
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PARAMETRIC PROPERTIES FOR LOG CHECKER
OVĚŘOVÁNÍ PARAMETRICKÝCH VLASTNOSTÍ NAD ZÁZNAMY BĚHŮ PROGRAMŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. FILIP ČALÁDI
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav inteligentních systémů (UITS) Akademický rok 2021/2022

 Zadání diplomové práce

Student: Čaládi Filip, Bc.
Program: Informační technologie a umělá inteligence
Specializace: Verifikace a testování software
Název: Ověřování parametrických vlastností nad záznamy běhů programů
 Parametric Properties for Log Checker
Kategorie: Analýza a testování softwaru
Zadání:

1. Seznamte se s metodami verifikace programů za běhu. Nastudujte nástroj plogchecker
z platformy Testos. Nastudujte možnosti specifikace sekvence událostí založených na
regulárních výrazech nebo na výrazech temporálních logik.

2. Navrhněte jazyk pro specifikaci parametrických sekvencí událostí. Navrhněte rozšíření
nástroje plogchecker, které umožní kontrolovat splnění či porušení parametrických sekvencí
událostí. Rozšíření zaměřte na podporu různých datových typů parametrů (např. řetězce,
čísla, datum a čas).

3. Implementujte rozšíření jako refaktorovaný kód nástroje plogchecker.
4. Ověřte funkcionalitu nového nástroje pomocí automatizovaných testů základní funkcionality.

Literatura:
Klaus Havelund, Giles Reger, Daniel Thoma, Eugen Zalinescu: Monitoring Events that Carry
Data. Lectures on Runtime Verification 2018: 61-102.
Domovská stránka projektu plogchecker, url: https://pajda.fit.vutbr.cz/testos/plogchecker
Domovská stránka projektu Kint, url: https://kint-php.github.io/kint/
Modul trace pro Python 2.x, url: https://docs.python.org/2/library/trace.html

Při obhajobě semestrální části projektu je požadováno:
První dva body zadání.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Smrčka Aleš, Ing., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2021
Datum odevzdání: 18. května 2022
Datum schválení: 3. listopadu 2021

Powered by TCPDF (www.tcpdf.org)

Zadání diplomové práce/23298/2021/xcalad01 Strana 1 z 1

Abstract
Plogchecker 2.0 is a tool for verification of user-defined properties over sequences of events
in the traces of the program. The implementation of this tool mainly builds on the pre-
vious version of the tool Plogchecker. The main idea behind these tools is that the user
has to specify system properties (parametric or non-parametric), make any program run
records available to the verification tool and let the tool analyze. The analysis output is
the report about the violation of specified properties with sequences of events that caused
the error. This thesis proposes a new algorithm that optimizes the processing of event
sequences against user-defined properties specifications. The optimizations are focused on
both scalability as well as precision. Furthermore, it adds support for various parametric
data types, such as string, number, date and time. Finally, it offers an easier and more com-
fortable way to specify such parametric properties. Throughout the series of experiments,
it is shown that Plogchecker 2.0 is more scalable and precise compared to previous version
of Plogchecker.

Abstrakt
Plogchecker 2.0 je nástroj zameraný na verifikáciu užívatelom definovaných vlastností nad
sekvenciou udalostí generovaných programom. Implementácia tohoto nástroja stavá hlavne
na už implementovanom nástroji Plogchecker. Hlavná mýšlienka týchto nástrojov je, že
užívatel musí špecifikovať želané vlastnosti (parametrické alebo neparametrické), sprístup-
niť záznam behu programu verifikačnému nástroju a konečne prenechať analýzu na tento
nástroj. Výstup analýzy je report o porušení špecifikovaných vlastností spolu so sekvenci-
ami udalostí, ktoré spôsobili chybu. Táto práca predstavuje nový algoritmus , ktorý op-
timalizuje spracovanie sekvenie udalostí nad užívatelom definovanými vlastnosťami. Táto
optimalizácia sa zameriava ako na škálovatelnosť tak aj presnosť. Ďalej, je pridaná pod-
pora pre rôzne dátové typy parametrov, ako napríklad reťazec, číslo, dátum a čas. Nakoniec,
táto práca ponúka jednoduchší a pohodlnejší spôsob vytvárania parametických vlastností.
Počas experimentovania bolo ukázané, že Plogchecker 2.0 je schopný väčšej škálovatelnosti
a presnosti.

Keywords
runtime verification, parametric properties, non-parametric properties, extended regular
expressions, finite state automatons, golang, grok, garbage collecting

Klíčová slova
verifikácia za behu, parametrické vlastnosti, neparametrické vlastnosti, rozšírené regulárne
výrazy, konečné automaty, golang, grok, garbage collecting

Reference
ČALÁDI, Filip. Parametric Properties for Log Checker. Brno, 2022. Master’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Aleš
Smrčka, Ph.D.

Rozšířený abstrakt
Softwarové chyby sa v počítačových programoch vyskytujú už od samotného vzniku pro-
gramovania. Vývojari majú k dispozícii mnoho spôsobov, ako odhalovať tieto chyby už v
samotnej fáze vývoja software. Táto práca sa zaoberá jednou konkrétnou technikou testo-
vania software, a to verifikáciou za behu (“runtime verification“). Ide o techniku testova-
nia, v ktorej sa porovnáva správanie verifikovaného systému proti užívateľom definovaným
vlastnostiam. Na základe takýchto dvoch vstupov, je potom nástroj, ktorý implementuje
túto techniku verifikovania, schopný rozhodnúť či sledovaný systém spĺňa definované vlast-
nosti alebo nie. V rámci špecifikovania vlastností je každá vlastnosť štandardne definovaná
sekvenciou udalostí. Ďalej, v rámci verifikácie za behu, udalosti typicky rozdeľujeme na
takzvane parametrické a neparametrické. Parametrická udalosť je taká udalosť, ktorá v sebe
nesie nejaká hodnotu identifikovanú jej parametrom. Napríklad, “otvoril sa súbor s názvom
f1“. Oproti tomu, neparametrická vlastnosť v sebe nenesie žiadnu hodnotu parametru.
Napríklad, “otvoril sa súbor“, ale už nevieme s akým názvom.

V súčastnosti existuje mnoho nástrojov, ktoré implementujú techniku verifikácie za
behu. Ich problémom však je, že väčšina z nich je vytvorená pre nejakú konkrétnu doménu.
Napríklad, programovací jazyk, v ktorom, musí byť verifikovaný systém implementovaný.
Alebo, že konkrétny nástroj implementuje podporu výlučne len pre parametrické alebo
neparametrické udalosti, ale už nie jej kombináciu.

Jedným z nástrojov pre verifikáciu za behu je nástroj Plogchecker. Tento nástroj bol,
pred pár rokmi, implementovaný v rámci diplomovej práce a výskumnej skupiny Testos na
VUT FIT v Brne. Je potrebné poznamenať, že Plogchecker funguje pomerne dobre, ako
prototyp (na demonštračné účely), no v súčastnosti nie je nasaditeľný na verifikáciu reálnych
systémov. Za jeho hlavné nedostatky možno považovať pomerne nepohldnú špecifikáciu
monitorovacích vlastností a ich udalostí. Za ďalší nedostatok možno považovať režijné
náklady vygerované počas behu tohoto nástroja, špecificky teda výpočetný čas a množstvo
spotrebovanej pamäte.

Táto diplomová práca predstavuje druhú generáciu už spomínaneho nástroja, a to
Plogchecker 2.0. Tento nástroj sa snaží eliminovať spomínané nedostatky jeho predchodcu.
Či už z pohľadu pohodlnejšieho špecifikovania monitorovacích vlastností alebo režijných
nákladov. Napríklad, užívateľ je schopný v rámci špecifikovania parametrických vlastností
definovať dátové typy jednotlivých parametrov. Medzi podporované dátové typy patria
napríklad reťazec, číslo alebo čas. Plogchecker 2.0 taktiež implementuje vylepšený moni-
torovací algoritmus, ktorého úlohou je zefektívniť ukladanie a monitorovanie prichádzajú-
cich udalostí verifikovaného systému.

Všetky navrhnuté a implementované rozšírenia a vylepšenia v rámci nástroja Plogchecker
2.0 boli riadne odtestované. Ďalej bolo vykonané porovnanie výkonnosti nástrojov Plogchecker
a Plogchecker 2.0 z pohľadu výpočetného času a spotrebovanej pamäte. Testy ukázali, že v
oboch prípadoch je Plogchecker 2.0 na tom výkonnostne lepšie ako jeho predchodca.

Očakáva sa, že práca na tomto projekte bude aj naďalej pokračovať v rámci skupiny
Testos na VUT FIT v Brne.

Parametric Properties for Log Checker

Declaration
I hereby declare that this Mastere’s thesis was prepared as an original work by the author
under the supervision of Ing. Aleš Smrčka, PhD. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Filip Čaládi

May 16, 2022

Acknowledgements
I would like to thank Ing. Aleš Smrčka, Ph.D., for the constant guidance and help he
provided me during the whole year of my work on this thesis. I would also like to thank
my family and friends for their patience and support.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Runtime Verification Taxonomy . 5
2.2 Background theory on Runtime Verification 6
2.3 Specifying system properties . 8
2.4 Generating Monitors . 9

3 Baseline – Plogchecker 13
3.1 Data-Flow Structure . 13
3.2 Property Specification . 13
3.3 Monitoring Algorithm . 15
3.4 Plogchecker Benchmark . 16

4 Proposal of Enhancements in Plogchecker 2.0 22
4.1 Monitoring algorithm . 22
4.2 Specification of Parametric Properties . 29
4.3 Discarding Monitored Sequences . 30
4.4 Garbage Collecting . 31
4.5 Implementation Language . 33

5 Implementation Details of Plogchecker 2.0 35
5.1 Property File . 35
5.2 Constraints Section . 38
5.3 Creating Tables from Defined Properties . 41
5.4 Monitoring Process . 54

6 Experiments and Evaluation 56
6.1 Benchmark . 56
6.2 Functionality Testing . 58
6.3 Cross-Platform Compilation . 60

7 Conclusion 61

Bibliography 63

A Grammar Within the Constraints Section 65

B Memory Consumption of Individual Benchmark Test Cases 67

1

C Contents of the Attached Memory Media 73

D Installation and User Manual 74

2

Chapter 1

Introduction

Runtime verification is a computer science method that aims to extract the information from
the software or hardware execution and use this information to check the correctness of the
running system against some specific defined properties. However, many more techniques
aim to check the correctness of some particular system, i.e., model checking, type checking, or
theorem proving. While model checking, for example, is a powerful technique for software
verification, even this method has its disadvantages. Many of those disadvantages are
related to the process of model building. Consider a case where building the model can be
expensive or complex. Building the model is not always possible as well. This can be true
when the verified system needs to be viewed as a blackbox or part of the verified software is
third-party or closed source. Those are the cases where runtime verification techniques can
become helpful, potentially as lightweight verification methods instead of model checking,
in checking the correctness of some particular system.

In recent years, many studies on runtime verification were focused on either synthesiz-
ing monitors from some high-level property specifications [6] or how to effectively process
the information from system execution by the specific runtime monitor [10]. In its simplest
form, a monitor is a verification software used to decide the correctness of any system
execution against specified property or properties. The property can be essentially speci-
fied in any high-level specification language, i.e., temporal logic or regular expressions (or
extended regular expressions). The monitor’s output is then yes/true (correct behavior),
no/false (incorrect behavior), or sometimes there is no clear verdict available, and the result
would be don’t know [9]. One can find a basic model of such a runtime verification tool in
Figure 1.1.

