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Abstract
This thesis deals with anomaly detection in industrial communication IEC 61850. It studies
using various statistical analysis methods and probabilistic automata for creating commu-
nication profiles and its accuracy while detecting anomalies.

Abstrakt
Táto práca sa zaoberá detekciou anomálií v priemyslovej komunikácii IEC 61850. Práca
skúma použitie rôznych štatistických metód a pravdepodobnostných automatov na vytvore-
nie profilu komunikácie v sieti a jej presnosť pri rozpoznávaní anomálií.
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Chapter 1

Introduction

The considerable increase of threads to network users, including critical infrastructures
using the power grid has shown the need to increase its security. Currently, smart grid pro-
tection includes IDS (Intrusion Detection Systems), IPS (Intrusion Prevention Systems),
and firewalls. These are usually deployed on the edge of the network, protecting it against
external threats. For internal threats, an anomaly detection system that identifies pos-
sible attacks by monitoring data is necessary. In this thesis, a combination of statistical
analysis and probability automata is used to demonstrate anomaly detection on IEC 61850
communication.

IEC 61850 is a global standard for substation automation. It defines communication
between devices using abstract objects. These abstract models can be then mapped to
various protocols. Some current mappings related to this thesis are to Manufacturing
Message Specification (MMS) and Generic Object Oriented Substation Event (GOOSE)
protocols. GOOSE communication tends to be stable, and we can observe not changing
easily describable patterns. While MMS packet transmission is more complex and therefore
more problematic to describe, repeated patterns can still be recognized. Because each
protocol is built on a contrasting base, different anomaly detection methods will be used.

In this thesis, we are going to try to understand industrial communication by analyzing
its patterns. GOOSE protocol will be studied using statistical analysis, in particular data
will be represented by arithmetic mean and variance, box plot, and confidence interval.
MMS communication will be learned and then detected using the power of probabilistic
automata.

The tool we created for this purpose is divided into two phases. In the learning phase,
the tool tries to recognize patterns of communication and to create descriptions or metrics
of them. In the detecting phase, smaller portions of data are compared to these learned
models. The result of the thesis should be to determine whether or not our approach is
usable in industrial communication and to understand how various methods perform on
data.

This thesis is structured as follows. Chapter 2 reviews methods used for anomaly
detection. Chapter 3 presents industrial communication in IEC 61850, gives details about
GOOSE and MMS protocols, as well as about general definition of abstract mapping objects
in the standard. Chapter 4 gives an overview of the profiling tool created for purpose of
this thesis. It shows how the tool is structured and implemented, and also it gives details
about how different phases of detection work together and how the data sets are used for
experiments. Chapter 5 describes experiments on data and the results of approaches we
used. The last chapter concludes this paper.
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Chapter 2

Detection Methods

Finding hidden information in given data is essential for detecting anomalies in the time
series. This process is often called data mining. There are many different methods used to
perform data mining tasks. Chapter 2 will offer a brief background on detection methods
used by profiling tool.

Chapter is divided into two sections. Statistics and probability described in the first
section can be used for simple protocols with a tendency to stable and unchanging behavior.
For our thesis, we consider Generic Object Oriented Substation Event protocol or GOOSE.
Probabilistic automata will be better used with protocols where communication between
nodes in the network is also stable and communication patterns are periodical, but they
can change from time to time, such as Manufacturing Message Specification, or MMS.

2.1 Statistics and Probability
Statistics will be used to help us find similarities between collections of statistical data. It
is possible to find representatives of each collection and then compare them using various
methods.

The basic concept behind this approach is simple. Each method uses different repre-
sentatives. These are computed separately for each module. E.g. if we have one training
module and one detecting module, a statistical method will be used for each module inde-
pendently. After finding our representatives, we can then define the probability with which
the ones from the detecting module are similar to the ones from the learning module.

2.1.1 Arithmetic Mean and Variance

Arithmetic mean is a basic concept in statistics, that can provide an abstraction of given
data using central tendency measures. In fact, according to [1] arithmetic mean is the most
effective numerical measure of the center of a set of data. We define it as the sum of all
measured elements divided by the size of a set of all measured elements, such as:

𝑥 =
1

𝑛
(

𝑛∑︁
𝑖=1

𝑥𝑖) (2.1)

where n is the count of all numbers in collection and 𝑥𝑖 is one numerical value from the
collection.

This method simply gives us an average value, which can be then used as a representative
of the given collection.

7



Variance can be easily combined with arithmetic mean. It measures an interval in which
numbers can spread out from their average value. We define it as

𝜎2 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2 (2.2)

where 𝑥 represents the arithmetic mean of a given collection.
Although mean and its variance are useful tools for describing a data set, they have one

major problem. Because of their sensitivity to outliers, even a small amount of extreme
values can corrupt the representatives. For example, the average BMI (body mass index)
of a group of people can be significantly pushed up by a few heavier members.

Despite the fact that this is exactly what we need when detecting threats, its sensitivity
can be problematic when calculating data from the learning module. This is why it is useful
to sometimes chop off values at the high and low extremes, or use more advanced methods.

2.1.2 Box Plot

There are some popular techniques for displaying data graphically. One of them is the box
plot [1]. It illustrates several features of data using quartiles.

Quartiles can be described as values dividing data into quarters. This means each of
the four parts contains 25% of the data.

Figure 2.1: Box plot example

As we can see in Figure 2.1, distribution consists of (written in the order) minimum,
lower quartile (Q1), median (Q2), higher quartile (Q3), and maximum.

The length of the box in the center of the figure represents the interquartile range or
IQR. The line within the box is median and the lines extending outside the box, also called
whiskers, are 1.5xIQR of the quartiles. IQR is defined as

𝐼𝑄𝑅 = 𝑄3 −𝑄1 (2.3)

Beyond the whiskers, potential outliers are shown. These values are extremely low or
high observations that do not fit into whiskers.

To roughly determine the first and the third quartiles, it is necessary to sort given data.
Then:

• Q2 is the median of the data.

• Q1 is the median of the data on the left of the median.

• Q3 is the median of the data on the right of the median.
Box plots can be used in a comparison of sets of data to show if data is symmetrical

and to point out potential outliers. Despite this method is mainly used graphically, it is
possible to use it to reach our goal as shown in Chapter 4.

8



2.1.3 Confidence Interval

Another approach to statistical analysis is to use confidence interval [1]. This means to
determine a range of values within which the true parameter value should fall in with some
degree of uncertainty.

Whereas the confidence interval provides an estimation, the sample of data does not
necessarily include its true value. Because of this, the confidence level is given by the
user. This means that if we say the confidence level is 95%, when the estimation process is
repeated over and over, ensuring 95 % of calculated intervals will contain the true value.

We have decided to use the three-sigma rule, ensuring a 99 % confidence level.

Standard Deviation

Standard deviation, 𝜎, is an algebraic measure computed as the square root of the variance,
𝜎2. Standard deviation measures the spread around the mean. Only when all observations
have the same value, 𝜎 equals zero.

Three-sigma Rule

Assuming that the distribution of given data is normal, the three-sigma rule can set the
upper and lower control limits. This rule is a statistical calculation where data within three
standard deviations, or 𝜎, from a mean, are considered confidence interval.

Figure 2.2: Three-sigma rule

As shown in Figure 2.2, 68%, 95%, and 99% is the confidence level of the interval within
one, two, and three standard deviations from a mean.

However, a high confidence rate comes with consequences. Figure 2.2 shows, that the
higher the confidence, the bigger the confidence interval. This means some threads could
stay hidden in the interval during detection.
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We are able to detect anomalies by measuring standard deviations of chunks of data
and comparing them.

2.2 Probabilistic Automata
If a language is a set of strings, the string either belongs to a language or does not. Because
of this, a distribution over the set of all strings can be defined. This distribution can be
then used to predict the next symbol for a given prefix or can find the most probable string
corresponding to a pattern.

The finite state machines used to recognize strings are called automata. The next state
is chosen based only on the previous state. This procedure can be made deterministic by
allowing only one action to be possible at each step. The automata usually has three types
of states - accepting, rejecting, and neutral. The first two are also called final states.

