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Abstract
This thesis aims to implement a method of detecting the horizon line in images using
deep learning to prevent any constraints on input data. A training dataset is created by
downloaded images from large metropolitan cities around the world using the Google Street
View service. Several popular architectures for convolutional neural networks are chosen,
and their performance is evaluated on existing benchmark datasets.

Abstrakt
Cieľom tejto práce je naimplementovať metódu detekovania horizontu vo fotografii pomo-
cou hlbokého učenia, aby sa zabránilo obmedzeniam pre vstupné dáta. Trénovací dataset
bol vytvorený sťahovaním obrázkov z miest z celého sveta pomocou služby Google Street
View. Bolo vybratých niekoľko populárnych architektúr pre konvolučné neurónové siete a
po natrénovaní boli vyhodnotené na existujúcich testovacích datasetoch.
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Rozšírený abstrakt
Táto práca sa zaoberá problematikou detekcia horizontu vo fotografii pomocou hlbokého
učenia. Využitím práve hlbokého učenia sa má zabrániť tomu, aby boli kladené požia-
davky na vstupné obrázky, ako napríklad prítomnosť zbiehajúcich sa úbežníkov. Takáto
podmienka podstatne by sťažovala detekciu horizontu na miestach s menšou alebo neexis-
tujúcou zástavbou.

Práca popisuje niekoľko existujúcich riešení pre detekciu horizontu, z ktorých niektoré
využívajú práve metódy hlbokého učenia. Na týchto metódach sa zakladá táto práca. Ďalej
sa v tejto práci popisuje základná teória ohľadom konvolučných neurónových sietí, vrátane
niekoľkých populárnych architektúr, ktoré sú použité pri trénovaní modelu.

Pre testovanie validity detektora horizontu existuje niekoľko datasetov: York Urban
Dataset, Eurasian Cities Dataset a z nich najnovší a najväčší Horizon Lines in the Wild,
ktorý čiastočne slúži aj na trénovanie. Avšak nie je dostupný vhodný trénovací dataset,
preto bolo potrebné vytvoriť vlastný. Na toto bola použitá služba Google Street View, ktorej
API umožňuje sťahovať fotografie z takmer celého sveta. Pri sťahovaní dovoľuje špecifikovať
parametre ako sklon kamery alebo veľkosť zorného poľa. Vďaka tomuto sa dá automaticky
vypočítať pozícia horizontu a nie je potrebné ručné anotovať jednotlivé obrázky. Takto
získané obrázky nemajú žiadne otočenie a preto ich dodatočne treba rotovať.

Drvivá väčšina modelov hlbokého učenia predikuje jednu triedu alebo hodnotu. Hori-
zont, the priamku, nie je možné popísať jedinou hodnotou. Je ho ale možné popísať dvoma
hodnotami, a to uhlom priamky a vzdialenosťou priamky od stredu obrázku. Trénovaný
model preto bude produkovať dve výstupné hodnoty.

Inštinktívne je možné poňať úlohu určenia horizontu ako regresnú, teda produkujúce
konkrétnú hodnotu. V tejto práci je to avšak brané ako úloha klasifikačné, kde model
vracia príslušnosť k triede. Tento prístup dovoľuje sa ľahšie riešiť problém odchýlok vrámci
datasetu. Použité architektúry konvolučných sietí museli byť upravené, aby umožnili viacero
rôznych výstupov. Toto je docielené tak, že sa ponechá vstupná vrstva spolu s konvolučnými
vrstami a následne sa model rozvetví.

Implementácia prebiehala v jazyku Python a boli využitá knižnica Keras a Tensor-
Flow. Modely boli trénované na platforme Google Colaboratory. Kvôli veľkosti trénova-
cieho datasetu bolo potrebné vytvoriť dátový generátor, aby sa umožnilo trénovať model
po dávkach.

Natrénované modely boli vyhodnoté na dvoch testovací datasetoch. Metrikou je vzdi-
alenosť predikované horizontu od skutočného anotovaného horizontu normalizovaná výškou
obrázku. Pri testovaní architektúra AlexNet dosiahla spomedzi použitých architektúr na-
jhoršie výsledky, zatiaľ čo architektúra Inception V3 dosiahla najlepšie.

Avšak aj tieto výsledky nedosiahli hodnoty najmodernejších metód. Je preto stále
priestor pre zlepšenie, či získaním väčšieho trénovacieho datasetu alebo uplatnením metód
na regularizáciu, aby sa predišlo nadmernému pretrénovaniu. Plne funkčný model by bolo
zaujímavé do budúcna využiť a zakomponovať do aplikácií, ako webová aplikácia pre ko-
rekciu natočenia fotografií podľa horizontu.
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Chapter 1

Introduction

This thesis deals with horizon detection in photos using deep neural networks. The Horizon
line represents valuable information for a variety of tasks. While many methods on horizon
line estimation from a single image have been proposed, most do not use deep learning.
Furthermore, they often require the image to contain at least some clues, such as vanishing
points.

This thesis analyzes state-of-the-art methods for horizon line estimation, which use deep
learning, and implements a method that should solve some of their shortcomings. Existing
methods are described in chapter 2. chapter 3 introduces convolutional neural networks
and architectures that are used in this thesis. chapter 4 describes the metric used for
measuring the accuracy of the horizon line detectors and the existing datasets used for
evaluation. chapter 5 discusses the creation of a training dataset and approach to detecting
horizon lines. In chapter 6 are described used tools and implementation of convolutional
neural network. chapter 7 details evaluation of trained models on benchmark datasets and
discusses possible improvements.
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Chapter 2

Analysis of Existing Methods to
Horizon Detection

2.1 Problem Definition
The horizon is the line that separates the earth from the sky. Frequently, the horizon line is
obscured by, for example, buildings, especially in urban areas, and may not be easily seen.
However, it can still be determined using the vanishing points to see where the mutually
parallel lines appear to converge. Horizon line has great importance in aviation, navigation,
or even in art.

