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Abstract
The TLS protocol is complex and widely used, which necessitates thorough testing, as there
are many devices relying on it for secure communication. This thesis focuses on timing side-
channel vulnerabilities, which seem to come back every few years in different variations of
the same attacks. It aims to help correctly fix those vulnerabilities and prevent the creation
of new ones by providing an automated side-channel testing framework that is integrated
into the tlsfuzzer tool, and by expanding its test suite with test scripts for known attacks
that exploit timing side-channels. The extension utilizes tcpdump for collecting the timing
information and statistical tests and supporting plots to make a decision. The extension
and the new test scripts were evaluated and shown to be accurate at spotting side-channels.
Both the extension and the test scripts are now a part of the tlsfuzzer tool.

Abstrakt
Protokol TLS je komplexní a jeho použití je široce rozšířené. Mnoho zařízení používá TLS
na ustanovení bezpečné komunikace, vzniká tak potřeba tento protokol důkladně testovat.
Tato diplomová práce se zaměřuje na útoky přes časové postranní kanály, které se znovu
a znovu objevují jako variace na už známé útoky. Práce si klade za cíl usnadnit korektní
odstranění těchto postranních kanálů a předcházet vzniku nových vytvořením automatizo-
vaného frameworku, který pak bude integrován do nástroje tlsfuzzer, a vytvořením testo-
vacích scénářů pro známé útoky postranními kanály. Vytvořené rozšíření využívá program
tcpdump pro sběr časových údajů a statistické testy spolu s podpůrnými grafy k rozhodnutí,
zda se jedná o možný postranní kanál. Rozšíření bylo zhodnoceno pomocí nových testo-
vacích skriptů a byla předvedena jeho dobrá schopnost rozlišit postranní kanál. Rozšíření
spolu s testy je nyní součástí nástroje tlsfuzzer.
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Rozšířený abstrakt
Za poslední dvě dekády došlo k masovému rozšíření sítě internet, která se stala součástí kaž-
dodenního života mnoha lidí a je téměř nepostradatelnou pro fungování moderní společnosti.
V porovnání se začátky internetu jsou na něj dnes kladeny daleko vyšší požadavky na
bezpečnost, ať už při návštěvě běžných stránek, nebo při provádění transakcí v interne-
tovém bankovnictví.

Technologií, která současnou úroveň zabezpečení napříč internetem umožňuje, je pro-
tokol dříve známý jako SSL, dnes už jako TLS. Kromě jiných využití funguje jako stan-
dardní forma zabezpečené komunikace po internetu, jako součást protokolu HTTPS. Právě
z důvodu tak širokého rozšíření se jedná o kriticky důležitou součást internetu, neboť každá
další nalezená chyba v jeho návrhu nebo implementaci může dopadnout na velké množství
potenciálních cílů. Proto je nutné těmto chybám co možná nejvíce předcházet. Jedním
ze způsobů, jak toho lze dosáhnout, je důkladné testování implementací TLS protokolu.
Testování může probíhat na úrovni jednotlivých funkcí ve zdrojovém kódu knihovny, na
úrovni modulů, nebo lze knihovnu testovat jako komplexní celek. V případě protokolu
TLS však tento přístup nemusí být dostačující, z důvodu vysoké komplexity protokolu a
množství možných konfigurací kryptografických parametrů.

Jedním z méně obvyklých přístupů je tzv. Fuzz testování, které je zaměřeno na hledání
chyb v implementaci pomocí vstupů, které testovaný systém neočekává, nebo je považuje
za chybné. Typickou vlastností fuzzeru (nástroje provádějícího fuzz testování) je vysoká
míra automatizace a využití náhodného generování vstupních dat.

Tato diplomová práce se zabývá rozšířením nástroje tlsfuzzer – fuzzeru testujícího pro-
tokol TLS. Cílem práce je umožnit testování méně obvyklých útoků vedených pomocí
časových postranních kanálů. Postranní kanál je vlastnost implementace kryptografick-
ého systému, přes kterou z něj nechtěně unikají informace o jeho vnitřním stavu. Jedná
se tedy o vlastnost jeho implementace, čímž se odlišuje od klasické kryptoanalýzy, která
se zaměřuje na nedostatky v návrhu kryptografického systému. Existuje více druhů pos-
tranních kanálů, ale relevantní pro tuto práci je ten časový, který se může projevit např.
různou dobou odpovědi serveru na vstupy, které by měly mít tuto dobu shodnou. Ačkoliv
se může zdát, že se jedná o zanedbatelné nedostatky, které nejsou zneužitelné pro skutečný
útok, opak je pravdou. Při dostatečném počtu nasbíraných vzorků a následné statistické
analýze je možné např. získat šifrovací klíč, kterým je komunikace zabezpečena, čímž může
být odhalena potenciálnímu útočníkovi. Obrana proti tomuto typu útoků je obtížná a často
není implementována korektně, i z toho důvodu, že je obtížné chyby tohoto typu testovat.

Cílem této práce je testování časových postranních kanálů v případě protokolu TLS
usnadnit rozšířením nástroje tlsfuzzer. V rámci této práce byl nejdříve studován protokol
TLS. Dále práce zahrnuje studium útoků pomocí postranních kanálů, zvláště pak těch
časových, a věnuje se také technikám fuzz testování.

Samotný předmět této diplomové práce, rozšíření pro nástroj tlsfuzzer, bylo nejdříve
modelováno na prototypu, na kterém byly zkoušeny možné směry řešení. Jednalo se o
jednoduchou aplikaci, skládající se z klienta a serveru, mezi nimiž probíhala komunikace
pomocí jednoduchého protokolu. Z vývoje tohoto prototypu se vyprofiloval nástroj tcp-
dump jako nejvhodnější pro zachytávání komunikace s vysokou přesností časových údajů o
jednotlivých zprávách. Také byly vybrány dva statistické testy (Kolmogorov-Smirnov test
a Box test), které vyhovovaly záměru rozpoznat rozdíly v sesbíraných skupinách vzorků a
určit, zda se jedná o potenciální postranní kanál. Dále byly identifikovány podpůrné grafy,
které mohou asistovat při tomto rozhodování.



Následně byl vybraný způsob řešení implementován v podobě rozšíření, které bylo za-
členěno do nástroje tlsfuzzer. Součástí cílů této práce bylo též poskytnout testovací skripty
pro známé útoky časovými postranními kanály, což bylo splněno v podobě vytvoření skriptů
pro útok známý jako Lucky 13 a pro zranitelnosti vycházející z Bleichenbacherova útoku.
Testovací skripty a samotné rozšíření pak bylo validováno na třech nejpoužívanějších im-
plementacích protokolu TLS – OpenSSL, GnuTLS a NSS.

Výsledky ukazují na dobrou schopnost navrženého rozšíření nástroje tlsfuzzer rozlišit
potenciální postranní kanál. Navržené rozšíření má navíc přijatelnou míru falešných pozitiv.
Rozšíření je spolu s testy v době odevzdání součástí nástroje tlsfuzzer.
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Chapter 1

Introduction

In the last two decades the internet has experienced a quick rise in popularity, became a
daily part of the lives of many people and is now a technology it is almost impossible to
imagine a modern world without. In the early days of the internet, security was almost a
secondary concern, but with the widespread adoption quickly became an issue.

One of the basic needs of an internet user is to be able to communicate privately
without an adversary listening in on the conversation and being able to see any and all
data transmitted over the network. The adversary also should not be able to compromise
the integrity of the data, perhaps changing something before the communication reaches
the recipient. Equally important is for the communicating parties to be able to verify each
other’s identity, preventing the adversary from impersonating any of the parties. These
goals can be summarized as confidentiality, integrity and authentication.

This is where the Secure Sockets Layer (SSL) protocol was introduced in order to fulfil
these goals. Later evolving into the Transport Layer Security (TLS) protocol, it is nowadays
the mainstream way to establish a secure channel between two parties, most notably on
the internet as HTTPS – also known as HTTP over TLS. It is widely relied on, which
magnifies the effect of any vulnerability as it affects a large part of the websites on the
internet. Because of such widespread adoption, it is critical that this software is designed
and maintained with security as the primary factor in every step of the development process.
Setting aside the design, a significant part of keeping a library implementing the TLS
protocol secure is thorough and rigorous testing. Testing can be done on multiple levels –
separate functions in the library’s source code, individual modules of the library, or a whole
library can be tested as one complex system. However, TLS has an additional property of
being a highly complex network protocol, which calls for perhaps a less common approach
to testing. An example of this can be a great number of configurations of cryptographic
properties of the secure connection being established.

One of the possible approaches to covering such a complex configuration of an already
complex protocol with tests is Fuzz testing, also known as fuzzing. Fuzzing aims to discover
vulnerabilities by providing the system under test with invalid or unexpected data in order
to cause a failure. A typical property of a fuzzer (a tool that performs fuzz testing) is a high
degree of automation that usually involves a certain degree of randomization in generating
the invalid data. Tlsfuzzer is such fuzzer, specialized for the TLS protocol.

This thesis is concerned with extending the tlsfuzzer’s capabilities to allow testing for a
specific type of vulnerability called timing side-channel. Side-channel describes a situation
when a system involuntarily leaks additional information about its internal state, in addi-
tion to the usual output. Timing side-channel is a case where this additional information
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is leaked through time, e.g. the latency of server response to different inputs. While such
a vulnerability can seem irrelevant and not exploitable in a real-world scenario, it has been
proven again and again that this is not the case and with enough samples and statistical
analysis, this information can be used to e.g. recover session keys, effectively revealing the
communication to a possible adversary. Attacks utilizing these vulnerabilities are notori-
ously hard to fix in a correct way, which is even further obstructed by the fact that it is
also hard to test for them.

This thesis aims to change that in the context of TLS and tlsfuzzer, by providing it
with tools necessary for testing for timing side-channels and extending its test suite with
test scripts for some of the known attacks utilizing timing side-channels.

After researching relevant topics such as the TLS protocol and side-channel attacks, a
prototype was implemented to research various possible solutions to problems involved. The
prototype served as a basis for the actual implementation into tlsfuzzer. The framework
was extended to allow for timing side-channel analysis and the test suite expanded to cover
two known attacks exploiting timing side-channels. The test scripts were then evaluated
against popular TLS libraries with results indicating that extension is accurate in detecting
side-channels, with an acceptable rate of false positives. The extension, along with tests,
became a part of the tlsfuzzer framework.

The text first introduces the TLS protocol in Chapter 2. Chapter 3 covers an overview
of different kinds of side-channel attacks with emphasis on timing side-channels. Chapter 4
describes the basics of fuzz testing. Next, the process of finding the right tools for timing
side-channel discovery with results is described in Chapter 5. Implementation is then
covered with details on the resulting extension architecture and added tests in Chapter 6.
Finally, the extension is evaluated and results are discussed in Chapter 7. The thesis then
concludes with summary and discussion on possible further development.
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Chapter 2

SSL/TLS Protocol

The purpose of the SSL (Secure Sockets Layer) and TLS (Transport Layer Security) pro-
tocols is to create a secure channel for communication between two peers, with the only
requirement being that the communication is carried over reliable, in-order data stream
[22]. SSL is a now-deprecated predecessor of TLS, and its use is considered insecure. Even
though the version 1.0 of TLS was based on SSL 3, the name was changed due to a dispute
between Netscape and Microsoft.

