
Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2019/2020

 Zadání bakalářské práce

Student: Muzikář Martin
Program: Informační technologie
Název: Nástroj pro efektivní správu testů webových aplikací
 Tool for Effective Management of Web Application Tests
Kategorie: Uživatelská rozhraní
Zadání:

1. Seznamte se s aktuálními technologiemi pro testování webových aplikací. Prostudujte
využívané metody pro tvoření nových a udržování již existujících testů.

2. Vyberte vhodnou technologii a navrhněte celkový postup, dílčí metody a aplikaci pro efektivní
správu a editaci testů webových aplikací. Při návrhu reflektujte potřeby uživatelů.

3. Implementujte navrženou aplikaci pro vhodnou platformu podle potřeb uživatelů (aplikace
využívající TUI, desktop aplikace, webová aplikace, plugin pro IDE) s využitím relevantních
dostupných technologií a vhodných knihoven.

4. Vyhodnoťte vlastnosti výsledného řešení na základě experimentů s reálným využitím
aplikace.

5. Prezentujte klíčové vlastnosti řešení formou plakátu a krátkého videa.
Literatura:

Semmy Purewal. Learning Web App Development: Build Quickly with Proven JavaScript
Techniques. O'Reilly Media, Inc., 2014. ISBN: 9781449370190.
Steve Krug. Don't make me think, revisited: a common sense approach to web
usability. San Francisco: New Riders, ISBN 978-0321965516.
Dále dle pokynu vedoucího.

Pro udělení zápočtu za první semestr je požadováno:
Body 1, 2 a částečně bod 3.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Beran Vítězslav, Ing., Ph.D.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2019
Datum odevzdání: 28. května 2020
Datum schválení: 1. listopadu 2019

Powered by TCPDF (www.tcpdf.org)

Zadání bakalářské práce/23124/2019/xmuzik06 Strana 1 z 1

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

TOOL FOR EFFECTIVE MANAGEMENT OF WEB AP-PLICATION TESTS
NÁSTROJ PRO EFEKTIVNÍ SPRÁVU TESTŮWEBOVÝCH APLIKACÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MARTINMUZIKÁŘ
AUTOR PRÁCE
SUPERVISOR VÍTĚZSLAV BERAN, Ing., Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Abstract
The goal of this thesis is to create a tool that allows testers to see the progress of the
test they are currently developing on the fly. Hence, to eliminate an issue of constantly
re-running tests which take a long time to execute.

The problem was solved by creating a program which modifies the test suite logic by
using Java Instrumentation, enabling it to run test steps as the user needs and designing
GUI that is able to communicate with previously mentioned modified test suite.

As a result the process of creating tests was significantly sped up (testers were able to
create a test with an unknown test suite in terms of minutes), all users that participated
in testing were fond of this approach and would adapt to this workflow.

The primary result is pinpointing that things can be handled more efficiently, with
proper tools testers can significantly speed up their workflow and also make the introduction
process for newcomers easier.

Abstrakt
Cílem této práce je vytvořit nástroj, který interpretuje testy během jejich vývoje a výzkum
ohledně dopadů interaktivního testování na uživatele.

Problém byl vyřešen vytvořením programu, který upraví existující testovací sady pomocí
Java Instrumentace a poskytne uživatelské prostředí pro manipulaci s upravenou testovací
sadou.

Výsledkem bylo zejména zrychlení procesu vytváření testů (při uživatelském testování
byli uživatelé schopni napsat test během minut, bez přechozí znalosti testovací sady).
Všichni uživatelé kteří podstoupili uživatelské testování vyjádřili zájem o použití nástroje
při běžné práci.

Hlavním výsledkem této práce je poukázání na neefektivitu současných nástrojů, analýzu
potřeb uživatelů a návrh, vytvoření a otestování nového nástroje pro vyhovění těmto potře-
bám.

Keywords
java instrumentation, behavior driven testing, UI testing, react, monaco editor, selenium,
web application testing

Klíčová slova
java instrumentace, behavior driven testing, testování UI, react, monaco editor, selenium,
testování webových aplikací

Reference
MUZIKÁŘ, Martin. Tool for Effective Management of Web Application Tests. Brno, 2020.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Vítězslav Beran, Ing., Ph.D.

Tool for Effective Management of Web Applica-
tion Tests

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Vítězslava
Berana, Ing., Ph.D. Další informace mi poskytli Tomáš Sýkora, Dongni Wang and Sarah-
jane Clark. Uvedl jsem všechny literární prameny, publikace a další zdroje, ze kterých jsem
čerpal.

. .
Martin Muzikář

May 27, 2020

Acknowledgements
My gratitude belongs to everyone who helped me with this thesis. Thank you Mr. Beran
for being my supervisor, giving me a unique viewpoint on any presented issue, sometimes
challenging my views to make sure I always stood by my decisions.

The Fuse QE team in Red Hat, namely Tomáš Sýkora, for being my consultant inside
the company setting, for many hours of brainstorming and providing me with contacts for
technical consultations. Dongni Wang and Sarahjane Clark for consulting my designs and
user test ideas, I was able to get feedback even from discussing with them and the user
tests were able to provide useful data.

Users participating in user tests, namely Alice Rum, Aneta Čadová, Štefan Vereš, and
the rest of the team who provided me with constructive feedback and their support.

Contents

1 Introduction 2

2 Related theory (Software verification, Java Instrumentation, Monaco ed-
itor) 3
2.1 Software verification . 3
2.2 Java Instrumentation . 7
2.3 Web application components . 12
2.4 Existing solutions . 17

3 Solution draft for making BDT more interactive 20
3.1 Current approach to testing . 20
3.2 Solutions for user issues . 21
3.3 Designing the application . 23
3.4 Verifying designs . 27
3.5 Application architecture . 29
3.6 Backend API . 32

4 Implementation of interactive BDT tool 37
4.1 Agent implementation . 37
4.2 Front-end implementation . 41
4.3 User testing . 44
4.4 Plans for the future . 44

5 Conclusion 46

Bibliography 48

A Backend experiments 49

B Gherkin monarch definition 51

1

Chapter 1

Introduction

Verification of software is an important part of the software development process, so it only
makes sense that there are many different tools and frameworks that make the verification
part easier. There are many different approaches to software verification, the aim of this
thesis is not to create the best and the only testing solution to be, because frankly that is
not possible.

The aim is to observe one specific approach to verification which is Behavior Driven
Testing (BDT for short) and creating a tool to save testers work with manual tasks. You
can imagine the result of this thesis as an Integrated Development Environment specifically
created for Behavior Driven Testing development.

In this thesis current implementations of tools for BDT will be shown and analyzed.
You will get to know basics of program instrumentation and how it is done in the JVM,
a deep-dive into the Cucumber framework (which is a BDT implementation) and BDT as
a whole, what are its benefits and why is it even used. A design of a tool that runs tests as
they are written, its implementation and user testing.

This thesis was made with real input from quality engineers who use Behavior Driven
Testing, the analyzed problems and proposed solutions were designed with feedback from
this team. Same team also participated in user testing to measure improvements provided
by this approach.

First some context will be provided to analyze user needs properly in Chapters 2.1
and 2.4. For the implementation part familiarity with Java Instrumentation 2.2 which is
used to modify program’s behavior. And to implement an interface for users to interact
with using the React library and Monaco editor library 2.3.

Prior to implementing a solution it needs to drafted first. In this thesis the current
testing situation is analyzed 3.1, issues in the approach are pinpointed 3.2. With the issues
in mind the application is designed 3.3 and a proposal for user testing is made 4.3. And to
make the application work as a whole the architecture 3.5 and back-end API 3.6 are also
proposed.

Following the solution draft my notes from implementing the application are split into
agent implementation 4.1, implementing the user interface 4.2, testing the interface on
actual users 4.3 and analyzing the results and making plans for the future of this project 4.4.

2

Chapter 2

Related theory (Software
verification, Java Instrumentation,
Monaco editor)

2.1 Software verification
This sub-chapter provides an overview of what are different terms in the area of software
verification, or the testing process. The most essential topic of this section is Behavior
Driven Testing as it is going to be referenced throughout the thesis. Other methodologies are
mentioned as they were an inspiration while designing the whole idea. Software verification
is a complex subject to describe on a few pages. As the team’s focus is system testing
where the application is tested as a whole, unlike unit or integration testing which covers
only a portion of the project or communication between parts of the project.

Information in this chapter is primarily sourced from experienced quality engineers
and [4].

Regresssion testing
Regression testing is a process of re-running tests after a change in the product to make
sure that change didn’t break anything. If a change appears and a test results in a failure,
testers can see early if a specific feature is not working correctly.

Changes can also introduce wanted failures which don’t necessarily mean a feature
of tested application doesn’t work as expected. Occasionally changes to the test itself are
needed.

Integration testing
Integration testing is a process where all parts of the tested application are tested as one
complex system. Much like black-box testing, tester interacts with the application and
observes outputs as a user would.

Approaches to system testing
When it comes to testing an application where user interacts with the Graphical User Inter-
face several approaches exist to facilitate the verification. The most popular or influential
to interactive testing approach are described in the following chapter.

3

Manual testing
A tester (person responsible for writing and maintaining the tests of a web application) can
prepare test scenarios and execute them manually each time there’s a need for new results.
The benefit of the manual approach is its simplicity, no need for programming knowledge
and the fact that UI changes don’t really affect the tests. Testers are able to see even
the tiniest problems in the application. On the other hand it is really cumbersome to do
the same tasks all the time, especially as the application is gaining complexity.

Interactive testing
A more advanced approach is automating the manual tests. There are tools which are
able to record user’s interaction within a web browser and perform such interactions on
demand. However tools like this are usually not capable of executing code, if you need to
check the state of a database for example or do any custom logic, those tools will likely not
have all the features needed for such tasks. Also a UI change in the application could leave
the whole test suite in a broken state which is not desirable.

The most used Open source tool is Selenium IDE 1. It is made by the Selenium orga-
nization which also created Selenium, the biggest browser automation tool. It is simple
to understand but provides more advanced features closer to programming. Big advantage
of this tool is in being a browser plugin, apart from being easy to install, it does not require
setting up environment to run the tests.

Why is automation needed?
Manual and interactive testing are usually used for smaller projects or early prototypes be-
cause they are easy to set up and execute. When it comes to bigger projects or fact changing
applications, re-recording or rewriting the same test usually leads to tester burnout. Ac-
cording to the Continuous Delivery methodology acceptance tests should be automated
which brings several benefits to the entire team [6]:

∙ Developers get feedback faster.

∙ Reduced workload on testers.

∙ Testers can focus on higher-level activities.