2.2 State-of-the-art Approaches

Detecting Vanishing Points using Global Image Context in a Non-Manhattan
World

This method[21] is used for detecting the vanishing points and the horizon line in man-made
environments. While other methods first seek possible vanishing points and then remove
the outliers, this method reverses the process. Furthermore, unlike other methods, it does
not make a Manhattan-world assumption[4], which means that all surfaces are aligned with
three dominant directions (X, Y, and Z axes). Due to this, it can analyze even scenes with
only a single vanishing point.

Global Image Context

The method first uses a deep convolutional neural network to extract global image context.
Horizon priors are extracted from the global image context.

The horizon line is parametrized by two values:

• slope angle

• offset

Popular architecture AlexNet[13] was used, with some modifications. General AlexNet
architecture is described in section 3.2. The first five convolutional layers from the original
architecture remain unchanged. Fully connected layers are removed and replaced by two
disjoined sets of fully connected layers, one for slope angle and the other for offset.Both
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horizon line parameters are converted into categorical labels by dividing their domains into
bins.

The network is trained using stochastic gradient descent with a multinomial logistic loss
function. The learning rates are progressively increased.The network outputs a categorical
probability distribution for the slope and offset.

A training database for the model was created by downloading a large number of panora-
mas from the Google Street View service.

After the priors from the global image context, the algorithm consists of the following
steps:

1. detect zenith VP - firstly, an initial set of line segments is chosen from the global
image context using the zenith direction. The RANSAC algorithm is used to refine
it and handle the presence of outlier line segments.

2. detect horizontal VPs - at first, a set of horizon line candidates that are perpendicular
to the zenith direction is chosen. For each candidate, a set of horizontal vanishing
points is identified. It is done by selecting points along the horizon line where a lot
of line segments intersect. The assumption is that if the horizon line is true, the
horizontal VPs will be close to many intersection points and those intersections will
be more clustered as opposed to non-horizon lines.

3. score horizon line candidates with horizontal VPs - to each horizon line candidate, a
score is assigned based on the total consistency of lines with selected VPs.

Figure 2.1: Principle of Detecting Vanishing Points using Global Image Context, taken
from [21]

Horizon Lines in the Wild

The method proposed in [19] takes a learning-based approach and applies convolutional
neural networks to directly estimate the horizon line. It does not rely on explicit geometric
constraints like vanishing points. It can be used either in isolation or in conjunction with
some geometric approach. While other horizon detection methods already used CNN, at
that time none used it to directly estimate horizon line.

This method also introduced a new dataset which is now used as one of the benchmark
datasets. This dataset is further described in section 4.2.

In order to automatically label images in the dataset, authors have used the structure
from motion (SfM) model similar to the one used in [9]. These models mostly consist of

4



tourist landmarks located in urban areas. They do not contain many images of, for instance,
residential streets or forests, which would create a bias. This was solved by adding such
images to the dataset using panoramas downloaded from the Google Street View service.

Horizon Line Estimation using CNN

The cost of using CNN to estimate the horizon line only depends on the size of the image.
GoogleNet architecture[17] was used as a basis due to the fact it requires fewer parameters.
The general structure of GoogleNet architecture is described in section 3.3. There are two
CNN variants - one uses a classification approach and the other with a regression approach.

The horizon line is described here either by:

1. slope and offset

2. vertical offset on the left and right side of the image

The network was implemented using the Caffe[7] deep learning toolbox.

Classification Approach

Horizon line estimation is framed here as a classification problem. The output of a CNN
is then a probability distribution over categories. For each of the parameters are generated
bins.

The standard GoogleNet architecture is adapted by:

1. duplicating each softmax classifier to occur once for each parameter

2. modifying the fully connected layer for each softmax classifier to output a vector with
dimensions corresponding to the number of bins

Regression Approach

This approach is more challenging than classification. The default architecture is adapted
by:

1. replacing each softmax classifier with a regressor - once for each parameter

2. modifying the corresponding fully connected layer to output a scalar value

Only using a regression objective did not achieve as good results as classification. How-
ever, this could be fixed by changing the initialization strategy.

Figure 2.2: Example of predicted and true horizon lines, taken from [19]
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A-Contrario Horizon-First Vanishing Point Detection Using Second-Order
Grouping Laws

The method[16] proposes horizon line detection in man-made environments. In such en-
vironments, the horizon line can be hypothesized based on a-contrario (meaning from the
opposite) detections of second-order grouping events. A vanishing point is classified as a
second-order grouping event, or a second-order gestalt according to the Gestalt theory of
perception[6]. This way horizontal vanishing points on that line are extracted.

The method allows detecting the zenith and all horizontal vanishing points. Further-
more, it automatically associates a Manhattan frame to the scene. This allows calculating
the camera focal length and camera orientation. Lastly warp is added to an image in order
to make all vertical planes in the image appear as they would in a frontal view. If the
Manhattan frame is found, the image proportions are changed to appear as in the real
world.

This method avoids computationally expensive processes changing the 2D search of
useful vanishing points to three separate 1D searches of zenith line, horizon line, and VPs.
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Chapter 3

Convolution Neural Networks and
their Architectures

When dealing with problems such as image classification or recognition, convolutional neural
networks can be used, as they are most suitable for such tasks. Convolutional neural
networks (CNNs) are a special Deep learning algorithm.

3.1 Convolutional Neural Networks
They take an image as an input. The CNN aims to transform a raw image into a form that
is easier to process by computer. The neurons in the early layer will extract local visual
features and then neurons in later layers will combine those features to form higher-order
features.[8] In face of a face recognition task, the first layer might look for lines at a specific
angle, those lines would then combine to extract corners and later the previous features
would combine into parts of the face like the eye.

