
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

CRYPTOCURRENCY NODE MONITORING
MONITORING UZLŮ KRYPTOMĚNOVÝCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR ANDREJ ZAUJEC
AUTOR PRÁCE
SUPERVISOR Ing. VLADIMÍR VESELÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav informačních systémů (UIFS) Akademický rok 2019/2020

 Zadání bakalářské práce

Student: Zaujec Andrej
Program: Informační technologie
Název: Monitoring uzlů kryptoměnových sítí
 Cryptocurrency Node Monitoring
Kategorie: Počítačové sítě
Zadání:

1. Nastudujte si teorii za nejdůležitějšími kryptoměnami (Bitcoin, Ethereum, Ripple, EOS,
Stellar, Cardano) a seznamte se s principy provozu klientů jejich peer-to-peer sítí, zaměřte
se přitom zejména na komunikační protokoly a RPC API klientů.

2. Identifikujte relevantní metadata související se stotožňováním zařízení, na kterých
kryptoklienti běží a navrhněte platformu pro jejich dlouhodobý sběr.

3. Dle doporučení vedoucího implementujte platformu z bodu 2 a pokuste se o souvislejší sběr
metadat nad vybranou kryptoměnovou sítí.

4. Otestujte vaše řešení: a) analyzujte velikost peer-to-peer sítě v čase; b) zaměřte se na
zhodnocení škálovatelnosti monitoringu. Diskutujte možná řozšíření.

Literatura:
Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and
cryptocurrency technologies: a comprehensive introduction. Princeton University Press.
Bitpay, Guides - Bitcore, [online] https://bitcore.io/guides, [2018-10-19].

Pro udělení zápočtu za první semestr je požadováno:
Body 1 a 2 včetně.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Veselý Vladimír, Ing., Ph.D.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2019
Datum odevzdání: 28. května 2020
Datum schválení: 16. října 2019

Powered by TCPDF (www.tcpdf.org)

Zadání bakalářské práce/23067/2019/xzauje00 Strana 1 z 1

Abstract
The goal of this bachelor thesis is to monitor nodes in the Bitcoin peer-to-peer network and
to estimate the size of the network in a given time. Monitoring of nodes includes gathering
metadata about them and creating activity records about how long they are participating in
the network. The proposed solution uses the Bitcoin Core client without any modification
to obtain all information about the network and nodes. The implemented platform enables
gathering metadata (protocol version, user agent, services, IP address, port number) about
found nodes. It obtains information about which nodes are in the network for the given
time as well. Created API exposes collected data from the platform. Docker containers
encapsulate each component of the platform and enable simple deployment within a few
minutes.

Abstrakt
Cielom tejto bakalárskej práce je monitorovanie uzlov v Bitcoin peer-to-peer sieti a odhad-
nutie veľkosti siete v danom čase. Monitorovanie uzlov zahŕnňa zbieranie metadát o daných
uzloch a tiež aj vytváranie záznamov činnosti o tom ako dlho boli jednotlivé uzly súčasťou
siete. Navrhnuté riešenie využíva Bitcoin Core klienta bez ďalších modifikácií na ziste-
nie všetkých informácií o sieti a uzloch. Implementovaná platforma umožnuje zbieranie
metadát (verzia protokolu, verzia agenta, ponúkané služby, IP adresa, číslo portu) o náj-
dených uzloch. Taktiež je schopná získavať informácie o tom, ktoré uzly sa náchadzajú v
sieti v danom čase. Vytvorené API ponúka zozbierané dáta z platformy. Každá kompo-
nenta platformy je zapúzdrená v Docker kontajneroch čo umožnujé jednoduché nasadenie
celej platformy v priebehu niekoľkých minút.

Keywords
scanning, peer-to-peer, nodes, monitoring, cryptocurrencies.

Kľúčové slová
prehladávanie, peer-to-peer, uzly, monitorovanie, kryptomeny.

Reference
ZAUJEC, Andrej. Cryptocurrency Node Monitoring. Brno, 2020. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Vladimír
Veselý, Ph.D.

Rozšírený abstrakt
Cieľom tejto bakalárskej práce je monitorovanie uzlov v Bitcoin peer-to-peer sieti a odhad-
nutie veľkosti siete v danom čase. Kryptomeny sa v posledných časoch tešia nevídanej
obľube. Inak to nie je ani v prípade Bitcoinu, ktorý má najväčší podiel na trhu kryptomien
podľa Coinmarketcap1.

Fungovanie Bitcoinu stojí na niekoľkých hlavných pilieroch. Jeden z týchto pilierov je
peer-to-peer sieť tvorenými uzlami. Uzly využívajú špeciálny vytvorený protokol na ap-
likačnej úrovni pre účely komunikácie. Jeden z príkazov v tomto protokole umožňuje opý-
tanie sa uzlu na adresy ďalších uzlov, s ktorými má aktívne spojenie. Opakovaním volaním
tohoto príkazu je potencionálne možné preskúmať celú sieť a odhadnúť jej veľkosť v danom
čase. V prvej časti práce je vysvetlená základná problematika a motivácia tejto práce. V
druhej časti sú naštudované potrebné znalosti ohľadom fungovania kryptomien, rozdelenie
jednotlivých typov uzlov a tiež aj podrobnejšie preskúmané protokoly vybraných kryp-
tomien ako Bitcoin, Ethereum, Ripple a EOS. Bitcoin protokol je rozobraný detailjnešie,
ako ostatné protokololy a taktiež je tam preskúmaná možnosť prehladania celej siete po-
mocou využitia volania spomínaného príkazu.

V tretej časti práce je rozobraná analýza metadát, ktoré jednotlivé uzly o sebe navzájom
vedia a taktiež aj využitie zvolených metadát na jednoznačnú identifikáciu uzlov. Taktiež v
tejto časti práce je navrhnutá platforma, ktorá sa zameriava na vyhľadávanie nových uzlov,
naväzovanie aktívnych spojení, získanie zvolených metadát a vytváranie záznamov o dĺžke
zotrvania jednotlivých uzlov v sieti. Platforma využíva oficiálnu implementáciu2 Bitcoin
Core klienta bez ďalších úprav. Všetky informácie ohľadom uzlov a siete sú čerpáné z Bit-
coin Core klienta pomocou jednoduchých troch volaní aplikačného rozhrania spomínaného
klienta.

V štvrtej časti práce je objasnená implementácia navrhnutej platformy a tiež sú tam
detailnejšie popísané jednotlivé komponenty a princípy ich fungovania v danej platforme.
Hlavné komponenty sú implementované v Pythone. Na komunikáciu medzi jednotlivými
komponentami je používaná Kafka zatiaľ, čo na monitorovanie celej platformy pomocou
metrík slúži Prometheus v kombinácií s Grafanou. Grafana vizualizuje pozbierená metriky
a vytváraná z nich interaktívne grafy.

Vyhodnotenie a validácia získaných výsledkov z týždenného testovania platformy je v pi-
atej časti práce. Jeden z výsledkov testovania dokazuje, že použitá platforma s Bitcoinovým
klientom je konkurencieschopná oproti riešeniu platformy Bitnodes3, ktoré využívá len
špecifické volania na úrovni Bitcoinového protokolu. Narozdiel od použitia Bitcoinového
klienta a volania jeho aplikačného rozhrania, je riešenie od Bitnodes závistlé na aktuál-
nej verzií protokolu a pri vydaní novšej verzie protokolu sa stáva nekompatibilné pričom
aplikačné rozhranie použitého klienta sa mení len zriedka.

1https://coinmarketcap.com/
2https://github.com/bitcoin/bitcoin
3https://bitnodes.io/

Cryptocurrency Node Monitoring

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatne pod vedením pana Ing.Vladimíra
Veselého Ph.D. Uvedl jsem všechny literární prameny, publikace a další zdroje, ze kterých
jsem čerpal.

. .
Andrej Zaujec
May 28, 2020

Acknowledgements
I would like to thank my supervisor Mr. Ing. Vladimír Veselý, Ph.D., for his endless support
and patient guidance. As a sign of gratitude, here is a recipe for my favourite pancakes.

Put 100g plain flour, two large eggs, 300ml milk, 1 tbsp sunflower oil, and a pinch of
salt into a bowl, then whisk to a smooth batter. Set aside for 30 minutes to rest. Set a
frying pan over medium heat and carefully wipe it with some oiled kitchen paper. When
hot, cook the pancakes for 1 min on each side until golden. Once cold, serve the pancakes
with curd mixed with strawberry jam.

Contents

1 Introduction 3

2 Theory 4
2.1 Key Concepts . 4

2.1.1 Blockchain . 4
2.1.2 Distributed Ledger and Consensus 5
2.1.3 Proof of Work . 5
2.1.4 Proof of Stake . 6
2.1.5 Summary of Concepts . 6

2.2 Nodes and Clients . 6
2.2.1 Types of Nodes . 6
2.2.2 Clients . 7

2.3 Cryptocurrencies . 8
2.3.1 Bitcoin . 8
2.3.2 Ethereum . 8
2.3.3 Ripple . 9
2.3.4 EOS . 9

2.4 Communication Protocol . 9
2.5 Bitcoin Protocol . 10
2.6 Other Cryptocurrencies Protocols . 16
2.7 Bitcoin Core API . 17

3 Analysis and Design 21
3.1 Analysis of Metadata . 21
3.2 Platform Design . 21

3.2.1 Logical Scheme . 22
3.2.2 Database Model . 23

3.3 Used technologies . 24

4 Implementation 26
4.1 Wrappers . 26
4.2 Database . 27
4.3 Modules . 29

4.3.1 Address_Puller . 30
4.3.2 Address_Publisher . 30
4.3.3 Node_Watcher . 30
4.3.4 API . 31

4.4 Metrics . 32

1

5 Testing 33
5.1 Bitcoin Client Behaviour . 33
5.2 Bitcoin Client Requirements . 34
5.3 Summary of obtained data . 35
5.4 Discovery of my node . 37
5.5 Validating results . 38

6 Conclusion 41

Bibliography 42

A Figures 44

B CD contents 48

2

Chapter 1

Introduction

Cryptocurrencies are ubiquitous in the modern world. Nowadays, cryptocurrencies are
seen more and more as a possible alternative to standard currencies. Even in some of the
known chain stores is possible to pay with cryptocurrencies1. Cryptocurrencies like Bitcoin,
Litecoin, Ethereum, and Ripple are based on few foundations. Peer-to-peer (P2P) network
and communication within this network are one of the foundations. Participants in the
P2P network are called nodes. Nodes are accepting new connections, sending data to other
nodes with which they have an active connection. Data exchange between nodes depends
on the compliance of communication protocol.

