
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

LEARNING SPEECH SEPARATION USING SPATIAL
CUES
UČENÍ SEPARACE ŘEČNÍKŮ POMOCÍ PROSTOROVÉ INFORMACE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JÁN PAVLUS
AUTOR PRÁCE

SUPERVISOR Ing. KATEŘINA ŽMOLÍKOVÁ
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Pavlus Ján
Programme: Information Technology
Title: Learning Speech Separation Using Spatial Cues
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with the problem of speech separation using neural networks and Deep
clustering method.

2. Get acquainted with methods of obtaining spatial information from stereo recordings.
3. Train neural network for speech separation using spatial information as supervision.
4. Evaluate the method and compare with published results.
5. Suggest and discuss ways to improve results or extend the method.

Recommended literature:
Seetharaman, Prem, et al. "Bootstrapping single-channel source separation via
unsupervised spatial clustering on stereo mixtures." ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.
Hershey, John R., et al. "Deep clustering: Discriminative embeddings for segmentation and
separation." 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2016.

Requirements for the first semester:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Žmolíková Kateřina, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: November 5, 2019

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/23153/2019/xpavlu10 Page 1/1

Abstract
This thesis discusses the idea of using spatial cues in speech separation for estimating target
masks, that is stated in article Bootstrapping single-channel source separation via unsuper-
vised spatial clustering on stereo mixtures. This idea may make it possible to use real-world
mixtures for the training of speech separation systems, which use neural networks. In the
thesis two training methods, permutation invariant training and deep clustering method
are mentioned and used for experiments with training neural networks using target masks
estimated by spatial cues. The result of the work is a comparison of the results of these
experiments with the results of the above-mentioned article. This comparison showed that
the use of estimated masks with the help of spatial information can lead to a quality training
of the speaker separation system.

Abstrakt
Tahle práce pojednává o možnosti použití prostorových informací pro odhadnutí masek pro
cíle, které je uvedeno v článku Bootstrapping single-channel source separation via unsu-
pervised spatial clustering on stereo mixtures. Tahle myšlenka umožňuje použití neumělých
náhrávek směsice signálů pro trénování systémů separace řečníků, které používají neuronové
sítě. V práci jsou zmíněny dvě trénovací metotody a to permutačně invariantní trénování a
dále pak metoda deep clustering. Tyto metody jsou použity pro experimenty s trénováním
neuronových sítí s použítím masek cílů, které jsou odhadnuty pomocí prostorové informace.
Výsledkem práce je porovnání výsledků těchto experimentů s výsledky výše zmíněného
článku. Tohle porovnání ukázalo, že použití odhadnutých masek za pomoci prostorových
informací, může vést ke kvalitnímu natrénování systému separace řečníků.

Keywords
Speech separation, deep clustering, spatial cues, machine learning, neural networks, long
short term memory

Klíčová slova
Separace řečníků, deep clustering, prostorová informace, strojové učení, neuronové sítě, long
short term memory

Reference
PAVLUS, Ján. Learning Speech Separation Using Spatial Cues. Brno, 2020. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Kateřina Žmolíková

Rozšířený abstrakt
Systémy separace řečníků umožnují z nahrávek, obsahujících směsici více hovořících řečníků,
separovat jednotlivé signály. Separace řečníků je využívána pro zlepšení kvality výsledků
systémů pro rozpoznávání hlasů. Tyto systémy se používají například v chytrých domác-
nostech nebo bezpečnostních zařízeních umístěných například na letištích.

Tahle práce se zabývá trénováním těchto systémů používajících neuronové sítě trénované
metodou „deep clustering“. Především však tahle práce rozebírá řešení problému potřeby
znalosti původních signálů nahrávky směsi pro trénování neuronové sítě. Tento problém
je řešen za pomoci použití prostorové informace, z více kanálové nahrávky, pro odhadnutí
cílových masek původních signálů. Tyto masky jsou pak použity pro trénování neuronové
sítě namísto neznámých původních signálů jednotlivých řečníků.

Práce popisuje architektury neuronových sítí používaných pro separaci řečníků a po-
drobně popisuje LSTM bloky, které pracují s kontextem nahrávek. Sítě používající tyto
bloky vykazují lepší výsledky trénování právě díky práci s kontextem nahrávky. Pro im-
plementaci neuronových sítí, potřebných pro experimenty, byla použita knihovna Pytorch.
Implementace práce probíhala v jazyce Python. Vstupem neuronových sítí jsou krátké
Fourierovy transformace nahrávek směsi řečníků z otevřené multikanálové datové sady „Wall
street journal“. Výstupem sítí jsou cílové masky pro jednotlivé řečníky dané směsi. Model
sítě tvoří čtyři vrstvy LSTM bloků zapojených ve dvojím směru, tedy tzv. BLSTM bloky.
Výstupní vrstva sítě se liší podle použité metody trénování.

Kromě trénovací metody „deep clustering“ je v práci také popsána permutačně invari-
antní metoda trénování. Obě metody jsou zároveň implementovány a použity při experi-
mentech. Dále je také implementován algoritmus pro odhadování cílových masek řečníků
pomocí prostorové informace. Tento algoritmus byl otestován a nevydával kvalitní výsledky.
V práci byl tedy použit jiný algoritmus používající prostorovou informaci. Tento algoritmus
pracuje s „cACGMM“ modelem, jehož výsledek zarovnává dle frekvencí pomocí „permu-
tation aligment“ algoritmu. Testování jím odhadnutých masek vykazovalo dobré výsledky.
Algoritmus byl tedy použit při experimentování.

Provedené experimenty ukázaly lehce nižší výsledky pro neuronovou síť trénovanou
„deep clustering“ metodou, při použití masek odhadnutých za pomocí prostorové infor-
mace, než ve zpracovávaném článku. Výsledky s použitím permutačně invariantní metody
trénování byly ale poněkud lepší než uvedené. Porovnáním výsledků referenčních experi-
mentů s experimenty používajících prostorových informací, bylo zjištěno, že systémy použí-
vající prostorovou informaci dávají poněkud lepší výsledky. Dané chování se vysvětlilo
možností jiného typu práce s přípravou dat z použité datové sady při jednotlivých metodách
trénování.

Lepších výsledků při použití prostorových informací by mohlo jít dosáhnout použitím
míry důvěryhodnosti. Tato míra byla zmíněna v článku a slouží k stanovení hodnoty kvality
odhadnutých cílových masek za pomoci prostorové informace. Dle takto změřených by bylo
možné vyřadit z trénovací sady data, pro která byly masky nekvalitně odhadnuty. Zároveň
by bylo zajímavé otestovat sadu neuměle smíchaných nahrávek natrénovaných systémech,
pro zjištění jejich funkčnosti v reálnem prostředí.

Learning Speech Separation Using Spatial Cues

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Kateřina Žmolíková. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Ján Pavlus

May 28, 2020

Acknowledgements
I wish to express my deepest gratitude to my supervisor Ing. Kateřina Žmolíková, who
guided to me to the needed information and helped me with problems that showed during
the writing of thesis and for infinite patience. Without her persistent help, the goal of this
project would not have been realized.