This thesis aims to study, mainly, the problem of how to effectively process the infor-
mation from system execution by the specific runtime monitor. All proposed ideas and
algorithms are implemented within the Plogchecker 2.0 tool, which is practically a reimple-
mentation of the previous version of this tool, Plogchecker [12]. Furthermore, both of them
are developed within the Testos1 group, which aims to create a modular platform of testing
tools. One of the many challenges of this thesis was to create a processing algorithm that
would be more effective and scalable than the one from Plogchecker. Such an algorithm is
presented in Section 4.1. Moreover, this thesis adds support for various parametric data
types within property specifications, such as string, number, date, and time. One can find
more on this topic in Section 4.2.

1http://testos.org/

3

http://testos.org/

The rest of the thesis is organized as follows. Chapter 2 introduces basic terminology
used within runtime verification. The original version of Plogchecker, its fundamentals,
and structure are described in Chapter 3. Chapter 4 sums up all proposed enhancements
implemented in Plogchecker 2.0. Next, Chapter 5 describes the implementation details of
the most interesting parts of Plogcchecker 2.0. Chapter 6 then describes the functionality
testing and performance comparison between Plogcchecker and Plogchecker 2.0. And finally,
Chapter 7 concludes this thesis.

Figure 1.1: Basic model of runtime verification tool.

4

Chapter 2

Preliminaries

This chapter firstly defines some basic notions commonly used within runtime verifica-
tion (event, trace, and property) in Sections 2.1 and 2.2. Section 2.3 talks about possible
ways to specify some system properties. And to continue from that, Section 2.4 describes
the process of yielding some specific monitors from user-defined properties.

2.1 Runtime Verification Taxonomy
Runtime verification can be helpful in many areas. One can find the division into several of
them in Figure 2.1. The figure highlights four main areas; however, many more exists. The
rest of this section is inspired by the conference paper, Teaching runtime verificattion [9].

Trace. Runtime verification may work on finite, finite expanding, or infinite traces (more
on a trace in Section 2.2). In the case of finite trace, it can be understood as the record of
the already terminated system run, which should be used for verification. In this case, the
monitor can yield two verdicts, yes, meaning that the current behavior fulfills the correct-
ness property, or no, meaning that the monitor found the misbehavior. Finite expanding
traces are practically prefixes of infinite traces. In this case, two maxims need to be consid-
ered: impartiality and anticipation. Impartiality talks about the fact that the monitor can
not evaluate a finite trace as true or false if some infinite trace exists, and the trace might
lead to another verdict. On the other hand, anticipation talks about the fact that if every
continuation of a finite trace leads to the same verdict, then the finite trace is evaluated
to the same verdict. One can easily understand that the first maxim requires three differ-
ent truth values: yes, no, and don’t know, as, in some states of verification, the monitor
does not know if it should evaluate to yes or no because it does not receive the full trace yet.

Stage. In the case of offline monitoring, we indirectly talk about finite trace as well.
After the system execution, the verification is performed with all access to the complete
system run record. On the other hand, online monitoring is performed along the system
execution run. Thus we can say that the monitor is processing finite expanding execution
trace.

Integration. An inline monitor is a piece of code that is directly merged with the verified
system code. In comparison, an outline monitor is a separate program not directly affecting
the verified system.

5

Application area. One can use runtime verification within different application areas, for
example, safety or security checking. One can also use runtime verification to collect the
information from the verified system, and use this information to, for example, measure its
performance.

Figure 2.1: Taxonomy of runtime verification. Partially retrieved from [9].

In this thesis, both Plogchecker and Plogchecker 2.0 tools operate on finite or finite
expanding traces. Furthermore, they are capable of both online and offline monitoring.
Finally, they both belong to the group of outline monitors, so monitoring is performed
separately from the verified system.

2.2 Background theory on Runtime Verification
This section defines notions of trace, event, and property, all without parameters and then
with parameters followed by examples. The section follows the notation and terminology
from [3, 7] for consistency with other released papers from previous years.

Definition 2.2.1 (Non-parametric event and trace). Let Σ be a set of events, called
base events. Then trace is any finite sequence of events in Σ, that is an element in Σ*. If
event 𝑒 ∈ Σ appears in trace 𝑤 ∈ Σ*, it can be as well written like 𝑒 ∈ 𝑤.
Example 2.2.1 (Non-parametric event and trace). Consider a simple file object. This
object can be opened, used, and finally closed. Then Σ = {𝑜𝑝𝑒𝑛, 𝑢𝑠𝑒, 𝑐𝑙𝑜𝑠𝑒}. And execution

6

traces corresponding to the usage of this file object are, for example, ’open.use.use.close’
or ’open.close’.

Definition 2.2.2 (Non-parametric property). A non-parametric property 𝑃 is a func-
tion 𝑃 : Σ* → 𝐶 partitioning set of traces into categories 𝐶. Usually, 𝐶 includes values
such as true, false and don’t know.

Example 2.2.2 (Non-parametric property). Consider a regular expression specifi-
cation open.use+.close. Following the previous example, this specification states that
once the file is opened, it has to be used at least once, and eventually, it has to be
closed. Validating traces for such specification are, for example, ’open.use.use.close’
or ’open.use.close’. Moreover, there are two more types of traces. The first one is not
validating nor violating. It is a trace that can still lead to the validating state once the
right sequence of events is received. For example, trace ’open.use’ in not validating nor
violating. The second type of trace is the violating trace. The violating trace could be, for
example, ’open.close’. For such a trace, there is no chance that it will become validating
in the future. Continuing from that, we can define set 𝐶 as 𝐶 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑑𝑜𝑛′𝑡_𝑘𝑛𝑜𝑤}.
And for a given regular expression 𝐸, we can define it’s associated property 𝑃𝐸 : Σ* → 𝐶
as follows:

𝑃𝐸(𝑤) =

⎧⎪⎨⎪⎩
true, iff 𝑤 ∈ Σ*

false iff (𝑤 /∈ Σ*) ∧ (∀𝑤′ ∈ Σ* : 𝑤𝑤
′
/∈ Σ*)

don’t_know otherwise

Definition 2.2.3 (Parametric event and trace). Let 𝑋 be a set of parameters and let
𝑉 be the set of corresponding parameter values. Further, if Σ if set of base events from
Definition 2.2.1 then let Σ(𝑋) be a set of corresponding parameter instances 𝑒(𝜃) where
𝑒 ∈ Σ and 𝜃 is partial function in [𝑋 ⇁ 𝑉]. The parametric trace 𝑤𝑝 is a trace with events
in Σ(𝜃), or simply 𝑤𝑝 ∈ Σ(𝜃)*.

Example 2.2.3 (Parametric event and trace). Continuing from above examples, a
parametric trace can be, for example:

open(𝜃1).use(𝜃1).open(𝜃2).close(𝜃1).close(𝜃2)

Where 𝜃1 maps parameter f to value f1 and 𝜃2 maps parameter f to value f2. With this
in mind, the above trace can be written as:

open(𝑓1).use(𝑓1).open(𝑓2).close(𝑓1).close(𝑓2)

This trace consists of two resources 𝑓1 and 𝑓2, where 𝑓1 was first opened, used exactly once,
and finally closed. On the other hand, resource 𝑓2 was just opened and closed. Therefore
no use action was recorded for resource 𝑓2.

Definition 2.2.4 (Parametric property). Lets consider set of parameters 𝑋 together
with their corresponding set of values 𝑉 from Definition 2.2.3. Moreover, consider non-
parametric property 𝑃 : Σ* → 𝐶 from Definition 2.2.2. Then, the parametric property is
defined as:

Λ 𝑋.𝑃 : Σ(𝑋)* → [[𝑋 ⇁ 𝑉]→ 𝐶]

7

A parametric property is therefore similar to a non-parametric property, except that the
domain is parametric traces, and the output, rather than being one category, is a mapping
of parameter instances to categories. This allows the parametric property to associate an
output category for each parameter instance from [𝑋 ⇁ 𝑉].

2.3 Specifying system properties
One can generally specify the system properties in various formal languages. These range
from, for example, extended regular expressions (ERE) [13] to query-oriented languages,
such as program query language [11], and rule-based approaches, for example, RuleR [2].
Moreover, temporal logic-based languages are trendy in runtime verification, especially
variants of linear temporal logics (LTL) [5].

Temporal properties can be divided into two main groups: safety and liveness properties,
as something bad cannot happen, and something good will happen [8]. These are essentially
monitorable by ERE as well. The obvious approach would be to divide monitored properties
into good and bad properties. The good property stands for something that one would want
to observe in the execution trace of a monitored system. Therefore this could be marked
as liveness property. On the other hand, the bad property stands for something that one
would not want to see in the execution trace of monitored property. Therefore this could
be marked as a safety property. One can find the resulting verdicts after satisfaction
or dissatisfaction of such properties in Table 2.1. This section further focuses on ERE,
specifically their formal definition, as this formalism is directly used in both Plogchecker
and Plogchecker 2.0 tools.

Good property
verdict

Bad property
verdict

satisfied true false
not satisfied false true

Table 2.1: Example of properties verdict after satisfaction or dissatisfaction.

Extended Regular Expressions

To explain ERE, firstly regular expressions (RE) need to be defined. Following [16], RE are
defined in Definition 2.3.1.

Definition 2.3.1 (Regular expressions). Regular expressions over Σ are recursively
defined as follows:

1. ∅ is a regular expression denoting the regular set ∅,

2. 𝜖 is a regular expression denoting the regular set {𝜖},

3. 𝑎 is a regular expression denoting the regular set {𝑎} for all 𝑎 ∈ Σ

4. if 𝑝, 𝑞 are regular expression denoting the regular sets 𝑃 and 𝑄, then:

• (𝑝+ 𝑞) is regular expression denoting the regular set 𝑃 ∪𝑄,
• (𝑝𝑞) or (𝑝.𝑞) is regular expression denoting the regular set 𝑃 ·𝑄,

8

• (𝑝*) is regular expression denoting the regular set 𝑃 *.

5. There are no other regular expressions over Σ.

Continuing from that, now, ERE can be defined. The definition of ERE is given in
Definition 2.3.2.

Definition 2.3.2. (Extended regular expressions [1]) ERE are expanding RE in the
following way. They allow defining operators without the backslash. Furthermore, they
contain the following operators:

1. ˆmatches the starting position within the string,

2. $ matches the ending position of the string or the position just before a string-ending
newline,

3. * matches the preceding element zero or more times,

4. + matches the preceding element one or more times,

5. ? matches the preceding element one or zero times,

6. | matches the preceding element or the following element,

7. {𝑚,𝑛} matches the preceding element at least 𝑚 and not more than 𝑛 times,

8. {𝑚} matches the preceding element exactly 𝑚 times,

9. {𝑚, } matches the preceding element at least 𝑚 times,

10. {, 𝑛} matches the preceding element not more than 𝑛 times.

2.4 Generating Monitors
Generating monitors from some formal specification language is another crucial aspect of
runtime verification. However, unlike in the decision process of what standard language to
use when specifying system properties, there are limitations on what formal monitor model
to use once one agrees on the specific formal property language.

For example, in the case of LTL properties, the general approach towards monitoring
is that such properties are converted into an automaton model called Büchi automaton [5].
However, more focus has been on monitoring parametric properties in recent years. Since
the monitor has to store observed properties and data they carry, the challenge is to use,
potentially, more efficient monitor representation for manipulation over such properties.
One of the approaches, for example, introduces a representation of first-order past LTL
logic (which allows quantification over data occurring as parameters) with binary decision
diagrams [5].

Both tools of interest, Plogchecker and Plogchecker 2.0, use RE as the language in
which the system properties are specified. Thus, the simple and straightforward approach
to generate runtime monitors is to use conversion from RE to deterministic finite automa-
ton (DFA). And therefore, conversion from RE to DFA is further introduced and formally
defined.