Given protocol is determining everything, from begin of communication through con-
necting to nodes and sending data. In the case of Bitcoin, the protocol enables to ask node
about his active connections. Thanks to this feature of the protocol, the adjusted node
can crawl the whole P2P network and find most of the active participants. The network
participants do not have an obligation to communicate and stay active the entire time.
Because of this fact, it can be hard to predict network size and active nodes in the given
time.

This bachelor thesis aims to crawl the Bitcoin P2P cryptocurrency network and to
monitor found nodes. My primary motivation is to estimate network size by finding all
nodes at the given time and gather metadata about discovered nodes. Another motivation
for this thesis is to contribute with results to TARZAN2 project. Thesis has following
structure. Theoretical prerequisites are described in Chapter 2. Chapter 3 contains the
analysis of metadata and the design of the platform. Chapter 4 describes the more in-
depth details of the implemented platform. Chapter 5 provides information about the
evaluation and validation of obtained data by the implemented platform.

1https://www.lifewire.com/big-sites-that-accept-bitcoin-payments-3485965
2https://www.fit.vut.cz/research/project/1063/.cs

3

Chapter 2

Theory

The focus of this chapter is to explain theoretical prerequisites. The chapter starts with a
brief description of several key mechanisms behind cryptocurrencies, and what are nodes
in this context with possible types of nodes.

Then, an explanation of cryptocurrency clients and remote procedure call (RPC) ap-
plication programming interface (API) follows. Furthermore, there are mentioned several
cryptocurrencies with briefly described ideas behind them and with examples of their clients.
Next, the chapter discusses the basics of protocol and its different versions.

The chapter ends with the description of chosen messages from the protocol and Bitcoin
client API.

2.1 Key Concepts
There are several key mechanisms that the majority of cryptocurrencies have included in
them. The common mechanism of these different cryptocurrency systems is the public
ledger known as blockchain that is shared between network participants and the use of
native tokens as a way to incentives participants for running the network in the absence of
a central authority[8].

Other mechanisms are Proof of Work (PoW) and Proof of Stake (PoS). Both of these
are variations of the consensus mechanism. A brief explanation of the mentioned consensus
mechanisms will follow.

2.1.1 Blockchain

The transactions are at the lowest level of the hierarchy. These are collected and encapsu-
lated into larger chunks of information called blocks. Blocks are linked together and create
a chain called a blockchain. The next block always points to the previous block by holding a
reference to it. This reference is a cryptographic hash of the previous block. Hashes secure
the irreversibility of blocks, so there cannot be any further changes in already linked blocks.
This applies to changes in the transactions as well, as blocks include them. Attempt to
change block will end up in changed hash, so the references will not match.

The blockchain first block named genesis block is hard-coded into cryptocurrency soft-
ware. Distance between any given block and genesis block is called block height. The lastly
added block to the chain is a head block. The distance of the genesis block and head block
determines the length of the whole chain.

4

Blocks have to meet the set of rules in order to be valid. This set of rules can vary,
and users see these rules as one of the key parameters for the given cryptocurrency. Many
cryptocurrencies are founded on the concept of a slightly different set of rules that are more
comfortable for users than in other cryptocurrencies.

2.1.2 Distributed Ledger and Consensus

If blockchain was used in a centralized system that would lead to one central authority. This
authority would have to determine which blocks should be added and how the blockchain
current state should look.

On the other hand, when blockchain is distributed between several or more nodes with-
out a single authority. The majority of participants in this distributed system has to step
in and decide which block should be added. This majority of participants have to come for
voting consensus. Distributed blockchain is falling into the category of distributed ledgers.
The distributed ledger sits on multiple nodes at a given time. The nodes are communicating
through the P2P network.

Each copy of the ledger lives independently. In such a dynamically changing status of the
ledger, these publicly shared ledgers need a mechanism to ensure that all the transactions
occurring on the network are genuine, and all participants agree on a consensus. Key
features of this mechanism should be efficiency, fairness, security[4]. Synchronization of
these independent copies is happening during voting in the chosen consensus algorithm.

Once a consensus has been determined, all the other nodes update themselves with the
new, correct copy of the ledger[12]. In the context of cryptocurrencies, there are different
kinds of consensus PoW and PoS mechanisms will follow.

2.1.3 Proof of Work

The Pow consensus mechanism is the widest deployed consensus mechanism in existing
blockchains[5]. Participants are required to prove that work done by them qualifies them
the newly created block that will append to the blockchain. The participants have to solve
a computational puzzle in the case of Bitcoin.

The solution lies in finding the right nonce, so the hash of the block, including found
nonce, is lower than the current target value. The nonce is a random integer that should
be used only once. The provided solution is difficult for computing, but easy to verify. The
right combination has to be just guessed, so it is a trial-error process.

Mining involves computing hash of the block that consists of unconfirmed transactions
and nonce, during the mining process, only the nonce changes. In the case of a competi-
tive scenario in cryptocurrencies, the mining process is heavy on computational resources
because of a small-time limit due to other miners trying their best.

There is a reward awaiting miner for each mined block that ends up in the blockchain.
This reward is the biggest motivation for miners. In pursuit of finding the right nonce,
small miners are used to connecting to mining pools to increase their chances. Therefore,
the reward for finding the right nonce is split equally per provided computational power
for a given pool.

Security of the PoW mechanism is based on a condition that no person can gather more
than 50% of current computational power in the system. If the condition is no longer valid,
then such a person will easily control the adding of new blocks.

5

2.1.4 Proof of Stake

This mechanism is another possible variant for consensus. The PoS is designed to prolong
the lifetime of cryptocurrency when many miners do not back the cryptocurrency.

One of the PoW problems is computational power, which comes in hand with high
energy consumption. This implies that cryptocurrency overtime is only sustainable by
providing more and more energy to it throughout its whole life.

Mining will be harder for cryptocurrencies, which are backed by many miners bypassing
the time. Thus, it will not be that attractive for new miners, and cryptocurrency computa-
tional power may decrease. This can result in more attempts for 51% attack and controlling
the new block addition.

The PoS is designed to save cryptocurrency from the stated scenario by giving mining
power to users based on their coins’ holdings. So the power of miner is reflected by his
current stake of ownership.

For example, Bob, who holds 8% of some coins of given cryptocurrency, can only mine
8% of blocks for given cryptocurrency. To make a successful 51% attack, in this case, Bob
would have to hold at least 51% of all coins for given cryptocurrency.

This version of consensus may raise questions of rather holding coins than spending it,
which is not good at the end as well.

2.1.5 Summary of Concepts

To summarise, blockchain is an open, distributed ledger that can record transactions be-
tween two or more parties efficiently and in a verifiable and permanent way[9]. Adding new
blocks of transactions into blockchain is given into the hands of the consensus mechanism.

There are many types of consensus mechanisms. The most used are PoW or PoS.
Distributed blockchain coupled with the consensus mechanism, is one of the building stones
used by many cryptocurrencies.

The majority of cryptocurrencies are largely clones of Bitcoin or other cryptocurrencies
and simply feature different parameter values (e.g., different block time, currency supply,
and issuance scheme)[8]. Many cryptocurrencies that came after Bitcoin show little to no
improvements or innovations; therefore, these are referred to as altcoins.

2.2 Nodes and Clients
The network of nodes is what makes it possible for cryptocurrency to work. Therefore, nodes
are responsible for acting as communication points that may perform different functions.
Any device that connects to the network may be considered as a node in the sense that
they are capable of communicating with each other.

Nodes are also able to transmit data between them. Data can contain various infor-
mation about transactions, blocks, or other nodes. All this information is transmitted by
different messages in the protocol.

2.2.1 Types of Nodes

Each node defines its type according to its particular functions. Two different types of
nodes are described next.

6

Full Nodes

Full nodes are the ones that support and provide security to cryptocurrency, and they are
indispensable to the network. These nodes may also be referred to as fully validating nodes
as they engage in verifying transactions and blocks against the system consensus rules[1].
Also, full nodes can relay new transactions and blocks to the blockchain.

Full nodes download every block of transactions and check them against cryptocurrency
consensus rules. The full node is not required to have a full copy of the blockchain itself, but
it is recommended. The smaller size of the blockchain copy, the greater will be the danger
of possible failure of the given node. The node with the full copy of blockchain can only be
sure about the history of blocks. Full nodes form the backbone of the cryptocurrency by
keeping a copy of the whole blockchain itself.

Most full nodes also serve lightweight clients by transmitting their transactions to the
network and notifying them when a transaction affects their wallet. Unless enough nodes
perform this function, clients will not be able to connect through the P2P network. In that
case, the clients will have to use centralized third-party services instead.

Lightweight Nodes

The lightweight node or light node does not download the complete blockchain. Instead, it
downloads the block headers only to validate the authenticity of the transactions[3]. Thus,
lightweight nodes do not require as much space as full nodes and are easier to maintain and
run for the users.

For the user to verify his transactions, lightweight nodes use a method called Simplified
payment verification (SPV). The user only needs to keep a copy of the block headers of
the longest proof-of-work chain, which he can get by querying network nodes until he is
convinced he has the longest chain and the transaction to the block it is timestamped in[13].

Full nodes serve information about the cryptocurrency network to the lightweight nodes.
Full nodes are allowing lightweight nodes to propagate their transactions to the cryptocur-
rency network as well. This means lightweight nodes can not function without full nodes
and are entirely dependent on them.

2.2.2 Clients

Each node runs a specialized software called a client that accesses a service made available
by a server. In terms of cryptocurrency, the server is one node in the P2P network, and
service is representing the implemented protocol described by given cryptocurrency. The
node is made from the device by installing the cryptocurrency client software and exposing
it to the internet. Client software usually comes in two parts.

∙ Daemon — core of cryptocurrency program itself

∙ Graphical or Command-line interface — utility for communication with core program
through API

The second part does not always have to be included as its primary reason is to make
communication between daemon and user easier by implementing API calls as commands
or buttons.

The daemon will try to find its peers with various techniques. Afterward, when the
daemon is connected to some of its newly found peers, then the synchronization process

7

can start. In the final state, the daemon is holding a valid copy of blockchain itself and
is helping to maintain the healthy system. The daemon is listening for new blocks and
transactions, validating them, and sharing his current view of blockchain to other peers.
These processes will be in-depth, described later in the thesis. The Daemon provides many
services at the same time.

A Hypertext Transfer Protocol (HTTP) server that serves as a form of API is one of the
daemon services. This API allows user communication with the running cryptocurrency
core program. Javascript Object Notation (JSON) RPC is the most often used kind of API
in cryptocurrencies software, where JSON-RPC is RPC encoded in JSON. This is a form
of client-server interaction (caller is client, an executor is a server), typically implemented
via a request-response message-passing system[10].