Contents

1 Introduction 2

2 Speech separation 4
2.1 Evaluation methods . 5
2.2 Spatial cues . 5

3 Neural Networks 7
3.1 Training Neural Networks . 8
3.2 Recurrent neural network . 9
3.3 Long Short Term Memory networks . 9

3.3.1 Bidirectional Long Short Term Memory networks 12

4 Speech separation using neural networks 13
4.1 Permutation invariant training . 13
4.2 Deep clustering . 14
4.3 Bootstrapping speech separation with spatial cues 16

5 Draft and implementation 18
5.1 Used packages . 19
5.2 Data loader . 19

5.2.1 Spatial cues data loader . 20
5.3 System, module, statistics and objective function 20
5.4 Training procedure . 21
5.5 Testing procedure . 22

6 Experiments 24
6.1 Dataset . 24
6.2 Neural network architecture . 25
6.3 Parameters settings . 26
6.4 Experiments and results . 26

6.4.1 Target masks estimating . 26
6.4.2 Reference experiments . 28
6.4.3 Spatial cues experiments . 31

7 Conclusion 36

Bibliography 37

1

Chapter 1

Introduction

Speech separation tries to solve problem of separating two or more speakers talking at
the same time. In fact it is a system that gets mixed recording called mixture on input
and estimate separated signals of each speaker as an output. Speech separation is in these
days an expanding field, which can be useful for creating better hearing aids, building smart
homes with voice assistants that can be also used in cars or other vehicles and public places.
We can also fight against crime using these systems as we place them on airports, train
stations, public places as historical monuments, shopping centers and government buildings,
where they can detect criminals, terrorists and other potentially dangerous people. For all
of these applications speech recognition systems are used. But they do not work well when
speakers overlap. This cause significant degradation of the accuracy of that systems. That
is why speech separation systems are so necessary to solve the overlapping problem and
allow speech recognition system to work better.

System for speech separation can use simple machine learning algorithms as principal
component analysis or independent component analysis. But nowadays separations systems
are mostly based on deep learning and they are the most successful ones. These systems
use many different neural network architectures and different training methods, but they
all have one thing in common. They are mostly trained on artificial mixtures. The source
signals of these mixtures are known, which mean that they are available to be used as a
targets for training of the neural network, used for separation. But artificial mixtures are
not same as real-world mixtures. Systems can therefore fail when real-world mixtures are
separated. To solve that it would be better to use the real-world mixtures for training. But
for real world mixtures, there is problem to obtain source signals of the speakers, to obtain
targets for training. For stereo or multi channel records there is a possibility to estimate
them by using a spatial information of speaker position. There are several algorithms using
the spatial cues information for estimating these targets. In this work two of them will be
described in chapter 2. First used algorithm was introduced in article called Bootstrapping
single-channel source separation via unsupervised spatial clustering on stereo mixtures [18],
second was introduced and described in article Complex angular central Gaussian mixture
model for directional statistics in mask-based microphone array signal processing [9]. These
algorithms do not directly estimate source signals, but only masks, that can be applied on
given mixture. Result of this application give us the desired source signals.

Estimating source signals using the spatial cues information can be applied on artificial
mixtures and also on real-world mixtures. This may solve the problem of missing source
signals from real-world mixtures. It may be possible to train the neural network on large
database of real-world mixtures, using estimated signals of that mixtures as an training

2

targets. These datasets can be created from any recorded stereo mixtures. But the question
is if masks estimated this way will be of sufficient quality, to be used as an training targets
and if the trained neural network will give the same or better results then that trained on
artificial mixtures, with known source signals.

There are more methods used for training of neural network speech separation systems.
In this work two will be used as described in chapter 4. Permutation invariant training
method, which is generally known and commonly used simple method for supervised train-
ing of speech separation systems. Second method nowadays also commonly used is deep
clustering method. This method provides supervised training of the neural network speech
separation system. It promises good results of training by using embedding vectors of char-
acteristics for separating speakers from mixture. In this work, speech separation system is
trained with each of these two methods and then it is tested for multichannel data with
known targets and also for data with estimated targets using spatial cues. Results of these
tests are compared between these methods and conclusion is given.

The thesis is structured as follows. In chapter 2 we define speech separation problem
in more detail, then describe some commonly used evaluation methods and define two
methods of estimating target masks using spatial cues. chapter 3 will describe the basics
of neural networks, benefits of using recurrent neural networks and describe step by step
how long-short time memory blocks work. Using two different methods of neural network
training, permutation invariant and deep clustering training will be described in chapter 4.
Also estimating of target masks and testing spatial cues methods will be described in this
chapter. System implementation will be shown in chapter 5. In chapter 6 it is described how
the dataset for experiments looks like and how it was prepared. Also results of experiments
and architecture of used neural network will be described there and chapter 7 will give final
results and reflection on executed experiments.

3

Chapter 2

Speech separation

In speech separation, we have a mixture of two or more original signals. Original signals
are either of individual speakers or different noises. The aim is to separate these signals
from given mixture as best as possible, with very little information about original signals.
Let us define it by:

𝑦𝑡,𝑚 =

𝑁∑︁
𝑛=1

𝑥𝑡,𝑚,𝑛 (2.1)

where 𝑦𝑡,𝑚 is mixture to be separated, 𝑥𝑡,𝑚,𝑛 is speech signal of single speaker or noise,
𝑚 is index of microphone, 𝑡 is time index and 𝑁 is number of sources.

In most systems the short-time Fourier transformation (STFT) is performed on signals.
For source signal it is 𝑋𝑡,𝑓,𝑚 and for mixture it is defined as:

𝑌𝑟,𝑓,𝑚 =

𝑁∑︁
𝑛=1

𝑋𝑟,𝑓,𝑚,𝑛 (2.2)

where 𝑟 is frame index and 𝑓 is frequency. Goal of speech separation is to recover each
𝑋𝑟,𝑓,𝑚 from mixture 𝑌𝑟,𝑓,𝑚.

This problem can be also presented in the example of the ’Cocktail party problem’,
where there is a group of people talking over each other at a party. The listener tries to
concentrate on one of the present discussions and separate it from others, to be able to
communicate with these people. The human ear and brain are able to solve this problem.
For computers, solving of this problem is very complex discipline.

Speech separation tries to solve this problem by classic machine learning methods as
independent component analysis. But systems built on these algorithms work well only
when the problem is greatly simplified. If silent blocks, echoes, and delays are present in
mixtures these systems mostly fail and give poor quality results.

Nowadays most commonly used methods for speech separation are based on neural
networks. These networks use known source signals of mixtures for training. For artificial
mixtures source signals are known, but these are difficult to obtain for real-world recording,
so it is impossible to use them for system training. This knowledge limits the range of
mixtures that can be learned to be separated. But if the mixture is stereo or multi-channel
recorded, then spatial cues can be used for estimating target masks, which can be applied
to mixtures to obtain estimated source signals needed for training. So the neural network
can be trained on a much bigger range of mixtures including real-world ones. How to use
spatial cues for estimating targets is described in section 2.2.

