známou ako R-CNN, čo je v preklade Regionálna konvolučná sieť. Všetky
ostatné hlavné architektúry detektorov vychádzali z tejto myšlienky a postupne zlepšovali
svoju presnosť a výkon. Evolúcia jednotlivých detektorov viedla k veľmi populárnej a efek-
tívnej architektúre detektorov objektov YOLO. Prístup, ktorý zaviedla táto rada riešení, je
výrazne iný ako systémy založené na klasifikátoroch. Pokúša sa spracovať obraz ako celok
a jeho predpovede sú odvodené z globálneho kontextu v samotnom obraze. Skratka YOLO
v preklade znamená pozrieť sa iba raz. Jeho cieľom je byť univerzálnou odpoveďou pre
akýkoľvek systém, ktorý vyžaduje detekciu objektu. Táto architektúra je pri svojej vysokej
rýchlosti stále dostatočne presná a umožňuje operácie v takmer reálnom čase. Týmto spô-
sobom dosahuje výsledky porovnateľné s oveľa zložitejšími modelmi.

Riešenie práce definuje dve hlavné časti respektíve dve aplikácie, kde jedna je určená pre
zostavu, ktorá môže byť umiestnená priamo na malé bezpilotné lietadlo. Takáto aplikačná
časť beží na kompaktnom kartovom počítači Raspberry Pi štvrtej generácie, doplneným
o výpočtovú jednotku Intel Movidius, v tomto konkrétnom prípade Intel INCS 2. Video a
potrebné merania telemetrie prúdia do systému, kde sú spracovávané a užitočné výsledky
sú štandardnými spôsobmi komunikácie prenesené na serverovú časť. V nej sú následne
agregované a sprístupnené pre užívateľa. Spracovanie prebieha začlenením detektora objek-
tov, pričom táto úloha patrí medzi najnáročnejšie a preto je jej výpočet delegovaný práve
čipu na INCS 2. Výsledky sa zo zariadenia presunú späť a tvoria vstup pre identifikáciu
osôb v čase, kde sa rozpoznajú ľudia z predošlých snímkov. V prípade keby bola osoba
neidentifikovateľná, nebola skôr videná alebo systém si nie je istý či ju už videl, je namiesto
toho vytvorená nová identita v podobe jej samostatného nového profilu. Informácie z oboch
metód potom poskytujú základ algoritmu odhadu vzdialenosti, kde sa súradnice v obraze
prevedú na vzdialenosť od kamery. Tieto odhady sú relevantné k fyzickej polohe a rotácii
kamery v čase zachytenia snímku.

Implementované riešenie je schopné spracovať video priamo na hardvéri pripojenom
k dronu. Tieto výsledky sú prenesené do sekundárnej časti aplikácie a prezentované uží-
vateľovi vo forme grafu, ktorý obsahuje jednotlivé trajektórie. Systém je testovaný s mod-
elmi detektorov objektov YOLO a SSD, ktoré poskytli pomerne presné výsledky iba za
ideálnych podmienok a inak sa trajektórie dosť odlišovali od skutočnosti, čo sa týka vzdi-
alenosti od kamery. Táto chyba v umiestnení je spôsobená nepresnou detekciou osôb a ich
umiestnením v obraze v kombinácii s nedostatkami a rôznymi reštrikciami, ktoré si kladú
metódy odhadu vzdialenosti.

Tracking People in the Video Captured from a
Drone

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Tomáš Goldmann. I have listed all the literary sources,
publications and other sources which were used during the preparation of this thesis.

. .
Jakub Lukáč

June 10, 2020

Contents

1 Introduction 2

2 Determining location of a person using video recording 4
2.1 Object distance from a camera . 4
2.2 Distance estimation in a single-camera system 5
2.3 Additional data from various sensors . 8
2.4 Neural networks in image processing . 8
2.5 Object Detection – object localisation and classification 14
2.6 Re-identification of person in frames . 20

3 System Proposal and Implementation 22
3.1 Similar works tackling these problems . 22
3.2 Platform – The chosen hardware . 24
3.3 Inputs – The necessary data for tracking . 26
3.4 Additional software – The frameworks and libraries 28
3.5 Solution design . 30
3.6 Application implementation details . 33

4 Experiments 37
4.1 Methods summary . 37
4.2 Dataset & data sources . 38
4.3 Experiments and testing . 38
4.4 Overall system performance . 40

5 Conclusion 42

Bibliography 43

A Usage 48
A.1 Run instructions . 48
A.2 Example of a configuration file . 49

B Used libraries summary table 50

1

Chapter 1

Introduction

Tracking people by video was and still is a difficult problem; however, ongoing research
provides new methods every year that improve the precision of object detection, as well
as decrease the computing power required. The understanding of different shapes, light
conditions, camera angles and so many other factors make the problem hard to tackle by
the machines. When humans are looking around, we see lots of objects. We can recognise
at least the common ones quite easily. Our primary visual cortex is superior to old methods
which have been implemented in computers.

The trend might be changing right now, and computers are getting better and better at
the task, which enables many new applications. Two central problems of object detection
are to identify what is an object and classify it. Identifying an object includes finding its
exact location in the image. Then, the marked area can be assigned a certain class label.
For this thesis, it is not only essential to know that an image can be classified as it includes
a human, but also to know their location and ideally see a whole silhouette. A neural
network is a way to overcome most of these issues. The current architectures of networks
are almost as good as the human brain when it comes to object detection and classification.

The primitive detector design, which can be quickly proposed, is to create bounding
boxes and scan the image parts one by one. It was indeed the initial approach of the
first available algorithm which first searched for regions inclusive of potential objects. The
detectors then used a method from machine learning to classify each region. Lastly, they
would adjust the boundary boxes in the image. As it seems, it was quite a complex system.
In the following chapters, all different improvements to this design are shown. Especially
recently, the more popular single-pass solutions are available. They have a quick, straight-
forward processing pipeline with comparable accuracy to the previous multi-pass generation
of detectors. Nevertheless, it is always a trade-off battle between speed and accuracy of the
algorithms.

In order to achieve full tracking capabilities, people in the image have to be re-identified
between frames as the need to follow a subject in the video is essential. All this image
processing work is not a simple task in computer science and requires a vast amount of
resources. Therefore, a final complexity must be an important aspect of a designed solution.
This thesis aims to perform all the analysis on video captured from a drone exclusively.
When a person is found and identified in the image, the final output of the proposed system
is their location. Therefore, finding the subject’s distance from the camera is expected. The
location approximation is derived according to the camera position, which is effectively the
location from drone sensors.

2

The drone industry is fast growing and offers interesting new utilisations, many of which
have yet to be discovered. One of the main improvement in this segment was the ease of
control over time. Small drones are packed with sensors and sophisticated electronics to
enable simple usage for any type of user. Research and new inventions in the field itself and
the field of robotics are helping to bring drones to the current market. Tracking people may
be one of these crucial features. Overall, all the popularity opens up the new opportunities
for research as vehicles get cheaper and more and more data is available at a minimal cost.
All that played a major role for me to pick this project as well. The thesis is trying to build
upon those existing systems and use them to create a reliable system and solve the task of
positioning a person. The main goal of the resulting application is a capability to generate
tracking metadata from detected individuals in the video.

There are several problems with tracking objects and estimating their locations, as out-
lined above. Hence, addressing the solutions is split into individual chapters in which each
part of the final system is analysed from a different perspective. This way, I identified sev-
eral major fields to cover. In Chapter 2, distance estimation methods, along with necessary
image processing techniques, are explained. Especially, showing available algorithms for
measuring the distance how far is the object from the camera in Section 2.1, and defining
the position of an object within the image in Section 2.5.

Knowing this information is an adequate start for proposing a solution, more in Chap-
ter 3. There could be found all important decisions as selected methods and algorithm
or used hardware description. The chapter deals with both the proposed design and its
implementation as well. Subsequently, the last two chapters cover all the experimenting
work which was done, Chapter 4, and followed by the concluding chapter.

3

Chapter 2

Determining location of a person
using video recording

In order to get the location of a person captured in video, the data from the camera
and other sensors has to be processed using all the needed fundamental methods and ideas
which are presented in this chapter. It includes using information about a camera’s location,
rotation and more as it gives a better indication about where the camera is pointing. For
example, the orientation is essential due to limited field of view of the camera, more on
that in Section 2.3. The location can be only obtained by utilising the correct telemetry
data as well as with a particular position in a video frame. This selection of pixels should
include a tracked person as a whole, from feet to head for the best results. Therefore, the
second part of the chapter deals with the problem of detecting and identifying people in
the image.

The field has been improving by leaps and bounds since it was possible to solve computer
vision problems with machine learning. Neural networks models, trained with enormous
publicly available data, helped many new applications. Convolutional Neural Network
(CNN) has become the standard for image classification as a next milestone. They first
gained popularity when they were used to compete with others using the ImageNet visual
database. The image classifier based on CNNs won the database challenge in 2012 with a
significant improvement of error rate [23]. The start of these types of networks was purely
as a classifier of well-framed images. Shortly after that success, CNN techniques were used
in object detection and image segmentation. It all led to the cutting-edge object detectors
models that are described later on in Section 2.5.

In this chapter, I would like to briefly describe methods to approximate a relative
position from camera, and neural networks, including ones with convolutional layers. Then,
the chapter covers and summarises object detectors, followed by methods which explain re-
identification (Re-ID) of person in time. Re-ID helps to maintain a person location history
when there are multiple people in the frame. All these solutions help to implement a system
which understands the image data and locates the persons.

2.1 Object distance from a camera
Most of the ideas stated in this section derive from the always emerging robotics segment of
computer science. The distance measurement is taken between a robot and an object using
various sensors. In terms of this work, only the visual ranging approaches are considered

4

and leave behind the technologies based on ultrasonic or laser measurements. Generally
speaking, a camera as a distance measurement sensor is rather inaccurate and processing
heavy one, on the other hand, is the one which comes with a low cost for the sensor itself.
Robots can be equipped with cameras to avoid obstacles, to interact with the right objects
in an appropriate way or to navigate in the environment.

The measurements based on camera sensors are likewise popular within the automotive
industry. They are used for various assisting systems to help prevent accidents. Moreover, it
gives vehicles extensive smart functionality, including pedestrian detection, lane departure
warning, and forward-collision warning. The collision avoidance has an enormous impact
on the society which encourage the new development in the field. The eventually presented
methods are tested and researched as the demand for a cost-effective solution for drivers
assistants. Data collected from a single camera is used to estimate a range between two
road users. In the next section, this knowledge is generalised for determining the object’s
distance from the camera.

Possible alternatives to a single camera sensor

Alternatives are a stereo-vision, a laser rangefinder instrument, a sonar, or other active
sensors. However, some of them might struggle with measuring multiple objects at once or
in a short period of time. A completely different design was proposed in work [25], where
the dual off-axis colour filter is attached to a single camera. This is just one example of
an innovative approach to estimate an object’s distance from a camera using the advanced
computational method of enhanced general optical system. Such works prove that the
problem of distance estimation is an important issue in many applied areas.

Besides the contemporary academic ideas and stand-alone advanced sensors, there are
also complete solutions ready to answer the question of tracking distance. This new optics
and sensors are available as a package, brought to the market by DJI company and its com-
mercial industry drone Matrice 300. The vehicle’s new payload1 option combines multiple
sensors, and it is capable of determining the distance and effectively the location as well of
the object directly recorded in real-time. The range of the instrument like that can exceed
1 km with reasonable accuracy.

2.2 Distance estimation in a single-camera system
The available among vehicle distance estimation methods derive from elemental optics
principals and the resulting projection perspective. A camera lens shows a recorded object
in the image plane that creates a relationship between these two. The simplified system
with no lens is an ideal pinhole camera, shown in Figure 2.1. Using just a single camera
and no other sensors, the researched ways to measure the object’s distance are size based
distance estimation and position based distance estimation. Both of which are explained in
further detail in [22], which provides the basis of distance estimation methods following in
this section. The two methods have each a set of advantages one over the other, disputed
that each has specific restrictions for the object itself or its surroundings.

1https://www.dji.com/hk-en/zenmuse-h20-series

5

https://www.dji.com/hk-en/zenmuse-h20-series

Figure 2.1: A diagram of a pinhole camera. [31].

P

O
Q

lens

Z

Y

f
y d

x

Figure 2.2: Size based distance estimation geometry [31].

2.2.1 Size based distance estimation

The size based approach uses the imaging properties of the camera, namely inversely pro-
portional dimensions of the real object and its image. The object thereby has to maintain
the same shape over time, and that is highly restrictive. Therefore, the typical case of use is
often with the immutable structured object or rather a special marking sign. The mark has
got another benefit as well, it is easy to detect in the image using much simpler methods,
for example, colour filtering due to a known mark’s colour. In contrast, a person as the
object is a more variable element. The detected person should be standing straight or in
general needs to keep a selected dimension relatively unchanged. This brings yet another
problem into account that people’s silhouettes come in all sorts of formats. Hence, a person
height makes it the best candidate for the somewhat stable feature. The average height
within the population forms one of the key parameters. To sum it up, the method imposes
the restrictions for the object of interest.

