
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

DETECTIONOFCHANGES INTHESCENECAPTURED
BY THE DRONE AT DIFFERENT TIMES
DETEKCE ZMĚN VE SCÉNĚ SNÍMANÉ DRONEM V RŮZNÝCH ČASECH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MARTIN MINÁRIK
AUTOR PRÁCE

SUPERVISOR Ing. VÍTĚZSLAV BERAN, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

 Master's Thesis Specification

Student: Minárik Martin, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Software Engineering
Title: Detection of changes in the scene captured by the drone at different times
Category: Signal Processing
Assignment:

1. Get acquainted with methods for processing and analysis of sensory data captured by
a commonly available drone (especially camera, position, etc.).

2. Design a procedure that appropriately preprocesses the data captured by the drone at
different times to analyze changes in the scanned scene. Design user process and relevant
GUI for resulting tool.

3. Implement the designed application using relevant available technologies and libraries.
4. Evaluate the properties of the resulting solution based on real-world experiments.
5. Present the key features of the solution in the form of a poster and a short video.

Recommended literature:
M. Sonka, V. Hlaváč, R. Boyle. Image Processing, Analysis, and Machine Vision, CL-
Engineering, ISBN-13: 978-0495082521, 2007.
S. M. Seitz, B. Curless, J. Diebel, D. Scharstein and R. Szeliski, A Comparison and
Evaluation of Multi-View Stereo Reconstruction Algorithms, 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, pp. 519-528,
doi: 10.1109/CVPR.2006.19.
J. L. Schönberger and J. Frahm, Structure-from-Motion Revisited, 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104-4113, doi:
10.1109/CVPR.2016.445.

Requirements for the semestral defence:
Items 1, 2, and partially item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Beran Vítězslav, Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: March 24, 2022

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23294/2021/xminar31 Page 1/1

Abstract
This work aims to design the user processes and implement an application used to detect
changes in the scene captured by the drone at different times. The application supplies
a complex solution for the three-dimensional reconstruction and comparison of two aviation
data. The main benefits include being an all-in-one solution, operating with unmodified
data from the drone, reconstruction and alignment without any human adjustments, and
no necessity for ground control points or specialized sensors, making this tool available for
a broad assortment of use cases. In the thesis, I created a pipeline that uses state-of-the-
art reconstruction algorithms, allowing the user to upload, organize, and reconstruct the
data into three-dimensional models and view the difference in volume between the flights
at different times.

Abstrakt
Cieľom tejto práce je navrhnúť používateľské procesy a naimplementovať aplikáciu, ktorá
zaznamenáva zmeny v scéne snímanej dronom v rôznych časoch. Aplikácia ponúka kom-
plexné riešenie pre trojdimenzionálnu rekonštrukciu a porovnanie dvoch setov leteckých dát.
Medzi hlavné benefity patrí, že ide o riešenie all-in-one, pri ktorom sa využívajú nemodi-
fikované dáta, a ktoré umožňuje rekonštrukciu a zarovnanie bez nutnosti zásahu používateľa
a nevyžaduje prítomnosť pozemných kontrolných bodov alebo špecializovaných senzorov,
čo ponúka široké možnosti použitia. Vo svojej práci som vytvoril aplikáciu využívajúcu na-
jlepšie rekonštrukčné nástroje súčasnosti, ktorá dáva používateľovi možnosť nahrávať dáta,
usporiadavať ich do letov, rekonštruovať ich do trojdimenzionálnych modelov a zobrazovať
rozdiely v objeme medzi letmi v rôznych časoch.

Keywords
drone, 3D object reconstruction, structure from motion, difference in volume, point cloud,
photogrammetry

Klíčová slova
dron, rekonštrukcia 3D objektov, štruktúra z pohybu, zmena objemu, bodové mračno, fo-
togrametria

Reference
MINÁRIK, Martin. Detection of changes in the scene captured by the drone at different
times. Brno, 2022. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Vítězslav Beran, Ph.D.

Rozšířený abstrakt
Cieľom tejto práce je vytvoriť aplikáciu na detekciu zmien v scéne snímanej dronom v
rôznych časoch. Práca ponúka riešenie problému, v ktorom používateľ, ktorý získal dáta
počas viacerých letov dronom a chce tieto dvojdimenzionálne dáta v podobe fotografií
alebo videa previezť do trojdimenzionálnej podoby a následne ich porovnať, vidieť zmenu
monitorovaného priestoru v čase. Riešenie takéhoto problému bolo doteraz možné iba za
použitia viacerých, samostatných druhov softvéru s explicitnými zásahmi používateľa.

Prvou časťou práce bolo vytvoriť spomínaný používateľský proces, pomocou ktorého
používateľ dokáže manuálne rekonštruovať trojdimenzionálny objekt. Táto časť pomohla
objasniť aktuálne trendy a existujúce čiastkové riešenia. Implementácia jednotlivých krokov
riešenia bola najprv iba v vo forme aplikácie v príkazovom riadku. Táto verzia však nebola
používateľsky prívetivá a aplikácia neponúkala používateľské rozhranie. Nutnosť použi-
tia rekonštrukčných knižních a užívateľského rozhrania vykrištalizovali finálnu architektúru
aplikácie. Aplikácia beží ako samostatný docker kontajner, ktorý obsahuje väčšinu pod-
statných knižníc. Obmedzením inštalácie potrebných knižníc sa uľahčila jej distribúcia,
aplikácia sa stala bezpečnejšia, spolahlivejšia a ľahšie verzovateľná.

Požívateľ, ktorý získal dáta z dronu po spustení aplikácie do nej dokáže nahrať dáta.
Tieto obsahujú čas, miesto a poznámku, aby ich mohol používateľ rozoznávať a organizovať.
Po nahraní dát sa môže spustiť proces rekonštrukcie. Ten beží na pozadí, používateľ je o
stave a prípadnom neúspechu informovaný pomocou logov. Proces rekonštrukcie začína
vytvorením použíteľných dát, a teda rozsekaním vstupu, v prípade videa, na jednotlivé
snímky. S použiteľným vstupom sa začne proces algoritmu štruktúry z pohybu. Tento
proces je implementovaný knižnicou OpenSfM, ktorú obsahuje OpenDroneMap. Z fotografií
sa najprv zistia charakteristické body, ktoré sú potom na základe podobnosti spojené, čo
vytvára riedke bodové mračno a fotky kamier.

Výsledky algoritmu štruktúru z pohybu sú potom posunuté algoritmu Multi-view Stereo.
Tento algoritmus iteratívne rekonštruuje scénu a pridáva do nej tak nové detaily. Algo-
ritmus Multi-view Stereo je implementovaný knižniou OpenMVS, ktorá je opäť súčasťou
OpenDroneMap. Výsledkom tohto kroku je husté bodové mračno, ktoré sa dá použiť na
výpočty.

Pred výpočtami sa však tieto bodové mračná geo-referencujú. Pri tomto procese sa na
základe ich metadát zisťuje, kde boli vyfotografované a následne sa tieto informácie pridajú
do bodového mračna, transformujúc ho z lokálnej polohy do geo-referencovanej.

Pár takýchto dát, vo formáte .csv, upravených pomocou knižnice numpy dokážu byť
použité na výpočet zmien medzi nimi. Najprv sa pomocou funkcií numpy upravia vstupné
point cloudy, tie sa následne pomocou knižnice Open3D prevzorkujú a vytvorí sa Delau-
nayova triangulácia zmien, ktorá sa dá použiť ako trojdimenzionálny objekt pre reprezen-
táciu zmien, z vizuálnych výsledkov sa tiež vytvoria aj dvojdimenzionálne grafy, ukazujúce
rozdiely v objeme medzi dvoma dátami. Jedná sa iba o približné zmeny, aplikácia ku geo-
referencovaniu používa iba exif gps dáta dronu bez akýchkoľvek špeciálnych senzorov alebo
pozemných kontrolných bodov.

Vizualizácia ako aj užívateľské prostredie beží pomocou klient-server aplikácie, ktorá je
napísaná pomocou mikroframeworku Flask. Pre spúšťanie a komunikáciu sa využíva uwsgi
socket a ako webový server sa používa Nginx. O vizualizáciu aplikácie sa stará jazyk Jinja2
za pomoci Bootstrapu pre štýly.

Využitie knižnice OpenDroneMap je riešenie cez komunikáciu medzi dvoma kontajnermi
vo forme súrodeneckých kontajnerov, kedy má aplikácia k sebe pripojený nie len lokálny
priečinok pre prístup k dáta

Výsledkom práce je nástroj, ktorý dokáže zrekonštruovať a odčítať od seba dve dáta
z dronov. Navyše je to však aj postup výpočtu, ktorý sa dá použiť ako príručka pre
získanie vedomostí o jednotlivých krokoch rekonštrukcie trojdimenzionálnych objektov z
dvojdimenzionálnych dát.

Detection of changes in the scene captured by the
drone at different times

Declaration
I declare that I have prepared this Masters’s thesis independently, under the supervision of
Ing. Vítězslav Beran, Ph. D. I listed all of the literary sources and publications that I have
used.

. .
Martin Minárik

May 18, 2022

Acknowledgements
I would like to thank my supervisor Ing. Vítězslav Beran, Ph.D. for his help and patience
during the creation of this thesis.

Contents

1 Introduction 2

2 Unmanned aerial vehicles 3
2.1 Drones and regulations . 4
2.2 DJI drones and applications . 7

3 Acquiring accurate data 12
3.1 Methods of acquiring precise data . 12
3.2 Drone metadata . 13
3.3 Data acquiring practices . 14

4 Data processing algorithms 16
4.1 Structure from motion . 16
4.2 Multi-view stereo . 17
4.3 Optional algorithms . 19

5 Proposed solution 21
5.1 Defining the use case . 21
5.2 Application architecture . 22
5.3 3D reconstruction . 22
5.4 Calculating the difference . 24
5.5 Graphical user interface . 25

6 Implementation and experiments 27
6.1 The tools used . 27
6.2 Web application . 28
6.3 Acquiring own data . 30
6.4 Experiments with the quality . 32
6.5 Function testing . 33

7 Conclusion 35

Bibliography 36

A Storage media structure 39

1

Chapter 1

Introduction

This thesis studies the possibilities of calculating volume using consumer-grade drones with-
out any ground control points or additional equipment. It discusses the current trends of
drones and how non-professional equipment can be used in professional fields like construc-
tion to safely, swiftly, and efficiently gain valuable information that would otherwise be
dangerous, time-consuming, or even not possible. In this case, it is information about
the volume and its history. The drone flies the same mission over the designated area
multiple times capturing the information needed to reconstruct the location in 3D. This
information is then reconstructed into a dense point cloud using structure from a motion
algorithm, as well as deep multi-view stereo. The models are aligned to each other using
drone metadata combined with a random sample consensus algorithm and can be visual-
ized in the application. In the application, the changes in volume can be calculated. In
the second chapter, I will cover general information about unmanned aerial vehicles, their
specific sensors, current legislation, use cases of drones in hobby and professional fields, and
current existing solutions.