4

2.1 Evaluation methods
To measure the quality of separation systems and allow their comparison, it is necessary
to evaluate results given by the separation system, which can be a trained neural network
or some kind of classification model as f.e. Gaussian mixture model (GMM). Evaluation
methods are also very useful for generating datasets of mixtures with a different measure
of complexity. In this work there are two types of units used. Signal to noise ratio, which
is useful for creating artificial mixtures with specified ratio to other speakers and also for
measuring the quality of the trained system for speech separation. Signal to noise ratio
(SNR) measures ratio of powers of desired signal to the background signal f.e noise. It is
defined as:

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙(0)

𝑃𝑠𝑖𝑔𝑛𝑎𝑙(1)
(2.3)

SNR can be also showed in decibels as:

𝑆𝑁𝑅𝑑𝑏 = 10 log10(𝑆𝑁𝑅) (2.4)

The second metric is signal to distortion ratio, which is used to measure the quality
of the trained neural network and also to compare different types of systems used in this
thesis. This unit is also counted in decibels (dB) and it is defined as [11]:

𝑆𝐷𝑅𝑑𝑏 = 10 log10
||𝑠𝑡𝑎𝑟𝑔𝑒𝑡||2

||𝑒𝑛𝑜𝑖𝑠𝑒||2
(2.5)

where 𝑒𝑛𝑜𝑖𝑠𝑒 is defined as:

𝑒𝑛𝑜𝑖𝑠𝑒 = 𝑠− 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 (2.6)

where 𝑠 is estimated target and 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 is original target defined as:

𝑠𝑡𝑎𝑟𝑔𝑒𝑡 :=
< 𝑠, 𝑠 > 𝑠

||𝑠||2
(2.7)

The higher value of SDR of estimated target compared to original target, the better sepa-
ration system.

2.2 Spatial cues
Spatial cues can be used for speech separation of stereo mixtures. The main idea is that
time-frequency bins with similar spatial information belong to the same speakers because
they probably came from the same direction, where speaker is. In contrast different spatial
information means different speaker. This can be disrupted, if speakers stand too close in
one direction from microphones, for example. There will be very similar spatial information
for both speakers and spatial source separation will fail. However it works very well for
most situations.

There are more algorithms for blind spatial source separation. In an article called
Bootstrapping single-channel source separation via unsupervised spatial clustering on stereo
mixtures [18] there is spatial source separation provided by specifying interchannel phase

5

difference of short-time Fourier transform (STFT) spectrograms of the mixture from each
of two channels, as described in equitation 2.3.

𝜃𝑡,𝑓 = ∠(X(0)
𝑡,𝑓X

(1)
𝑡,𝑓) (2.8)

where X
(𝑖)
𝑡,𝑓 is STFT spectrogram computed on channel 𝑖 of mixture. 𝜃𝑡,𝑓 is obtained inter-

channel phase difference.
Then there is sine and cosine computed from 𝜃𝑡,𝑓 , that is stacked and projected to a

single dimension by principal component analysis (PCA) algorithm. The single-dimensional
result is then clustered by the Gaussian mixture model (GMM) using the full covariance
matrix and using the expectation-maximization (EM) algorithm. In the article it is also
mentioned to use the threshold to cluster only time-frequency bins with significant energy.
In this work, the threshold mask (TM) is defined as:

TM𝑡,𝑓 = X
(0)
𝑡,𝑓 > 𝑚𝑎𝑥(|X(0)

𝑡,𝑓 |) * 𝜏 (2.9)

where X
(𝑖)
𝑡,𝑓 is STFT spectrogram computed on channel 𝑖 of mixture and 𝜏 is threshold

constant which was manually set to 0.001.
The second method to obtain target masks used in this work was introduced in article

Complex angular central Gaussian mixture model for directional statistics in mask-based
microphone array signal processing [9] and also mentioned in article Unsupervised training of
a deep clustering model for multichannel blind source separation [3], using complex angular
central Gaussian (cACG) observation model, which is defined as:

𝑐𝐴𝐶𝐺(ỹ𝑡𝑓 ,B𝑘𝑓) =
(𝐷 − 1)!

2𝜋𝐷𝑑𝑒𝑡B𝑘𝑓

1

(ỹ𝐻
𝑡𝑓B

−1
𝑘𝑓 ỹ𝑡𝑓)𝐷

(2.10)

where 𝐷 is number of channels, B𝑘𝑓 is distribution parameter, ỹ𝑡𝑓 is normalized complex-
valued observation vector, defined as ỹ𝑡𝑓 = y𝑡𝑓/||y𝑡𝑓 ||. The model for vectors ỹ𝑡𝑓 is defined
as:

𝑝(ỹ𝑡𝑓 ; 𝜃) =
∑︁
𝑘

𝜋𝑘𝑓𝑐𝐴𝐶𝐺(ỹ𝑡𝑓 ,B𝑘𝑓) (2.11)

where 𝜃 represents model parameters 𝜃 = {𝜋𝑘𝑓 ,B𝑘𝑓∀𝑘, 𝑓}.
This model is first trained to fit over given mixture to provide the clustering of spatial

information in all time-frequency bins. Then posterior probabilities for each speaker in
each time-frequency bin are predicted. cACG mixture model does not reflect frequency
dependencies. This problem is known as the frequency permutation problem described in
article Measuring dependence of bin-wise separated signals for permutation alignment in
frequency-domain BSS [16] and the solution for it is the permutation alignment algorithm
presented in pb_bss package [3].

6

Chapter 3

Neural Networks

Neural networks (NNs) [6] are models that can learn to map inputs to outputs. They
are composed of a set of neurons formed into layers. Neurons are based on the biological
neuron. As it is shown on Figure 3.1 their mathematical model is defined as:

𝑦 = 𝑓(w⊤x) (3.1)

where w is vector of input weights, x is vector of input values, 𝑓(·) is activation function
and 𝑦 is the output value.

Figure 3.1: Mathematical model of neuron.

Figure 3.2: Example of neural network with two hidden layers.

7

As it shown on Figure 3.2 neurons form layers. Input layer, output layer together with
hidden layers forms whole neural network. That can be defined as sorted triple [10]:

(𝑁,𝑅,𝑤) (3.2)

where 𝑁 is set of neurons. R is set of connections between neuron 𝑖 and neuron 𝑗 defined
as {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁}. Function 𝑤 : 𝑅 → R defines weights for connection (𝑖, 𝑗) written as
𝑤𝑖,𝑗 . If 𝑤 has zero value, it means that there is no connection between neuron 𝑖 and 𝑗.

3.1 Training Neural Networks
Training procedure consists of two repeating steps: training and validating. In the training
step, NN computes output for each mixture input data. There are no raw data used
in computation, but the STFT computed on them. Outputs are processed by objective
functions and compared to given targets. Difference or how many mistakes NN made is
represented by loss value. This value is used in backpropagation algorithm, which modifies
weights in NN, in the other words, trains it. After training step, system continues by cross-
validating the actual system state, to see whether it generalizes to unseen data. Cross-
validation is very similar as training, but backpropagation algorithm is not called after
computing losses. This step is also processed on different data then the training is. Training
of NN ends when it reaches manually specified number of epochs or accomplishes another
specified rule e.g. there is no progress in results of loss function in the last five epochs.