∙ All acceptance tests together create a well base for finding regressions in the software.

Testing User Interface
Because system testing tests an application as a whole that means that the User Interface
must be covered by the tests as well. Different platforms provide different solutions but in
design most all similar to Selenium described bellow.

Selenium
Selenium [3] is the most popular tool to automate Web applications, it has a big community
support, language bindings to most popular languages.

Selenium provides an interface called WebDriver which is a language independent pro-
gram, that accepts commands and instructs a browser to execute such commands. The browsers
are backed by drivers which handle the communication between Selenium and the browser.
A driver exists for each major browser in the market. Having a communication layer be-
tween developers and the drivers allows the same code to run on different browsers.

1https://selenium.dev/selenium-ide/

4

https://selenium.dev/selenium-ide/

The main entry-point for interacting with the automated browser is through a WebDriver
instance. In the following examples the instance is called webdriver.

Locating elements
Elements are located in Selenium by using selectors, there are different types of selectors,
most commonly CSS2, XPath3 and name selectors are used. With a selector an element or
a list of elements on an opened page can be found using

WebElement element = driver.findElement(By.name("username"));
//or
List<WebElement> element = driver.findElements(By.tagname("h2"));

This code snippet tries to find an element where an attribute name has value username,
a proxy object is returned, that provides methods such as exists to check if the element
was found, or the is method that allows to check for predefined conditions such as ”element
is visible“, ”element is clickable“. If the WebElement exists, it allows for interactions using
sendKeys, click, clear methods. WebElements also allow to search in their children by
using the selectors, consider following example:

WebElement form = driver.findElement(By.id("login-form"));
if (form.exists()) {

form.findElement(By.name("username")).sendKeys("admin");
form.findElement(By.name("password")).sendKeys("password");
form.findElement(By.cssSelector("input.primary[type=\"submit\"]")).click();

}

Model based testing
A more flexible and maintainable approach to this would be to use models that represent dif-
ferent pages. Which is the main idea behind model based testing. Creating abstractions
of different pages is a good practise for several reasons:

∙ better maintainability - if particular UI aspect changes, just rewrite the model and
all existing tests should stay the same

∙ easier collaboration - it is easier to understand a model of a page, than to look at
a bunch of selectors and trying to find them in the DOM

∙ re-usability of already written components

This could be the final solution for most testers but there is still another level of ab-
straction that can be used. Each interaction with the application should be describable by
one short sentence, such as ”Click on the Submit button“ which provides more abstraction
from the code, and stakeholders of product are able to read or even create new test sce-
narios without any need for knowledge of programming language. This approach is called
Behavior Driven Testing (BDT for short).

2https://www.w3schools.com/css/css_selectors.asp
3https://www.w3schools.com/xml/xpath_intro.asp

5

https://www.w3schools.com/css/css_selectors.asp
https://www.w3schools.com/xml/xpath_intro.asp

Behavior Driven Testing
Behavior Driven Testing [1] is an agile practise that allows all stakeholders to communicate
clearly and collaborate in a better fashion on a product feature and every-ones expectation
for said feature.

I had a liberty of having a discussion with an agile practitioner that overlooks a huge
team of developers and testers, in his own words BDT is a tool that should encourage
communication and discussion.

Separate tests are called scenarios, each test you would normally program is a scenario
that corresponds to a bigger feature. For example in a calculator, you might have a feature
of Square root and different scenarios could be:

∙ Square root of odd numbers

∙ Square root of even numbers

∙ Square root of zero

∙ Square root of negative numbers

A test suite can consist of many different feature files with a ton of scenarios in each
feature file. Scenarios consist of steps, steps are the interactions with the application.
For programmers it is simply an abstraction for a method, each step has a pattern and
arguments. There is a best practise in place that steps pattern should be self-descriptive,
but since we use our natural language to define the steps, it is not always achievable to
have the same meaning to everyone.

For further explanation, let’s create a sample feature file for the square root example

Feature: Square root
Background: Calculator running & clean state

Given calculator application is running
And I press "CE" button

Scenario: square root of~odd number
When I input 7 into the~calculator
And I press "Square root" button
Then calculator should display 2.6457

...

As you see, some prepositions are used before actually using a step, these are also best
practises and aren’t enforced by any shape, way or form by BDT. But to quickly explain:

∙ Given - preparing the initial state of the application

∙ When - describing an action or an event

∙ Then - describing an expected outcome

∙ And, But - used only for ease of reading, instead of having multiple When, usually
it’s When, And, And...

Also a Background block is used, this block is run before each scenario in a feature file.
Though it is recommended to use it rarely to keep the scenarios easy to understand.

6

2.2 Java Instrumentation
Java Instrumentation allows developers to modify certain classes at runtime. By utilising
this the test suite can be transformed to behave in a certain way, without any need to
modify exiting code. This is a great benefit as it makes setting up the environment require
little to no changes in existing code.

Instrumentation is a service that allows Java classes to be modified at runtime. This is
done via ”Java agents“. This might be confused with Reflection which is an introspection
tool, it allows to read metadata of class and in sense of modification is not really flexible,
it is commonly used for serialization and accessing private methods and fields of classes.
But doesn’t support modifying the behavior of a class, the only modifications allowed are
sort of a communication layer. What is different about Java Instrumentation is you still
get access to all the information you’d get with Reflection but you are allowed to change
the actual bytecode of the class, so you can add fields and methods, modify existing behavior
of methods, create classes at runtime.

This chapter’s main sources of information were [8] and [5] which both go into detail
of how exactly the JVM operates [8] and how the transformations are performed [5].

Java Agents
A Java Agent can be described as a program modifying the bytecode. It is specified as
a JAR file that contains required attributes in Manifest and is attached to a program
running on the JVM.

An agent can be attached while starting the program or dynamically when the program
is already running, although attaching agent after start (from the codebase) is up to specific
JVM implementation to be supported. If a JVM implementation supports attaching agents
at runtime, the loading behavior is unspecified. At the time of writing, it is not a part
of the JVM specification to allow modifying already loaded classes which might cause issues
as the agent might attempt to modify a class that was already loaded.

Creating a basic agent

Similar to any other Java application, an agent needs to have an entrypoint specified.
Among other properties, the agent entrypoint is specified in the Manifest file.

∙ Agent-Class - fully classified name of the class used as an entrypoint when attaching
an agent at runtime.

∙ Premain-Class - fully classified name of the class used as an entrypoint when attaching
an agent at startup.

∙ Boot-Class-Path - a list of paths to be searched by the boot classloader, any agent
libraries should be added here.

∙ Can-Redefine-Classes - ability of the agent to redefine classes, boolean

∙ Can-Retransform-Classes - ability of the agent to retransform classes, boolean

∙ Can-Set-Native-Method-Prefix - ability of the agent to the native method prefix,
boolean

Java 8 was used in all examples, the specification might have changed in newer versions.

7

Retransformation is a process which uses the registered class transformers, the changes
can be additive and one class might be modified by more than one agent. When class is
redefined, the current implementation is overwritten by a new one. The class redefinition
process takes into consideration if a class transformer is marked as Can-Redefine-Classes
and applies the transformations according to this values. Understanding the process in
not in the scope of this thesis, more information is available in the ClassFileTransformer
documentation4.

An entrypoint class must contain a method with any of these signatures:

public static void premain(String args, Instrumentation instrumentation);
public static void premain(String args);
public static void agentmain(String args, Instrumentation instrumentation);
public static void agentmain(String args);

The methods are called in the order as they are written, if a method with Instrumentation
argument is found it gets called. The premain method is called when the agent was attached
at startup, agentmain if the agent was attached at runtime. Both premain and agentmain
methods can exist in the same class or can be in a different classes.

Java Bytecode
Contrary to other popular programming languages, such as C, C++ or Rust, output of com-
piling Java code is called bytecode. This bytecode is loaded into a virtual machine, with its
own instruction set where the individual bytes from the bytecode are operation codes.
The operations also take arguments as we are used to from assembler languages, but de-
tailed knowledge of the Java bytecode is not needed to understand Java Instrumentation and
hence is not required by this thesis. What is more important is being familiar with the gen-
eral class structure and how the JVM operates.

Class structure
Since Java Instrumentation allows us to only modify classes, we need to understand what
makes a class, how are classes stored, how exactly are they loaded and what does modifying
the class mean.

Each class is stored in one file containing data of the ClassFile structure.

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;

4https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/ClassFileTransformer.html

8

https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/ClassFileTransformer.html

method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Snippet directly taken from [8]
First three fields are used for validating the contents of the file and aren’t important to

cover here.
Next we can see a field named constant_pool and constant_pool_count, this constant

pool is an array of values that are bigger than one byte, so each operation can stay at
minimal size and also it avoids duplication of those values. There are many possible types
of the constant data in a class, but it’s important to mention that class references, method
references etc. are also stored here.

Access rights to the class are stored in the access_flags field. Classes referencing
the class and its super class are stored in the this_class and super_class fields. Essen-
tially the constant type class is just a fully qualified name of the class that the JVM has
to resolve. To illustrate better, JDK comes with a handy tool called javap that makes
the class’ byte structure into a human readable structure.

public class mmuzikar.Stepdefs
minor version: 0
major version: 52
flags: (0x0021) ACC_PUBLIC, ACC_SUPER
this_class: #1 // mmuzikar/Stepdefs
super_class: #3 // java/lang/Object
interfaces: 0, fields: 1, methods: 8, attributes: 3

Constant pool:
#1 = Class #2 // mmuzikar/Stepdefs
#2 = Utf8 mmuzikar/Stepdefs
#3 = Class #4 // java/lang/Object
#4 = Utf8 java/lang/Object
...

#10 = Methodref #11.#13 // j...Class.getName:()Lj...String;
#11 = Class #12 // java/lang/Class
#12 = Utf8 java/lang/Class
#13 = NameAndType #14:#15 // getName:()Ljava/lang/String;

In this structure, you can see the header of a class and a specific parts of the constant
pool, as you can see this_class and super_class are just references to the constant pool,
where we can find the fully qualified names of the classes. We can see that somewhere
in the class a method Class#getName is called and it doesn’t take any parameters and
returns an object of type java/lang/String. Understanding the signatures and everything
presented here is not crucial, but being familiar with existence of constant pool and what
it’s used for is important when dealing with Instrumentation.