The estimation fundamentals are illustrated in Figure 2.2, where 𝑥 is the known object
height, 𝑌 is the image plane, the object’s height is 𝑦, 𝑓 is a focal length of a used camera
and 𝑑 is a real distance from the object to the camera. The described system assumes that
the image plane is parallel to the object height measuring plane. Accordingly, any deviation
of the image plane or variance in the object height may affect the accuracy. The values are

6

related as follows
𝑓

𝑦
=

𝑑

𝑥
where 𝑑 =

𝑓 · 𝑥
𝑦

(2.1)

both 𝑓 and 𝑥 are the parameters of the system, set upfront. The 𝑦 on the other is inferred
from the image in the same units as the rest. Image data is given ordinarily as a pixel
matrix. Thus, the object, person, needs to be first precisely located in the image and then
its height in pixels is converted to standard metric units. The distance is then calculated
as

𝑑 =
𝑓 · 𝑥 · ℎ
𝑦𝑝 · 𝑠

(2.2)

where ℎ is a height of the image in pixels, 𝑠 is a camera sensor height. Both are constant for
the particular camera recording. 𝑥𝑝 is a height of the object in pixels; therefore, a way to
detect and identify the object from the pixel input is required. In Section 2.5, the necessary
methods called object detectors are presented. The detectors are based on neural networks
which are also covered below to the necessary extent. The information about the object
position in the image is as well needed for the next distance estimation principle.

2.2.2 Position based distance estimation

Position based estimation is again heavily dependant on an actual camera state. In compar-
ison to the first method, it requires more information about the exact position and rotation
of the camera. The main restriction of this estimation procedure is that it assumes the
objects are located on a flat surface. The significant point in the image is a point of the
object’s contact with the ground. Therefore, there is no obligation to a person’s height or
posture, although the person still needs to be recognised in the image.

The distance 𝑑 is defined as
𝑑 = 𝑎 · tan 𝜃 (2.3)

where 𝑎 is camera altitude and 𝜃 is the angle of the observed object’s contact with the
flat ground and camera’s altitude plane, as demonstrated by Figure 2.3. The angle can be
deduced from 𝜃 = 𝜃𝑐 − 𝜃𝑜𝑏𝑗 , 𝜃𝑐 is the angle of camera direction, and 𝜃𝑜𝑏𝑗 is the angle of
camera direction and the object’s contact point. The camera position and rotation can be
obtained from additional sensors and systems onboard. However, 𝜃𝑜𝑏𝑗 needs to be computed
from the data. Problem schema shows that

𝜃𝑜𝑏𝑗 = tan−1

(︃
ℎ
2 − 𝑦

𝑓

)︃
(2.4)

where 𝑓 is the focal length of the camera, ℎ is the sensor height, and 𝑦 is the distance
from the bottom of the sensor to the object’s ground contact point 𝑃 . The equation (2.4)
assumes that the camera’s lateral axis, or pitch axis, is parallel with the ground flat plane.
In order to avoid using the focal length, it can be expressed as

𝑓 =
ℎ

2 tan 𝜃𝑟
, (2.5)

𝜃𝑟 is the half-angle of the camera’s field of view angle, thus 𝜃𝑓𝑜𝑣 = 2𝜃𝑟. Then, it is possible
to deduce that distance

𝑑 = 𝑎 · tan
(︂
𝜃𝑐 − tan−1 (ℎ− 2𝑦) · tan 𝜃𝑟

ℎ

)︂
. (2.6)

7

object

𝜃𝑟
𝜃𝑜𝑏𝑗

d

y

𝜃

𝜃𝑐

P

a

f

h

C

Figure 2.3: Position based distance estimation geometry, created with GeoGebra and based
on the figure in [22].

2.3 Additional data from various sensors
The main focus here is on video captured from a drone; therefore, the intended camera
placement is one attached to the aerial vehicle. Then, the camera is usually mounted
using a gimbal which allows better camera stabilisation. Additionally, it can also provide
extra controllability in some axes. The principle and terminology are based on typical
aircraft rotations [2]. A drone gimbal often allows a camera adjusting in pitch axis, or more
advance gimbal supports rotations in yaw axis as well. All of it with the general location
data mentioned above makes an apparent view on how and where the camera is positioned.

Next important information is the parameters of the camera, not only the image spec-
ification, but also details about its lens, focal length, sensor size, and field of view. The
camera is the primary source of data, but its position in surroundings is also essential for ex-
tracting the objects’ distances. Supporting sensors are the drone instruments for measuring
the precise location in all three dimensions.

2.4 Neural networks in image processing
A neural network is a type of machine learning model. Its primary purpose nowadays is to
understand speech and image and support us, humans, at various labour (medicine, science,
repeating jobs). The real advantage of the networks shows up when the task to be solved is
easy for people to perform but hard for people to describe formally to computers. Neural
networks consist of interconnected artificial neurons; effectively, these neurons are nodes in
an oriented graph and often organised in layers. In the context of computer vision, artificial
neural networks are usually deep neural networks. These are neural networks with multiple
hidden or inner layers. Computing system with the structure like that vaguely mimics the
biological neural network, thus the name neural network. This section draws mainly from
book Deep Learning [16], other more specific sources are referenced when used in the text.

8

The difficulties faced by the inability to describe task formally suggest that neural net-
works need the ability to acquire the necessary knowledge by extracting patterns from raw
data. Each neuron acts as an independent computing unit that takes a set of input values,
performs computation and produces a single output value. The computation uses internal
neuron’s parameters, weights and biases. The weight represents the relative importance of
input value or connection value. The bias can shift the resulting value of the output. Then,
neuron, also called perceptron, operates as follows: weights are applied to input values by
finding the dot product,

w · x+ 𝑏 =

𝑚∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (2.7)

where w is the vector of weights, x is the vector of input values, and 𝑏 is a bias [42]. The
output, as shown in equation (2.7) can vary a lot; therefore, its value is given to activation
function. This function adjusts neuron’s behaviour according to the final application. A
simple use-case for the desired output can be states ON (1) or OFF (0), depending on
input connections. Various examples of activation functions can be found in the following
Section 2.4.2 alongside with their typical usages.

Neurons can be connected in almost any possible configuration, although there are
several well-researched architectures of the neural connections [51]. The most important
ones, from this work perspective, are feed-forward networks. Where the information flows
from the front to the back, there are no cycles nor loops in the network. In general, two
adjacent layers are usually fully connected. Feed-forward network architecture consists of:

1. Input layer – holds the initial input data, it can be numeric data, pixel values of an
image (frequently converted to greyscale), text or any digital signal data (speech).
The layer typically holds data from the environment, no computation takes place
here, the information is passed to the hidden layer.

2. Hidden layers – are all the interconnecting layers between the input layer and the
output layer. The layers hold information about recognised patterns, each hidden
layer can perform different computation (specialised layers).

3. Output layer – provides results based on outputs of all previous layers, it can be a
discreet value (affiliation to a particular class), or a continuous value (probability).

This architecture facilitates straightforward training, tuning the weights and biases, of
the network. Feed-forward neural networks are usually trained with back-propagation, a
popular supervised learning method.

2.4.1 Convolutional Neural Networks

Equally important convolutional neural network (CNN) [24] is the improvement of machine
learning methods which were mentioned above. This particular method is primarily used
for image processing but can also process other types of input, such as audio or time series.
In general, CNNs handle well any data which has a known grid-like topology.

As the name of the network suggests, it employs a mathematical operation called convo-
lution. The input data is fed through convolutional layers instead of normal ones, meaning
not all neurons are connected to all neurons. Each neuron only connects with adjacent
neighbouring cells from the previous layer, usually not more than a few. These convolu-
tional layers also tend to decrease in size as they are deeper in the network. Furthermore,

9

the pre-processing required for CNNs is a lot lower when compared to other architectures.
As in feed-forward networks, data is filtered by manually engineered algorithms. Convo-
lution layers have the ability to learn these filters with enough training examples. For
instance, the layers reduce the image into a structure which is easier to process, without
losing features which are critical for getting an accurate prediction. Besides the convolu-
tional layers, CNN also incorporates downsampling layers, called pooling layers. This type
reduces the level of details for afterwards more unequivocal prediction making. Both layers
are linked using ReLU as an activation function.

An example of underlying CNN architecture is shown in Figure 2.4. All the newly
introduced layers are part of the diagram as they would be in real network design, the
order of operations as shown is rather typical for CNNs.

Figure 2.4: Diagram shows the fundamental architecture of the convolutional neural net-
work [49]. It consists of convolutional layers, subsampling layers also called pooling layers,
and fully connected feed-forward network layer at the most right which predicts the final
category for input.

Convolution

In machine learning applications, convolution as a front operation extracts and preserves
essential features from the input during the learning stage. The operation takes as the
input a multidimensional array of data, and the kernel which is a multidimensional array
of parameters.

Finally, an image is a two-dimensional array therefore for an input image 𝐼 and a two-
dimensional kernel 𝐾 of size 𝑚× 𝑛 convolution [16] is

𝑆(𝑖, 𝑗) = (𝐼 *𝐾)(𝑖, 𝑗) = (𝐾 * 𝐼)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑖−𝑚, 𝑗 − 𝑛)𝐾(𝑚,𝑛) . (2.8)

The formula is straightforward to implement and well-known in image processing. However,
when it comes to practical usage, machine network libraries often implement a related
function called the cross-correlation. It is the same as convolution but without flipping
the kernel and frequently still refers to that as convolution. A practical example of the
operation for a two-dimensional 3×3 kernel applied to a two-dimensional array of size 5×5
is illustrated in Figure 2.5.

Each convolutional layer holds the self-obtained characteristics. When the network
tries to predict an output, this layer type indicates if the feature is included in an input

10

0 1 2

2 2 0

0 1 2

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

Figure 2.5: An example of a convolution operation from [9], a kernel at the top in grey, an
input array in blue, and a result in green.

or not. Lastly, the fully connected feed-forward layers predict the output of network based
on presence or absence of the features. The features are a more abstract concept of all the
individual pixels of an image. Front layers tend to carry information about fundamental
aspects such as edges and their orientation. Going deeper into the network, layers holds
more and more abstract characteristics. They detect the object as a whole and understand
its image representation better. This brings efficiency to the terminal layers but also enables
more precise predictions regardless of infinite variations of objects sizes and angles it was
captured from.

Pooling

Downsampling layers called pooling layers generally succeed the convolutional ones. Pooling
is a method to filter out the level of detail, by reducing the input size of the layer which
comes next. The goal is to scale down the dimensionality of each input matrix but retain
important information. Each pooling defines a neighbouring window of a given size which
is downsampled to a single value. There are a few commonly used types of function. Max
pooling takes the largest element from the set feature subregion. Besides that, average
pooling could take the average of all elements. Analogically, outputting sum of all elements
in the subregion is called sum pooling. Two of the types used in CNNs are shown in Figure
2.6.

11

A process of adjusting the pooling layers can reduce the computational power needed,
as dimensionality decreases for following layers. The drawback, of course, is losing the
possibly significant details which might improve precision. Hence, max pooling also helps
to suppress noise from its input and can deliver better results than, for instance, average
pooling [44]. Another expected benefit of pooling is persisting the necessary dominant
features in rotational and positional invariant manner.

⎡⎢⎢⎣
12 21 86 1
8 51 19 38
35 28 76 95
54 15 42 63

⎤⎥⎥⎦ pooling with 2x2 window and stride 2−−−−−−−−−−−−−−−−−−−−−−−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if max pooling 𝑥 =

[︃
51 86

54 95

]︃

if avarage pooling 𝑥 =

[︃
23 36

33 69

]︃

Figure 2.6: Practical example of different pooling operations.

2.4.2 Activation functions

Activation functions [18] add non-linear transformation, which enables neural networks to
perform better and learn more complex patterns. They sit in between the raw output of
the current neuron and its output going to the next layer. Another aspect of them is that
the function has to be incomplex to compute as it must be calculated over and over for
sometimes millions of neurons. The important non-linear functions, which are normally
used in image classifiers and CNNs, are listed here:

• tanh – Hyperbolic tangent is usually used as activation for hidden neurons, its values
are zero-centred and set between −1 to 1. This helps to make the learning of neurons
much easier. It is very similar to a popular sigmoid function, also known as a logistic
function. However, both of them are computationally expensive:

𝑓(𝑥) = tanh(𝑥) . (2.9)

• ReLU – Rectified Linear Unit is the most widely used activation function nowadays.
Similarly to tanh, it is part of hidden layers, especially implemented right after con-
volutional ones. On the contrary, the main advantage of the function is its simplicity,
using just basic mathematical operations. The efficiency allows the network to con-
verge faster; therefore, ReLU is a go-to function for an arbitrary problem. Although,
it has some disadvantages, for example, the dying ReLU problem [28] which for some
cases can be suppressed by Leaky ReLU version of the function (gives proportionally
small negative output for negative input). ReLU gives an output of 𝑥 if 𝑥 is positive
and 0 otherwise:

𝑓(𝑥) =

{︃
0 for 𝑥 ≤ 0

𝑥 for 𝑥 > 0 .
(2.10)

• Softmax – This function often outputs overall predictions of a neural network. Where
the output is normalised by the sum of all the outputs, which gives a value between 0
and 1. For instance, the result of softmax can be directly interpreted as the probability
of a particular class in the context of classifiers. Hence, the function can handle
yielding probabilities for multiple categories.