To speed up and refine the training process, the system makes batches. Batches are
groups of input data sequences, that will be processed in a parallel way. Batches are
constructed from randomly selected data with the same shapes on the start of the training
procedure and the order of input data sequences is changing in time, which improves the
training results. If batches are used, loss functions are computed on each data in batch,
and results are averaged, to give a value for the backpropagation algorithm.

Mean square error

Mean square error loss function measures mean squared error between each element in the
input 𝑥 and target 𝑦, which is used for regression It is defined as [14]:

𝑙(𝑥, 𝑦) = 𝐿 = {𝑙1, ..., 𝑙𝑁}𝑇 (3.3)
𝑙𝑛 = (𝑥𝑛 − 𝑦𝑛)

2 (3.4)

where 𝑁 is the batch size.

Binary cross entropy

Binary cross entropy loss function measures cross entropy error between each element in
the input 𝑥 and target 𝑦, which is used for binary classification. It is defined as [14]:

𝑙(𝑥, 𝑦) = 𝐿 = {𝑙1, ..., 𝑙𝑁}𝑇 (3.5)
𝑙𝑛 = 𝑤𝑛[𝑦𝑛 * log 𝑥𝑛 + (1 * 𝑦𝑛) * log(1− 𝑥𝑛)] (3.6)

where w is weight vector of size 𝑁 which is batch size.

8

3.2 Recurrent neural network
The main feature of the recurrent neural network (RNNs) is remembering the past. This
means that for the same input RNNs can produce different outputs depending on previous
inputs in the series [19]. That is caused by the fact that outputs are influenced not only by
weights applied to inputs but also by a hidden state vector representing the context of the
previous decision. For example, the traditional architecture of RNN looks like this [2]:

Figure 3.3: Example of recurrent neural network, where 𝑥𝑡 is feature vector for time 𝑡.

For each timestep 𝑡, starting from one, the activation 𝑛𝑡 and the output 𝑦𝑡 is expressed
as follows:

𝑛𝑡 = 𝑔1(Wℎ𝑛𝑡−1 +W𝑥𝑥𝑡 + 𝑏𝑛) (3.7)
𝑦𝑡 = 𝑔2(W𝑦𝑛𝑡 + 𝑏𝑦) (3.8)

where 𝑥𝑡 is feature vector for time 𝑡, Wℎ is weight coefficient matrix for hidden state, W𝑥

is weight coefficient for input, W𝑦 is weight coefficient for output, 𝑏𝑛, 𝑏𝑦 are biases and 𝑔1,
𝑔2 are activation functions.

3.3 Long Short Term Memory networks
The problem of RNNs is in learning from a distant past. In theory they can do it, but it
has been explained in the article Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies [7]. Long short term memory networks (LSTMs)[8] are designed to
remember long-term dependencies.

LSTMs[13] have a chain-like structure similar to RNNs. The difference is in the repeat-
ing module, which has four neural network layers instead of one. Unlike RNNs, LSTMs have
a cell state, which is a value that is forwarded through each time step and it is changing
based on actual hidden state.

9

Figure 3.4: LSTM cells chain[13].

LSTMs do the computation in four steps. As shown in Figure 3.5 first step is deciding
which information we are going to remove from the cell state. This is provided by the

”forget gate layer“, which consists of one sigmoid layer. It makes decision by using the
formula:

Figure 3.5: Forget gate layer[13].

f𝑡 = 𝜎(W𝑓 * [h𝑡−1,x𝑡] + b𝑓) (3.9)

In the second step LSTMs decide what new information it is going to add into the cell
state. This consists of a hyperbolic tangent layer that creates a vector of new candidate
values that could be added to the state and ”input gate layer“ that decides how important
will be each of these candidate values.

10

Figure 3.6: Input gate layer[13].

i𝑡 = 𝜎(W𝑖 * [h𝑡−1,x𝑡] + b𝑖) (3.10)
C̃𝑡 = 𝑡𝑎𝑛ℎ(W𝐶 * [h𝑡−1,x𝑡] + b𝐶) (3.11)

Now LSTMs will forget things that it decided in the first step and add 𝑖𝑡 * 𝐶𝑡, which
add new candidate values multiplied by importance for each of them.

Figure 3.7: Third step that applies changes of previous steps to the cell state[13].

C𝑡 = f𝑡 *C𝑡−1 + i𝑡 * C̃𝑡 (3.12)

In the fourth step. LSTMs decide what will be generated on output. The output will
be based on the current cell state and will be also influenced by information from hidden
and input state vectors. The sigmoid layer is used to decide what parts of the cell state
going to output. In the end, LSTMs put the cell state through hyperbolic tangent, which
normalizes cell state values into the interval between -1 and 1 finally multiply these values
by the output of the sigmoid layer.

11

Figure 3.8: Fourth step, that forms a final output[13].

o𝑡 = 𝜎(W𝑜 * [h𝑡−1,x𝑡] + b𝑜) (3.13)
h𝑡 = o𝑡 * 𝑡𝑎𝑛ℎ(C𝑡) (3.14)

3.3.1 Bidirectional Long Short Term Memory networks

Bidirectional Long short term memory networks (BLSTMs) [20] are based on LSTMs, that
besides the forward layer of LSTM cells, also have a backward layer of these cells. This
means that there are two different independent LSTMs networks, where one of them provide
cell state and hidden state in the forward direction in time and the second one in backward.
Decisions from these two networks are concatenated.

Figure 3.9: Example of BLSTM.

12

Chapter 4

Speech separation using neural
networks

Speech separation using neural networks is commonly used these days and many types of
the neural network architecture are invented to solve the separation problem. These neural
networks commonly use BLSTM blocks as is described in subsection 3.3.1, which provide
better training by learning from a distant past, in the other words using context. There
are two commonly used ways of training these systems, permutation invariant training
section 4.1, and Deep clustering method section 4.2. One of the disadvantages of these
methods is the need of original speaker signals to provide targets for training. This can
be solved by estimating speakers signals from stereo mixtures using spatial cues clustering
section 2.2.

4.1 Permutation invariant training
Permutation invariant training (PIT) [21] is supervised method of NN training. It is com-
monly used in speech separation systems. In PIT there are two linear output layers each
of the output size of source mixture at the end of NN. With these layers the NN estimates
separated signals of speaker A and speaker B, from mixture given on the input. But NN
does not know in which order speakers should appear on the output layers. So it can not
be assumed that the speaker A will be always separated to the first linear layer and the
speaker B to the second one. If the NN will train with this assumption, objective function
will give as an result bigger loss values then expected. Otherwise when the NN assumes
that speaker A is in the second layer and speaker B in the first one, objective function will
give bigger loss values in different cases, but the result will be the same. NN will not be
properly trained and it will not learn, where objective function will give her big loss value
on right separated mixtures.