2.1 Description of the TLS Protocol
Information in this section is taken from the official TLS specification [12], unless specified
otherwise. The protocol intends to provide the following properties to the secure channel
it establishes between the communicating parties: [22]

• Authentication – Server always authenticates itself to the client, clients optionally can
authenticate themselves to the server.

• Confidentiality – After the secure channel is established, the data transmitted over it
shall be readable only to its endpoints.

• Integrity – Data transmitted over the secure channel shall not be modified by an
adversary without detection.

Although establishing a secure channel is the main goal of TLS, it defines three more:

• Interoperability – The protocol should be implementation independent, meaning that
two applications using different implementations of TLS should be able to communi-
cate without knowledge of the other application’s TLS implementation.

• Extensibility – TLS intends to provide a framework that is able to incorporate new
encryption methods as necessary without the need to create a new protocol.

• Relative efficiency – TLS aims to perform as few cryptographic operations as possible,
as they are highly CPU intensive, and to reduce network activity as well.

The protocol itself consists of several subprotocols that will be described here in detail, in
their respective subchapters. Version 1.2 will be used to describe the subprotocols, even
though version 1.3 exists, for two reasons. Firstly, as of now, there are still all TLS versions
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in use, with a plan to deprecate versions 1.0 and 1.1 in March 2020 [7], so TLS 1.2 will
become the lowest supported version. Secondly, most of the attacks described in this thesis
were devised against version 1.2, or lower. Differences between versions 1.2 and 1.3 will
also be described in a separate section.

2.1.1 Record Protocol

The record protocol is used to describe the general structure of a TLS message. A high-level
overview will be provided in this section. As seen in figure 2.1, TLS record consists of a
Header and a Data section:

• Type – Identifies the subprotocol type of messages in the Data section with types
relevant for this thesis enumerated below:

– Change Cipher Spec protocol – Used for switching to encrypted communication.
– Alert protocol – Used for error reporting.
– Handshake protocol – Used for negotiation of the connection parameters.
– Application Data protocol – Used for data transmission.

• Version – Specifies the TLS version using a major and a minor number.

• Length – Specifies the length of the Data section.

Type Version Length Data

Header

TLS record

Figure 2.1: Schematic depiction of TLS record structure

The record protocol allows for fragmentation of the subprotocol messages, as the Data
section in figure 2.1 is actually a TLS fragment that has the maximum size of 214 bytes.
This means that longer subprotocol messages must be split into multiple TLS records,
resulting in fragmentation. At the same time, multiple subprotocol messages can be sent
in the same TLS record, provided they are of the same type.

2.1.2 Handshake Protocol

The Handshake protocol in TLS is used for negotiating parameters of the secure channel
and establishing it between two communicating parties. Its purpose is for the peers to agree
on a TLS protocol version, cryptographic algorithms to use, optionally authenticate each
other and generate shared secrets using public-key cryptography (or pre-shared keys).
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First, the structure of a handshake message is visualized in table 2.1. This structure is en-
capsulated in Data section of a TLS record message. Next, the handshake will be explained
in all its variants.

Table 2.1: Handshake record structure (Taken from [1])

Byte/+ Byte +0 Byte +1 Byte +2 Byte +3

0..4 Message type Handshake message data length

5..(length-1) Handshake message data

Full handshake

Every new TLS connection begins with a full handshake process. As previously mentioned,
its purpose is for the two parties to negotiate parameters of a secure connection and then
establish it. In Figure 2.2, the Client-Server communication is shown, annotated with
message types from the handshaking protocol. The conversation is dissected message by
message below.

ClientHello This message is used by the Client to initiate the handshake, or optionally to
renegotiate the parameters if connection already exists. The message contains the following
information:

• TLS version – highest version supported by the Client

• Random structure – contains 28 random bytes and a timestamp

• Session ID – optional, used in case the Client wishes to resume an already negotiated
session

• List of supported cipher suites

• List of supported compression methods

• List of optional extensions the Client would like to use

ServerHello ServerHello is the Server’s response to ClientHello, where the Server chooses
from offered options and generates a session ID. The message contains the following fields:

• TLS version – highest version supported by the Server

• Random structure – contains 28 random bytes and a timestamp, must be generated
independently from the Client’s random structure

• Session ID – generated ID for this connection

• Chosen cipher suite
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• Chosen compression method

• List of supported extensions – only out of those that the Client requested

ClientHello
Client Server

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

ServerHelloDone
Certificate*

ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

ApplicationData

Figure 2.2: Communication scheme between the Client and the Server during full TLS
handshake (Taken from [12]). Optional messages are marked with *. Messages that are
not a part of the handshake protocol are marked with brackets.

Certificate* (Server) This message immediately follows ServerHello in case the cho-
sen cipher suite’s signature algorithm requires certificates to work (which is all of them
except anonymous and those based on pre-shared keys). The Server selects the appropriate
certificate based on the signature algorithm and appends the certificate chain to it, where
each certificate directly validates the one before it.

ServerKeyExchange* This message is sent in case the Certificate message does not provide
enough information for the Client to generate a pre-master secret (key exchange algorithms
for which this is true are defined in the RFC [12]).

CertificateRequest* Under the condition that it authenticates itself (sending Certifi-
cate), the Server can request the Client to do the same.

7



ServerHelloDone With this message, the Server lets the Client know, that it is done
sending ServerHello and related messages, and is now listening for the Client’s response.

Certificate (Client)* If the Client received a CertificateRequest message, this will be
its first response to the Server. As before, a Client certificate along with its certificate
chain is contained in this message. The Client can choose to send this message without any
contents, then it is in the Server’s discretion to either continue the handshake, or respond
with an error.

ClientKeyExchange This is a required message by the Client that sets the pre-master
secret, either by sending it encrypted or giving the Server enough information to generate
the same pre-master secret as the Client did.

CertificateVerify* This message is used for explicit verification of the Client’s certifi-
cate. It contains a signature over all of the handshake messages sent or received so far,
signed with certificate’s private key for the Server to verify.

ChangeCipherSpec (Client) This message actually is not a part of the handshake proto-
col, but rather the only specified message in Change Cipher Spec subprotocol that indicates
the party is now considering the connection authenticated and is switching to encryption
for future messages.

Finished (Client) Finally, this message indicates that the handshake is considered com-
plete from the Client’s side. It also serves as a sanity check for the connection. That is
achieved by taking the master secret, hash of all sent or received messages and a finished la-
bel (indicating either the Client or the Server) as inputs to Pseudo-random function (PRF),
which generates at least 12 bytes (or more, depending on the nature of PRF in the selected
cipher suite). Note that this message is already encrypted, as it is sent after ChangeCipher-
Spec. The Server will perform the sanity check by decrypting the contents of the message
and comparing them with expected contents.

ChangeCipherSpec & Finished (Server) The Server performs the same actions as the
Client after receiving the Server’s Finished message. After the Client receives the Server’s
Finished message and verifies its contents, the handshake is complete and both parties can
begin sending Application Data protocol messages, as described in section 2.1.4.

Session resumption

Because the full handshake is CPU-intensive, as a number of cryptographic operations must
be executed in order to establish a connection, the protocol allows caching of session IDs
in an effort to save both time and computing resources. Session resumption is performed
via abbreviated handshake. As shown in Figure 2.3, the exchange begins again with the
ClientHello message, except this time the Client is reusing a previously issued session ID.
The Server then searches its cache for a match. If it is found and the Server is willing
to resume the connection, it will respond with a ServerHello message with that particu-
lar session ID and follow that up with a ChangeCipherSpec and Finished messages. The
Client will respond with the same set of messages, as it would in a full handshake. If the
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Server cannot or wishes not to resume the session, it generates a new session ID and the
conversation continues as a full handshake.

ClientHello
Client Server

ServerHello

[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

ApplicationData

Figure 2.3: Communication scheme between the Client and the Server during the abbrevi-
ated TLS handshake (Taken from [12]).

2.1.3 Alert Protocol

Alert protocol is used to notify the other party about events that occurred during the
connection, which are (with one exception) errors. The message structure is shown in table
2.2.

Table 2.2: Alert record structure (Taken from [1])

Byte/+ Byte +0 Byte +1 Byte +2 Byte +3

0..4 Level Description

Each message contains Level, which conveys the severity of the alert and can be either
warning or fatal. Messages with fatal severity must result in immediate termination of
the connection and invalidation of the session ID. The message also contains Description,
which is further description of the alert, as defined in TLS specification.

Closure alert

There is a special alert message for when either one of the parties in the connection decides
to terminate it. Any party can simply send close_notify alert, and the other side will
respond with canceling any pending messages to be sent and sending a close_notify back.
The initiating party is not required to wait for this message to terminate the connection
on its side. Closure messages are included to avoid truncation attacks. An example of a
truncation attack would be an adversary intercepting logout request from a user, leading
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the user to believe that they have been logged off, while in fact, the session is still alive
[23].

2.1.4 Application Data Protocol

Last of the TLS subprotocols is the Application Data protocol. Its purpose is to simply
carry whatever data either of the sides wants to send. An example of this can be the
HTTPS protocol, which is the HTTP protocol carried over TLS.

2.2 TLS 1.3 Differences
Even though most attacks concerning this thesis are aimed at TLS 1.2, it is important to
also describe the latest TLS version 1.3, as the goal of this thesis is to provide a framework,
that will enable timing side-channel testing for any attacks that might appear in the future.

TLS 1.3 was released in August 2018, ten years after its predecessor TLS 1.2. Perhaps
the most important changes were made to the handshaking protocol, aiming at lower la-
tency and more security. Other changes include removing no longer secure cryptographic
algorithms and fixing flaws in design that were exposed by various attacks on TLS. These
changes are described in detail below. Information in this chapter is taken from [22] unless
stated otherwise.

2.2.1 Changes to ClientHello

Innovations to the ClientHello are numerous and aim to correct some of the mistakes of the
previous versions, like the support for compression, which was found to leak information
about data being compressed, and as a result is no longer allowed. The more significant
changes are described below.

Cipher suites

One of the major changes is the split of the supported cipher suites field into separate fields:

• Cipher and HKDF Hash

• Key exchange

• Signature algorithm

This change was made because in previous versions there had to be an assigned value
for every valid combination of these three fields, which resulted in a large number of new
values when just one cipher was added. To preserve backwards compatibility, the Cipher
field stayed in the place CipherSuite field was, and the rest of the fields were moved into
mandatory TLS extensions, located at the end of a TLS message. This was done to preserve
backwards compatibility regarding the format of the message.

Many ciphers were also removed as they were deemed insecure. The ciphers that are
left all fit into the Authenticated Encryption with Associated Data (AEAD) category of
algorithms, that in addition to providing confidentiality for encrypted plaintext, also add
means to check its integrity and authenticity, as well as of some unecrypted associated data.