In the next chapter, I will specify the algorithms and the architecture of the applica-
tion. I will go over each algorithm and explain the concepts used in the application. The
following chapter will discuss the proposed solution, the pipeline, and details concerning
the implementation. This chapter will include problems that occurred during the imple-
mentation, their fixes, and their shortcomings. It will also contain a graphical user interface,
its elements, and its usage.

In the last chapter, I will calculate the deviations of the solution, compare my solution
with other existing solutions, and conclude the usability and effectiveness of the solution.

2

Chapter 2

Unmanned aerial vehicles

An unmanned aerial vehicle (UAV) is an aircraft without a human operator onboard and
is commonly referred to as a drone, but also as a remotely piloted vehicle (RPV), remotely
piloted aircraft (RPA), remotely operated aircraft (ROA), or, in the case of UAVs with
specific combat roles, as an unmanned aerial combat vehicle (UACV). In contrast to con-
ventional aircraft, UAVs are controlled either remotely by human operators or are guided
by a computer program with various levels of automation and autonomy [24]. UAVs can
be categorized into categories based on their aerial platform.

Firstly, there are UAVs using rotors, which are usually called drones. These are the most
common UAVs as they can be affordable and easy to operate for hobbyists as well as
professionals. UAVs using rotors can be further classified based on the number of rotors
they have. Single rotor UAVs have a helicopter-like structure. These UAVs have one big
rotor on the top and a small one on the tail of the vehicle. The small rotor is used to stabilize
and make the vehicle more controllable just like a helicopter. When it comes to flying times,
these vehicles are very efficient and can last a long time in the air. The downside of these
UAVs is that they need high operational skills because of their complexity. Multi-rotor
UAVs are the easiest to manufacture and that makes them the cheapest option available.
Typically, they are named based on the number of the rotors. For example, a quadcopter
has four rotors, a hexacopter has six rotors, et cetera. Unlike single rotor UAVs, multi-rotor
ones use different rotations per minute of the rotors to maneuver. Thanks to the increased
number of rotors, multi-rotor UAVs offer great balance, usually the higher the balance
the bigger the number of rotors.

Secondly, UAVs with fixed-wing architecture are using wing designs like normal air-
planes. These wings are enabling flight time of up to 16 hours or higher, which is signif-
icantly more than the rotor UAVs. Additionally, specific types of these vehicles can be
loaded with larger cargo. Some of the downsides of fixed-wing aircraft include their high
manufacturing cost, and more complicated taking off. Usually, these aircraft need a runway
or a different launcher mechanism such as a catapult launcher. When in the air, manage-
ment of these aircraft is more complex, but at the same time offers more control even if
the aircraft’s motor fails.

The last category is hybrid VTOL UAVs, offering the benefits of fixed-wing architecture
with that of rotor-based aircraft. This idea has been implemented since the 1960s without
much success. At the current time, the new generation of vehicles takes advantage of
the improved gyroscope and accelerometer which have big potential. Sensors in the aircraft
usually work autonomously stabilizing the aircraft in the air. The pilot’s task is only to
guide the aircraft on the desired course.

3

2.1 Drones and regulations
Historically, the first use of UAVs was in the army after World War I, but mostly in
the Second World War where they were used to drop bombs and explore battlegrounds.
In the early-2010s, the innovation of UAVs sparked commercial interest. As the micro-
controllers, accelerometers, sensors, and other parts got cheaper, hobbyists started using
four or more rotor-equipped aircraft for their accessibility and ease of use. Vehicles amongst
hobbyists and in commercial use are primarily used for their cameras in photography or
videography. This goes hand in hand with the rapid growth of smartphone technology as
the smartphone is commonly used for the live camera feed and drone controls lessening
the end cost.

However, drones have a wider area of use, with no one on board, it is safe to plan missions
that would be dangerous or inaccessible for a human. An example of this is geographic
mapping of inaccessible terrain and locations using photogrammetry. This could be done
also on a vertical axis to perform safety inspections of, for example, electrical poles or other
buildings and structures. Using additional sensors, such as thermal sensors, drones can be
helpful in search and rescue operations. Specific professional fields have also adapted their
uses of drones. In agriculture, drones are used to precisely monitor crops. Drones are also
used on construction sites to monitor the progress and match the planning to reality.

Drone sensors and modules

To perform a range from basic tasks such as landing where a drone took off, to specific
tasks like precisely measuring the distance to Earth, drones are equipped with sensors
that monitor surroundings and gathered information is used to guide the pilot or drone’s
autonomous behavior.

Accelerometer - Determines position and orientation of the drone in flight. There are
more ways how accelerometers could be implemented in drones. One type senses the move-
ment in parts of the circuit and sends a small electrical current according to the change
relative to gravity. Drones could also use technology based on thermal sensing, which has
the advantage of no moving parts, instead, it is based on the movement of gas molecules [25].

Figure 2.1: Different types of drone axis.1

Gyroscope - An essential part providing stabilization which results in maintaining
level flight. Drones either use three-axis or six-axis gyro stabilization when using the ac-

1Taken from https://developer.dji.com/mobile-sdk/documentation/introduction/
flightController_concepts.html

4

https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html
https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html

celerometer together with a gyroscope to measure the amount of static acceleration due to
gravity. Three-axis gyros provide a calculation of rotation in three-axis using the coordinate
right-hand rule: roll, pitch, and yaw (as seen in the figure 2.1) [7].

• The roll provides rotation around the front-to-back axis.

• The pitch provides rotation around the side-to-side axis.

• The yaw provides rotation around the vertical axis.

Global Positioning System (GPS) receiver - a global navigation satellite system
that provides location, velocity, and time synchronization. Several satellites are orbiting
the Earth sending microwave signals, which can be interpreted by GPS receivers as infor-
mation about the distance from a satellite. If a GPS receiver has a signal from at least
fours satellites at the same time, it can calculate its coordinate location. GPS can be used
to determine 2D location data, take precise measurements of time, and it can be even used
as an altimeter, although it is not accurate [4].

Global navigation satellite systems (GNSS) receiver - a type of satellite naviga-
tion that provides global coverage. This navigation system provides geo-spatial positioning
information to the devices autonomously, allowing devices’ receivers to determine their pre-
cise location on the surface of the Earth. Unlike GPS, GNSS has over 60 satellites available
for viewing. While no additional information is available, the accuracy is improved which
results in more precise location data [4].

Light detection and ranging (Lidar) sensor - a remote sensing method that uses
light in the form of a pulsed laser to measure the ranges to the Earth. The pulses then
get combined with other drone-recorded data resulting in precise 3D information about
the shape of the Earth. There are two types of lidars, topographic and bathymetric. To-
pographic Lidar uses a near-infrared laser which works well with sensing land, whereas
bathymetric Lidar uses green light, which penetrates the water, enabling it to measure
riverbed elevations [16]. The downside of using Lidar is similar to using cameras and that
results in lower visibility scenarios like smoke.

Thermographic camera - An imaging sensor that is sensitive to wavelengths in the in-
frared region of the electromagnetic spectrum to form an image. The infrared spectrum is
not visible to human eyes. These cameras use special detectors for different wavelengths
such as shortwave infrared region (SWIR), mid-wave infrared region (MWIR), and long-
wave infrared region (LWIR) [23]. Thermographic cameras are sensitive to heat and reflect
different temperatures with colors ranging from blue to red.

Gas detector - a detector using tunable diode laser absorption spectroscopy (TDLAS)
to analyze the properties and constituents of gasses such as concentration, temperature,
pressure, and flow velocity. it is working by penetrating the gasses by diode laser light and
measuring the wavelengths with a photodetector. If the reduction of the light intensity is
high, there is a high amount of gas in the air and vice versa [2].

5

Drone regulations in the European union

EU Regulations 2019/9472 and 2019/9453 set out a risk-based framework for the safe oper-
ation of civil drones. They distinguish between the weight of the drone, its specifications,
and the operations that the civil drone is intended to conduct. These regulations introduce
three categories of civil drone operations.

The open category - Includes lower-risk civil drone operations, where the civil drone
operator is responsible for complying with the relevant requirements for its intended oper-
ation. There is no authorization necessary for flying a drone as the risks in this category
are low. This category is subdivided into three categories, A1, A2, and A3:

• A1 - This category is divided into additional two subcategories; with the max weight
of the drone under 250 grams. Everyone can fly these drones with no age restrictions
or training required. The second subcategory applies to drones under 500 grams.
With such drones, there is an age restriction of 16+ years and the pilot must have
passed the exam for A1/A3 subcategory drones. Both of these subcategories have
restrictions not to fly over uninvolved people and not to fly over assemblies of people.

• A2 - The drone weight limit of this category is up to 2 kilograms. The age and training
requirements are the same as for the drones over 250 grams. Operational restrictions
in this category are not to fly over uninvolved people as well as keep a horizontal
distance of 50 meters from uninvolved people.

• A3 - This category covers all drones from 2 kilograms up to 25 kilograms. The same re-
quirements apply when it comes to age and training. Operational restrictions include
not flying near or over people and flying at least 150 meters away from residential,
commercial, or industrial areas.

The specific category - Addresses civil drone missions, where safety risk is higher and
the civil drone operator needs to have operational authorization by the national competent
authorities before starting the mission. To get the required authorization, the operator
must conduct a risk assessment for the safe flight operation.