This problem has to be solved by computing objective function results for both permu-
tation of speakers in training procedure. This means to compute objective function in the
permutation, where the first linear layer output will be compared with target of speaker A
and the second linear layer output with speaker B. Then system has to compute objective
functions on the first linear layer output compared with the speaker B and the second linear
layer output compared with the speaker A. Loss values are computed in both permutation
has to be compared and lower one is the right one. So the lower value is sent to NN and it
is used in backpropagation algorithm to train the NN. It is also necessary to count on this

13

behavior in the testing phase, where it is also necessary to count with this problem. SDR
values between outputs of the linear layers of the NN has to be computed also with both
permutation of target speaker signals. The higher values has to be used as the result.

Figure 4.1: Permutation invariant training procedure.

4.2 Deep clustering
In Deep clustering (DC) [5] method embedding vectors for each time-frequency bin are
estimated. Embedding is the mapping of time-frequency bin discrete value to the vector of
characteristics. These characteristics are specific for each speaker in the mixture, so similar
embedding vectors belong to the same speaker. The loss function is computed using two
one-hot dimension matrices, for each speakers. One-hot dimension for the speaker contains
zeros for bins, which do not belong to this speaker and ones for that which do. These
matrices are estimated as an oracle mask from known target speakers and thresholded, to
avoid computing loss on low energy bins. Loss is computed as:

𝑙𝑜𝑠𝑠 = ||Â−A||2𝐹 (4.1)

where Â = YY𝑇 which is an ideal afinity matrix and A = VV𝑇 is an estimated affinity
matrix. The neural network is led to learn to estimate the characteristics values of each
time-frequency bin to be very similar in bins that belong to the same speaker. If the bin does
not belong to the same speaker NN is enforced to give values that are further apart than the
similar ones as it is showed on Figure 4.2, where the first matrix is three dimensional matrix
of spectrogram with deep clustering embedding. The second one is reshaped first matrix
to two dimensional space by move frequency and time shape to the same dimension. Last
matrix in figure showed the example of values that the neural network trains to estimate
for separating two speakers.

14

Figure 4.2: Deep clustering matrices

To estimate target masks to predict separated speakers, it is necessary to use some
clustering algorithm such as K-Means or GMM. The output from the neural network is
sent to one of these clustering algorithms, which try to fit on the given embedding vectors
and cluster them into two components as it shown on Figure 4.3. Then the same output of
NN is given to this algorithm to predict which bin belongs to which speakers. It is better
to apply a threshold mask to NN output, to avoid the low energy bins to be clustered,
because if they will, the result of the whole system can be much worse then estimated.
Then predicted masks can be applied to the original mixture and SDR can be computed
between the estimated result and real target.

Figure 4.3: Deep clustering signal estimating procedure.

15

4.3 Bootstrapping speech separation with spatial cues
If the target signals are not aviable for training, it is possible to estimate them by using
spatial cues algorithms described in section 2.2. To obtain target masks for speech separa-
tion there are two randomly selected channels from the first 4 of 8 mixture channels used.
In the first method, there are computed phase differences from these two channels, then
PCA is executed and in the end GMM is trained and masks are predicted. In this method
permutation alignment algorithm is not pronounced, and it supplied by dividing IPD by a
vector of linear spaced numbers in the range from zero to sample rate of the given mixture.
These method does not work really good, so the second method was used.

Figure 4.4: Procedure of estimating masks from mixture.

In the second method two randomly selected channels are also used. On these channels
the permutation alignment algorithm is executed. Then the cACG mixture model is trained
and masks are predicted on it as shown on Figure 4.5, where oracle masks derivated from
known targets are also shown for comparison. There is no big difference between oracle and
spatial cues predicted masks. The quality of obtained target masks was also tested on the
cross-validation set by direct application masks on mixtures.

Figure 4.5: Estimated masks by spatial cues clustering by second method.

16

Objective functions are also affected by using spatial cues. So for PIT loss function
using spatial cues means multiplying original mixture by target masks from spatial cues,
defined as:

IS𝑠 = E𝑠 *M (4.2)

where IS𝑠 is the ideal target signal, E𝑠 is the estimated mask by spatial cues, M is the
mixture and 𝑠 is the speaker index. Then the NN outputs are applied on the original
mixture:

ES𝑠 = O𝑠 *M (4.3)

where ES𝑠 is the estimated signal, O𝑠 is the masks estimated by the NN, M is the mixture
and 𝑠 is the speaker index. These results are used as the target original signals to count
mean square error between them.

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑃𝐼𝑇 (ES𝑠, IS𝑠) (4.4)

For the deep clustering method it means to use spatial cues estimated target masks as one
hot dimension matrices, this can be obtained by comparing masks to each other.

IS0 = E0 > E1 (4.5)
IS1 = E1 > E0 (4.6)

17

Chapter 5

Draft and implementation

The whole system is designed as a structure of different objects, that are interconnected.
There are two systems used in this work. First shown on Figure 5.1 is used for training
with known target signals. There are three data loaders used in this system for getting the
mixture and target signals for the speaker A and the speaker B from dataset. The second
system presented on Figure 5.2 is used for training with estimated target masks from spatial
cues algorithm. These masks are estimated by preparer method in spatial cues data loader,
which is used for both speakers together. Each object of whole system provides one part
of the functionality, that will be described in sections below. This chapter also contains
information about the implementation of system parts and which Python packages are
used.

Figure 5.1: System structure for training using known target signals.

18

Figure 5.2: System structure for training using spatial cues.

5.1 Used packages
In thesis following packages were used:

∙ Soundfile1 package is used for loading mixtures from sound files in dataset folders and
for writing outputs of testing procedure,

∙ Scipy2 package is used for counting short-time Fourier transform,

∙ Numpy3 package is used for math,

∙ PyTorch[14] module is a Python based framework for programming neural networks,
that contains implementation of linear, LSTM, BLSTM, convolutional layers, back-
propagation algorithms and loss functions,

∙ Mir_eval[15] package is used for computing SDR score for predicted signals of sepa-
rated speakers,

∙ Tensorboard4 module, which is part of Tensorflow package [1], is used for watching
state of the NN during training procedure, and

∙ Matplotlib5 for visualizing spectrograms, masks etc.

5.2 Data loader
The data loader is the base module of the whole system. This module provides loading files
from the dataset which is stored in the folder structure as it is showed on Figure 6.1. One
instance of a data loader provides loading files from one data set’s folder. Pytorch’s data
loader provides packing these files to batches. This module needs to get files for mixture
and targets together, in this work there is a data adapter object used to group data loaders
for mixtures and targets together. This module also counts mean and standard deviation
for providing normalizing of mixtures. Normalization can be turned off by parameter on

1https://github.com/bastibe/SoundFile
2https://www.scipy.org/
3https://numpy.org/
4https://www.tensorflow.org/tensorboard
5https://matplotlib.org/

19

initialization. Batches are created by selecting random indexes from the data adapter,
which request them from data loaders. Files in the batch have to be the same shape. So
it is necessary to cut original files to the specified length. This is provided by algorithm 1
showed below. This algorithm makes zeros padding to files shorter than the specified length
and longer files are cut to a segments of the same size. It is also possible to specify length
parameter value to -1, which forces data loader to use uncutted files, when requested. This
is used in a testing phase and for generating target masks using spatial cues.