Whenever the user installs the client, implicitly user will as well administrate the given
client. This is the reason why the default scope of APIs is the localhost. The mentioned
scope can be extended. The user should protect his admin role with credentials in that
case.

Important client settings as Domain Name System (DNS) seeds of the potential nodes
or maximum size of blockchain are written into the configuration file before the client starts
up. During the start, the client will read the configuration file, parse all valid commands,
and adjust his default behavior according to those commands. Calls through client API
can manipulate the behavior of the running client.

2.3 Cryptocurrencies
Despite the significant number of cryptocurrencies nowadays, there are several that stand
out because of finances invested in them and the number of active users. A brief description
of selected cryptocurrencies with their clients follows.

2.3.1 Bitcoin

Bitcoin belongs to one of the first cryptocurrencies. Bitcoin was invented in 2008 by an
unknown person or group of people using the name Satoshi Nakamoto and started in 2009
when its source code was released as open-source software[6]. Bitcoin laid down foundations
of cryptocurrencies with new key concepts that are used in many cryptocurrencies that were
introduced after him.

The official bitcoin client is Bitcoin Core programmed in the C++ language, also known
as Satoshi client. This client reflects all aspects of the official client in his implementation
and is used as the reference in terms of creating other clients. The client code can be
download from official github repository1, then compiled and ready to run. The client is
ready to serve as the full node after the initial download of the whole blockchain.

The light version of this client can be achieved with a pruning option. This option sets
the maximum size of the last n blocks in megabytes, which will be downloaded.

2.3.2 Ethereum

Ethereum is also known as a decentralized computing platform with its Turing-complete
programming language, Solidity, which is used in smart contracts. Ethereum uses the

1https://github.com/bitcoin/bitcoin

8

blockchain scripts, known as smart contracts. The smart contracts are executed programs
on the custom run-time platform called Ethereum Virtual Machine (EVM).

With smart contracts, a new way of creating applications emerged. New applications
sitting in blockchain are called dapps abbreviated from distributed applications. Ether is
naming for a token.

In comparison with Bitcoin, Ethereum has three official clients that differ in the imple-
mentation language. Ethereum clients are with official repositories:

∙ Aleth — C++ client2

∙ Geth — Go client3

∙ Trinity — Python client4

Mentioned clients are used as a reference for official clients, and third-party software can
be derived from them by forking official repositories or copy code parts.

2.3.3 Ripple

Ripple has inherited a few characteristic traits from Bitcoin. However, it is not a consensus-
based cryptocurrency but rather consensus-oriented. It is using the private global ledger
instead of the public blockchain. This means, only nodes from the chosen group are allowed
to write to this ledger.

Ripple, as well, proved itself in faster transaction processing and better scalability than
the Ethereum and Bitcoin[15]. All Ripple tokens exist now, and other ones cannot be mined
or minted. Instead, the Ripple tokens are destroyed with every transaction and serve as
proof of destruction to protect the system from malicious attacks.

The official Ripple client is called rippled, which is implemented in the C++ language
and can be download from official repository5.

2.3.4 EOS

EOS is in many ways similar to Ethereum as it aims to develop dapps in the blockchain. EOS
is trying to improve some of the Ethereum drawbacks as blockchain scalability and trans-
action fees. EOS replaced the pay-per-transaction model, which is used in the Ethereum
by PoS. Providing this change, developing and maintaining dapps is less bounded by trans-
action charges and can support many scaled dapps.

The official client is implemented in the C++ language, and its source code can be
download from the github repository6.

2.4 Communication Protocol
Cryptocurrencies like Bitcoin and Ethereum have their custom protocol built on application
level in the TCP/IP stack, whereas Ripple and EOS use WebSocket or HTTP with JSON-
RPC. Communication between nodes uses these protocols. The custom protocol defines
the rules, syntax, and semantics for communicators to follow.

2https://github.com/ethereum/aleth
3https://github.com/ethereum/go-ethereu
4https://github.com/ethereum/trinity
5https://github.com/ripple/rippled
6https://github.com/EOSIO/eos

9

Cryptocurrencies have multiple networks, where one network is main, and others serve
for testing. Testing networks can differ from the main by using different consensus algo-
rithms and developing another independent blockchain. Other testing networks may mirror
the main blockchain and serve it for testing purposes.

2.5 Bitcoin Protocol
The main network in the Bitcoin network is known as Mainnet. There are two other
versions of the Bitcoin network whose sole purpose is testing. These networks are Testnet
and Regtest.

Testnet coins are separate and distinct from actual bitcoins and are never supposed to
have any value. This allows application developers or bitcoin testers to experiment without
using real bitcoins or worrying about breaking the main blockchain.

Regtest is the network for a local testing environment in which developers can almost
instantly generate blocks on demand for testing events, and can create own coins with no
real-world value. Bitcoin protocol uses port numbers and constant string in all messages to
determine in which network the communication is happening. These constant strings and
port numbers for mentioned networks are in Table 2.1.

All communication in the Bitcoin protocol is happening through the messages. The
message consists of the header and optional payload. The message header always has four
fields. Almost all integers are encoded in little-endian. Only IP addresses and port numbers
are encoded in big-endian. All messages in the network protocol use the header format
shown in Table 2.2. If the payload is empty, as in verack and getaddr messages, the checksum
will always be 0x5df6e0e2. This checksum is computed from (SHA256(SHA256(<empty
string>))).

Network Default Port Start String
Mainnet 8333 0xf9beb4d9
Testnet 18333 0x0b110907
Regtest 18444 0xfabfb5da

Table 2.1: Different Bitcoin networks

Field Size Description Data type Comments

4 magic uint32_t
Magic value indicating message
origin network, and used to seek next
message when stream state is unknown

12 command char[12] ASCII string identifying the packet content,
NULL padded

4 length uin32_t Length of payload in number of bytes
4 checksum uint32_t First 4 bytes of sha256(sha256(payload))

Table 2.2: Message header

The Bitcoin protocol primary intention is to share information about transactions or
blocks. Following Figure 2.1 shows messages that request or response with that kind of
information.

10

Figure 2.1: Data messages

Most used messages are enumerated and summarized in the list below. Messages, which
are not included in the given list, are either deprecated or described later in the thesis.

∙ ping, pong – These messages are swapped between nodes in order to check if the
connected peer is still active.

∙ version, verack – This message pair is used at the beginning of the connection. Firstly,
version is sent from the node initiating a connection, and then response message with
verack payload follows from the node, which accepts the connection.

∙ inv – The inventory is represented as inv message. Inventories serve as unique identi-
fiers for information and are used by many data messages for blocks and transactions.
Each inventory consists of the data type identifier and the hash of that object that
serves as a unique identification.

∙ getheaders – Similarly, getheaders message requests for same information as getblocks
but response is stored into headers message. Difference between responses is in max-
imum number of entries, while into inv can fit 500 entries, headers can store up to
2000.

∙ getblocks – This message requests inv of block header hashes, which are higher than
start hash and lower than stop hash. Both start hash and stop hash are provided in
getblocks. Hashes that satisfy the given range are returned in inv as the response.

∙ getdata – Getdata queries node for specific data object. Information about selected
data object were provided in inv before getdata. If specified data object was found,
tx, block or merkleblock message can be returned as response. On the other hand, if
data object was not found notfound message is returned.

∙ mempool – Mempool message requests the unconfirmed validated transactions from
node. Response for mempool is the view of the node on relayed unconfirmed transac-
tions returned in inv. This response is the source for new transactions to be included
in a new block by the miners.

11

A Bloom filter is a bit-field in which bits are set based on feeding the data element to a
set of different hash functions[7]. This filter is used mainly by the SPV clients for requesting
only matching transactions and blocks from the full nodes, which includes the SPV clients’
wallets. The Bloom filter messages are described in the next list.

∙ FilterAdd, FilterClean, FilterLoad – These messages serve as settings for the Bloom
filter of the receiving peer from the sending peer. The receiving peer will not relay
transactions that do not meet announced settings to the peer that required filtered
messages. The peer sets specific filter by sending FilterAdd or FilterLoad.

∙ FeeFilter – This message is also used by the node to announce its peers that it will
not let any transactions below a specified fee into its memory pool.

Version message has to be exchanged always at the start of communication. Interesting
payload attributes of this message with brief comments are in Table 2.3. Other attributes
that are not in table are timestamp, addr_recv_services, addr_recv_IP_address, nonce,
relay.

Name Description

version The highest version of protocol understood
by the transmitting node.

services The services supported by the transmitting node
encoded as a bit-field.

user_agent User agent with version to distinguish clients
on network.

addr_trans
IP address

The IPv6 address of the transmitting node in
big endian byte order. IPv4 addresses can be
provided as IPv4-mapped IPv6 addresses.

addr_trans
port

The port number of the transmitting node
in big endian byte order.

start_height The height of the transmitting node’s
best block chain or best block header chain.

Table 2.3: Attributes of version message

Mentioned services identifiers from Table 2.3 are described in Table 2.4.

Peer Discovery

After client starts functioning, it has to find out another active node to be able to connect
to P2P network.

Firstly, client checks its local database of the previous connections. If case local database
is empty, client will try to get IP addresses by DNS lookup. Domain names used in lookups
are called DNS seeds and originates directly from the source code of client. These DNS
seeds are hard-coded into client source code and serve as a backup when everything else
fails. Clients will always try to avoid querying DNS seeds unless they have to. If even DNS
seeds fails and none of the known nodes are active, client last fall back will be a set of
hard-coded IP of potential peers.

After the successful connection to one of IP addresses acquired from any of the previously
mentioned ways, client uses another method for discovering new active peers. New method

12

Value Name Description

0x00 Unnamed
This node is not a full node.
It may not be able to provide any data
except for the transactions it originates.

0x01 NODE_NETWORK
This is a full node and can be asked
for full blocks. It should implement all
protocol features available.

0x04 NODE_BLOOM This is a full node capable and willing to
handle bloom-filtered connections.

0x0400 NODE_NETWORK_LIMITED
This is the same as NODE_NETWORK
but the node has at least
the last 288 blocks.

Table 2.4: Services identifiers

of peer discovery is by address rumoring, where connected peers gossip about other potential
available peers. Peer will gossip only about peers with which peer has active connection.
Peers sustains active connection by swapping ping, pong messages with each other.

Peer Connection

Connecting to a peer is done by sending the version. The remote peer responds with its
own version. Then, both peers send a verack to each other to indicate the connection has
been established, as can be seen in Figure A.3

Both nodes have to exchange version before any other communication happens. Until
this exchange, no other messages will be accepted. The version provides key information
about the transmitting node. The receiving node will send verack as a sign of acceptance.
The payload of version is described below in Table 2.3.