The certified category - Covers considerably high safety risk operations; therefore
the certification of the drone and the drone operator as well as licensing of the remote pilots
is always required [1]. Since December 31, 2020, every drone operator must be registered
in their resident country or place of business. The legislation distinguishes between drone
operators and remote pilots. The drone operator is usually the owner of the drone, who
does not necessarily have to fly the drone but is responsible for the operation. The remote
pilot is the one who controls the drone. He must have undergone the appropriate training
for the operation to be conducted. All of the photo and video footage made with the drone
must comply with General Data Protection Regulation (GDPR). This means that it is
prohibited to collect and use the personal data of uninvolved people.

2https://www.easa.europa.eu/document-library/regulations/commission-implementing-
regulation-eu-2019947

3https://www.easa.europa.eu/document-library/regulations/commission-delegated-regulation-
eu-2019945

6

https://www.easa.europa.eu/document-library/regulations/commission-implementing-regulation-eu-2019947
https://www.easa.europa.eu/document-library/regulations/commission-implementing-regulation-eu-2019947
https://www.easa.europa.eu/document-library/regulations/commission-delegated-regulation-eu-2019945
https://www.easa.europa.eu/document-library/regulations/commission-delegated-regulation-eu-2019945

2.2 DJI drones and applications
In this section, I will be talking about the most commercially popular drones, the drone
that was used to create the dataset and application used for capturing as well as processing
the data.

DJI drones

DJI is a Chinese technology company based in Shenzhen. Since its debut in the drone
industry with Phantom in 2013, it has been known for its commercial-grade drones. In
2021, DJI made 54% of the commercial drone brand market, making DJI drones the most
used drones in the world.

Figure 2.2: Commercial drone brand market share according to DroneAnalyst website.4

Because of the user base that DJI has, DJI offers developers its SDK to develop third-
party applications that work with DJI drones. DJI has created SDKs for every sector of
the drone-flying process. With mobile SDK, developers can get access to flight level control,
access to aircraft state through telemetry and sensor data, as well as live camera and stored
camera data on the drone, and create pre-defined missions in their mobile applications. UX
SDK provides UI elements, including their core functionalities to complete the application.
Payload SDK enables the communication and control of the additional modules used in
their professional-grade drones. These drones can also use the capabilities of their Onboard
SDK, which can extend the capabilities of DJI Matrice - a modular series of drones.

4Taken from https://droneanalyst.com/2021/09/14/how-has-2021-changed-the-drone-industry

7

https://droneanalyst.com/2021/09/14/how-has-2021-changed-the-drone-industry

This thesis is using data captured thanks to DJI Spark 5. It has a takeoff weight of
300 grams, which puts it in the C1 6 class (under 900 grams), meaning it can fly in the A1
subcategory of The “open” category under the European legislation.

It is equipped with a 1/2.3’ CMOS camera sensor with an effective 12 megapixels. Spark
can produce up to 4K photo resolution and very stable Full-HD 1920x1080 video at 30p.
The gimbal, on which the drone’s camera is located, has a pitch controllable range of -85° to
0°. This means that this drone is not well equipped for photogrammetry, as it can not get
a full -90° angle. This, combined with the flight time of only up to 16 minutes, makes Spark
not supported in photogrammetry applications. However, with the DJI GO 4 application,
Spark’s gimbal pitch can be calibrated up to 10° each way. This means that Spark with
gimbal pitch calibrated to -5° can reach from -90° to -5° making it easier to use in missions
involving photogrammetry.

Existing solutions for capturing and viewing drone data

Most of the applications that can offer photogrammetry are professional-grade applica-
tions that require a higher-tier drone than the DJI Spark. These applications tend to be
aimed at professionals working in surveying, construction, and mapping, who use drones as
a complementary addition to their usual work routine.

DJI GO 4

While not being professionally used, DJI GO 4 is the most used mobile application to fly
a DJI drone [9]. Made by DJI, it is the essential flight app offering a variety of func-
tions. The application provides a live video transmission feed from the drone to a smart-
phone. Many of the drone settings can be changed through the app, like altering the flying
characteristics of the drone, calibrating the gimbal, and changing the camera settings.
Some of the useful features include obstacle avoidance based on the sensors located built-in
the drone, automating takeoff and landing options for safe flying.

Creating waypoints is a very useful feature for mission planning. In the map menu,
the user can define various waypoints that can be shown with the actual position of the drone
during the flight. These can then guide the pilot during the flight. If the drone is supported,
there are flight modes called “Quick Shots” and “Intelligent Flight Modes”. These modes
allow the drone to orbit an object or track moving objects and follow them. Other than
this, DJI GO provides important status indicators about the drone. In the top bar, the ap-
plication provides system status, which depends on the strengths of the signals, flight mode,
GPS signal, flight autonomy, remote controller signal strength, video transmission signal
strength, and aircraft battery. The application is available for android and iOS.

5https://www.dji.com/spark/info
6https://www.easa.europa.eu/domains/civil-drones/drones-regulatory-framework-background/

open-category-civil-drones

8

https://www.dji.com/spark/info
https://www.easa.europa.eu/domains/civil-drones/drones-regulatory-framework-background/open-category-civil-drones
https://www.easa.europa.eu/domains/civil-drones/drones-regulatory-framework-background/open-category-civil-drones

Figure 2.3: DJI Go 4 control elements.7

Pix4D

Is a software solution for photogrammetry using drones. The suite provides a mobile appli-
cation used for mission planning and drone mapping. The application supports DJI drones.
There are more options for planning missions used for 2D and 3D mapping provided. When
planning a mission, the user creates a radius to be mapped and displayed over the map
automatically calculating the best drone route. During this process, the flight height and
approximate flight time are also calculated.

Figure 2.4: Mission planning using Pix4D

Pix4D suite also contains various computer software for processing the data from the drone.
PIX4Dmapper can be used to generate a full-color point cloud, orthomosaic, digital surface
models, index maps, and thermal maps. Using this software, the data from the drone could
be transformed into a point cloud and manually measured and inspected in the software.

7Taken from https://www.dronegenuity.com/dji-go-4-app-tutorial/

9

https://www.dronegenuity.com/dji-go-4-app-tutorial/

DJI Terra

DJI Terra is a professional software made specifically for DJI drones used mostly in infras-
tructure and agriculture. It is a complex piece of software offering a wide range of functions.
Terra offers waypoints for mission planning with visualization in 3D, with the ability to regu-
late gimbal pitch angle, speed, and more. What is more, area and oblique mission planning
for photogrammetry are present, with automatic calculations for the flight estimates. If
the 3D model of the surveyed structure is available, a detailed inspection can be planned,
with specified points of focus. During the flight, a 2D orthomosaic model of the map can
be created in real-time. After the data is gathered, 3D reconstruction can be done as well
as Lidar data processing. The reconstructed data can be then analyzed, measured, and
annotated and every photo creating the point cloud is inspected individually.

Figure 2.5: Waypoint mission planning in 3D using DJI Terra.8

Propeller

Is a survey data collecting tool, working on the PPK principle. This means that the data
is collected through the supported drones, which the company lists on its website9.

Figure 2.6: A visualization of the processed data using Propeller.

The data is geotagged using the AeroPoints, which are GCPs, that upload their posi-
tion after the flight is done. After the flight, the data can be dragged and dropped into

8Taken from https://www.dji.com/dji-terra

10

https://www.dji.com/dji-terra

the Propeller application, sent to the cloud, and processed on the cloud. This means that
no powerful computing unit is necessary as the computing is done in the cloud. After up
to 24-hours the processing of the data is done and the model is sent back. This can be
then used to measure, inspect or even calculate the stockpile volume of the data as a part
of the analysis.

9https://www.propelleraero.com/

11

https://www.propelleraero.com/

Chapter 3

Acquiring accurate data

The surveyor needs to capture accurate data using UAVs. This step is crucial as not enough
or poor quality of the data can cause problems during the recreation. An example of this
can be found later in the thesis when talking about datasets used (as seen in section 6.3).
This chapter is useful when the data is already made, as the person can look for clues of
a bad dataset. Additionally, it communicates general information about the most commonly
used drone data kinds.

3.1 Methods of acquiring precise data
As the development of the consumer-grade drones progressed, there was a transition from
using ground control points (GCPs) to using more advanced global navigation satellite
systems (GNSS). These methods can give safer and faster results while using fewer resources
when used in the proper environment.

Figure 3.1: The difference between GCPs, RTK, and PPK.1

Ground control points (GCPs) - A location or object on the ground that has
precisely known coordinates. The objects on the ground should be geo-referenced with
a deviation of two to five centimeters to achieve absolute accuracy. It is the original method
without using satellites that grants a consistent ground truth for the project’s accuracy.
Some of its cons are the fact that it needs additional equipment such as GPS rovers, VRS
network licenses, and spray paint for the target. Placing the objects could be dangerous or
impossible in certain environments.

1Taken from https://www.sensefly.com/blog/gcps-rtk-ppk-when-what-why/

12

https://www.sensefly.com/blog/gcps-rtk-ppk-when-what-why/

Real-Time Kinematic (RTK) - A technique used to enhance the precision of data
derived from satellite-based positioning systems, which relies on a single reference station
or interpolated virtual station to correct geotagged locations while in flight. Contrary to
GCPs, RTK uses no marks or objects, only real-time GNSS data that improves accuracy.
This means that there is no need to modify the data in post-processing. RTK works well in
the terrains where there is a strong connection between the drone and the satellite as well
as between the drone and the ground station. The cons of this approach are that it needs
a capable drone equipped with special technology and consistent signal as malfunctioning
during the flight can be present.

Post-Processing Kinematic (PPK) - An alternative to RTK. This method uses
post-processing to correct geo-referencing after getting the data. Usually, the data is sent
to a cloud, where post-processing is performed. Pros of this method are that this method
is more universal and can be used in environments with a bad signal. Furthermore, it takes
less time on-site to prepare than using an RTK connection. In comparison to RTK, PPK
takes more time to use GNSS data in post-processing. What is more, using GNSS can
introduce an error due to poor precision or a shift in geo-referencing.