Algorithm 1: Data preparing algorithm
N = loadedDataLength, idx = 0, l = givenLength, fIdx = currentFileIndex;
// while segment size is less then the rest of the data size
while idx+l < N-idx do

// append start index of next segment to the cutteList
cuttedList.append(idx);
idx += l;

end
// if next segment overflows size of processed file
if idx - ((idx + length) - (N - idx)) >= 0 then

// move idx back to align with the file size
// and append it to the cuttedList
cuttedList.append(idx-((idx+length)-(N-idx));

else
// else append idx directly to the cuttedList
cuttedList.append(idx);

end
This algorithm is repeated to each file found in a given folder in alphabetic order and

uses cuttedList as a list of prepared indexes for all of them. Prepared indexes are saved
to file to avoid recounting them every time the system starts. If the system asks the data
loader for data on the specified index, module loads the required file and gives the system
part of data in a specified length. Files, that are shorter than the specified length, are
padded by zeros to the length. In the case of the multichannel dataset it is necessary to
specify the channel number that we want to obtain by data loader.

5.2.1 Spatial cues data loader

Spatial cues data loader prepares target masks from the dataset using spatial cues blind
separation method described in section 4.3. This module uses data loaders to get data from
different channels of the mixture to provide mask preparation. The preparation method
firstly creates two directories, one for generated masks and second for visualization of them.
Masks are saved to files in batches of 10 sets of two masks for speaker A and speaker B,
then masks are given to the system when are requested.

5.3 System, module, statistics and objective function
Let us describe objects system, module, statistic and objective functions showed on
Figure 5.1 and Figure 5.2.

∙ Module is object that is inherited from Pytorch’s nn.Module and contains definition
of the specific NN. The NN is defined by Pytorch’s layer objects from nn package,

20

that contains for examplenn.Linear, nn.LSTM etc. Layers defined by these Pytorch’s
classes are connected together in forward function, which define how the input given
to the NN will be processed. Module object also contains apply function for applying
output of neural network to the mixture, if it necessary f.e. if neural network predicts
masks that has to be applied to estimate target signals,

∙ statistics object is used by system to keeps statistics information from each epoch in
training and writes them out to Tensorboard module. It is possible to define statistics
array by name in this object. Append new statistic value to the end of array specified
by name, and write that array out to the standard output or to Tensorboard summary
writer,

∙ objective functions are used for training, it is represented as loss function and it
is given by parameter to the system on initialization. In this module PIT and DC
objective function are defined for training the multichannel data with known target
signals. There are also defined the same two functions, modified for using with the
multichannel data with estimated target masks and

∙ system is object that connects all the previously mentioned objects together. It
contains training procedure and function for predicting results of the trained NN.
System can save the NN trained state into the specified path and also load them
back, to provide testing.

5.4 Training procedure
Training procedure, as showed on Figure 5.3, calls two methods training, where NN
is trained and cross validating, where the neural network is tested to see whether it
generalizes. NN is trained in epochs over batches, where batches are packs of randomly
selected mixtures and target masks from dataset folders section 5.2. Before resolving, the
short Fourier transform (STFT) is counted on a given mixture. STFT of the mixture is
then normalized by mean and standard deviation counted on the whole dataset. Then
loss function is computed between results of NN applied on denormalized STFT of the
mixture and estimated targets by target masks. For permutation invariant training in this
work there is a mean square error loss function used [14]. For the deep clustering training
method there is a loss function from Onssen library used [12]. The average of results
of loss function computed on the whole batch is used in the backpropagation algorithm
section 3.1. The second step, cross-validation, is similar to the first step, but it does not
call the backpropagation algorithm after computing loss function. Cross-validation is also
executed on different data than the training step. After these two steps system saves the
currently trained model and continues with the next epoch.

21

Figure 5.3: Training procedure.

5.5 Testing procedure
Testing procedure tests already trained system. As it is shown on Figure 5.4 procedure
loads uncutted mixtures and original targets from part of dataset designed for testing.
Firstly trained NN is loaded from the specified path and in the specified epoch. Then
for each mixture in testing dataset STFT is computed and normalized. The result of
normalization is sent to the system and processed. The system processes the given STFT
of the mixture by sending to NN and then applying the output of NN to denormalized
STFT of the given mixture. That gives two STFTs for each speaker, this is transformed
back to normal signal using the mixture phase. Estimated speakers are then evaluated in
mir_eval bss_eval_sources [15] function that counts SDR value between both estimated
speakers and original target speakers. These values are summarized and in the end the
average is counted.

22

Figure 5.4: Testing procedure.

23

Chapter 6

Experiments

This chapter contains results of executed experiments. Describes properties of dataset used
in this work. Also NN architecture is described in this chapter and other parameters used
by system when executing different types of experiments.

6.1 Dataset
Dataset used in this work is Wall Street Journal mix dataset [4] in the spatialized version
with two speakers, that is publicly available. On Figure 6.1 directory structure of the
dataset is showed. Speakers are randomly mixed at random locations in synthetic rooms
with anechoic conditions with various signal-to-noise ratios (SNR) between 0 dB and 10
dB. For training there are 20000 mixtures which means 30 hours, for cross-validation there
are 5000 mixtures so 10 hours and 3000 mixtures, 5 hours, for testing. All mixtures consist
of 8-channels two speakers mixtures as is showed on Figure 6.2, each channel has a different
phase and magnitudes. Speakers in the testing dataset are different from these in training
and cross-validation datasets. [17].

Figure 6.1: Dataset directory structure.

24

Figure 6.2: Single mixture with 8 channels from Wallstreet journal multi channel dataset.

6.2 Neural network architecture
The neural network that is used by the system in this work for permutation invariant train-
ing consists of four BLSTM blocks described in subsection 3.3.1 as it shown on Figure 6.3.
The input dimension size of BLSTM is the frequency shape of STFT computed on the
mixture, it is 129. The output dimension of BLSTM blocks is twice as long as the specified
hidden dimension, which is 300, so the output of BLSTM blocks is the size of 600. This
output is then connected to two linear layers, each of output dimension size of 129. These
linear layers give target masks for both speakers. These masks are then applied to denor-
malized STFT of the original mixture to obtain the wanted result. For the deep clustering
method very similar neural network architecture is used. But instead of two linear layers
at the end, there is only one linear layer with an input size of 600 and output size of STFT
frequency shape multiplied by embedding size, which is 30, so 129 * 30 = 3870.

25

Figure 6.3: The NN architecture for training with PIT and DC method.

6.3 Parameters settings
STFT on data from the dataset is computed with parameters 256 samples in the segment
and with 192 shift. Data are cut in data loader for 4000𝑚𝑠 in PIT and DC systems that use
known target speakers. For the PIT and the DC system that uses obtained target masks,
data are not cut in the data loader, but STFTs computed on full-length data and obtained
target masks are cut in data adapter to the size of 501 on the time shape. Two NNs used
in experiments are specified in section 6.2.

6.4 Experiments and results
Experiment is ran for estimated target masks to obtain a SDR value result, that measures
the estimation quality of the spatial cues algorithm. Several experiments are executed
on a different kind of implemented system, to get reference SDR result values, that can
be compared with and experimental systems that use target masks obtained by spatial
cues clustering algorithm. All systems are trained and tested on the dataset described in
section 6.1.