A significant change was also made to the supported key exchange methods. The RSA
key exchange is no longer supported in TLS 1.3, because it was exploited again and again,
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most recently in 2017 using the ROBOT attack [6]. The other reason is the lack of forward
secrecy property in most exchanges, as it is not usual to generate new key pairs for each
session. That is why the only option in TLS 1.3 available is the Diffie-Hellman key exchange
that uses ephemeral keys – keys that are randomly generated for each new connection, so
the forward secrecy property can be maintained.

Session IDs

The session resumption mechanism was also reworked and the SessionID field is now kept
only for backwards compatibility. Session resumption is now performed using Pre-Shared
keys (PSKs), that are established upon request during an existing connection, and can be
later used to perform 0-RTT handshake (see respective Section in 2.2.2 for details).

Version negotiation

As of TLS 1.3, the Version field loses its purpose as a way of negotiating the version of
TLS protocol to be used in the connection. This change was implemented as a reaction
to common incorrect implementation of the protocol, as many servers rejected otherwise
acceptable ClientHello because the version was higher than the server’s highest supported
version, instead of responding with that version in ServerHello. TLS 1.3 therefore uses
the same version value as TLS 1.2 to preserve backwards compatibility and the actual
negotiation was moved to supported_versions extension, in which client lists supported
versions and the server (TLS 1.3 compliant) must choose from those and ignore the version
field.

2.2.2 Changes to the Handshaking Protocol

The most significant changes were made to the TLS handshake. The full version of the
handshake was shortened from two round trips to just one. The session resumption with
the abbreviated handshake was also innovated and 0-RTT handshake was introduced. All
of them are described in detail below.

Full handshake

The main motivation for changing the way how the handshake works were speed and se-
curity. Additional security is provided by encrypting a larger part of the handshake, to
prevent downgrade attacks, such as FREAK1 or LogJam [3]. Downgrade attacks exploit
this vulnerability by tricking the server into using a weak cipher suite or older TLS version.
In TLS 1.3, this is no longer possible, because the server uses CertificateVerify message to
sign the contents of the handshake so far with the private key that is corresponding to the
public key sent in the Certificate message. This ensures the integrity of the unencrypted as
well as the encrypted part of the handshake.

The speedup is achieved by the client taking a guess on which key share the server is
likely to select, and sending that in the ClientHello message using the key_share extension
for Diffie-Hellman based key share, or the pre_shared_key extension in case of session
resumption. Since the Diffie-Hellman key exchange is restricted to just a small set of
options, the guess is likely to be right. In case the client guessed wrong, the server will ask
for another option explicitly with HelloRetryRequest message.

1https://www.mitls.org/pages/attacks/SMACK#freak
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Figure 2.4 illustrates the entire process of the full handshake with special attention to
which data are encrypted. New messages and notable extensions are described below.

ClientHello
Client Server

ServerHello

Certificate*

EncryptedExtensions
CertificateRequest*

CertificateVerify*

Certificate*
CertificateVerify*
Finished

Finished

Application Data

key_share*
signature_algorithms*

pre_shared_key*
psk_key_exchange_modes*

key_share*
pre_shared_key*

Application Data*

Figure 2.4: Communication scheme between the Client and the Server during the full TLS
1.3 handshake (Taken from [22]). Optional messages are marked with *. Green (handshake
traffic keys) and blue (application traffic keys) colors indicate encryption. Cursive indicates
notable extensions.

key_share extension This extension contains cryptographic parameters needed for the
other party to complete the key exchange. Client can send as many key share groups as
they like, provided there is only one set of key exchange parameters for each group, and
that these parameters are generated independently.

psk_key_exchange_modes extension This extension is a requirement for the
pre_shared_key and it indicates pre-shared key exchange modes client is supporting. This
is important later during setup for the session resumption.

pre_shared_key extension This extension is used for establishing the connection based
on pre-shared keys. This contains the identities client is offering for the server to choose
from. This type of key exchange is supported because it is needed for session resumption
in TLS 1.3.
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EncryptedExtensions This is the first encrypted message server sends after ServerHello.
It contains any extensions that are not needed for the key exchange itself but should be
hidden from any potential eavesdroppers.

CertificateVerify As mentioned before, this message allows the sending party to prove
that they possess the private key to the public key sent in the Certificate message. This
applies to both server and client (in case of client authentication). It also allows the receiving
party to check the integrity of the handshake transcript and that it has not been tampered
with. In TLS 1.2, this used to be done for some key exchanges using the ServerKeyExchange
message, where only signed content from the previous communication was client’s random
and server’s random. This allowed for chosen prefix attack, where attackers could select
the client’s random.

Handshake with session resumption

This type of handshake is the equivalent of the abbreviated handshake from TLS 1.2. The
main difference is that the resumption is not done by sessionID field in ClientHello, but
rather a Pre-Shared Key (PSK). This key can be established out of band but is more
commonly obtained during a previous TLS connection, when server, after completing the
handshake, may send a NewSessionTicket message that creates an association between the
ticket value and a secret PSK, which is sent in the message to the client. This enables the
client to use the abbreviated handshake flow for the session resumption as illustrated by
Figure 2.5.

ClientHello
Client Server

ServerHello

EncryptedExtensions

Finished

Finished

Application Data

key_share*
pre_shared_key

key_share*
pre_shared_key

Application Data*

Figure 2.5: Communication scheme between the Client and the Server during the session
resumption TLS 1.3 handshake (Taken from [22]). Optional messages are marked with *.
Green (handshake traffic keys) and blue (application traffic keys) colors indicate encryption.
Cursive indicates notable extensions.
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0-RTT handshake

TLS 1.3 enables the client to go one step further and send the application data encrypted
with the ClientHello message using PSK, hence the name 0-RTT handshake. This provides
notable speedup and brings secure connection on par with an unencrypted one (e.g. HTTPS
vs. HTTP). This is achieved by utilizing the early_data extension that has the same
parameters as the PSK being used. Server can either ignore this early data, and continue
with a regular session resumption handshake, or reply with its own early data, that is
attached as an extension to the EncryptedExtensions message. Meanwhile, the client is
permitted to send early Application Data until it receives server’s Finished message. After
that, the client must send the EndOfEarlyData message indicating that the client is done
sending early data and is now switching from early traffic keys to the application traffic
keys for the application data encryption. This process is illustrated in Figure 2.6.

ClientHello
Client Server

ServerHello

EncryptedExtensions

Finished

Finished

Application Data

key_share*
pre_shared_key

key_share*
pre_shared_key

Application Data*

psk_key_exchange_modes
early_data

Application Data*

early_data*

EndOfEarlyData

Figure 2.6: Communication scheme between the Client and the Server during the session
resumption TLS 1.3 handshake (Taken from [22]). Optional messages are marked with *.
Green (handshake traffic keys), blue (application traffic keys) and orange (early traffic keys)
colors indicate encryption. Cursive indicates notable extensions.

0-RTT handshake also has some downsides to it. It is vulnerable to replay attacks, meaning
that an adversary might capture a ClientHello message with early data and replay it with
a chance that the server will accept that as valid. That is why there is a need to carefully
decide what can and what cannot be sent as early data, because TLS provides little pro-
tection against this. Applications such as HTTPS clients can reduce the risk of a replay
attack by sending only idempotent methods (i.e. methods that do not change the server’s
state) as early data.
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Chapter 3

Side-Channel Attacks

This thesis focuses on testing against side-channel vulnerabilities. As opposed to classical
cryptoanalysis, which focuses on cryptographic system as a black box with input and output,
analysis of side-channels is concerned with implementation of such systems and information
they involuntarily give out in addition to their output.

Messages

Key

CiphertextsCryptographic
System

Side-channel

Figure 3.1: A scheme of cryptographic system and its side-channel. Taken from1.

Figure 3.1 shows a scheme of such a cryptographic system leaking additional information
through a side-channel, that the attacker is able to observe. Side-channels are generally
created due to the nature of the system’s implementation, both in software and in hardware.
Even though the algorithm might be unbreakable in theory, it still has to be implemented
in some way and run on some kind of hardware, all of which creates a new potential attack
vector for the adversary. What follows is a non-exhaustive overview of different kinds of
side-channels. Information for each type of side-channel is taken from [16] and from their
respectable entries in [20], unless stated otherwise.

3.1 Timing Side-channel
Timing side-channel attacks exploit the fact, that certain parts of the cryptographic system
might take a longer time to compute under certain circumstances. A prime example of
timing side-channel might be a naive approach to password verification that focuses on
delivering the result as fast as possible. Consider an algorithm, that would compare the
entered password and the stored password bit by bit and in case any bits in such pair don’t

1https://koclab.cs.ucsb.edu/teaching/ccs130h/2017/sidechannel.pdf
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match, immediately return a failure to match passwords. The attacker is able to select
the input to the system – the entered password and in order to conduct the attack they
would permute the first character of the password and record the duration of verification
for each such password. Given this process would be repeated enough times to account
for noise that might be caused by other programs running on the system or operating
system’s context switching, and that some statistical tools would be applied to the recorded
results (e.g. median or mean), one of the characters would have a slightly higher processing
time, because the algorithm would also check the second pair of characters since the first
pair would be correct. Repeating this process for each next character, the attacker would
eventually be able to recover the whole password.

While the previous example is more of a theoretical one, to demonstrate the mechanism
of timing side-channel attack, more practical attacks were described that manage to break
implementations of cryptographic algorithms – most notably the first timing attack ever
published that focused on exploiting Montgomery multiplication and Chinese remainder
theorem in implementation of RSA and other cryptographic systems [19].

The countermeasures for avoiding creating timing side-channels are often hard to get
right and often come at the cost of losing speed. One of the ineffective, yet often the first
one that comes to mind is adding a random delay. This is however successful only in in-
creasing the number of samples needed for the attack, but not avoiding it completely. The
probability distribution of the random generator in most cases approaches normal distribu-
tion, therefore with enough samples, the timing signal is not lost. The correct mitigation of
timing side-channels is making the operations that depend on secret information constant
time. In the first example with password verification, this would mean always comparing
the whole password, and setting a flag in case of failure to match any of the characters.
Alternatively, as Kocher suggests [19] in preventing timing attack on RSA, the internal
state can be blinded, meaning that the attacker would not be able to reproduce the internal
computations. This however, as Kocher notes, might not prevent all of the possible timing
attacks.

3.2 Power Side-channel
Power side-channel focuses on the correlation between power consumption, the input data
and cryptographic operations that run on the observed hardware. This typically applies to
less complicated devices, such as smart cards. As opposed to timing side-channel attacks,
the implementation itself is often not known. The device, such as smart card reader, is
monitored through an oscilloscope by inserting a resistor in series with the ground or power
supply pin. The obtained measurement is called a power trace. Most methods operate
under Information Leakage Model – assumption that the consumed power is related to e.g.
Hamming weight of the data (this includes the input data, instruction, addresses, etc.), or
Hamming distance of the XOR of the current state and the previous state, resulting in the
number of flipping bits between the states. Other possible models exist.