9

Conversion from RE to DFA

Following [16], the conversion from RE to DFA can be divided into two basic steps. Firstly,
one needs to convert a given regular expression to the so-called extended finite automa-
ton (EFA) that will be converted to DFA in the second step. Thus, EFA is formally defined
in Definition 2.4.1. Moreover, the conversion algorithm from RE to EFA is described in
Algorithm 2.4.1. Finally, conversion from EFA to DFA is introduced in Algorithm 2.4.2.

Definition 2.4.1. An extended finite automaton is 5-tuple 𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹) where:

1. 𝑄 is a finite set of states,

2. Σ is a finite input alphabet,

3. 𝛿 is a mapping 𝑄× (Σ ∪ {𝜖})→ 2𝑄,

4. 𝑞0 ∈ 𝑄 is an initial state,

5. 𝐹 ⊆ 𝑄 is a set of final states

Definition 2.4.2. Conversion of EFA to DFA consists of one function which for the given
state determines a set of all states which are reachable by using of 𝜖 transition. This function
is denoted by 𝜖−𝑐𝑙𝑜𝑠𝑢𝑟𝑒:

𝜖−𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑞) = {𝑝 | ∃𝑤 ∈ Σ* : (𝑞, 𝑤) ⊢* (𝑝, 𝑤)} where: 𝑞, 𝑝 ∈ 𝑄

This function can be further generalized, so that the argument of the function can be a
set 𝑇 ∈ 𝑄:

𝜖−𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑇) =
⋃︁
𝑠∈𝑇

𝜖−𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑠)

Algorithm 2.4.1. The conversion of a regular expression to EFA.

Input: A regular expression 𝑟 describing the regular set 𝑅 over Σ.

Output: An extended finite automaton 𝑀 for which holds 𝐿(𝑀) = 𝑅.

Method:

1. Decompose 𝑟 into its primitive component according to recursive definition of regular
sets (expressions).

2. (a) For the expression 𝜖 construct the automaton:

(b) For the expression 𝑎, 𝑎 ∈ Σ construct the automaton:

10

(c) For the expression ∅ construct the automaton:

(d) Let 𝑁1 is the automaton accepting the language which is specified by the expres-
sion 𝑟1 and let 𝑁2 is the automaton accepting the language which is specified
by expression 𝑟2.

i. For the expression 𝑟1 + 𝑟2 construct the automaton:

ii. For the expression 𝑟1𝑟2 construct the automaton:

iii. For the expression 𝑟1* construct the automaton:

Algorithm 2.4.2. The conversion of EFA to DFA.

Input: An extended finite automaton 𝑀 = {𝑄,Σ, 𝛿, 𝑞0, 𝐹}.

Output: A deterministic finite automaton 𝑀
′
= {𝑄′

,Σ, 𝛿
′
, 𝑞

′
0, 𝐹

′}

Method:

1. 𝑄
′
= 2𝑄 ∖ {∅}.

11

2. 𝑞
′
0 = 𝜖−𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑞0).

3. 𝛿
′
: 𝑄× Σ→ 𝑄

′ ∪ {𝑛𝑒𝑑𝑒𝑓} defined as:

• Let ∀𝑇 ∈ 𝑄
′
, 𝑎 ∈ Σ : 𝛿(𝑇, 𝑎) =

⋃︀
𝑞∈𝑇 𝛿(𝑞, 𝑎).

• Then for each 𝑇 ∈ 𝑄
′
, 𝑎 ∈ Σ:

– if 𝛿(𝑇, 𝑎) ̸= ∅ then 𝛿
′
(𝑇, 𝑎) = 𝜖−𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝛿(𝑇, 𝑎)),

– otherwise 𝛿
′
(𝑇, 𝑎) = 𝑛𝑒𝑑𝑒𝑓

4. 𝐹
′
= {𝑆 | 𝑆 ∈ 𝑄

′ ∧ 𝑆 ∩ 𝐹 ̸= ∅}.

12

Chapter 3

Baseline – Plogchecker

As mentioned before, Plogchecker 2.0 is a reimplementation of Plogchecker [12] with sev-
eral improvements. This chapter describes basic principles and algorithms used within
Plogchecker. The chapter is organized as follows. Section 3.2 talks about the way how to
specify system properties. Next, Section 3.1 describes the Plogchecker structure and its
components. Then, Section 3.3 is dedicated to the monitoring algorithm itself. And finally,
Section 3.4 summarizes the results of the Plogchecker benchmark from computation time
and memory consumption point of view.

3.1 Data-Flow Structure
Plogchecker can be divided into four main parts, property specification, execution trace
input, filter, and monitor. Property specification and execution trace input parts serve as
external inputs which the end-user should specify. Filter and monitor are internal parts of
the tool, and in the end, the end-user does not need to know about their internal function-
ality.

Property specification is a file that contains information about verified system properties
and their events. Furthermore, this file can (but it is not mandatory) define parametric
constraints over individual event parameters. Next, Plogchecker should be compatible with
any data format of the input execution trace. It can process this input from a specified file
(offline monitoring) or standard input (online/offline monitoring).

The filter is a process that selects only relevant events from the input execution trace.
When the filter determines that a specific event is relevant for monitoring in the current
context, the event is further passed to the monitor. The event’s relevance is determined
based on property specification and its defined events.

The monitor is the core of the monitoring algorithm. It is responsible for managing
individual monitoring instances (DFA instances). In the case of parametric monitoring, it
is also responsible for mapping events and their parameters to the monitoring instances.
Finally, it is responsible for yielding monitoring verdicts about property violations.

3.2 Property Specification
In Plogchecker, the system properties are specified in a single YAML file. This file is then
parsed, and after that, runtime monitors are created from parsed properties. One can find
the grammar of the property specification file in Listing 3.1, which is defined using the

13

Bakus-Naur form (BNF). The grammar specifies three main parts, properties, events, and
constraints. One can see the example of the property specification file in Listing 3.2.

The property file must contain at least one from properties or bad properties sections.
The properties section specifies a sequence of events that the user would want to see in the
execution trace of the monitored system. On the other hand, the bad properties section
determines the unwanted behavior of the monitored system. Each item in these sections is
defined as a tuple (id:events), where id is a unique identifier of the property and events
define a sequence of events using ERE language.

The events section defines execution events themselves. Each event consists of the
tuple (id:event_value), where id is a unique identifier of the event and event_value
represents a specific event that should be matched with incoming events from the execution
file. The event_value value is specified using RE.

Finally, the constraints section defines parametric constraints over individual event pa-
rameters. Plogchecker introduces following constraint operators ’=’, ’<’, ’<=’, ’>’ and
’>=’, where operator ’=’ is the only n-ary operator. One can specify the value of the
operand as a parameter or constant. The parameter value is a reference to some event
parameter. On the other hand, the constant parameter can be specified either as a number
or string value.

1 <propertyfile> ::= [<propertieslist>] [<badpropertieslist>] <eventslist>
2 [<constraintslist>]
3 <propertieslist> ::= properties : \n <propertydef> {<propertydef>}
4 <badpropertieslist> ::= badproperties : \n <propertydef> {<propertydef>}
5 <propertydef> ::= <letter> : <regex> \n
6 <eventlist> ::= events : \n <eventdef> \n {<eventdef>}
7 <eventdef> ::= <letter> : <regex> \n
8 <constraintslist> ::= constraints : \n <constraintdef> {<constraintdef>}
9 <constraintdef> ::= <equal_expr> | <comparison_expr>

10 <equal_expr> ::= - <position_par> = <position_par> {= <position_par>}\n
11 <comparison_expr> ::= <position_par>|<number> <op>

<position_par>|<number>\n
12 <position_par> ::= <letter> . <number>
13 <op> ::= ’<’ | ’>’ | ’<=’ | ’>=’

Listing 3.1: Grammar of the property specification file defined in BNF.

1 properties:
2 file_usage: ou*c
3 events:
4 o: open\((.+)\)
5 u: use\((.+)\)
6 c: close\((.+)\)
7 constraints:
8 - o.1 = u.1 = c.1

Listing 3.2: Example of the property specification file.

14

3.3 Monitoring Algorithm
Plogchecker’s monitoring algorithm consists of three main execution phases. This process
is executed for every incoming relevant event atomically. That means that every such event
must go through these phases. Note that the input of the monitoring algorithm is an
incoming event accepted by the filter module. The meaning of each phase is described in
the following part. Finally, the end of this section briefly explains the process of generating
violation notifications for a specific property.

Phase 1

Phase 1 checks every DFA instance that is created from user-defined system properties.
Suppose an automaton instance can execute the transition from starting state w.r.t. to the
received event. In that case, the monitoring algorithm duplicates this automaton instance
and executes the transition on the duplicated instance. The new instance is then added
to the unfinished automaton instances (UAI) pool. Note that such input events are called
creation events in the runtime verification field.

Phase 2

The second phase checks every instance from the UAI pool. If there exists some instance
that can execute transition w.r.t. to the input event, then the transition is executed.

Phase 3

The third phase checks every configuration tree. The configuration tree is a data structure
that maps parameter instances to their corresponding values. Plogchecker creates a unique
configuration tree for every property and every unique creation event. The monitoring
algorithm then traverses through every such configuration tree and checks if it can execute
the transition from the current node of the tree. If yes, the monitoring algorithm creates a
new DFA instance A that contains an events sequence derived from the root of the specific
configuration tree to the current node. It then executes the transition on DFA instance A
w.r.t. received event. Finally, DFA instance A is then added to the UAI pool.

Example 3.3.1 (Configrutation tree). Consider previously defined property file for

”open, use, close“ file example from Listing 3.2. The input execution trace could look, for
example, like this (individual events divided by ’.’ character):

open(𝑓1).use(𝑓1).close(𝑓1).use(𝑓1).close(𝑓1)

One can find the configuration tree for such execution trace and property file in Fig-
ure 3.1.

15

Figure 3.1: Configuration tree for execution trace defined in Example 3.3.1.

Generating Violation Notifications

After the DFA instance executes the transition, the monitoring algorithm checks if the
instance has reached the final state. If yes, the instance is removed from the UAI pool.
If it was the instance created from a bad property specification, the information about the
violation of the given property is propagated to the final report. Moreover, suppose some
unfinished DFA instances exist from good property specification at the monitoring end (no
more incoming events). In that case, the information about the violation of the given
property is propagated to the final report.

3.4 Plogchecker Benchmark
Input data to the benchmark process of the Plogchecker were generated using the Pair-
Wise Coverage (PWC) criterion [4]. PWC criterion is defined as follows. Given a set of N
input characteristics with each characteristic having L possible values, a set of test cases R
is generated. Each test case from R contains N values, one from each input characteristic.
Furthermore, the set of test cases R covers all possible pairs of input characteristic values.
Moreover, one can observe the following input characteristics when using Plogchecker :

1. Property. One can define parametric or non-parametric properties or both at the
same time.

2. Property type. One can specify good or bad properties or both at the same time.

3. Number of good properties. One can specify any number of good properties
ranging from one to potentially infinity. The test set of this benchmark contains

16

three characteristic values, 0, 1, and >1 (more than one good property specified).
Values 1 and >1 are essentially the same in the context of functionality, but one
would want to see Plogchecker behavior if he adds more system properties to the
verification process.

4. Number of bad properties. One can specify any number of bad properties ranging
from one to potentially infinity. Characteristic values are the same as in the good
properties case.

5. Timeout. All automaton instances keep track of the number of incoming events
in which they are idle (no transition made). One can then specify the number of
idle events required, after which the monitoring algorithm can delete the specific
automaton instance.

6. Garbage. This input option contains two arguments. The first argument specifies
the required number of open automaton instances to start deleting unused ones. The
second argument specifies the number of automaton instances to be deleted in one
deletion process.