Layers

CNN consists of an input, output layer, and multiple hidden layers in between. As their
name suggests, at least one of the hidden layers is a convolutional layer. Apart from
convolutional layers, there are also other possible layers such as the pooling layer.

Input Layer

The input to a CNN is a tensor with a shape defined as:

𝑠ℎ𝑎𝑝𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠× 𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡× 𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ× 𝑖𝑛𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

Convolutional Layer

The convolutional layer is based around learnable filters or kernels, which are small in size.
The filter is convolved across the input volume and computes the dot product between the
entries of the filter and the input This produces a 2D activation map of a filter. This way
the network learns kernels that activate when they see a specific feature at a given position
of the input.[15]
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Convolution can be expressed by the following formula[10]:

𝑓𝑘
𝑙 (𝑝, 𝑞) =

∑︁
𝑐

∑︁
𝑥,𝑦

𝑖𝑐(𝑥, 𝑦) · 𝑒𝑘𝑙 (𝑢, 𝑣) (3.1)

where 𝑖𝑐(𝑥, 𝑦) is an input image element, that is element wise multiplied by 𝑒𝑘𝑙 (𝑢, 𝑣) index
of the 𝑘𝑡ℎ kernel 𝑘𝑙 of the 𝑙𝑡ℎ layer.

Convolutional layers are mainly defined by following parameters:

• the filter/kernel - represented as m x n matrix

• the stride - defines how we slide the filter across, bigger strides reduces the overlapping
and the output size

• zero-padding - adding zeroes on the input image border

Each of these parameters will alter the final output size, which can be calculated as:

(𝑉 −𝑅) + 2𝑍

𝑆 + 1
(3.2)

Where V represents input dimensions, R is receptive field size (kernel size), Z equals zero-
padding, and S is stride.

Figure 3.1: Convolution applied on an image with zero padding

Pooling Layer

The purpose of the pooling layers is to reduce the dimensionality which will reduce the
number of parameters needed and the computational complexity of the model.[15] Pooling
layers operate over the activation map and uses the chosen function to scale down the
input. In a CNN architecture, a common practice is to insert a pooling layer between the
convolutional layers.

Most CNNs use a max-pooling layer that has the kernel size of 2 x 2 and uses a stride
of 2. This scales down the activation map to 25% of the original size. Max-pooling uses
the max function - reports the maximal values.

Apart from max-pooling, there is also overlapping pooling, where the kernel size is
bigger than the stride and thus overlaps, or the general pooling which reports the average
values.
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Figure 3.2: 2 × 2 Max-pooling

Fully-Connected Layer

A fully connected layer provides high-level reasoning and occurs after several convolutional
and pooling layers. It attempts to produce class scores from the activations, to be used for
classification.[15] Neurons in a fully connected layer have connections to all activations in
the previous layer.

Activation Functions

The activation function defines the output of that node in the network depending on the
input. The most used activation functions are:

• Sigmoid[14] - sigmoid is a non-linear activation function that is computed as:

𝜎(𝑥) =
1

1 + 𝑒−𝑥
(3.3)

• The rectified linear unit (ReLU)[14] - ReLU performs a threshold operation to each
input element where values less than zero are set to zero thus the ReLU is given by

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) =

{︃
𝑥𝑖 𝑖𝑓 𝑥𝑖 ≥ 0

0 𝑖𝑓 𝑥𝑖 < 0
(3.4)

• Softmax[14] - it is used to calculate probability distribution from a vector of real
numbers. The softmax function is calculated as:

𝑓(𝑥𝑖) =
𝑒𝑥𝑖∑︀
𝑗 𝑒

𝑥𝑗
(3.5)

The difference between sigmoid and softmax is that sigmoid is used for binary classi-
fication as opposed to the softmax which is used for multiple class classification.

Loss Functions

The loss function or the cost function is a function used to evaluate a candidate solution
(the set of weights). It penalizes the deviation between the predicted and true labels during
the model training. Loss functions can be divided into multiple categories:

• regression loss functions - model predicts a real value

9



• binary classification loss functions - model predicts between only two classes

• multi-class classification loss functions - model predicts between multiple classes

Multi-class classification loss functions include, for instance, categorical cross entropy
or sparse categorical cross entropy.

3.2 AlexNet
AlexNet is a convolutional neural network that competed in a won the ImageNet challenge1

in 2012. It achieved an error of 15.3%, which was more than 10.8% lower than the runner
up. The paper publishing the results is considered to be among the most influential in the
computer vision field as it has influenced more papers to use CNNs.

AlexNet architecture consists of 8 layers[13] - 5 convolutional layers and 3 fully-connected
layers. It brought new approaches to convolutional neural networks by using:

• ReLU activation function - before AlexNet, the tanh activation function was the
standard. However, using the ReLU resulted in significantly lower training time.

• multiple GPUs - by splitting the model’s neurons between two GPUs the training
time was reduced and a bigger network could have been trained.

• overlapping pooling - introducing the overlapping pooling saw an error reduction and
also helped to prevent overfitting.

To reduce overfitting, the authors resorted to data augmentation to make their data
more varied. They have used image translations and horizontal reflections, which greatly
increased the size of the training set. They also changed the intensities of RGB channels.

Apart from data augmentations, they used the technique called dropout, where every
iteration uses a different sample of the model’s parameters. This forces neurons to have
more robust features. The downside is the increase in the training time.

Figure 3.3: AlexNet architecture[13]

1http://www.image-net.org/challenges/LSVRC/
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3.3 GoogLeNet
GoogLeNet is a deep convolutional neural network architecture that is a variant of the
Inception Network developed by researchers at Google. It was first presented at the Ima-
geNet challenge in 2014.[17] GoogLeNet is now a staple architecture within most common
machine learning libraries such as TensorFlow, Keras, or PyTorch.