The first and least complicated method is Simple Power Analysis (SPA), that can be
used to identify individual instructions in the power trace. It works by using different input
data, measuring the power trace for each one of them and then plotting them all in one
graph. At certain places the traces will differ because of different inputs. These places are
called signatures. Assuming the leakage model is known (let it be Hamming distance for
the sake of this example), then reverse engineering of the instruction would be performed
as follows:
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1. Measure the power consumption at the place of chosen signature for all possible input
values and plot that into graph A (x, consumption(x)).

2. Plot a graph showing the Hamming distance of x ⊕ y, where y is an instruction code,
for each value of x. Doing this for all of the instructions would result in a set of
graphs By0 , . . . , Byn .

3. Choosing the most similar graph Byi to A would identify the instruction – yi.

Although the SPA is often effective on single-purpose devices as smart cards, it usually
fails when it comes to more complicated systems, where noise is present. This where
Differential Power Analysis (DPA) is usually better applicable. It makes use of statistical
methods, applied on a large number of power traces. It can be used to recover a secret
key. As mentioned before, it takes a number of random power traces (e.g. a number of
cipher texts for the same key), that are then divided into two sets depending on the value
of a selected bit. Next, the average consumption for each set is computed for a selected
time interval – the DPA trace. This trace will show spikes for when the selected bit was
manipulated, due to Hamming weight properties of both sets. This allows the attacker to
follow the changes to a chosen bit and this technique is thus called bit tracing. This attack
was successfully mounted against DES[18] and AES[13].

Although both methods seem hard to defend against, there are countermeasures that
can be taken both in hardware and in software. In hardware, it can be aimed at making
the signal too noisy to use or using desynchronization to misalign a set of traces. The
other approach is called precharged dual-rail logic and focuses on doubling the circuitry in
order to always have to switch in the transition to the next state, thus balancing the power
consumption. In software it can be e.g data masking.

3.3 Cache Side-channel
Cache side-channel attacks are one of the more complicated ones, that can be executed even
on modern computers with programs running in parallel. Cache in this context is the CPU
cache, usually much smaller in storage than the main memory, but much faster. When
reading data, the CPU first checks the cache and if the requested data is present (cache
hit), it uses it. Else, the main memory has to be queried for the data (cache miss). The
actual attack vector uses timings or power consumption of measurements of cache hit/cache
miss. The third approach uses its own spy process to determine cache hits and misses.

Trace-driven attacks, that use power traces to determine a cache hit or miss require
the attacker to first clear out the cache by reading or writing large chunks of data, so
the attacked cryptographic system has no data in cache. Assuming the algorithm uses
S-boxes (as e.g. AES does) that are accessed by deriving the index from certain bytes of
the secret key and the plaintext that is being encrypted, and that the attacker is able to
measure the trace indicating a hit or a miss, they are able to reduce the number of possible
combinations for a secret key. The attack is based on the assumption, that if the index is
derived as Pi⊕Ki, where Pi and Ki are the ith bytes of the plaintext and the key, the first
time that index will be accessed (P1 ⊕ K1), it will be a cache miss, and the second time
(P2 ⊕K2) will be a cache hit. This gives us the equation P1 ⊕K1 = P2 ⊕K2 and therefore
P1 ⊕ P2 = K1 ⊕K2, thus giving the attacker the value for K1 ⊕K2. Similarly, the cache
miss (P1⊕K1 6= P2⊕K2) indicates some impossible candidates. The information can then
be used to brute-force the key in a significantly shorter time.
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Time-driven attacks rely on the assumption that encryption time can be used to ap-
proximate the number of cache misses and that the number of cache misses for plaintexts
for which P1 ⊕ P2 = K1 ⊕K2 is true will be less than for those for which the equation is
false. The attack can be then carried out as follows:

1. Obtain time measurements for a large number of encryptions with the same key along
with their respective plaintexts.

2. Compute every possible combination of P1⊕P2 (assuming these are bytes, that means
256 combinations) and sort the plaintext into these subsets according to XOR result
of the selected P1 and P2 bytes.

3. Plot the average encryption time for each subset. Given a large enough sample, one of
the subsets should be clearly distinguishable. This is the one for which the equation
P1 ⊕ P2 = K1 ⊕K2 is true.

Both of these approaches operate under assumption, that each cache block can only contain
one item from the S-box, but that is usually not true on modern systems. So instead of
determining a single item from the S-box, rather a subset of items is determined. While
this may not seem as effective, it can still be used to carry out a successful attack.

The third approach uses its own spy process to carry out the attack. In this example,
it is assumed the cache is mapped as a two-way set associative. First, the spy process fills
the cache with its own data. Then it triggers encryption and starts accessing the data and
measuring the access times. If the cache was full and the victim’s process requests data (e.g.
the S-box data), the cache has to evict a block in order to make space for the requested
block. The spy process can determine, by the measurements of time that it takes to access
its data, which one of its blocks got evicted (therefore resulting in cache miss), identifying
the victim’s structure that took its place. Since memory access is dependent on the secret
key, this information can be used to derive it.

3.4 Timing Side-Channel Attacks on SSL/TLS
The main concern of this thesis is timing side-channel attacks in implementations of the
TLS protocol. As described in the previous section, timing information is the basis of many
side-channel attacks, what differs is the means of obtaining the signal. This is even more
complicated in the case of network protocols because the timing information is distorted
along the way from server to client. While it may seem as if this would make it impossible
to conduct a real-world attack, there are still ways to extract the approximation of the
original timing signal. Crosby [10] proposes this model for timing information in network
context:

responseT ime = a · processingT ime+ propagationT ime+ jitter

The responseTime is composed of the original timing information (processingTime) that is
multiplied by server’s CPU clock skew (a), added to propagationTime that indicates how
long it takes for the information to arrive across the network and finally jitter, that accounts
for the random delays occuring along the way. As Crosby found, the probability distribution
of the timing information travelling trough a network is non-Gaussian, is highly skewed and
multimodal. This means that e.g. averaging the timing information over a large number of
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samples is not very effective. This poses a challenge on how to analyze obtained samples
in order to extract an approximation of the original timing signal.

Next, selected timing side-channel attacks on TLS will be described briefly. Both of these
attacks can be categorized as chosen-ciphertext attacks. This category of attacks can be
described as the attacker having the ability to choose ciphertext that is then decrypted with
the target’s secret key, resulting in attacker obtaining the corresponding plaintext. This
process can reveal information that can be used to recover the secret key. Furthermore,
chosen-ciphertext attack is called adaptive in case the attacker can choose the ciphertexts
depending on the previous outcomes of the attack.

Both also use attack technique called padding oracle. This exploits an implementation
that lets the attacker know if the padding on a message is valid or not, either explicitly
or through a side-channel. Padding is used whenever the plaintext message is too short to
fit the desired cipher’s block size. The example usually given when talking about padding
oracles is CBC (Cipher Block Chaining) method of encrypting messages longer than the
cipher’s block size and PKCS7 padding standard for symmetric ciphers, as this is the
first attack conducted with padding oracles [25]. In this case, the attack can be used to
decipher captured ciphertexts with the only condition being that the attacker has to be
able to request decryptions from the server that has the associated secret key and also
leaks indication if the padding is correct or not.

3.4.1 ROBOT

The ROBOT attack [6] (short for Return Of Bleichenbacher’s Oracle Threat) revives
a previously introduced attack from 1998, originally published by Daniel Bleichenbacher
[5], that exploited PKCS #1 v1.5 padding with RSA encryption and demonstrated it’s
functionality on SSL 3.0. This attack has been since improved on numerous times. The
ROBOT attack was published in 2017, showing that even after 19 years from the original
attack, the vulnerability has not been mitigated properly, and could be mounted on TLS
1.2.

This attack reuses the padding oracle originally discovered by Bleichenbacher’s ”million
message attack“. The attack’s core is detecting the oracle which differs by implementa-
tion of the TLS protocol. The authors first request the use of TLS-RSA ciphersuite in
ClientHello TLS message. Upon obtaining the server’s certificate an item from the set of
correctly formatted and malformed messages was sent in ClientKeyExchange message, and
the server’s response was monitored. If the server would adhere to the TLS standard, it
would have responded to any malformed message with the same TLS alert. However, this
was often not the case and the authors were able to obtain the server’s private key using
this oracle. As the authors point out, they didn’t focus on timing variant of this attack.
However, it is likely that timing side-channel was also present.

3.4.2 Lucky 13

Lucky 13 is another padding oracle attack, published in 2013 [4]. It exploits a known side-
channel arising from MAC (Message Authentication Code) check, that was described in
the RFC 5246 for TLS 1.2 [12], but was thought to be too weak to exploit. If incorrect
padding is encountered during decryption, the MAC check has to be still performed, or a
timing side-channel would be created, which was something the RFC was trying to mitigate
by suggesting a zero padding is assumed in case of incorrect padding, so the MAC check
can be executed. However, the MAC check is to a degree data size dependent, and this
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can be exploited in practice with the right length of the message. The attack allows for
partial or full plaintext recovery, depending on the concrete TLS implementation. As for
countermeasures, the authors suggest either using AEAD (which was implemented in TLS
1.3, see Section 2.2.1 for details) or making the CBC-mode decryption strictly constant
time, which was the approach taken for mitigating this attack for TLS 1.2.
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Chapter 4

Fuzz Testing

Testing is an inseparable part of modern software development process aimed at improving
its quality. Fuzz testing (or fuzzing) is a specific kind of negative testing aimed at discovering
bugs and security vulnerabilities. As opposed to positive testing, which inputs correct
data to the system under test (SUT), negative testing provides the SUT with incorrect
and unexpected inputs. In this chapter, fuzzing will be described in detail, followed by a
description of the tlsfuzzer tool. Information in this chapter is obtained from [24] and
[8] unless stated otherwise.

4.1 Introduction to Fuzz Testing
Fuzzing is a highly automated kind of testing, aimed at crashing the SUT by providing
inputs to it. If we look at testing classification according to information the person has
about the SUT, we find that it is hard to confide fuzzing to a single category:

• White-box testing – the tests are designed in a way that considers the internal
structure of the code and in the ideal case, every path in the code is covered

• Black-box testing – the tests treat the SUT as black box with hidden inner workings,
that has inputs and outputs.

• Grey-box testing – a combination of previously mentioned approaches. The tests
are designed with partial knowledge about the SUT – e.g. the algorithms used in it

While there is not a consensus on where fuzzing falls, it usually leans more towards the
black-box testing or the grey-box testing. Programs that generate or perform fuzzing tests
are generally called fuzzers.

History of fuzzing

The fuzzing techniques first appeared at the late 1980s resulting in the publication of a paper
[21] that described fuzzing various UNIX utilities with random inputs and found that many
of such programs were crashing or hanging indefinitely. This inspired researches in Oulu
University Secure Programming group and they later founded a project named PROTOS,
that was aimed at providing vendors with free fuzzing test suites for popular protocols,
such as LDAP, SNMP, SIP or DNS, that were successful in finding critical vulnerabilities
and helped to introduce fuzzing as a useful testing technique.
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Fuzzer types

One way of categorizing fuzzers could be according to test complexity:

• Static and random template-based – almost no awareness of the protocol, only
for simple e.g. request-response testing purposes.

• Block-based – implement basic protocol structure, can contain some dynamic func-
tionality like checksum calculation.