12

Besides the listed activation functions, other ones can be used as well, which depend on
the data and intended application. When building a model and training a neural network,
the choice of the right function is crucial. Often, experimenting with different activation
functions might lead to much better performance. Researchers still bring new proposals
for the task, promising replacement of ReLU could be seen in Swish [33] function. The
final choice for activation function is generally influenced by a problem domain and the
designer’s experience.

2.4.3 Well-used Convolutional Neural Networks architectures

The arrangement of convolutional layers and their properties are evolving across time, which
resulted in many popular network architectures. The networks compound of many diverse
layers sizes and incorporate complicated operations in pursuit of achieving the best results.
They are slowly becoming just tools to get the job done, and systems often treat them
as black-boxes. The fundamental performance of each model replaces the importance of
knowing and understanding its internal structure. For instance, utilised models include
AlexNet, VGG, Inception or ResNet. They are usually incorporated into the frameworks
in order to get their most optimised versions to end-users.

The mentioned designs, as well as other ones, form a fundamental core of object detectors
covered in following Section 2.5. The overall history of all different architectures is evolving,
and new innovative layer arrangements are frequently researched. They might be intended
as both general purpose ones or narrowly focused for a particular task where they can excel
and beat human craftsmanship. Table 2.1 illustrates that the commonly used CNNs can
differ from each other by accuracy but also by the size of each model. The fact, how large
the model is, determines its eventual computational complexity and plays a crucial role in
the final production application. It is always the speed vs accuracy trade-off; the used table
is just an example from one of the deep learning frameworks. The applications may run
the inference for each one of them using straightforward calls that can give programs an
added value for the user.

The models are also peeled off their training envelopes, which speed up the weights
setting up phase. The extra processing allows the back-propagation of the errors while
processing the training samples. Without all this, they are efficient and prepared to infer
the knowledge they gathered from a training dataset. Next, the number of parameters, the
depth, or inference processing time are yet another defining factors for the CNNs practical
application.

13

Model Size Top-1 acc Top-5 acc Parameters Depth
Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -
ResNet50V2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 -
NASNetLarge 343 MB 0.825 0.960 88,949,818 -

Table 2.1: Comparison of different CNNs architectures in terms of their size and accu-
racy [8]. The accuracy (acc) was measured using the ImageNet dataset.

2.5 Object Detection – object localisation and classification
The state-of-the-art detectors are described in the next few sections. Inspiration for to-
day’s algorithms originated from the initial paper which proposed a combination of region
proposals with a convolutional neural network, also known as R-CNN [15] or Region-based
Convolutional Network. All other main detectors architectures built upon this idea and
incrementally improved each previous architecture’s precision and performance.

The goal of an object detector is to find a boundary box that contains an object and
then classifying the located object, an example of results can be seen in Figure 2.7. To
summarise, this was an initial approach of the first available algorithms which integrated
convolutional neural networks in detection. R-CNN was demanding a lot of computational
power to do so as a result of many redundant operations. The follow-up architectures fixed
one problem after another to gain better performance. Popular methods to locate multiple
objects in a single image are summarised in this section below.

14

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer

256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer

256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 2.7: An example of output images from an object detector with various detected
objects [40]. Showing bounding boxes for each detected object with its type and confidence
score (from not confident – 0.000 to very confident – 1.000)

2.5.1 R-CNN, Fast R-CNN, Faster R-CNN

Object detection is effectively finding regions with different objects in the image and clas-
sifying them as individual segments, in the same way, R-CNN [15] performs literally that.
The previous generation of detectors was a sophisticated collection of specific methods to
cover all the different aspects of an image. R-CNN authors proposed a much more straight-
forward and scalable approach. They combined region suggestions and the breakthrough
algorithms [23] from convolutional neural networks field.

R-CNN detector is organised into three main modules, as shown in Figure 2.8. The first
extracts region proposals by using selective search method without an obligation to know
what exactly is in the actual region. The second part wraps the proposals pixels to fulfil
constraints of CNN which then obtains defining features. The final stage is composed of
a support vector machine (SVM) that classifies whether it is an object and to which class
it belongs. Additionally, resulting bounding boxes can be tightened by linear regression,
so the coordinates suit better the actual dimensions of the objects. The critical drawback
of this solution is that the last two parts are executed for each proposed region. However,
there are no doubts about the genuine accuracy of R-CNN, with an improvement by more
than 50% relative to the previous algorithms.

Figure 2.8: R-CNN object detection method proposed in [15], showing the outcomes of the
input image processing during the detection stages.

The number of generated regions for the method is around 2000 category-independent
proposals [15] for an average input image. Every one of them requires a forward pass of the

15

CNN, and that could be a computationally complex task. Moreover, models included in
R-CNN are trained separately, which makes the learning phase hard too. An improvement
was then inevitable, a new design of Fast R-CNN [14] tackled both these issues.

Fast R-CNN still generates a set of object proposals then passes the image through
CNN only once. This development was achieved with a new algorithm known as Region of
Interest (RoI) pooling that allowed a shared computation over the proposals. It effectively
shares the forward pass of the convolutional network, and the output features for each
region are obtained by selecting a corresponding region of the convolutional feature map,
as shown in Figure 2.9. Specifically, for each object proposal, the RoI pooling layer extracts
a fixed-length feature vector. Furthermore, the number of models is also reduced with the
intention of simplifying the training process and fine-tuning each. The original SVM is
replaced by a softmax classifier where their both performed equivalently. That all led to
more unified training, rather than having the three training stages of the first R-CNN.

Figure 2.9: Fast R-CNN object detection method, showing the improved architecture with
the shared convolutional neural network (Conv feature map) and a much straightforward
training process, proposed in [14].

Both proposals are still suggesting to use selective search that is a complicated and slow
algorithm. More importantly, this part of the detector was identified as the next bottleneck.
Therefore, it led to the succeeding architecture called Faster R-CNN [40]. Selective search is
replaced by already in place convolutional network, reusing it to search for region proposals
as well. A one CNN which helps to find an object and classifying it, also enabled training
only a single model. The improvement is pushing R-CNN detectors family towards the
faster single-pass detectors. It is accomplished by a fully convolutional network which is
added after the features extraction step, creating the independent region proposal network
or RPN. The idea behind the RPN is that it moves a sliding window over the feature map
and proposing the bounding boxes and scores for them. These bounding box proposals are
afterwards examined even further to determine how likely they really include an object.
The picked sliding windows should accommodate the objects of certain common aspect
ratios and sizes, then these are also called anchor boxes.

2.5.2 Mask R-CNN

The previously covered methods are detecting an object, and the result is a rectangular
bounding box, more specific its coordinates. Mask R-CNN [19] added to the mix complete
binary map as a more granular result. The detector predicts, for each pixel in the input
image, if it is part of the object or not.

16

The new architecture directly adopts both stages from previous improved R-CNN net-
works, namely the RPN network and following class predictor. However, Mask R-CNN
outputs a binary mask for each proposed region. This is achieved by another convolutional
network added in parallel with the second stage of the original design. The extra branch
predicts segmentation masks in order to separate the objects from their background.

The authors soon realised that the regions of the feature map selected by RoI pooling
in prior Fast R-CNN were slightly misaligned. The level of pooling precision needed for
bounding boxes was much lower than one needed for the pixel segmentation. RoI pooling
is using quantisation when downsampling a feature map that causing the misalignment
between regions in the input image and the extracted features. The classification is yet
robust enough to compensate for these small translations. Nevertheless, this negative effect
on the segmentation had to be handled by a new method called RoIAlign. In RoIAlign, a
sampled point is computed by bilinear interpolation from its neighbourhood, to get a more
precise binary map prediction and avoid the problematic rounding of RoI pooling.

2.5.3 Single Shot MultiBox detector

Single Shot MultiBox Detector [26] or SSD is one of the next-generation architectures of
object detectors. In contrast to R-CNN based detectors, SSD focuses on a single forward
pass detection from the beginning hence its name. Outstanding performance with low
computational power required is a key to real-time object detection.

SSD skips the process of generating object proposals and instead sets default boxes with
various aspect ratios and scale. The architecture is composed of several convolutional layers
or filters. Then, the outstanding high accuracy is obtained by delivering predictions at dif-
ferent scales of feature maps as well as at diverse aspect ratios. This led to improvements in
low-resolution input images correspondingly. The one convolutional neural network concept
also makes it easier to train and creates better ground for optimisations. SSD design still
competes rather well against previous cutting edge object detectors, but it is much faster.

2.5.4 YOLO, YOLO9000, YOLOv3

An approach, which was introduced by this line of detectors, is significantly unlike classifier-
based systems. It tries to process the entire image as a whole, and this way, predictions
can derive information from the global context in the image itself. YOLO, which stands
for you only look once, is therefore another example of a single-pass detector. It has got
much popularity and aims to be a versatile solution for any system that demands object
detection. There are three main sequential versions of the detector where each is improving
particular deficiencies of its predecessor. Moreover, the 4th iteration of the detector [4] was
published just recently, this time by a different group of authors. The architecture is fast
and yet precise, enabling real-time operation capabilities, and accuracy reaches the results
of far more complex models.

The architecture details, shortly explained in this very paragraph, are gathered mostly
from the original paper You Only Look Once: Unified, Real-Time Object Detection [36].
The goal was simple, to create one neural network and feed it with an image, then get the
detection done in a single-pass thus the network output is a collection of labelled bounding
boxes. This brings to a mix mainly a problem of how to train the model such as that.
Authors of YOLO came up with new methods to tackle the dilemma. First, they had to
define a structure of the single-pass output. It consists of many predictions and accordingly,
their confidence score. Neural networks can output these many values without any prob-

17

lems, for instance, ImageNet works with predictions for hundreds of different classes. To
summarise, YOLO transforms the problem of detection to a problem where an input image
outputs the corresponding tensor. This tensor encodes all the possible object predictions as
the separate sets of values which represents location, class and confidence properties. An
individual image is cut into 𝑆 by 𝑆 grid then each of these grid cells is responsible for 𝐵
bounding boxes, the boxes centres fall in that cell. The box details involve five attributes
altogether: confidence value, x coordinate, y coordinate, width and height. In addition, ev-
ery cell determines 𝐶 class probabilities which means it predicts only one object regardless
of the number of boxes 𝐵. The final output tensor 𝑌 of the YOLO architecture is then
defined as

𝑌 : 𝑆 × 𝑆 × (𝐵 * 5 + 𝐶) . (2.11)
For example, a cell in YOLO implementation, trained on Pascal VOC dataset [10], has
two bounding boxes, for each the 5 values, and it holds 20 different class probabilities. The
used grid size is 7, final tensor is 7 × 7 × 30, which prompts neural network to generate
about 1500 output parameters.

A YOLO network has 24 convolutional layers, or 9 for its fast version, followed by 2
fully connected layers. The training process of the proposed network is more important
than the further details about the structure which are covered well by the original paper.
From the definition of the output tensor, only one bounding box is responsible for object
detection. The right box is selected based on the maximal similarity with the ground truth
from a training set. Boxes specialise at predicting specific sizes and aspect ratios this way.
The architecture optimises for a simple sum-squared error between the output and the
ground truth. Subsequently, the loss calculation adds together classification, localisation
and confidence loss. It weights all the errors equally, which might lead to instability during
training. Therefore, the authors use two extra parameters 𝜆coord and 𝜆noobj, the first
to increase a box position loss and the second to decrease confidence loss of a box that
only contains background. The labelled images are converted to tensor representation
accordingly. The right class is assigned to a cell which includes the centre of an object.
A cell’s box with an object and the highest IoU, see Section 2.5.5, gets its confidence
increased, all other boxes get it decreased. The coordinates of the box, which its confidence
is being increased, are also adjusted to match the ground truth. This high-level description
of loss function demonstrates the ideas behind the method, the equations describing the
whole error arithmetic can be found in [36]. The network training process additionally uses
pre-training on ImageNet, stochastic gradient descent with decreasing learning rate and
necessary data transformations. The tensor represents a raw output, hence the prediction
sets are effectively filtered by a minimal confidence threshold and reduced by removing the
duplicates. If the cell contains a bounding box with high enough confidence score, then the
box class is decided based on the cell class probabilities. Finally, the box is the concluding
object detection result.

However, there are a few disadvantages to YOLO architecture. It struggles with detect-
ing small objects since the grid cell can only predict a finite number of bounding boxes and
just one class, which results in ignoring some of these objects. Another essential flaw, which
was discovered in comparison to other systems, was misalignments in the localisation. The
loss function does not compensate for errors in small bounding boxes versus large bounding
boxes. A little mismatch in a large box is generally negligible, although the same shift in a
small box has a much greater effect on IoU. Lastly, the model uses quite rough granularity
of features as it downsamples the input multiple times. As an illustration, SSD architecture
has higher accuracy while still maintaining the real-time processing capabilities. Despite

18

these facts, YOLO’s authors also tested the final model on artwork images, the network
outperforms other object detectors. It is often interpreted as the model generalising better
in other domains or for unseen images. Certainly, the new approach is strongly present,
but the used methods depend on previous conclusions and past work in fields of image
processing, especially in the object detection domain. In general, YOLO has performed
well in real-time applications, has got a high frames-per-second rate, but Faster R-CNN
was still better with respect to accuracy.