6.4.1 Target masks estimating

Let us look at the estimation of target masks for speakers using spatial cues information.
Estimating algorithm for these masks were implemented as it is described in the article
Bootstrapping single-channel source separation via unsupervised spatial clustering on stereo
mixtures [18]. But after some testing it was obvious that estimated masks by this algorithm
are not of good quality. So the implemented algorithm was investigated and it was found
that there could be a problem with missing PA section 4.3. It was founded how the author
of the article solves the problem in his code, and this solution was applied to the imple-
mentation. Unfortunately even then estimated masks by this algorithm give bad results on
testing by applying them directly to the mixtures from which they were estimated.

26

Figure 6.4: Histogram of estimated masks test results, where the speaker A is always
dominant.

This problem was solved by using of another algorithm presented in pb_bss package [3].
In this package there was the cACGMM model used for masks estimation, and also there
was the PA algorithm presented. Results given by tesing of this algorithm were 12.55𝑑𝐵
SDR. This value is average of all 3000 tested masks, which are presented on Figure 6.4
separately for the speaker A and for the speaker B. The example of estimated results is
shown on Figure 6.5, where on the second line are tested estimated masks. On the third line
there are estimated target signals using mentioned masks. Finally on the third line there
are spectrograms of the known target signals, which are compared withe estimated masks.
Result of this test shows that estimated masks are in a good quality, so this algorithm was
finally used.

27

Figure 6.5: Example of target masks estimated by spatial cues algorithm.

6.4.2 Reference experiments

Reference experiments are provided on multichannel data with known target speakers for
each artificial mixed mixture. Results of reference experiments are used for comparison with
spatial cues experiments. There are spectrograms obtained by testing the PIT trained NN
showed on Figure 6.6 and Figure 6.7. On these figures there is a tested mixture spectrogram
showed on the first line. On the second line there are target masks estimated by the NN.
The third line contains speaker signals obtained by applying estimated masks on the tested
mixture. For reference, there are known target signals showed on the last line of the figure.

28

Figure 6.6: Example of estimated masks and target signals spectrograms from the PIT
testing.

Figure 6.7: Example of estimated masks and target signals spectrograms from the DC
testing.

29

The shape of the masks estimated by both methods is very similar, but it is possible
to see differences in low energy time-frequency bins. The DC method may miss some bins
by using zero or one masks (zero for the other speaker, one for the same speaker), but this
behavior is balanced by false determined bins by the PIT method.

The results of testing showed on table Table 6.1, are average of SDR values of all 3000
tested masks, which are presented on Figure 6.8 for PIT based training and on Figure 6.9
for the training using DC method. On each figure are two separated histograms for the
speaker A and for the speaker B. These results were obtained on epoch with the lowest
cross-validation loss value.

Figure 6.8: Histogram of PIT trained NN test results.

30

Figure 6.9: Histogram of DC trained NN test results.

Training type SDR [dB]
PIT 8.18
DC 7.68

Table 6.1: Table of results of reference experiments.

The results of experiments are very similar, but they are lower than expected, so more
training with different values of parameters was tested. Adjusted parameters were batch
size, which was tried with a value of 20, 40, 100, also different learning where used with
values 0.001, 0.0001. But none of these adjustments affect SDR results of the experiment.
Also learning rate scheduler was used, which tries to lower the learning rate after every 100
epochs, but it was also not helpful. Finally batch of size 40, the learning rate of 0.001 was
used without scheduling, which gives the best results.

6.4.3 Spatial cues experiments

Spatial cues experiments were made for the testing of how successful was the training with
using target masks for speakers obtained by spatial cues blind separation algorithm de-
scribed in section 2.2. In these experiments, the same system parameters as in reference
experiments subsection 6.4.2 were used. Results of experiments were computed on epoch
with the lowest cross-validation loss value pointed by the blue dot on Figure 6.10 for the
training with the PIT method and Figure 6.11 for the training with the DC method. PIT
cross-validation loss function continues to decline in 400 epochs, where the training proce-
dure was stopped. On the contrary the cross-validation shape of DC training is stopped
declining in epoch 108 and start to increase back slowly. This means that the NN starts
overfitting, so the training process was terminated earlier.

31

Figure 6.10: Graph of cross validation loss function results in epochs for multichannel data
with using PIT trained on spatial cues obtained target masks.

Figure 6.11: Graph of cross validation loss function results in epochs for multichannel data
with using DC trained on spatial cues obtained target masks.

The Figure 6.12 and the Figure 6.13 shows the examples of estimated masks by the
trained NN with spatial cues estimated target masks. The first figure shows estimated
masks and targets for speakers from the NN trained with the PIT method. The second
one shows the estimation of the trained NN with the DC method. In both figures there is
a mixture spectrogram showed on the first line, then there are estimated target masks for
speaker A and speaker B. Third and the fourth line contains estimated signals of speaker A
and speaker B and original speakers signals for reference. Target masks estimated by the
DC training method do not have soft values as masks estimated by the PIT training method.
It is because embedding vectors in the DC are clustered by the KMeans. The process of
obtaining masks from embedding vectors is described in section 4.2. But essentially the
same pattern is visible on masks estimated by both methods.

32

Figure 6.12: Example of estimated masks and target signals spectrograms from the SC PIT
testing.

Figure 6.13: Example of estimated masks and target signals spectrograms from the SC DC
testing.

33

The results of testing showed on table Table 6.1, are also average of SDR values of
all 3000 tested masks. These results are also showed on histograms. On Figure 6.14 are
histograms of results for the training with PIT and spatial cues estimated target mask.
With the DC trained NN that also uses spatial cues target masks have results histograms
showed on Figure 6.15.

The result values of these experiments, presented in Table 6.2 are slightly worse in
comparison with the original article Bootstrapping single-channel source separation via un-
supervised spatial clustering on stereo mixtures results. In the article there is only the DC
method used for training of the NN, and it gives the SDR result of 9.2𝑑𝐵. In this thesis it
is only 8.08𝑑𝐵 SDR obtained from the training that uses the DC method, but also the PIT
method was used in this thesis for training, and it gives 9.31𝑑𝐵 as an SDR result. This
value is similar to value from the original article.

Figure 6.14: Histogram of PIT trained NN using spatial cues estimated masks test results.

34

Figure 6.15: Histogram of DC trained NN using spatial cues estimated masks test results.

Training type SDR [dB]
PIT 8.18
DC 7.68
SC PIT 9.31
SC DC 8.01

Table 6.2: Table of results of spatial cues (SC) and reference experiments.

From Table 6.2 it is also visible that results for training with known target signals give
slightly worse results, than training that uses spatial cues estimated masks to obtain target
signals. This could be caused by a system of cutting loaded mixtures and targets. With
this zeros For non spatial cues using systems, mixtures are cut to 4000𝑚𝑠 segments in data
loader section 5.2. Some mixtures are padded with zeros and then STFT is counted on
those fragments. Also loss function counts with these zero paddings, which could possibly
causes low results of these experiments. On the contrary for spatial cues training, STFT
is counted on the whole loaded mixture and then is cut or pad to the specified time shape
size. This is caused by the need of complete mixtures for spatial cues estimating algorithm
because it fails on a cut or padded mixtures. So an improvement in results could be achieved
by better cutting and preparing input mixtures.