Probabilistic automata, also called Markov Chain, is a non-deterministic automaton
with probabilities assigned to its transition function. In [6] and [8] it is defined as follows:

Definition 2.2.1. 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛 (𝑃𝐴) 𝑖𝑠 𝑎 𝑡𝑢𝑝𝑙𝑒 𝐴 = (Σ, 𝑄, 𝛿, I,F) 𝑤ℎ𝑒𝑟𝑒

• Σ 𝑖𝑠 𝑎𝑛 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡,

• 𝑄 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠,

• 𝛿 : 𝑄Σ𝑄 → 𝑄 ∩ [0, 1] 𝑖𝑠 𝑎 (𝑡𝑜𝑡𝑎𝑙) 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝑡𝑜 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛. 𝐼𝑓 𝛿(𝑞1, 𝑎, 𝑞2) = 0 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑞1 𝑡𝑜 𝑞2 𝑣𝑖𝑎 𝑠𝑦𝑚𝑏𝑜𝑙
𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑡ℎ𝑒𝑟𝑒,

• I : 𝑄 → 𝑄 ∩ [0, 1] 𝑖𝑠 𝑎 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 initial-state 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑎𝑛𝑑

• F : 𝑄 → 𝑄 ∩ [0, 1] 𝑖𝑠 𝑎 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 final-state 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠.

The following conditions hold: ∑︁
𝑞∈𝑄

I(𝑞) = 1,

and ∀𝑞 ∈ 𝑄:
F(𝑞) +

∑︁
𝑎∈Σ,𝑟∈𝑄

𝛿(𝑞, 𝑎, 𝑟) = 1.

Definition 2.2.2. Probabilistic automaton 𝐴 = (Σ, 𝑄, 𝛿, I,F) is called deterministic, if

• ∃𝑞 ∈ 𝑄 : I(𝑞) = 1,

• ∀𝑞 ∈ 𝑄,∀𝑎 ∈ Σ : |{𝑟|𝛿(𝑞, 𝑎, 𝑟)}| = 1.

If a word 𝑤 is a sequence of symbols in the alphabet, its probability can be found as
follows. Let 𝑤 = 𝑎1𝑎2...𝑎𝑛 ∈ Σ*[6] be a word. A trace 𝜋 of the word 𝑤 is a sequence 𝜋 =
(𝑞0, 𝑎1, 𝑞1)...(𝑞𝑛−1, 𝑎𝑛, 𝑞𝑛) where 𝛿(𝑞𝑖−1, 𝑎𝑖, 𝑞𝑖) > 0, I(𝑞0) > 0, and F(𝑞𝑛) > 0 for 1 ≤ 𝑖 ≤ 𝑛.
Informally, a trace is a path through PA via the word 𝑤 ending in a state with non-zero
probability.

Let Π𝑤 be a set of all traces of a word 𝑤. Probability of the path 𝜋 is then given as
P𝐴(𝜋) = I(𝑞0) * (𝑞0, 𝑎1, 𝑞0) * ... * (𝑞𝑛−1, 𝑎𝑛, 𝑞𝑛) * F(𝑞𝑛).
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Figure 2.3: Example of simple probabilistic automaton

The probability of the word 𝑤 is then given as a sum of all probabilities of traces for
a given word 𝑤, such that P𝐴(𝑤) =

∑︀
𝜋∈Π𝑤

P𝐴(𝜋). A word 𝑤 is accepted by a PA if
P𝐴(𝑤) > 0.

Consider PA from figure 2.3. States are labeled with a state name and the accepting
probability. Transitions are labeled with a symbol and the probability taking this transition.
Following the definitions, probability of word 𝑎𝑏𝑐 is following: P𝐴(𝑎𝑏𝑐) = 1.0 * 0.1 * 0.3 *
0.55 * 0.45 + 1.0 * 0.15 * 0.35 * 0.25 * 0.45 + 1.0 * 0.15 * 0.4 * 0.55 * 0.45.

Learning Probabilistic Automata

Steps for learning PA were copied from [6]. They are describing the algorithm Alergia.
The algorithm follows three ideas: a predefined ordering of the states, a compatibility test,
and a merging operation [8]. It takes as an input a multiset of strings S and outputs
a deterministic probabilistic automaton corresponding to S. It proceeds in the following
steps:

1. Create a prefix tree with number-labeled edges (transitions) and states. The edge
presents how many strings traversed the transition, while the state counts a number
of strings ended in it. The resulting PA will be created by the iterative merging of
states of this prefix tree.

2. From the root state of the prefix tree iteratively search for similar states. For this
maintain two sets of states Red and Blue set. The Blue set contains still unprocessed
states of the prefix tree. In each iteration take a blue state. If there is a similar red
state, merge these two states together (and update values on the transitions starting
at the states). The test used to decide whether the states should be merged or not is
based on relative frequencies of the empty string and of each prefix. Finally, update
the Red and the Blue set.

3. The automaton constructed in the previous steps contains an integer on each transi-
tion. Normalize these values to obtain a PA with probabilities on transitions.

In the description above we first create a prefix tree with number-labelled edges (tran-
sitions) and states. The number in a transition expresses how many strings from S traverse
this transition in the prefix tree. Similarly, the number at a state represents a number of
strings that ends at this state. In the next step, the learning algorithm merges states of
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this prefix tree. This leaves us with frequencies, or the number of times an event occurs on
each transition and state. To finalize the tree and compute needed probabilities, state and
transition frequencies are normalized.
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Chapter 3

Industrial Communication IEC
61850

There has always been a need to transfer information. The main objective of a data
communication system is to transfer information from one place to another. For many
years, people have wanted to standardize a suite of protocols that would meet the common
requirements of the electrical utility industry. The last resulting communication standard
is known as IEC 61850.

It is defining communication protocols for intelligent electronic devices (IEDs) at elec-
trical substations. Its architecture abstracts the definition of data items and the services
by creating data objects and services that are independent of any underlying protocols.
The abstract definition allows mapping to any other protocol that can meet the data and
service requirements.

Figure 3.1: IEC 61850 communication scheme
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The abstract data models can be mapped to a number of protocols. While IEC 61850 de-
fines three types of communication: MMS (Manufacturing Message Specification), GOOSE
(Generic Object Oriented Substation Event), and SMV (Sampled Measured Values), this
chapter will focus only on GOOSE and MMS.

Using IEC 61850 standard, measurements can be gathered into a central system. This
repository of data can be accessed by multiple users anywhere on the given network.

Key elements of this standard can be described as communication, the definition of
semantic data models, and a description of complete engineering processes such as configu-
ration or automation of the network. In this chapter, we will cover mainly communication
and data models.

3.1 Communication in IEC 61850
The standard differentiates two main communication approaches, client-server and publisher-
subscriber.

Client-server communication generally consists of request/response sequences. A client
requests data or action from the server. Matching request/response sequences and repre-
senting them is defined as MMS. In the publisher-subscriber [3] method, we publish data
to the network. Any device can then subscribe to it. We typically use this method for
time-critical information exchange.

It also has a concept where it separates the applications or object models, from the
communication. We can describe it as an abstract interface defining from the abstract
viewpoint the communication methods. This is then mapped on an existing protocol. We
will go into more details about abstract models in part 3.2.

Standard divides the communication infrastructure into three main areas. Between
devices within the substation, between devices in the substation and the central control
center, and between clients at the control center. As shown in Figure 3.1, IEC 61850 is
defining communication on all levels.

Figure 3.2: Station bus and process bus

For better understanding, we defined communication between station level and bay
level as station bus and communication between bay level and process level as process bus.
Although we can find these terms in literature, they are not officially defined in IEC 61850.
As shown in Figure 3.2, even if we have the network segregated with routers, potentially
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we have all types of traffic everywhere on the network. Station bus and process bus do
not divide the traffic. For example, if station control wants to send a control message to
the circuit breaker, MMS traffic will go through the whole network. Applying the same
principle, GOOSE messages can be found on the station bus.

3.2 Abstract Data Mapping
IEC 61850 supports so-called self-description[9]. This refers to the ability of a device to be
browsed to determine what data is contained within it.

Figure 3.3: Data models in IEC 61850

As shown in Figure 3.3, each physical device such as a relay may contain one or more
logical devices. Each logical device may contain one or more logical nodes such as circuit
breakers or transformers. Logical node is the main concept of data models representing
the grouping of information representing functional elements. It is basically a container
for function-related data. Each logical node contains a predefined set of data classes that
contain data.

Once information is described in the location, it is mapped to all locations and never has
to be remapped. This allows to reuse the information - once information is modeled in one
device, it can be shared with other devices. Because data in logical nodes can be browsed
and shared, integration time and cost of applications were reduced with this standard.