9

Type Signature Java Type
Z boolean
B byte
C char
I int
J long
F float
D double

L fully-qualified-class; fully-qualified-class
[type type[]

(arg-types)ret-type method type

Table 2.1: JVM signature table

JVM signature types
Converting JVM signature to the ones we are used from Java with this useful table from
the JNI (Java Native Interface) documentation5:

As an example the method long f (int n, String s, int[] arr); has the signa-
ture (ILjava/lang/String;[I)J

Class Transformations
Java by default allows us to modify classes in just one way, to register a ClassTransformer
in Java Agent startup method. The ClassTrasformer is an interface with just one method
and that is

byte[] transform(ClassLoader loader,
String className,
Class<?> classBeingRedefined,
ProtectionDomain protectionDomain,
byte[] classfileBuffer)

throws IllegalClassFormatException

Where we get many parameters we are only able to perform basic reflection tasks
with classBeingRedefined and the compiled class bytecode in classfileBuffer which
can be modified and returned in the function.

This means that the agent should be able to read and write valid bytecode which
requires developers to be well versed in this. That is a hard and error prone way to create
agents which was the reason for 2 awesome libraries which enable more users to write
instrumentation code easier and in a safer way.

Frameworks
There are way more than 2 framework for dealing with manipulating bytecode but ASM 6

and Bytebuddy 7 are the most commonly used, Mixins8 library is worth at least mentioning
as it looks like the easiest library to actually develop with.

5https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
6https://asm.ow2.io/
7https://bytebuddy.net/
8https://github.com/SpongePowered/Mixin

10

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://asm.ow2.io/
https://bytebuddy.net/
https://github.com/SpongePowered/Mixin

ASM
ASM is an all purpose Java bytecode manipulation and analysis framework. It can be used
to modify existing classes or to dynamically generate classes, directly in binary form. ASM
provides common bytecode transformations and analysis algorithms from which custom
complex transformations and code analysis tools can be built 9.

ASM is even used in the OpenJDK, Groovy and Kotlin compilers which speaks a lot
about its maturity. Although it deals only with bytecode instructions, it makes the process
easier thanks to utilising the Visitor pattern and handling manual tasks such as recalculating
the offsets of instructions or dealing with the constant frames or calculating size of stack
for methods.

Bytebuddy
Bytebuddy is a code generation and manipulation library for creating and modifying Java
classes during the runtime of a Java application and without the help of a compiler 10.

Bytebuddy does not aim to compete with ASM, rather it strides towards abstracting
as much bytecode instructions as possible, it utilises complete Domain Specific Language
to create new and modify existing classes.

9Description taken from project page: https://asm.ow2.io/
10Description taken from project page https://bytebuddy.net/

11

https://asm.ow2.io/
https://bytebuddy.net/

2.3 Web application components
The most user friendly approach is usually to build a Graphical User Interface (GUI from
now on) for your application which will also be needed in this thesis. There are countless
approaches and resources to building a general GUI application which is the reason this
section will cover basics of web application development and more detailed description into
the Monaco Editor library as it is widely known by being taken from the Visual Studio
Code editor but the documentation is lacking in many aspects.

Web application development
Web applications are used commonly for their universal appeal on any platform, developers
don’t have to concern themselves with operating system specifics. It is not a surprise that
the Web application frameworks and libraries are one of the most rapidly growing projects.

Typical web application consists of HTML to define the contents, CSS to define visual
side of the content and Javascript to make the websites interactive and functional. When
it comes to creating more complex applications, there are many different libraries and
frameworks that aim to simplify the process.

Because the React library was used to implement the application it is going to be
described. Other notable mentions are Vue 11, Ember 12, Angular 13.

React
React [2] is a Javascript library for building interactive user interfaces in a declarative way.
Philosophy of React is that application is made up of web components which manage their
own state and react to changes in the state.

A web component receives props from its parent. Props are data coming from an upper
layer. A component can keep track of its state which is a structure that is manipulated
from only inside the component.

React uses virtual DOM technology to keep track of any changes to the web elements,
this process is called reconciliation. When a change is detected in the virtual DOM, only
then is a redraw of the specific web component actually called in the browser view. This
enables the declarative functionality of React and saves performance.

Monaco editor
Monaco editor is a library that uses the editor of popular editor Visual Studio Code14,
it supports syntax highlighting, autocompletion, adding custom commands and widgets,
multiple cursors, and everything else modern code editors support. Although it might seem
as developers can use the documentation of Visual Studio Code to use as reference when
using Monaco Editor - apart from basic examples, the documentation 15 is a list of defined
types where some functions have a small description.

Monaco editor installation
Unlike most Javascript libraries, Monaco Editor needs to be loaded in a proper way into
the website as it uses Webworkers to offload non UI-critical tasks, Monaco Editor comes
with its own loader or according to most claims other loaders will work as well. An example

11https://vuejs.org/
12https://emberjs.com/
13https://angular.io/
14https://code.visualstudio.com/
15https://microsoft.github.io/monaco-editor/api/modules/monaco.editor.html

12

https://vuejs.org/
https://emberjs.com/
https://angular.io/
https://code.visualstudio.com/
https://microsoft.github.io/monaco-editor/api/modules/monaco.editor.html

repository 16 exists to showcase basics of how different loaders can be used. It is not
necessary to understand how webworkers work and why is it required to load them, as
Monaco Editor abstracts those concepts from developers. After the loaders are set up
correctly, a editor can be created with calling a Javascript function on an HTMLElement
to use as a parent.

Syntax highlighting
Monaco comes with its own way to specify language syntax in Javascript/JSON, on the con-
trary VS Code supports other ways. It is called Monarch and it works as following:

∙ Syntax definition is a self-contained Javascript object, supporting only data.

∙ Syntax rules are defined in a tokenizer field.

∙ Syntax rules can use groups of tokens defined in the root object.

∙ Rules can be pushed on a stack.

∙ a set of rules is used based on what is on top of the rule stack.

∙ a rule is defined as a list, where [<pattern>, <action>, [<next>]].

∙ a pattern can either be a regular expression, or a token group defined in the object
(referred to as ”@<name-of-group>“.

∙ An action can be a string that holds a category of matched token.

∙ Next is an optional value if after matching this token a different set of rules should
be used, for example [”//*“, ”comment“, ”commentBody“] would classify ”//*“ as
a comment and push ”commentBody“ on the stack, so the tokenizer now uses that
set of rules.

An example of the Cucumber syntax written in Monarch can be seen in Appendix B.
There are more advanced features of monarch that allow matching brackets etc., those

are documented on the Monarch website 17.

Adding custom functionality
The editor proposes two ways of interacting with the editor or the contents of the editor
which are commands and actions. There is no explanation provided about what is
the difference between those two approaches and what should they be used for. But there are
some differences and non-written rules when it comes to using other Monaco components.

The simplest way to differentiate actions and commands would be: commands are more
lightweight, they are registered as a function with an optional key binding and optional
preconditions. When it comes to actions, they require an id, can be used from the context
and command menu. It can be confusing because what Monaco calls command menu shows
what developers register as actions.

When it comes to other features such as CodeLens, if an interaction is desired with it
a command id needs to be supplied, and if it is desired to have the functionality of actions
such as visibility in command menu, an action can be registered that call
editor#executeCommand() with the command id.

16https://github.com/microsoft/monaco-editor-samples
17https://microsoft.github.io/monaco-editor/monarch.html

13

https://github.com/microsoft/monaco-editor-samples
https://microsoft.github.io/monaco-editor/monarch.html

Codelens
Codelens is a mechanism where custom text can appear above specified lines of code, that
can provide additional info to users. A command id can be supplied together with the Code-
lens object to execute a command when the Codelens is clicked on. An important detail
when it comes to executing commands from Codelens is how the arguments are passed to
the command.

{
range: range,
id: "Run-Step-CodeLens",
command: {

id: runStepId,
title: "Run Step",
tooltip: "Runs the~step",
arguments: [model, range.startLineNumber]

}
}

In this code snippet, a Codelens object is created that is tied to arbitrary range range
(which contains start and end line numbers and start and end columns). On click it executes
a command with id runStepId and passes arguments model and range.startLineNumber
to the command. But the command by default receives one argument which is named
context in the API documentation but the meaning of what the variable contains is not
explained anywhere. To make the command work with Codelens defined above, it needs to
be registered as

//0 as first argument because no key bind is wanted
runStepId = editor.addCommand(0, (ctx, model, lineNum) => {

commandLogic(model, lineNum);
});

Decorating text
Most code editors provide a way to provide feedback, the most famous example is a red
squiggly underline of typos or incorrect code. The way to add custom line decorations in
Monaco is by calling editor#deltaDecorations, this method expects 2 parameters, first
one is the old parameters and second one is a list of monaco.editor.IModelDeltaDecoration
which contains fields range and options, range determines the range the decoration is applied
to and options specifies the CSS class names used and other options such as if the decora-
tion should be placed in the margin (which is next to the line numbers). Important note
when decorating lines is the first parameter, in the example it is just empty list, but that
causes wrong behavior when editing the text. The old decorations are returned when calling
editor#deltaDecorations. Consider following snippet:

14

var decorations;
...
function decorateText(lines) {

decorations = editor.deltaDecorations(decorations || [], lines.map((i) => ({
range: new monaco.Range(i, 1, i, 1),
options: {

isWholeLine: true,
inlineClassName: ’squiggly-error’

}
});

}

In the snippet a lines variable contains all line numbers with syntax errors which
get ’squiggly-error’ CSS class applied to them, notice that decorations are being set to
the return value of the function and are passed when calling the function next time, that
is important for consistent text decorations.

Custom widgets
There are different ways of adding an HTML element into the editor, the different ways
can be see in an example called ”Listening to mouse events“ 18 where different widgets are
used to demonstrate listening to mouse events.

In summary, Monaco editor provides these ways of customizing the editor:
∙ Viewzones - allows to specify a custom DOM node for a set number of lines, effectively

adding content between lines.

∙ Content widgets - allows to create a DOM node in the editor, this node is considered
as part of the content of the editor, so it scrolls along with the text.

∙ Overlay widgets - allows to create a DOM node overlaying the editor, node is not
affected by scrolling.

∙ Codelens - allow to display clickable text above a line of code.

∙ Glyph margins - allows to apply custom decorations to the gutter area, right next to
the line numbers.

Working with these specified widgets differs in terms of flexibility, the first 3 items
require developers to add the DOM node on their own, so those are the most flexible
methods. Codelens allows specifying a command id which is executed when the text is
clicked on, in terms of flexibility of manipulating the text, the whole editor content is
passed to the function providing the lenses, in that terms there are no limitations. Glyph
margins are more decorative, so the only control provided is the line number and the class
name, but since Monaco editor allows custom listeners for key and mouse events, that
functionality can be provided as well.