GoogLeNet architecture was designed to have higher computational efficiency than some
of its predecessors. It achieves this by reducing the input image size, while still retaining
important spatial information. The input layer takes in an image of 224 x 224 pixels.

The GoogLeNet architecture consists of 27 layers including the pooling layers. Part of
the layers is 9 inception modules. An inception module can be seen in 3.4.

Figure 3.4: GoogLeNet inception module[17]

Networks with too many deep layers may face the problem of overfitting. Authors of
GoogLeNet solve this by having filters with multiple sizes that can operate on the same
level. This way the network becomes wider instead of deeper.

The convolution is performed with filters of sizes 1x1, 3x3, and 5x5. Max-pooling is
performed alongside convolutions to be sent into the next inception module. Due to how
neural networks are time-consuming to train, the number of input channels is limited to
one by adding another 1x1 convolution before the 3x3 and 5x5 convolutions.

Figure 3.5: GoogLeNet architecture[17]

3.4 InceptionV3
Inception v3 is a convolutional neural network architecture that was first introduced in
[18]. This architecture builds upon the previous iteration Inception V2 and improves it. It
focuses on image analysis and object detection.

11



Figure 3.6: Inception v3 architecture - source: https://paperswithcode.com/method/
inception-v3
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Chapter 4

Evaluation Metrics and Existing
Datasets

4.1 Metrics
New methods for the horizon line estimation are evaluated on three existing benchmark
datasets which are discussed in section 4.2 - the York Urban Dataset, Eurasian Cities
Dataset, and Horizon Lines in the Wild.

Horizon detection error is defined as the distance from the detected horizon to the
ground-truth horizon line and then normalized by the image height.[21] Traditionally, a
cumulative histogram of errors is shown along with information about the size of the area
under the curve (AUC).

4.2 Datasets
There exists only a small number of publicly available datasets with annotated horizon lines.
Usually, creators of horizon detection methods in their papers evaluate their implementation
using three datasets:

• York Urban Dataset1

• Eurasian Cities Dataset2

• Horizon Lines in the Wild3

York Urban Dataset

York Urban Dataset (YUD), which was first introduced in [5] contains a total of 102 photos,
out of which 45 are of indoor environments and 57 are of outdoor urban environments. The
images were taken around York University and Toronto, Canada, which reflects in its name.
All the images were hand-labeled. Each image has a resolution of 640 x 480 pixels.

1https://www.elderlab.yorku.ca/resources/york-urban-line-segment-database-information/
2http://graphics.cs.msu.ru/en/research/projects/msr/geometry
3http://mvrl.cs.uky.edu/datasets/hlw/
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Figure 4.1: Example of images in York Urban Dataset, taken from [5]

Eurasian Cities Dataset

The Eurasian Cities Dataset (ECD) is another one of the benchmark datasets for horizon
line estimation. It was first introduced in [2]. Unlike the YUD, it contains many non

”Manhattan“ worlds.

Figure 4.2: Example of images in Eurasian Cities Dataset, taken from [2]

Horizon Lines in the Wild

The Horizon Lines in the Wild (HLW) was first used in [19].
The HLW contains a significantly more significant number of annotated images. How-

ever, there is a significant number of mislabeled images in HLW, which might be one reason
why all methods perform significantly worse on this dataset. Its size is another factor, the
original version of the dataset totals around 13GB, while the newer version contains 69GB
of data. Unlike previous entries, this dataset is split between the image for training models
and images withheld for test and validation.

Figure 4.3: Example of images in Horizon Lines in the Wild dataset, taken from [19]
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Chapter 5

Design of Horizon Detector

This thesis aims to create a method capable of detecting the horizon line in an image using
deep learning. This chapter describes the approach to designing a convolutional neural
network and creating a training dataset for such a network.

5.1 Creating a Training Dataset
To train a convolutional neural network capable of detecting a horizon line in the image,
it was necessary to create a training image dataset. The two existing datasets, the York
Urban and Eurasian Cities datasets, are very small, containing only around 100 images.
Furthermore, they are both used as benchmark datasets.

The only other publicly available dataset is the Horizon Lines in the Wild dataset.
While this dataset is considerably more extensive, it is not ideal to use it as the sole
training dataset. The training portion of the dataset contains only about 16000 images.
Additionally, there are instances of incorrectly labeled images. However, after filtering
outliers, this training dataset can be used in combination with our own.

The final training dataset should contain a variety of images from both urban and
more rural locations. Each picture needs to have annotated position of the horizon line.
There are several ways of defining the horizon line, ranging from parametric, normal, or
slope-intercept form.

Our annotation method was based on the slope-intercept form. One of the parameters
of the line is its slope or angle. The second parameter is the distance of the line from the
center of the image. The distance from the bottom left corner of the image to the point of
interception of the line with the left image border was also considered a potential parameter
instead of the distance from the center. However, this was deemed less intuitive and would
be more challenging to learn by the neural network.

Used services

The process of creating the dataset was inspired by [21], where they used the Google Street
View1 service, which has an API that allows users to download images from around the
world using either city names or specific latitude and longitude. While the service is no
longer free ever since it changed its pricing model, it provides a 200$ free monthly credit
for its users. Each user is assigned a unique key signature to be used in all requests.

1https://developers.google.com/maps/documentation/streetview/overview
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Most importantly, the API allows several parameters when downloading images. Apart
from specifying the exact location using latitude and longitude, users have the option to
specify, among others, the following parameters:

• heading - heading direction of the camera in degrees

• fov - horizontal field of view of the image

• pitch - up or down angle of the camera relative to the Street View vehicle

Those are the most critical parameters because they are needed to calculate the horizon’s
position in the image. Other parameters such as source can limit results to only outdoor
images. However, for our purposes, indoor images are, too, downloaded since benchmark
datasets also include several examples of indoor imagery.