Another paper from the same authors shortly followed all the work above. The sec-
ond version of the YOLO object detector was revealed in YOLO9000: Better, Faster,
Stronger [37]. The new version tries to attain an objective of compensating for imperfec-
tions in the architecture, mainly improving localisation and sensitivity in order to get all the
detections. The first improvement was adding a pre-training phase to the used ImageNet
model with a bigger image resolution. The effect was an increase in features extraction and
better overall accuracy when compared to the original design, pre-trained with just the half
image resolution. The model tuning with the larger input size is rather time-consuming,
therefore, it is done at the beginning of the training for only 10 epochs. Next, the au-
thors decided to experiment with the anchor boxes, similarly to the Faster R-CNN ones.
Quite a novel approach was extracting the common boxes sizes and aspect ratios from the
training data by K-Means Clustering method. However, the anchor boxes resulted in a
slight decrease in detection quality. The full list of all incremental enhancement is nicely
summarised in the paper, these are just the main ones.

The original YOLO uses the fixed input resolution, with robustness in mind the support
of various input sizes was incorporated to the model for both training and inference. The
only constraint is that the image size should be dividable by 32, as the network is down-
sizing images by this factor. This is possible on the grounds that the network uses fully
convolutional layers and parameters can be reused when used like that. The variable input
size enables the model to be used with smaller or bigger images to improve the processing
speed or the accuracy, respectively. The hypothesis behind this is that the change acts as
data argumentation, and the network is able to recognise various object sizes, as the object
size inevitably change accordingly with the image resolution. This way, the original dataset
can be extended, moreover, it might prevent the over-fitting to some extend during a large
number of training epochs while looking at the images repeatedly.

Next change is a custom network design as a backbone, introducing Darknet19. The
model has 19 convolutional layers, hence the name, and several max pooling layers. It
comes as an object detection network that can be a foundation for the next innovations.
By detaching the classification error back-propagation and the object detection error, Dark-
net19 has the ability to train itself on both the detection datasets (COCO) and also on the
classification datasets (ImageNet). When the image metadata includes a known class label,
then the classification error is back-propagated as in a regular classifier. However, when the
image data is richer and includes a class label along with its location, then both errors are
back-propagated. The practical implication could be a creation of object detector which
can detect, for example, dogs but the enhanced classification labels their bounding boxes
even furthermore with the respective breed.

Moreover, the authors showed the network could detect objects for which it has never
seen the bounding boxes during the training phase while encountered just their classes alone.
This was mainly possible with the defined structure of words and hierarchical classification.
The words are sorted in a tree structure which goes from abstract root of physical object
label to more and more specific labels down to specific leave labels, such as particular

19

dog breed. The structure also solved the problem of training with a dataset composed of
less specific labels. In this case, the network can still give a high confidence inference for
dog object while giving a less confident answer for its exact breed. With the hierarchical
classification, the architecture is capable of detecting more than 9000 classes that explain
the name YOLO9000.

The latest version of YOLOv3 [38] object detector was another incremental update
and followed well the original message of the architecture: being extraordinarily fast and
accurate. It came with just small improvements and changes in the design which reflect the
recent breakthroughs in detection at the time.

New network design is now fully responsible for feature extraction, as Darknet19 is
replaced by 53 layer Darknet53. The structure needs less floating point operations than
state-of-the-art residual networks; however, achieves an akin accuracy much faster, authors
claims about two times speeding up. The accuracy comes with a price though as version
3 is slightly slower than its predecessor. In general, the improvements helped YOLO to
achieve similar accuracy as Faster R-CNN and therefore finally overcame SSD detector as
well. Nonetheless, it is still a reasonable option when speed matters.

2.5.5 mAP (mean Average Precision)

Mean average precision (mAP) serves as a metric to compare the accuracy of popular
object detectors listed above. Intersection over Union (IoU) measures the overlap between
2 boundary boxes. IoU with a set threshold determines whether the prediction is a true
positive or a false positive. The mAP is an average precision among all different classes
which system can recognise. Then, average precision is gathered using IoU over some
threshold. If IoU value is above the threshold then the prediction is considered as correct.

2.6 Re-identification of person in frames
The re-identification or re-id problem is often related to multiple cameras surveillance sys-
tems where the system needs to able to monitor a person’s movement. This work intends
to use only a single camera setup which makes the problem much more manageable. The
implementation can depend on relative localisation constraints within the frames, meaning
the person cannot suddenly relocate from one side of one frame to another side of the next
frame while the premise is that the frames are taken in a short period of time. Besides, the
system has to operate with such a restriction wisely and consider a person leaving a field
of view and then reappearing somewhere else as a valid case. This section gives a solution
for the system problem of connecting the location estimates for a specific person in time
with the intention of assembling the trajectory of their movement. However, re-id can be
difficult, but for the particular proposed system, a false negative recognition is not a major
flaw. The system would create a new identity for a person when the match is not confident
enough, which results in the trajectory interruption.

A Person re-identification task is the problem of identifying identical people across
images in time or across images from multiple cameras. The re-id method extracts and
compares the features of a person from an image with the already saved features of other
persons in past images, and determines whether there is a match. It is a well-known
problem in surveillance systems, and all the knowledge of the field can be clearly applied
for the solution. Moreover, video recordings are usually taken from a distance that makes
the video very similar to the one from drone’s camera. In the context of this work, the

20

identification is a crucial part of the tracking mechanism which allow the system to match
multiple individuals within camera frames in time.

For instance, face recognition is not a valid approach as the people are captured from a
significant distance. Instead, it is necessary to use information about their whole body look.
Therefore, the methods, which allows the use of features such as body figure proportion,
clothing, or walking pattern, are better suited for this. The resulting algorithm needs to
take into account that people’s images have very low resolution, the lighting conditions are
unstable, and the background around them may change drastically in time. The pose of
people may vary too, and they can be partially or entirely occluded. All of this makes precise
identification hard and challenging. The methods which can tackle the stated problem and
help to build the final system are Rethinking Person Re-Identification with Confidence [1],
AlignedReID [29], [53], SORT algorithm [3], [52], or primary image features comparison
methods for example based on histograms.

21

Chapter 3

System Proposal and
Implementation

Training people in video solution can be simply described as estimating the distance to
each individual in a currently processed image. The estimate is further used to locate the
individual relatively to a camera positioning system. This chapter consists of both hardware
and software implementation parts of the proposed solution. The first few sections aim to
describe the targeted use case and its hardware, including the important limitations of the
hardware. The choices for the hardware are also defined by used software toolkit, especially
OpenVINO1 software to take advantage of Intel Neural Compute Stick 2, the USB stick
featuring a manycore vision processing unit. Its brief description and relevant usage are
illustrated below, together with other design choices. The essential part of Solution Design,
Section 3.5, goes through the system architecture proposal. Then, the final realisation
section, Section 3.6, analyses the parts of the final implementation.

The almost like real-time processing is the goal here, however using restrictive hardware,
advanced object detection, and identification methods may adversely affect this target. The
more realistic solution of getting the locations of people in a frame would achieve results in
subsecond time or achieving frames per second (FPS) rate in the orders of ones per second.
This is covered more comprehensively in Chapter 4, which immediately follows.

3.1 Similar works tackling these problems
All the comparable systems are briefly presented in this very section. The critical aspect
of the discussed solutions here is the use of a single camera sensor as the main source for
examining the surroundings. As proposed earlier, the monocular camera setup is quite
popular in the automotive industry. The camera as a sensor is a cheap multi-purpose
detection device.

Some of the key studies, which are by some means related to the overall problem of
object tracking, are [32], [43], [46] and especially [22] which provides the basis for distance
estimation methods, Section 2.2. They all use video from a camera to detect enclosing
vehicles and estimating their distance in order to assist a driver. The detection methods
vary and are aimed, of course for vehicle detection. They often use unique features of the
environment such as the road which might be a notable restriction in terms of using these
proposed solutions. For example, finding the position of vanish line or the vanishing point

1Open Visual Inference and Neural network Optimisation

22

in an image could be an essential clue which is based on road lines. By knowing its accurate
position, it gives this approach much-needed precision over the traditional pinhole camera
principle. Another widespread technique across previous works was an object behaviour
prediction. An object’s trajectory is modelled to obtain the most likely future position,
based on its previous positions and motion. It slightly shifts the object tracking from a
single frame processing to a more motion like analysis, where speed and movement direc-
tion are the crucial factors depending on multiple frames sequence. Nonetheless, the later
proposed system intends to process only the current image to maintain its own complex-
ity. In addition, papers include lots of well covered past work surveys that make them a
valuable information source. Besides vehicles centred works, there are several more general
ones dealing with distance estimation [7], [45]. Both articles relate to depth or distance
estimation, respectively. In the case of the second one, the distance is useful information to
orient in 3D space, in particular, to navigate. A camera on a drone provides supplementary
knowledge about the environment for the purpose of much stable flight and landing.

Another analogous system could be provided with a drone itself, manufactures often
include better or worse tracking systems to capture improved aerial footage. The DJI
is a world-leading manufacturer of these small aerial vehicles, further in this chapter the
data from DJI drone is handled as well. The early solutions used a GPS beacon worn
by a tracked subject, often it was the drone controller itself. GPS information supplies
unprecedented accuracy but lacks any intelligence needed for obstacle avoidance. Nowadays,
the tracking uses both the visual sensors and GPS information to keep itself focused. It
usually works well with a range of popular objects like persons, bikers, cars, or others. This
conception mimics, to some extent, the desired intended application or at least its initial
steps. However, the so far briefly described combination of the two purposes for intuitive
flying action, described solution from DJI is called ActiveTrack system [12].

The next available sources are examples of partial problems solutions which could be
the most influential for the proposed system below. Mainly, the independent projects show
ways to track either people or other objects in the image, not necessarily taken from a
higher viewpoint. They use a variety of object detection methods and run it efficiently on
the hardware, namely Raspberry Pi small single-board computer. Moreover, an accelerator
device regularly supports the limited performance of such a compact board. The complex
task of the object detector inference is offloaded to this dedicated device [17][41]. There
is undoubted performance improvement using the accelerator chip overrunning the whole
detection network just on CPU. These found blog posts generally create a comparative idea
that tracking would be possible even with lower performance hardware. Complementary to
this, in [21] for the sake of strengthening Raspberry Pi’s performance, the remote machine
learning API can be utilised to get an inference of an object detector network. When the
API is accessed over a common URL request, the detection is as simple as it could get. An
input image is attached to the request, and the response would necessarily be the detected
entities. Similar to a locally ran detector, it returns individual bounding boxes, encoded in
a standard JSON format.

In terms of the vision accelerator units, there are several affordable devices available
on the market, usually in the shape of a USB stick: Colar2 USB Accelerator by Google,
PLAI3 PLUG USB artificial intelligence accelerator chip by Gyrfalcon Technology, Jetson
Nano4 a pocket-size board module by NVIDIA. And the list is completed by perhaps the

2https://coral.ai/products/accelerator
3People Learning Artificial Intelligence, https://www.gyrfalcontech.ai/solutions/plai-plug/
4https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/

23

https://coral.ai/products/accelerator
https://www.gyrfalcontech.ai/solutions/plai-plug/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/

most popular USB device Intel Neural Compute Stick5, covered below in Section 3.2.2.
All have a vision processing unit capable of accelerating machine vision algorithms, for
instance, convolutional neural networks which are the backbones of the advanced object
detection methods. Secondly, the object detection as a service is again offered by multiple
API provides: The Machine Learning API6 by NanoNets, Vision AI7 by Google Cloud,
Watson Visual Recognition8 by IBM, Amazon Rekognition9. Even though, this approach
is only stated as an alternative for the overall picture, it is not considered any further in
this solution.

3.2 Platform – The chosen hardware
An idea for the whole work is to create a flexible and lightweight positions tracking system
for aerial footage. Requirements for such a system are that it should be compact enough and
yet still powerful to handle advanced computer vision tasks. As mentioned in the previous
section, there are a few proven setups for object detection on the card size computers.
These tiny single-boards could be attached to an unmanned aerial vehicle (UAV) or, as
it has been already mentioned, commonly known as a drone. An application intended for
this supplementary hardware payload should be able to perform the inference of a deep
neural network and transmit the results over for further processing. The well established
and advised combination to use for the case is Raspberry Pi 4 small computer with Intel
Neural Compute Stick 2 accelerator unit, both shown in Figure 3.1. The supervisor of this
thesis lent the recommended computational devices in order to test the final solution.

Although, the final solution for tracking people is written in Python programming lan-
guage as a generic multiplatform application, only dependant on the specific constraints
where it is essential. Therefore, extending the application to a different type of accelerator
can be quickly done by adapting the specific single method implementation, which was
responsible for utilising the previously used unit.

Finally, the second part of the application receives locations and ensures a user can
freely review them. It performs a visualisation of trajectories based on the obtained relative
coordinates. This is the brief definition of the targeted platform, and more details follow.