3.2 Drone metadata
To achieve accurate results with or without using the GCPs, more detailed information
about the flight is needed. The DJI drones store this information in exchangeable image
file format (EXIF) data. EXIF is a standard that defines additional specific information
about the image other than the pixels themselves. Other than the information about
the picture itself, the metadata contains useful information used for photogrammetry and
reconstruction of the 3D model. The information contains altitude (above sea level), GPS
longitude and latitude as well as GPS version, drones orientation, name of the drone,
software version, and others. This information is useful when aligning the photos or even
point clouds.

Figure 3.2: An example of DJI Spark metadata

When using multiple images for reconstruction, each has its combination of longitude,
latitude, and altitude, but the problem arises when it comes to video. EXIF data from
video usually contain general information such as drone manufacturer, that does not change
during the flight. To record additional metadata information, DJI drones can produce a .srt

13

file, which is a video caption file with information about the flight changing as the video
frames change.

3.3 Data acquiring practices
This section discusses the best practices and essential things to look for when flying drones
to gather data for the reconstruction. First of which is ground sampling distance.

Ground sampling distance (GSD)

The GSD is defined as the distance between neighboring pixel centers measured on the ground [19].
The value of GSD depends on altitude and the sensor used, knowing the GSD helps to de-
termine the size of the object in the image. The lower the spatial resolution of the image
and the less visible details.

Figure 3.3: Variables of ground sample distance explained.2

The figure 3.3 shows the calculation of GSD. The flight height or the distance from
the terrain or object is H. Other variables are camera specifications. It is important to
calculate the GSD needed for the flight before the image acquisition as it is necessary
to adjust the flight height as well as the camera specifications if needed. For example,
for a detailed reconstruction of the area, a low GSD is required, meaning flying closer to
the object of interest. On the other hand, while covering a large area, there is no need for
precise object quality, therefore higher GSD is acceptable. This can significantly decrease
the acquisition time as well as processing time. If an acquisition time is not important,
then lowering the resolution before processing is always an option.

Mission planning

In addition to the GSD, the quality of the data lies in the mission planning. This means
calculating the time that is needed to cover the area while looking at the drone battery.
Flying and mapping the are over in more flies with replacing of taking the battery out
can case minor issues because of the takeoff and landing time, together with changing

2Taken from https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-
distance-GSD-in-photogrammetry

14

https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry
https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry

the battery. During this time, the weather conditions can change, there might be a new
object in the area or it might not be possible to take off.

60% overlap

stereoscopic model

Coverage of photograph

terrain recorded on three

successive photographs

 #1 #2 #3
Exposure station

lens

Figure 3.4: An example of a stereoscpic overlap.3

The overlap in the photographs taken is crucial. While pictures with 20%-30% overlap
can be used to create orthophotography, these create what is called a block of orthophotog-
raphy. To perceive the depth and volume, the same point must be been in the photographs
at least two or three times. Each vertical line from the aerial photograph that overlaps
into the next photograph by approximately 60% is referred to as stereoscopic overlap [3]
(in the figure 3.4). Using stereoscopic overlap in the adequate GSD grants recognition of
terrain in at least 3 successive photographs. This, together with correct GSD creates data
good enough for the feature extraction.

For this application, mission planning or camera calibration is an optional step, that is
dependent on the UAV, that the surveying operator is using. There are free applications
like Pix4Dcapture [18] application, that can use mission planning features. Correct data
can be gathered also with manual control over the drone or semi-automatically by recording
video files or using automatic photograph capturing features.

3Inspired by https://www.edc.uri.edu/nrs/classes/NRS409509/RS/Lectures/409509RSClass2-
UnderstandingAirPhotos.pdf

15

https://www.edc.uri.edu/nrs/classes/NRS409509/RS/Lectures/409509RSClass2-UnderstandingAirPhotos.pdf
https://www.edc.uri.edu/nrs/classes/NRS409509/RS/Lectures/409509RSClass2-UnderstandingAirPhotos.pdf

Chapter 4

Data processing algorithms

When adequate post-processing data is acquired for calculating the volume, there must be
post-processing of the data must be done first. The data from the flight is usually not
perfect as far as the alignment and position. However, this can be calculated only after
the feature extraction and reconstruction of the model. There are several ways how to
create such a model. In this chapter, I will be discussing the methods used to recreate an
object using the data gathered from a drone in a form of a series of photographs, apiece
mapping the same object only with a different position.

In section 4.1) I will explain an algorithm used to create a sparse point cloud as well as
the camera positions that are then used by an algorithm in section 4.2 which uses the input
and produces dense point cloud. This represents the final model of an object in the thesis.

4.1 Structure from motion
In this thesis, the structure from motion (SfM) principle is used to get three-dimensional
(3D) data from the drone camera. Traditionally, stereophotogrammetry methods are based
on binocular human vision. Consumer-grade drones, however, most do not have such capa-
bilities. Therefore, the depth, volumes, and 3D features must be acquired through a single
observing point. Such information can be gathered when either the observer or the object
is moving.

Structure from motion is the photogrammetric method of reconstructing 3D structure
from its projections into a series of images taken from different viewpoints [20]. SfM is used
to get a 3D model from sequences of overlapping 2D images. Even if the dataset is unordered
and heterogeneous without any prior knowledge of the image or camera parameters.

Three aspects differ SfM from other photogrammetry methods:

1. Feature extraction can be done automatically in images with different scales, viewing
angles, or orientations. This can be useful in small or poorly acquired datasets.

2. No information about camera position or control points is needed, as the equations
do not need it. Even though they can be added for better accuracy.

3. Camera calibration can be automatically solved or refined during the process. SfM
can thus automatically deliver photogrammetric models without requiring rigorous
homogeneity in overlapping images, camera poses, and calibrations.

16

SfM usually starts with feature extraction and matching followed by geometric verifica-
tion. The result of strictly SfM is only a sparse point cloud even though the term SfM is
commonly referred to as the entire reconstruction workflow [12].

Feature extraction - In this step of the process, each image Ii from the dataset sets
local features 𝐹𝑖 = (𝑋𝑗, 𝑓𝑗) | 𝑗 = 1...𝑁𝐹𝑖, where 𝑋𝑗 ∈ 𝑅2 is the location of the feature and
𝑓𝑗 is the feature appearance descriptor itself. These features are invariant under geometric
and radiometric changes, so the SfM would be able to recognize them across multiple images.
Scale-invariant feature transform (SIFT) algorithm or its derivatives are used in this part
to detect, describe and match local features. Binary features can be also used to provide
better efficiency.

Matching - This step matches images that see the same part of the scene using the fea-
tures 𝐹𝑖 to detect unique features. Different approaches test a variety of images. Using
the similarity metric, features of images are compared to the 𝑓𝑗 variable of the features.
These approaches depend on the complexity, size of the dataset, and computing power of
the machine. The result of this step is a set of image pairs with potentially overlapping
features 𝐶 = 𝐼𝑎, 𝐼𝑏 | 𝐼𝑎, 𝐼𝑏 ∈ 𝐼, 𝑎 < 𝑏 and 𝑀𝑎𝑏 ∈ 𝐹𝑎× 𝐹𝑏 - their feature correspondences.

Geometric verification - Since in the previous step the potentially overlapping fea-
tures are calculated solely based on their appearance, the features might be at different
points in the scene. Therefore, a verification that the features belong to the same scene
point is needed. The verification is done through a series of transformations. Homography
describes rotating or moving the camera in a planar scene, and epipolar geometry describes
the relation between a moving camera through the matrices. If a valid transformation ex-
ists, methods like Random sample consensus (detailed in section 4.3) (RANSAC) and or
QDESAC for Quasi-degenerate data are used to find outliers in the data.

The camera position, which is used to calculate the projection matrix 𝑃𝑖, the 3D position
𝑋𝑗 of the points using triangulation is computed using the matched points in the previous
text. The initial triangulation process enhanced by the iterative non-linear optimization is
following:

𝐸(𝑃,𝑋) =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑑 (𝑢𝑖𝑗 , 𝑃𝑖𝑋𝑗)
2 ,

where 𝑑(𝑥, 𝑦) denotes the Euclidean distance, 𝑛 is the number of total images, and 𝑚
is the number of 3D points. This minimization problem is known as bundle adjustment
resulting in a point cloud [11].

4.2 Multi-view stereo
Multi-view stereo (MVS) is a reconstruction problem that creates a complete 3D object
model from a collection of images taken from known camera viewpoints [21]. The process
consists of iteratively updating the 3D representation with multi-view photometric consis-
tency and regularization optimization. Over the last few years, there has been a big rise in
learning-based MVS methods [5]. These were popularized by networks working on 2D
reconstruction. However, it was not easy to take these principles into 3D. Stereo approaches
were lacking contextual geometry knowledge. Then, an approach that made 3D cost volume
build around the camera with 2D image features warped in the cost volume, so that 3D
CNN can be applied. This approach grants better results than 2D, as using 3D space lowers
the distortion of the image. Learning-based MVS, in contrast to non-learning-based MVS,
can take advantage of the whole scene, semantic information about the environment, ob-

17

ject structures, specularity, illumination, and more, to create a reconstruction more true to
the real world. The MVS algorithms can be categorized into different categories. The first
category is using a cost function on a 3D volume. This algorithm goes through the volume,
computes costs, and reconstructs the volume using only voxels with costs below the thresh-
old. The next category is iterative. At first, it either starts with a large initial volume and
shrinks inwards, minimizing the cost function, or it can even locally expand to minimize
the energy. The third category is the image-space category, which creates consistent results
using a set of depth maps which are later merged into a 3D model. The fourth category ex-
tracts feature points and then fits a surface to the reconstructed surface. The final category
consists of algorithms using CNN. These algorithms take advantage of semantic feature
point extraction. The CNN algorithms try to combat the biggest downside of the MVS
algorithms, the need for computing power.