The node can begin sending other messages after it receives verack. If the node wants
to know about other active nodes, it will send the getaddr message. The getaddr requests
an addr message from the receiving node, preferably one with lots of IP addresses of other
nodes. The transmitting node can use those IP addresses to find out other available nodes
rather than waiting for unsolicited addr to arrive over time.

In order to maintain a connection with the peer, the nodes by default will send the ping
to peers before 30 minutes of inactivity. If 90 minutes pass without a pong being received
by the peer, the client will assume that the connection has closed.

Downloading Copy of Blockchain

Before a full node can validate unconfirmed transactions and recently-mined blocks, it
must download and validate all blocks from the genesis block to the current tip of the best
blockchain[2]. This process of validation whole blockchain is called Initial Block Download
or initial sync. It does not have to be done only once as word initial suggests.

This process is done regularly when the node has piled up a large number of blocks
that were added to blockchain but the node did not download them. One of the cases is
when the node had been offline for a longer time or there is a large number of blocks, which
should be downloaded. The Bitcoin Core client does initial synchronization when the last
block on the local blockchain has timestamp older than 24 hours or when the last block is

13

more than 144 blocks deeper than the newest best block. The newest best block is block
which was added latest to the global blockchain.

The node at first start only contains one block in its local blockchain, this block is the
genesis block. At this point, the node will choose his sync peer also known as sync node,
to whom new node sends messages about blocks during the syncing process.

Bitcoin Core from version 0.10.0 uses a new initial synchronization method called
headers-first. Instead of downloading the whole blockchain in order as in the previously
used block-first approach, the headers-first method aims to firstly download the headers
of blockchain, validate them as best as possible and then download blocks in parallel from
multiple peers.

Initial sync starts with the node choosing the sync peer and sending him a getheaders.
This message contains the header hash of the new node best local block. Stop hash is set to
zeros in case the node wants as response maximum number of headers which can be 2000.
The sync peer looks at the received header hash from getheaders and match local blocks
with that header hash. The sync peer replies with all following blocks after that matched
block until the block that matches stop hash from getheaders. In case stop hash is set to
zeros, the sync peer replies with the maximum 2000 headers or less, it depends how many
blocks follow matched header hash.

The new node will try to validate the received headers as much as possible by checking
headers against the consensus rules, full validation can be only done with all transactions
from that block. The new node can do 2 things in parallel after the partial validation of
headers. It can download more headers or download blocks.

∙ Download more headers: The new node can repeat the same mentioned process with
the sync peer. However, if the sync peer responds with less than 2000 headers on
getheaders then the new node will send getheaders to all its active peers to see their
views of the blockchain. By comparing multiple views on the blockchain, the initial
sync node can quickly discover dishonest nodes and remove them from the active
peers list.

∙ Download blocks: The new node will use information from download headers and
request specific blocks with getdata. This request for the blocks is directed to several
active peers of the new node. Thanks to this, the load is spread and does not depend
on the upload of only one sync peer as in the process of downloading first headers.

The Bitcoin Core header-first mode is using the 1024 block moving window. If the
whole block was not downloaded yet but Bitcoin Core is ready to validate it then Bitcoin
Core will wait at least 2 seconds to the peer, which should send the block. If the block does
not arrive after the waiting, Bitcoin Core client will disconnect from that peer and tries to
connect to the another node. The summary of messages used in this mode is in Table 2.5.

Message From ->To Payload
getheaders node ->Sync node One or more header hashes
headers Sync node ->node Up to 2000 block headers

getdata node ->active nodes One or more block inventories
computed from header hashes

block active nodes ->node One serialized block

Table 2.5: Header-first mode messages

14

Whenever sync is complete, the newly synced node is ready for listening and broadcast-
ing the new blocks and the transactions created in the network.

Block Broadcasting

The nodes shares newly discovered blocks by the broadcasting. This can be done using one
of the following methods.

∙ Unsolicited Block Push: The node shares the new block by block message to each of
its peers. This can skip the standard relay method because none of the nodes peers
knows nothing about the newly discovered block.

∙ Standard Block Relay: The node will send inventory with the newly discovered block
encapsulated into inv to each of its peers. Block-first peers will request the new block
using getdata while header-first peers will do this via the getheaders followed with the
getdata.

∙ Direct Headers Announcement: The node can skip relay via inv and directly send
headers with the new block header. The header-first peers will immediately validate
the header and then request the block by getdata.

The node will reply to all the requests considering request type by sending block, headers
or tx. The header-first peers can choose what they prefer between announcements using
headers or rather using inv. The choice is made with special sendheaders message during
connecting.

The default behavior in Bitcoin Core client is set to relay the new block via direct header
announcement to all peers that requested it and use the standard relay to others.

Transaction Broadcasting

The transactions are relayed to peers using inv. Getdata should follow from peers who
have an interest in the transaction. The transaction details are sent with tx message.
Peers, which received transaction shares it to others in same way as described in case the
transaction is valid.

Memory Pool

The unconfirmed transactions are essential for miners because these transactions can be
used in the next new block. The unconfirmed transactions have to be relayed throughout the
network to miners. This functionality is provided by full nodes that keep these transactions
in their memory pools and move them around the network using transaction broadcasting.

The unconfirmed transactions are stored in non-permanent memory, so whenever the
client is restarted, each unconfirmed stored transaction is deleted. Another way of delet-
ing the unconfirmed transactions is the purging of memory for other transactions. The
transaction is also removed from the pool in case it used in the newest added best block.

Mining the transaction represents adding the transaction to the block. The blocks,
which were created but not used because the different block at the same height was used
instead, are called stale blocks. The transactions used in stale blocks can be re-added to
the pool. Never mined transactions tend to disappear from the network slowly. In fact, one
study observed that 42% of all made transactions were not included in the blockchain after

15

one hour from their first appearance, 20% of the all made transactions were not included
in the blockchain even after 30 days[14].

Misbehaving in Network

The nodes, which relays wrong information, results in misbehaving and increasing the ban
score in the eyes of other nodes. The misbehaving causes are taking up a lot of bandwidth
and computing resources. Ban score limit and ban duration in seconds are set in the
configuration of the client. Each node maintains ban scores for its peers. Whenever one
of the ban scores reaches the ban score limit for some peer, the peer will be banned for a
period of ban duration. The default ban period is 24 hours.

Versions of Protocol

Many protocol versions have been developed throughout the years. Different versions are
still used across nodes. Several notable versions of the Bitcoin protocol, with the most
recent versions listed first are in Table 2.6.

Version Release date Major changes
70015 Jan 2017 New banning behavior for invalid compact blocks

70014 Aug 2016 Added sendcmpct, cmpctblock,
getblocktxn, blocktxn messages

70013 Aug 2016 Added feefilter message, remove alert message
70012 Feb 2016 Added sendheaders message
70002 Mar 2014 Added reject message

70001 Feb 2013 Added notfound, filterload, filteradd,
filterclear, merkleblock message

Table 2.6: Different versions of protocol

2.6 Other Cryptocurrencies Protocols
Ethereum Protocol

Ethereum uses network ID and the first block for the distinction of networks, these two
attributes have to be the same at the beginning of nodes connection. Otherwise, the nodes
will reject the connection to each other. Ethereum has more networks in comparison with
the Bitcoin. A few examples of the Ethereum networks are in Table 2.7, and the actual
list of all active networks with network IDs can be found on this website7. Each network is
running on the port 30303.

Ethereum protocol is TCP/UDP based custom transport protocol build on messages
similar to the Bitcoin protocol messages. Examples of the Ethereum protocol messages
with name and the brief description are in Table 2.8.

Ripple

Ripple networks differ by domain names and ports. These attributes are set in the con-
figuration file of the client. The default port used in networks is set on 51235. Domain

7https://chainid.network/

16

Network ID Name Network

1 Ethereum
Mainnet mainnet

4 Ethereum
Testnet Rinkeby rinkeby

42 Ethereum
Testnet Kovan kovan

Table 2.7: Examples of Ethereum networks

Message Brief description
status Inform peer of its state after established connection

newblockhashes Inform about one or more block hashes which
appeared in network

transactions Inform peer about one or more transactions
that it should know about

getblockheaders Request peer for a information about block headers

blockheaders List of block headers as response for
getblockheaders message

getblockbodies Request peer for a information about block bodies

blockbodies List of block bodies as response
for getblockbodies message

newblock Inform peer about single block that is should
know about

getnodedata Request peer for a information containing
state tree nodes

nodedata Provide set of state tree nodes

getreceipt Request peer for a information about
receipts of block hashes

receipts Provide set of receipts

Table 2.8: Ethereum protocol messages

names are DNS seeds for the client; these seeds will resolve in IP addresses of active peers.
Domain names for Ripple networks are in Table 2.9.

Ripple nodes are using HTTP and WebSockets protocols on the application layer. Com-
munication between nodes is happening through JSON-RPC requests. The same communi-
cation channel is used for communication between user and client. Method calls are divided
into public and admin. Admin methods are available only if the user connects from a spec-
ified host and port, and these attributes are set at the configuration file. Method names
with brief description are in Table 2.10

2.7 Bitcoin Core API
A description of the Bitcoin Core API calls will follow. Cryptocurrency clients are often
using JSONRPC in order to communicate with the running daemon, as mentioned in Sub-
section 2.2.2. This holds for the Bitcoin Core client as well. The format of the Bitcoin Core

17

Domain name Network type
s1.ripple.com mainnet
s.altnet.rippletest.net testnet
s.devnet.rippletest.net devnet

Table 2.9: Ripple networks

Method name Brief description
Public methods

ledger Request information about
the public ledger

tx Request information about
the single transaction

submit Send unconfirmed transaction
to the network

subscribe Request periodic notifications
from peer

server_info Request the server for a human-readable
information about the server

ping Test connection status and latency
Private methods

connect Force server to connect a specific peer
stop Gracefully shut down the server

ledger_accept Force the server to close current ledger and
move to the next ledger number

Table 2.10: Ripple client methods

RPC is based on JSONRPC specification8. Valid HTTP request with JSONRPC is sent
to API, processed by the client, and the response will follow. The request and response
attributes with types, names and brief description are in Table 2.11 and in Table 2.12.

The method attribute is only required part of the RPC request whereas params
attribute is not, as mentioned in Table 2.11. This is because many API methods do not
require any parameters at all. Bitcoin Core client API does not expose the direct use
of protocol messages. The client provides many API calls with the limited scope of use,
instead. Some of these API calls encapsulates sending protocol messages. However, any

8https://www.jsonrpc.org/specification_v1

Name Type Required Description
jsonrpc number False Version of the RPC request.

id string False String that will be returned
with response.

method string True The RPC method name.

params array False An array containing parameters
values for RPC method.