35

Chapter 7

Conclusion

The goal of the thesis was to implement the deep clustering training method and spatial
cues algorithm for estimating target masks, mentioned in the article Bootstrapping single-
channel source separation via unsupervised spatial clustering on stereo mixtures [8]. The
deep clustering training method is used for training neural networks used for speech sep-
aration. The spatial cues estimation algorithm is used for estimating of target mask for
speakers signals from mixtures where the original speaker’s signals are not known e.g. the
real-world mixtures.

The spatial cues estimation algorithm was implemented and tested with bad quality
results. However another algorithm was used, described in section 2.2, that works much
better. The estimated masks were used for the training of neural networks in experiments.

Experiments were provided by training the NN on the multi-channel wall street journal
dataset, described in section 6.1. NN was trained using two different methods of learning,
the PIT method and the DC method, both described in chapter 4.

Results of executed experiments were 8.01𝑑𝐵 SDR for the NN trained with the DC
method using spatial cues estimated target masks, which is a little bit worse than in the
original article. But for the trained NN with the PIT method using spatial cues estimated
target masks given result was 9.31𝑑𝐵 SDR which is better than the article’s result. The
comparison of reference and spatial cues experiments showed that the results of spatial cues
experiments were better than reference results. That was maybe caused by the different
cutting of dataset files in the system. The reasons for the result of this comparison were
more described in chapter 6.

As a way to improve the trained NN results, there is also confidence measure mentioned
in the original article. This method measure how successful was the spatial cues algorithm
in estimating target masks from the mixture. Based on this confidence measurement, poor
quality estimated target masks can be separated from the training and the cross-validating
dataset and do not be used in the training procedure. This could help the NN to be trained
only on good quality estimated target masks, which could improve the quality of this trained
NN.

However spatial cues method can be used for real-world mixtures, all mixtures used for
the training and the testing in the thesis were artificial ones. It may be interesting to try
to obtain real-world mixtures and train the NN on them. Also it will be very interesting to
test trained systems from the thesis on real-world mixtures, to see how good they work for
them.

36

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A. et al. Tensorflow: A system
for large-scale machine learning. In: 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16). 2016, p. 265–283.

[2] Amidi, A. and Amidi, S. Recurrent Neural Networks cheatsheet [online]. Stanford,
january 2019 [cit. 2019-12-20]. Available at: https:
//stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks.

[3] Drude, L., Hasenklever, D. and Haeb Umbach, R. Unsupervised training of a
deep clustering model for multichannel blind source separation. In: IEEE. ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2019, p. 695–699.

[4] Hershey, J. R., Chen, Z., Le Roux, J. and Watanabe, S. Deep clustering:
Discriminative embeddings for segmentation and separation. In: 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2016, p. 31–35.

[5] Hershey, J. R., Chen, Z., Le Roux, J. and Watanabe, S. Deep clustering:
Discriminative embeddings for segmentation and separation. In: IEEE. 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2016, p. 31–35.

[6] HKDH, B. Neural networks in materials science. ISIJ international. The Iron and
Steel Institute of Japan. 1999, vol. 39, no. 10, p. 966–979.

[7] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J. et al. Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. A field guide to
dynamical recurrent neural networks. IEEE Press, 2001.

[8] Hochreiter, S. and Schmidhuber, J. LSTM can solve hard long time lag
problems. In: Advances in neural information processing systems. 1997, p. 473–479.

[9] Ito, N., Araki, S. and Nakatani, T. Complex angular central Gaussian mixture
model for directional statistics in mask-based microphone array signal processing. In:
IEEE. 2016 24th European Signal Processing Conference (EUSIPCO). 2016,
p. 1153–1157.

[10] Kriesel, D. A Brief Introduction to Neural Networks. 2007. Available at:
availableathttp://www.dkriesel.com.

37

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
available at http://www.dkriesel.com

[11] Luo, Y. and Mesgarani, N. Conv-tasnet: Surpassing ideal time–frequency
magnitude masking for speech separation. IEEE/ACM transactions on audio, speech,
and language processing. IEEE. 2019, vol. 27, no. 8, p. 1256–1266.

[12] Ni, Z. and Mandel, M. I. Onssen: an open-source speech separation and
enhancement library. ArXiv preprint arXiv:1911.00982. 2019.

[13] Olah, C. Understanding lstm networks, 2015. URL http://colah. github.
io/posts/2015-08-Understanding-LSTMs. 2015.

[14] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., Álché Buc, F. d, Fox, E. et al., ed. Advances
in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,
p. 8024–8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[15] Raffel, C., Mcfee, B., Humphrey, E. J., Salamon, J., Nieto, O. et al. mir_eval:
a transparent implementation of common MIR metrics. In: In Proceedings of the 15th
International Society for Music Information Retrieval Conference, ISMIR. 2014.

[16] Sawada, H., Araki, S. and Makino, S. Measuring dependence of bin-wise separated
signals for permutation alignment in frequency-domain BSS. In: IEEE. 2007 IEEE
International Symposium on Circuits and Systems. 2007, p. 3247–3250.

[17] Seetharaman, P., Wichern, G., Le Roux, J. and Pardo, B. Bootstrapping
Single-channel Source Separation via Unsupervised Spatial Clustering on Stereo
Mixtures. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2019, p. 356–360.

[18] Seetharaman, P., Wichern, G., Le Roux, J. and Pardo, B. Bootstrapping
single-channel source separation via unsupervised spatial clustering on stereo
mixtures. In: IEEE. ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2019, p. 356–360.

[19] Venkatachalam, M. Recurrent Neural Networks [online]. Towards Data Science,
march 2019 [cit. 2019-12-20]. Available at:
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce.

[20] Yildirim, Ö. A novel wavelet sequence based on deep bidirectional LSTM network
model for ECG signal classification. Computers in biology and medicine. Elsevier.
2018, vol. 96, p. 189–202.

[21] Yu, D., Kolbæk, M., Tan, Z.-H. and Jensen, J. Permutation invariant training of
deep models for speaker-independent multi-talker speech separation. In: IEEE. 2017
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2017, p. 241–245.

38

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

	Introduction
	Speech separation
	Evaluation methods
	Spatial cues

	Neural Networks
	Training Neural Networks
	Recurrent neural network
	Long Short Term Memory networks
	Bidirectional Long Short Term Memory networks

	Speech separation using neural networks
	Permutation invariant training
	Deep clustering
	Bootstrapping speech separation with spatial cues

	Draft and implementation
	Used packages
	Data loader
	Spatial cues data loader

	System, module, statistics and objective function
	Training procedure
	Testing procedure

	Experiments
	Dataset
	Neural network architecture
	Parameters settings
	Experiments and results
	Target masks estimating
	Reference experiments
	Spatial cues experiments

	Conclusion
	Bibliography