Custom autocomplete
Providing custom suggestions while user is typing in the editor is really easy in the Monaco
editor, and it is well covered by an example 19. A suggestion provider can be registered by

18https://microsoft.github.io/monaco-editor/playground.html#interacting-with-the-editor-
listening-to-mouse-events

19https://microsoft.github.io/monaco-editor/playground.html#extending-language-services-
completion-provider-example

15

https://microsoft.github.io/monaco-editor/playground.html#interacting-with-the-editor-listening-to-mouse-events
https://microsoft.github.io/monaco-editor/playground.html#interacting-with-the-editor-listening-to-mouse-events
https://microsoft.github.io/monaco-editor/playground.html#extending-language-services-completion-provider-example
https://microsoft.github.io/monaco-editor/playground.html#extending-language-services-completion-provider-example

calling function
monaco.languages.registerCompletionItemProvider(<languageId>,
<completionProvider>), where languageId is an id of the language the provider is going
to be registered for (’json’ or ’java’ as an example).

completionProvider is an instance of type monaco.languages.CompletionItemProvider
which requires functions

∙ provideCompletionItems(model, position, context, token)

∙ resolveCompletionItem(model, position, item, token)

Where both functions return ProviderResult<CompletionList> which is a type alias
for CompletionList or a Promise<CompletionList>. CompletionList contains two fields:
incomplete and suggestions, where incomplete can be set to true if there is data missing
in the items which are resolved by calling the resolveCompletionItem with each item as
the third parameter.

When a function is computationally demanding, it is recommended to provide just
the most basic information such as labels in the provideCompletionItems function and
then add the information on per item basis in resolveCompletionItem function.

The CompletionItem type20 has a lot of fields to document, but the basic fields are:

∙ label - an id and by default a display text in the suggestions, the id is important to
provide for the resolveCompletionItem

∙ insertText - the text that is going to be inserted, can use placeholders to allow users
TAB into specific places

∙ kind - the type of the item, such as variable, function, symbol, etc.

∙ detail - short documentation of the item, is displayed above the text when it was
inserted.

∙ documentation - documentation of the item, that is displayed on demand

∙ insertTextRules - rules that are applied when this completion is used (this is used
mainly to allow using placeholders in the insertText)

Accessing the content
The content of the editor is stored in Models, a model represents one tab open in the editor.
A model can be created by calling monaco.editor.createModel(<value>, <language>,
<uri>), where value is the initial text, language is optional and determines the suggestion
providers and the syntax highlighting used, uri is optional as well, if no file path is specified,
Monaco just keeps the models in memory.

Since the editor is made primarily for editing code, there are many functions that
facilitate searching for patterns in the model, navigating through lines, applying edits to
allow undo and much more21.

20https://github.com/Microsoft/monaco-editor/blob/master/monaco.d.ts#L5242
21https://microsoft.github.io/monaco-editor/api/interfaces/monaco.editor.itextmodel.html

16

https://github.com/Microsoft/monaco-editor/blob/master/monaco.d.ts#L5242
https://microsoft.github.io/monaco-editor/api/interfaces/monaco.editor.itextmodel.html

2.4 Existing solutions
The closest things to existing solutions are various plugins to text editors and IDEs that
highlight the syntax for describing different testing scenarios, some tools also provide ad-
ditional functionality.

These tools are described and analyzed because Cucumber Studio provides the most
functionality and the Intellij IDEA plugin is the most used by the user base. At the time
of writing Cucumber studio was the most sophisticated tool. Other tools exist such as Cuke
Test 22 and plugins for text editors Visual Studio Code 23, Atom 24.

Cucumber Studio
Cucumber Studio is an in-house tool created by the team behind Cucumber which is a pop-
ular Behavior Driven Testing framework. It provides more functionality than other tools.

This tool was definitely created as a tool for for everyone in the software creation process,
there is no code visible to the users.

Figure 2.1: Cucumber studio test scenario example25

In the picture you can see an example of one test scenario, it is a good representation
for stakeholders of a product, but from the testers perspective, it could be improved. Also

22http://cuketest.com/
23https://marketplace.visualstudio.com/items?itemName=alexkrechik.cucumberautocomplete
24https://atom.io/packages/cucumber

17

http://cuketest.com/
https://marketplace.visualstudio.com/items?itemName=alexkrechik.cucumberautocomplete
https://atom.io/packages/cucumber

the Cucumber Studio has quite unusual definitions in terms of BDT terminology as there are
actions and action words and results. Overall I found it confusing and too convoluted. As
a tester I am writing actions or steps, whether it is to do a test setup or to do a verification.

But a great feature of this tool is this feature of showing where a step is used, providing
users with other scenarios which use that step as an example. This is a common practise
while writing tests to see what other scenarios use and modify to suite their needs.

Figure 2.2: Cucumber studio step ”Used by“ page26

Cucumber plugin for Intellij IDEA
While doing research in the team of quality engineers, every one of them stated they used
this plugin as their main driver for writing BDT Scenarios, main reasons for that are:

∙ the team writes the test logic in Java which means most of them are using Intellij
IDEA anyway.

∙ By far this plugin has the best support for scanning dependencies of test suite for any
steps to provide autocomplete.

∙ It provides ”jump to definition“ feature which the testers use when investigating any
issue with scenarios.

When asked what they missed, common requests were (in order):

18

∙ a breakpoint functionality for scenarios.

∙ a hierarchical view of test suite features and tags.

∙ Way to run specific test scenario while it is open in the editor.

The following requirements are the basis for the designed tool: make the work less
convoluted, don’t force tester to look for information - provide step definition list
and search, allow testers to analyze the application under test state - add code execution
functionality. If the goals were to be summarized into one short goal it would be: Provide
an Integrated/Interactive Development Environment for Behavior Driven Testing.

19

Chapter 3

Solution draft for making BDT
more interactive

The overarching goal of this tool is to save time for testers and make their jobs easier. To
know how and if time can be saved, an analysis of the current workflow needs to be done
in order to propose a better solution.

3.1 Current approach to testing
Let’s say there’s a new feature in a web app that needs to be tested. First the new feature
needs to go through a hands-on phase, where tester observes what the feature brings to
the application and if there is anything present in the test suite they can use for testing this
feature. This hands-on phase usually takes day or two, depending on the size of the feature.

Then a happy path scenario gets created which means writing the scenario for the fea-
ture as it was designed to get used. This phase is hard to guess the average time as you
need to take into account if the required logic is written, so let’s say an hour for one scenario
for a new feature when all the logic is already written in the test suite, however if new logic
needs to be written, that can take up to 3 or more days.

How is a scenario written?
Most testers start with copying other scenario, then they open the application and start
performing the actions manually and trying to find steps that perform those actions as well.

When a happy path scenario or a base scenario (a minimal working scenario) is created,
testers usually start copying that scenario and modifying it, when they modify it and feel
like it is correct, they just run the test and observe the results. And keep in mind these
tests take time to execute, average time of one test execution is roughly 4 minutes 1.

Issues in current approach
The biggest issue in the current approach is everything takes too long, especially when
copying and modifying tests most testers describe that phase as ”trial and error“ where
they often face issues with typos or other logic issues.

Note that it is not really easy to see what exactly is going on in a running UI tests,
you don’t see a cursor, you just see a browser that either performs the actions on its own

1This information is approximated from the test suite used by the quality engineering team. At the time
of writing there were in total 682 test scenarios and execution time in total was around 2 days and 4 hours.
Resulting in average time per test scenario 4.8 minutes.

20

or stalls, it doesn’t really tell you what is wrong, it might be waiting for some condition,
or you wrote a CSS selector wrong, but you will learn that only when the test fails and
the browser window is closed.

It is possible to save the HTML and a screenshot of the page, but all users told me that
it is often not enough to see what the issue is.

Another issue is, it’s quite easy to miss steps that are already defined, this leads to each
tester defining their own steps which then brings unnecessary complexity into the test suite
and later makes maintenance harder.

Initial feedback
Primary users are people skilled enough to write test scenarios and the logic behind it, so
quality engineers. However Behavior Driven Testing is made so not only testers are capable
of understanding the test scenarios, it is meant to be a common ground between technical
people and others such as project managers, technical writers, even software developers
who are not familiar with the test suite, can easily read what is tested for a specific feature.

This application is suited mainly for the testers but could theoretically be used by other
groups of people.

the user needs
Although users are now capable to work just fine enough, that doesn’t mean there isn’t
a room for improvement. I obtained a feedback from testers in various phases of familiarity
with the testing process. Main complaints that turned into the list of the user needs were:

∙ difficulty to familiarize themselves with tests and steps for features not written by
them

∙ lacking options of debugging the tests, the process is still code centered

∙ while debugging, there’s no easy option to just pause the test execution

∙ no warnings regarding typos or incorrectly used steps

When asked what they missed, common requests were (in order):

∙ a breakpoint functionality for scenarios.

∙ a hierarchical view of test suite features and tags.

∙ Way to run specific test scenario while it is open in the editor.

3.2 Solutions for user issues
First of all let’s recapitulate the main requirements for the tool and sum up our options.
What is required:

∙ fast feedback - tester should always know what is happening

∙ information - tester should be able to get enough information from the application to
make proper decisions based on that information

∙ safety - any wrong action should not sacrifice tester’s progress, they should feel safe
to experiment

21

∙ ease of use - application should be easy enough even to be used as a macro tool,
if testers have automation written for specific scenarios they should be able to use
the automation

∙ easy to setup - minimal work should be needed to start the application when a ”compatible“
test suite already exists, it should be as easy as starting the tests with a different pa-
rameter

What needs to be changed to provide this functionality?
As it was described this functionality is not provided by default in any standard test suite
implementation. The test suite functionality must change in order to allow any other
requirement to even be addressed.

Ideal test suite functionality
Before any changes the test suite starts executing any specified tests and reports the different
results in a desired way (web page, text document). Creating tests interactively requires
the test suite to execute testers actions and wait for commands. First action to implement
this tool will be to create a test suite that initializes and waits for any commands from
the user, turning it into an interpreter effectively.

After the test suite is able to respond to commands a way for users to exchange infor-
mation with the test suite is required. The first and easiest information to provide is to list
all the step definitions from the running test suite.

How will it be made interactive?
Second step to making the testing process interactive is allowing testers to execute a step.
This step should be executed like it was read from a feature file, all parameters must be
extracted correctly and passed to the testing function.

When the step fails the test suite should report an error but not fail and exit. And if
such report was to happen, then testers need to see it. Which means the reporting interface
(either output streams or different means in term of internal test suite reporting) must be
provided to the tester in the application.

In this state the application can be considered a minimal working product, although it
does not allow creating a whole test scenario in its entirety a significant amount of time
can be saved and the safety and fast feedback goals were met.

Providing more information
Since the application under test is running as the test is written more information can be
provided the user. A mechanism to allow providing custom information from the application
under test must be provided.