Abstract Communication Service Interface

The concept of abstract data mapping allows us to separate the applications (objects) from
the communication itself. These objects are accessed via Abstract Communication Service
Interface (ACSI).

ACSI describes communication between a client and a remote server. It allows specific
mapping as shown in Figure 3.4 and defines the communication methods and configuration
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Figure 3.4: Mapping of protocols in IEC 61850

from the abstract viewpoint. This is then mapped on a real communication protocol. Today
this is GOOSE and MMS over TCP/IP.

As shown in Figure 3.4, protocols GOOSE and SMV are directly encapsulated in Eth-
ernet. Client/Server is a wider concept of communication and can be mapped to MMS as
a transport protocol for client-server services.

3.3 Substation Configuration Language
Given the data and services abstract definitions, the final step is mapping the abstract
services into an actual protocol. From a system perspective, there is a significant amount
of configuration that is required in order to put all the network nodes together and have
them work. In order to facilitate this process and to eliminate much of the human error
component, an XML-based Substation Configuration Language (SCL) was defined.

Relation between the substation automation system and the substation is formally de-
scribed as XML-based Substation Configuration Language (SCL).

3.4 Protocols in IEC 61850
Standard currently defines two types of communication services, client-server and publisher-
subscriber. These services can be mapped to various protocols. Figure 3.5 shows that the
client-server uses MMS as its transport protocol. This unicast communication contains
commands and reports which are then confirmed. Real-time protocols are time-critical, and
they usually use multicast communication. This way packets do not have to be confirmed
- for more details about the publisher-subscriber mechanism see part 3.4.1. In standard,
they are mapped to GOOSE and SMV.

3.4.1 GOOSE

GOOSE is an Ethernet protocol used for peer-to-peer communication for transmitting IED
state information. It is time-critical for the control system to receive the information as
soon as possible. That is why GOOSE is characterized by these attributes:
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Figure 3.5: Protocols in IEC 61850

• Unconfirmed transmission - receiver does not confirm whether the information was
received or not. This way the sender does not have to wait for confirmation before
sending another packet.

• Event-driven timing - data change triggers status updates and is published immedi-
ately.

• Repetition strategy - packets are repeatedly sent with increasing time for retransmis-
sion. This method ensures reliability against packet loss.

This strategy together with the publisher-subscriber mechanism ensures fast and effi-
cient communication.

Publisher-subscriber communication pattern in GOOSE does not send messages directly
to subscribers. It instead transmits messages over the Ethernet using a reserved multicast
destination MAC address, see Table 3.1. Subscribers can express interest in the data and
only receive the information they are interested in without the knowledge of publishers.

Service Starting MAC address Ending MAC address
GOOSE 01:0c:cd:01:00:00 01:0c:cd:01:01:ff
GSSE 01:0c:cd:02:00:00 01:0c:cd:02:01:ff
SMV 01:0c:cd:04:00:00 01:0c:cd:04:01:ff

Table 3.1: Recommended multicast address ranges

GOOSE Message Format

As we have shown in Figure 3.4, the GOOSE protocol does not use TCP/IP layers for
communication. It is encapsulated directly in the Ethernet frame, see Figure 3.6.

As shown in the figure, four special fields are added in the Ethernet frame following
EtherType:

• AppID (application identifier) is used as a handle for receiving applications. When
not configured, the default value is 0x0000.
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Figure 3.6: GOOSE encapsulated in Ethernet frame

• Length is the length of data. Its value starts with AppID and ends at the end of
GOOSE PDU.

• Reserved1 is a 2-byte field. It contains a simulated bit that is mapped from the
parameter simulation of the GOOSE PDU, three bits reserved for the future appli-
cation, and twelve reserved security bits that are used when GOOSE is transmitted
with security, otherwise, it shall be set to 0.

• Reserved2 is also 2-bytes long. All bits are security bits and are used when GOOSE
is transmitted with security, otherwise it shall be set to 0.

Structure of GOOSE PDU

Substation configuration language (SCL) files are used to exchange data. On the application
layer, GOOSE defined in the SCL file has twelve fields [10]:

IECGoosePdu ::= SEQUENCE {
gocbRef [0] IMPLICIT VISIBLE-STRING,
timeAllowedtoLive [1] IMPLICIT INTEGER,
datSet [2] IMPLICIT VISIBLE-STRING,
goID [3] IMPLICIT VISIBLE-STRING OPTIONAL,
T [4] IMPLICIT UtcTime,
stNum [5] IMPLICIT INTEGER,
sqNum [6] IMPLICIT INTEGER,
simulation [7] IMPLICIT BOOLEAN DEFAULT FALSE,
confRev [8] IMPLICIT INTEGER,
ndsCom [9] IMPLICIT BOOLEAN DEFAULT FALSE,
numDatSetEntries [10] IMPLICIT INTEGER,
allData [11] IMPLICIT SEQUENCE OF Data,

}
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These fields are defined by IEC 61850 standard [10] as follows:

• gocbRef (GOOSE control block reference) is a unique name of an instance of GOOSE
control block. The format is LDName/LLN0.GoCBName, e.g., GEDeviceF650/LLN0
$GO$gcb01, where LDName is a name of a logical device, logical node class is LLN0
(Logical Node Zero) and GoCBName is the name of the GOOSE control block.

• timeAllowedtoLive informs subscribers how long to wait for the retransmission of the
packet.

• datSet (data set reference) is a reference of the data set whose values will be retrans-
mitted.

• goID (GOOSE ID) identifies GOOSE message.

• T (event timestamp) is a time at which stNum was incremented.

• stNum (state number) is a counter that increments each time a GOOSE message has
been sent and a value change has been detected within the datSet.

• sqNum (sequence number) is the current sequence number of the report. It is incre-
mented each time a GOOSE message is sent.

• simulation (test bit). If true, the message was sent by the simulation unit and there-
fore not by the real IED.

• confRev (configuration revision) indicates reordering the members of a data, deleting
a member, or changing the datSet value. The number represents a count of such
events.

• ndsCom (needs commissioning). If true, GoCB requires further configuration.

• numDatSetEntries is a number of data set entries.

• allData is a list of user-defined information specified in the control block.

3.4.2 MMS

MMS is an international protocol specified in IEC 61850 standard used for communication
and control-order transmissions between a server and a client. It specifies a messaging
system for modeling real devices and functions and for exchanging information about the
real device[10]. As shown in Figure 3.1, it is mainly used for information exchange between
Intelligent Electronic Devices (IEDs) and control systems. Figure 3.4 shows, that MMS
is usually addressed by IP addresses, is encapsulated over TCP, and communicates over
Ethernet.

This protocol introduces the basic concept of a Virtual Machine Device (VMD). It sets
a series of data types on behalf of the real device functions as in Figure 3.3 and hides the
specific characteristics of the device through abstract mapping. MMS does not specify the
implementation of VMD on real devices.

Through access to the VMD model, one can manipulate how the actual equipment
works. The VMD concept of MMS introduces the idea of object-oriented design into the
process control system and represents a container in which all other objects are located
[10].
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MMS is a Client/Server communication protocol. It is used mainly for monitoring,
therefore is not time-critical. Communication uses commands which are then confirmed,
as in Figure 3.7. In this case, a client (control center) sends atomic operations such as
read, write or control commands and requests to the server. The server is typically IED
containing VMD and its objects. It responds to the client with data, reports, etc.

Figure 3.7: Client/Server communication

Virtual Manufacturing Device

VMD model does not specify details about how a real device implements the model. It is
focused only on network-related aspects of communication, such as:

• objects (variables) and their attributes (name, type, etc.) that are contained in the
server,

• services for accessing objects, such as read, write commands,

• behavior that a device should follow when processing the services.

MMS defines a variety of objects. All objects except unnamed variables are identified
by an object name. Unnamed variables are identified by a fixed physical address. For
each object, the standard defines the corresponding service. The table showing how this
mapping is defined is copied from [10] and can be found in Appendix B.
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Data Transfer in MMS Protocol

However MMS does not specify an addressing scheme of client-server communication and
relies fully on underlying protocols, nodes are usually addressed by their IP address. MMS is
encapsulated over TCP port 102. Encapsulation includes several ISO protocols, see Figure
3.8 [10]. The following text is focusing on the L7 layer, as it is the most important one for
this thesis. The rest will not be covered.