• Dynamic generation or evolution based – the protocol structure can be learned
based on the feedback from the SUT.

• Model-based or simulation-based – the protocol is either modeled or fully imple-
mented. Enables fuzzing of entire sequences of messages.

Another way of classification can be based on the attack vector. Although fuzzing is more
of a black-boxing type, the box usually has multiple parts that provide multiple attack
vectors, such as client-server type of applications. The fuzzers can support fuzzing clients,
servers, or both, or even the middleboxes that might just serve as a proxy for the protocol.

Fuzzer structure

While the primary purpose of the fuzzer is to generate tests, modern fuzzers often go further
than that in order to improve failure detection and test automation. The general structure
is as follows:

• Protocol modeler – models the protocol in order to test for formats or message
sequence. Can be templates or e.g. context-free grammars.

• Anomaly library – a collection of inputs known to trigger vulnerabilities, present
in most fuzzers. If there’s no such part of the fuzzer, random data is used.

• Attack simulation engine – uses a library of attacks or anomalies in order to
generate tests for them or their random modifications.

• Runtime analysis engine – for monitoring the state of SUT.

• Reporting – if the fuzzer is successful in making the SUT misbehave, there should
enough information provided about how it managed that in order to correct the SUT
behavior.

• Documentation – includes the fuzzer documentation as well as documentation for
the test cases, that might be dynamically generated.

Fuzzing cycle

Fuzzing cycle is a process of executing the fuzzer and its related parts and performing the
fuzzing of a SUT. Its phases are enumerated below.
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Target identification

The first stage is optional depending who the actor is in this case. For testers, the target
is already chosen, as it is their task to test a particular system. However, for attackers
the target is chosen accordingly to risk, impact and user base. Applications that present
a high risk are usually those that receive input over the network and thus provide remote
code execution. Another category of vulnerable applications is of those who run at a higher
privilege level than the user, potentially vulnerable to privilege escalation. Lastly, there
are applications that deal with confidential or valuable data, vulnerable to the attacker
compromising their availability, confidentiality or integrity. Additionally, applications that
share multiple categories of vulnerability make for an increasingly interesting target with
high potential value.

Input identification

This phase is concerned with enumerating the attack surface of a system. Attack surface can
be defined as a sum of all the interfaces, services and protocols available to all users, with
emphasis on those available to remote and unauthenticated users. This is a critical stage
because failure to properly identify the attack surface will result in not testing the attack
surface in its entirety, thus leaving a potential attack vector. Some of the attack surfaces
include command line arguments, environment variables, web applications, file formats,
network protocols, memory, COM objects and inter-process communication. These input
classes can be further categorized in those that result in a remote vulnerability and those
that result in a local one.

Fuzz data generation

Another critical phase of the fuzzing life cycle is the generation of the fuzz data. The perfect
fuzzer would be able to fully enumerate the full target input space to test it for all possible
inputs. However, this is not a feasible approach because of the size of the input space.
Hence, fuzzers take the approach of generating (possibly before the testing or on-demand)
test case instances based on a set of rules defined by the user of the fuzzer. Each instance
is then supplied to the SUT, which is monitored for failures, uncovering defects which can
be reported back to developers to fix.

As mentioned in the subsection describing the classification of fuzzers based on test
complexity, there are multiple approaches to generating test data, mostly varying by the
level of awareness of the input space of the SUT.

Fuzz data execution and monitoring

The phases of test data execution and monitoring the SUT are both essential to each others
functionality. Test execution greatly varies by a specific fuzzer tool but can be generally
described as interacting with the specific input class in all feasible ways in order to cover
as many real-world scenarios as possible.

As mentioned, supplying the SUT with fuzzed data is not enough in terms of discovering
an actual vulnerability. Monitoring the SUT for any failures is an equally important part
of this process. This is facilitated by an oracle, defined as a software component that
monitors SUT and reports failures. The complexity of the oracle can range from a simple
ping-based liveness check, through exception detection and classification, to a full system
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snapshot, however, this is not often feasible with regards to the number of tests being run
and storage requirements that would be needed to save a snapshot for every single test. In
the context of this thesis, it could be argued that a significant part of it is extending the
fuzzer’s monitoring system to be able to monitor the latency of the server’s response.

Determining exploitability

The final stage of the fuzzing life cycle is utilizing the fuzzer’s report of defects to identify
actual vulnerabilities. This might consist of simply submitting the report to the developers
of the SUT for correction. However, it might be also appropriate for the tester to further
examine defects for exploitability and the possible impact for the end user.

4.2 Tlsfuzzer
Tlsfuzzer is a fuzzer aimed at testing the SSL/TLS protocol, maintained by Hubert Kario.
The fuzzer is currently in alpha version and there are not any API stability guarantees. It
is written in pure python with the only dependency being the tlslite-ng that implements
the TLS protocol, making it a simulation-based fuzzer. It was created with the purpose of
fixing the serious lack of testing coverage for the most popular TLS libraries. TLS poses
a challenge in a sense that it is harder to test – it is a complex protocol that requires an
implementation of it on the fuzzer side. Additionally, many attacks do not focus on just
crashing the server, but rather on extracting a private key or decrypting a ciphertext using
padding oracle, which is generally out of the scope of a typical fuzzer.

generator

fuzzer

executor

tlslite-ng

OpenSSL
NSS

GnuTLS
etc.

Figure 4.1: Tlsfuzzer architecture. Taken from [17]

The architecture of tlsfuzzer is shown in Figure 4.1. The fuzzing begins with the generator
probing the peer for supported features and then taking connection templates and the de-
tected features and using them to generate a sequence of messages and expected responses
– a TLS conversation. This is then passed on to fuzzer, that has knowledge about which
parts can be modified freely and which parts would cause the connection to abort, if modi-
fied. Fuzzer modifies the message generators according to this knowledge and passes them
to the executor, that uses tlslite-ng in order to create, write and encrypt the protocol
messages. However, at the time of writing this thesis, the only currently working part is
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the executor that is able to execute test scripts written using tlsfuzzer. Information in this
section was taken from [17] unless stated otherwise.
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Chapter 5

Design

This chapter describes the technical challenges that come with collecting high-precision tim-
ing information on network communication and with analyzing the collected data. Before
moving directly to timing attacks on TLS (for that see Chapter 6) I used a prototype to
test out various approaches to both recording timing information and statistical analysis.
In this chapter, various approaches to each problem are described along with the selected
solution.

5.1 Prototype
The prototype is a client-server application written in Python 3, that was publicly available
on github1 while it was being developed. Python was chosen because tlsfuzzer itself is
written in it, and it is better to prototype within the limitations of that specific program-
ming language. In its early stages, the prototype consisted of three modules with respective
responsibilities:

• Client – packet collection, querying the server

• Server – responding to queries, simulating a timing side-channel

• Analysis – extracting timing information from packet capture and saving it in a
parsable format

The client would start tcpdump as a separate process with a specified filter for the server as
way to reduce the volume of unnecessary data to capture, and then query the server using a
simple protocol many times over. Then, the analysis would extract timing information from
the packet capture and sort them to their respective queries according to a log produced by
the client. Then this data would be dumped to a csv file and the actual analysis would be
performed on it using the R programming language for the sake of evaluating the methods
of statistical analysis. Protocol used by the application is described in the Figure 5.1.
The idea here is that BAD and BAAD should be indistinguishable from each other when
looking at the response from the server, but should vulnerable to timing attack, with server
simulating a timing side-channel with a slight delay when replying to a BAAD query. The
server was originally implemented in Python, as well as the rest of the prototype, but later
had to be rewritten in C, as simulating a consistent timing side-channel proved to be a

1https://github.com/kosciCZ/timing-analysis-poc
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challenge by itself and was ultimately the reason why I moved from the prototype to a real
implementation.

Table 5.1: Protocol used by the prototype application

Name Query Response

GOOD 00 0

BAD 01 1

BAAD 11 1

5.2 Collection of Timing Information
The first problem that needs to be solved is the collection of high-precision timestamps from
the network communication. Several approaches can be taken, however, it is important,
that the technical solution is available on a typical OS and does not require specialized
hardware, such as custom network interface cards or FPGAs. There are several places,
where the measurement can be taken.

The incoming packet first has to reach the physical device, which then, after processing
the packet and pushing it to a kernel buffer, sends an interrupt to the kernel, that invokes
the respective routines to handle the packet. Next, the processing is done on the IP layer,
where the IP header is stripped and defragmentation is performed. Then processing on the
Transport layer is done, where the protocol-specific checks and actions are performed and
finally, the packet, again stripped of the transport protocol header, is passed to the target
socket, where Application layer processing can begin [14].

Of course, each transition through a layer adds a small delay that varies depending
on how busy the kernel is, how many interruptions take place at a given time, etc. The
researched approaches will be described below, along with an explanation for which one
was selected.

5.2.1 Application Layer Collection

A Large portion of projects and demo applications that were encountered during research
tried to make use of the tools available to measure time in the Application layer. Some
examples of such projects can be the Time Trial [11], where the relevant part is implemented
in C, and uses clock_gettime() with CLOCK_MONOTONIC as a way to measure response
latency. As a mitigation of the various issues that come with trying to measure time
accurately in the Application layer, they dedicate an entire processor core to the application
to avoid unnecessary context switching and most of the interrupts. This seems to be a
common technique to improve accuracy.

Some projects take a different approach and use hardware counters to gather timing
information. This includes the tool used in the Lucky 13 attack [4], the FAU-timer (now
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mona-timing-lib2), that again uses a C implementation for the timing information collection
part. More specifically, they use inline assembler with the rdtsc instruction that utilizes
a dedicated Time Stamp Counter register and the cpuid instruction that prevents out-of-
order execution. However, as this somewhat relates to the CPU frequency (depending on
the individual processor) it is affected by frequency changes e.g. power-saving, turbo-boost,
etc, therefore these must be disabled to get a reasonably accurate measurement.

To summarize, the main advantage in measuring timing information in the Application
layer is the convenience of recording the information and possibly processing it as it comes.
However, the accuracy of the measurements might suffer, be it by travelling through the
network stack and kernel or by the nature of the hardware counters.

5.2.2 Tcpdump

Tcpdump is another approach to acquiring timing information that uses lower network
layers than the Application layer. Tcpdump uses libpcap to capture packets. The Libpcap
library operates in the userspace, however it utilizes BPF (Berkeley Packet Filter) virtual
machine that is running inside the kernel. This way it is able to copy packets directly from
the kernel buffers that the physical devices write to. It also allows for effective filtering of
the packets by implementing a language of the same name, that the filters can be supplied
in.

In comparison to the approaches mentioned in the previous section, it is already an
improvement in terms of when the packet gets to a userspace process, because it doesn’t
have to pass through the network stack in order to get there, instead it is passed directly
by the BPF. And while it is possible to utilize this improvement by writing a program that
interacts with the BPF through libpcap API and used the techniques for measuring time
described in the previous section, it is better to make use of the libpcap functionality by
using its native timestamps[2]. These timestamps can be categorized depending on where in
the system the timestamp is created. The manual page defines HOST based timestamps that
are created when the time-stamping code reaches the packet. Several subtypes are defined
here, the difference being precision and whether the clock is monotonic, meaning that
whether it can go backwards. The other type defined here are ADAPTER based timestamps,
where the timestamping is done directly on the physical network interface, providing the
highest precision possible, however still not accurately representing the time when the first
bit of a packet reaches the interface, but rather anything between the first and last bit of
the packet.