7. Input log size. This is not an input parameter, but three input log sizes are
specified for better evaluation of this benchmark: long (X Mb), medium (X / 2 Mb),
short (X / 4 Mb). In the case of online monitoring, one could think of infinite se-
quences of events (infinite log size), but such input parameter would not be moni-
torable.

It is important to say that input characteristics 5 (Timeout) and 6 (Garbage) were
omitted from the benchmark. The reason for this is simple. One cannot simply specify
the best time to start garbage-collecting unused or inactive automaton instances. Based
on this, the benchmark could be biased in favor of Plogchecker or the other way. Knowing
input characteristics, one can compute a test set based on the PWC criterion. Finally,
Table 3.1 summarizes all test cases available for this benchmark.

Test Case
ID properties property

type
number of good

properties
num of bad
properties log size

Test 01 parametric good 1 0 short
Test 02 parametric bad 0 1 long
Test 03 parametric combined >1 >1 medium
Test 04 non_parametric good >1 0 long
Test 05 non_parametric bad 0 >1 short
Test 06 non_parametric combined 1 1 medium
Test 07 combined good 1 0 medium
Test 08 combined bad 0 1 short
Test 09 combined combined >1 1 short
Test 10 combined combined 1 >1 long
Test 11 parametric bad 0 1 medium

Table 3.1: Test cases generated using Pair-Wise Coverage criterion.

One can observe two main metrics while executing the benchmark on Plogchecker :
computation time and memory consumption. Such metrics are further observed in the

17

following paragraphs. Moreover, all benchmark executions are limited with fifteen minutes
of computation time.

The benchmark was executed using the Python memory-profiler1 package and its time-
based memory tracking executable mprof. This package supports various backends for
monitoring memory usage (psutil, tracemalloc, posix, and more). The default backend is
set to psutil, which measures resident set size metrics. Therefore, for the needs of this
benchmark, the mprof executable was run with default backend settings. Finally, the
benchmark was performed on a 2,7 GHz Quad-Core Intel Core i7 MacBook Pro with 16
GB RAM.

Computation Time

As one can see, monitoring non-parametric properties is not a problem in terms of computa-
tion time. On the other hand, monitoring parametric properties generates some additional
overhead. In this case, computation time rises depending on input file size (test cases 2 vs.
11) or the number of monitored properties (test cases 1, 2, and 11 vs. 3).

In some cases, monitoring parametric and non-parametric properties simultaneously
generates the most extensive overhead on the monitored system (test cases 7 and 10). Keep
in mind that, in this case, the correct input log file contains parametric and non-parametric
events. The existence of non-parametric events means that automaton instances processing
parametric events cannot transition to the final state as effectively as monitoring only
parametric properties. This means that there are significantly more automaton instances
to work with for every received event. Moreover, every received event has to iterate over
all automaton instances in already mentioned execution loops.

Figure 3.2: Computation time of individual test cases.

While monitoring computation time consumption, one can also be interested in the
computation time of individual functions of the monitoring tool. Figure 3.2 shows the top
two computation time functions. Note that the data in the following table was retrieved
from test case number 2 with a total computation time equal to 141.91 seconds. This
table shows data only for test case number 2 because other test cases generate a similar

1https://pypi.org/project/memory-profiler/

18

https://pypi.org/project/memory-profiler/

time percentage against total monitoring time. In other words, functions read_event and
evaulate_constraints are in the top two positions in the context of total computation
time per function in all test cases.

Function name Number of calls Total time Time per call
read_event 30158 139.94 0.0041

evaluate_constraints 22448350 21.68 8.65096989e-7

Table 3.2: Computation time of top two functions of the Plogchecker.

As one can see, the monitoring algorithm spends approximately 140 seconds (98%
against total computation time) of the computing time in the function read_event. This
function essentially wraps already mentioned three main execution phases. Such observa-
tion only strengthens the hypothesis that these three phases generate the most overhead
on the monitored system.

Memory Consumption

Figure 3.3 shows the maximum memory used during the whole monitoring process. As one
can see, the conclusion is more or less the same as in the case of computation time. The
amount of consumed memory increases either with increasing input log size or with the
combination of parametric and non-parametric properties.

Figures 3.4 and 3.5 show the progress of memory consumption over time. Both figures
have the same meaning. They are divided just for better visualization. The memory
consumption for non-parametric properties (test cases 4, 5, and 6) has stabilized over
time which is essentially expected behavior. In the case of only parametric properties,
one can see that memory consumption has increasing behavior. In such test cases, the
increasing behavior of memory consumption over time with new incoming parametric events
is expected.

Finally, in the combined monitoring of parametric and non-parametric properties, the
memory consumption over time is increasing as well. The increase behavior is not observed
from the combined monitoring group, only when monitoring bad and no good properties.
Such observation indicates that monitoring bad properties generates a smaller overhead
than monitoring good properties. However, such behavior is expected when one assumes
that the input log trace mainly contains good property traces.

19

Figure 3.3: Maximum memory consumption detected in each test case.

Figure 3.4: Memory consumption depending on logical time.

20

Figure 3.5: Memory consumption depending on logical time.

The benchmark showed that Plogchecker is an optimal runtime verification tool when
monitoring small inputs or only one kind of property (parametric or non-parametric). How-
ever, once one starts increasing input log size or monitor parametric and non-parametric
properties simultaneously, Plogchecker tends to increase the computation time needed or
consume too much memory. Of course, increasing memory consumption or computation
time is expected with increasing log inputs. Still, it would be optimal to slow down memory
consumption increase from Figure 3.5 or spike in computation time from Figure 3.2.

21

Chapter 4

Proposal of Enhancements in
Plogchecker 2.0

This chapter is dedicated to the proposed enhancements of Plogchecker within Plogchecker
2.0. As already mentioned in Section 3.4, Plogchecker is not optimal when monitoring
parametric and non-parametric properties simultaneously or monitoring bigger size input
logs. Thus, enhancement of the monitoring algorithm itself is proposed in Section 4.1.
When monitoring parametric properties, the user should be able to specify data types of
individual parameters. Specification of data types over individual parameters is discussed
in Section 4.2. Next, Section 4.3 deals with the discard operator, which can be applied
over any specific event sequence. This operator is not present in ERE language family
but is important for monitoring bad properties. And finally, as mentioned in Section 3.4,
Plogchecker offers the option to specify when to start garbage-collecting unused or inactive
automaton instances. However, the end-user cannot define such parameters correctly, as
this can depend on many factors (the hardware on which the monitor is running, log size,
or combination of monitored properties). Thus, the garbage collecting process should be
completely autonomous. This topic is discussed in Section 4.4.

4.1 Monitoring algorithm
As described in Section 3.4, Plogchecker generates bigger overhead when monitoring either
good and bad properties simultaneously or bigger input logs. Such input to the Plogchecker
causes almost constant spawning of new automaton instances. Those instances are then
always checked against new incoming execution events. Such system behavior can poten-
tially cause unacceptable computation times or memory consumptions. In the worst-case
scenario, the monitoring algorithm can either never reach the final decision about monitored
properties or crash due to out-of-memory error.

Plogchecker 2.0 uses DFA theory similar to its predecessor. However, instead of spawn-
ing new automaton instances, the processing of incoming events is slightly different. Con-
sider DFA instance that represents some monitored property defined using RE. Plogchecker
2.0 then represents every state of this DFA instance by some, yet undefined, table struc-
ture. Every table structure contains values corresponding to events parameters defined in
the property file. These parameter values then contain references to parameter values either
from other tables or the inner table. Such references between parameters values then create

22

paths. One such path represents one DFA instance execution over specific path parameters
values.

Motivation Example

Consider property file defined in Listing 3.2 and its only property. Finally, consider the
following DFA instance that represents such property definition (transitions labeled as event
ids):

𝑞0 𝑞1

𝑞2

𝑞3𝑜

𝑢 𝑐

𝑢

𝑐

Figure 4.1: DFA template for property defined in Listing 3.2.

The execution trace for such property could look, for example, like this:

open(𝑓1).use(𝑓1).use(𝑓1).close(𝑓1)

While monitoring such trace, Plogchecker would spawn up to four automaton instances.
One can find a visualization of the individual instantiated automaton executions (transitions
labeled by incoming execution events) in Figure 4.2. Note, that the two automatons in the
middle seem to be the same. But this is not the case, since we are interested in all possible
monitoring sequences from the runtime verification point of view. Thus, the transition from
q1 to q2 in the first automaton is made by the first use event. On the other hand, the same
transition in the second automaton is made by the second use event.

23

𝑞0 𝑞1 𝑞3

𝑞0 𝑞1 𝑞2 𝑞3

𝑞0 𝑞1 𝑞21 𝑞22 𝑞3

𝑞0 𝑞1 𝑞2 𝑞3

𝑜𝑝𝑒𝑛(𝑓1) 𝑐𝑙𝑜𝑠𝑒(𝑓1)

𝑜𝑝𝑒𝑛(𝑓1) 𝑢𝑠𝑒(𝑓1) 𝑐𝑙𝑜𝑠𝑒(𝑓1)

𝑜𝑝𝑒𝑛(𝑓1) 𝑢𝑠𝑒(𝑓1) 𝑢𝑠𝑒(𝑓1) 𝑐𝑙𝑜𝑠𝑒(𝑓1)

𝑜𝑝𝑒𝑛(𝑓1) 𝑢𝑠𝑒(𝑓1) 𝑐𝑙𝑜𝑠𝑒(𝑓1)

Figure 4.2: Spawned DFA executions over trace defined earlier and property from List-
ing 3.2.

On the other hand, Plogchecker 2.0 would create three tables, each representing one
state (except starting state) of DFA instance from Figure 4.1. Each incoming event is
then added to its corresponding table (if possible). Furthermore, the added table item
is then connected with items from other tables or even inner table based on some, yet
undefined, rules. One can see the example of such tables in Figure 4.3, where arrows
represent transitions (connections) between table items.

Figure 4.3: Example of Plogcheckers 2.0 table structures for property from Listing 3.2 and
top execution trace.

Suppose that transition between two table items can be represented by ’→’ symbol and
that one item of the specific table can be represented by 3-tuple=(t,r,v) where:

• t is the table identifier,

• r is the row number of the specific item (rows indexed from 0),

24

• v is the value of the specific item.

Then, all paths from Figure 4.3 can be written as follows:

1. (q1,0,f1) → (q3,0,f1),

2. (q1,0,f1) → (q2,0,f1) → (q3,0,f1),

3. (q1,0,f1) → (q2,1,f1) → (q3,0,f1),

4. (q1,0,f1) → (q2,0,f1) → (q2,1,f1) → (q3,1,f1)

As one can see, these paths correspond precisely to the DFA instances from Figure 4.2.
Moreover, the method of converting DFA instance states to table structures and represent-
ing DFA transitions by references to other table items seems to be promising in the context
of computation time and memory consumption saving. Firstly, the monitoring algorithm
does not have to work with potentially hundreds of spawned automaton instances at once.
Secondly, it is obvious that, for example, for state q1, the enhanced monitoring algorithm
saves the value of some specific event parameter only once. This value is then just reused
when referencing other table items. On the contrary, Plogchecker copies the same value to
all corresponding DFA instances, which significantly increases memory consumption and
potentially computation time.

Preliminaries

This Section defines two main building blocks of monitoring algorithm within Plogchecker
2.0. Firstly, Table structure, that was already mentioned in the motivation example, is
defined in Definition 4.1.1. And secondly, Definition 4.1.4 formally defines binary relation
𝜑. Both definitions are then followed by examples.