Figure 3.8: ISO/OSI MMS encapsulation over TCP/IP

The MMS standard requires the MMS service to be realized using Association Control
Service Element. This is an OSI standardized element of the application layer, that is
responsible for communication between network nodes. It establishes, controls, and termi-
nates such connection. MMS packets are only encapsulated in ACSE in the opening phase,
not during data transmission.

Communication in MMS

As shown in Table 3.2 from [10], the standard defines 14 types of MMS PDUs. They are
identified by TLV identifier with the tag number.

Initiate-Request and Initiate-Response open the connection. They are used to nego-
tiate details of the connection and supported services. Confirmed-Request is confirmed
by Confirmed-Response or Confirmed-Error. These PDU types create the majority of the
communication. They are responsible for transmitting various data based on the type
of request. Confirmed-Request can be canceled by Cancel-Response PDU which is then
confirmed by Cancel-Response or Cancel-Error. Unconfirmed services have PDU type Un-
confirmed and can be invoked by servers only. They enable IEDs to notify a client when a
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MMS PDU TLV Identifier Tag Number
Confirmed-Request 0xa0 0
Confirmed-Response 0xa1 1
Confirmed-Error 0xa2 2
Unconfirmed 0xa3 3
Reject 0xa4 4
Cancel-Request 0x85 5
Cancel-Response 0x86 6
Cancel-Error 0xa7 7
Initiate-Request 0xa8 8
Initiate-Response 0xa9 9
Initiate-Error 0xaa 10
Conclude-Request 0x8b 11
Conclude-Response 0x8c 12
Conclude-Error 0xad 13

Table 3.2: Types and identifiers of MMS PDUs

predefined event has occurred. Conclude-Request is usually followed by Conclude-Response
or Conclude-Error. This type of message is used to close the connection to the server. This
allows to properly release the resources used for the connection. If the server denies the
conclude request, the connection remains open.

The following example shows an example of MMS PDU of type Confirmed-Request that
consists of Type-Length-Value (TLV) encoding scheme.

Example 3.4.1. a0 0f 02 02 06 28 a1 09 a0 03 80 01 09 a1 02 80 00

• 0xa0 refers to Confirmed-Request PDU type of size 0x0f (15 bytes).

• 0x02 denotes InvokeId. This is an integer matching requests with responses. It starts
with the type (0x02), its size is 0x02 (2 bytes) and its value is the next two bytes (06
28).

• 0xa1 refers to the type of MMS service, see Appendix B. Tag 1 denotes getNameList
service.

Packet Headers Encapsulating MMS

To be able to read desired fields of the PDU, one needs to know how exactly the packets
are encapsulated. Figure 3.9 shows, how the PDU of the Confirmed-Request/Confirmed-
Response message looks like during data transmission. MMS PDU must be less than or
equal to 120B. All of the packet headers consist of TLV encoding scheme.

TPKT (ISO Transport over TCP) and COTP (Connection-Oriented Transport Proto-
col) encapsulate MMS packets on the transport layer. TPKT implements ISO Transport
Protocol Class 0 (TP0). The difference between the TCP and TP0 is that TCP transports
a continuous stream of data without explicit boundaries[10]. TP0 expects the data to be
sent in discrete objects, called Network Service Data Units (NSDUs).

COTP defines several types of messages, see Table 3.3 where z means credit field used
for flow control. MMS communication mostly uses CR and CC for the establishment of
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Figure 3.9: Protocols encapsulating MMS packet of type Confirmed-Request/Confirmed-
Response with MMS PDU lesser than 120B transfering data

connection and DT for data transmission. The structure of the packet varies based on
the COTP ID. Messages CR and CC establish transport session and can transmit various
parameters such as source and destination reference or maximum size of the PDU. User
data are not permitted in these types of messages. COTP DT has a fixed header length (2
bytes). PDU Number is always set to zero for TP0.

Message COTP ID
Connection Request (CR) 0xDz
Connection Confirm (CC) 0xCz
Disconnect Request (DR) 0x80
Disconnect Confirm (DC) 0xB0
Data (DT) 0xF0
Expedited Data (ED) 0x10
Data Acknowledgement (AK) 0x6z
Expedited Data ACK (EA) 0x20
Reject (RJ) 0x5z
TPDU Error (ER) 0x70

Table 3.3: COTP ID - message types

OSI session protocol on L5 defines connection-oriented session services. While the
standard defines more than 30 types of PDUs, MMS employs three of them: Connect (L5
PDU ID = 13), Accept (L5 PDU ID = 14) and Give Tokens, Transfer Data (L5 PDU ID =
1). The last type can be seen in Figure 3.9. After the connection is established by successful
exchange of Connect and Accept messages, MMS messages are encapsulated in a sequence
of two L5 PDU headers, Give Tokens and Data Transfer, since the standard does not allow
to send Data Transfer PDUs individually. Both PDUs are without parameters.

OSI presentation layer L6 provides negotiation during connection establishment as well
as data encoding during data transfer. MMS only uses three types of PDUs: Connect-
Presentation (CP) type, Connect Presentation Accept (CPA) type, and CPC type, which
can be seen in Figure 3.9 and contains user data. The PDU starts with application-specific
type which denotes data type Fully-Encoded-Data (FED Type). Next, the length of data
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and a new TLV structure with PVD-list (Presentation Data Values) tag follows. The next
embedded TLV structure starts with a presentation context tag. Its value is negotiated in
CP and CPA messages. The last TLV structure is a context-specific data type with tag
0 (ASN1 Type). This means that the PVD-list contains only one presentation data value
which is a single ASN.1 type[10].

The last PDU in Figure 3.9 is the MMS PDU with a size smaller than 120 bytes. It
is of type PDU Type, which can have values as in Table 3.2. The confirmed-request PDU
has the same InvokeID as the confirmed-response message with the request result. Next
is MMS Service Type which shows how objects in VMD are mapped to the corresponding
service, see Appendix B.
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Chapter 4

Profiling Tool

This chapter will provide details about anomaly detection in GOOSE and MMS protocols
and how we implemented them. Various statistical analysis methods and probabilistic
automata will be used and the results will be compared.

GOOSE protocol is stable, with simple and unchanging communication patterns. Var-
ious statistical methods can be used for detection. The detecting tool was created for the
purpose of this thesis, see Appendix A. MMS is also stable, but communication patterns
can change. It is important that they do not change very often and are periodical, therefore
probabilistic automata can be used. The modified version of the tool detano [7] [6] was
used for detection, see Appendix 2. In this chapter, a description of the tool created for
protocol GOOSE will be provided, as well as a description of the datasets and detection
methods used, including probabilistic automata.

In section 4.1, we are going to show the structure of the tool created for detection in
protocol GOOSE. Section 4.2 will cover how the data are processed when they are input to
the GOOSE tool, as well as how the probabilistic automata will be learned.

4.1 Tool Structure
The profiling tool is divided into two basic components: the learning phase and the detecting
phase. Both can be found in src/Learning.cpp in function void learn_and_detect().
It has three input parameters, namely path to file to use for learning, path to file to use
for detecting, and the statistical detection method used for GOOSE. The tool can use three
detection methods, arithmetic mean and variance, box plot, and confidence interval, see
Chapter 2.

A detailed description of how to use a profiling tool can be found in Appendix A.

4.1.1 Learning Phase

As was already mentioned in part 4.1, detection for GOOSE protocol can use three statis-
tical analysis approaches, detection for MMS protocol uses probabilistic automata. Before
using any method, the tool first needs to divide the file into time slots, or windows. The
window size can be adjusted in the file include/Config.h using constant WINDOW_SIZE.
The default value used in experiments is 300 seconds or five minutes. If the window is less
than 5 minutes, the metrics are incomplete and can corrupt the result. That is the last
window is dropped if incomplete.
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Figure 4.1: Windows and flows of GOOSE communication

As we can see in Figure 4.1, each window is then divided into flows. Flow is characterized
by unique source MAC address, destination MAC address, and length of the packet. Each
flow can then have various deltas. Delta is the time between two packets in one flow. It is
counted for all pairs of packets that were captured directly in a row. Deltas are stored in
tuples together with the total sum of occurrences of the given delta. In Figure 4.1, each
flow has two different deltas. For example, in the first flow in WINDOW 0, two different deltas
were found. The delay between packets of size 0 has occurred 149 times, while the delay of
size 2 occurred 150 times.