Creating complete test scenarios
When executing the tests the application should keep track of the steps executed to make
a test scenario from them. To add to the ease of use, the test scenario and feature should
be also possible while writing the steps.

Summary
To allow proper working of the tool, the test suite must be able to execute commands on
demand and an application must be designed around this feature.

22

Implementing the solutions

To address all the needs from previous section, it is apparent that my solution will
consist of two different components communicating with each other.

Java Instrumentation is going to be used for manipulating existing test suites to provide
required behavior. Meaning a program will exist that will modify the behavior of the test
suite and provide an API for communicating with the test suite. This is further described
in section 3.5

The second component is a User Interface which means that first of all it needs to be
designed and verified with users, further described in section 3.3 and 3.4. And for this
specific project a working compatible test suite needed to exist for any user testing. It
was required because the users needed to see what they are testing and the results of their
actions. The details for implementing the User Interfaces are in section 3.5 where data
structures used for inner and outer communication are used.

3.3 Designing the application

Platform
Platform is an important fact to keep in mind while designing UI but due to the nature
of this tool, it is not required to take phones or touchscreens into consideration, since
testers do their jobs on laptops and write using a keyboard. So platform is going to be just
a desktop application.

My first idea was to implement just a terminal interface, since writing the steps is quite
similar to typing commands into terminal. Modern terminals are able to provide graphics
enhancements and handle mouse input quite well but with the planned complexity of this
project, sooner or later the terminal interface would become cluttered. Also it is not desired
to make people learn to use the application, it is meant to save time, so spending time
learning keyboard shortcuts and navigation in the application would be counter productive.

A great idea was to implement the fronted as a part of an IDE, so no new tool is needed.
Therefore, the final platform was web application which is able to run in the browser,
integrates well into editors like VS Code and thanks to Electron can be made into an actual
standalone application.

Mockups
As stated before, the first prototypes used a shell-like interface which worked quite well but
other designs started to come to mind while working on mockups. What if there was no
differentiation between typing steps and executing them? When user writes the step in an
editor, it just executes. What if there was no editor present in the UI? And the steps were
presented just as cards neatly formatted as it will be in the resulting scenario.

Let’s focus on the two different approaches, the Shell and Editor designs to evaluate
which would be a better fit.

Shell design
In figure 3.1 you can see, there is one main element at the bottom, where user writes
the steps they want executed and at the top they see the status of executed steps and
potentially the output. On the right there is a list of all available steps and other tools,
this panel would more or less stay the same between the two designs. A great advantage
of this design is that it’s just simple for developing but also for understanding, since it’s

23

Figure 3.1: Shell design mockup

so close to the terminal interface, many users should be able to just pickup the tool and
understand what is going on where. Also it’s potentially more expandable when taking into
consideration the ability to write code in the input panel. A disadvantage is that this isn’t
the natural process of writing scenarios, some commands will just become actions nowhere
to be documented. Or the output could very quickly become unreadable and the written
scenario can be lost. On the other hand this might be what we need for more advanced
features like discarding failed steps or debugging.

24

Figure 3.2: Editor design mockup

Editor design

The editor design (figure 3.2) is different by the entire application just being an editor
window (with maybe the side panels), and all the actions user want performed would be
accessible from that editor. The greatest advantage is the seamless experience it would
provide, the tester would write test scenarios as they are used to writing and the scenario
would be executed as they are typing. But that can also be a disadvantage. I can see
more possibilities in confusing the user with technically more advanced actions, such as
copy pasting, moving and removing steps. If the only consideration was executing steps as
they are being written, this approach is the best fit, but for the more advanced purposes
could be really confusing for the user to understand how exactly should these actions be
performed and also leave the scenario in progress intact.

25

Decision between designs
The most important factor in deciding what the final design is going to look like was
of course the convenience of the users. So apart from my own thoughts on the design, I
asked the users to see if there are any strong feelings about either of those designs.

I collected great feedback for both designs, but to sum it up these were the main takeouts
from asking around: The editor design - overall felt better to the users, but everyone asked

”How do I edit it? How do I edit and run/not run the step?“, also users wanted to be able
to see the resulting feature file, but still see the history of their actions. The shell design -
the overall feelings of the users was that it’d be good to do a quick experiment or just use
a few steps, but they didn’t even expect being able to edit the file, or write comments. It
was just too complicated, and there wasn’t much space to show users the possible actions
they can perform.

Based on this feedback, I looked very hard for already existing solutions, to see how
others overcame the issues I am facing and to my surprise I didn’t get it all wrong, but I
just needed to merge both designs together to resemble typical What You See Is What You
Get editor. Which meant dividing the user space into two main areas, the user workplace,
where they will write the test scenarios, name their scenarios etc. and the other where they
see results of their actions.

Side-by-side editor design

Figure 3.3: Side-by-side editor design mockup

As you can see there are inspirations from both designs, but it’s overall neater. Gives
a clear separation of where the working focus should be. This also makes developing

26

the application easier, since there are many open source text editor libraries, that already
have their great implementation of syntax highlighting and autocompletion.

Figure 3.4: Context view of a step definition

3.4 Verifying designs
In this section, the issues/improvements are going to be mentioned and what was the de-
sign decision to not make it a problem anymore, or at least make handling that problem
for testers easier.

Too many step definitions, defined in a bunch of places
The easiest solution is to allow testers to search through all the step definitions and provide
autocomplete for when they are writing the test scenarios, so they don’t have to remember
the exact pattern, just to know when they type a part of it they can find it in the listing.
What could improve this design is ability to add a hierarchy to the searching component,
maybe allowing users to have a hierarchy like in the classes, or to be able to tag the step
definitions, for example have ”account“ steps although they might not contain the word
account. An example can be the Step list component in figure 3.3.

Long recoveries from mistakes
As this was the issue that inspired the idea, this was the priority during design process.
The application encourages experimentation with different step definitions because they are
all available to the user when they find them and if the execution of the step fails, they can
simply manually revert any progress, observe the logs and still continue in writing the test
scenario.

27

What did they mean in this step definition
Most testers would rather make informed choices while testing which comes with its own
set of challenges. A short sentence in form of a step definition is never going to be enough.
A solution for this is to provide context when tester is looking at a step definition, a proposed
solution is depicted in figure 3.4

This design was presented during the user testing process to all testers, it covers all
the the context ”clues“ they commonly used to figure out how to use a step definition,
most of them looked in already existing scenarios which is covered. Then they resort to
code, where they look if any of the used methods are documented, if not they resort to
reading the code. All of those methods are covered by the component, and users especially
appreciated that documentation of step definition is going to be more visible here than
in code and it would encourage them to write documentation for their own step
definitions.

Does such test exist? What tags do I use?
Due to the test scenarios being stored in a file per feature, it sometimes happen that
overlapping scenarios are in one feature file and that leaves room for similar or equivalent
scenarios due to testers inability to find it in a given feature file.

Test scenarios and features can be identified and grouped together using tags, the usual
workflow is one unique tag per scenario, one unique tag for feature and then tags for common
functionality, such as ”@ui“, ”@oauth“, etc. When testers were asked about how they use
the common tags, none of them had clear answer. They were proposed with design depicted
in figure 3.5

Figure 3.5: Scenario/tag explorer widget

The focus of this widget was to hide the notion of files to ease up the navigation in
test suite. Scenarios will still remain in separate feature files, but at least while researching
testers are not bothered by navigating in files and folders.

28

The tag exploring widget was seen as a nice to have feature, it would be nice to know
what tests are executed with a given tag and to be able to see all defined tags (apart from
the unique per scenario ones) to potentially add to a scenario or a feature.

User testing proposal
For verifying the designs in an ideal world a prototype could be made for each mockup
and test those prototypes on at least 3 users with different experience in this area. It is
important to have a working prototype for testing, because part of the testing is to see how
users react to the fact they are working in real time environment. To save time of developers
and testers, a decision for the best design can be made and implement working prototype
for that design.

When it comes to hands-on testing of the application, several conditions should apply:

∙ Users should be all of different experience.

∙ Users should not be familiar with the test suite.

∙ Users should be presented with a more abstract goal, such as ”Test login functionality“,
to encourage exploration.

∙ Users should be encouraged to follow the think-aloud protocol, to gain the most
feedback from them.

∙ Users should encounter a case where a step they just wrote didn’t success, to observe
their reaction.

∙ Observe where the user is looking for information, how are they finding new step
definitions?

∙ If users show signs of struggle, or being lost, ask them what are they looking for and
where would they expect to find it.

A list of recommended questions at the end of the hands-on session:

∙ Would you adapt this workflow?

∙ If you are hesitating to adapt - what are you missing?

∙ Did you feel your job was made easier? Did something interfere in your work?

∙ How do you write scenarios now? Where do you look for step definitions? Do you
look for documentation somewhere?

The user testing plan was pilot tested on 2 user experience engineers and used knowledge
from Handbook of Usability Testing [7]. Feedback from users is used throughout this thesis
and the main results of this testing are described in 4.3.

3.5 Application architecture
First a short explanation of how the test suite is structured is needed to understand what
needs to change.

A standard BDT test suite consists of code and test scenarios. The code provides step
definitions that are used in scenarios as steps. Main difference is that step definition is

29

like a declaration of a step, it has a pattern and an action. On the other hand step refers
to a usage of step definition, like a function call it can have parameters that are defined in
the pattern.

When the test suite is started, the code is loaded and step definitions in the code are
registered, then the test suite runner determines which scenarios are to be run and then
loads said scenarios and runs them. When a scenario is run, it means that line by line a step
is read, gets matched against registered step definitions and if a match is found, the action
is run; if a match is not found, then that scenario fails.

Since the purpose of test runners is to run tests, running steps on demand and making
test suite wait for supplied steps is not out of the box functionality of any test framework.
This means that either a new test runner needs to be written, or the currently used test
runner needs to be modified.

The process of starting and executing tests by the test suite is visualized in figure ??.
Writing a new test runner isn’t the best choice, because it required a lot of effort both

from person developing this application to testers as there will be 2 test runners which in
the worst case could introduce issues such as some dependency incompatibilities and more
importantly different runtime behaviors. So introducing a new component was required
to change specific parts of the test suite to allow required behavior. I will refer to this
component as the Agent.

The architecture is visualized in the figure 3.6.

Figure 3.6: Application infrastructure

Together the agent and the test suite makes a back-end which allows for needed functions
such as list registered step definitions and run a step. Testers will then use the front-end
to utilize those functions.