Point-based multi-view stereo network

One of the methods using learning-based MVS is Point-MVSNet. This work directly pro-
cesses the point cloud, using the PointFlow module to iteratively regress a more dense
and still accurate point cloud from the initial input. This network works efficiently, as
it adaptively samples potential points in the 3D space, using only valid information near
the object, not using the whole 3D space. This can also be useful when only a portion
of the whole point cloud is needed for the computation, as it saves a lot of computational
power. Point-MVSNet needs the base image sources to boost the dense pixel correspon-
dence quality. At first, the algorithm creates 3-scale feature pyramid 𝐹𝑖 = [𝐹 1

𝑖 , 𝐹
2
𝑖 , 𝐹

3
𝑖] for

images 𝐼𝑖. This pyramid holds features of all the input images together. The features for
each point in the scene can be sourced from multi-view feature maps using differentiable
unprojection given corresponding camera parameters. a variance-based cost metric is used
to aggregate the accurate set of features using multiple sets of views. Pyramid feature at
level 𝑗, the variance metric for 𝑁 views is defined as:

𝐶𝑗 =

∑︀𝑁
𝑖=1

(︁
𝐹 𝑖
𝑗 − 𝐹 𝑗

)︁2

𝑁
, (𝑗 = 1, 2, 3),

These features with their normalized point coordinates are then concatenated to form
the features for each 3D point. These coordinates are then updated in every iteration
and the feature for each point is fetched. This means that the features can be fetched for
part of the scene only, focusing on regions of interest rather than the whole scene. This
process is called dynamic feature fetching.

The input point cloud has only limited accuracy, to improve this, PointFlow is per-
formed. For each point of the point cloud, its displacement to the ground truth is calculated
using all the available views. This is not trivial so a point hypothesis that attaches dif-
ferent displacements to an unprojected point along the camera direction is created. These
displacements are crucial for working with information at different depths. The local neigh-
borhood is important for robust depth prediction, so this work uses 𝑘-nearest neighbors
to create the directed graph. This way, the local geometric structure can be used for
the feature propagation of points. Using these, edge convolution can be calculated. Flow
prediction is using three edge convolution layers to aggregate point features at different
scales in the neighborhood. These are local point features and are used to create a prob-
abilistic weighted sum of the displacement among all the point hypotheses using softmax.
As this algorithm is also iterative, each iteration is upsampled. The training loss function

18

for this network is:

𝐿𝑜𝑠𝑠 =
𝑙∑︁

𝑖=0

⎛⎝𝜆(𝑖)

𝑠(𝑖)

∑︁
𝑝∈𝑃𝑣𝑎𝑙𝑖𝑑

⃦⃦⃦
𝐷𝐺𝑇 (𝑝)−𝐷(𝑖) (𝑝)

⃦⃦⃦
1

⎞⎠ ,

Which is L1 loss measuring the absolute difference between the predicted depth map and
the ground truth depth map. 𝑃𝑣𝑎𝑙𝑖𝑑 represents the valid ground truth pixel, 𝑙 is the iteration
number. The weight 𝜆(𝑖) is set to 1.0 in the training [5].

4.3 Optional algorithms
These algorithms are not needed for the 3D reconstruction. However, they are used when
the the data has low quality and needs improvement. Random sample consensus can be
used to further align the models assuming they do not correspond to the reality.

Random sample consensus

Random sample consensus (RANSAC) is an algorithm, first published by Fishler and Bolles,
that is capable of interpreting input data that contains outliers and detecting them. It is
an iterative algorithm, which means that it uses a small number of initial data points at
first and then increases the number of consistent data points with iterations [10].

Algorithm 1 RANSAC - taken from ”Overview of the RANSAC Algorithm“ [8]
1: Select randomly the minimum number of points required to determine the model pa-

rameters.
2: Solve for the parameters of the model.
3: Determine how many points from the set of all points fit with a predefined tolerance 𝜖.
4: If the fraction of the number of inliers over the total number points in the set exceeds

a predefined threshold 𝜋, re-estimate the model parameters using all the identified
inliers and terminate.

5: Otherwise, repeat steps 1 through 4 (maximum of 𝑁 times).

𝑁 must be chosen high enough to ensure that at least one of the sets of random samples
does not include an outlier with desired probability, 𝑝. Let u represent the probability that
any selected data point is an inlier and 𝑣 = 1 − 𝑢 the probability of observing an outlier.
𝑁 iterations of the minimum number of points denoted m are required, where

1− 𝑝 = (1− 𝑢𝑚)𝑁 ,

which is equal to:
𝑁 =

log (1− 𝑝)

log (1− (1− 𝑣)𝑚)
.

Hausdorff distance

Hausdorff distance is a distance commonly used to calculate a distance between sets of
points and a point. This makes it possible to use it as a tool to calculate the distance
between two point clouds.

19

The classic Hausdorff distance is the distance between two sets of edge points, taking
the longest distance from one set to the nearest point in the other set. It is very sensitive
to outliers. That is why in point cloud geometry it would not be a good choice, even with
minimal distortion of the point clouds. That is why a generalized Hausdorff distance was
adopted. It measures the distance between two sets of points using 𝐾𝑡ℎ ranked distance,
in contrast to maximum distance.

𝑑𝐺𝐻−𝐾(𝐴,𝐵) = per𝐾𝑡ℎ
𝑎∈𝐴𝑑(𝑎,𝐵),

where per𝐾𝑡ℎ
𝑎∈𝐴 is the 𝐾𝑡ℎ ranked distance such that (𝐾/𝑁𝐴) × 100 = per% and 𝑁𝐴 is

the total number of points in PC 𝐴. For example, the 480𝑡ℎ ranked distance in a PC with
600 points is the maximum distance obtained from the 𝑝𝑒𝑟 = (480/600)×100 = 80% lowest
distance values, after sorting all the distances in ascending order [13].

20

Chapter 5

Proposed solution

The problem that this thesis aims to solve is, the lack of a direct solution when it comes
to tracking the difference between multiple flights. While there are many solutions when
it comes to processing the data and creating 3D models or point clouds, there are not
many, that focus on the difference between the flights. If there are applications that pro-
vide such solutions, they require expensive drone sensors and equipment used on-site as
well as processing power. That shapes some of the requirements of this solution to focus
on the difference between the flights, as photogrammetry applications are accessible. This
application should provide basic functionality for users to sort the data into flights, trans-
form the captured data into a 3D model, let the user choose, which flights he wants to
calculate and visualize the result data information that the user easily understands. It is
an important part of the solution, to make the calculations in a relatively short time. This
is difficult, as it is hardware-related. The goal is for the user not to be dependent on cloud
services that require one day and man-made corrections for the results.

5.1 Defining the use case
The typical user of this application wants to survey a small area, usually up to 100 meters
squared. The user usually has more different sites that need surveying. He wants to keep
track of the changes at each site by flying a commercial-grade drone on a weekly to bi-
weekly bases for around 20 minutes, surveying areas from an altitude of 30 meters. After
the tracking is finished, the user transfers the data into storage. Once a month, the user
wants to evaluate the changes of the sites to write a report or advise some changes.

The application helps him with the process, after the data is obtained, the user can add
information for that flight along with the path to the data and start a background process
of recreating the 3D model of the scene. Then, when it comes the time for the evaluation,
the user simply calculates the difference between desired flights which takes a few seconds,
depending on the hardware, and views the result, allowing him to download the results
to reference in his work. The application simplifies this workflow by creating a one-stop
solution that can be done on-site if needed.

21

5.2 Application architecture
Based on the available tools I propose an application running in the container environment,
with no need to install the third-party libraries and tools. These are part of the image and
run the algorithms as follows:

Figure 5.1: A process pipeline of the application.

The Structure from Motion, Multi-view Stereo, and Geo-referencing parts are run out-
side of the application docker container in the sibling docker container. To communicate
the data, both containers have the same local folder mounted, which is the folder with data
and also the result folder. This architecture is allowing user to run a following user process.
A design of a user process:

1. The user captures drone data in form of a picture or video by flying the drone

2. The user transfers the data into a computer and binds the data folder to the applica-
tion

3. The user runs the reconstruction task on the data turning it into a dense point cloud
and an orthophotography

4. The user repeats the first three steps (flying the drone over the same area) to gather
the data at different time

5. The user selects the two flights and runs a computation task to visualize the difference

6. The user uses information about the difference in his work

5.3 3D reconstruction
Regarding the structure of the data in section 3.2, drones produce still photographs and
video. Acknowledging this, along with the fact, that this application aims to visualize
the difference between individual flights, the data needs to be transformed into a 3D model
first.

22

Data preparation

Before any reconstruction can be started, the video files need to be cut into individual
still frames. The video files do not have any metadata GPS metadata during the flight, so
the additional subtitle file containing GPS coordinates for each frame of the video is needed
and used to recreate still frames with all the needed metadata. This creates uniform input
across both forms of the data.

Creating a sparse point cloud

To reconstruct a 3D model, reconstruction algorithms need to have multiple views of
the same point of interest from different positions. For an object to be reconstructed,
it needs to be observable from at least three different photographs [15]. There is no check-
ing for correct data before running the reconstruction algorithms, however, the number of
the photographs should be over fifty.

An SfM Pipeline for Topographic Reconstructions using UAVs 7

(a) Feature detection using HAHOG algo-
rithm.

(b) Matching of detected features in two photographs of the same scene.

Fig. 5: Key points detected with HAHOG algorithm (a) and feature matching
resulting from FLANN algorithm (b).

tographs of the same object. Moreover, the detected features should be unique,
so that they can be told apart from each other [18].

The detector used with the OpenSfM library is the HAHOG (the combination
of Hessian A�ne feature point detector and HOG descriptor), but apart from
this, we have the AKAZE, SURF, SIFT and ORB detectors available [19]. These
detectors calculate features descriptors that are invariant to scale or rotation.
This property enables matching features, regardless of orientation or scale. In
Figure 5a we show with red marks the detected features in for a given image.

Using these descriptors, we can find correspondences between the images,
that is, to identify the 3D points of the same physical object which appear in more
than one image. This process is implemented with the FLANN algorithm [20]
available in the OpenSfM library. We can see an example of this process in
Figure 5b.