For the arithmetic mean and variance method, see part 2.1.1, the tool computes arith-
metic mean and variance of all occurrences of deltas across all windows.

Figure 4.2: Learned GOOSE communication - arithmetic mean and variance

In Figure 4.2 is the learned dataset of GOOSE communication. Data are still divided
into flows, according to source MAC address, destination MAC address, and length of the
packet. Each flow is then divided based on the value of delta, following by arithmetic mean
and variance of delta occurrences. For example, the first flow in Figure 4.2 is of size 207
with delta 0. The arithmetic mean of deltas that occurred in all flows is 148.494 and its
variance is 36.9285.

For the box plot method, see part 2.1.2, five metrics are counted:

• Q2 - a median of the data,

• Q1 - a median of the data on the left of the median,

• Q3 - a median of the data on the right of the median,
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• minimum,

• maximum.

Everything before minimum and after the maximum is considered an outlier.

Figure 4.3: Learned GOOSE communication - box plot metrics

In Figure 4.3 is the dataset learned with the Box Plot learning method. Characteristics
of the flow are source MAC address, destination MAC address, length of the packet, and
delta, following by box plot characteristics minimum, Q1, Q2, Q3, and maximum. Since
GOOSE communication from its nature does not change very often, we can see that the
box plot values are very close to each other, or the same.

The third statistical method used is the confidence interval. Specifically, the three-sigma
rule is used, see part 2.1.3. The three-sigma rule says that data within three standard
deviations from the arithmetic mean are considered confidence interval. Everything outside
this interval is considered an outlier. Because standard deviation can be calculated using
variance, a special method for learning the dataset is not necessary, the same learning
method as for arithmetic mean and variance can be used.

4.1.2 Detecting Phase

For detecting anomalies in GOOSE communication, the same method that was used in
learning phase will be used. Functions detect_anomalies_arithmetic_mean() ,
detect_anomalies_boxplot() and detect_anomalies_3_sigma() are used for GOOSE.

More details about how various statistical analysis methods and probabilistic automata
were used can be found below in part 4.2.

4.2 Data Processing
Network traffic in csv file format represents input data. Data in this file are learned by
the profiling tool line by line. When data are learned, they are divided into chunks called
windows. Each window contains 5 minutes of communication. It is possible that the last
window will contain a smaller chunk of communication, not the whole 5 minutes. Because
of this, the last window is discarded as incomplete.

Data can be further divided into flows representing communication between 2 nodes
of the network. Flows are divided by source(srcMAC ) and destination(dstMAC ) MAC
addresses. Communication attempts in flow are counted, giving us the number of commu-
nication attempts in each flow (count).
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For GOOSE, they can be further divided by packet length (this is represented as in-
terval), status number (stNum), GOOSE control block reference (goCBRef ), GOOSE ID
(goID), and data set (datSet). For the purpose of this tool, only packet length was used.

Packets that belong to the same flow are captured in time intervals. The time interval
between the two packets is delta.

Two flows with the same division characteristics can not be in the same window. Each
flow in each window represents one collection of statistical data. Statistical methods are
further applied to them, as described in the sections below.

4.2.1 Arithmetic Mean

Arithmetic mean is calculated across all flows of all windows with matching division re-
quirements. This means, that if two flows in two different windows have the exact same
srcMAC, dstMAC, length, delta, etc., arithmetic mean(𝑥) and variance(𝑠2) are calculated
from the count of their deltas. This will give us an interval

𝑑𝑒𝑙𝑡𝑎𝑐𝑜𝑢𝑛𝑡 ∈< 𝑥− 𝑠2, 𝑥 + 𝑠2 > (4.1)

of the accepted amount of packets when detecting with minimum 𝑥 − 𝑠2 and maximum
𝑥 + 𝑠2. The count of new flow in the window is simply compared to learned flows. If the
new flow matches the division requirements of the learned one, its count has to belong to
the interval above. Otherwise, an anomaly is detected.

4.2.2 Box Plot

Arithmetic mean is an effective and easy-to-use method but is extremely sensitive to outliers.
For the purpose of this thesis, we decided to also use a box plot, as it provides more metrics
than the arithmetic mean that can be averaged and compared and is also less sensitive to
outliers.

Box plot is a graphical method. It illustrates data using whiskers and quartiles. While
whiskers represent minimal and maximal allowed value, quartiles are dividing data into
quarters. Most data are within the first and last quartile (Q1 and Q3) and everything
below minimum and above the maximum is considered an outlier.

We used these characteristics in the detection tool. After each 5 minutes window of
the detection file, box plot metrics are computed and compared to values learned in the
learning phase. Depending on how many deltas were detected in one flow of one window,
the tool will detect:

1. If the detected value is between Q1 and Q3, nothing happens.

2. If the detected value is not between Q1 and Q3 but is between min and max, the
potential risk is detected.

3. In all other cases, the tool will define communication as an anomaly.
An anomaly is also detected when a new flow is noticed in the detection phase.

4.2.3 Confidence Interval

In the learning phase, after an arithmetic mean(𝑥) and variance(𝑠2) are calculated, the
confidence interval is created. By default, the three-sigma rule is applied as follows:

𝑑𝑒𝑙𝑡𝑎− 𝑐𝑜𝑢𝑛𝑡 ∈< 𝑥− 3 * 𝑠, 𝑥 + 3 * 𝑠 > (4.2)
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where 𝑠 is the square root of variance called standard deviation.
After detecting a window, all recognized flows have a final count of deltas (delays be-

tween packets in the same flow), which are then checked. If they do not belong to the
confidence interval, an anomaly is detected.

4.2.4 Probabilistic Automata

In this section, we will show how the MMS automaton was learned. For this purpose,
pa_learning.py from the tool detano was used, see Appendix D. For learning normal
communication we used dataset inside_station_normal.pcap, see the section below.

The dataset inside_station_normal.pcap does not contain any packets for the be-
ginning of the conversation or its end (such as Initiate-Request or Conclude-Request, see
Figure 3.2). That is why a new way of dividing conversation into flows needed to be found.
We used the source TCP port and destination TCP port for this purpose. The server port
of the conversation will always be 102 because according to standard it indicates MMS
communication, but the client port number is not reserved and is a randomly generated
number smaller than 65535. In the dataset, it looked like the ports are repeating them-
selves. We decided to use this fact to help split the conversation. After experiments, the
highest accuracy achieved was 0.977 with the number of packets in one conversation equal
to 3. The tool split the conversation into two parts. The first part of size 0.33 out of 1
was the learning part. Accuracy was measured using the second part. Figure 4.4 shows the
learned automaton.

Figure 4.4: Frequency automaton learned from MMS dataset inside_station_normal.pcap

Automata has seven states, marked with numbers. State 5 is the initial state. DPA has
three final states (2, 1, 4). Transitions are represented as arrows from one state to another.
Their description shows symbols and relative frequencies with which the states were visited
through the transition. Another way to represent them is using probability. For example,
the communication from state 5 to state 3 used the symbol (0xa0, 0xa1) representing tuple
PDU Type, MMS Service. Its relative frequency to do so was 86 transitions. Frequencies
are then normalized to probabilities with which an event occurs.

The learning stage does not divide conversation into windows for learning. In the
detecting stage, the conversation was divided into 5-minute windows. After the window
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was learned, it was compared to the automaton learned from the normal conversation
without anomalies.

4.3 Datasets
The datasets used were provided by [4] and [2]. For the tools, we used the csv (comma-
separated values) format of the input files.

gics-goose2.csv

This dataset contains a normal conversation between IEDs in csv format. The fields rep-
resent timestamp, state number (stNum), source MAC address, destination MAC address,
control block reference (gocbRef ), GOOSE ID (goID), data set reference (datSet), and
length of the packet.

To have a better understanding of the data provided, data analysis using programming
language Python3 and its libraries pandas and matplotlib were used. As the name indi-
cates, matplotlib is used for creating visualizations and plotting data. pandas is primarily
written for data manipulation and allows for efficient work with csv files.

gics-goose2.csv consists of 83966 packets. Each packet is described by eight variables,
as seen above (timestamp, srcMAC, dstMAC, etc.). Variables timestamp and length are
represented numerically, while the rest is represented by a string. Library pandas is able
to convert string values to integers, allowing us to show a correlation matrix, see Figure
4.5. The matrix shows how variables impact each other. The more two variables depend on
each other, the closer correlation is to 1 or -1. Before we computed the matrix, we added
variable deltas that is the delay between two packets in the same flow.