Table 2.11: JSON-RPC request attributes

18

Name Type Presence Description
result any True JSON response object
id string True String that was provided with request.

error object True The object containing description of
occurred error, otherwise Null.

code number True The error code number.

message string True Text description of error or empty
string

Table 2.12: JSON-RPC response attributes

abuse of these API calls is secured by the open-sourced implementation, which results in
zero mistakes. In this thesis, basic API calls are used without any modification of the
Bitcoin Core client code. Thus, there are a few API calls, which can be used to create
new connections and monitor network. Other API calls can provide information about the
current daemon knowledge or status of the daemon. Description of the several API calls
with its names, parameters, and responses will follow next.

getpeerinfo

The getpeerinfo method returns information about connected peers as JSON objects in the
array. Each object represents one connected peer. There are many attributes inside these
objects. The most interesting ones for this thesis are in Listing 2.1. This API call does not
require any parameters.

[
{

"addr":"host:port", // The IP address and port of the peer
"subver": "/Satoshi:0.10.0/", // The string version
"version": 70015, // The peer version
"services":"0000000000000409", // The peer services
"conntime": 1589906318, // The connection timestamp
"relaytxes":true, // Peer asked for relaying transactions
"lastsend": 1589906170, // The timestamp of the last send
"lastrecv": 1589906133, // The timestamp of the last receive
"bytessent": 392, // How many bytes were sent to peer
"bytesrecv": 1046, // How many bytes per received by peer
"timeoffset": 0, // The time offset in seconds
"pingtime": 0.797432, // Average duration of ping round-trip time in seconds
"minping": 0.207591, // Minimum round-trip time observed in seconds
...

},
]

Listing 2.1: One object of getpeerinfo response

19

getnodeaddresses

The getnodeaddresses RPC method returns information about addresses that were seen by
the node. These addresses can be used to discover new peers. Addresses are returned as
objects in the array. One address object has several attributes, which are in Listing 2.2.
This call accepts one optional parameter that represents how many addresses it should
return. The maximum number of possible addresses returned in one call is 2500. The
number of addresses sent by the client is set to around 23% of the total number of stored
addresses without exceeding the threshold of 2500[11].

[
{

"time": 1589888960, //The timestamp when address was last seen
"services": 1037, //Which services should be supported by node with this address
"address": "2403:5800:c100:cf00:14bf:7b10:a84e:b45", //IPv4 or IPv6 address
"port": 8333 //The port number

},
{

"time": 1589193445,
"services": 1037,
"address": "77.191.93.43",
"port": 8333

}
...

]

Listing 2.2: Two objects of getnodeaddresses response

addnode

The main use of addnode is to either add the new peer or remove the early added peer from
the client. The addnone RPC behavior depends on the provided parameters. It requires 2
parameters, first one is action, which can be add, onetry, remove. The second parameter is
the address that will be added or removed. The add option secures that the client will try
to keep initiating the connection with the provided address if no active connection exists.
But, the add option can be activated with only eight possible addresses at a time. The
client keeps an internal list of the addresses requested with the add option.

In contrast, the onetry option provides only one attempt to initiate the connection, but
it can be used without limitation. This implies that if 2000 calls with the onetry option
attempts turns out successful, the client will obtain 2000 new peers. The remove option
is used for removing addresses that were requested with the add option. The requested
address with the remove option will be disconnected if there is an active connection with
such an address, and no other connection attempts are directed to that address. The
addnode RPC returns JSON Null in the result attribute of the response.

20

Chapter 3

Analysis and Design

This chapter describes the analysis of collecting data and the platform design for monitoring
nodes and collecting metadata about found nodes. The first section contains the metadata
analysis, followed by the platform design in the second section. The third section focuses
on the of the used technologies by the proposed platform.

3.1 Analysis of Metadata
Metadata can be described as data about other primary data. More information about
primary data can bring up and show unseen relations. Metadata can also help with a
better understanding of data sources.

In the case of this thesis, metadata of the found nodes can lead to more interesting
notice about the used client software, which can result in the partial identification of the
found nodes. In this context, the primary data are the IP addresses and the ports of found
nodes, metadata are somewhat valuable data, which node implicitly told us during the
regular communication.

From my point of view, interesting metadata are sent during version message. Nodes
exchange this message during the initial connection, and nothing can be sent before the
swap of the this message, as mentioned in Section 2.5. The Bitcoin Core client stores
obtained metadata from the version message inside its internal database and expose this
data via getpeerinfo RPC, as mentioned in Section 2.7.

The version, services, and user_agent are the interesting attributes of the version mes-
sage. The version indicates the highest Bitcoin protocol version understood by the node.
The services attribute represents the bit field of supported service by this node, these ser-
vices with their bits mapping are in Table 2.4. The user_agent attribute is the string identi-
fying the client software, recommended format of this string is /Name:Version/Name:Version/
according BIP141.

3.2 Platform Design
This section aims to describe the proposed platform with the component diagram and the
database models.

1https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki

21

3.2.1 Logical Scheme

The platform is created from six components. Every component is responsible for doing
a specific job. Proposed component diagram of platform is in Figure 3.1. Rectangle with
round edges represents components, and data flows between components are represented
as oriented edges with arrows. Each component is briefly described then.

Figure 3.1: Component diagram

Bitcoind

As the name suggests, this component is the Bitcoin client, which other components will
use for its functionality. Bitcoind component will not be implenteded by me. Instead, the
official Bitcoin client named Bitcoin Core will be used. Components communication with
the Bitcoind component will be using JSON-RPC, as mentioned in Subsection 2.2.2.

Address_Puller

This component is responsible for pulling new addresses from the Bitcoind and comparing
them with already obtained addresses. If some new addresses are present, the component
will send it to the database and Kafka as well.

Nodes_Watcher

The aim of this component is to watch already connected nodes and to record nodes activity.
Data about nodes activity and connection will be gathered from the Bitcoind. Activity
records are created from the start time of activity and the end time of activity. The time

22

difference between these two periods is active node time in which node is considered active
with adequately responding to the ping messages of the Bitcoind.

Address_Publisher

This component is asking Kafka for newly discovered addresses. These addresses are used
for asking Bitcoind to try initiating new connections. One address represents one job for
the worker inside this component. If the connection with node turns out to be successful,
Node_Watcher component will take of monitoring and gathering metadata.

Database

This component represents a real Database, where all data gathered from components will
be stored. The structure of data as schemes of tables or relations is described next in the
thesis. Address_Puller and Nodes_Watcher are only two components that require this
component for their proper work. .

Kafka

Kafka component contains a queue of tasks to process. In this context, one task represents
one address to process. Address exchange between Address_Puller and Address_Publisher
is done only via Kafka. This component will no be implemented by me.

3.2.2 Database Model

The schema of database entities and relations between them is in Figure 3.2 and entity
description is provided below.

Node

Node table row represents one node and gathered metadata about the given node. At-
tributes in the table are user_agent, highest_Protocol, services, active. Node table is in
relation one to many with node_activity table. The node can have many activities because
of possible disconnecting and reconnecting of the node after some time.

Node_Activity

Node_Activity table has attributes start_of_activity, end_of_activity, node_id, which is
a foreign key to the node table. The start_of_activity column represents the value when
the active connection node was established. On the other hand, end_of_activity stands
for the value when the node was no longer seen in the Bitcoin client active peers.

IP_Pool

The one row of ip_pool table is representing one found address, which consists of the IP
address and port. Attributes of this table are ip, port, inserted, and last_seen. The ip_pool
table is in relation one to one with node table. This relation is created for rows in ip_pool
table, which was successfully used as node addresses. The primary key is created from a
combination of the IP address and the port number.

23

Figure 3.2: Entity-relationship diagram

3.3 Used technologies
Description of used technologies and their key features will follow in this section.

Python

Python is an interpreted, high-level programming language with a focus on cleaner syntax
due to white spaces. White-space oriented syntactic rules and dynamic type checking allows
quick prototyping and faster development. It matches well for various applications, which
do not require precise management of the allocated resources. Suited applications can be
ranged from network communication to system administration and many more. Python
is vastly supported by a huge community of active developers. The community around
Python creates and maintains many packages. Many packages are distributed under Open
licenses and free to download.

PostgreSQL

The database system will handle a lot of queries from several services at a time. This load
has to be handled correctly with minimum effort in minimum time. PostgreSQL was chosen
as a tool for this job. PostgreSQL is an open-source database management system designed
for handling a range of workloads with many concurrent users.

24

Kafka

Kafka aims to provide a high-throughput streaming platform. Data streaming is done
via the producer and consumers principle. Streams are divided into topics. Internal data
streams are called logs, which consist of messages. New data are represented as messages
that append to logs.Messages are persistent and deleted after a period of time specified in
the configuration. Kafka is internally managing several log offsets. Each offset reflects the
current position of the consumer. Consumers are receiving messages from subscribed topics;
meanwhile, producers are sending data to selected topics. One of the many key features is
internal load-balancing through topic partitions. One topic can have many partitions, and
the topic can only have as many consumers as partitions. This assures unique messages per
consumer, so consumers do not have to read the same message twice or more.

Docker

Docker service provides isolated applications as packages called containers. Container con-
tains a new specific environment ready for application run. One container often represents
only one application. More robust applications are created from stacked containers. Docker
solution is based on a single kernel. Thus, isolation is at the operating system level, which
results in wasting fewer resources as opposed to the kernel level virtualization. Containers
are communicating with each other through defined network adapters.

Prometheus

Prometheus is a real-time monitoring and alerting system. Metrics collecting is based on
the HTTP pull model. Prometheus application regularly pulls plain text metrics by HTTP
requests from exporters in defined intervals. The application can become an exporter by
exposing HTTP endpoint with metrics. Every scraped agent has to be defined in the
Prometheus scraping configuration. Prometheus is an excellent open-source solution in
collecting and storing metrics. Prometheus also offers rich and flexible functional query
language know as PromQL.

Grafana

Grafana is used in order to interactively and adequately visualize collected metrics into
graphs. Grafana can be powered by various data sources. Prometheus belongs to one of
these sources. Graphs are created over the collected Prometheus metrics. Graphs can be
sorted into dashboards. The dashboard serves as a general overview of monitoring objects.

25

Chapter 4

Implementation

The goal of this chapter is to describe how the monitoring platform is implemented. The im-
plemented platform is based on requesting Bitcoin Client via RPC. The client is periodically
asked to show his active peers and to create new connections. Repetitive watching of active
connections results in knowledge about the activity of other nodes. The implementation
can be divided into these parts: Wrappers, Database, Modules, Metrics.

4.1 Wrappers
The implemented platform is doing communication with third-party services, which results
in integrating third-party packages into code. I used object-oriented programming (OOP)
pattern Wrapper in order to keep the code base clean of direct use of the third-party
packages. Wrapper pattern recommends using classes for encapsulation of other interfaces.
Wrapped classes add another layer of abstraction to the core logic. Thus, core logic protects
itself from changes in third party code by using wrapped classes. In this case, wrapped
interfaces are from packages requests and Kafka-python.