3.2.1 Raspberry Pi 4

Raspberry Pi is a small single-board computer which is dedicated for educative purposes in
schools. Despite that, it is quite popular for prototyping and research work or even used in
robotics. All the technical details in this section are sourced from [34], the latest Raspberry
Pi 4 family, which is the primary testing device for the work here, particularly Model B with
4 GB of RAM, and an insertable 64 GB Micro-SD card as internal storage. The board can
be managed by the officially supported operating system (OS) called Raspbian [35]. The
guides and setting up of the computer is straightforward as there is a focus on teaching and
opening up the process to the less technical public. The 4th generation obviously includes
wireless connection, after the initial configuration of a Wi-Fi adapter, the development could

5https://ark.intel.com/content/www/us/en/ark/products/140109/intel-neural-compute-stick-
2.html

6https://nanonets.com/
7https://cloud.google.com/vision
8https://www.ibm.com/cloud/watson-visual-recognition
9https://aws.amazon.com/rekognition/

24

https://ark.intel.com/content/www/us/en/ark/products/140109/intel-neural-compute-stick-2.html
https://ark.intel.com/content/www/us/en/ark/products/140109/intel-neural-compute-stick-2.html
https://nanonets.com/
https://cloud.google.com/vision
https://www.ibm.com/cloud/watson-visual-recognition
https://aws.amazon.com/rekognition/

(a) Raspberry Pi 4 [48]

(b) Intel Neural Compute Stick 2 [20]

Figure 3.1: Illustrations of Raspberry Pi 4 (schematic blueprint) and Intel Neural Compute
Stick 2, both devices are displayed with their realistic dimensions, of total width 85 mm
and 72.5 mm, respectively.

continue remotely. The OS is based on a Debian Linux distribution, and besides the minor
modifications, the system can be operated the same way as any other Linux system. The
community has grown over the previous board generations and offers necessary support.
Raspberry 4 embeds a quad-core ARM Cortex-A72 processor and can be powered from
a battery pack or a drone internal power circuit via a USB-C port. In terms of power,
the inserted Intel Neural Compute Stick has to be taken into consideration, and a needed
current should be supplied.

3.2.2 Intel Neural Compute Stick

Intel Neural Compute Stick (INCS), also known as Movidius Neural Computing Stick, is a
low-cost USB stick that has inside a Myriad vision processing unit (VPU). These kind of
processors are a reasonably new concept of microprocessors which can accelerate a various
computer vision task, often seen in the robotics applications. The Intel Movidius VPU is as
well embedded in many smart devices on the market for automated analysis and a better
understanding of the real world around us. INCS itself is enhancing the capabilities of a
regular main processor from the host computer. The stick and its VPU is optimised for the
models’ inferencing, for instance, the convolutional neural networks. In general, it can be
an alternative to a cloud vision computing service.

There are two generations of INCS and the second one from 2018 accelerates the pro-
posed solution later on. The INCS 2 unit can be powered directly from a USB 3 port of
the host device. The VPU is utilised for the interface through Intel’s OpenVINO Toolkit

25

which is introduced the next section. A pre-trained model can be loaded to the chip for
inferencing either from the targeted Raspberry Pi or any laptop. The toolkit helps to relieve
the user of a hardware specific configuration and instead let them focus on the application.

3.2.3 OpenVINO

OpenVINO is a set of tools to orchestrate the whole developing and deploying process of
vision-oriented solutions on Intel’s supported hardware. The toolkit is a set of versatile
software to complete any image or video related project. It can not only help with INCS
2, as it was already stated but, the tools are built for much more hardware options, the kit
supports Intel’s FPGA initiative, Intel Graphics or even their traditional CPUs. The deep
learning or machine learning frameworks and formats are widely supported, namely Ten-
sorFlow10, Caffe11, ONNX12 the exchange format and others. The vital aspect is though
support for Raspbian, the toolkit includes guidelines on how to install and configure every-
thing on a resource-constrained device such this. Through the experience, the guidance is
sufficient but required a little amount of time.

3.3 Inputs – The necessary data for tracking
The objective in this part is to answer a question of what data it takes to track people in
the drone footage. The details in the section are based on the data samples provided by
the supervisor of this work, notwithstanding the ideas might be applied to any source with
a similar range and flavour of data.

Generally speaking, two separate data types include what is necessary for providing the
application results. Many times discussed and analysed sensor is a camera, it gives the
rich data which demand a high level of processing in order to extract the knowledge of it.
Then, a more state describing data is essential too; it defines the angles of the camera,
its position and other miscellaneous yet still crucial information. Practical examples of
the available dataset well support all this and give better insides for each part. The used
drone for data collection was an affordable mini drone DJI Spark13. Despite that small
size, it is capable of capturing high-quality video and carries multiple sensors for intelligent
flight control, moreover it features a mechanical gimbal as well. Despite this, the following
analyses are demonstrated on this type of device, but nonetheless, a considerable amount of
the principals would be the same for other UAVs, especially the ones manufactured by DJI.
The less portable parts are the descriptions of gathering the pieces of data from the specific
logs of the drone. Whereas the structure of information and its scope is comparable to the
other DJI’s drones has not been determined, but one can assume a high level of similarity
within the same brand.

The drone has its own controller, which is connected to a smartphone and the operation
is administered by installed DJI GO14 application. The application is responsible for video
recording and flight tracking. A flight log can be extracted for each drone’s take-off, the
recorded video samples and the entire flight log file specifically. The flights, during which the
samples were captured, are described further on. The flight journal incorporates assorted

10https://www.tensorflow.org/
11https://caffe.berkeleyvision.org/
12https://onnx.ai/
13https://www.dji.com/spark
14https://www.dji.com/goapp

26

https://www.tensorflow.org/
https://caffe.berkeleyvision.org/
https://onnx.ai/
https://www.dji.com/spark
https://www.dji.com/goapp

details about every possible drone component, with the overall entries recorded several
times per second. In summary, the extensive list of drone’s states has to be filtered for the
essential and the most accurate information which is then used for precise people tracking.
This section deals with where the data can be found and how are they structured, it extends
Section 2.3 and gives a pragmatic view of the needed measurements.

3.3.1 Camera

A camera is an excellent sensor to capture the environment around us. Nowadays, it is an
important source of information for countless applications. The camera attached to a drone
is the main source for people tracking in the proposed solution here too. Its image data
is crucial for object detection and subsequently for re-identification of previously detected
objects. As a result of the past research, covered in Chapter 2, primarily Section 2.4, the
pixels in the image can be well interpreted and understood by machines. The individual
frames of video are processed to obtain the positions of objects, persons, in the image
coordinates. As mentioned, the coordinates define the bounding boxes around objects, to
clarify, all this is done just with image data alone. Up to this point, the input for the
analysis is a camera stream, and the quality aspects are the high resolution and sharpness
of the frames.

Next, additional insides about the camera are required in order to convert the object’s
positions from the pixel domain to their real locations relative to the camera placement.
The sensors, among other things, responsible for intelligent flight assisting of a drone, are
used to define accurate camera position and rotation. The telemetry data reflects the
drone’s and also effectively the camera’s physical positioning as well, more on that in the
following block. In contrast, not only the position information is necessary, but the camera
parameters as well. Unlike the movement of the camera, which is constantly changing as it
is attached to the vehicle, this information is associated with the camera itself and remains
constant during the entire flight. The essential values for distance estimates evaluation are
focal length and field of view of the used camera lens, then the camera sensor size. These
specifications are based on the camera type; therefore, it should be quite straightforward to
find them the related datasheets. For the unknown camera, the selected properties can be
set by a calibration process [6] and derived from the images of the calibration chessboard.
Another aspect is the image resolution, which is set from the image frame, and there is no
need to include that in the parameters. All the found values are passed to the proposed
application by a configuration file at the solution start.

According to DJI Spark Specification sheet [47], the mounted camera uses 1/2.3” CMOS
sensor, with dimensions of 6.17 mm × 4.55 mm. The lens has a field of view angle of 81.9∘,
and its focal length is 25 mm. An example of the configuration file is shown in Appendix A.2.

3.3.2 Telemetry – Camera positioning

The proposed solution tries to achieve people tracking in a video captured from a drone
which implies that the camera is regularly moving. In comparison to a static camera, it
is demanded to monitor this movement, and accordingly, the system should be able to
adapt to new geometry caused by position changing. Secondly, the positions related to
a previous camera’s locations should again be taken into consideration the new state for
always displaying the relevant information. Thus, the requisite information is longitude and
latitude from the radio-navigation system and an azimuth measured by a compass. This
defines the location of the camera and which direction it is looking.

27

For improving the distance estimation of the captured objects, the accurate position
based method from Section 2.2.2 requires an altitude of the camera as well as its tilt
towards the ground or pitch. The camera should be in a stable position so that the readings
from the sensors are as accurate as possible. The drone’s camera is normally mounted to
the vehicle with a gimbal pivot. For the best recording capabilities, the gimbal can be
mechanically controlled. This gives the camera a much-needed image stabilisation and
reports the momentary camera rotations to the final application. If the gimbal supports a
yaw axis rotation, the final azimuth has to consider this too as the camera’s direction is the
needed one. To summarise, the positioning data is dynamic during the recording process;
hence, it should be streamed together with the frames.

In terms of DJI Spark drone, all this information is listed in the log file and available
through DJI MOBILE SDK15 API too. The desired Spark data includes [47]: a longitude
and a latitude from GPS or GLONASS systems, an altitude measured by vision positioning
system up to 8 metres then the GPS data is used, a drone’s yaw rotation from the compass, a
gimbal’s pitch rotation value, speed in each of the axes. The altitude measurement accuracy
is ±0.1 m for the vision system, and ±0.5 m for GPS.

3.4 Additional software – The frameworks and libraries
With an idea of not trying to reinvent the wheel, this section gives a comprehensive overview
of all the convenient software solutions which are utilised for the final work implementa-
tion. The foundation to every stated choice here was the implementation programming
language, it was decided at the beginning of the project to use Python language as this
developing environment is broadly used in academia and is well suited for the computer
vision projects. The extra benefit is that I have been already familiar with this technology
due to its versatility and used it for several small assignments in the past. The support
for OpenCV visual data processing library is a matter of course among with an excellent
backing for convolutional neural networks frameworks, all briefly discussed in the next few
paragraphs. As well as OpenVINO offers its well-optimised APIs for Python, besides the
industry standard for fast computations the C++ language. The complete list of every
used software with their particular versions is summarised in Appendix B.

Video processing and analysing

So far, the previous sections summarised the hardware requirements and available data, yet
another essential point is the assessment of feasible libraries to assemble the final application
prototype. It is a good practice knowing which parts need to be worked on and which have
been already figured out and are well implemented that they can be purely incorporated in
the design.

OpenCV[30] is an open source computer vision and machine learning library. It is cross-
platform too with great support for multiple programming languages. The library offers
many ready to use algorithms for image and video processing, has convenient interfaces to
work with a video stream. Then, the transformations of stream’s individual frames, pre-
processing, or basically, any needed standard operation upon image data are included. The
data representation in Python’s OpenCV module is covered by another package, NumPy16

15https://developer.dji.com/mobile-sdk/
16https://numpy.org/

28

https://developer.dji.com/mobile-sdk/
https://numpy.org/

which is typically used for scientific computing. The package supplies additional high-
performance array operations.

The OpenCV library from version 3.3 has got its own deep learning inference module
the DNN17. It supports pre-trained networks from various frameworks and considerably
accelerates the forward pass, even can employ a VPU of an accelerator or other chips
which offers parallel execution. The process aims to be as simple as possible, the interface
allows to load and run the selected network. However, inference outputs demand extra
post-processing, especially in the object detection sphere. The model support, to a great
extent, overlaps with what is supported in the once covered OpenVINO. The final pool of
implemented models is determined by ease of use and availability of the pre-trained model,
and secondly by its inference support on the INCS 2 accelerator.

In general, the solution is using the pre-trained models which are proven to work well
with resource-restricted hardware. It focuses namely on YOLO models as they have a great
ratio of speed and accuracy, then experiments next with SSD models. All are single-pass
models with computational complexity as low as possible. The extensive list of all used
models is in the experimenting chapter where the models are compared and discussed. As
for the designing part, the most important aspect is a fact that models are available and
perform well with used hardware. Moreover, the solution architecture should count and be
prepared to work with different methods and should also allow their smooth switching.

Exposing and visualisation of the results

The results are sequences of relative locations or coordinates that form trajectories which
are updated continuously. Therefore, the overall requirements for visualisation library were
flexibility of updates, ease of use, and ideally rendering into a web browser. Bokeh [5] is
fulfilling all of these with a good performance and also adding interactive manipulation
with the resulting paths. It includes APIs for data handling and management, which was
an extra benefit too. The library offers good tutorials, even for the more advance use-cases
which show numerous plotting options and high level of customisation. For completeness,
there are also the countless other alternatives such as Pycairo18, Matplotlib19, or even the
OpenCV among its many other functionalities offers the methods to visualise data.

Bokeh serves a web page that contains the resulting visualisation created by the library’s
interfaces which made the graphs accessible from anywhere after proper configuration. The
results could be reshaped for a better view or exported with the built-in tooling, it handles
all the zooming and moving at the client’s browser. The work with datasets and colour
palettes are supplementing the broad range of features.

The solution expects to transmit data from a drone side program for further processing
to the second program. This could be achieved by exposing the information through REST-
ful [11] service at the drone side computer. Python’s minimalistic web framework Flask [13]
conducts exactly that, it quickly creates a simple service which serves the data. A service
client can request the drone’s system and obtain the resources by using the predefined
addresses.