Figure 4.5: Correlation matrix of variables in gics-goose.csv including computed deltas
between packets

Figure 4.5 shows, that majority of all correlations are close to the absolute value of
one, or one. This basically means, that when one variable was changed, the other was also
changed. For example, if the source MAC address changed, so did the destination MAC
address, length of the packet, etc. The timestamp is not correlated to anything, which is
not surprising, because it changes constantly and packets do not have an impact on it. State
number is one of the GOOSE-specific variables, see Chapter 3. After further investigation
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we found out, that this variable is not changing its value during the communication in the
dataset, therefore is not correlated with anything at all.

Figure 4.6: Source and destination MAC addresses in gics-goose2.csv

In Figure 4.6 we can see that the source and destination MAC addresses do not overlap.
This means, that the conversation was only one-way.

Another important piece of information about the dataset is, that length of packets only
has three values: 207, 148, and 208. After briefly 60 000 packets when sizes 207 and 148
alternated, the length 207 was changed for value 208, particularly in the window number
167, as will be shown in Chapter 5.

For anomaly detection, we picked variables source MAC address, destination MAC ad-
dress as they can separate communication to flows between IEDs, length, and deltas.

bad_gics-goose2.csv

Since the malformed version of GOOSE communication was not provided, it was created
from gics-goose2.csv by deleting parts of the conversation and altering values of variable
length. The result is in Figure 4.7. Destination MAC address, length, and deltas variables
were plotted in the 3D plot. After the changes, datasets look visibly different.

inside_station_normal.pcap, mms.pcapng, mms-kocin2.pcapng

The datasets are describing the normal behavior of communication in IEC 61850. We
extracted packets using MMS protocol, as this is the protocol we try to detect anomalies in.
Because the csv format is needed for the tool, they needed to be parsed. pcap_to_csv.py
script was created for this purpose using programming language Python3 and library scapy,
see Appendix C.

As we can see in Figures 3.8 and 3.9, MMS only uses TCP protocol for the transport
layer. Above, still on the transport layer, TPKT and COTP protocols are used. There are
also protocols used in the Session, Presentation, and Application layer before the actual
use of MMS. We will not go into details of any of these protocols, but basic information
about how the headers of these protocols look will be needed. It allows us to extract the
information from the MMS packet header that we will need to create a DPA. For this PDU
Type, Table 3.2 and MMS Services, Appendix B were picked.
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Figure 4.7: Comparison of gics-goose.csv (a) and bad_gics-goose.csv (b)

To be able to read the upper layers, knowledge from Chapter 3.4.2 was used. Everything
above the TCP header is considered user data and is not properly recognized in the scapy
library. Below is an example of this part of a header.

Example 4.3.1. 03 00 00 26 02 F0 80 01 00 01 00 61 19 30 17 02 01 03 A0 12 A0 10 02
03 02 1A 68 A1 09 A0 03 80 01 09 A1 02 80 00

• 0x03 0x00 0x00 0x26 is a TPKT header of version 3 (0x03). Next field is a reserved
byte containing 0 and the last two bytes are length of the whole TPKT header in-
cluding user data, which is 38 bytes.

• 0x02 0xF0 0x80 is a COTP header of length 2 bytes (0x02). This is only header itself
without length byte and without user data.

• 0x01 0x00 0x01 0x00 is an L5 header. The firts byte describes PDU ID. It can have
three types - 0x0D (Connect), 0x0E (Accept), or 0x01 (Give tokens and transfer data).
Next byte shows length of parameters, in this case 0 bytes for give tokens. The same
for transfer data.

• 0x61 0x19 0x30 0x17 0x02 0x01 0x03 0xA0 0x12 describes L6 header of type 0x61,
which means, that this PDU transfers data. It is 25 bytes long without the length
field (0x19).

• 0xA0 0x10 0x02 0x03 0x02 0x1A 0x68 0xA1 0x09 0xA0 0x03 0x80 0x01 0x09 0xA1
0x02 0x80 0x00 is the actual MMS PDU. It is of the type 0xA0, which means
Confirmed-Request, see Table 3.2. It has a payload of 16 bytes (0x10). The In-
voke ID is of type integer (0x02), length 3 bytes and value 137832 (0x02 0x1A 0x68).
The MMS service type is 0xA1, GetNameList-Request. PDU Type and Service Type
will be used in the dataset do differentiate communication flows.

mms_normal.csv, mms.csv, and mms-kocin.csv which were created from these datasets
create an abstraction layer over the MMS packet. They contain a timestamp, source IP
address, destination IP address, source TCP port, destination TCP port, PDU Type, and
MMS Service.
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bad_mms.pcapng, bad_mms-kocin.pcapng

The malformed datasets were created by altering some of the values in mms.csv and
mms-kocin.csv to simulate new unknown communication patterns and by removing some
communication to simulate device outage.

inside_substation_attack3.pcap

This dataset is supplementing version of the communication with anomalies, that need to
be found. It is not crucial whether an attack was performed and what type of attack, or
whether some communication is missing, rather than the file itself is incomplete and will not
contain the same patterns of transmission as the dataset describing normal behavior. Using
the script for parsing pcap files to csv files, Appendix C, mms_anomaly.csv was created
from the dataset.
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Chapter 5

Experiments

In this chapter, we are going to experiment with proposed approaches. For GOOSE, we
used a detection tool created for this purpose. It was described in chapter 4, see Appendix
A. The modified version of the tool detano [7] [6] was used for detection in protocol MMS,
see Appendix D.

5.1 Protocol GOOSE and Statistical Analysis
In this section, we are going to experiment with the GOOSE protocol and the different
approaches of statistical analysis we proposed above. At the end of this section, a conclusion
with a comparison of methods will be provided.

5.1.1 Experiment 1 - Arithmetic Mean

The first experiment with detection using the arithmetic mean was to learn and detect
communication patterns using the same file. This was mainly to check the correctness of
the tool. The expectation was that tool would not find any anomalies. For this purpose
dataset gics-goose.csv was utilized.

Figure 5.1: Detection using arithmetic mean
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As we can see in Figure 5.1, this was not the case. When we take a closer look at the
dataset, we can see a change in communication. Specifically, in window 167 seen in Figure
5.2, the packet flow changed its packet size from 207 to 208. Before this window, only
packets with size 207 were captured, after this window there were none. The implemented
mechanism needed to be adjusted to use the dataset by rounding the packet size.

Figure 5.2: Window 167

Rounding the Packet Size

With this modification, we were able to eliminate all of the false positives found before.
This feature might not be always needed and that is the reason we introduced configurable
constant ROUND_PACKET_SIZE to the tool. It is also not clear yet whether this approach
will hide anomalies or not.

After the modification of packet size, no other anomalies were found in the dataset when
using the same one for both detecting and learning.

Detecting Anomalies in Corrupted File

For this experiment gics-goose2.csv file was used for the learning phase. For the detecting
phase, we altered some of the values of packet size to create new, unlearned flows. Also,
some communication was removed to simulate the outage of an electronic device. This new
dataset is saved in the file bad_gics-goose2.csv.

The experiment was executed both with and without rounding the packet size. Apart
from the anomaly detected in window 167 when the size was not modified, the output was
the same. This means that rounding the size of packets was not crucial for classifying
communication patterns.

This approach was able to correctly identify all of the new packet sizes. It also found
windows where the outage of IEDs was simulated. Together, 69 anomalies excluding false
positives caused by window 167 were found. However, changing packet size while creating
bad_gics-goose2.csv caused another anomaly. Modified packets were subtracted from
existing flows causing the flows to have smaller counts of packets in several windows. This
change was not detected by the proposed method.
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5.1.2 Experiment 2 - Box Plot

As the first experiment with the box plot, we decided to both learn and detect from the
same file (gics-goose2.csv was used). After the learning phase (details can be found in
part 4.1.1) box plot metrics were needed. Our first approach was to count one Q1, Q2, Q3,
minimum and maximum from the whole detecting file. As figure 5.3 shows, no anomaly
was found. This was an expected result. Of course, this approach is not sufficient, because
the tool expected multiple windows for detecting at once.

Figure 5.3: Detection using box plot

Our next approach was to learn one box plot for each flow using all windows from the
learning file. The goal was to compare these learned metrics with each window from the
detecting file separately. The expected result was again no errors. Figure 5.4 shows the
real result of this approach.