Requests package is used for doing HTTP communication. HTTP requests sent by
platform are carrying JSON-RPC payloads. These calls are used to communicate with
Bitcoind as mentioned in Section 2.7. The public methods of RequestWrapper class are in
Listing 4.1. Each one of these methods encapsulates execution of one RPC command. Used
commands are next to method declarations.

class RequestWrapper:
def fetch_addresses(self): //uses getnodeaddresses

pass
def post_new_peer(self, address): //uses addnode

pass
def fetch_active_peers(self): //uses getpeerinfo

pass

Listing 4.1: The RequestWrapper methods

The flow of methods is almost the same. It only differs in the used RPC command.
Firstly, the payload is serialized into JSON. Then, the request object with the serialized
payload creates and is sent via the interface of requests package. Only post_new_peer
method requires the parameter, which is the address of the potential node.

26

The Kafka-Python package is used for communication with running Kafka. What
Kafka is and its purpose in this platform is explained in Section 3.1. I created the wrapped
classes named Producer, Consumer. These wrapped classes are encapsulating direct use of
KafkaConsumer and KafkaProducer classes from Kafka-Python package. The main part
of the Consumer class is in Listing 4.2.

class Consumer:
def __init__(self, topic=settings.DEFAULT_TOPIC, group_id=None):

self.consumer = kafka.KafkaConsumer(
topic, // The name of the topic to subscribe
auto_offset_reset="earliest",
enable_auto_commit=True,
group_id=group_id,
value_deserializer=lambda m: json.loads(m.decode("utf-8")),

)

def get_message(self):
return next(self.consumer).value

Listing 4.2: The Consumer wrapper.

The Consumer class initialization creates KafkaConsumer with proper configuration.
Provided attributes ensure that Consumers will automatically commit his current position
in the reading topic. As well as, every Consumer uses the same group_id and value deseri-
alization procedure. Thanks to the same group id, Consumers will have unique messages.
If the group_id is not the same, Consumers will obtain the same messages. The Consumer
class only exposes the get_message method. This method provides getting value directly
from the new message.

class Producer:
def __init__(self, topic=settings.DEFAULT_TOPIC):

self.topic = topic
self.producer = kafka.KafkaProducer(

value_serializer=lambda m: json.dumps(m).encode("utf-8")
)

def post_message(self, message):
self.producer.send(self.topic, message)

Listing 4.3: The Producer wrapper.

The Producer class initialization creates KafkaProducer with the same topic as Con-
sumer in Listing 4.3. The value serialization method has revert order as in Consumer. This
class exposes only post_message method used for posting new messages to Kafka.

4.2 Database
In order to fully understand core modules, work with the database has to be explained
first. The schema and relations of the database are in Subsection 3.2.2. I decided to use

27

object-relational mapping (ORM) while working with the database instead of writing raw
Structured Query Language (SQL) queries. Using ORM over raw queries has its pros and
cons. One of the pros is that the ORM package will generate the SQL queries based on
the work with created database models. On the other hand, the generated queries are
often slower in execution than written queries for that specific task. I used SQLAlchemy
as Python ORM packages. Working with database rows and columns in an object manner
requires database models first to be created. An example of the Node database model
implemented using the SQLAlchemy package is in Listing 4.4.

class Node(BASE_MODEL):
__tablename__ = "node"
id = Column(BigInteger, primary_key=True)
user_agent = Column(String)
active = Column(Boolean)
highest_protocol = Column(String)
services = Column(ARRAY(String))
activities = relationship("NodeActivity")
ip_pool = relationship("IP_Pool", uselist=False, back_populates="node")

Listing 4.4: The Node model class.

The implementation of the Node class reflects the Node entity from proposed ER diagram.
The instantiated Column class object with specific data type class creates columns inside the
model class, and both the Column and data type classes are imported from SQLAlchemy.

Every class that represents the database model has to inherit from BASE_MODEL
class, which is an instance of declarative_base class. Thus, SQLAlchemy tracks every
change of models into declarative_base class. This enables mapping objects onto database
entities possible. Thanks to the tracking process, database migration can be generated as
well by comparing two declarative_bases classes. I used Alembic for generating database
migrations from SQLAlchemy declarative_base.

The two prerequisites for migration are the reference for currently used declarative_base
in alembic/env.py and the database connection string in the alembic.ini file. The Alembic
package installation process creates both of these mentioned files. If everything is set
up correctly, then this series of commands in Listing 4.5 will generate the new database
migration and apply its changes to the linked database.

alembic revision --autogenerate -m "Revision message"
alembic upgrade head

Listing 4.5: The database migration commands.

The platform communicates with the database only through transactions module nested
under the database package. All database related code is nested under the database module.
The example of transaction calls with names and their category based on the transaction
behavior is summed up in the following dotted list. Transaction behavior is either getting
data or saving new data.

∙ Save:

from app.database import transactions

28

transactions.new_ip(ip_attributes)
transactions.save_peer_activity_record(peer_attributes)
transactions.create_new_peer(peer_attributes)

∙ Get:

transactions.find_node(ip, port)
transactions.find_nodes(ip)
transactions.find_address(ip, port)

4.3 Modules
Firstly, the core logic divides into three main modules. These three core modules are
Address_Puller, Address_Publisher, Node_Watcher. Every mentioned module can be ex-
ecuted separately and does not depend on the other modules. The main reason for this
separation is to enable horizontal scaling of modules.

The brief description of each module is in Section 3.1. The configuration of modules via
the settings module is described next. Then, how each module works is explained. This
section ends with the description of the API module and the guide on how to start the
platform.

Settings

The only thing that should vary in application for different deployments or instances is
configuration. The values from the configuration file are loaded by the settings module.
Then, the settings module contains loaded configuration as python variables and is used
by main modules. The configuration is loaded from .env file, which is plaint text file with
key-value format. The .env file should resides in home directory of app. The example of
.evn file will follow. The modules that requires specific key-value pair are written in bash
comments format.

#every module requires these
HTTP_USER=user
HTTP_PASSWORD=password
DB_URL=connection_string

#address_puller
NODES=http://147.229.14.116:39999/bitcoin_rpc,

#address_publisher and node_watcher
NODES_TO_ACCEPT_CONNECTIONS=http://147.229.14.116:39999/bitcoin_rpc,
WORKERS=3

#adress_publisher and address_puller
TOPIC_NAME=bitcoin_test_1
KAFKA=localhost:9092

29

In case when the user wants to pass multiple addresses into specific variables as NODES,
the comma is used on the value string as the separator. Then, the variable contains the
array from the comma divided sub-strings.

4.3.1 Address_Puller

The address_puller module is responsible for fetching addresses from the Bitcoin clients
found in the NODES variable. If the address is new, it will be sent into the database
and Kafka as well. The addresses are obtained by calling fetch_addresses method from
RequestWrapper class. The RPC method behind this method call is getnodeaddresses. This
method is repeated with every address that is set in NODES variable. Then, address_puller
will set himself to sleep for 1 minute.

4.3.2 Address_Publisher

In the beginning, the address_publisher module will create several threads to fasten the
address publishing process. The threads are called workers inside the implementation.
The main thread creates a thread-safe queue object and Consumer object besides workers.
Then, the main thread starts workers’ processes and pass them the reference to the created
queue. Meanwhile, workers are running. The main thread is periodically filling the queue
with addressed gained from Consumer via get_message method calls.

The worker process takes the address of potential peer from the queue and sends it
to the Bitcoin Client via post_new_peer method from RequestWrapper. In the low level,
the RPC command addnode with first parameter onetry and second parameter obtained
address is sent. The combination of onetry parameter with addnode method secures that the
Bitcoin Client will give one try to establish the connection with the potential peer behind
the provided address, as mentioned in Section 2.7. If a new connection is established, the
Bitcoin client will have a new peer, which can be watched. This is very crucial for my
thesis.

The number of created workers is set in WORKERS variable. The requests are sent to
addresses in NODES_TO_ACCEPT_CONNECTIONS.

4.3.3 Node_Watcher

The node_watcher module job is to monitor all active peers and gather metadata about
them. Firstly, fetch_active_peers from RequestWrapper. The response contains all active
peers of the requested Bitcoin client as dictionaries in the array. One peer and data about
him are represented as one dictionary object, as mentioned in Section 2.7 with example.
Every peer from the request is transformed into the Peer object. The Peer object contains
the IP address, port number, and interesting metadata about given active peer. The chosen
metadata with attribute names and description are:

∙ version: highest known protocol by node

∙ subver: user agent

∙ servicesnames: list of supported services

∙ conntime: start of activity

30

More information about chosen metadata is mentioned in Section 3.1.
Created objects of Peer class are added to the set of active peers. This set represents

all active peers found during the last active peers check. In Python, the set data structure
contains objects with unique hashes only. The hashing method of the Peer class returns
hash from concatenated IP address and port number. Thanks to this, only the first peer
with the given IP address and the port number is watched. So no duplicates will ever occur
in case of watching multiple nodes at once because of the hash collision.

When node_watcher adds the object of Peer class to set, it means that a new active
peer was found. Then, node_watcher calls the node creation transaction with Peer object
attributes and saves the newly found peer into to the database.

Added peer stays in set of active peers until that peer does miss in all responses from
previous fetch_active_peers calls. This means the peer disconnected from all of the watched
nodes. Record of activity is created with the database transaction and linked to the dis-
connected peer’s node record.

One may raise a question that if this application is killed, all active peers will be
forgotten and end up without any activity records. The node_watcher creates activity
records for all currently active peers whenever it receives a kill signal in order to prevent
loss of peer record from happening. The node_watcher module is doing checks of active
peers every second.

4.3.4 API

The API module serves as a data provider between the database and the user. This way is
collected data exposed in a more user-friendly and secure manner. There are three endpoints
providing data about found nodes and addresses. The OpenAPI 3 standard describes the
URL parameters and returned data from responses. Full OpenAPI 3 specification can
be found on this link1. Each response from endpoints is validated against defined data
models to ensure compatibility with the described OpenAPI schemes. The description of
endpoints, parameters, schemas are at the docs path when the API module is running. List
with endpoint names and the brief description of what endpoint returns is in list below.

∙ /node/{ip_address_with_port} : This endpoint returns all gathered data about
given node with list of all activities by the provided IP address and port number.

∙ /nodes/{ip_address} : This endpoint returns data about every node find behind
the provided IP address. The data has same structure as /node endpoint response
but it is listed in array.