Definition 4.1.1 (Table). Consider the definition of parametric trace and event from
Definition 2.2.3. Let 𝑋𝑒 be a set of parameters used within event 𝑒 ∈ Σ. Furthermore,
let 𝑉𝑒 be a set of values corresponding to event’s 𝑒 parameters. Then, it is obvious that
table structure for event 𝑒 represents parameters to values mapping 𝑒(𝜃𝑒) where 𝜃𝑒 is a
partial function in [𝑋𝑒 ⇁ 𝑉𝑒]. Put simply, Plogchecker 2.0 contains unique table structures
for every event from defined properties. Each table contains mapping over specific event
parameters domain and their corresponding values.

Example 4.1.1 (Table). Consider property file example from Figure 3.2. From this
example, it is obvious that:

• Σ = {𝑜, 𝑢, 𝑐},

• 𝑋𝑜 = 𝑋𝑢 = 𝑋𝑐 = {𝑓}, parametric constraints implicate that each event expects one
parameter of the same value, lets mark this parameter as 𝑓 ,

• 𝑉𝑜 = 𝑉𝑢 = 𝑉𝑐 = 𝑉 *, where 𝑉 can be generally any value, but lets limit this set to
𝑉 = {𝑓1, 𝑓2, 𝑓3}.

Plogchecker 2.0 will then create three tables each corresponding to one event 𝑒 ∈ Σ.
Furthemore, lets consider the following execution trace:

open(𝑓1).use(𝑓1).close(𝑓1).open(𝑓3).open(𝑓2).close(𝑓3)

25

Then, one can see the tables content after the trace is received by the monitoring algorithm
in Figure 4.4. Table 𝑇1 represents mapping in [𝑋𝑜 ⇁ 𝑉𝑜], table 𝑇2 represents mapping in
[𝑋𝑢 ⇁ 𝑉𝑢], and finally table 𝑇3 represents mapping in [𝑋𝑐 ⇁ 𝑉𝑐].

Figure 4.4: Example of Plogchecker’s 2.0 table structures for property defined in Listing 3.2.

Note, that if there would be property defined, for example, as 𝑝1: 𝑜𝑢*𝑐𝑢, then the events
set Σ is equal to Σ = {𝑜, 𝑢1, 𝑐, 𝑢2} and incoming parametric event use(a) corresponds to
both 𝑢1 and 𝑢2 events.

Definition 4.1.2. Let Σ𝐸𝑅𝐸 be a set of basic events defined by ERE. Furthermore, let 𝜏
be a function that maps basic event 𝑒 ∈ Σ to its corresponding event 𝑒𝐸𝑅𝐸 ∈ Σ𝐸𝑅𝐸 .

Example 4.1.2. Consider property file example from Figure 3.2. It is obvious that:

• Σ = {𝑜, 𝑢, 𝑐}

• Σ𝐸𝑅𝐸 = {𝑜, 𝑢*, 𝑐}

The result of the function 𝜏 over every event 𝑒 ∈ Σ is as follows:

• 𝜏(𝑜) = 𝑜

• 𝜏(𝑢) = 𝑢*

• 𝜏(𝑐) = 𝑐

Definition 4.1.3 (Function 𝑙𝑒𝑛). Function len over event 𝑒 ∈ Σ is defined as:

𝑙𝑒𝑛(𝑒) =

{︃
0 iff 𝜏(𝑒) = 𝑒*

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition 4.1.4 (Relation 𝜑). Suppose that for any defined parametric property, one
can enumerate its events in ascending order. For example, property 𝑝1: 𝑎𝑏𝑐 can we rewritten
as 𝑝1: 𝑎0𝑏1𝑐2. It is then obvious that event 𝑎 is expected before event 𝑏 and both of the
events before event 𝑐. The binary relation 𝜑 is then defined as:

∀𝑒𝑖(𝜃), 𝑒𝑗(𝜃) ∈ Σ(𝑋) : 𝑒𝑖(𝜃) 𝜑 𝑒𝑗(𝜃) ⇐⇒ 𝑗 = 𝑖+ 1 ∨
𝑗 > 𝑖+ 1 ∧ ∀𝑘 : 𝑖 < 𝑘 < 𝑗 ∧ 𝑙𝑒𝑛(𝑒𝑘) = 0 ∨

𝑗 = 𝑖 ∧ 𝑙𝑒𝑛(𝑒𝑖) = 0

26

Example 4.1.3 (Relation 𝜑). Consider property file example from Figure 3.2. Where:

• Σ = {𝑜, 𝑢, 𝑐},

• 𝑋 is a set of events parameters,

• 𝜏(𝑜) = 𝑜, 𝜏(𝑢) = 𝑢* and 𝜏(𝑐) = 𝑐.

Then, the relation 𝜑 over Σ(𝑋) is:

1. 𝑜(𝜃) 𝜑 𝑢(𝜃),

2. 𝑜(𝜃) 𝜑 𝑐(𝜃),

3. 𝑢(𝜃) 𝜑 𝑐(𝜃),

4. 𝑢(𝜃) 𝜑 𝑢(𝜃).

Algorithm

One can see the pseudocode of the monitoring algorithm in Algorithm 4.1. There is also
pseudocode of the traverse_paths function in Algorithm 4.2. Function traverse_paths
is called from Algorithm 4.1 and is directly responsible for creating transitions between
individual table items.

Monitoring algorithm sequentially processes every incoming event 𝑒 ∈ 𝑤𝑝. For each
such event it iterates through each group of tables from the 𝑝𝑇𝑠. The following process is
then same for each group of 𝑇𝑠 ∈ 𝑝𝑇𝑠. For every event 𝑒 there is a query for relevant table
mappings (stored in 𝑒𝑣𝑒𝑛𝑡_𝑡𝑎𝑏𝑙𝑒𝑠 variable) from 𝑇𝑠 w.r.t. event 𝑒. Relevant table mappings
w.r.t. some specific event 𝑒 are such table mappings that map parameters of event 𝑒 to its
corresponding values. The algorithm then iterates trough every table 𝑡𝑒 ∈ 𝑒𝑣𝑒𝑛𝑡_𝑡𝑎𝑏𝑙𝑒𝑠. In
every iteration it checks if it can add this event to the event table 𝑡𝑒 (function check_table).
To add some event to its corresponding table, the event must satisfy user-defined parametric
constraints, which depend only on the event in question and on no other (if no parametric
constraints defined it always returns true). For example, that one of its parameters should
be equal to some constant (for more information about constraints, check Section 5.2).

Next, if the check_table function returns true, the get_starting_tables function re-
turns the starting tables 𝑡𝑠 w.r.t. table 𝑡𝑒, event 𝑒, and user-defined parametric constraints.
If there are no parametric constraints defined or return value of the get_starting_tables
function should be NULL, then it returns all tables that are in relation 𝜑 with table 𝑡𝑒.
If 𝑡𝑠 is not equal to NULL, the monitoring algorithm then iteratively picks relevant items
from each table mapping 𝑡 ∈ 𝑡𝑠 w.r.t. event 𝑒. Relevant items w.r.t. event 𝑒 are such items
that satisfy user-defined parametric constraints (if no constraints defined, relevant items
are all items from 𝑡). Such items are then passed to the traverse_paths recursive function
together with event 𝑒, 𝑡𝑒 and 𝑡.

The function traverse_paths recursively traverses all paths with the root in the item
𝑟 ∈ 𝑟𝑖. Firstly, it checks if 𝑟 is an item that was added in the current run of Algorithm 4.1
for a given event 𝑒 (lines 2 - 18). If yes, the function continues with the next item from 𝑟𝑖.
Such check is important, for example, in the context of a property with two identical events
following each other. Otherwise, the event 𝑒 and item 𝑟 are connected if and only if the
table mappings 𝑡𝑒 and 𝑡𝑖 satisfy the binary relation 𝜑 from Definition 4.1.4 and user-defined
parametric constraints over 𝑒 and 𝑟 are satisfied. The function then iterates trough every

27

reference 𝑟𝑒𝑓 to other item from 𝑟. It checks for 𝑟𝑒𝑓 table 𝑡𝑟𝑒𝑓 and recursively calls function
traverse_paths with 𝑡𝑟𝑒𝑓 , 𝑟𝑒𝑓 , 𝑒 and 𝑡𝑒. The function ends if it has iterated through all
available references from 𝑟 and its return value is whether the event 𝑒 is connected to at
least one table item.

After calling the traverse_path function for each table mapping 𝑡 ∈ 𝑡𝑠, the Algo-
rithm 4.1 proceeds with the following last step. It adds an event 𝑒 to the table 𝑡𝑒 after
the following condition is met. The given event is either creation or the traverse_path
function returned true.

Algorithm 4.1: Pseudocode of the monitoring algorithm
Data: execution trace 𝑤𝑝 ∈ Σ(𝜃)*; table mappings grouped by individual

properties 𝑝𝑇𝑠
1 for 𝑒 ∈ 𝑤𝑝 do
2 for 𝑇𝑠 ∈ 𝑝𝑇𝑠 do
3 event_tables ← {𝑡𝑒(𝜃) |𝑡𝑒(𝜃) ∈ 𝑇𝑠 ∧ 𝑡𝑒(𝜃) 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑜 𝑒}
4 for 𝑡𝑒 ∈ 𝑒𝑣𝑒𝑛𝑡_𝑡𝑎𝑏𝑙𝑒𝑠 do
5 if check_table(𝑡𝑒, 𝑒) then
6 connected ← False
7 creation_event_table ← is_creation_event_table(𝑡𝑒)
8 𝑡𝑠 ← get_starting_tables(𝑡𝑒, 𝑒))
9 for 𝑡 ∈ 𝑡𝑠 do

10 ri ← get_relevant_items(𝑡, 𝑒)
11 connected ← traverse_paths(𝑡, 𝑟𝑖, 𝑒, 𝑡𝑒)
12 end
13 if connected ∨ creation_event_table then
14 add_to_table(𝑡𝑒, 𝑒)
15 end
16 end
17 end
18 end
19 end

28

Algorithm 4.2: Pseudocode of the traverse_paths function called from Algo-
rithm 4.1

Data: relevant items 𝑟𝑖 w.r.t. to event 𝑒 ∈ 𝑤𝑝; corresponding table mapping 𝑡𝑖
w.r.t. 𝑟𝑖; event 𝑒; corresponding table mapping 𝑡𝑒 w.r.t. 𝑒

1 def traverse_paths(𝑡𝑖, 𝑟𝑖, 𝑒, 𝑡𝑒):
2 connected ← False
3 for r ∈ ri do
4 if currently_added_item(r) then
5 continue
6 end
7 𝑡𝑖 ← get_item_table(𝑟)
8 if 𝑡𝑒 𝜑 𝑡𝑖 ∧ contraints_fulfilled(𝑒, 𝑟) then
9 connect(𝑒, 𝑟)

10 connected ← True
11 end
12 for ref ∈ r.references do
13 𝑡𝑟𝑒𝑓 ← get_item_table(𝑟𝑒𝑓)
14 connected ← traverse_paths(𝑡𝑟𝑒𝑓 , 𝑟𝑒𝑓, 𝑒, 𝑡𝑒) ∨ connected
15 end
16 end
17 return connected
18 end

4.2 Specification of Parametric Properties
Even though Plogchecker provides a way to specify event parameters in their corresponding
properties, there is no way to specify their data types. In recent years, there has been a
development of many tools which aim to add more expresivity to their formal property
specification languages. That is why Plogchecker 2.0 tries to enrich its predecessor formal
property specification language with an option to specify parameters data types.

Plogchecker 2.0 provides an option to specify parameter data types using Logstash1

filter plugin Grok2. Put simply, Grok is used to parse unstructured data into structured
data. Moreover, it provides a way to match some line of input file against RE and map
specific line parts into their dedicated fields. Finally, Grok has a huge support from many
programming languages, which makes this plugin ideal to use within Plogchecker 2.0 input
log parsing.