17Deep Neural Network Module, https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
18https://pycairo.readthedocs.io/
19https://matplotlib.org/

29

https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
https://pycairo.readthedocs.io/
https://matplotlib.org/

Miscellaneous packages and libraries

Python environment comes with a large standard library of different modules, extending
the language by common data structures, algorithms, maths operations, built-in types, time
utilities, parallelism interfaces, operating system services and much other functionality the
applications might require. Only a few relevant ones are briefly described in this text, their
functionality usually covers much more than the number of details stated here. The Python
Standard Library20 is well documented, and all further information could be sourced from
the referenced documentation pages.

The application deals with re-identification of the people in time; therefore, the identity
has to be represented in a certain unique way. The standard implements UUIDs [50] (Uni-
versally Unique Identifier) which can represent the temporary identifications for detected
objects. These ids are afterwards replaced by previously recognised persons. In the same
way, a logging facility [27] is available from the standard, track event and statistics across
the application run. This helps to monitor the implemented parts of the work and gives
an inside look into it. Mainly, how the individual submodules or threads communicate and
count how much data they exchange, for example, how many persons were detected in the
given frame. The format of logging messages contains the elements in this order: creation
time, logging level, name of the local thread which constructed the message, description of
the message.

The communication with the REST data resources is handled by the Requests [39]
library. This enables the consumer program to create and send HTTP requests in order
to obtain the necessary data. The API is elegant, simple and as obvious as possible, in
agreement with its documentation.

3.5 Solution design
The fundamental details and technologies, which the solution is going to be built upon,
were all resolved earlier to frame its constraints. By using all the knowledge from these
requirements analyses, the solution design proposal is trying to meet the goal of tracking
people in the video from a movable camera. This has led to a gradual partitioning of all
problems into smaller and smaller fragments which continuously was revealing the solution
contours. Finally, the idea is to have two separate programs, one responsible for gathering
and processing the inputs, and the second for collection what was prepared and answering
the users calls while this architecture tries to accomplish the defined specification of the
project assessment.

The presented design here is a foundation for implementing the application, it gives a
general outline of the problems which have to be answered in code. It considers the hardware
parts and the ways how to employ them into the system, what can run where. The CPU of
the used Raspberry Pi board enables concurrent execution so, independent problems can
be parallelised. A significant portion of the workload is passed to the mentioned accelerator
unit. The second, server part, allows user to view the trajectories of monitored individuals.
The implementation then reflects these designing choices which are a blueprint for the
realisation, described later on.

20https://docs.python.org/3/library/index.html

30

https://docs.python.org/3/library/index.html

3.5.1 Software architecture

The software architecture gets into the depth of the tracking people task for its better
understanding, resulting consideration can also help you avoid or identify points of failure in
the system. Consequently, the architecture blocks should represent the isolated components
for which the solution is well known or straightforward to implement from square one.

The two main programs definition has been already mentioned, the On-vehicle part
or application should run autonomously by using a small computer as a host. The video
stream and necessary telemetry measurements flow into the system, then the application
should transform the inputs into useful results. This is done by incorporating the object
detector, the detection has been identified as the most complicated procedure; hence, it is
given to the INCS 2 accelerator. The results from that detector inference are transferred
back and passed to a re-identification method where all the people, who appeared in the
past frames, are recognised. Alternatively, when the person is unidentified, a new record
is made instead for the profiles database. Thus far, the outcome is the bounding boxes
of recognised people in the current image with their identifiers. The ids provide essential
information to construct trajectories. For clarification purposes, a trajectory is a sequence
of past locations and the current location of a person with a certain, uniquely assigned,
identity or profile.

The detection boxes are the base for a distance estimation algorithm, and these rectangle
coordinates in pixels are converted into the distance from the camera. The estimates are
then interpolated into location offsets with respect to a physical position and rotation of the
camera, or the drone. The outcome from this system stage is a list of the distinct position
data for each person. For better insight, the whole architecture is illustrated in the diagram
in Figure 3.2. Lastly discussed segment is the propagation of the list with locations to the
second application where the data is cached and accessible through REST API. The server
part can, at any time, request the processed output from the REST service.

Server part

On-vehicle part

Raspberry Pi 4

receive the inference results

Intel Neural Compute Stick 2
pass the computation over

Object Detection

Re-identification

expose the results

Distance Estimation

REST service

Telemetry

Video Stream

User

Communication

append the new locations

Transformations

interact with

Visualisation
Bokeh Server

Flask

GET

Figure 3.2: Diagram of the proposed solution architecture. Showing the two main applica-
tion parts along with the relevant internal submodules and their hierarchy.

31

A close look to the smaller Server part shows that its logic is composed of a commu-
nication and processing part, and afterwards, the data is suitable for visualisation. The
connection to the drone application is handled by the HTTP requests via a predefined
REST resource addresses. The used method for the request should be GET, according to
the best practises. This way, the application can receive the data and apply the translations
if required. In case the camera was rotated, the previously detected locations have to be
altered as the viewing situation changed and new data are relative to this new state.

The positions of people in the actual camera shot are constantly updated in the back-
ground of the server application. The underlying data of visualisation framework is streamed
with updates, and correspondingly, the user’s view is seamlessly changing. The user can at
any time access the recorded trajectories in their web browser, the user interface is provided
by the framework.

On-vehicle part internal data flow

In a close look at the more complex drone part of the system, the architecture design can
give more details about which parts can be executed in parallel. By distinguishing which
steps of the system can run at the same time and the flow of the data they demand, the
program can complete them in separate threads as the final application runs on the multi-
core processor. The proposed architecture defined these four main components: Object
Detection, Re-identification, Distance Estimation, REST service which is powered by Flask
framework. Furthermore, the data exchange shall be synchronised by utilising a chosen
thread-safe data structure.

Initially, the frames are obtained from a camera video stream, for simplicity presume
that the next camera image is always available. Only a minimal pre-processing is then
performed, for instance, the object detection models might demand a certain size of the
input. Hence, only the object detection module can run at this point. After the detections
are completed, they can be fed to both re-identification and distance estimation algorithms
simultaneously. Their results are subsequently made available by Flask service, for the
whole execution refer to Figure 3.3. The service exposes the computed location estimates
to a consumer application, Flask creates a new thread for each connection request, in the
figure that was simplified to a one continuous thread life-cycle. The re-identification and
distance estimation results are merged during the request in order to generate the response
payload.

Object Detection Re-id Distance Estimation Flask

detections

identities
locations

single frame
processing time

Figure 3.3: Sequence diagram of the On-vehicle application concurrent run. The arrow
labels represent the different types of exchanged results from the thread workers, the Object
Detection thread assumes the immediate availability of a new frame from the camera stream.

To conclude, just the two submodules can run in parallel, despite that while they are
running, the object detection for the next frame can run as well. When the other modules

32

are done before the detection itself, the final performance should demand just on the de-
tection speed. However, this expects that object detection is the hardest problem within
all the components.

3.6 Application implementation details
The implementation details of the proposed solution are uncovered with all their necessary
aspects in the following section. It includes the made implementation choices which are
reflected in the code base of both parts of the application. The implementation is based on
the architecture principals, which still leave a few areas untouched that can be described
below.

The first step of the programming part was to configure the developing environment,
install all the dependencies and set up a proper communication between Intel’s OpenVINO
kit and INCS stick. The process can be significantly long as OpenVINO requires to run
many preparation scripts, but eventually, it can run on both Raspberry Pi and a standard
desktop too. Moreover, Python runs smoothly on both platforms as well, so code is easy
to move from one to another, which was exploited during development itself.

3.6.1 The On-vehicle application

The central processing application which can operate directly on the drone has four neces-
sary subroutines. They have been already explained in the architecture. Besides this, the
program adds a data provider component at the very beginning of its pipeline. The inputs
power the other parts of the application; therefore, this extra abstraction layer creates a
unified level of access for the data of all sources. The provider is shielding the application
insides as it converts assorted information from sensors and an on-board compute of the
drone.

An instance of StreamProvider class runs as a new thread within the program. It is
initialised with the camera parameters and information source where a video source can be
either live camera feed of a connected device or a file. On the other hand, the telemetry is
sourced from a recorded flight log file which format is a standard comma-separated values or
CSV file. All the developing and testing were accomplished with a video file and a CSV file
combination. Moreover, the web camera feed was used too but only for the object detection
verification.

Next, all the providers accept a particular implementation of the method which they
later utilise in the same manner the stream class uses the telemetry data source. That is
achieved by a polymorphism, a regular property of Python as an object oriented language
paradigm representative. From the architecture section, each provider has its thread which
executes the supplied method whenever the new inputs are available. For example, the
object detection is handled by DetectionProvider, which is given a specific instance of
ObjectDetector class where it implements one of the specific detectors such as YOLO,
SSD, or others. Similarly, ReIdProvider and DistanceProvider are initialised with their
set of methods. This way, the application can be parametrised, and the methods can be
swapped easier, which makes experimenting more straightforward process too. Threads are
independent and responsible for their tasks, though they have to communicate and exchange
the inner intermediate values. The data structure for synchronous data advancing between
the tasks is Python’s queue module, particularly its synchronised Queue class. The detailed
comparison of used algorithms is made in the next chapter, Chapter 4, where the methods

33

are confronted with each and evaluated. The threads output their statistics through logging
messages so the level of verbosity can also be tweaked.

The application is a standard command line application where common start-up argu-
ments define the methods and options. Its thorough usage guide is given in Appendix A.1.
The partial results of the object detection and the re-identification stages can be on-demand
visualised within the processed image. The next main stage of distance estimation repre-
sents the final results, and the second separate part program visualises them. Although
the visualisation module can be used directly in the on-vehicle application as well, all the
results of the stages are shown in Figure 3.4.

(a) detections (b) re-id (c) locations

Figure 3.4: An internal visualisation of the individual application stages. The locations
stage is just an illustration of the real text data which this particular stage outputs.

The featured methods have their limitations too, and they should be considered during
interpretation of the results. The found locations are still just estimates and should be
treated that way. As in the example figure, a miniature person at the top was not recognised,
and the YOLO detector also shows the boxes are not fully aligned with the objects, persons.
Accordingly, a trajectory says instead where its owner is heading and at what pace than
what is their exact location at a given time. The results confirm the restrictions which are
closely summarised for each used method in Chapter 2.

The data providers are another essential point of the implementation, as the provided
input data comes from third systems. The provider should be adapted or supplied for each
drone and possibly camera too if that is the case. The implementation defines data objects
which unite and simplify the work with drones measurements and camera features. The
responsible classes from settings are Camera, Gimbal, Position and Misc which handles
additional data of all sorts. Besides storing the data, the classes offer methods to compare
or query the knowledge based on the stored information. A good example is the positions
object which can return a distance between two positions in metres. These data objects
are then wrapped into a telemetry class that besides the convenience purposes, offers the
way to decide whether or not the image is stable. Hence, when the drone in moving from
one stationary position to another the image is often undesirably rotated or unstable. The
set tolerance set the maximal speed in all axes to half metre per second when the readings
are out of the boundaries the frame is not processed.

34

3.6.2 REST endpoints specification

The next distinguishable part of the system is the communication. Final estimates should
be transmitted to the server part for further processing, namely for aggregation and visuali-
sation. The REST service creates a link between these two programs. The on-vehicle appli-
cation exposes the results at the set route of the used Flask server, /v1/locations/update.
The service is accessible at port 5000 of the host in the default configuration. The generated
response is

[
{

"position": {
"lat": 49.217218,
"long": 16.610695,
"altitude": 10.4,
"bearing": 73.6

},
"estimates": {

"0a1bf670-1e15-42ea-999d-fdbf76ee5c15": [0.52, 11.99],
"f4169b7b-e9a0-4680-b113-c12b5c36b1bf": [3.23, 14.29],
"..."

}
},
"..."

]

where it composes of a list of recently processed frames results. The estimates element
contains the locations of detected people in the actual frame. The locations object’s ele-
ments are the personal keys, and the position offsets pairs, then the syntax is as follows
”id-uuid”: [”delta x”, ”delta y”]. The offsets are represented relative to the posi-
tion element of individual items. The position element is the GPS location of the camera at
the time when the image was taken. The information transmitted is also altitude and more
importantly, the camera’s bearing, which allows the server app to connect together the
trajectories even when the camera rotates. Additionally, the whole history of all processed
frames is accessible from /v1/locations.

3.6.3 The server application

The detached part of the proposed solution is responsible for regularly requesting the data
from the drone and offers it to the user. When the batch response is received, each item’s
distance estimate is appended to the respective current trajectory. Its selection is driven by
the unique ids of individual points or profiles. Moreover, the camera’s location determines
if the view should change before the points inclusion. Therefore, when the vehicle or camera
rotates, the past locations compensate for this motion, so the newly appended points are
added to the right coordinate system.

The user can access the trajectories plot at port 5006 via HTTP, as the default configu-
ration of Bokeh framework. An example of the final results is illustrated in Figure 3.5, the
page includes standard tooling for resizing and dragging the canvas. The trajectories are
represented as lines with the detected locations highlighted as circles.

35

Figure 3.5: UI visualisation – Bokeh UI. The light green triangle represents the camera’s
field of view, its positions is the origin of the used coordinate system. The circles are
detected person’s locations.

36

Chapter 4

Experiments

As stated in the chapter above, the implementation is capable to easily swap its particular
methods for each of the described subproblems. The methods are covered in details in
Chapter 2, and here the most significant ones are tested and tried with the testing video
data. The following part of the offers a view to implementation usability and overall
performance. Due to a narrow scope of available data, the experiments are limited to
a dataset provided by the supervisor which the details are discussed in Section 4.2. The
obtained outcomes, as well as the issues, are then summarised in the subsequent sections 4.3,
and then 4.4.