While this approach allows for more precision (especially with the right hardware), it
comes with a requirement of additional processing of the packet capture file, associating
it with the conversation between client and server that took place. This, unfortunately,
adds a package dependency to the prototype, because a packet capture library is needed.
During the prototyping process numerous libraries were tested (e.g ScaPy) but were found
to have too much overhead and eventually dpkt was selected, because it was much faster in
comparison. The packet parsing library is used for decoding TCP and IP protocol headers
and matching the message to either client or server.

2https://github.com/seecurity/mona-timing-lib
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5.3 Statistical Analysis
The goal of the statistical analysis performed on the gathered data is to identify a timing
side-channel. This means identifying a case, for which the timing response should be similar
to others, but instead is distinguishable from the other cases. However, to perform such
analysis, enough samples have to be collected in an effort to account for the noise that
network transmission and operating system introduces to the original signal.

While there are many possible approaches to this, the basic ones (e.g. median, mean)
have to be ruled out because of the nature of the probability distribution of the responses
over network. As pointed out in Section 3.3, the distribution is highly skewed, multimodal
and non-Gaussian. This forces the use of more sophisticated methods for the analysis.

While it would be ideal to deploy some sort of statistical test and be able to accurately
spot a timing side-channel, such tests are not always accurate and can provide false positives
and false negatives. That is a reason why such tests should be only a part of the decision
and supporting statistics and plots about the collected data should be provided. The
information in the following subsections is taken from [15].

5.3.1 Relevant Statistical Plots

What follows is an enumeration of relevant plots that can aid in the decision whether
there is a side-channel present. The attached plots in figures are taken directly from the
output of the framework’s extension. If there is a legend present in a plot, it contains
only numerical indexes as individual plot labels. This is necessary in the context of the
framework, because the label can be an encryption key, that when displayed would lessen
the plot’s readability because of its length. Instead, only numerical indexes are displayed
and can be later associated with a label in one of the files the framework outputs.

Scatter Plot

Scatter plot is one of the more basic plots, that shows the direction of a relationship between
two variables. In the context of repeatedly measuring timing differences, the variables here
are the set of measurements on the y-axis and index of the measurement on the x-axis.
This plot is useful in assessing how the measurement went in general, spotting spikes in
latency, determining outliers, etc. While the plot does not provide that much information
about the distribution of the values, it is good for the general overview and can be used
as a basis for further analysis. An example scatter plot is shown in Figure 5.1. The plot
shows ten thousand measurements for three classes of queries with class marked as 0 being
clearly distinguishable from the other two.

Box Plot

Compared to scatter plot, box plot provides more useful information about how the values
are distributed and if the difference is significant enough, can be by itself sufficient to spot
a timing channel. Box plot for each set of measurements contains the following five values:
the minimum value, the first quartile, the median, the third quartile, and the maximum
value. The quartiles are displayed as the lower and upper boundary of the ”box“, with a
line inside the box signifying the median, and minimum and maximum values displayed
as ”whiskers“ coming out of the box on respective sides. Figure 5.2 shows what a boxplot
looks like. One of the classes of collected samples marked as 0 is clearly distinct from the
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other two classes and would be pointing to a timing side-channel if the classes would be
expected to be indistinguishable.

Figure 5.1: Example scatter plot of ten thousand measurements for three classes of queries.

Figure 5.2: Example box plot of several sets of measurements, each with ten thousand
samples.
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Q-Q Plot

The Q-Q plot stands for Quantile-Quantile plot and is used to compare two probability
distributions by plotting their quantiles against each other. Each point in the plot takes
one coordinate from the first distribution from the second. If one were to compare two
identical distributions with equal quantiles, the point would all be on the y = x line. If one
distribution would be just linearly transformed, the line would still be close to a straight
line, however under a different angle. If the points form a line that curves at some point,
that indicates that one of the distributions is more heavily skewed than the other. Such
a plot could be useful in seeing how similar the distributions of the collected samples are
when compared to each other. When comparing multiple classes of samples, it is useful to
show a grid of plots where column indicates the variable on x-axis and row indicates the
variable on the y-axis. On the diagonal, the class is compared to itself, thus resulting in a
straight line. Figure 5.3 shows three classes cross-compared. As in previous plots of this
data, samples from classes 1 and 2 can be observed to be similar, because their Q-Q plot
loosely resembles a straight line.

Figure 5.3: Example Q-Q plot grid comparing three classes of samples.
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Empirical Cumulative Distribution Function Plot

Another useful plot for observing the probability distributions of the collected samples is
that of the Cumulative Distribution Function (CDF). In this case, it is actually the Empir-
ical CDF (ECDF) because the actual distribution is only estimated through the observed
data. On the x-axis, the observed values are plotted and on the y-axis the probability of the
value being less or equal to the value on the x-axis. In this context, it is useful for a more
detailed look at the shape of the distribution than for example the box plot. An example
with three distributions compared is shown in Figure 5.4. The distributions labeled as class
1 and class 2 overlap with each other because the difference from the distribution 0 is too
significant to display small differences between them, effectively merging them together.

Figure 5.4: Example ECDF plot comparing three probability distributions.

5.3.2 Statistical Tests

An alternative to looking at plots and various other statistical properties of the collected
data is statistical testing. Such a test is the closest thing to a binary answer on whether
there is a significant statistical difference between the sets of measurements. Tests can be
either one-sample, where the test is usually examining if the sample comes from a specific
probability distribution (e.g. the Shapiro–Wilk test for normal distribution), or two-sample
where two sets of samples are compared on various properties to determine if they came
from the same distribution. As mentioned before, the probability distribution of packets
travelling over a network does not resemble any of the well-known distributions, thus only
two-sample tests will be considered from now on. Statistical tests are sometimes also called
Hypothesis tests, because such test usually operates with two contradictory hypotheses.
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• The null hypothesis H0 – A claim about the two samples that implies there is no
significant statistical difference between the two.

• The alternative hypothesis H1 – A contradictory claim to H0 that becomes the
conclusion if H0 is rejected.

The outcome of the test can be either to reject H0 or do not reject H0. The unability
to actually accept either hypothesis implies the probabilistic outcome of the test. Table 5.2
describes all four possible outcomes of a hypothesis test, with two correct outcomes and
two incorrect outcomes that are further differentiated by the type of mistake that occurred.

Table 5.2: Possible outcomes of hypothesis testing

H0 is

Decision True False

Do not reject H0 Correct result Type II error
(false negative)

Reject H0
Type I error

(false positive) Correct result

As mentioned, (not) rejecting the null hypothesis is not a straightforward process. A value
called the level of significance α must be chosen, describing the point at which the null
hypothesis is rejected. As this is a strong statement, meaning there is a lot of supporting
evidence for it, the α value is usually chosen as 0.05 or 0.01. The level of significance α
also equals to the probability of Type I error occurring, meaning that the null hypothesis
was incorrectly rejected. Another concept that is common in hypothesis testing is p-value,
which, under the assumption that the null hypothesis is true, is the probability of the test
statistic being equal or larger than the one observed. The significance level α relates directly
to the p-value, where p < α means rejecting the H0 and p ≥ α means not rejecting the H0.
Relevant tests will be described in their respective sub-sections.

Box Test

The box test was first introduced by Crosby in [10] as an alternative to classical hypothesis
testing and it is the result of an extensive research and testing. Their research showed
that the lower percentiles contain the least amount of noise introduced by the network
transmission and this is also the basis for the box test.

The test assumes two sets X and Y , each of N measurements. The test is parametrized
by two parameters – quantiles i, j. Given these inputs, each subset is first sorted and then
two intervals are formed, one for each subset; IX = [qi(X), qj(X)] and IY = [qi(Y ), qj(Y )].
The sets X and Y are considered statistically different (signifying an exploitable side-
channel) under two conditions – IX and IY do not overlap and IX is before IY in its
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entirety. Authors note that their testing yielded i, j < 6% as the best indicator for over
half of the hosts under test.

Kolmogorov-Smirnov Test

In contrast to the box test, Kolmogorov-Smirnov test (also known as K-S test) is a classical
hypothesis test. It useful in the context of this thesis because it is nonparametric, meaning it
makes no assumption about the distribution under test and is not based only on statistical
properties of the distribution such as mean or median. This works well with the highly
skewed probability distribution of packets travelling over the network. K-S test can be
both one-sample, where the null hypothesis is that the sample is drawn from the reference
distribution, however for purposes of distinguishing network responses, the two-sample
variant is more useful, where the null hypothesis is that the two distributions are drawn
from the same distribution.

Figure 5.5: Visualization of the K-S test with the D value represented by an arrow.

The test is based on seeking out the largest difference between the empirical distribution
functions (EDFs) of the two samples, as visualized in the Figure 5.5. EDF is the estimation
of cumulative distribution function from observed values. The calculation of maximum
difference is formally defined as follows:

Dn,m = sup
x
|F1,n(x)− F2,m(x)|

Here, the n and m are the sizes of the respective samples, F is their EDF function and sup
denotes the supremum function. The test statistic Z is then calculated like this:

Z = Dn,m

√
n+m

n ·m
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A p-value is then computed using the Z value and the null hypothesis is then either rejected
or not rejected depending on the selected level of significance α, as with any other hypothesis
test. Information in this subsection was taken from [9].
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Chapter 6

Implementation

The main goal of this thesis is to extend the tlsfuzzer tool with support for collecting
timing information about the TLS conversations between the client and the server. This
chapter describes how the knowledge gathered during creating a prototype (as described in
Chapter 5) was used to implement the extension to tlsfuzzer, along with test cases for
timing attacks described in Chapter 3.

6.1 Integration with Tlsfuzzer
Similar to the prototype created during the research part of this thesis, tlsfuzzer is im-
plemented in Python, however, two of its main goals are to be portable, which means being
able to run on older systems (as far as Python 2.6), and to avoid having too many depen-
dencies to preserve compatibility and keep the framework as simple as possible. Keeping
those goals in mind, the extension was designed to be as little intrusive as possible and
to use only a minimal number of dependencies. The final structure is shown in Figure
6.1. This schematic view is based on the original tlsfuzzer structure from Figure 4.1.
The extension consists of four modules, namely the Timing Runner, Log, Extraction and
Analysis, all of which will be described in detail below.

6.1.1 Timing Runner

The core of the extension is the timing runner. Its responsibility is to wrap around the test
executor and facilitate repeated runs for each requested test case while running tcpdump
in the background. Timing runner is also the only part of the extension the person writing
a testing script needs to interact with. Listing 6.1.1 shows how the timing runner can be
integrated into a test script and demonstrates how it works.