Basics of Grok

The basic syntax of Grok filter can be defined as %{SYNTAX:SEMANTIC} where:

• SYNTAX is a name of a pattern that will match the content of specific line of the
input log. Each pattern is then defined by its name and corresponding RE.

• SEMANTIC is the identifier to the piece of text being matched.
1https://www.elastic.co/logstash/
2https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

29

https://www.elastic.co/logstash/
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

Furthemore, Grok provides huge variety of basic patterns, ranging from networking (e.g.,
IPv4 or IPv6), dates (years, months, and days), paths (e.g. unix path or windows path),
to some very basic patterns such as numbers, strings or usernames. However, if one would
not find suitable pattern for his needs he can always create the custom one in the already
specified syntax.

Example 4.2.1 (Usage of Grok patterns in Plogchecker 2.0). Lets consider already
discussed ”open, use, close“ file property example. The property file describing such prop-
erty from Listing 3.2 could be rewrited using Grok pattern WORD. This pattern is defined
by \bw+\b regular expression. One can see the rewrited property file in Listing 4.1. This
property file indicates that monitoring algorithm expects three kind of events. Each event
contains one parameter of type WORD and name p1.

1 properties:
2 file_usage: ou*c
3 events:
4 o: open\(%{WORD:p1}\)
5 u: use\(%{WORD:p1}\)
6 c: close\(%{WORD:p1}\)
7 constraints:
8 - o.p1 = u.p1 = c.p1

Listing 4.1: Example of property file for ”open, use and close“ file example using Grok
patterns.

As you can see, the language for specifying properties is more expressive using Grok
patterns. One can define parameter data types and constraints over them pretty easily,
which makes the Grok plugin ideal to use within Plogchecker 2.0. However, when specifying
constraints over parameters, there is one issue which is discussed in the following Section.

Lexical Analysis Over Event Parameter Constraints

As stated in Section 3.2, Plogchecker provides a functionality to specify constraints over
defined event parameters. In the framework of Plogchecker 2.0 this functionality should
be extended by lexical analysis over these constraints (on top of support for parameter
data types). The analysis would ensure that the specified constraint over the parameters is
correct from the lexical point of view. For example, that the user does not try to compare
a number and a string with each other. Or that he does not try to apply an operator to a
parameter of a data type that does not support this operator.

4.3 Discarding Monitored Sequences
As mentioned in Section 3.2, the specification of properties can be divided into so-called
good and bad properties. However, the discard operator (’!’) is strictly applicable only to
bad properties. Therefore, this section will further deal with this operator only from the
bad properties point of view.

In Section 3.2, it was mentioned that a bad property is basically a sequence of events
that the user would not want to see in the verified system log. This behavior is correct
from the runtime verification point of view but not sufficient. The user should be able

30

to specify that the monitoring of a bad property is only of interest until the arrival of a
certain sequence of events. If such a sequence is received, monitoring of the bad property
is discarded. If not, and the bad property is met, then only at this point would the user be
notified of the bad property being met.

Example 4.3.1 (Usage of discard operator). Consider the following bad property 𝑝:

p: abc

The property will be fulfilled when three consecutive events, a, b and c, are received by the
monitoring algorithm. Further, suppose the user would like to express that after receiving
event d between events b and c, the given property p can no longer be fulfilled. Then, the
property p would be defined as follows:

p: abd!c

4.4 Garbage Collecting
Garbage collection is a very important runtime verification process. Without it, the amount
of consumed memory would grow directly proportional to the incoming events (precisely,
events that pass through the filter object). Therefore, the following garbage collection
method is proposed within Plogchecker 2.0.

Let’s suppose that the table objects is a critical section area. Next, let two threads run
simultaneously. One thread is the monitoring algorithm itself and the other thread would
represent the garbage collection process. These would synchronize with each other using a
simple global mutex lock.

The thread for the monitoring algorithm would try to acquire this global lock with each
incoming event. If it fails, it will be suspended until it succeeds in acquiring this lock.
After processing the incoming event, it would release this lock and the whole process would
repeat with the next incoming event.

The thread representing garbage collecting would try to get this lock every X seconds.
The X-second sleep interval is an acceptable solution, since there is no need to try to garbage
collect during the entire run of the monitoring algorithm. After getting the lock, the thread
would decide whether it makes sense to garbage collect in the following way. It would look
at the tables belonging to a specific property and if the size of at least one table exceeds
the set treshold Z then it would try to remove all closed event sequences from these tables.
A closed event sequence is an event sequence that satisfies a given property and that is not
further elaborated. Removing all closed event sequences during monitoring is probably the
simplest and most correct garbage collection technique from a runtime verification point of
view.

A practical example of which sequences could be removed and which could not be
removed can be found in Example 4.4.1. Moreover, one can find the flow diagram on
execution of such two threads in Figure 4.6.

Example 4.4.1 (Garbage collection of closed event sequences). Imagine the follow-
ing property p defined in ERE language:

p: ab(c*d)*

Next, suppose that following is the input trace (events divided by ’.’):

31

a.b.d.c.a.b

And finally, the populated table mappings (from Section 4.1) would look like this (omit
arrows as references, instead, created event sequences are colour highlighted):

Figure 4.5: Contents of table structures after receiving input trace a.b.d.c.a.b.

As one can see in Figure 4.5, there are four event sequences created:

• sequence0 (red colour): a b

• sequence1 (green colour): a b d

• sequence2 (orange colour): a b c

• sequence3 (blue colour): a b

From these sequences only sequence0, sequence1 and sequence3 are closed, and will be
removed by garbage collecting process. Finally, sequence2 is waiting for event d to arrive,
so it is considered unfinished and in progress and will not be removed by the garbage
collection process. Such a proposed garbage collection process guarantees the detection of
all minimal sequences that meet the bad property specification. For example, sequence3
satisfies property p, but once it is garbage collected, the monitoring algorithm will no longer
detect other sequences with potential incoming events c and d.

32

Figure 4.6: Monitoring algorithm and Garbage Collection flow diagram.

4.5 Implementation Language
The original version of Plogchecker is implemented in the Python programming language.
However, Python is generally known for being slow. This is caused, for example, by the
fact that it is an interpreted programming language or that it lacks a Just in time compiler
unlike other interpreted languages (e.g. Java or .NET), or that it uses the so-called Global
interpreter lock [15]. Based on that, Python is not suitable for applications where the speed
in terms of computation time or the efficiency of memory usage is important.

33

Therefore, for the needs of Plogchecker 2.0, the Go programming language was chosen.
Go is a statically typed, compiled programming language designed by Google [14]. It
promises development speed similar to languages like Python with performance similar to
languages like C++ or C. Although Go is not portable because it compiles source code into
platform-specific binary code, it allows cross-platform compilation for different operating
systems and architectures. The cross-platform compilation is managed by two environment
variables, GOOS and GOARCH. GOOS stands for target operating system, and GOARCH
stands for the target architecture. One can see the example of Go cross-platform compilation
for different operating systems (Windows, Linux, Darwin) and architectures (amd64, arm,
arm64) in Listing 4.2.

1 # Windows operating system and amd64 architecture
2 env GOOS=windows GOARCH=amd64 go build -o hello.exe .
3
4 # Linux operating system and arm architecture
5 env GOOS=linux GOARCH=arm go build -o hello .
6
7 # Darwin operating system and arm64 architecture
8 env GOOS=darwin GOARCH=arm64 go build -o hello .

Listing 4.2: Example of Go cross-platform compilation for different operating systems and
architectures.

34

Chapter 5

Implementation Details of
Plogchecker 2.0

This chapter describes the implementation details of Plogchecker 2.0. Section 5.1 describes
the properties file. It is precisely how it is parsed, what data types it supports within the
event parameters, and what rules it must follow. Finally, it explains the minor changes
within the properties and bad properties sections.

Section 5.2 deals specifically with the constraints section of the property file since this
section have seen the most changes in terms of property specification. It describes other
data types that are supported over those supported in the properties section. Furthermore,
it describes an implementation of lexical analysis over the specified constraints.

Next, Section 5.3 deals with the table structure and its items. Then, building such
tables from the specified properties is explained in more detail. Finally, the monitoring
process, from data-flow point of view is briefly explained in Section 5.4. The section is then
mainly focused on the monitoring process output.

5.1 Property File
This section describes one of the essential parts of the Plogchecker 2.0, without which
monitoring would be impossible. The individual parts are discussed from the parsing process
of the property file, what rules the property file has to meet, and finally, the supported data
types within the events section.

Parsing Process

In Plogchecker 2.0, the structure for property definition remains the same as in Plogchecker
(Listing 3.1). This structure is only enriched with support for some additional operators
and parameter data types discussed below. Moreover, the property definition preserves the
syntax of the YAML files.

Parsing of such files with defined properties is controlled by two structures, Proper-
tiesConfRaw and PropertiesConf. The PropertiesConfRaw structure serves as an initial
mapper of the content of the specified YAML file into a structured form. The properties,
badproperties and events sections must be specified as key-value, where both are expected
as string data type. The constraints section is defined as an array of string expressions.

After Plogchecker 2.0 parses the constraints section to the internal form of the tool (more
on this topic in section 5.2), the PropertiesConf structure is initialized with all values from

35

the properties, badproperties and events sections. This structure is then supplemented with
the parsed data from the constraints section. The functionality described above is taken
care of by the property_file.go and constraints.go files.

Parameter Data Types

As mentioned in the enhancement design, Plogchecker 2.0 supports specifying event param-
eter data types using the Logstash filter plugin Grok. Therefore, it supports the following
data types within the parameter specification:

1. NUMBER

• Supports any kind of positive or negative numbers in decimal system.
• example values: 14, -42

2. WORD

• Supports any kind of strings that satisfy \bw+\b regular expression.
• example values: string, string_42

3. DATESTAMP_RFC1123

• Supports date string in RFC1123 format.
• example value: Mon, 14 May 1998 10:12:00 UTC

4. DATE_ISO8601

• Supports date string in ISO8601 format.
• example value: 1998-05-14 10:12:00

Rules

The property definition file defines several rules that must be met for it to be considered
valid. These rules are listed and explained below.

Rule 1

Rule 1 defines that the event identifier must begin with a capital letter and may or may
not continue with any word character equivalent to [𝑎 − 𝑧,𝐴 − 𝑍, 0 − 9,_]. In other
words, event identifier must satisfy the following definition specified by a regular expression:
^[A-Z](\w)*$. One can see an example of a violation of such a rule in Listing 5.1.

1 properties:
2 p1: a
3 bad_properties:
4 events:
5 a: "a" # event ’a’ does not start with capital letter
6 constraints:

Listing 5.1: Example of a violation of Rule 1.

36

Rule 2

Rule 2 defines that a property file must specify at least one good or bad property. One can
see an example of a violation of such a rule in Listing 5.2.

1 # No property defined within properties or bad_properties section
2 properties:
3 bad_properties:
4 events:
5 A: "a"
6 constraints:

Listing 5.2: Example of a violation of Rule 2.

Rule 3

Rule 3 defines that every event used in the properties or bad_properties section must be
defined in the events section. One can see an example of a violation of such a rule in
Listing 5.3.

1 properties:
2 A B C # event ’C’ is not defined
3 events:
4 A: "a"
5 B: "b"
6 constraints:

Listing 5.3: Example of a violation of Rule 3.

Rule 4

Rule 4 defines that the discard operator can only be used in the bad_properties section.