Sparse (SfM) and dense (MVS) reconstruction. The SfM technique uses
the matched points uij for calculating both the camera pose, to compute the

Figure 5.2: An example of feature matching using HAHOG (a) and FLANN (b) algorithms
inside OpenSfM.2

Barring the optional step of resizing the input data, the first step of reconstruction is
the structure from motion algorithm (detailed in section 4.1), which is done by the OpenSfM
library inside of the ODM toolkit. At first, the algorithm searches for the pattern in
the photographs, that stands out from the surrounding area and therefore is a candidate
to stand out in the other photographs as well (as seen in the figure 5.2). These feature
points should be unique so that the points are not mistaken for one another. OpenSfM
library offers HAHOG (alongside other algorithms for feature point extraction algorithms

2Taken from https://jhacsonmeza.github.io/papers/SfM_recons_2018.pdf

23

https://jhacsonmeza.github.io/papers/SfM_recons_2018.pdf

- AKAZE, ORB, SIFT), which is the combination of Hessian Affine feature point detector
and HOG descriptor to detect feature points regardless of their orientation or scale thanks
to being invariant to orientation and scale [14]. After the feature points are found for
the whole dataset, there is a link between the images that are used to compute both,
the position and orientation of the camera, and a 3D structure of an object.

Creating a dense point cloud

The sparse point cloud is not ideal for volume calculation. It can yield an estimate accord-
ing to the number of points it detects, but this is not accurate. There are ways, as shown
in the previous chapter, to get a finer, more precise point cloud - an MVS (detailed in 4.2)
technique. The input in this algorithm is a dataset alongside the camera positions and
orientation from the SfM algorithm in the step before. The type of MVS used in the appli-
cation is multiple depth maps from the OpenMVS library, which creates a depth map for
every input image in the dataset. These are then merged into a single scene, thus creating
a dense point cloud.

5.4 Calculating the difference
A dense point cloud created using MVS was the last step of 3D reconstruction. All of the
following steps will count to calculate the difference between the models.

Geo-referencing a point cloud

Up until this point, the constructed dense point cloud is in the local coordinate system.
This is converted using the EXIF (detailed in section 3.2) data from the photographs by
using a reference point created by averaging the GPS coordinate of all the photographs and
setting it as a center. Other points are then computed.

0 1 2 ……… 13 14 15
“X”, “Y”, “Z”, ……… “Red”, “Green”, “Blue”

Figure 5.3: An data structure of the geo-referenced point cloud.

The header in figure 5.3 represents a geo-referenced point cloud in the .csv format,
which has sixteen columns, however, in this application only the columns 0-2 and 13-15
are used, as they represent XYZ coordinates and RGB components of the color. The other
non-listed columns are not necessary, as they would provide valuable information if GCPs
or specialized sensors were used in the data capture. These columns include intensity,
information about the user, et cetera.

Substracting the clouds

With the two geo-referenced point clouds, assuming they are aligned, it can proceed to
calculate the size difference. If they are not, a RANSAC algorithm can be used to align
the clouds, which takes away the geo-reference out of the point cloud as it manipulates its
coordinates. A mesh, created by merging the different colored point clouds representing
the two flights is one of the results, that helps to better understand the difference in volume.
The volume created by this mesh can also represent an approximation of the real change

24

in the volume. Another way of displaying the changes is by putting the two flight point
clouds into an intersection by their 𝑋 and 𝑌 coordinates (as seen in figure 5.4). All of
the points that do not have their 𝑋 and 𝑌 pair in the other point cloud are deleted. This
produces interesting statistics; the percentage of the points that have been changed between
the two flights, and the average difference in the altitude. This data allows for the creation
of a heatmap, that keeps the same 𝑋 and 𝑌 coordinates, but the 𝑍 coordinate marks
the difference in the altitude between the flights. There are more colors on the map, each
representing a range of altitude values.

X Y Z

1 5 6

2 4 3

9 8 7

X Y Z

2 4 8

9 8 9

3 6 2

X Y Z

2 4 3

9 8 7

X Y Z

2 4 8

9 8 9

Old 1 Old 2

New 1 New 2

Figure 5.4: An example of intersection between the point cloud coordinates.

5.5 Graphical user interface
The graphical user interface (GUI) for the application does not have to be complicated.
The basic user needs are to be able to add a flight, be able to differentiate between flights,
recreate models from the flight data, compare the differences between the data and view
the results in compendious form.

At first sight, the user is greeted with a message saying that there are no flights in
the database prompting him to add the first flight by filling out the form for a new flight.
The form contains inputs for the data path to the folder, where flight data is stored,
the location of the flight, and an optional note. After the first flight is added a basic
layout of the application is shown. On the left, there is a list of flights containing all added
flights. They can be sorted or filtered by the date or location. Each separate flight has
a checkbox next to it. After clicking on the flight name, a detail of the flight is shown
on the main, right, side of the screen, with the ability for the user to update flight data
or delete the flight. There is also a ”Prepare“ button, that starts the background process
that converts the input data if needed, and then recreates a 3D model of the flight. When
a model is created, its orthophotography is shown in the flight detail.

Underneath the list, in the side panel, there is a ”Compute“ button alongside ”Plus“
and a ”Gear“ button. The ”Plus“ button allows the user to add another flight in the same
fashion as in the initial flight. The ”Gear“ button provides the change of settings for
calculating the difference. This includes the quality, input image size, and an option to
change the name of the default ODM container name. Ultimately, provided that exactly
two flights are checked, the ”Compute“ button computes a difference between two flights.

25

Flights

Flight 1
Flight 2

Flight 1
Flight 2

Result is: 200m2

Scale

Result
data

View
selector

HeatmapCompute

Compute
button

Plus
button

List of
flights

Gear button

Detail

Figure 5.5: The mockup of the graphical user interface.

This computes the difference and after a few seconds, the user can see a result on the main
side of the screen.

There are several ways of displaying the results. One of which is a heatmap. It takes a 2D
aerial view of the point cloud and changes the color of the individual pictures. Each point
is represented by the color from a color palette, portraying the change in that particular
point between two flights. When the user hovers a mouse over the heatmap point, a text
tooltip next to his cursor apprises him the height difference in meters. In the bottom
right corner, there is information about how many points stayed at the same altitude, and
how many have changed as well as an approximate estimate of the difference in volume. In
the top right corner, there is a button used for changing the view from a heatmap to a mesh
representing the change of a volume of a difference between the two flights. These views
are useful to visually inspect the differences, as the numbers do not speak about the precise
position of the differences.

26

Chapter 6

Implementation and experiments

The application is built as a toolkit with a webpage interface, with the details regarding
functionality documented in chapter 5. Because the tools used for the computation are
run in form of a Docker1 container, the application is also run as a Docker container. This
chapter talks about the details of the implementation and the challenges that it solves.

6.1 The tools used
This application workflow consists of numerous steps, which are not trivial, thus a number
of specific tools and libraries is used to used in each step of the workflow. This section talks
about tools used for computation with the drone data and does not include tools used to
deploy a client-server interface or any other tools. The most used tool in the application is:

• OpenDroneMap2 (ODM) - an open-source toolkit run in the docker container that
is used for 3D reconstruction, encapsulating multiple libraries into one image.

• OpenSfM3 - an open-source library used for the feature extraction and matching
during the Structure from Motion algorithm.

• OpenMVS4 - an open-source library used to create a dense point cloud during the
Multi-view stereo algorithm.

• OpenCV5 - an open-source library used to slice the input video into frames used for
reconstruction

• Open3D6 - an open-source library used to handle the point clouds and meshes

Other worthy libraries, that are used in the reconstruction are:

• NumPy7 - used to handle fast calculations with large point clouds

• SciPy8 - used for calculation of Delaunay triangulation
1https://www.docker.com
2https://www.opendronemap.org
3https://opensfm.org
4https://github.com/cdcseacave/openMVS
5https://opencv.org
6http://www.open3d.org
7https://numpy.org
8https://scipy.org

27

https://www.docker.com
https://www.opendronemap.org
https://opensfm.org
https://github.com/cdcseacave/openMVS
https://opencv.org
http://www.open3d.org
https://numpy.org
https://scipy.org

6.2 Web application
The application is built using the Flask9 web microframework server. Flask was chosen
because it is lightweight, it is a Python10 framework, which directly supports the libraries
used for computation, and it supports extensions to be easily run in a Docker container.

The web application runs the SQLite311 database, which is implemented primarily to
keep track of the various flights. The Flight table in the database contains information
about the class of the same name, Flight (as seen in the figure 6.1). The data_route is
the input, but also the output route for the final results, meaning the whole result structure
will be built in this folder. This is due to the privilege errors when running the Docker
application.

Figure 6.1: Object oriented class Flight.

To run the application GUI from the Docker container, and to enable threading for
the background tasks that are done by the third party tools, a Web Server Gateway Interface
- WSGI12 is run. I used uWSGI to create an uwsgi Unix socket, that communicates between
the web server and the Flask application. Alongside uwsgi runs Nginx13, supplying a fast
web server for communicating between the socket and the client (as seen in the figure 6.2).
The server is configured to kill all the tasks if they reach the time of over 5 hours. This
figure was estimated after testing multiple datasets, which the majority took approximately
40 minutes with the exception of 2 hours in the extreme case.

the web server (nginx)

the web client

the socket

uswgi

Flask

Figure 6.2: The server-client architecture.

When the user calls the compute function, firstly the video input is handled with
the processor-oriented cv2 python library, which supports DJI video codecs. Using the Video
I/O module, specifically changing the parameters in cv2.VideoCapture method, every 5

9https://flask.palletsprojects.com/en/2.1.x/
10https://www.python.org
11https://www.sqlite.org
12https://wsgi.readthedocs.io/en/latest/what.html
13https://www.nginx.com

28

https://flask.palletsprojects.com/en/2.1.x/
https://www.python.org
https://www.sqlite.org
https://wsgi.readthedocs.io/en/latest/what.html
https://www.nginx.com

seconds a single video still is taken and using cv2.imwrite method saved as photography
to a disk.

A dockerfile was written for the application to create a new Docker image, which already
contains all the important requirements and runs the application. This makes it easy for
the end-user to initialize the application, as he needs to download the ODM image, and
the application image and mount the application correctly to have access to all of the tools.
This is possible thanks to the concept of sibling docker containers [6], which means, that
the Docker command-line interface (CLI) is connected to a server via socket, which is
representing a file on the filesystem. When the mentioned file is mounted as a volume
inside a docker container and the Docker CLI is run there, it connects to the Docker Engine
on the host. The CLI is connected to the Engine via the Docker APIs on a dedicated socket,
most of the time located on the path /var/run/docker.sock. When the process inside
the container sends requests to the Docker Engine, it connects to the inner socket, that is
the Engine on the host, that is listening. Hence the request to run a new container is sent
to the host, thus creating a sibling container.