First, a check is performed, whether tcpdump is available. This is done for compatibility
reasons and not to disturb the script execution in case tcpdump is missing. The whole code
block is wrapped in an if-statement, so the test will only fail on the timing part if the user has
specifically requested timing of the test. Next, the TimingRunner class is initialized, mostly
with command-line arguments and a set of testing conversations that utilize tlsfuzzer’s
capabilities. The network interface on which the communication will take place also has
to be provided, because it is needed for tcpdump. Although Tcpdump’s --interface any
exists, the underlying packet parsing library in Analysis does not fully support the SLL
protocol and thus a network interface needs to be specified in order to detect the correct
link layer protocol.
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Figure 6.1: A schematic look at how the extension integrates into tlsfuzzer.

Next, a log is generated, again utilizing an existing test case structure with test case filtering
that is standardized in tlsfuzzer, and the number of repetitions for each test case. The
runner creates a log file, generates the requested number of runs and saves the log. A run
in this context means a randomized order of classes, where class represents a group of test
cases that are assumed to have the same timing characteristic. Random order is used here
in an effort to spread any network or OS jitter more or less evenly over the classes.

1 # if regular tests passed, run timing collection and analysis
2 if TimingRunner.check_tcpdump():
3 timing_runner = TimingRunner(sys.argv[0],
4 sampled_tests,
5 outdir,
6 host,
7 port,
8 interface)
9 print("Running timing tests...")

10 timing_runner.generate_log(run_only, run_exclude, repetitions)
11 timing_runner.run()
12 else:
13 print("Could not run timing tests because tcpdump is not

present!")↪→

14 sys.exit(1)

Listing 6.1.1: Code excerpt showing how timing runner is integrated to a test scenario.
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Finally, the runner is executed with the run() function. This launches tcpdump that is then
watched by a separate thread in order to detect any unexpected failures, such as running
out of space on the device. Next, the test cases are executed and grouped by their class
according to the generated log. As a kind of outlier filtering measure, a fixed number of
conversations is executed to warm up the system’s cache. These warm-up conversations are
then ignored during the analysis. After finishing running the tests, tcpdump is given time
to finish writing all the buffered packets and terminated. If optional dependencies have
been installed, extraction is launched, followed by analysis. If at any point dependencies
are missing, the timing runner exits and both extraction and analysis can be later launched
separately on a different, perhaps a more compatible device.

6.1.2 Log

The Log module takes care of effective reading and writing of information about the con-
versations taking place. It serves as a connecting part between the timing runner and the
extraction. The log file is formatted as a csv file, where the first line contains names of
classes that represent test cases. Each subsequent line represents a run in the form of a
list of indexes into the class list from the first line. This is more effective than just logging
the class of each conversation being run, especially considering the class might be a whole
encryption key, considerably enlarging the file.

The module is also optimized for dealing with a large amount of data, keeping as little
in operating system’s memory as possible. This is achieved by writing runs directly to a
file instead of keeping them in memory and using a generator to read the log file line by
line, instead of loading the whole file into memory. This is also why the csv format was
chosen because its simple syntax allows for iterative reading.

6.1.3 Extraction

The third module is Extract. It handles the extraction of timestamps from the packet
capture file of the test conversations made with the timing runner according to a generated
log. As mentioned in Section 5.2.2, the analysis module uses the dpkt library to parse the
packet capture. It keeps track of individual TCP connections and looks for both the last
server and the last client message to calculate the server response time to a client message.
This approach was chosen because tlsfuzzer allows individual tests to control when the
connection terminates, therefore the test just needs to terminate the connection right after
receiving the server’s response in order to collect the timing information. Another reason for
this approach is the parsing speed. Because the TLS protocol allows multiple messages to
be contained within a single packet, matching packets to actual TLS messages would require
parsing the TLS protocol, which would slow down parsing the packet capture significantly.

The acquired timing value either gets skipped in case it was part of the warm-up con-
versations or gets matched to its class using the log file that was created by timing runner.
When all of the information is extracted, it is written into a csv file, each row beginning
with a class name, and then a list of measured values follows.

6.1.4 Analysis

The last module implements the analysis. It processes the file output by extraction and
generates a report with statistical tests and a set of supporting plots as described with
examples of such generated plots in Section 5.3. It uses scipy and related libraries to
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implement statistical testing and plotting. The report is a csv file containing cross-tested
classes and results for each statistical test performed.

6.2 Test Cases for Timing Attacks
One of the main goals of this thesis is to extend the tlsfuzzer test suite by scripts utilizing
the newly added extension for performing timing analysis. As described in Section 3.3, the
chosen vulnerabilities were the Bleichenbacher-based ROBOT and the attack called Lucky
13, both of which will be described below.

6.2.1 ROBOT

The test script for the timing side-channel vulnerabilities exploited by variations of the
original Bleichenbacher attack is located in scripts/test-bleichenbacher-timing.py.
This test script is largely based on the scripts/test-bleichenbacher-workaround.py
script, where the non-timing tests for these vulnerabilities are located.

As mentioned in Section 3.4.1, this attack focuses on exploiting the PKCS #1 v1.5
padding scheme in TLS-RSA key exchange. This attack is focused on the ClientKeyEx-
change message during the TLS handshake. Recall from Section 2.1.2 that this message
contains client-generated encrypted pre-master secret (PMS). If RSA is the agreed-upon
key exchange, the structure of the message before encryption will be as follows: the message
starts with bytes 0x00 and 0x02, then a non-zero sequence of at least 8 bytes follows. Then
there’s a single 0x00 byte, followed by the PMS, that consists of two bytes that signify the
TLS version, and 46 random bytes.

The attack exploits a padding oracle that lets the adversary distinguish messages that
are decrypted to correct padding from those that decrypt to incorrect padding, revealing
information about the encryption key used. In the original attack, the padding oracle
was available through alerts sent back to the client. The countermeasure suggested in the
TLS specification is to generate a random PMS with every handshake, should the padding
check fail, or use the received PMS, should the padding check succeed. However, even
this countermeasure was often incorrectly implemented, opening up a possibility of timing
side-channel.

This is why it is important to test for all kinds of padding errors. The test script
provided by this thesis repurposes the following test scenarios for the timing side-channel
test:

1. Invalid or incompatible value in block type (second byte of the padding)

2. Zero byte in the non-zero byte sequence

3. Missing 0x00 byte before PMS

4. Missing 0x00 byte before PMS, with non-zero PMS

5. Invalid TLS version in PMS

6. Too short PMS

7. Too long PMS

8. Missing PMS
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9. Too short padding

10. Too long padding

In addition to these existing checks, it adds two new ones, that fuzz MAC in the Finished
message that immediately follows the ClientKeyExchange one.

6.2.2 Lucky 13

The test script for the Lucky 13 attack is located in scripts/test-lucky13.py file. As
mentioned in Section 3.4.2, this attack exploits incorrect attempt to mitigate a previous
timing attack that was based on the server only performing MAC check when the padding
was correct, leaving a significant timing side-channel open. The specification for TLS 1.2
correctly states that in order to mitigate this attack, MAC check has to be performed even
in the case of wrong padding, suggesting the implementations assume zero-length pad in
this case. It also acknowledges that this might include a small timing side-channel, however
stating that it is thought to be small enough to be not exploitable. The authors of the
Lucky 13 attack then prove that this is a false statement and that when certain conditions
are met, the difference is significant enough to be exploitable.

A test for this kind of attack thus needs to assert, that incorrect MAC detection needs
to be constant-time for any possible length of padding, whether the padding is valid or not.
This yields the following test scenarios:

1. Entirely incorrect MAC with valid padding

2. Correct MAC with a single-byte error in the longest possible padding

3. Single-byte error in MAC with valid padding

4. Padding indicating MAC is out-of-bounds

These scenarios then each produce a number of individual test cases. In the case of the
test scenario 1., all possible lengths of padding are iterated. In scenario 2., the single-byte
error is created on every possible position in the padding. Scenario 3 does the same, but
for all MAC positions, while keeping the padding static. Finally, the last scenario 4 iterates
over all padding lengths that indicate that the MAC tag is located ”before“ the start of the
message.

To make the scenario 4 possible, the length of the plaintext message before encryption
needs to be small enough for the padding (maximum length of 255 bytes) to be able to point
outside of the message for the MAC tag location. Because of the different message length,
the server needs to decrypt less data, thus making the timing characteristic inherently
different from the plaintext used in scenarios 1–3. This is taken care of in the test by
separating scenario 4 into a separate test run, so it is not compared to other scenarios.

For achieving the full test coverage, all ciphersuites that use the CBC mode in the MAC
function need to be tested. At this time, this includes md5, sha-1,sha-256 and sha-384.
However, given the number of tests cases (over 500) and the need to gather several thousands
of samples for each test case in order to account for noise, the test script has a -C option
to select a ciphersuite, and a --quick option to allow only a reduced number of edge cases
that are likely to find a vulnerability. These test cases are 4 in total, combining incorrect
MAC at first and last byte, and padding of maximum and minimum length.
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Chapter 7

Testing

This chapter describes how the implemented extension was tested to assure correct func-
tionality, and how its accuracy in spotting timing side-channel was evaluated, with gathered
results.

7.1 Implementation Testing
The tlsfuzzer library enforces numerous checks and code inspections to maintain a high
quality of the code that makes up the library and the extension this thesis provides to
tlsfuzzer had to follow that. Tlsfuzzer is placed in a GIT repository managed by
Github1. Changes are made via pull requests that have to fulfil a set of requirements in
order to be merged into the master branch, becoming a part of the library.

First of those requirements is full test coverage of the changes added in the pull request.
An ideal addition should not bring down overall test coverage of the library, which at the
time of writing this thesis sits at 97 %. The side-channel extension fulfils this requirement
by a set of unit tests, testing each of the modules added. These tests are located in the
tests/ directory in the root of the repository, namely:

• test_tlsfuzzer_timing_runner.py – tests for the Timing Runner module

• test_tlsfuzzer_extract.py – tests for the Extraction module

• test_tlsfuzzer_analysis.py – tests for the Analysis module

• test_tlsfuzzer_utils_log.py – tests for the Log module
Test coverage of the extension was measured by running the make test command in the
root of the repository, which yielded 99 % resulting test coverage for the changes made by
the extension alone. Overall, this slightly increases the total test coverage of the tlsfuzzer
library. The tests are then executed in a Continuous Integration (CI) pipeline that utilizes
Travis. Before the extension was added, tests were run against all Python versions from
2.6 up to the current version – 3.8. To test all of the possible scenarios that might happen
on a user machine, the Travis configuration was expanded to test against each Python
version with and without dependencies needed for extraction and where applicable, with
and without analysis dependencies. In addition to test coverage, code was checked for
Python code style violations with pylint linter and thoroughly inspected with code review
from the maintainer of the library.

1https://github.com/tomato42/tlsfuzzer
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7.2 Evaluation
In this section the extension for collecting timing information for tlsfuzzer will be eval-
uated on its ability to distinguish a timing side-channel via the test scenarios for attacks
exploiting such side-channels that were added to tlsfuzzer.

7.2.1 Setup and Testing Environment

The extension this thesis provides for tlsfuzzer will be evaluated by verifying that the
newly added test scenarios for timing side-channel attacks fail when run against vulnerable
versions of popular TLS implementations, namely OpenSSL, GnuTLS and NSS.