The OpenCage Geocoding API2 is a service that can convert city names to latitude and
longitude coordinates and vice versa. When converting text name to coordinates, it returns
coordinates of the city center.

Approach to downloading images

Firstly, we have created a list of cities from which we intend to download images for the
dataset. Each city on the list also needs its country in order to avoid possible confusion.
We have chosen cities based on their population and size. The reasoning behind this is that
those cities typically have a denser infrastructure with various types of buildings. Such
metropolitan cities on the list are Tokyo, New York, or London. Apart from those large
cities, several smaller cities were also included to provide more rural imagery.

For the training part of the dataset, the list contained 51 cities worldwide, except for
Australia. The purpose of this was to separate training data from validation data. The
list of cities for validation contained eight cities from around Australia, such as Sydney or
Melbourne.

We created a separate script for downloading image data. It downloads a defined number
of photos from the chosen city. Cities from our created lists are fed to the downloaded script.
The images are in .jpg format, and the default size is 400 x 400 px. By using the square
ratio, we significantly simplify all necessary equations.

The opencage.geocoder Python library, which implements the OpenCage Geocoder
API, converts the city name with its country to latitude and longitude coordinates of the
city center. The program will calculate several locations in said city within a defined radius
from the city center.

For our purposes, we have chosen to use a radius of 5 km, and in each city, download
from 125 locations. Moreover, in each location, we download four pictures by changing
the heading direction. In the ideal case, this results in 500 downloaded images per city in
single program execution. However, the Google Street View often does not offer panorama
at chosen coordinates and returns a blank image. To prevent downloading pointless blank
images and wasting credit, we check the size of the first downloaded image from a location.
If the size is below a certain threshold, we remove the image, and the program proceeds
with the following random location.

To get the new latitude and longitude coordinates from where to download images, we
first need to choose an angle and distance from the city center. The distance ranges from

2https://opencagedata.com/
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0 to our previously chosen radius. The angle has to be in radians. We use a uniform
distribution from both of those parameters.

We calculate the first the new latitude coordinate[1]:

𝑑𝑒𝑙𝑡𝑎_𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 𝑠𝑖𝑛(𝑎𝑛𝑔𝑙𝑒) * 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/110.574
𝑛𝑒𝑤_𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 𝑐𝑖𝑡𝑦_𝑐𝑒𝑛𝑡𝑒𝑟_𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒+ 𝑑𝑒𝑙𝑡𝑎_𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

(5.1)

Using the new latitude coordinate, we calculate the longitude as:

𝑑𝑒𝑙𝑡𝑎_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 𝑐𝑜𝑠(𝑎𝑛𝑔𝑙𝑒) * 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/(111.320 * 𝑐𝑜𝑠(𝑛𝑒𝑤_𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)

𝑛𝑒𝑤_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒+ 𝑑𝑒𝑙𝑡𝑎_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒
(5.2)

Once we have these coordinates, we can download images in that location using the
Google Street View API. We randomly, with uniform distribution, choose values for fov,
heading, and pitch parameters. The ranges for each parameter are based on those in
[cite]:

• fov ∈ <40°,80°>

• heading ∈ <0°,360°>

• pitch ∈ <-30°,30°>

We include the city name, timestamp, field of view, heading, and pitch value in the
image name for better organization.

After an image is downloaded, we calculate the horizon’s position. Using fov and pitch
values in radians, and given that we know image width and height, we calculate two points
of horizon line by first determining the offset h as:

ℎ = 𝑡𝑎𝑛(𝑝𝑖𝑡𝑐ℎ) * ( (𝑤𝑖𝑑𝑡ℎ/2)

𝑡𝑎𝑛(𝑓𝑜𝑣/2)
) (5.3)

Then the offset h is then adjusted due to the fact that when the pitch is equal to 0, the
horizon line is precisely in the middle of an image:

ℎ = (ℎ𝑒𝑖𝑔ℎ𝑡/2) + ℎ (5.4)

Finally, we get the two points:

𝐴 = [0, ℎ], 𝐵 = [𝑤𝑖𝑑𝑡ℎ, ℎ] (5.5)

Given two points A and B, we automatically determine the angle (which will be 0 since
the image is not yet rotated) and line offset with the following:

𝑠𝑙𝑜𝑝𝑒 =
𝐵[1]−𝐴[1]

𝐵[0]−𝐴[0]

𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑠𝑙𝑜𝑝𝑒)

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐴[1]− 𝑠𝑙𝑜𝑝𝑒 *𝐴[0]

(5.6)

We store metadata for downloaded images in a .csv file, where we write image filename,
angle in radians, and offset normalized by image height.
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Figure 5.1: Example of downloaded images

Rotating images

The images are not yet rotated. We rotate them all at once after finishing the downloading.
From a single unrotated image, we produce three rotated images. The degree of rotation is
randomly chosen with a range of <-20°,20°>. This also serves as data augmentation.

We rotate the image using the function already provided to us by the scipy library.
While this image is correctly rotated, it does have black spots left by rotation. To avoid
this effect, we zoom in using the smallest zoom factor possible and clip the image.

After rotating each image, the new position of the horizon is determined. After extract-
ing angle and offset from the previously created .csv file, we determine two points on the
line.

Next, we apply the same rotation on the image to the two points of the unrotated
horizon line. The origin of rotation is the center of the image, and the angle is the roll.
Then we use the zoom on the new points with the same factor as was used for the whole
image.

Lastly, we convert the two points representing the line back into the angle and offset
the same way as in [equation]. New angle and offset values are written into the new .csv
file containing the information on rotated images.

Figure 5.2: Process of preparing images for dataset
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Converting offset to distance from the center

Since parametrizing horizon line with angle and distance from center was deemed more
intuitive than offset from left image border, we need to convert offset to distance from the
center.