Rule 5

1 properties:
2 A B
3 events:
4 A: ’a %{WORD:p1}’
5 B: ’b %{WORD:p1}’
6 constraints:
7 - "A.p1 = B.p2" # event ’B’ does not contain parameter with name ’p2’
8 - "A.p1 = C.p1" # event ’C’ is not defined

Listing 5.4: Example of a violation of Rule 5.

Rule 5 states that every event and every event parameter used within the constraints
section must be defined in the events section. One can see an example of a violation of such
a rule in Listing 5.4.

37

Properties and BadProperties Sections

The specification of the properties remained the same as in the Plogchecker. There are,
however, a few exceptions worth highlighting. As already mentioned, properties (event
sequences) are specified using extended regular expressions.

Because events can be specified as a word and not just as a single character, Plogchecker
2.0 implements the concatenation operator as a space. This change has been made both
for greater user-friendliness and to make it easy to tell where one event ends and another
begins.

Another modification is adding support for the discard (’!’) operator, which is intro-
duced in Section 4.3. All other operators from the extended regular expression family are
preserved. Finally, to put it all together, Plogchecker 2.0 supports the following operators
within properties sections:

’ ’ - concatenation, ’|’ - alternation, ’*’ - iteration
’+’ - positive iteration, ’{}’ - bounded iteration, ’!’ - discard

Of the closed iteration expressions, only two are supported out of all available, namely, the
expression ’{n}’ (given expression has to be present exactly n times) and {n,m} (given
expression has to be present from n to m times). Finally, every specified property needs to
satisfy defined grammar from Listing 5.5.

1 regex = branch [{ | branch }]
2 branch = { expr }
3 expr = (regex) | expr operator | EVENT
4 operator = ’*’ | ’+’ | ’{’ n ’}’ | ’{’ n1 , n2 ’}’ | ’!’ | 𝜖

Listing 5.5: A grammar expressing properties definitions in extended Backus-Naur form,
enriched with ! operator, partially adopted from [12].

5.2 Constraints Section
This section describes the supported operators within the constraints property file section.
And finally, it explains the process of lexical analysis over individual constraints.

Constraints Data Types

In addition to the data types outlined in the previous chapter, the constraints section
supports two more. Namely, the DURATION and BOOL data types. From the specification
point of view, the DURATION data type is a string that must satisfy the following regular
expression \d+h\d+m\d+s. Intuitively, it is a value in which it is possible to specify the
number of hours, minutes, and seconds. A possible example of its specific value is, for
example, 1h15m0s. Such a value is further parsed into the internal runtime representation
as a Duration data type which is part of the Go time package1.

The BOOL data type logically defines only two values, true and false. These values are
specified as strings and reserved as two unique values for lexical analysis and constraints
parsing.

1https://pkg.go.dev/time

38

https://pkg.go.dev/time

These data types are viewed as constant types. This means that they are not defined
by any parameter but their data type is automatically detected by their value. Plogchecker
2.0 also supports the definition of WORD and NUMBER data type constants within constraints
section. Thus, for example, the value ’42’ is viewed as a constant of the NUMBER data type.
And finally, the value ’abcd’ is viewed as a constant of the WORD data type.

Supported operators

Plogchecker 2.0 supports the following operators within the constraint specification:

1. ’=’ - equal,

2. ’!=’ - not equal,

3. ’>’ - greater,

4. ’<’ - less,

5. ’>=’ - greater or equal,

6. ’<=’ - less or equal

7. ’+’ - plus,

8. ’-’ - minus,

All operators are binary operators. Input operands can be of type parameter or constant.
Moreover, there are two special functions over WORD data type supported:

1. is_substr(s1, s2) - returns whether s1 contains sub-string s2.

• where s1 is a parameter of the WORD data type and s2 is a parameter or
constant of the WORD data type

• return value data type: BOOL

2. length(s1) - returns length of s1.

• where s1 is a parameter of the WORD data type
• return value data type: NUMBER

Lexical Analysis

Lexical analysis over individual constraints is implemented using the lexical analysis frame-
work lexmachine2. Lexmachine divides the input string into sub-strings (lexemes) and
categories (tokens) based on specified patterns. These patterns are specified using regular
expressions.

One can register the new pattern and associated token using the Add function over the
Lexer structure defined by this framework. Moreover, there is the possibility of a kind of
dynamicity where one does not have to specify the corresponding token but the function that
calculates this token. When defining several patterns simultaneously, previously unmatched
text can be matched to more than one pattern. Lexmachine solves this situation by selecting
a pattern defined earlier in the pattern hierarchy.

2https://github.com/timtadh/lexmachine

39

https://github.com/timtadh/lexmachine

Plogchecker 2.0 uses the terms Literal and Token to distinguish between key values
and values that can be dynamic within the constraints section. Literals include operators,
and tokens include data types, both of which were specified in Section 4.1. With all the
information defined above, Listing 5.6 shows the pseudo-code for the registering patterns
and their associated tokens within Plogchecker 2.0.

The result of the tokenization process over a specific constraint is an array of individual
tokens and literals (ordered by their position in a specific constraint). Plogchecker 2.0 then
concatenates this array into a single string using the empty string separator. Then, it checks
if this string is available in the AvailableLexConfigurations structure. If yes, the result
of lexical analysis over specified constraint is that the constraint is valid. Otherwise, the
message about the probable error is propagated to the user. One can find a full list of such
configurations in Appendix A.

Example 5.2.1 (Lexical analysis). Consider a simple property file from Listing 5.7 and
its one specified constraint A.p1 = B.p1. There are two events with one parameter each.
For both events, the parameter carries values of the WORD data type. Therefore, the
result of the tokenization process would be [WORD, =, WORD]. Such an array would then be
concatenated into a single string value WORD=WORD. Moreover, this string would be validated
against the available configurations from the AvailableLexConfigurations structure. The
result would be that from the point of view of lexical analysis this particular constraint is
valid because the AvailableLexConfigurations structure contains a configuration string
WORD=WORD.

1 lexer = lexmachine.NewLexer()
2 for _, lit := range Literals {
3 lexer.Add(lit, lit)
4 }
5
6 lexer.Add(‘\w+\.\w+‘, computeTokenType()} // Compute parameter data type
7 lexer.Add(‘length\(\w+\.\w+\)‘, NUMBER)
8 lexer.Add(‘is_substr\(\w+\.\w+, \w+\)|substr\(\w+\.\w+, \w+.\w+\)‘, BOOL)
9 lexer.Add(‘\d+h\d+m\d+s‘, DURATION)

10 lexer.Add(‘-?\d+‘, NUMBER)
11 lexer.Add(‘true|false‘, BOOL)
12 lexer.Add(‘\w+‘, WORD)

Listing 5.6: Pseudo-code of patterns and their tokens registration.

1 properties:
2 p1: AB
3 events:
4 A: ’a %{WORD:p1}’
5 B: ’b %{WORD:p1}’
6 constraints:
7 - ’A.p1 = B.p1’

Listing 5.7: Simple property file example.

40

5.3 Creating Tables from Defined Properties
This section first presents the Table and TableItem structures in the form of a class diagram.
Then, their relationships and attributes are discussed in more detail. And finally, the section
is devoted to the actual building of tables from the specified properties.

Table Structure

Figure 5.1: Table and TableItem structures and their relationships to each other shown by
a class diagram.

As one can see in Figure 5.1, one table can be related from zero to many tables. This
association models 𝜑 relations from Definition 4.1.4. For each table, Plogchecker 2.0 imple-
ments this association as an array of pointers to other tables in the relatedTables variable.
Moreover, one table can contain from zero to many table items. This is implemented as an
array of instantiated table items in items variable for each table.

And finally, from each table item, there can be from zero to many transitions to another
table items. Such transitions are implemented as a key-value structure for each table item
p. The key is a reference to some table T, and the value is an array of references to table
items of the table T that form a transition with item p. The rest of this section briefly
discusses the individual attributes of both structures.

Table Attributes

• propId - Indicator under which property the given table belongs.

41

• eventId - Indicator which event the table processes.

• idx - Numeric representation of the table order within the specified property.

• capacity - Indicator of whether the table processes an event with positive, negative
or no iteration. Possible values are as follows: StarCap (’*’ operator), PlusCap (’+’
operator) and oneEventCap (all other operators).

• creation - Indicator of whether the given table processes an event that opens a
monitoring sequence within the defined property. For example, for property ’A B C’,
event A opens the monitoring sequence.

• final - Indicator of whether the given table processes an event that closes a monitor-
ing sequence within the defined property. For example, for property ’A B C’, event
C closes the monitoring sequence.

• discard - Indicator whether the table processes an event that is part of an discard
events sequence.

TableItem Attributes

• values - Key-value evaluation of the parameters of a given event. The key is the
parameter identifier and the value can be, in general, a value of any data type.

• lineRawContent - A raw, unprocessed line from input log.

• lineNo - The line number from the input log on which the given event appeared.

Tables Builder

Building tables from user-defined properties starts in the buildParameterTables func-
tion. This function iterates through all defined properties and creates an abstract syntax
tree (AST) from each property, using the Go package goyacc3. Plogchecker 2.0 represents a
given AST in the following format: AST = [op, AST1], where op is a specific operator from
the ERE language family (including the ’!’ operator) and AST1 is an array whose items
are either individual events or other ASTs. One can see an example of AST representation
for a specific property in Example 5.3.1.
Example 5.3.1 (AST representation). Consider the following property p:

p: A B* C

The corresponding AST for such property would look like this (note that Plogchecker 2.0
represents concatenation operator as ’ ’):

AST = [’ ’, [A, [* [B]], C]]

Next, from such AST, it creates the corresponding array of tables and the dependen-
cies (𝜑 relations) between them. The starting point for this process is the buildFromAst
function. Based on the defined operator, this function decides how to create tables belong-
ing to the given operator and to the AST over which this operator works. The rest of this
section describes these different ways of creating tables for a particular type of operator.
Note that the tables from the examples in the individual sections below have no meaning
on their own without the context of the monitoring algorithm from Section 4.1.

3https://pkg.go.dev/golang.org/x/tools/cmd/goyacc

42

https://pkg.go.dev/golang.org/x/tools/cmd/goyacc

Preliminaries

Consider global integer variable tableIdx, which is reset to zero with every new property
iteration in buildParameterTables.

Consider two functions getAllCreationTables and getAllFinalTables, which return
such tables from the Table structure array with the creation or final attribute set to true.

And finally, consider two functions invalidateCreationState and invalidateFinalState,
that set the creation or final attribute to false for each table on the input.

One Event – createOneEvent

Function createOneEvent creates and returns a table structure for the corresponding prop-
erty and event with the creation and final attributes set to true. An implementation of this
function is given in Listing 5.8. Furthermore, one can see an example of the created table
by this function and an equivalent DFA instance for the specific property in Example 5.3.2.

1 func createOneEvent(propID string, event string) *Table {
2 table := &Table{
3 propId: propID,
4 eventId: event,
5 idx: tableIdx,
6 creation: true,
7 final: true,
8 capacity: OneEventCap,
9 discard: false

10 }
11 tableIdx++
12 return table
13 }

Listing 5.8: Implementation of the createOneEvent function.

Example 5.3.2. Consider the following property p1, p1: A. Then, one can see an example
of created table structure T1 and DFA instance for property p in Figure 5.2.

43

(a) Table structure object diagram for property p1.

𝑞0 𝑞𝑓
𝐴

(b) DFA instance for property p1.