∙ /address/{ip_address_with_port} : The address endpoint returns data from
ip_pool table about the provided IP address and port. This will be used to find out
if the platform sees given address.

The API returns the response with Not Found HTTP status code in case there is no
data in the database about provided parameters.

Deployment of modules

Each core module can run as an independent docker container. These commands start the
whole monitoring platform with metrics. Correctly filled .env file has to exists first as well
as the database with up-to-date migration that reflects all database models.

1https://swagger.io/specification/

31

docker-compose -f docker_compose_kafka.yml up
docker-compose -f docker_compose_metrics.yml up
docker-compose -f docker_compose_modules.yml up

4.4 Metrics
Prometheus was chosen as a tool for monitoring multiple services. Prometheus is collecting
metrics by HTTP requests directed to the exporter metrics endpoint. Thus, the application
has to implement an exposed metric endpoint in order to become an exporter. This can
be done by using Prometheus client libraries, which have already implemented everything
needed and provide a simple interface for users. Prometheus client library has four core
metrics types, which are Counter, Gauge, Histogram, and Summary. The service monitoring
uses the first three of the mentioned types. The defined metric can have various labels.
These labels are used to differentiate the characteristics of measured metrics. The brief
description of the first three metric types with use cases from core modules follows.

∙ Counter: The counter represents a single number, which can only be increased or
reset to zero. This metric type is used in address_pooler to represent the total number
of found new addresses.

∙ Gauge: This metric type represents a single number the same as the counter, but
it can arbitrarily go down or up. The node_watcher uses it to represent the current
count of active peers. Similarly, address_publisher is using it for the actual queue
size.

∙ Histogram: The histogram type is counting observations and adding them to buck-
ets. This metric type is used in the address_publisher to observe how long the RPC
request took. Different durations of the requests are sorted into buckets, which allows
us to make queries like how many requests took less than 1 second.

The Prometheus scrapes only exporters, which are listed with rules inside its configu-
raiton file. This configuration file is using YAML format, and this is how the set of rules
for nodes_watcher exporter looks.

- job_name: ’node_watcher’
scrape_interval: 1s
static_configs:

- targets: [’host.docker.internal:8002’]

Prometheus scrapes each of the core modules exporters every second to gain precise
insight over their work.

32

Chapter 5

Testing

The goal of this chapter is to test the implemented platform and validate the obtained
results. Validating results is a crucial task in order to find out if the implemented platform
will be any good. The database is filled with values from the platform, which did run over
about one week.

The testing chapter divides into several parts. Firstly, the platform behavior during
testing is analyzed, following with the evaluation of hardware requirements of Bitcoin Client,
with increasing connections. Then, the section sums up the gained data about the node,
addresses, and nodes activities. The chapter ends by comparing the obtained data with the
other solution named Bitnodes.

5.1 Bitcoin Client Behaviour
The platform discovers new addresses by thousands in a few seconds after the start. Re-
peating the process of gathering new addresses every minute leads to the saturation of more
and more addresses. Requested Bitcoin clients usually run out of new addresses within a
few hours after the start. After the biggest amount of active connections is achieved, which
is often after the first few hours because the significant amount of addresses is already
collected.

Then turning point happens, and new addresses are more consumed than discovered.
Connections are slowly decreasing since then. This can be observed in Figure 5.3. The
saturation of addresses per requested client is in Figure 5.1. The total number of discovered
addresses changing in time is shown in Figure 5.2. The second graph indicates that new
addresses have logarithmic growth over a longer time rather than exponential as it was in
the beginning.

33

Figure 5.1: Gathered unique addresses per client

Figure 5.2: Gathered unique addresses per client

5.2 Bitcoin Client Requirements
I used the single Bitcoin Core client with version 0.19.1. The client run in prune mode with
owning only the last 2000 blocks to lower the memory requirements of held blockchain. The
number of client RPC threads was set to 30.

The implemented solution is using Bitcoin Core client in a way where limitations like
insufficient RAM, CPU, or open sockets can occur. This is because the client is not pri-
marily designed for several thousand active connections at one time but rather hundreds
at maximum. However, the implementation of the client is capable of doing it.

The maximum amount of allocated resources shows in Figure A.1. The client is allo-
cating more resources because of the increase in the new active connections. The highest
peak in the graph is the time when the client reached the most active connections during
monitoring by far. It was about 6700 active connections, as it shown in Figure 5.3. At that
point, the client has allocated about 6.5 gigabytes of RAM and is having about 5500 open
sockets.

34

Figure 5.3: Active peers within days

In Figure A.2, it can be seen how are the resources changing since the peek within
four days. Less active connections caused less open sockets, but the CPU and RAM values
remained almost the same as at the highest peak. It means that the client is not giving
up on hoarded resources, even the number of active connections decreased by hundreds
over days. This can indicate many possible scenarios about what the client is doing. The
client may need a longer time to give up resources, or it can be the first warning of poorly
implemented resource management.

5.3 Summary of obtained data
150550 unique combination of IP address and port were collected as the result of monitoring,
as can be seen in Listing 5.1.

select count(*) from ip_pool;

count

150550

Listing 5.1: Count of all addresses

This is a vast number of addresses, but these are only addresses of potential nodes. I
have to look at only those addresses which have assigned node_id to find out with how
many unique nodes the client established connection. Firstly, I counted the unique nodes
with addresses that occurred just once, which means these nodes have a static address. The
client created 10124 active connections with nodes with a unique IP address, as can be seen
as a result of SQL query in Listing 5.2.

35

select count(*) from
(select ip
from ip_pool
where node_id notnull
group by ip_pool.ip
having count(ip) = 1
) unique_nodes_addresses;

count

10124

Listing 5.2: Count of nodes with unique address

The count of nodes that have the IP address, which is assigned with at least one other
node but has a different port is in Listing 5.3. The number of nodes that is obtained by
the previously mentioned query is three times higher than that of nodes with unique IP
addresses. Thus, the number of unique nodes with the same IP address has to be counted
differently because of possible duplicates. The nodes with the same IP address and the
different port numbers could be the same node just behind network address translation
(NAT), which causes the changes of port numbers.

select sum(ip_count) from
(select count(*) ip_count
from ip_pool
where ip_pool.node_id notnull
group by ip having count(ip) > 1
) same_ips_count;

count

31657

Listing 5.3: Count of nodes with same address

Saved metadata about given nodes are used in order to come up with this number.
The constructed query in Listing 5.4 is more complex and contains 3 subqueries. The

query achieves wanted result by finding all possible node_ids grouped by IP address,
and then counts of distinct user_agents are summed, these use_agents belongs to found
node_ids grouped by IP addresses.

36

select sum(f.different_agents_by_ip_count) from (
select count(distinct user_agent) different_agents_by_ip_count
from node right join

(select node_id, ip from ip_pool where node_id notnull and ip in
(select ip from ip_pool group by ip having count(ip) > 1)

)as a on id = a.node_id
group by ip
) f;

sum

4334

Listing 5.4: Count of unique behind NAT

The estimated number of unique nodes behind NAT is 4334. These nodes were distin-
guished from duplicates only by user_agent metadata. The more precise result could be
obtained by considering all metadata, but that could lead to a more complex query.

The total count of unique connected nodes is equal to the sum of unique nodes with
static IP and estimated unique nodes behind NAT. Thus, the total count of discovered
unique nodes estimates at 14 458.

5.4 Discovery of my node
I run one other light node during the testing. The node that was creating connections did
not know anything about the second node at his start. The purpose of this test will be to
answer whether the platform can discover my other node. The second question is, if the
platform is capable of discovering the second node run by me then how long it will take to
create active connection.

My second node started at 2020-05-22 11:00:20. A few minutes later, I checked the
database, the used query and response is shown in Listing 5.5.

select inserted, start_of_activity
from node_activity
join node n on node_activity.node_id = n.id
join ip_pool ip on n.id = ip.node_id
where ip = ’37.205.14.85’ and port = 8333

inserted | start_of_activity
-------------------------------+------------------------
2020-05-22 11:01:53.119699+00 | 2020-05-22 11:01:55+00

Listing 5.5: Discovery of my other node

The testing node address appeared in the platform database one minute and thirty
seconds later, after the node start. The active connection was established two seconds
later after the address was spotted. This proves that the platform is able to discover and
monitor new active nodes but under certain circumstances.

37

The discovering of new addresses depends mostly on communication between nodes in
the network. Thus, it is hard to predict how long it will take for other nodes in the network
to propagate the new addresses. In this testing case, it took less than 2 minutes. The other
circumstance is that the newly discovered node has to be active. If the testing node went
down earlier than it was discovered, the monitoring of this node would not be possible.

5.5 Validating results
I used one other source of Bitcoin nodes addresses to validate my achieved results. One
of the open-source solutions for monitoring the Bitcoin network is called Bitnodes. The
official site of Bitnodes is on this link1.

Bitnodes uses a protocol level approach to find all nodes. This means there is a script
with implemented Bitcoin client behavior to disguised itself as one of the nodes. After the
script connects to nodes, it uses getaddr message to pull addresses directly from nodes.
Thus, Bitnodes’ solution is utterly dependent on the used version of the protocol. The new
protocol releases can lead to the inability of communication from the script side with nodes
that are using the newly released protocol. The main differences between using client and
custom made script are depicted in the conclusion chapter.

Back to the testing, Bitnodes exposes results as 5 minutes snapshots through HTTP
API. The different snapshots are available behind the /api/v1/snapshots/{timestamp} end-
point. I have created simple Python script shown in Listing 5.6 in order to compare six days
of monitoring between my platform and Bitnodes. The test is based only on comparing
nodes addresses without any additional metadata about nodes. One Bitnodes snapshot is
representing the whole day in this testing.

Firstly, I parsed and created the set of nodes addresses from various Bitnodes snapshots.
Then, the script iterates the obtained set of addresses and requests my API with each
address. I used /nodes/{ip_with_port} endpoint from my created API. This endpoint
returns information about the node with an address that was provided as a parameter or
returns Not Found HTTP status code, as mentioned in Subsection 4.3.4. So if my API
returned HTTP OK status code, which is represented by the number 200, then node would
be found by my platform as well.

My platform has discovered 14 458 nodes in contrast to 12 221 from Bitnodes. The
difference is caused by running exposed Bitcoin Client, which means other disguised scripts
similar to Bitnodes solution with unique metadata can connect to the client and trick him
into thinking that it is communicating with other bitcoin nodes. Thus, the total number
of unique nodes is increased.