Figure 5.4: Detection using box plot, comparing each detected window independently

As we can see in Figure 5.4, this approach showed multiple false positives. This is
because of how the pox plot metrics are counted. After sorting all of the deltas in one
flow in ascending order, Q1, Q2, and Q3 will be medians of different groups of data, see
2.1.2. When enough data have the same value, Q1 and Q3 can be the same number. This
results in problems when counting the interquartile range(IQR). When IQR is zero, the
minimum and maximum of the boxplot are equal to Q1 and Q3. Any value different than
these metrics is considered an outlier. As shown in Figure 5.4 in the beginning, according
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to learned values, the delta count in every flow should be 150. But in window 52, only 149
deltas were found. This is classified as an anomaly.

Again we met with the problem of packet size (window 167, where the size of a packet
is changed from 207 to 208). Rounding the packet size helped us to get rid of this problem,
but there were plenty more false positives. We encountered 17 errors. That is why we
decided to try another approach.

Figure 5.5: Detection using box plot, learning communication while detecting

In this experiment, the detection tool is also learning communication. Detected windows
are not thrown away, rather than stored for further use. New box plot metrics are then
computed from the current window, as well as from all previous ones. As shown in figure 5.5,
we were able to get rid of almost all false positives. But this approach is only experimental
and is questionable how well it can find anomalies.

Detecting Anomalies in Corrupted File

For this experiment bad_gics-goose2.csv file was used. We altered some of the values
of packet size to create new, unlearned flows in the original gics-goose2.csv. Also, some
communication was removed. This way we simulated the outage of an electronic device.

In the approach where we learned detected communication, once an anomaly was de-
tected, the tool tried to warn us in all of the following windows, because the anomaly was
never forgotten. This experiment showed only a few false negatives, but countless false
positives and therefore is not suitable for us.

Figure 5.6: Detection using box plot in corrupted file

Several types of errors were captured, see Figure 5.6. Potential risk means, that although
delta count is between min and max of boxplot, it is not between Q1 and Q2 and so there
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is a risk of corruption. This is not a real error, rather than a warning that can be used to
further analyse the flow. Unknown flow detected shows that there were characteristics of
the flow that were never captured before. Packet count does not fit indicates, that delta
count was not between min and max of a boxplot. In this experiment, 90 anomalies were
detected. All of the created inconsistencies were revealed.

This approach seems to be more sensitive to small changes in communication than
anomaly detection in part 5.1.1. It found 11 more anomalies. All of them were valid. They
were created because some of the packets were changed. This left rest of the packets in a
window with a smaller count. This change was detected by box plot, but not by arithmetic
mean method.

5.1.3 Experiment 3 - Confidence Interval

The first experiment with detection using confidence interval was to learn and detect com-
munication patterns from the same file, to check the correctness of the tool, and to find
false positives. The expectation was that tool would not find any anomalies. We are only
experimenting with packet size rounded.

Figure 5.7: Detection using confidence interval of 3 sigma

As shown in Figure 5.7, anomalies were found. The dataset consists of 233 windows.
The last window is ignored because it is incomplete. This means that in the last two
complete windows anomaly was found. When comparing learned metrics one can find, that
about 150 deltas of the size of packet 210 were expected, but only 120 found. If we take
look at the windows in Figure 5.8 this is really the case. Since we are now learning and
detecting from the same file, this is considered a false positive.
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Figure 5.8: Windows 231 and 232 of gics-goose2.csv

Detecting Anomalies in Corrupted File

For this experiment, gics-goose2.csv was used for learning and bad_gics-goose2.csv
was used to detect from. This method found 53 anomalies from which 4 were false positives,
as in Figure 5.8.

5.1.4 Conclusion and Evaluation of the Statistical Methods

In this section, we will be comparing the results of different statistical methods when used
for anomaly detection for the GOOSE protocol. We are only comparing the best results
we were able to achieve with each method. That for example means that packet size was
rounded in all experiments. When evaluating the box plot method, the type of error message
potential risk was not taken into account, as this is not an error, rather than a warning
that can be used for further experimenting.

The disadvantage of this approach is that since we are looking at the delta between
packets, at least two packets with the same values (MAC addresses and length) need to
be captured in one window in order to recognize them. From the nature of the GOOSE
protocol where the device is sending the same packet multiple times in a row, we assume
that this will not cause a problem.

Figure 5.9: False positives detected by methods when detecting from gics-goose2.csv

Figure 5.9 shows how many errors the methods found when learning and detecting from
the same file (gics-goose2.csv). All of these are classified as false positives. Arithmetic
mean did not find any errors, while both box plot method and 3 sigma rule did. As we can
see, the box plot found the most errors. The reason for this is explained in section 5.1.2,
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under the box plot method. No new flows were found, all the errors were due to bad packet
count.

Figure 5.10: Confusion matrix

For measuring the performance of the methods, we chose to use the Confusion matrix[5],
also called the error matrix, see Figure 5.10. It allows for visualization of error rate and
provides variables that can help to calculate useful measurements, such as classification
accuracy, error rate, sensitivity, precision, etc., where

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, (5.1)

𝑒𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, (5.2)

and

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (5.3)

Table 5.1 shows how many TP, TN, FP, and FN were found when learning from
gics-goose2.csv and detecting from bad_gics-goose2.csv, as well as their accuracy,
error rate, and sensitivity. It is visible from the table that the arithmetic mean used as a
statistical analysis tool has the highest accuracy and sensitivity score and the lowest error
rate of the tested methods.

5.2 Protocol MMS and Deterministic Probabilistic Automata
In this section, we are going to experiment with protocol MMS and DPA. At the end of
this section, a conclusion about this method will be provided.

When creating a detection tool, communication needs to be divided into flows. One flow
represents one conversation between devices on the network. When analysing the datasets
provided, we found out that they did not contain Cancel, Initiate or Conclude types of MMS
messages, see Table 3.2. Because of this, we could not divide the conversation according
to the beginning and the end. That is why we decided to split flows according to packet
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Aritmetic mean Boxplot 3Sigma
True Positive (TP) 69 69 53
True Negative (TN) 859 843 858
False Positive (FP) 0 12 2
False Negative (FN) 8 12 23
accuracy score 0,99145 0,97435 0,97018
error rate 0,0085 0,0256 0,0267
sensitivity 0,8961 0,8518 0,6973

Table 5.1: Accuracy score of statistical methods

count. For example, when we decide on delimiter 16, every 16 packets will be the beginning
of a new conversation, considering also dividing it according to source and destination IP
addresses and TCP ports. We experimented with this delimiter and found out that 3
packets in one conversation give the best results. Accuracy was measured by splitting the
input file into 2 parts, learning from the first one and detecting from the second part. The
ratio used was 1:2 learning and detecting.

It was also essential to find the appropriate abstraction of the packets. MMS header
and headers encapsulating it contain various information that could be used to represent
the communication. If all of this information was used, it could lead to overlearning of
the created DPA. For the purpose of this thesis, we used MMS Service and PDU Type, see
Chapter 3, but other fields of headers could be used as well.

5.2.1 Experiment 1 - mms.csv, bad_mms.csv

Dataset mms.csv is our smallest dataset, containing 504 packets of MMS communication
between two nodes, containing only one flow divided by IP addresses and ports. The first
automata in Figure 5.11 shows this communication. For example, we can get from state
1 to state 3 using transition (0xa0, 0xa1) with frequency 5. The type of message in this
transition is Confirmed-Request (0xa0) and the MMS service used is getNameList (0xa1).

Figure 5.11: Communication learned from mms.csv and bad_mms.csv as frequency au-
tomats
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When learning and detecting from mms.csv, detano [7] tool found out that there are
only two nodes, 10.10.20.6 using port 102 (server), and 10.10.3.4 with port 56808 (client).
No anomalies were found.

In the case when mms.csv was used for learning and bad_mms.csv for detecting, the
tool found 70 anomalies.

5.2.2 Experiment 2 - mms-kocin.csv, bad_mms-kocin.csv

Dataset mms-kocin.csv is the biggest dataset containing 22 529 packets. It consists of
47 different flows divided by IP addresses and ports used. In Figure 5.12 is its learned
frequency automaton alongside the automaton learned from bad_mms-kocin.csv, which
was created altering or deleting some of the values of the original mms-kocin.csv.