30

Figure 3.7: Test suite lifecycle

31

3.6 Backend API
A universal proposal for all test suites (not just Java and Cucumber) is to modify the runner
code right before the execution starts and open an HTTP server to allow communication
with any tool. HTTP server is recommended for its simplicity, it is easy to communicate
with an HTTP server through any language/framework. And specifically in case of Java
an HTTP server client and server are already included in the standard library, as using
libraries is not as easy an universal as it can be (more about this in Implementation 4).

To be able to provide all functionality to the tool, several things are required from
the test suite:

∙ step definitions - for listing in application and running;

∙ all features - for opening scenarios, reading the tags, the ”used in“ context section

∙ in more advanced cases - type registry

Back-end functionality

The back-end is going to resemble a RESTful service, with following paths, methods
and data shapes:

Data shapes
These following data shapes are going to be used in the RESTful service as data types,

values ending with ? denote optional value.

StepDefinition = {
id: integer, //< autogenerated id for~the~step definition
pattern: string, //< regular expression source to match the~step definition
location?: Location,
documentation?: string,
arguments?: Argument[]

}
Location = {

filename: string, //< source filename
lineNumber: integer //< source line number

}
Argument = {

suggestionProvider?: string, //< a~unique name for~a~suggestion provider
type: string, //< data type of~the~argument
name?: string

}
CompileStepDefinition = {

pattern: string, //< regular expression pattern for~the~step definition
code: string //< code in a~programming language that is executed when this step definition is matched

}
CompileResult = {

stackTrace?: string, //< output of~the~compiler
failed: boolean //< result of~the~operation,

}
SuggestionRequest = {

32

name: string, //< name of~the~suggestion provider, can be obtained from argument data shape
value: string, //< the~step currently written
position: integer //< which argument is the~suggestion for

}
Logs = {

stdout: string, //< the~test suite logs to standard output stream
stderr: string //< the~test suite logs to standard error stream

}

Paths

Paths are used in a REST service to differentiate between the different types or services
provided. When a path contains a {name} that means the name will be used as a parameter.

/steps
Methods:

∙ GET : StepDefinition[] - returns a list of all step definitions registered. If providing
list of all step definitions with all values is computationally expensive (for example
loading documentation), a list with only required fields is returned.

/step/{id} Methods:

∙ GET : id -> StepDefinition - finds a step definition with the same id as in the pa-
rameter and returns a complete StepDefinition, can take longer time to compute.

∙ POST : body=CompileStepDefinition -> StepDefinition | CompileResult - cre-
ates a new step definition in the test suite, if compilation and adding the step defini-
tion is successful, 201 : StepDefinition is returned, otherwise 406 : CompileResult is
returned.

∙ PATCH : id, body=CompileStepDefinition -> StepDefinition | CompileResult
- replaces step definition with id id in the test suite, if compilation and replacing
the step definition is successful, 201 : StepDefinition is returned, otherwise 406 :
CompileResult is returned.

/run Methods:

∙ GET : body=string -> string - body is considered as one step, test suite runs
the step as if it was just read from a feature file, executes it and returns the log
output in the response with code 200, if there was an error while executing the step,
400 with the log output in the body is returned.

/logs Methods:

∙ GET : Logs - the outputs kept for sending to the application, the application is polling
for any logs, if log is once read, it is cleared. If no new output occurred in a given
stream, then empty string is set for that field.

33

/suggestion Methods:

∙ POST : body=SuggestionRequest -> string[] - invokes the suggestion provider
for given name with parameters from body, all suggested
values from the SuggestionProvider are returned.

/scenarios Methods:

∙ GET : string[] - returns paths of all feature files present in the test suite.

/scenario/ Methods:

∙ POST : body=string -> string - returns contents of a feature file indicated by
the path present in the request body.

Suggestion mechanism
The suggestion provider mechanism is meant for step definitions to be able to provide more
context while the application is running. It is desired to make it really easy to provide
suggestions for a step argument. The most convenient way for developers is to provide
an annotation @Suggestions(<class>), the annotation can be used either for a function
parameter or as a class annotation which makes all arguments of the type of annotated
class use that suggestion provider, if the BDT framework allows to automatically convert
step argument to custom data types.

the class used as value of the annotation needs to implement following interface:

public interface ISuggestionProvider {

List<Object> provide(String step);
List<Object> provide(String step, int arg);

}

If context is needed, the step variable will have value of the step that is already written, but
the value might not match any step definition as it uses fuzzy searching. Finding the right
position of the argument is a complex issue due to the pattern being a regular expression.
But it is safe to ignore the arg function, as by default that function just delegates to
the function with just one argument.

Predefined classes such as EnumSuggestionProvider can be a part of the agent library
if it can be implemented in a generic way.

Communication proposal
Communication is going to follow the RESTful contract described above, an authentication
mechanism should be implemented, as when the service provides code execution features,
it will be really easy to leak information such as any credential info, execute code on
the hosting machine and instruct the controlled browser to access malicious websites.

Client is meant to be polling the server, so more than one connection at the time might
occur even when the application is used by only one user.

Front-end proposal
Front-end should reflect the side-by-side design mentioned above in figure 3.3, it is highly
recommended to use a code editor library.

34

The functionality for executing the different inputs inside the input editor are classes
implementing the IService interface which are all registered inside Services singleton
class. Each service accepts the whole contents of the input editor as Model, this is required
because some services might need to read more than one line of text to execute the command
correctly. Due to the asynchronous nature of particular services, there must be a messaging
mechanism in place for the service to send updates.

The following contract applies for an IService implementation:

∙ Each service has its own messaging channel.

∙ Each services payload contains the status of execution and optionally data with a data
shape previously declared by the service.

∙ canHandle(line:string):boolean - receives a line from the model, returns true if
this service is capable of handling such input, otherwise returns false. No additional
validation is implemented in this method.

∙ handle(model:Model, lineNum:integer):Status - starts consuming input from
the model on position lineNum, after a line is consumed, it should no longer be
a part of the model. Returns the status of execution (SUCCESS, RUNNING, FAILURE).
Any other data or updates should be send through the messaging channel.

∙ provideSuggestions(model:Model, position:Position):SuggestionData[] - pro-
vides autocomplete items to the editor, returns empty list if none are or available.
The suggestions can range from context-aware to constants such as Cucumber key-
words, for added context the Position type contains column number. SuggestionData
is abstract type - depending on the editor library.

The Services class is responsible for keeping track of all registered services, finding
the right match for an input and delegating the execution. The UI Widgets subscribe to
concrete services’ messaging channels and update their data and UI accordingly.

Application lifecycle
When the application starts up, first call to back-end should always be getting all registered
step definitions. When all step definitions are displayed in the UI, the basic functional-
ity of the editor can work while the application requests details for more information in
the background.

An anonymous file is always created at start-up, user is able to start writing steps
or other control sequences into the input editor. When an execution command is fired
(keybind pressed or a widget is clicked), the application calls its internal service registry to
determine which registry is able to satisfy the request. When the request is served, the line
is removed and output is written to according place. The place for service output is chosen
as: if output belongs to feature file, then it is added into the output editor, otherwise it is
added into the logs view.

When the export button is pressed, any not-edited and failed steps are removed from
the output editor and a save file dialog is shown and file is saved in selected location.

Possible extensions
Some functionality was left out from the proposal due to its complexity and being dependant
on a single technology, because they are not required for testers to be able to use this

35

application, they will be described here abstractly keeping in mind there probably will be
deviations due to specific technologies.

Executing code in the application
This functionality is dependant on the language used by the test suite. Expecting it is possi-
ble to execute code from text, it almost a must for an ”exposing“ mechanism. When a class/-
variable/function are exposed, they are usable in the context of the code, for example:
ScriptExecutor.register(<name>, <reference>) or @Expose <Type> <variable> so
users are able to use the code of the test suite for debugging.

Debugging the test suite
If a code execution functionality is in place, debugging can be achieved by making it possible
to load a scenario in the application. A breakpoint mechanism, where if the test is currently
executing and either there is a breakpoint at the current line or the previous step returned
Failure status, the execution is stopped and testers are allowed to inspect the application
state and execute code if needed.

36

Chapter 4

Implementation of interactive BDT
tool

The main idea of this thesis is to allow testers see currently written tests being executed
on-the-fly. Meaning the first implementation step is to create a test runner that allows this.
Since no test runners provide this behavior and writing a test runner only for this behavior
can cause conflicts in existing test suites and adds complexity, the implemented solution
will change existing test runner instead of creating one (further described in Section 4.1).

After the test suite is able to listen to commands and execute testing steps on demand,
the user interface will be implemented and gradually tested on users to seek feedback and
make improvements (further described in Sections 4.2, 4.3).

This chapter relies heavily on the solution design, short reminder of commonly used
words and their meaning:

∙ test suite - code and test cases together in one project

∙ scenario - one test case written in Gherkin syntax (readable by everyone)

∙ agent - program responsible for modifying test suite behavior to suite the application
needs

∙ back-end - test suite modified with agent - ready to communicate with the front-end

∙ front-end - web application that allows testers to run test parts on demand

4.1 Agent implementation
Creating back-end from the test suite was technically the hardest obstacle of this thesis,
as at the time of writing the thesis, to my knowledge, there was not any project to allow
users to write their BDT scenarios in real-time. And the information sources were scarce.
The process that lead me to implementing the agent is implemented in Appendinx A

Java Agent is defined as a jar file where the MANIFEST file contains either a
Premain-Class or Agent-Class attributes which contain the fully qualified name of a class
with a class that has a proper signature specified in the Java Instrumentation documenta-
tion: public static void premain(String arg, Instrumentation instr).

Java agents get loaded before any code from the application gets loaded, so it solves
the issue of redefining already loaded classes.

37

Redefining Test runner
In order to provide the wanted behavior, the most important step is to redefine the currently
used Test runner class to do all the required initialization, but to stop it from executing
tests.

First it is necessary to know what method is in need of modification, if it is desired to
replace the code or add code before or after the current code, or in specific cases it could
be also required to insert code in a certain section of a method, using local variables, but
this is not luckily the case for most cases.

Short version of default runner:

public class Cucumber extends ParentRunner<FeatureRunner> {

public Cucumber(Class clazz) {
loadStepDefinitions();
loadScenarios();
prepareScenariosToRun();

}

@Override
protected Statement childrenInvoker(RunNotifier notifier) {

return () -> runScenarios();
}

private void addChildren(List<CucumberFeature> cucumberFeatures) {
createRunnersForScenarios(cucumberFeatures);

}
}

At a glance, it is understandable that all the needed initialization happens in the con-
structor and tests start executing in the childrenInvoker method. Now it is only needed
to understand what the code does and what is needed for it to do so it serves the purpose
of the application.

The Statement return type is simply a method that gets called to execute the tests,
since it is not required to run any tests, the default behavior can be to simply rewrite this
implementation.