4.1 Methods summary
Object detectors are relatively new models in machine learning, they are only possible with
recent discoveries in the field. This was mostly thanks to the growing accuracy of general-
purpose classifiers and the novel training datasets. The solution which is needed for this
project must work in real-time; therefore, good accuracy is as important as a processing
speed – processing frame rate. New specialised hardware accelerators are now available
which can deliver desired processing performance and power efficiency for the application
even on the compact computing boards.

Most of the models, mentioned above, are not strictly trained on aerial images; hence,
they might be less precise on video taken from a drone. Nevertheless, the image processing
part of the system should be able to adequately answer two main questions: is a person
present in the image and where is it within the image. Moreover, the system should be
able to resolve if the person was seen before. Methods for re-identification might be more
invariant to the different camera view, which can make looking for the right one an easier.
However, imperfections in these parts can lead to poor overall localisation. Only one camera
usage can significantly reduce the need to include a sophisticated method of re-id in the
system. These methods are commonly used in multi-camera non overlapping setups where
it is hard to id a person just based on the multiple independent images. Person’s features are
extracted and compared along with his or her movement constraints if possible. This might
result in the usage of much simpler algorithms which can offer the corresponding accuracy
for this very case. Furthermore, the methods like that come with a lower computational
cost that is always advantageous.

Speaking of re-identification, two main approaches are tried. The first is the more
advanced feature extraction using an OpenCV’s KAZE key-points detector. The detector

37

can find and extract the necessary image description, which is later used to match the
next image. However, the method did not perform that well and is not used in the final
comparison. Instead, a truly simple histograms comparison is incorporated to get the
matches of person’s profiles. The histogram composed of 32 bins per each colour channel is
extracted as a profile template and stored. Then, the matching process uses the histograms
correction comparison, with a threshold of 0.7. When the correlation coefficient is below
the threshold, a new profile is created for a person as non of the templates in the database
get a strong level of similarity.

As for the object detectors, three main ones are tested, the SSD detector based on
MobileNet, and then YOLO second and third iteration. The YOLO models are used as
their tiny modifications for better performance speed on Raspberry Pi and INCS 2.

The last part of the used algorithms are the ones for distance estimation, both proposed
methods in Section 2.2 are implemented and tested. The size based estimation assumes the
average height of 1, 741, the average for both genders adult height. The position based
method is strictly defined by method equations.

4.2 Dataset & data sources
The provided data from a DJI Spark recording session are generally good quality footage.
The video covers a couple of different situations which are also considered during the design
and implementation of the solution. A quite standard positional capturing is included
with a bit of wind that is causing a minimal shaking. Overall the available data were
taken under very good conditions, and this might mean the provided telemetry is quite
accurate. Although there might be a slight de-synchronisation while using the offline data,
the provided CSV logs are not synced to the video feed, and this process was taken manually.

Drone positions vary from approximately 5 to 10 metres of height from the ground, the
GPS signal is strong. The scene is mostly clear, but the samples also include a section
where people are partially occluded by a treetop. The camera moves around to get static
views of the standing, or the walking supernumeraries. The shots also contain a few where
the camera rotates while maintaining its location on a map. This particular case is essential
to test all features of the proposed system.

4.3 Experiments and testing
The test environment was the Raspberry Pi 4 with connected INCS 2, and the board was
connected to a local network. The server application ran on the separate device within the
same network and was collecting the data of the individual test runs. One of the obtained
results is described in Figure 4.1 and is analysed in further details below.

The figure shows the tracking solution results for the Tiny YOLO detector, the his-
togram comparison method, and the pixel position based distance estimation. The results
in 4.1a are captured for about 3 seconds from a static camera position2. As the real loca-
tions of the persons are not available; however, the environmental clues give an estimate
where they stood. From the map, the assessed distance from the camera of the individuals:
Person A stood on a visible pathway intersection, so its distance from the camera is about
16 m. Person B is about 25 m from the camera, then Person C – 35 m, Person D – 30 m,

1https://ourworldindata.org/human-height
2The camera position was 49.2172369𝑁 , 16.6108169𝐸 and bearing of 84.4∘.

38

https://ourworldindata.org/human-height

(a) detected locations overview (b) zoom-in view for person A

(c) real view at the scene

Figure 4.1: Testing result example, including the summary view with the persons’ locations,
a zoomed-in for person A, and the real view of the captured scene, people remained mostly
stationary.

Person E – again about 35 m. The person in the white top in 4.1c was not recognised by
the detector, or the detection was not confident enough. Figure 4.1c adds the perspective
of how even the stationary person and get the locations estimates within an about metre
radius as the bounding boxes fit the person differently every time. That can be triggered
not just by moving from place to place but also by simple posture changes.

The system’s estimate for persons A and B are quite accurate, namely 12 m and 28 m,
respectively. The results are reflecting the true locations, especially in the lower part of the
image. Then, the error increases as the persons are detected in the middle and the top half
of the frame, it is caused by the uneven and slightly uphill terrain. Moreover, the objects
get smaller, and the detected bounding box misalignment has a much significant impact.
That can also explain the widespread of person C ’s locations. Accordingly, the camera tilt
is 90 degrees with the vanishing line of flat surface in the middle of the image.

39

4.4 Overall system performance
The results coming off the system shall deal at least with the minor changes in the view. The
rotation compensating capability of the server application was tested as well, see Figure 4.2.
Prior to the rotation, the test captured just two people from the video sample for these
particular results. The tracing methods were the same as in the previous test case, besides
the detector used the SSD model this time. From the testing, this object detector had
more precise bounding boxes around detected persons but struggled with detecting all of
them. The video sample composed of a short 4-5 s footage where two persons walking
and one stayed almost stationary, others are not detected. The camera was rotated for
almost 30 degrees anticlockwise (locations are rotated clockwise). As can be seen, the
detections in the bottom of diagram 4.2b are pushed towards the centre of the camera’s
view. The orange trajectory is also transformed accordingly. In 4.2b, the third person was
recognised; however, its identity was matched with someone’s else. The mismatch in the
histograms comparison resulted in the unwanted connection line between the two, see the
long trajectory line.

(a) before the rotation occur (b) after the rotation

Figure 4.2: Results before and after the camera rotated while capturing the analysed video.

An interesting observation was made during the implementation, where all the frames
of video were processed. The frame rate was about 30 FPS which led to analysing almost
identical frames one after another. This way, the trajectory was constructed of many
points really close to each other, and the results were not satisfying. Additionally, these
many points slowed down the UI rendering, the final implementation is, therefore, filtering
them, and showing indistinguishable locations as one for the same identity profile. That
might also help for static people in the image as they could be visualised as a single point.
The analysis is done on the server part when the data is already processed.

The tests partially confirmed that the models still struggle with small-scale objects,
especially on the less powerful hardware. With the objective to address the issue, the
frame can be split into several pieces, and they can be processed on their own. This can

40

increase an absolute number of pixels per person when the image is downsampled, a major
disadvantage of the approach is the needed processing power. On the contrary, the split
image creates a problem with a person at the cutting edge.

One of the comparing cases was dealing with difference in size based and position based
distance estimation methods. The results of size based method were way too inaccurate,
resulting in up to 150 m distance from the camera for the same test case as in 4.1. The
variety in bounding box size and the actual person size is way out of the proportion for this
method to be used, especially with YOLO detector as the result of this experiment. On
the other hand, the implementation for size based estimate does not compensate for the
altitude, but the difference of the results is so significant that this would just make a small
change for the final estimates. The drone altitude for the experiment case was about 10
metres which would make a slight difference.

41

Chapter 5

Conclusion

The implemented solution is capable of processing the video on board of the drone, using
the compact computer with the accelerator. Then, the results are presented to a user in
the form of a graph which includes the data points representing locations. The points are
position estimates of the individuals found in the video. They are gradually matched with
their past self, and the points finally build the trajectories. The system is tested with YOLO
and SSD object detectors models which give mixed results as used. Therefore, there I see,
together with the re-identification, room for improvements. The absolute error in location is
caused by the inaccurate persons’ detections and their misaligned bounding boxes, combined
with the insufficiency of distance estimation methods. The distance evaluation creates
substantial demands on the correctness of the detection.

Next, a source of the input data was a DJI Spark’s recordings and telemetry. However,
the proposed application can be further easily extended to accept other data sources of par-
ticular drones while the core of the methods remains intact. Tests on these video recordings
included the complete pipeline verification and getting the final locations of the people in
the video.

The implemented system got satisfactory results when the conditions were ideal, though
when the input is pushing the system and its used methods to their limits, the decrease of
accuracy is more than significant. The next work shall focus even more on the models for
object detection. Maybe, it can consider the more advanced re-identification methods with
neural networks which can run a separate INCS 2 unit too. The models can be adapted for
the aerial video input by taking advantage of transfer learning of the current state-of-the-art
detection networks. Moreover, the object detectors are multi-purpose detectors, inferring
all sorts of objects, the idea of post-training on just people samples can also better adapt
the model for the solution.

The drone industry is growing rapidly with its business potential too, and number of
new applications will start to be noticeable in our daily life. The proposed solution also
omitted the increasing capabilities of drone sensors, in particular, the extra multi-cameras
mounted to them for better usability. The manufacturers themselves are incorporating
object tracing to the products as the collision avoidance systems. Additional cameras can
give a better sense of depth to the system.

42

Bibliography

[1] Adaimi, G., Kreiss, S. and Alahi, A. Rethinking Person Re-Identification with
Confidence. CoRR. 2019, abs/1906.04692. Available at:
http://arxiv.org/abs/1906.04692.

[2] Aircraft Rotations – Body Axes. The Beginner’s Guide to Aeronautics [online]. [cit.
2020-05-10]. Available at:
https://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html.

[3] Bewley, A., Ge, Z., Ott, L., Ramos, F. and Upcroft, B. Simple online and
realtime tracking. In: 2016 IEEE International Conference on Image Processing
(ICIP). 2016, p. 3464–3468. DOI: 10.1109/ICIP.2016.7533003.

[4] Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y. M. YOLOv4: Optimal Speed and
Accuracy of Object Detection. ArXiv. Apr 2020, abs/2004.10934.

[5] Bokeh Development Team. Bokeh: Python library for interactive visualization
[online]. 2020 [cit. 2020-05-28]. Available at: https://bokeh.org/.

[6] Camera Calibration [online]. OpenCV [cit. 2020-05-28]. Available at:
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html.

[7] Croon, G. C. H. E. de. Monocular distance estimation with optical flow maneuvers
and efference copies: a stability-based strategy. Bioinspiration & Biomimetics. IOP
Publishing. Jan 2016, vol. 11, no. 1, p. 016004. DOI:
10.1088/1748-3190/11/1/016004. Available at:
https://doi.org/10.1088%2F1748-3190%2F11%2F1%2F016004.

[8] Documentation for individual models. Keras Documentation [online]. [cit. 2020-01-18].
Available at: https://keras.io/applications/.

[9] Dumoulin, V. and Visin, F. A guide to convolution arithmetic for deep learning.
ArXiv. 2016, abs/1603.07285.

[10] Everingham, M., Eslami, S. M. A., Gool, L. V., Williams, C. K. I., Winn, J.
et al. The Pascal Visual Object Classes Challenge: A Retrospective. International
Journal of Computer Vision. 2015, vol. 111, no. 1, p. 98–136. DOI:
10.1007/s11263-014-0733-5. ISSN 0920-5691. Available at:
http://link.springer.com/10.1007/s11263-014-0733-5.

[11] Fielding, R. T. Architectural Styles and the Design of Network-Based Software
Architectures. 2000. Dissertation. University of California, Irvine. Available at:
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

43

http://arxiv.org/abs/1906.04692
https://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html
https://bokeh.org/
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://doi.org/10.1088%2F1748-3190%2F11%2F1%2F016004
https://keras.io/applications/
http://link.springer.com/10.1007/s11263-014-0733-5
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[12] Film Like a Pro: DJI Drone ActiveTrack. DJI Guides [online]. 2017 [cit. 2020-05-14].
Available at: https://store.dji.com/guides/film-like-a-pro-with-activetrack/.

[13] Flask. [online]. Pallets Projects [cit. 2020-05-29]. Available at:
https://palletsprojects.com/p/flask/.

[14] Girshick, R. Fast R-CNN. In: 2015 IEEE International Conference on Computer
Vision (ICCV). Dec 2015, p. 1440–1448. DOI: 10.1109/ICCV.2015.169. ISSN
2380-7504.

[15] Girshick, R., Donahue, J., Darrell, T. and Malik, J. Region-Based
Convolutional Networks for Accurate Object Detection and Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence. Jan 2016, vol. 38, no. 1,
p. 142–158. DOI: 10.1109/TPAMI.2015.2437384. ISSN 1939-3539.

[16] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. MIT Press, 2016.
Available at: http://www.deeplearningbook.org.

[17] Györi, A. Turning a Raspberry Pi 3B+ into a powerful object recognition edge
server with Intel Movidius NCS2. Towards Data Science [online], 19. May 2019 [cit.
2020-05-23]. Available at: https://towardsdatascience.com/turning-a-raspberry-pi-
3b-into-an-object-recognition-server-with-intel-movidius-ncs2-8dcfebebb2d6.