Given the angle and offset from .csv file, we first compute the horizon line definition in
slope-intercept form, y = k*x + q. We obtain k as tan(angle), and q is essentially the offset
already. Using the slope-intercept form, we obtain two points residing on the horizon line:

𝐴 = [0, 𝑞], 𝐵 = [𝑤𝑖𝑑𝑡ℎ, 𝑘 * 𝑤𝑖𝑑𝑡ℎ+ 𝑞] (5.7)

Afterward, we determine the center of the image as:

𝑃 = [𝑤𝑖𝑑𝑡ℎ/2, ℎ𝑒𝑖𝑔ℎ𝑡/2] (5.8)

The final distance from the center is calculated as the cross product (B-A) × (P-A) and
then divided by the vector norm of (B-A).

In total, the dataset contains 103392 files totaling approximately 2,7 GB. The training
portion consists of 91263 images and the validation portion of 12126 images.

Additional training images

Training images from Horizon Lines in the Wild dataset[20] were used to increase the image
dataset’s size further. In total, the HLW dataset provides 16919 training photos of mostly
touristic locations. However, these images are of various resolutions with non-square ratios,
unlike our training dataset, where all images should be 400x400 pixels. Therefore, all
these photos had to be first transformed, and the horizon line position in them had to be
recalculated. We cropped the center square of each image. Afterward, this square was
resized down to the final size of 400x400 pixels.

The additional images from the Horizon Lines in the Wild dataset bring the total number
of training images for the neural network to 108182.

5.2 Method of detecting the horizon line
To detect horizon lines in images, I have decided to use a convolutional neural network
similar to [19]. Several existing architectures for the convolutional neural network would
be tested to see which would provide the best results. Those architectures will be the
AlexNet(section 3.2), GoogleNet(section 3.3) and Inception V3(section 3.4) architectures.

The input of this network would be a single image. The output, however, would two
separate information:

• the angle of the horizon line in radians

• the distance of the horizon line from the center of the image

In order to have the trained model output both at once and not have two separate
models for each parameter, changes had to be made to the network architecture. The base
structure containing the input layer and all the convolutional layers remains the same, no
matter which architecture we are using.

After the final convolutional layer, the model will be split into two separate sets of fully
connected layers. One branch will output predictions for the angle and the other for the
distance parameter of the horizon line.
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After some thought, we decided to treat the task of horizon line detection as a classifi-
cation problem instead of a regression problem. The model, therefore, will not output the
exact numerical values but the class to which it belongs. Using the classification approach
instead of regression also helps to deal with outliers. Normally, in cases like the imagenet
challenge 3, the classes are categories such as ”cat“ or ”dog“. Instead, we define a possible
range for each parameter and the number of classes within this range. The real value is
then transformed into the classes using the following formula:

𝑠𝑡𝑒𝑝 =
𝑟𝑎𝑛𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑐𝑙𝑎𝑠𝑠 =
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒+ (𝑟𝑎𝑛𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ * 0.5)

𝑠𝑡𝑒𝑝

(5.9)

For the angle of the horizon line, the range was chosen to be <-45°,45°>, or <-𝜋4 , 𝜋
4> in

radians. This range was chosen due to the nature of our training dataset. For the distance
from the center, the range was chosen to be <-500,500> px. This was chosen through a
trial and error approach to see which range would provide the best results. The distance
range is intentionally more extensive than the input image size to accommodate possible
instances where the horizon line is way too high or low to be directly in the picture.

The number of classes was chosen to be 100. This number, once again, was done by
testing which value returned the best results. The number of classes had to be big enough
so that the deviation between actual value and value obtained by reversing the formula for
getting the class was not significant.

5.3 Evaluation method
The trained models will be evaluated on the Eurasian Cities dataset (section 4.2) and York
Urban dataset (section 4.2). Both these datasets have horizon position data stored in the
form of three parameters 𝑎, 𝑏 and 𝑐 for the normal form where 𝑎 * 𝑥 + 𝑏 * 𝑦 + 𝑐 = 0. We
transform this form into two points residing on the horizon line and image borders.

The trained models will require the input images to be of square ratio with a specific
size. Nevertheless, the images in those two benchmark datasets all have different sizes and
are not always square. Therefore we will first extract the square image from the center and
then resize it to the correct size. We also need to recalculate the horizon position at this
point.

The model will predict the angle and distance from the center, from which we get points
where the horizon line crosses the left and right border of the image. We use the metric
for horizon detection error described in section 4.1 where we get distance from the actual
horizon as was annotated and predicted. We do this by subtracting y values of points
intersecting the left image border and normalizing it by image height. Each image will
follow a similar process. In the end, the AUC score will be calculated.

3https://www.image-net.org/challenges/LSVRC/
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Chapter 6

Implementation

This chapter follows the chapter Design. This chapter describes tools, libraries, and services
used. The most important aspects of implementing CNN for horizon detection are addressed
in detail. Chapter Experiments and Evaluation follow the chapter.

6.1 Tools used
For the implementation of the CNN and subsequent evaluation scripts, the Python pro-
gramming language was used, with the following libraries and packages:

• Keras1 and Tensorflow2 the deep learning frameworks

• Numpy3 used for math operations

• Pandas4 for working with dataset metadata

• Matplotlib5 to visualize the results of testing trained models on benchmark datasets

Google Colababoratory6 was used to implement and train the models and the envi-
ronment for the subsequent evaluation of trained models on the benchmark datasets. It
provides its users with free access to GPUs and removes the need to train on local hardware.
Furthermore, it allows mounting user’s Google Drive and accessing data there directly. Be-
cause of that, all datasets used in both training and evaluation were stored on Google
Drive.

6.2 CNN implementation

Data preparation

Before the model could be build and training started, the input data and its labels had to
be prepared to be in the correct format.