Figure 5.12: Communication learned from mms-kocin.csv and bad_mms-kocin.csv as fre-
quency automats

When learning and detecting from mms-kocin.csv, detano tool did not find any anoma-
lies. When detecting from bad_mms-kocin.csv, the tool found 10 anomalies.

5.2.3 Experiment 3 - mms_normal.csv, mms_anomaly.csv

File mms_normal.csv has 1557 packets of MMS communication divided by detano[7] into
5 flows, see Figure 5.13.

Figure 5.13: Communication flows learned from mms_normal.csv divided by IP addresses
and ports

Figure 5.14 shows frequency automats created from mms_normal.csv and mms_anomaly.csv.
The probabilities of the transitions can be counted using the frequencies.

The tool did not find any anomalies detecting from mms_normal.csv, but this time, it
also did not find any anomalies when detecting from mms_anomaly.csv.
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Figure 5.14: Communication learned from mms_normal.csv and mms_anomaly.csv as fre-
quency automats

5.2.4 Conclusion and Evaluation of the Method

Because of the complex nature of the MMS protocol, we are not able to determine how many
anomalies that we detected were created in corrupted files and therefore specify concrete
values of True Positives, True Negatives, False Positives, and False Negatives.

The results show, that despite incomplete conversations lacking beginnings and ends,
DPA works fairly well when dividing communication into groups with the same amount of
packets. We were able to correctly find anomalies in corrupted files two out of three times,
and no anomalies were found in the files where there were not any. A conversation where
we are able to detect Initiate and Conclude types of messages could help to improve these
results. The disadvantage is that the tool found anomalies in files fabricated for the purpose
of this thesis, whereas did not detect a real anomaly in the dataset mms_anomaly.csv.
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Chapter 6

Conclusion

Several vulnerabilities have been exploited in industrial communication in recent years.
Many attacks became unnoticed by Intrusion Detection/Prevention Systems and security
devices protecting these networks, demonstrating the need to improve their security.

In this thesis, we focused on communication standard IEC 61850 and its protocols
MMS and GOOSE. We demonstrated the approach of creating the description of normal
communication for GOOSE using statistical analysis. We proposed three approaches. The
first one was computing arithmetic mean and variance and creating quantity interval within
which packets with the same communication patterns were captured. If the interval was
not met, the anomaly was detected. The second approach was to create a box plot and use
its quartiles as an interval. Similarly, confidence interval using the three-sigma rule was the
last approach. We found out that the arithmetic mean has the highest accuracy score and
sensitivity, and the lowest error rate among the methods tested.

Communication using MMS protocol is not as straightforward as GOOSE, therefore
statistical analysis was not used. Instead, we created a communication profile using deter-
ministic probabilistic automata (DPA). Transitions between the states were marked with
probabilities they would be used with. Algorithm Alergia was used for learning and detec-
tion. We found out that this approach is successful only for some of the datasets provided
and that it was able to find anomalies in 2 out of 3 corrupted files. However, it never found
anomalies in the files where there were none.

Further work can be focused on finding appropriate abstraction over the MMS protocol.
For this purpose, we used MMS Service and PDU Type, but other MMS fields could work
better for DPA. Decision Trees and Random Forests could help find such fields. It could
also be a more relevant detection method. Because of the lack of available datasets of IEC
communication, the accuracy of proposed methods is not guaranteed. Samples of the IEC
61850 conversation would be of help.
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Appendix A

Tool manual

Usage
$ make
$ ./build/apps/detector learning_file.csv detecting_file.csv -method

-method is method used for detecting anomalies in GOOSE protocol:
-a : arithmetic mean and variance
-b : box plot
-s : confidence interval using 3 sigma rule

Input File
File has to be in .csv format.

Configuration
Configuration is needed before the tool can be used. Go to include/Config.h and set:

• INPUT_SEPARATOR - this should be symbol used to divide fields in your .csv
file.

• For GOOSE protocol, set constants position in goose_layout (positioning is from 0,
not from 1) - for example, if source MAC address in your input file is on first position,
set goose_layout_SrcMAC to 0.
Required fields:

– time when packet arrived,
– source MAC address,
– destination MAC address
– packet length.

• WINDOW_SIZE - this is size of one window in learning module in seconds.

• DELTA_ROUND_DEC_PLACES - if you want to have delta in intervals rather
than strictly in miliseconds, choose how much your delta shoud be rounded in output.

46



Appendix B

Mapping IEC 61850 objects and
services to MMS

The following table is copied from [10] and shows how ASCI objects and services are mapped
to MMS services. It also shows MMS value of the service used in MMS PDU.

IEC 61850 Object IEC 61850 Services MMS Object MMS Services MMS Value

Server GetServerDirectory Virtual Manufacturing
Device (VMD) File Directory 4

Associate Initiate 1
Abort Abort 2Association
Release Conclude 3

Logical Device GetLogicalDeviceDirectory Domain GetNameList 5
GetLogicalNodeDirectory GetNameList 55Logical Node GetAllDataValues Named Variable Read 6
GetDataValues Read 7
SetDataVariables Write 8
GetDataDirectory GetVariableAccessAttributes 9Data

GetDataDefinition

Named Variable

GetVariableAccessAttributes 10
GetDataSetValues Read 11
SetDateSetValues Write 12
CreateDataSet DefineNamedVariableList 13
DeleteDataSet DefineNamedVariableList 14

Data Set

GetDataSetDirectory

NamedVariableList

GetNameVariableListAttributes 15
SelectActiveSG Read 16
SelectEditSG Read 17
SetEditSGValue Write 18
ConfirmEditSGValues 19
GetEditSGValue Read 20

Setting-Group
-Control-Block

GetSGCBValues

Named Variable

Read 21
Report InformationReport 22
GetBRCBValues Read 23
SetBRCBValues Write 24
GetURCBValues Read 25

Report-Control-Block

SetURCBValues

Named Variable

Write 26
Log Journal

GetLCBValues Read 27
SetLCBValues Write 28
QueryLogByTime ReadJournal 29
QueryLogAfter ReadJournal 30

Log-Control-Block

GetLogStatusValues

Named Variable

GetJournalStatus 31
GetGoCBValues Read 33
SetGoCBValues Write 34
SendGOOSEMessage Write 32
GetGoReference 35

GOOSE-Control-Block

GetGOOSEElementNumber

Named Variable

36
GetGsCBValueGSSE-Control-Block SetGsCBValue Named Variable

Select Read 43
SelectWithValue Write 44
Cancel Write 45
Operate Write 46
CommandTermination InformationReport 47

Control

TimeActivatedOperate

Named Variable

InformationReport 48
GetFile FileOpen/FileRead/FileClose 49
SetFile ObtainFile 50
DeleteFile FileDelete 51Files

GetFileAttributeValues

Files

FileDirectory 52

Table B.1: MMS Objects and Services
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Appendix C

Tools and scripts created for
purpose of this thesis

pcap_to_csv.py
This is a script that parses pcap file on the input and creates a csv file with only a few
information found in the PDU headers. In our thesis, we used timestamp, source IP address,
destination IP address, source port, destination port, MMS Service and PDU Type.

Requirements

To run the tool you need to have installed Python 3 with the package scapy. This package
you can install using the pip3 util.

Usage

Run the tool using python3 pcap_to_csv.py. The output of the file will appear on the
standard output in csv format.
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Appendix D

detano tool

This is a tool used in this thesis for detecting anomalies using deterministic probabilistic
automaton. Original version can be found here[7]: https://github.com/vhavlena/detano.

detano is Automata-based Detection tool of Network Anomalies. All tools in the suite
works with automata obtained from a list of messages (packets) divided into conversations
(messages that logically belong together). Messages (packets) are assumed to be provided
in a csv file (each message per line). Files containing message are then input of the tools
below. Messages are splitted into conversations based on a particular protocol. It consist
of tools used for various ourposes. The ones used in the thesis were:

• anomaly_member.py: Tool for a detection of anomalies in a csv file (testing file) based
on a given valid traffic sample (training file). Based on the particular method, a prob-
abilistic automata(PA) is first obtained from training file. The detection mechanism
then checks whether conversations from testing file (divided into time windows) all
belongs to language of the learned PA (i.e., each conversation has nonzero probabil-
ity).

• pa_learning.py Learning of PAs based on own implementation of Alergia (including
the testing phase). As an input it takes a csv file containing messages.
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