The ability to create a sibling container, combined with the use of the Nginx and uwsgi
enables the application to run a thread, that prepares the dataset by turning it into a point
cloud. The thread calls the ODM container with a following command: docker run -ti
–rm -v path:/datasets opendronemap/odm –project-path /datasets dataset pc-csv.
This command will run the 3D reconstruction using OpenSfM, OpenMVS, and other li-
braries built into the ODM toolkit [17]. There are more, optional arguments, that can be
used for more precise results. These arguments are:

• feature-quality (ultra | high | medium | low | lowest) - sets the feature ex-
traction quality. Higher quality generates better features, but requires more memory
and takes longer, the default is high

• gps-accuracy <positive float> - sets a value in meters for the GPS Dilution of
Precision (DOP) information for all images. The default is 10

• ignore-gsd - ignores the Ground Sampling Distance (GSD). Since GSD is an esti-
mate, sometimes ignoring it can result in slightly better image output quality. The de-
fault is false

• pc-quality (ultra | high | medium | low | lowest) - sets the point cloud qual-
ity. Higher quality generates better, denser point clouds, but requires more memory
and takes longer. Each step up in quality increases processing time roughly by a factor
of 4x. The default is medium

The command above directly outputs the geo-referenced dense point cloud together
with the orthophotography in the PNG and GeoTiff format. The logs of the preparation
are in the /tmp folder. The results are in the structure as follows:

The process of the computation with point clouds uses the NumPy library to optimize
the calculations, as the point clouds have tens of millions of points, which yields them
usually more than a gigabyte in the size. Since the coordinates are in the UTM format,
which uses a floating-point with two-digit precision, the individual points are loaded as
np.float32. These are then always multiplied by 100, as the calculations with a floating-
point were costly and not accurate.

The point clouds are stored in a form of Open3D point cloud geometry.PointCloud().
This allowed me to easily integrate the SciPy library, downsample the point clouds, and use

29

project/
odm_georeferencing/

odm_georeferenced_model.csv # XYZ format point cloud
odm_georeferencing_log.txt # Georeferencing log
odm_georeferencing_utm_log.txt # Log for the~extract_utm portion

odm_orthophoto/
odm_orthophoto.png # Orthophoto image (no coordinates)
odm_orthophoto.tif # Orthophoto GeoTiff
odm_orthophoto_log.txt # Log file
gdal_translate_log.txt # Log for georeferencing the~png file

Figure 6.3: The structure of the output data.

its spatial.Delaunay() for the triangulation of the point cloud. This results in a mesh
illustrating the difference between the point clouds.

The 2D graphs generated by the application are made by calculating the point cloud
distance using the library Matplotlib14. These could be turned to a heatmap by adding a
color spectrum and dyeing the altitude the color from the appropriate range.

6.3 Acquiring own data
One of the biggest challenges of this thesis was to gather a relevant dataset to test the func-
tionality and theories. The very first dataset used to recreate a model of a scene is the one
of a Qatar desert taken by DJI Phantom 4. It was relevant when using photogrammetry
methods to create orthophotography of a scene, regardless, a point cloud was not usable
due to the small height differences and uniformity of the colors.

This led to obtaining own data by flying a drone. Nonetheless, the drone was the DJI
Spark (detailed in section 2.2) that as mentioned above was not meant to be used for
photogrammetry due to its low flight time and mounting of the camera. This, however,
made for the best scenario as it represented the user with the lowest consumer tier drone
from DJI.

With the drone, I created a dataset (in figure 6.4) that would represent a good case
scenario. This dataset contains two flights shot back to back after each other on a lane,
where one of the flights contains a car park in the middle and the other one does not. In
the dataset, the lighting conditions were good, and there was no movement on the ground
during the flights.

The dataset possesses more than 300 pictures per flight taken from an altitude of 30
meters with a minimal overlap of 60%. The differences in overlapping are due to the manual
way of taking the pictures, as there were no photogrammetry mission planning applications
for the Spark. The data from this set could not be used, as only the orthophotography could
be created with reconstruction lacking enough feature points - possibly due to the structure
of the snow.

The next dataset also incorporates two flights, this time with over 400 photographs in
each flight, one with the car present and the other one without a car. The setting captures

14https://matplotlib.org

30

https://matplotlib.org

Figure 6.4: An example of the input photograph from the dataset with a lack of feature
points.

Figure 6.5: An orthophotography of the field dataset.

31

a road with a field on both sides of the road. Contrary to the previous dataset, this one
possesses photographs from three different heights; the first is from an altitude of 30 meters,
and the following from an altitude of 50 meters, with the last part containing drone shots
orbiting around the car at a distance of 1-2 meters. In the dataset without a car, this portion
is dedicated to the close-up photographs on the side of the road. Again, this dataset has
a minimal overlap of 60%, due to the manual taking of the photographs. The results are
not limited only to the orthophotography, this time there are enough feature points to be
extracted to reconstruct a 3D model. The problem was, however, that since the road is
straight, there are no curves and there is a uniform field on the side of the road, therefore no
accurate alignment, when it comes to aligning the two models before calculating the volume
as explained in the section 5.4.

Figure 6.6: An orthophotography of the FIT dataset.

The last and final dataset was provided by my supervisor, which I am thankful for. This
time, it contains three different flights in the same area, ranging from 63 to 84 photos, with
an altitude of 30 meters, again with a car, now in two positions, and the third flight did not
contain a car. What is more, there were two drones flying over each scene. The one was DJI
Spark, which was photographing the scene, and the second one was DJI Maverick which
captured a video flying over a similar perimeter as the Spark. Defiant to the previous
dataset, this one was set near a faculty campus, in an environment with a number of
different, to create a better alignment. This dataset will be referred to as FIT dataset.

6.4 Experiments with the quality
The application has optional arguments (as seen in section 6.2) that change the number of
iterations and other parameters in the reconstruction algorithms to provide a finer result.
These have a radical impact on the time and memory needed to finish the task.

According to the Steam hardware survey [22], only 14% of the users have more than
16GB of RAM in their computer. The majority of the users, 50,59% have 16GB of RAM.
The application was implemented on Apple Mac Mini with an ARM M1 processor and 8GB
of RAM, and no dedicated graphics card. Using lower-end hardware did not allow me to
use the medium setting for the feature point extraction as well as the point cloud quality.
Trying to run higher settings resulted in errors that no memory is available. This gave me
an idea, to test, whether or not a higher-end computer grants better results.

32

With the FIT dataset on a medium preset, I could reconstruct the dense point cloud
with a point count of 404,453 points in 6:57 for the first flight and 631,269 in 7:16 for the
second flight. The higher-end computer is represented by a windows machine running Intel
core i7 7700K, with Nvidia GTX 1050 and 32GB of RAM. The same FIT dataset run with
ultra settings reconstructed the dense point cloud with a point count of 10,458,124 in 43:33
for the first flight and 10,452,858 in 59:57 for the second flight. The data in this experiment
were not aligned, to establish an accurate representation, using unmodified data.

Both pairs of the point clouds were subtracted to illustrate the difference between them.
The resulting point clouds were put into two-dimensional graphs. The 𝑋 axis demonstrates
a difference in the altitude between the first flight and the second flight. The 𝑌 axis denotes
the number of points with the same difference in the altitude.

Figure 6.7: The difference between two flights with medium settings (left) and ultra settings
(right).

The difference is noticeable, as seen in the graph 6.7. Both of the results look similar,
with the higher-end dataset showing finer and more frequent points between the two flights.
The graph on the right displays a spike between two flights around the 0.5 mark. This is
likely due to a tree or bush particles being present in one of the flights and not in the other
one. Overall, the more precise point cloud represents the real scene more accurately, which
was mostly thanks to its better alignment.

My reasoning for the dissimilarity is that the geo-referencing is done after the dense
point cloud is constructed, which indicates that the less dense point clouds end up being
aligned geo-referenced slightly worse.

6.5 Function testing
During the pipeline recreation, the testing was done using assert functions inside of the
source code insted of a unit test script. This was crucial, as it revealed important mistakes,
when it comes to 3D recreation. The testing of the entire pipeline was done manually at
first since there was a need to find working tools. Every output was inspected by reviewing
its source code, attempting to open it in a relevant application, or modifying the data to
have the proper format. For example, the input of the MVS algorithm requires to be images
that were used as input in the previous step as well as the JSON file containing the position
and orientation of the cameras.

Since the available dataset for the application is small, there was no complex testing
on an extensive number of datasets, rather the application pipeline was tested with only a
few different sized data. For the smaller point clouds cut regions of the point clouds were
used to demonstrate if the app was still usable with the lower quality data, and if not, I

33

manually checked if the error outputs were accurate. For the bigger data, a FIT dataset
was used with the ultra settings containing 10,452,858 points. The outcome of this test
found that the NumPy function isin with multiple queries did not work and the code had
to be adjusted accordingly.

Testing of the proper alignment was done manually by opening the GeoTiff orthopho-
tographs and pasting them into the GID application to see if the alignment is correct. The
outcomes uncovered that the optional resizing of the input data correlates with the align-
ment. The resized data was misaligned compared to the unmodified data. The correctness
of resulted GeoTiff orthophotographs was tested also by using the GID application and
testing if the scale matched the one in the photograph.

The integration testing was improved by running the application as a docker image.
Allowing to conduct interation testing once and deploy the application, while ensuring the
functionality.

34

Chapter 7

Conclusion

This work aimed to implement user processes and a tool with a graphical interface allowing
for the detection of changes in the scene captured by the drone at different times. Firstly,
research on existing solutions of drone mapping and three-dimensional reconstruction was
done. The research resulted in dividing the problem into smaller subproblems and identi-
fying them.

Further investigation achieved understanding regarding specific algorithms and libraries
that implement them. An initial pipeline was created, trying to reconstruct and visualize
the scene manually, to encounter practical knowledge about the nuisances. To successfully
recreate a scene, I had to understand and preprocess the data, to use them in the algorithms.