The system that was used for testing was running with Fedora 30 as an operating
system, with Intel Core i3-9100F 4-core processor operating at 3.6 GHz, with 16 GB of
RAM and an SSD drive. In order to create ideal testing conditions, 2 cores were isolated
using the following kernel command-line parameters – --isol-cpus=2,3 --rcu_nocbs=2,3
--processor.max_cstate=1 --poll=idle. These parameters isolate core 2 and 3 from
regular usage by the OS and reduce the number of interruptions those cores receive. The
application can be then bound to a specific core with taskset. During the evaluation both
the TLS server and tlsfuuzer were running each on a separate core.

To set up the testing environment, Python has to be present on the system, preferably
version 3.5 and higher to be able to run the timing tests in full, including analysis. For
only the packet capture and extraction, just Python 2.6 is enough. Next, the tlsfuzzer
repository is cloned, along with the accompanying tlslite-ng library that provides the
TLS implementation. In addition, the dependencies listed in requirements-timing.txt
need to be installed.

Server Setup

In order to run a TLS server, an RSA certificate is needed. It can be generated with the
command 7.1, taken from tlsfuzzer documentation. This command request the creation
of an RSA certificate (-newkey rsa) according to X.509 standard (-x509), for the local-
host domain (-subj /CN=localhost), skipping any questions (-batch) and disabling key
encryption (-nodes). This produces the certificate (-out localhost.crt) and associated
key (-keyout localhost.key).

openssl req -x509 -newkey rsa -subj /CN=localhost -nodes -batch \
-keyout localhost.key -out localhost.crt

Listing 7.1: Command used to generate certificate for TLS server.

Now the TLS server can be launched with any of the implementations that are going
to be tested. For OpenSSL, the command in Listing 7.2 can be used to start the server,
providing the certificate and the key (-cert and -key), and instructing the server to respond
to ApplicationData messages (-www). The server will be started on localhost:4433.

openssl s_server -key localhost.key -cert localhost.crt -www
Listing 7.2: Command used to start the OpenSSL server.
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Listing 7.3 shows how the GnuTLS server can be started. Repeatedly providing the
certificate and the key (--x509certfile and --x509keyfile), again making the server
behave as a HTTP one (--http). The server will be started on localhost:4433, as
specified with the -p 4433 option. In addition, client-side authentication is disabled
(--disable-client-cert).

gnutls-serv --http -p 4433 --x509keyfile localhost.key \
--x509certfile localhost.crt --disable-client-cert

Listing 7.3: Command used to start the GnuTLS server.

Configuration for the Mozilla NSS library is slightly different, requiring a database with
a server certificate to be created. Listing 7.4 shows the complete process of creating such
database, starting with creating a new directory on line 1 and then a new database is
created in that directory on line 2. Next, the client certificate for localhost is generated on
line 3. Then the generated certificated is inserted into the database on line 4. Finally, the
NSS server itself is started on line 5, given the database (-d), binding it to localhost:4433
as per -p and -n options.
1 mkdir nssdb
2 certutil -N -d sql:nssdb --empty-password
3 openssl pkcs12 -export -passout pass: -out localhost.p12 -inkey \

localhost.key -in localhost.crt -name localhost
4 pk12util -i localhost.p12 -d sql:nssdb -W ''
5 selfserv -d sql:./nssdb -p 4433 -n localhost

Listing 7.4: Command used to start the NSS server.

Test Execution

As mentioned previously, the evaluation involves running two test scripts to validate the
extension’s ability to detect a timing side-channel correctly. First of these test scripts is test-
ing for the ROBOT vulnerabilities, located in scripts/test-bleichenbacher-timing.py.
Second test script is aimed at vulnerabilities discovered by the Lucky 13 attack, located
at scripts/test-lucky13.py. Both tests are executed with the same command shown
in Listing 7.5, that uses the loopback interface with the sample size of 5000 per class,
with the Lucky 13 script adding the --quick option to reduce the number of test cases
and the Bleichenbacher script reduced to only two test cases in order to speed up eval-
uation (appending ”invalid MAC in Finished on pos 0” ”set PKCS#1 padding type
to 3”). Both tests were executed with the TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite.

sudo PYTHONPATH=. python3 $TEST_SCRIPT -i lo --repeat 5000
Listing 7.5: Command used to execute the test scripts.

7.2.2 Results

Because the outcome of the test is influenced by more factors than just the server’s imple-
mentation, such as processor cache or system interruptions, and therefore is not determin-
istic, each test script was run 100 times against vulnerable implementation and 100 times
against implementation where the vulnerability was fixed, in order to make evaluating the
extension’s ability to detect timing channel possible.
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Lucky 13

Results for the Lucky 13 test script are shown in Tables 7.1 and 7.2, the first one showing
results against the vulnerable implementations for this attack, and the second one against
current versions of the libraries where the vulnerability is fixed. The results in Table 7.1
clearly show that this particular timing side-channel was significant enough to be detected
when vulnerability was present in all measured cases. The second conclusion can be drawn
from Table 7.2. The statistical analysis is rather sensitive to any differences in gathered
results and at times can identify noise introduced by the OS as a possible side-channel.
However, over 100 trials, the results gathered from a vulnerable implementation are dis-
tinguishable from its fixed counterpart. To sum up the results, for vulnerabilities related
to Lucky 13, there is a 100 % accuracy in identifying the timing-side channel when it is
present, and 16.5 % average false positive rate when the side-channel is not present.

Table 7.1: Evaluation results for the Lucky 13 test script against vulnerable versions of
TLS libraries.

TLS library False Negatives (%) Correct results (%)

OpenSSL 1.0.1c 0 100

NSS 3.13.6 0 100

Table 7.2: Evaluation results for the Lucky 13 test script against current versions of TLS
libraries.

TLS library False Positives (%) Correct results (%)

OpenSSL 1.1.1g 21 79

NSS 3.53 12 82

GnuTLS is excluded from these measurements for two reasons. The first one being that on
the current (fixed) version, the measurements yielded nearly 100 % false positives rate. This
could mean two things, either the vulnerability is still present, or the implementation gives
out noisy results, tricking the framework’s analysis into pointing out the side-channel. The
fact that GnuTLS is noisier than other implementations has been pointed out in the Lucky
13 paper [4]. The second reason is that the vulnerable version (GnuTLS 3.1.6) relies on
a now-removed API in glibc, which made it unable to compile the library on any system
that was available for the measurements. Given the high noise or the possibility of the
vulnerability still present in the current version, it was decided to omit testing it for the
Lucky 13 vulnerabilities.

ROBOT

Results for the Bleichenbacher-related vulnerabilities test script are displayed in Tables 7.3
and 7.4. For OpenSSL the side-channel is most likely less distinguishable, with the rate of
false negatives reaching 31 % on the vulnerable version of the library, however, it is still
clearly present among the 100 trials. The 100 % success rate on the fixed version of the
library might be another indicator that the side-channel was small enough that the fixed
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implementation is approaching constant-time response latency even over the network. For
the GnuTLS implementation the results yield near-perfect result, where, in the vulnerable
version, the side-channel is detected in 100 % of the cases, and in the current version of
the library the false positives rate is just 1 %. In the case of NSS, the situation is a polar
opposite. The 100 % error rate in the current 3.53 version suggests that the implementation
is not constant-time for all kinds of padding errors and should be examined for verification
of the side-channel on the server side.

Table 7.3: Evaluation results for Bleichenbacher test script against vulnerable versions of
TLS libraries.

TLS library False Negatives (%) Correct results (%)

OpenSSL 1.0.2f 31 69

GnuTLS 3.3.21 0 100

NSS 3.13.6 0 100

Table 7.4: Evaluation results for the Bleichenbacher test script against current versions of
TLS libraries.

TLS library False Positives (%) Correct results (%)

OpenSSL 1.1.1g 0 100

GnuTLS 3.6.14 1 99

NSS 3.53 100 0

Summary

To sum up the results for both of the test scripts that were trialed, the extension is sensitive
to even a small possibility of a timing side-channel. However, this comes with a tendency
to show false positives when the side-channel is not present. However, over many trials,
vulnerable and non-vulnerable implementations are clearly distinct.

Possibilities of further development might include moving the target server from the
same host as the framework to another host on LAN to evaluate how the extension performs
over the local network. Another possibility of improvement is related to the analysis module.
The current classifier in the analysis module of the extension consists of two statistical tests.
Two classes of samples are considered different when both of the tests agree that they differ
in a significant way. The classifier could be extended in the future to include another test
that would balance the classifier even more. The target system for these test scripts is a
Continuous Integration (CI) pipeline, and the analysis is not deterministic, so this suggests
a possible future extension, that will execute the timing variant of the tests multiple times
and decide on the result based on the outputs.
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Chapter 8

Conclusion

The main goal of this thesis was to improve testing of the TLS protocol by extending the
tlsfuzzer tool, giving it an ability to test for timing side-channels. Furthermore, the
functionality and the accuracy of the extension had to be demonstrated by adding testing
scripts for known timing side-channels to the tlsfuzzer test suite, and evaluating them
against popular TLS implementations.

These goals were met in their full extent, with the extension and test scripts for vulner-
abilities based on the Lucky 13 attack and for vulnerabilities based on the Bleichenbacher
attack, all merged into the library’s master branch. The extension was also evaluated as
per the thesis specification, with results suggesting a good ability to spot a side-channel
when it is present and to distinguish a safe implementation from a vulnerable one over
several trials. Furthermore, evaluating one of the test scripts hinted at a possible timing
side-channel in the current version of a TLS library.

This thesis is different from the conventional approach to measuring timing differences
over the network by offloading the capturing of that information to tcpdump that has the
appropriate tools for that, instead of utilizing rather imprecise hardware counters provided
by the CPU. An additional advantage of this approach is that a record of the communication
is saved and can be later analyzed for other information than the timing of server responses.

Possibilities of further development include integrating the process of running the timing
tests over many trials to the tlsfuzzer framework to allow for testing in CI and improve the
accuracy of the extension as a whole. Further research and development are also possible
in the analysis module, where more statistical tests can be added to contribute to the
decision.
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Appendix A

Contents of the attached CD

The attached CD contains the following directories and files:

• xkosci00.pdf – this thesis in PDF format

• tex/ – LATEX source codes of this thesis

• tlsfuzzer/ – the tlsfuzzer tool with the side-channel detection extension integrated

• README.md – instructions on how to run tlsfuzzer with the extension

50


	Introduction
	SSL/TLS Protocol
	Description of the TLS Protocol
	TLS 1.3 Differences

	Side-Channel Attacks
	Timing Side-channel
	Power Side-channel
	Cache Side-channel
	Timing Side-Channel Attacks on SSL/TLS

	Fuzz Testing
	Introduction to Fuzz Testing
	Tlsfuzzer

	Design
	Prototype
	Collection of Timing Information
	Statistical Analysis

	Implementation
	Integration with Tlsfuzzer
	Test Cases for Timing Attacks

	Testing
	Implementation Testing
	Evaluation

	Conclusion
	Bibliography
	Contents of the attached CD