How to rewrite implementation?
To make the job easier, I decided to use the Bytebuddy library, with Bytebuddy-agent
additional library which allows developers to easily create ClassTransformers without
the need of direct manipulation of bytecode. It also uses Domain Specific Language to
create the Transformers so the code stays readable.

public static void premain(String args, Instrumentation instrumentation) {
new AgentBuilder.Default()

.with(AgentBuilder.TypeStrategy.Default.REDEFINE)

.with(AgentBuilder.InjectionStrategy.UsingReflection.INSTANCE)

.type(ElementMatchers.named("cucumber.api.junit.Cucumber"))
//.with(AgentBuilder.Listener.StreamWriting.toSystemError())

.transform((builder, typeDescription, classLoader, module) -> {
return builder.method(ElementMatchers.named("childrenInvoker"))

38

.intercept(MethodDelegation.to(CucumberInterceptor.class));
}).installOn(instrumentation);

}

Short explanation of the important lines:

∙ TypeStrategy.Default.REDEFINE - means to overwrite the code,
TypeStrategy.Default.REBASE would create an inner class where the original im-
plementation is kept

∙ InjectionStrategy.UsingReflection.INSTANCE - instruction how to inject newly
created class into the classloader, this is the safest and easiest approach, other imple-
mentations allow using Instrumentation or the Unsafe class

∙ ElementMatchers.named(”cucumber.api.junit.Cucumber“) - narrowing the classes
to be rewritten, other methods of filtering classes exist such as: isDecorated, imple-
ments/extends type etc.

∙ .with(AgentBuilder.Listener.StreamWriting.toSystemError()) - this is not re-
ally a documented feature, but it is almost a necesity to be able to debug Java agents,
it logs classnames as they load, provides information whether the classes are trans-
formed and logs useful error messages when an error happens

∙ return builder.method(ElementMatchers.named(”childrenInvoker“))
.intercept(MethodDelegation.to(CucumberInterceptor.class)); - find method
named childrenInvoker and delegate the implementation to the CucumberInterceptor
class

The CucumberInterceptor class contains a method with signature:

@RuntimeType
public static Statement childrenInvoker(RunNotifier notif, @This Object cucumber);

and ByteBuddy is implemented in a way where the best match for a method gets chosen
as the intercepted method. It follows rules such as: argument counts and types, return
type, name of method. The annotation @RuntimeType instructs ByteBuddy to try to cast
the argument types while determining which method gets chosen as the interceptor and
the @This Object cucumber parameters is a mechanism that passes the this reference
of the original object to the intercepted methods.

Presented information related to Java Instrumentation and Bytebuddy were primarily
sourced from an amazing conference talk [9].

In summary the childrenInvoker method does these following things:

∙ reads values from the Cucumber instance such as registered steps,

∙ register contexts for different server endpoints,

∙ starts an HTTP server and processes incoming requests.

The method still has to return value, and due to JUnit specific notions, it isn’t possible
to start the HTTP server in the returned statement, so I ended up returning a primitive
closing function:

39

return new Statement() {
@Override
public void evaluate() throws Throwable {

while(!"quit".equalsIgnoreCase(lastMessage)){
Thread.sleep(1000);

}
}

};

Also important note is that it is not a good idea to use lambdas in any intercepting
code, as lambdas are compiled to inner anonymous classes. Which often leads to issues as
the different JVM implementations support this differently1.

Initialization process
Before the HTTP server is opened it is needed to obtain the values to be provided by
the back-end. Because there is a goal not to include any testing library code to avoid con-
flicts, the values are extracted dynamically. This process can be seen in classes
CucumberInterceptor and StepDefProcessor, where the StepDefinition class is ana-
lyzed and values are extracted for two different versions of the Cucumber library. For a fully
featured implementation, the StepDefProcessor should be able to obtain the required val-
ues from any object.

Opening the HTTP server
To avoid any more conflicts in the libraries the com.sun.net.httpserver.HttpServer was
used as the HTTP server implementation because it is already included in the standard
library. The HTTP server allows to register different contexts which allows a specific path
to invoke a specific code, the contexts are registered in an enum called Handlers, where
each member of holds an object that implements the Handler interface.

public interface Handler {

void handle(HttpExchange exchange) throws IOException;

default String getPath() {
return "/" + getClass().getSimpleName()

.toLowerCase().replace("handler", "");
}

}

The implemented handlers the code provided with this thesis are

∙ RUN_STEP(new RunStepHandler()) - runs a step provided in a POST request body

∙ LIST_STEPS(new ListStepsHandler()) - provides a list of all step definitions

∙ SUGGEST(new SuggestionHandler()) - provides suggestion for a registered provider

∙ LOG(new LogHandler()) - provides access to the test suite logs
1the author of Bytebuddy himself doesn’t advice to use lambdas: https://github.com/raphw/byte-

buddy/issues/731#issuecomment-533068046

40

https://github.com/raphw/byte-buddy/issues/731#issuecomment-533068046
https://github.com/raphw/byte-buddy/issues/731#issuecomment-533068046

Allowing developers to provide custom suggestions when someone is using a step defini-
tion was high on my priority list because it well presents the benefit of interactive testing.
To provide a suggestion for a parameter of a step definition, an annotation @Suggestion can
be used with a value which holds a class implementing ISuggestionProvider interface.

public interface ISuggestionProvider {

List<Object> provide(String step);
default List<Object> provide(String step, int arg){

return provide(step);
}

}

Where only the provide method with just the String parameter has to be implemented.
The step parameter contains currently written step in the application, if more context is
required the arg parameter should contain which argument the suggestion was requested
for.

4.2 Front-end implementation
Implementing front-end was more streamlined experience, it was implemented in the React
framework using the Typescript language. For quite a long time the desired design to
implement was the terminal design (see figure 3.1), but as more functionality was adding
and more IDE-like features were adding, it became clear that design has some serious
limitations.

Following libraries were used:

∙ flux2 - provides functionality for unidirectional dataflow in React;

∙ react-grid-layout3 - provides React components to create manipulable grid layouts;

∙ fuse4 - fuzzy search library;

∙ monaco-editor5 - fully featured code editor library;

∙ react-monaco-editor6 - library adding a Monaco editor React component;

The project is bundled via Webpack, along with plugins html-loader, html-webpack-plugin,
monaco-editor-webpack-plugin, source-map-loader.

Before using monaco library and typescript, I tried to implement a prototype UI just
using React, it wasn’t the best choice for implementation but I learned a lot about React
while trying to implement the terminal design.

During development of the application in Javascript, there were many mistakes while
naming props and state variables. Many mistakes were discovered while testing the appli-
cation that needed to recompile the whole application and test again. Typescript made any

2https://facebook.github.io/flux/
3https://github.com/STRML/react-grid-layout
4https://fusejs.io/
5https://microsoft.github.io/monaco-editor/
6https://github.com/react-monaco-editor/react-monaco-editor

41

https://facebook.github.io/flux/
https://github.com/STRML/react-grid-layout
https://fusejs.io/
https://microsoft.github.io/monaco-editor/
https://github.com/react-monaco-editor/react-monaco-editor

Figure 4.1: Overview of UI components

fails show up faster and the tooling and support in React is even better than when using
only Javascript.

The UI consists of a few components show in Figure 4.1:
The most important components are both of the editors, they provide most of the infor-

mation to the user. The step definitions list allows users to search through the registered
step definitions, allowing them to quickly familiarize themselves with the test suite. The logs
output is used for reading the logs of the test suite. The Scenario browser should allow
users to browse through the defined scenarios, features and tags.

Services
The different interactions are implemented in services and the service functionality is then
used in the editor code. Because the services play an important role in the implementation,
they need to be documented prior to describing the components.

A services’ role is to be able to read a command in the input editor and execute it
either by changing the inner application state or by using resources outside the application.
A service extends following abstract class and implements the abstract methods.

export interface ServiceResult {
status: ResultType,
data?: any,

}
abstract class Service<T extends ServiceResult> {

dispatcher:Dispatcher<T> = new Dispatcher();

abstract canHandle(line: string): boolean;
abstract handle(model: Model, from: number):ResultType;
async provideSuggestions(model:Model,

position: Position,
context: CompletionContext) : Promise<CompletionItem[]>

canHandleModel(model: Model, from: number): boolean {
return this.canHandle(this.peek(model, from));

}
}

42

Since the command can be executed from any line number, the service reads the editor
content from the model. If the canHandle method returns true, meaning the command is
recognized by this service and the service is able to execute it, the line is consumed and re-
moved from the model (editor content). The command validation takes place in the handle
method, where if the command is not valid a ResultType.Failure is returned. Otherwise
if the error contains data or in case of asynchronous communication, the dispatcher is used.
Every service has its own dispatcher and the UI components will register to the dispatchers
to receive messages with data or changes in a command state.

If a service can provide suggestions to the editor autocomplete, the provideSuggestions
method is used, the method receives the same parameters as when it is used by the monaco
editor, if no suggestions are to be provided a resolved promise with an empty list will be
returned.

A special UnknownOpService is implemented in case there is no service that can handle
a command. All it does is consume the line it was invoked on.

The services existing in the implementation are

∙ Cucumber service - Communicates with the back-end, sends commands to execute
the steps and provides suggestions if suggestion provider is registered.

∙ Comment service - Moves comments to output adding them to the final scenario

∙ Variable service - Allows users to set a variable to a certain value, used for naming
scenarios and can be used to insert the value of variable into input editor

A legacy implementation of managers is also left in the code. This code was written
before using monaco editor, it serves the main purpose of handling the communication
with the back-end.

In the editor folder most of the implementation relating to the monaco editor resides.
A monarch syntax definition had to be created for this project which is included in Ap-
pendix B. It is registered for both input and output browser.

Input editor functionality
The functionality of the input editor component is provided by the monaco-editor compo-
nent with proper actions and commands registered. A Code lens provider and a suggestion
provider is registered as well. All the functionality provided in the ”editor“ folder in source
code deals with interfacing with the monaco editor, the actual functionality is always pro-
vided by services.

Output editor functionality
The additional behavior for the output editor is defined in the component file itself. The ad-
ditional features provided are adding margin decorations to executed steps, providing an
export button and setting the scenario names from the variable service.

Step list
The Step list component is a simple list of all step definitions with a search function.
The fuse.js library was used for the search functionality to provide results even with mis-
spelled search text or only parts or the text.

43

Figure 4.2: Code lens example

4.3 User testing
In the first user testing round, my main goal was seeing if users understand the concept
of the almost WYSIWG approach to the tool. Users were presented with a sample test suite,
that they had seen for the first time, mainly to see if just presenting them with the steps
is enough, or more context is needed.