1https://keras.io/
2https://www.tensorflow.org/
3https://numpy.org/
4https://pandas.pydata.org/
5https://matplotlib.org/
6https://colab.research.google.com
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This involved resizing each image from the original 400x400 px down to the size re-
quested by specific architecture for the image data. The AlexNet architecture expects a
227x227 px image as input, GoogleNet expects a 224x224 px, and finally, Inception V3
architecture expects images to be of size 299x299 px.

Image data also needed to be properly normalized. Pre-trained models available in Keras
API[footnote] provide their preprocessing functions. It was necessary for architectures
not already available in Keras API to define preprocessing function from scratch. In this
function, the image loaded as a Numpy array was first divided by 255 to get all image
pixels within range <0,1>. Afterward, the mean value from the training dataset, which
was calculated beforehand, was subtracted from the image. Lastly, the image was divided
by the value of standard deviation from all training images.

The labels for both train and validation data were loaded from .csv files using the Pandas
library. There is a separate file for the training data and for the validation data. The .csv
file contained image location, angle in radians, and distance from the center, and each of
these parameters is transformed into a separate Numpy array. Around 10% of validation
data is used as testing data.

Data generator

Due to the large size of the training dataset, it was impossible to load the whole dataset
directly into the memory. This would involve uploading a compressed .zip file to the active
Python notebook on Google Colaboratory, which would sooner run out of available time
than actually finish extracting the files from the archive. Furthermore, it would have to be
repeated every time the runtime was restarted.

The solution to this problem is data generators. Generators break down the problem,
the large dataset, into smaller batches. The program works on a single batch and moves onto
the next one after it has finished with the previous one. The Keras API provides by default
a class capable of generating batches of images for our model, the ImageDataGenerator
class.

The ImageDataGenerator class can generate the image batches by giving it only the
dataset path in function flow_from_directory. For classification tasks, this function can
create labels for images based on the subdirectory’s name in which they are stored. However,
given our dataset’s directory structure is not related to its labels, we cannot use this func-
tion. Furthermore, even if the dataset structure was not an issue, the ImageDataGenerator
class does not support well the models, which have multiple outputs. Therefore it was
needed to create a custom data generator.

The custom data generator inherits the Sequence class to use the advantage of multi-
processing. Our generator initializes with an array of image locations and a dictionary of
the corresponding labels. Most important methods are __getitem__ and on_epoch_end.

The __getitem__ returns a single batch of data provided by the __data_generation
method. In the __data_generation function, the image is finally loaded from Google
Drive. The image is then resized and preprocessed, either by the function provided by API
or the custom method mentioned in [link].

The on_epoch_end method is responsible for shuffling the dataset at the end of each
training epoch. Shuffling the dataset is essential to prevent the model from learning the
order of the training and help the training converge faster.

Before training the model, separate generators for the training and the validation data
are initialized.
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Loss function

Since we decided to treat the horizon detection problem as a classification and have multiple
classes, we have decided to use sparse categorical crossenthopy as the loss function for both
of the outputs:

𝐿𝐶𝐸 = −
𝑛∑︁

𝑖=1

𝑡𝑖log(𝑝𝑖) (6.1)

where the 𝑡𝑖 are the true labels, 𝑝𝑖 are predicted labels and 𝑛 number of classes[12].
Another possible loss function to use is categorical crossenthropy. For our purposes,

those two loss functions are practically identical, except that the sparse categorical crossen-
thopy removes the need first to transform our class labels into a one-hot vector. Instead,
the labels are integers. The loss returns a probability vector for all classes.

Because our model has two separate outputs and two losses, it is necessary to define the
loss weight coefficients for each loss function. Since we see the angle and distance parameters
as both equally important, incorrectly estimating the horizon line, their respective loss
weights are both 1.0. The final loss is calculated as the sum of angle and distance loss.

Modifying network architecture

Multiple convolutional neural network architectures were used, namely: AlexNet, GoogleNet,
and Inception V3 architecture. As each of these architectures was designed to classify im-
ages in the imagenet challenge, they output only a single class prediction; it was necessary
to make specific changes.

AlexNet

The Keras API does not provide AlexNet architecture as a pre-trained model, unlike Incep-
tion V3. Following architecture, as it is described in [13], we copied the input layer along
with the five convolutional layers. The input layer expected image shape of 227 x 227 px.

The last convolutional layer was followed by one final Pooling layer, and the model split
into two separate branches. Each branch contained a Dropout layer to reduce overfitting
and a Dense layer with a softmax activation function.

GoogleNet

Like the AlexNet architecture, the GoogleNet is also not implemented as a pre-trained model
in Keras API. Following the same procedure as before, we implemented the architecture
described in [17] up until the last convolutional layer. This architecture required input
images to be 224 x 224 px.

Similarly, after the last convolution, a pooling layer is added, and the model branches
out. Both branches contain a Dropout layer and a final Dense layer with a softmax—one
branch outputs prediction for the angle parameter, the second for the distance parameter.

Inception V3

The Inception V3 architecture is included in Keras library7; hence, there is no need to
implement it from scratch. It also offers the possibility of initializing the model with

7https://keras.io/api/applications/inceptionv3/
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Figure 6.1: AlexNet based model structure visualized

weights from the imagenet challenge. We later experiment with both initializing weights
randomly and using the imagenet weights.

This architecture works with images of size 299 x 299 px. We do not include the top
part of the model, meaning the fully connected layers. To the base model is attached a
Pooling layer, then the model splits into two branches. The branches contain multiple fully
connected layers followed until the last Dense layer with softmax activation.

Training

All training was done on the Google Colaboratory platform with datasets stored on Google
Drive. Three different architectures were trained, and one of them, the Inception V3 archi-
tecture, was trained with both imagenet initialization and random initialization.