The 7687 nodes were discovered by Bitnodes as well as by my platform. The missing
4553 active connections is a fairly huge difference at first glance. It requires deeper in-
vestigation to tackle the root of the problem, so let us dive in. Firstly, I repeated same
script shown in Listing 5.6 as above but hitting /address endpoint in my API instead of
node endpoint. The difference is that the results from the address endpoint would tell
us if the missing addresses were seen by my platform regardless of the assigned nodes to
that address. The result of the script was 9053 seen addresses of the total number 12
221. There were still 3168 addresses missing. I thought that already mentioned problems
could cause it as insufficient address propagation by other participants in the network. As

1https://bitnodes.io/

38

I scrolled down through logs of my API, which are in Figure 5.4, I saw the thing that many
of the missing addresses had in common.

timestamps = [1589640727,1589713317,1589795379,1589866651,158993908, ...]
addresses = {

requests.get(f"https://bitnodes.io/api/v1/snapshots/{i}/")
.json()["nodes"]
.keys()
for i in timestamps

}
compare_snaps = [

True
if requests.get(f"http://localhost:8000/node/{i}").status_code == 200
else False
for i in addresses

]
print("Bitnodes addresses count: ",len(addresses))
print("Addresses in common: ", sum(compare_snaps))

Bitnodes addresses count: 12221
Addresses in common: 7687

Listing 5.6: Script that compares nodes addresses with Bitnodes

Figure 5.4: Log from the API during the address comparison process.

The missing addresses had .onion suffix, which means that these addresses belong to
the special onion service domain. The onion service is only accessible via the Tor network,
and thus, these addresses are not accessible via the public Internet. I looked up all the

39

provided addresses from Bitnodes with .onion suffix and check their results in lastly run
script. As a result, only two onion addresses were seen by the platform, and the rest 2618
addresses were never seen. All of this investigation leads to the fact that there were only
missing 550 addresses reachable via the public Internet, and all other addresses were in the
platform database.

It is far better result than I expected when comparing the use of the one Bitcoin client
with restricted scope to the RPC methods against the solution as Bitnodes, which pulls
addresses directly from the nodes through the solution tailored to the given bitcoin protocol.
With deducted onion addresses and ones that were not seen, the platform did not establish
a 1382 potential connection that Bitnodes did. One of the reasons for this may be that the
nodes were already down when clients tried to establish a connection or the nodes went
down, and a few hours later up again. Other factors could play a role here, so I assume
this is a space for the platform future improvements. One of the possible solutions for
mentioned cases would be rescheduling already tried addresses, which were unavailable at
a specific time but might later be able.

40

Chapter 6

Conclusion

This bachelor thesis aimed to create the platform for monitoring nodes of the Bitcoin
network and gathering metadata about found nodes. It was necessary to study the principles
of cryptocurrencies and their communication protocols. Gained knowledge allowed me to
understand better the concepts of cryptocurrencies and communication between nodes in
the network. All the theoretical prerequisites are in Chapter 2.

Then, I analysed the interesting metadata (user_agent, protocol version, services) about
nodes. These metadata can help to uniquely identify nodes behind NAT as described in
Section 3.1 and proved in Listing 5.4. Furthermore, I have designed the platform for
discovering and monitoring the nodes in the network. The platform is based solely on using
API of the official Bitcoin client to retrieve all information about the nodes. The client is
used without any further modification. The proposed design of the platform is in Chapter 3.

The implementation insights are described in Chapter 4. The implemented platform is
able to estimate the size of the Bitcoin network and to monitor nodes at the given time.
The nodes monitoring involves gathering metadata about found nodes and creating activity
records about how long they are participating in the network, as described in the testing
of the platform in Chapter 5.

Testing of the platform includes benchmarks of the Bitcoin client in Section 5.2, evalu-
ation of obtained data from one week-long monitoring session in Section 5.3. The platform
discovered and connected to the second node run by me within 2 minutes, as described
in Section 5.4. The validation was based on comparing results with the Bitnodes solution
in Section 5.5. The Bitnodes solution uses script tailored to the Bitcoin protocol, which
can results in future incompatibilities with new protocol versions. Results from the created
platform were successfully validated and proved that the platform based on only using the
Bitcoin client is comparable good as custom protocol solutions even the client API calls
have limited scope of use.

The created platform could be extended into the support of more cryptocurrency net-
works in the future.

41

Bibliography

[1] Binance.Ltd.. What are nodes? [online]. Binance, 2018 [cit. 2019-12-16]. Available
at: https://www.binance.vision/blockchain/what-are-nodes.

[2] Bitcoin.org. [cit. 2020-01-11]. Available at:
https://bitcoin.org/en/p2p-network-guide#initial-block-download.

[3] Devawrites. Lightweight node. January 2018 [cit. 2019-01-11]. Available at:
https://en.bitcoin.it/wiki/Lightweight_node.

[4] Frankenfield, J. Consensus Mechanism (Cryptocurrency) [online]. Investopedia,
2019 [cit. 2019-12-30]. Available at:
https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp.

[5] Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H. et al. On
the Security and Performance of Proof of Work Blockchains. New York, NY, USA:
Association for Computing Machinery, 2016. Available at:
https://doi.org/10.1145/2976749.2978341.

[6] Group, T. E. Who is Satoshi Nakamoto? The Economist Newspaper Limited,
November 2015 [cit. 2019-12-30]. Available at: https:
//www.economist.com/blogs/economist-explains/2015/11/economist-explains-1.

[7] Hearn, C. M. How XRP Stacks Up Against Other Digital Assets [online]. October
2012 [cit. 2019-1-19]. Available at:
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki.

[8] Hileman, G. and Rauchs, M. Global cryptocurrency benchmarking study.
Cambridge Centre for Alternative Finance. Cambridge Centre for Alternative
Finance. [online]. 2017, vol. 33, [cit. 2019-12-30]. Available at:
https://cdn.crowdfundinsider.com/wp-content/uploads/2017/04/Global-
Cryptocurrency-Benchmarking-Study.pdf.

[9] Iansiti, M. and Lakhani, K. R. The Truth About Blockchain [online]. Harvard
University, January 2017 [cit. 2019-12-30]. Available at: https:
//enterprisersproject.com/sites/default/files/the_truth_about_blockchain.pdf.

[10] Johnuaq. Remote procedure call. November 2019 [cit. 2019-12-30]. Available at:
https://en.wikipedia.org/wiki/Remote_procedure_call.

[11] Karame, G. and Androulaki, E. Bitcoin and Blockchain Security. Artech House
Publishers, 2016. 51 p. Artech House information security and privacy series.
Available at: https://books.google.sk/books?id=YYSuDgAAQBAJ. ISBN 9781630814335.

42

https://www.binance.vision/blockchain/what-are-nodes
https://bitcoin.org/en/p2p-network-guide#initial-block-download
https://en.bitcoin.it/wiki/Lightweight_node
https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp
https://doi.org/10.1145/2976749.2978341
https://www.economist.com/blogs/economist-explains/2015/11/economist-explains-1
https://www.economist.com/blogs/economist-explains/2015/11/economist-explains-1
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://cdn.crowdfundinsider.com/wp-content/uploads/2017/04/Global-Cryptocurrency-Benchmarking-Study.pdf
https://cdn.crowdfundinsider.com/wp-content/uploads/2017/04/Global-Cryptocurrency-Benchmarking-Study.pdf
https://enterprisersproject.com/sites/default/files/the_truth_about_blockchain.pdf
https://enterprisersproject.com/sites/default/files/the_truth_about_blockchain.pdf
https://en.wikipedia.org/wiki/Remote_procedure_call
https://books.google.sk/books?id=YYSuDgAAQBAJ

[12] Maull, R., Godsiff, P., Mulligan, C., Brown, A. and Kewell, B. Distributed
ledger technology: Applications and implications [online]. FINRA, 2017 [cit.
2019-12-30]. Available at: http://epubs.surrey.ac.uk/814158/1/Distributed%
20Ledger%20Technology%20Applications%20and%20Implications.docx.

[13] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. 2009 [cit. 2019-1-20].
Available at: http://www.bitcoin.org/bitcoin.pdf.

[14] Pappalardo, G., Di Matteo, T. and Caldarelli, G. Blockchain inefficiency in
the Bitcoin peers network [online]. Springer Berlin Heidelberg, September 2018 [cit.
2019-12-30]. Available at: https://doi.org/10.1140/epjds/s13688-018-0159-3.

[15] Ripple.org. How XRP Stacks Up Against Other Digital Assets [online]. December
2017 [cit. 2019-1-19]. Available at:
https://ripple.com/xrp/xrp-stacks-digital-assets/.

43

http://epubs.surrey.ac.uk/814158/1/Distributed%20Ledger%20Technology%20Applications%20and%20Implications.docx
http://epubs.surrey.ac.uk/814158/1/Distributed%20Ledger%20Technology%20Applications%20and%20Implications.docx
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1140/epjds/s13688-018-0159-3
https://ripple.com/xrp/xrp-stacks-digital-assets/

44

Appendix A

Figures

Figure A.1: Allocated resources by Bitcoin Client at its peak with active connections

45

Figure A.2: Allocated resources by Bitcoin Client within several days

46

Figure A.3: Begin of the nodes communication
47

Appendix B

CD contents

The CD has same content as my git repository1 on branch origin/bachelor_thesis. The
first level of the CD file structure is following:

∙ xzauje00.pdf – This thesis

∙ app – All source code of the platform

∙ alembic – Database migrations

∙ alembic.ini – Database migrations configuration

∙ .env.example – Example of proper .env file

∙ Dockerfile – Docker container for one module

∙ docker-compose-kafka.yml – Docker deployment for Kafka

∙ docker-compose-modules.yml – Docker deployment for modules

∙ docker-compose-metrics.yml – Docker deployment for metrics

∙ prometheus.yml – Prometheus scraping configuration

∙ requirements.txt – Python requirements for modules

∙ crypto_watch_db_backup_with_inserts.tar – Database snapshot done with
pg_dump 12.1

∙ README.md – Short description of using with examples

∙ LICENSE.md – MIT license

1https://github.com/fruit098/crypto_monitor

48

	Introduction
	Theory
	Key Concepts
	Blockchain
	Distributed Ledger and Consensus
	Proof of Work
	Proof of Stake
	Summary of Concepts

	Nodes and Clients
	Types of Nodes
	Clients

	Cryptocurrencies
	Bitcoin
	Ethereum
	Ripple
	EOS

	Communication Protocol
	Bitcoin Protocol
	Other Cryptocurrencies Protocols
	Bitcoin Core API

	Analysis and Design
	Analysis of Metadata
	Platform Design
	Logical Scheme
	Database Model

	Used technologies

	Implementation
	Wrappers
	Database
	Modules
	Address_Puller
	Address_Publisher
	Node_Watcher
	API

	Metrics

	Testing
	Bitcoin Client Behaviour
	Bitcoin Client Requirements
	Summary of obtained data
	Discovery of my node
	Validating results

	Conclusion
	Bibliography
	Figures
	CD contents