After succeeding in the reconstruction I gained access to a drone to create a usable
dataset since there were not any available. The first automatic pipeline attempt was pro-
duced after succeeding in generating my data. The automatic tool was command-line based
and needed to install the libraries to the user’s computer manually. This created the final
vision of the application architecture. The application is bundled in a container and can be
distributed easily. I created a graphical user interface, to make the app aimed at a wider
audience.

One of the main contributions of the application is, in my opinion, the complexity of
the solution. It makes the solution a one-stop application for both, recreating a three-
dimensional scene and also the ability to survey and monitor changes over time.

If I had my actual knowledge of the subject at the start, I would have implemented
the application as an extension of the OpenDroneMap project, because it is open-source
and already has most of the libraries used in this thesis bundled inside.

The result of the thesis is an application running a pipeline that uses state-of-the- art
reconstruction algorithms, allowing the user to upload, organize, and reconstruct the data
into three-dimensional models and view the difference in volume between the flights at
different times.

35

Bibliography

[1] Anon.. Civil drones (unmanned aircraft) [online]. The European Authority for
aviation safety [cit. 2022-01-03]. Available at:
https://www.easa.europa.eu/domains/civil-drones.

[2] Anon.. Tunable Diode Laser Absorption Spectroscopy [online]. Zurich Instruments
[cit. 2022-01-02]. Available at: https://www.zhinst.com/europe/en/applications/
optics-photonics/tunable-diode-laser-absorption-spectroscopy.

[3] Anon.. Understanding of Air Photos Photogrammetry [online]. University of Rhode
Island [cit. 2022-05-14]. Available at: https://www.edc.uri.edu/nrs/classes/
NRS409509/RS/Lectures/409509RSClass2-UnderstandingAirPhotos.pdf.

[4] Anon.. What is GPS? [online]. Geotab, may 2020. Available at:
https://www.geotab.com/blog/what-is-gps/.

[5] Chen, R., Han, S., Xu, J. and Su, H. Point-Based Multi-View Stereo Network.
CoRR [online]. arXiv. 2019, abs/1908.04422. DOI: 10.48550/ARXIV.1908.04422.
Available at: http://arxiv.org/abs/1908.04422.

[6] Colangelo, A. Sibling Docker Containers [online]. Medium, july 2019 [cit.
2021-05-13]. Available at:
https://medium.com/@andreacolangelo/sibling-docker-container-2e664858f87a.

[7] Corrigan, F. Drone Gyro Stabilization, IMU And Flight Controllers Explained
[online]. DroneZon, may 2020 [cit. 2022-01-02]. Available at:
https://www.dronezon.com/learn-about-drones-quadcopters/three-and-six-axis-
gyro-stabilized-drones/.

[8] Derpanis, K. G. Overview of the RANSAC Algorithm [online]. Rmozone, may 2010
[cit. 2021-12-12]. Available at:
http://rmozone.com/snapshots/2015/07/cdg-room-refs/ransac.pdf.

[9] DJI, S. DJI GO 4 Manual: The Pilot’s Handbook - DJI Guides [online]. DJI, october
2017 [cit. 2022-11-02]. Available at: https://store.dji.com/guides/dji-go-4-manual/.

[10] Fischler, M. A. and Bolles, R. C. Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography.
Commun. ACM. New York, NY, USA: Association for Computing Machinery. june
1981, vol. 24, no. 6, p. 381–395. DOI: 10.1145/358669.358692. ISSN 0001-0782.
Available at: https://doi.org/10.1145/358669.358692.

36

https://www.easa.europa.eu/domains/civil-drones
https://www.zhinst.com/europe/en/applications/optics-photonics/tunable-diode-laser-absorption-spectroscopy
https://www.zhinst.com/europe/en/applications/optics-photonics/tunable-diode-laser-absorption-spectroscopy
https://www.edc.uri.edu/nrs/classes/NRS409509/RS/Lectures/409509RSClass2-UnderstandingAirPhotos.pdf
https://www.edc.uri.edu/nrs/classes/NRS409509/RS/Lectures/409509RSClass2-UnderstandingAirPhotos.pdf
https://www.geotab.com/blog/what-is-gps/
http://arxiv.org/abs/1908.04422
https://medium.com/@andreacolangelo/sibling-docker-container-2e664858f87a
https://www.dronezon.com/learn-about-drones-quadcopters/three-and-six-axis-gyro-stabilized-drones/
https://www.dronezon.com/learn-about-drones-quadcopters/three-and-six-axis-gyro-stabilized-drones/
http://rmozone.com/snapshots/2015/07/cdg-room-refs/ransac.pdf
https://store.dji.com/guides/dji-go-4-manual/
https://doi.org/10.1145/358669.358692

[11] Furukawa, Y. and Ponce, J. Accurate, Dense, and Robust Multiview Stereopsis.
IEEE transactions on pattern analysis and machine intelligence. august 2010,
vol. 32, p. 1362–76. DOI: 10.1109/TPAMI.2009.161.

[12] Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J. et al. Structure
from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports
[online]. Springer. september 2019, vol. 5, no. 3, p. 155–168. DOI:
10.1007/s40725-019-00094-3. ISSN 2198-6436. Available at:
https://doi.org/10.1007/s40725-019-00094-3.

[13] Javaheri, A., Brites, C., Pereira, F. and Ascenso, J. A Generalized Hausdorff
Distance Based Quality Metric for Point Cloud Geometry. In: 2020 Twelfth
International Conference on Quality of Multimedia Experience (QoMEX). 2020,
p. 1–6. DOI: 10.1109/QoMEX48832.2020.9123087.

[14] Lindeberg, T. Feature Detection with Automatic Scale Selection. International
Journal of Computer Vision. september 1998, vol. 30, p. 77–116. DOI:
10.1023/A:1008045108935.

[15] Meza, J., Marrugo, A., Sierra, E., Guerrero, M., Meneses, J. et al. A
Structure-from-Motion Pipeline for Topographic Reconstructions Using Unmanned
Aerial Vehicles and Open Source Software: 13th Colombian Conference, CCC 2018,
Cartagena, Colombia, September 26–28, 2018, Proceedings. In:. January 2018,
p. 213–225. DOI: 10.1007/978-3-319-98998-3_17. ISBN 978-3-319-98997-6.

[16] Oceanic, N. and Administration, A. What is lidar? [online]. National Oceanic
and Atmospheric Administration, february 2021. Available at:
https://oceanservice.noaa.gov/facts/lidar.html.

[17] ODM. OpenDroneMap’s documentation (version 2.8.4). Available at:
https://docs.opendronemap.org.

[18] Pix4D. Pix4Dcapture (version 4.13.1). Available at:
https://www.pix4d.com/product/pix4dcapture.

[19] Pix4D, S. Ground sampling distance (GSD) in photogrammetry [online]. Pix4D [cit.
2022-01-02]. Available at: https://support.pix4d.com/hc/en-us/articles/202559809-
Ground-sampling-distance-GSD-in-photogrammetry.

[20] Schönberger, J. L. and Frahm, J.-M. Structure-from-Motion Revisited.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
June 2016, p. 4104–4113 [cit. 2021-10-24]. DOI: 10.1109/CVPR.2016.445. Available
at: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/
Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf.

[21] Seitz, S. M., Curless, B., Diebel, J., Scharstein, D. and Szeliski, R. A
Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In:
IEEE. 2006 IEEE computer society conference on computer vision and pattern
recognition (CVPR’06). 2006, vol. 1, p. 519–528. DOI: 10.1109/CVPR.2006.19.
Available at: https://vision.middlebury.edu/mview/seitz_mview_cvpr06.pdf.

37

https://doi.org/10.1007/s40725-019-00094-3
https://oceanservice.noaa.gov/facts/lidar.html
https://docs.opendronemap.org
https://www.pix4d.com/product/pix4dcapture
https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry
https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf
https://vision.middlebury.edu/mview/seitz_mview_cvpr06.pdf

[22] Steam. Steam Hardware & Software Survey: April 2022 [online]. Available at:
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-
Welcome-to-Steam?platform=combined.

[23] Tarin, M. Thermal Infrared Imaging explained! [online]. MoviTHERM [cit.
2022-01-02]. Available at:
https://movitherm.com/knowledgebase/thermal-infrared-imaging-explained/.

[24] Wagner, M. September 2014. Available at: https:
//opil.ouplaw.com/view/10.1093/law:epil/9780199231690/law-9780199231690-e2133.

[25] Winkler, C. How Many Sensors are in a Drone, And What do they Do? [online].
Fierce Electronics, july 2016 [cit. 2022-01-02]. Available at:
https://www.fierceelectronics.com/components/how-many-sensors-are-a-drone-and-
what-do-they-do.

38

https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam?platform=combined
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam?platform=combined
https://movitherm.com/knowledgebase/thermal-infrared-imaging-explained/
https://opil.ouplaw.com/view/10.1093/law:epil/9780199231690/law-9780199231690-e2133
https://opil.ouplaw.com/view/10.1093/law:epil/9780199231690/law-9780199231690-e2133
https://www.fierceelectronics.com/components/how-many-sensors-are-a-drone-and-what-do-they-do
https://www.fierceelectronics.com/components/how-many-sensors-are-a-drone-and-what-do-they-do

Appendix A

Storage media structure

The file structure in the attached storage media:

• src – a folder containing the source files of the application

• dataset – a folder containing the FIT dataset

• latex – a folder containing the source code of the master’s thesis

• media – a folder containing a poster and a video

• README.md – a file containing the storage media structure

39

	Introduction
	Unmanned aerial vehicles
	Drones and regulations
	DJI drones and applications

	Acquiring accurate data
	Methods of acquiring precise data
	Drone metadata
	Data acquiring practices

	Data processing algorithms
	Structure from motion
	Multi-view stereo
	Optional algorithms

	Proposed solution
	Defining the use case
	Application architecture
	3D reconstruction
	Calculating the difference
	Graphical user interface

	Implementation and experiments
	The tools used
	Web application
	Acquiring own data
	Experiments with the quality
	Function testing

	Conclusion
	Bibliography
	Storage media structure