The models based on the AlexNet, GoogleNet and Inception V3 with random weights
initialization were trained for 25 epochs. The model based on Inception V3 with imagenet
weight initialization was trained with a transfer-learning approach. All layers except the
final added layers were frozen, and the model was trained for a small number of epochs.
Afterward, the layers were unfrozen, and the model was trained for entire 25 epochs.

All model was trained with Adam optimizer[11], the learning rate of 1e-3 and batch size
of 32. The training dataset was shuffled after each epoch.
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Figure 6.2: Inception V3 based model structure visualized

25



Chapter 7

Evaluation

This chapter contains details about trained models and their evaluation on benchmark
datasets and compares them to available state-of-the-art methods. Lastly, we discuss pos-
sible improvements and future practical applications.

7.1 Trained Models
This section details the training process. We trained models described in section 6.2. All
models were trained on the dataset specified in section 5.1. In the graphs below, we show
a combined loss and separate losses for each parameter. Graphs Figure 7.1 show results of
training the model with AlexNet architecture, graphs Figure 7.2 corresponds to the model
with GoogleNet architecture, graphs Figure 7.3 present the model based on Inception V3
architecture with random weight initialization. Finally, graphs Figure 7.4 also display an
Inception V3 based model, but one that was initialized with imagenet weights.

Figure 7.1: Loss on the AlexNet model

By analyzing the loss function, we see that during the training of all models occurred
overfitting. This means that models focused too much on the training data, as evidenced
by the fact that the validation loss stops decreasing and is higher than the training loss.

From the graph Figure 7.2, it is evident that the GoogleNet architecture was the first
to stop learning. Both the AlexNet model and Inception V3 with random initialization
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Figure 7.2: Loss on the GoogleNet model

Figure 7.3: Loss on the Inception V3 model with random initialization

continued learning; however, they soon began to overfit. The Inception V3 model with
imagenet initialization took more time to start learning. In the first three epochs, only the
last layers were updated; the rest was frozen.

Looking at the individual losses, it is evident that the model had more problems with
learning the horizon line offset or the distance from the image center than the line angle.

Judging only from the loss data during the training, the Inception V3 architecture overall
yielded the best results from the trained models. The different weight initialization did not
make a significant difference, except for the fact that imagenet initialization appeared more
prone to overfitting.

7.2 Evaluation on Benchmark Datasets
The trained models were tested on the two benchmark datasets, the Eurasian Cities Dataset
(section 4.2) and the York Urban Dataset (section 4.2). Testing our models on those
datasets is a much better indicator of the model’s validity. The metric used for evaluation
was described in section 4.1.
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Figure 7.4: Loss on the Inception V3 model with imagenet initialization

AlexNet

The model based on AlexNet architecture scored 76.12% on Eurasian Cities Dataset and
72.23% on York Urban Dataset. This model had overall the worst results.

Figure 7.5: AUC of AlexNet model

GoogleNet

The model based on GoogleNet architecture scored 80.87% on Eurasian Cities Dataset and
74.09% on York Urban Dataset.

Inception V3

The models based on Inception V3 had the best results. The variant with random layer
weights initialization scored slightly better on Eurasian Cities Dataset with a score of 82.20%
but had worse results on York Urban Dataset with a score of 83.63%. The other variant
with imagenet layer weights initialization scored 81.48% on Eurasian Cities Dataset and
performed better on York Urban Dataset with 86.39%.
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Figure 7.6: AUC of GoogleNet model

Figure 7.7: AUC of Inception V3 model - random initialization

7.3 Comparison to existing methods and future improve-
ments

Compared to existing methods, our trained models yielded worse results. However, the
score, particularly by the Inception V3 based models, was not low enough for them to
be considered entirely unusable. Table 7.1 shows how specifically how our models scored
compared to existing methods:

There is room for improvement in our approach. The most pressing issue is overfitting.
One way to reduce overfitting would be to increase the size of training data [3]. Additional
data would be downloaded from the Google Street View service. We could manually anno-

Method YUD ECD
AlexNet 72.23% 76.12%
GoogleNet 74.09% 80.87%
Inception V3 - random init 83.63% 82.20%
Inception V3 - imagenet init 86.39% 81.48%
GoogleNet[19] 86.41% 83.6%
CNN+FULL[21] 94.78% 90.80%

Table 7.1: Comparing AUC of existing methods with our implementation.
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Figure 7.8: AUC of Inception V3 model - imagenet initialization

tate photographs to introduce greater variety. Alternatively, we could focus on improving
the model by applying regularization, forcing the model to learn only the relevant patterns
in data.

Once the model’s performance improves, the trained model could be used in practi-
cal applications, for instance, a web-based application capable of automatically correcting
photographs where the horizon line is skewed.
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Chapter 8

Conclusion

This thesis dealt with the task of detecting the horizon line in an image using a deep
learning method.

Training dataset had to be created by downloading images from Google Street View
service and automatically calculating horizon position based on pitch and field of view.
Images were downloaded from a combination of large metropolitan cities and small towns.
Training data from already existing Horizon Lines in the Wild dataset were used as a
supplement.

The horizon line can be described by two parameters, the angle and the line’s distance
from the center of the image. The problem was approached as a classification task where
the actual values of line parameters are transformed into classes during training. When
predicting, classes are transformed back into actual values. Multiple architectures for con-
volutional neural networks were chosen as a basis, namely the AlexNet, GoogleNet, and
Inception V3 architectures. These architectures had to be adapted to have two outputs.

Trained models were evaluated on two benchmark datasets, the Eurasian Cities dataset,
and York Urban dataset. The Inception V3 architecture yielded the best results. However,
the trained model performed worse than the existing state-of-the-art methods, as our models
were prone to overfitting.

Training models on a more extensive dataset could improve the results by reducing
overfitting. Once satisfactory accuracy is obtained, the model could be used in practical
applications, for example, a web application that automatically corrects uploaded images
with horizon line askew.
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