[18] Haykin, S. Neural networks : a comprehesive foundation. 2nd ed. Upper Saddle
River,: Prentice-Hall, 1999. ISBN 0-13-273350-1.

[19] He, K., Gkioxari, G., Dollár, P. and Girshick, R. Mask R-CNN. In: 2017 IEEE
International Conference on Computer Vision (ICCV). Oct 2017, p. 2980–2988.
DOI: 10.1109/ICCV.2017.322. ISSN 2380-7504.

[20] Intel Neural Compute Stick 2 [online]. [cit. 2020-05-25]. Figure. Available at:
https://www.bgp4.com/wp-content/uploads/2019/01/dims-neural-compute-stick.jpeg.

[21] Jain, S. How to add Person Tracking to a Drone using Deep Learning and NanoNets.
Nanonets Blog [online]. 2018 [cit. 2020-05-23]. Available at: https://nanonets.com/
blog/how-to-add-person-tracking-to-a-drone-using-deep-learning-and-nanonets/.

[22] Kim, G. and Cho, J.-S. Vision-based vehicle detection and inter-vehicle distance
estimation for driver alarm system. Optical Review. 2012, vol. 19, no. 6, p. 388–393.
DOI: 10.1007/s10043-012-0063-1. ISSN 1340-6000. Available at:
http://link.springer.com/10.1007/s10043-012-0063-1.

[23] Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C. J. C., Bottou,
L. and Weinberger, K. Q., ed. Advances in Neural Information Processing Systems
25. Curran Associates, Inc., 2012, p. 1097–1105. Available at:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf.

[24] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E. et al.
Backpropagation Applied to Handwritten Zip Code Recognition. Neural
Computation. Dec 1989, vol. 1, no. 4, p. 541–551. DOI: 10.1162/neco.1989.1.4.541.
ISSN 0899-7667.

44

https://store.dji.com/guides/film-like-a-pro-with-activetrack/
https://palletsprojects.com/p/flask/
http://www.deeplearningbook.org
https://towardsdatascience.com/turning-a-raspberry-pi-3b-into-an-object-recognition-server-with-intel-movidius-ncs2-8dcfebebb2d6
https://towardsdatascience.com/turning-a-raspberry-pi-3b-into-an-object-recognition-server-with-intel-movidius-ncs2-8dcfebebb2d6
https://www.bgp4.com/wp-content/uploads/2019/01/dims-neural-compute-stick.jpeg
https://nanonets.com/blog/how-to-add-person-tracking-to-a-drone-using-deep-learning-and-nanonets/
https://nanonets.com/blog/how-to-add-person-tracking-to-a-drone-using-deep-learning-and-nanonets/
http://link.springer.com/10.1007/s10043-012-0063-1
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[25] Lee, S., Hayes, M. H. and Paik, J. Distance estimation using a single
computational camera with dual off-axis color filtered apertures. Opt. Express. OSA.
Oct 2013, vol. 21, no. 20, p. 23116–23129. DOI: 10.1364/OE.21.023116. Available at:
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-20-23116.

[26] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E. et al. SSD: Single
Shot MultiBox Detector. CoRR. 2015, abs/1512.02325. Available at:
http://arxiv.org/abs/1512.02325.

[27] Logging facility for Python. Generic Operating System Services [online]. The Python
Standard Library [cit. 2020-05-29]. Available at:
https://docs.python.org/3/library/logging.html.

[28] Lu, L., Shin, Y., Su, Y. and Karniadakis, G. Dying ReLU and Initialization:
Theory and Numerical Examples. Mar 2019. Available at:
http://arxiv.org/abs/1903.06733v2.

[29] Luo, H., Jiang, W., Zhang, X., Fan, X., Qian, J. et al. AlignedReID++:
Dynamically matching local information for person re-identification. Pattern
Recognition. 2019, vol. 94, p. 53 – 61. DOI:
https://doi.org/10.1016/j.patcog.2019.05.028. ISSN 0031-3203.

[30] Open Source Computer Vision Library [online]. OpenCV team [cit. 2020-05-29].
Available at: https://opencv.org/about/.

[31] Pinhole camera model — Wikipedia, The Free Encyclopedia [online]. Wikipedia
contributors. 2020 [cit. 2020-05-12]. Figures. Available at: https:
//en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=942392219.

[32] Qi, S. H., Li, J., Sun, Z. P., Zhang, J. T. and Sun, Y. Distance Estimation of
Monocular Based on Vehicle Pose Information. Journal of Physics: Conference
Series. IOP Publishing. Feb 2019, vol. 1168, p. 032040. DOI:
10.1088/1742-6596/1168/3/032040. Available at:
https://doi.org/10.1088%2F1742-6596%2F1168%2F3%2F032040.

[33] Ramachandran, P., Zoph, B. and Le, Q. V. Searching for Activation Functions.
CoRR. 2017, abs/1710.05941. Available at: http://arxiv.org/abs/1710.05941.

[34] Raspberry Pi 4 Computer Model B. Raspberry Pi 4 Tech Specs [online]. [cit.
2020-05-25]. Available at: https://static.raspberrypi.org/files/product-briefs/
200206+Raspberry+Pi+4+1GB+2GB+4GB+Product+Brief+PRINT.pdf.

[35] Raspbian [online]. [cit. 2020-05-25]. Available at:
https://www.raspberrypi.org/downloads/raspbian/.

[36] Redmon, J., Divvala, S. K., Girshick, R. B. and Farhadi, A. You Only Look
Once: Unified, Real-Time Object Detection. CoRR. 2015, abs/1506.02640. Available
at: http://arxiv.org/abs/1506.02640.

[37] Redmon, J. and Farhadi, A. YOLO9000: Better, Faster, Stronger. CoRR. 2016,
abs/1612.08242. Available at: http://arxiv.org/abs/1612.08242.

45

http://www.opticsexpress.org/abstract.cfm?URI=oe-21-20-23116
http://arxiv.org/abs/1512.02325
https://docs.python.org/3/library/logging.html
http://arxiv.org/abs/1903.06733v2
https://opencv.org/about/
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=942392219
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=942392219
https://doi.org/10.1088%2F1742-6596%2F1168%2F3%2F032040
http://arxiv.org/abs/1710.05941
https://static.raspberrypi.org/files/product-briefs/200206+Raspberry+Pi+4+1GB+2GB+4GB+Product+Brief+PRINT.pdf
https://static.raspberrypi.org/files/product-briefs/200206+Raspberry+Pi+4+1GB+2GB+4GB+Product+Brief+PRINT.pdf
https://www.raspberrypi.org/downloads/raspbian/
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1612.08242

[38] Redmon, J. and Farhadi, A. YOLOv3: An Incremental Improvement. CoRR.
2018, abs/1804.02767. Available at: http://arxiv.org/abs/1804.02767.

[39] Reitz, K. Requests: HTTP for Humans. [online]. Python Software Foundation [cit.
2020-05-29]. Available at: https://requests.readthedocs.io/.

[40] Ren, S., He, K., Girshick, R. and Sun, J. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence. Jun 2017, vol. 39, no. 6, p. 1137–1149. DOI:
10.1109/TPAMI.2016.2577031. ISSN 1939-3539.

[41] Rosebrock, A. Real-time object detection on the Raspberry Pi with the Movidius
NCS. PyImageSearch [online], 19. Feb 2018 [cit. 2020-05-23]. Available at:
https://www.pyimagesearch.com/2018/02/19/real-time-object-detection-on-the-
raspberry-pi-with-the-movidius-ncs/.

[42] Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. 3rd ed.
Prentice Hall, 2010.

[43] Ružička, M. and Mašek, P. Real Time Object Tracking Based on Computer
Vision. Mechatronics 2013: Recent Technological and Scientific Advances. Jan 2014,
p. 591–598. DOI: 10.1007/978-3-319-02294-9-75.

[44] Saha, S. A Comprehensive Guide to Convolutional Neural Networks. Towards Data
Science [online]. [cit. 2020-01-17]. Available at:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53.

[45] Shang-Hong Lai, Chang-Wu Fu and Shyang Chang. A generalized depth
estimation algorithm with a single image. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 1992, vol. 14, no. 4, p. 405–411.

[46] Sivaraman, S. and Trivedi, M. M. Looking at Vehicles on the Road: A Survey of
Vision-Based Vehicle Detection, Tracking, and Behavior Analysis. IEEE
Transactions on Intelligent Transportation Systems. Dec 2013, vol. 14, no. 4,
p. 1773–1795. DOI: 10.1109/TITS.2013.2266661. ISSN 1558-0016.

[47] Spark User Manual [online]. 2017-10 [cit. 2020-05-28]. 53–54 p. V1.6. Available at:
https://dl.djicdn.com/downloads/Spark/Spark_User_Manual_v1.6_en.pdf.

[48] Specifications. Raspberry Pi 4 Tech Specs [online]. [cit. 2020-05-25]. Figure. Available
at:
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/.

[49] TensorFlow Conv2D Layers: A Practical Guide [online]. [cit. 2020-01-06]. Available at:
https:
//missinglink.ai/guides/tensorflow/tensorflow-conv2d-layers-practical-guide/.

[50] UUID objects according to RFC 4122. Internet Protocols and Support [online]. The
Python Standard Library [cit. 2020-05-29]. Available at:
https://docs.python.org/3/library/uuid.html.

46

http://arxiv.org/abs/1804.02767
https://requests.readthedocs.io/
https://www.pyimagesearch.com/2018/02/19/real-time-object-detection-on-the-raspberry-pi-with-the-movidius-ncs/
https://www.pyimagesearch.com/2018/02/19/real-time-object-detection-on-the-raspberry-pi-with-the-movidius-ncs/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://dl.djicdn.com/downloads/Spark/Spark_User_Manual_v1.6_en.pdf
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://missinglink.ai/guides/tensorflow/tensorflow-conv2d-layers-practical-guide/
https://missinglink.ai/guides/tensorflow/tensorflow-conv2d-layers-practical-guide/
https://docs.python.org/3/library/uuid.html

[51] Veen, F. The neural network zoo. THE ASIMOV INSTITUTE [online]. [cit.
2020-01-05]. Available at: https://www.asimovinstitute.org/neural-network-zoo/.

[52] Wojke, N., Bewley, A. and Paulus, D. Simple Online and Realtime Tracking with
a Deep Association Metric. In: IEEE. 2017 IEEE International Conference on Image
Processing (ICIP). 2017, p. 3645–3649. DOI: 10.1109/ICIP.2017.8296962.

[53] Zhang, X., Luo, H., Fan, X., Xiang, W., Sun, Y. et al. AlignedReID: Surpassing
Human-Level Performance in Person Re-Identification. CoRR. 2017, abs/1711.08184.
Available at: http://arxiv.org/abs/1711.08184.

47

https://www.asimovinstitute.org/neural-network-zoo/
http://arxiv.org/abs/1711.08184

Appendix A

Usage

A.1 Run instructions
Quick run manual:

usage: person_tracking.py [-h] -o DETECTOR -m MODEL
[-l LABELS] [-r LOG] [-v VIDEO] -s CONFIG
[-c CONFIDENCE] [-d DEVICE]

optional arguments:
-h, --help show this help message and exit
-o, --detector detector model choice
-m MODEL, --model MODEL

path to pre-trained model, directory should
contain all other necessary model files

-l LABELS, --labels LABELS
path to labels file, each label should be on
a new line

-r LOG, --log LOG path to csv log file of flight record
-v VIDEO, --video VIDEO

path to video recording of the flight
which should be analysed

-s CONFIG, --config CONFIG
path to used camera configuration file

-c CONFIDENCE, --confidence CONFIDENCE
minimum probability to filter weak detections

-d DEVICE, --device DEVICE
device to run inference on (typically "MYRIAD" or
"CPU")

48

usage: viewer.py [-h] -l HOST [-p PORT]

optional arguments:
-h, --help show this help message and exit
-l HOST, --host HOST set server part host name
-p PORT, --port PORT set server part port number

A.2 Example of a configuration file
• Configuration file for FC1102 camera type, which is mounted to DJI Spark drone:

[camera]
type = FC1102
sensor_width = 6.17 # in mm
sensor_height = 4.55 # in mm
focal_length = 25 # in mm
fov = 81.9 # in degrees

49

Appendix B

Used libraries summary table

• Python 3.6

• Bokeh 2.0.1

• Flask 1.1.2

• NumPy 1.18.2

• OpenCV 4.2.0

• OpenVINO 2020.1.023

• requests 2.23.0

• simplejson 3.13.2

• tornado 5.1.1

OS versions:

• Raspbian GNU/Linux 10 (buster)

• Ubuntu 18.04.4 LTS

50

	Introduction
	Determining location of a person using video recording
	Object distance from a camera
	Distance estimation in a single-camera system
	Additional data from various sensors
	Neural networks in image processing
	Object Detection – object localisation and classification
	Re-identification of person in frames

	System Proposal and Implementation
	Similar works tackling these problems
	Platform – The chosen hardware
	Inputs – The necessary data for tracking
	Additional software – The frameworks and libraries
	Solution design
	Application implementation details

	Experiments
	Methods summary
	Dataset & data sources
	Experiments and testing
	Overall system performance

	Conclusion
	Bibliography
	Usage
	Run instructions
	Example of a configuration file

	Used libraries summary table