I had 2 users with different familiarity of UI Testing to see if different skill sets affect
their workflow. Users were presented with one overarching task: ”Write a test scenario to
perform a search in Google images“, where I presented them with minor tasks which they
either did right or struggled with and we had a discussion about why did they struggle and
what would help them out.

To sum up the results of the first testing round, I got an overwhelmingly positive
feedback about the idea of the tool, both users wanted to adapt this workflow in their day
to day jobs. The side by side editor idea did turn out to be fairly easy to grasp, the main
issue that both testers expressed was that it was confusing at first to know where they
are supposed to write and they would expect the editor to be read only. I also wanted to
see how users are going to Submit actions, both were presented with keyboard shortcut
Ctrl+Enter to submit, but there was also a button and a code lens.

And neither of those users didn’t notice the CodeLens (see Figure 4.2) at all which is
really good to know as I planned to implement other features by using CodeLens, but it
just blends into the code too much.

In conclusion of first user testing, users would still appreciate more context about
the steps, and small tweaks to the UI, such as disabling the output editor by default and
making the test suite logs easier to read. This will all be addressed by later designs.

Impact on testers
Although the user tests were quite short (1 hour at max), every participant got used to
working with this tool really fast and expressed interest into adapting this workflow. Many
were sure it will save them significant amount of time (due to time constraints it was not
possible to do a longer test).

4.4 Plans for the future
As it was mentioned several times, during the user testing every user expressed interest
in this project. As well as other people from other parts of the team other than Quality
Engineering, this project is going to be open sourced with a team forming around it.

Due to some outstanding issues it is not easy and convenient to set up with existing
test suites due to mismatching library versions. The first task to bring this project to more
people and get more contributors is to support most major versions of the Cucumber library.

44

After fixing this more structural issue the feedback from user testing can be addressed and
new features implemented.

In regards to the solution design (Chapter 3) not every feature was implemented.
The code execution feature was not implemented due to the lack of any libraries pro-
viding this functionality out of the box. The feature files are not read and provided by
the agent, as well as the ”Used in“ context section. The suggestion provider functionality
is not context aware, as I was not able to make and algorithm determining if the caret is in
place of an argument, so suggestions are provided as ”<number>: <value>“ where number
is position of the argument and value is the text to be inserted.

In hindsight most of these issues were caused by the complexity of the Cucumber frame-
work and Java Instrumentation, if this were to be developed in a dynamic scripting language
such as Python, the implementation could have been more advanced, but the solution draft
should be universal.

45

Chapter 5

Conclusion

The aim of this thesis was to analyze a specific approach (Behavior Driven Testing) to
software verification and to make this approach more user friendly, resulting in faster times
of tests development and quicker on-boarding experience for newcomers getting familiar
with new test suites.

To create a proposal of the solution I studied the libraries used for Behavior Driven
Testing and ways to modify existing code, software verification with focus on Behavior
Driven Testing and UI testing. A big resource for designing this environment was a team
of quality engineers that use Behavior Driven Testing as a main tool for system testing.

A solution proposal addressed the main hindrances while testing was created after get-
ting feedback from testers. All proposals were thoroughly discussed and reviewed with
testers to verify the solution solves the issues. The proposed solution was to create an
environment that introduces a fail fast environment and allows to execute tests as they are
written, making the process more interactive and feel less like trial and error.

After the significant part of the system was implemented it was tested by users. The users
were able to get familiar with a completely new test suite and create a test scenario under
an hour. While it usually takes a few days to get familiar with a new test suite and creating
a scenario usually takes around 3 hours without any prior preparation. More significantly
all users favoured this approach to what they were used to, further proving the point of this
thesis.

No specific data can be provided in regards to speeding up the workflow due to the
small sample size and the implementation being unable to work with the existing test suite.
However, it is safe to say that getting familiar with a test suite was significantly sped up.
During the user testing sessions it was clear that biggest speed up comes from being notified
about an error and still being able to interact with the application.

To make this approach feature-complete and available to general public there are still
issues that need to be sorted out: making this tool compatible with more than one version
of the used testing libraries, reading existing scenarios from the test suite and providing
them in the UI and adding a debug functionality.

The idea of interactive test writing sparked interest among the quality engineering team
and also among teams from different specializations. Software engineers showed the desire
to collaborate, to bring their knowledge of the JVM and to make this tool usable for them
as well. UX experts are interested in the changes this solution brings to the testing. Front-
end engineers are eager to help out with the front-end implementation. This nicely shows
what the Fuse agility practitioner said: ”BDT is a collaboration and communication tool
first, testing framework second.“ This opens up a lot of new opportunities how collaborate

46

further and allows to embrace the BDT concept of everyone should be able to read the tests
and now also write them.

47

Bibliography

[1] Cucumber documentation [online]. [cit. 2020-4-10]. Available at:
https://cucumber.io/docs/guides/overview/.

[2] React JS for professionals [online]. Goalkicker.com [cit. 2020-05-10]. Available at:
https://books.goalkicker.com/ReactJSBook/.

[3] Selenium documentation [online]. [cit. 2020-4-20]. Available at:
https://www.selenium.dev/documentation/en/.

[4] What is Software Testing? [online]. [cit. 2020-4-05]. Available at:
https://www.guru99.com/software-testing-introduction-importance.html.

[5] Bruneton, E. ASM 4.0 A Java bytecode engineering library [online]. USA:
asm.ow2.io, september 2011 [cit. 2020-02-11]. Available at:
https://asm.ow2.io/asm4-guide.pdf.

[6] Humble, J. and Farley, D. Continuous Delivery. 1st ed. Wiley Publishing, Inc.,
2011. ISBN 978–0–321–60191–9.

[7] Rubin, J. and Chisnell, D. Handbook of Usability Testing. 2nd ed. Wiley Publishing,
Inc., 2008. ISBN 978-0-470-18548-3.

[8] Tim Lindholm, G. B. and Buckley, A. The Java R○ Virtual Machine Specification
[online]. USA: Oracle.com, march 2015 [cit. 2020-02-20]. Available at:
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf.

[9] Winterhalter, R. The definitive guide to Java agents. In: JFokus. JFokus,
February 2020. Available at: https://www.youtube.com/watch?v=oflzFGONG08.

48

https://cucumber.io/docs/guides/overview/
https://books.goalkicker.com/ReactJSBook/
https://www.selenium.dev/documentation/en/
https://www.guru99.com/software-testing-introduction-importance.html
https://asm.ow2.io/asm4-guide.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://www.youtube.com/watch?v=oflzFGONG08

Appendix A

Backend experiments

Prototype
Before I even started to research Instrumentation, the naive way was to create a new

test runner and run the steps from the standard input. Creating a new runner is really
simple, it requires to implement just one class, on the other hand any other configuration
or setup had to be done for both runners and some other things didn’t behave as they did
with the original runner.

Also the Surefire runner starts the test process in a new process, so there is no direct
access to the process input and output streams.

But as a prototype it showed that it is possible with a little effort and some hard coded
workarounds it was possible to execute steps on demand. This was especially useful to get
familiar the framework structures, I learned what is a test runner and how exactly does
Cucumber work. Also realizing that the test runner spawns other processes came crucial
in later parts.

Loading compiled classes
My first idea on how to avoid the issues from the prototype phase was to compile the

testsuite and load the compiled classes in other process, which would be a way to read all
step definitions and run them on demand. This would also resolve the issue of spawning
other processes as there would be no test runner, or it would not be the main class that
gets run.

This proved be to be even more difficult or even more error prone than the prototype
version, as some dependencies were loaded at runtime and the worst part was making
Selenium work, as it required many workarounds. Eventually this approach proved to be
bad, but it still brought some positives. I learned to read classes and familiarized myself
with the class loading process, also it proved well as a basic introduction to Java Bytecode,
which was a good enough start for the next phase.

Modifying classes at runtime
Since both of these experiments so far proved that it is hard to setup the testsuite in

another process, I started researching Java Instrumentation, which to put is simply is a
way to change classes when an application is running.

This brought several benefits:

∙ No edge cases as in previous try should interrupt this method, if something is done
at runtime it should all work as it does when executing tests.

∙ No need for the end user to know many things about the JVM architecture and require
them to pre-compile all of their classes

49

∙ Any added dependencies or code at runtime won’t have to be handled separately (this
was the cause for Selenium in previous experiment)

This wasn’t however without issues, the main issue was when the Instrumentation
started, the main class of testsuite has this basic structure:

public class TestRunner {

public TestRunner() {
if (shouldRunInteractiveTool()){

modifyClasses();
}

}

@BeforeClass
public void setup() {

//Used for initialization generally - before any test starts
}

@AfterClass
public void teardown() {

//Used for cleanup after all tests are finished
}

}

The initial idea was to start modifying the classes inside the setup method or in the
constructor, however it is not possible to modify already loaded classes. There is a proposal
and a prototype1, but it hasn’t made it to any JVM yet.

1JEP 159 - https://openjdk.java.net/jeps/159

50

https://openjdk.java.net/jeps/159

Appendix B

Gherkin monarch definition

{
defaultToken: ’invalid’,
symbols: [’"’, "’"],
tokenizer: {

root: [
[/#.*$/, ’comment’],
[/@[\w\-]*/, ’annotation’],
[/(?:Feature|Scenario|Background):/, ’keyword’, ’@description’],
[/(?:Then|When|And|Given|But)/, ’keyword’, ’@step’],
[/\|/, ’delimiter’, ’@table’],
[/"""/, ’string’, ’@multilineString’]

],
description: [

[/.*/, ’identifier’, ’@pop’]
],
table: [

[/[^\|]/, ’string.table’],
[/\|\s*$/, ’delimiter’, ’@pop’],
[/\|/, ’delimiter’],

],
step: [

[/"[^"]*"$/, ’string’, ’@pop’],
[/\S$/, ’identifier’, ’@pop’],
[/\s$/, ’whitespace’, ’@pop’],
[/"[^"]*"/, ’string’],
[/\S/, ’identifier’],
[/\s/, ’whitespace’]

],
multilineString: [

[/.*"""/, ’string’, ’@pop’],
[/.*$/, ’string’],

]
}

}

51

	Introduction
	Related theory (Software verification, Java Instrumentation, Monaco editor)
	Software verification
	Java Instrumentation
	Web application components
	Existing solutions

	Solution draft for making BDT more interactive
	Current approach to testing
	Solutions for user issues
	Designing the application
	Verifying designs
	Application architecture
	Backend API

	Implementation of interactive BDT tool
	Agent implementation
	Front-end implementation
	User testing
	Plans for the future

	Conclusion
	Bibliography
	Backend experiments
	Gherkin monarch definition