Figure 5.2: A figure with two subfigures

Positive and Negative Iteration – createIteration

Function createIteration builds an array of Table structures over specific operator (’*’
or ’+’). A simplified implementation of this function is given in Listing 5.9. At first, it
calls the buildFromAst function, which creates an array of tables for the specified AST to
which the given operator is applied. Then it checks all tables that have the creation (cTs
variable) or final (fTs variable) attribute set to true. And finally, for all cTs tables, it
creates relations (𝜑 relation from Definition 4.1.4) with all fTs tables. Such relations create
an iteration in the frame of the given AST. Within the absolute last action of this function,
the capacity attribute of all tables is set to the capacity of the given operator (starCap for
’*’ and plusCap for ’+’). Examples of this function result and equivalent DFA instance
for the specific property are given in Examples 5.3.3, 5.3.4, and 5.3.5.

1 func createIteration(propID string, ast []interface{}, capacity int)
[]*Table {

2 tables := buildFromAst(propID, ast)
3 cTs := getAllCreationTables(tables)
4 fTs := getAllFinalTables(tables)
5 for _, t := range cTs {
6 t.relatedTables = append(t.relatedTables, fTs...)
7 }
8 for _, t := range tables { t.capacity = capacity }
9 return tables

10 }

Listing 5.9: Simplified implementation of the createIteration function.

Example 5.3.3 (Positive iteration over one event). Consider the following property
p1, p1: A+. One can see an example of created table structure T1 and DFA instance for
property p in Figure 5.3.

44

(a) Table structure object diagram for property p1. Where,
T 𝜑 T.

𝑞0 𝑞𝑓
𝐴

𝐴

(b) DFA instance for property p1.

Figure 5.3: A figure with two subfigures

Example 5.3.4 (Negative iteration over one event). Consider the following property
p1, p1: A*. One can see an example of created table structure T1 and DFA instance for
property p in Figure 5.4.

(a) Table structure object diagram for property p1. Where,
T 𝜑 T.

𝑞𝑓 𝐴

(b) DFA instance for property p1.

Figure 5.4: A figure with two subfigures

Example 5.3.5 (Negative iteration over events sequence). Consider the following
property p1, p1: (A B)*. An example of created table structures and DFA instance for
property p is given in Figures 5.5 and 5.6, respectively.

45

Figure 5.5: Table structure object diagram for property p1. Where, T1 𝜑 T2 and T2 𝜑 T1.

𝑞0 𝑞1 𝑞𝑓
𝐴

𝐵

𝐴

Figure 5.6: DFA instance for property p1.

Bounded Iteration – createBoundedIteration

The createBoundedIteration function creates an array of tables, and 𝜑 relations between
them, from the given AST for which its length is equal to the max value. Note that
specification of the min value is optional, and if not specified, its value is equal to -1.
A simplified implementation of this function is given in Listing 5.10.

In each iteration, the buildFrommAst function is called to build an array of newTs
tables for the given AST. Next, all tables that have the creation (cTs variable) and final (fTs
variable) attributes set to true are selected from newTs. Then, suppose the current iteration
is not equal to 1 (first iteration). In that case, all creation attributes of the cTs tables
are set to false (the tables do not process events that open the monitoring sequence for
the given AST). Moreover, for all such tables, a dependency is created with all tables from
prevFts (variable explained later). This dependency creates a transition between the tables
of the current iteration and the tables of the preceding iteration.

In the last logical step, the function decides whether to invalidate (override final at-
tribute to false) all fTs tables. It does this if one of the following conditions is met:

• min != -1 && i < min: Variable min is specified, and the current iteration i is
smaller. This ensures that the monitoring sequence will not be satisfied until the
minimum number of sequences of the given AST is reached.

• min == -1 && i != max: Variable min is not specified, and the current iteration i
has not reached max value. This ensures that the monitoring sequence will be satisfied
only after the required number of sequences of the given AST has been reached.

46

And as the very last step, the lastFts variable is populated with all fTs tables and all
newTs tables are appended to the array of result tables res.

1 func createBoundedIteration(propID string, min int, max int, ast
[]interface{}) []*Table {

2 var res []*Table
3 var prevFts []*Table
4
5 for i := 1; i <= maxIter; i++ {
6 newTs := buildFromAst(propID, ast)
7 cTs := getAllCreationTables(newTs)
8 fTs := getAllFinalTables(newTs)
9

10 if i != 1 {
11 invalidateCreationState(cTs)
12 for _, t := range cTs {
13 t.relatedTables = append(t.relatedTables, prevFts...)
14 }
15 }
16
17 if (minIter != -1 && i < minIter) ||
18 (minIter == -1 && i != maxIter) {
19 invalidateFinalState(fTs)
20 }
21 prevFts = fTs
22 res = append(res, newTs...)
23 }
24 return res
25 }

Listing 5.10: Simplified implementation of createBoundedIteration function.

Example 5.3.6 (Exact bounded iteration). Consider the following property p1, p1: A{2}.
One can see an example of created table structures and DFA instance for the property p in
Figures 5.7 and 5.8, respectively.

47

Figure 5.7: Table structure object diagram for property p1. Where, T1 𝜑 T2.

𝑞0 𝑞1 𝑞𝑓
𝐴 𝐴

Figure 5.8: DFA instance for property p1.

Example 5.3.7 (Interval bounded iteration). Consider the following property p1, p1: A{1,2}.
One can see an example of created table structures and DFA instance for the property p in
Figures 5.9 and 5.10, respectively.

Figure 5.9: Table structure object diagram for property p1. Where, T1 𝜑 T2.

𝑞0 𝑞1 𝑞𝑓
𝐴 𝐴

Figure 5.10: DFA instance for property p1.

48

Discard – createDiscard

Function createDiscard builds result tables from a given AST with the buildFromAst
function. It then iterates over every such table and sets its discard attribute to true. One
can see a result of this function and DFA instance for the specific property in Example 5.3.8.
A simplified implementation of this function is given in Listing 5.11.

1 func createDiscard(propID string, ast []interface{}) []*Table {
2 tables := buildFromAst(propID, ast)
3 for _, t := range tables { t.discard = true }
4 return tables
5 }

Listing 5.11: Simplified implementation of createDiscard function.

Example 5.3.8 (Discard operator inside concatenated event sequence). Note, that
it is recommended to check the section on building tables for the concatenation operator
before studying this example. Consider the following property p1, p1: A B! C. The cor-
responding table structures and DFA instance for this property can be seen in Figures 5.11
and 5.12, respectively.

Figure 5.11: Table structure object diagram for property p1. Where, T1 𝜑 T2 and T1 𝜑
T3.

𝑞1 𝑞𝑓1 𝑞𝑓2𝑞0

𝐶

𝐴 𝐵

Figure 5.12: DFA instance for property p1.

Alternation – createAlternation

The createAlternation function just iterates over the individual AST items over which the
alternation operator is applied. For each item, the buildFromAst function is called, and its

49

result is appended to the result table array res. The result of the createAlternation func-
tion and DFA instance for the specific property can be seen in Examples 5.3.9 and 5.3.10.
A simplified implementation of this function is given in Listing 5.12.

1 func createAlternation(propID string, ast []interface{}) []*Table {
2 var res []*Table
3 for _, part := range ast {
4 tables := buildFromAst(propID, part)
5 res = append(res, tables...)
6 }
7 return res
8 }

Listing 5.12: Simplified implementation of createAlternation function.

Example 5.3.9 (Simple alternation of two events). Consider the following property
p1, p1: A|B. The corresponding table structures and DFA instance for this property can
be seen in Figures 5.13 and 5.14, respectively.

Figure 5.13: Table structure object diagram for property p1.

𝑞0

𝑞𝑓1

𝑞𝑓2

𝐴

𝐵

Figure 5.14: DFA instance for property p1.

50

Example 5.3.10 (Alternation of two event sequences). Consider the following prop-
erty p1, p1: (A B)|(C D). The corresponding table structures and DFA instance for this
property can be seen in Figures 5.15 and 5.16, respectively.

Figure 5.15: Table structure object diagram for property p1. Where T1 𝜑 T2 and T3 𝜑 T4.

𝑞0

𝑞1 𝑞𝑓1

𝑞2 𝑞𝑓2

𝐴

𝐶

𝐵

𝐷

Figure 5.16: DFA instance for property p1.

Concatenation – createConcatenation

Function createConcatenation iterates over the individual parts of the input AST
and stores the table structures corresponding to the specific part in the result array res.
A simplified implementation of this function is given in Listing 5.13.

51

1 func createConcatenation(propID string, ast []interface{}) []*Table {
2 var resTs []*Table
3 for idx, part := range ast {
4 newTs := buildFromAst(propID, part)
5 if idx == 0 {
6 resTs = append(resTs, newTs...)
7 continue
8 }
9 cTs := getAllCreationTables(newTs)

10 fTs := getAllFinalTables(resTs)
11 for _, t := range cTs {
12 t.relatedTables = append(t.relatedTables, fTs...)
13 }
14 if newTs[0].capacity != StarCap && !newTs[0].discard {
15 invalidateFinalState(resTs)
16 }
17 var lastTable := resTs[len(resTs)-1]
18 if !(lastTable.capacity == StarCap && lastTable.creation) {
19 invalidateCreationState(newTs)
20 }
21 resTs = append(resTs, newTs...)
22 }
23 return resTs
24 }

Listing 5.13: Simplified implementation of createConcatenation function.

For each AST part, the buildFromAst function is called to create an array of tables
corresponding to that part. Next, there are two ways in which the algorithm of this function
can go. Firstly, if a given part is the first in the AST, the tables created for it are appended
to the res and the algorithm continues with the next part.

Secondly, if a given part is not the first in the AST, the algorithm continues in the
following way. It gets all tables from the newTs array with the creation attribute set to true
(cTs variable). Next, it checks for all tables from a resTs array with the final attribute
set to true (fTs variable). Then it creates relations for every table from cTs with all fTs
tables. In other words, the sequence of events that would be accepted by the current resTs
tables must continue in one of the tables from cTs. The algorithm then proceeds in two
steps.

Suppose the first table from newTs does not have its capacity set to StarCap and discard
attribute set to true. In that case, all final attributes of the resTs tables are overwritten
with the value false. This means that the monitoring events sequence is not closed in one
of the resTs tables but one of the newTs tables, with the final attribute set to true.

Further, if the last table from resTs does not have the creation attribute set to true and
the capacity attribute set to StarCap, all creation attributes from newTs are overwritten to
the value false. Invalidating all creation attributes from the newTs tables under the above
conditions ensures that the monitoring sequence is opened only in one of the resTs tables.
Finally, all newTs tables are appended to the resTs tables array. One can see an example

52

result of this function and DFA instance for the specific property in Examples 5.3.11, 5.3.12,
and 5.3.13.

Example 5.3.11 (Simple concatenation of three events). Consider the following
property p1, p1: A B C. The corresponding table structures and DFA instance for this
property can be seen in Figures 5.17 and 5.18, respectively.

Figure 5.17: Table structure object diagram for property p1. Where, T1 𝜑 T2 and T2 𝜑
T3.

𝑞0 𝑞1 𝑞2 𝑞𝑓
𝐴 𝐵 𝐶

Figure 5.18: DFA instance for property p1.

Example 5.3.12 (Concatenation with negative iteration at the end). Consider the
following property p1, p1: A B C*. The corresponding table structures and DFA instance
for this property can be seen in Figures 5.19 and 5.20, respectively.

Figure 5.19: Table structure object diagram for property p1. Where, T1 𝜑 T2, T2 𝜑 T3
and T3 𝜑 T3.

53

𝑞0 𝑞1 𝑞2 𝑞𝑓
𝐴 𝐶𝐵

𝐶

Figure 5.20: DFA instance for property p1.

Example 5.3.13 (Concatenation with negative iteration at the beginning). Con-
sider the following property p1, p1: A* B C. The corresponding table structures and DFA
instance for this property can be seen in Figures 5.21 and 5.22, respectively.

Figure 5.21: Table structure object diagram for property p1. Where, T1 𝜑 T1, T1 𝜑 T2
and T2 𝜑 T3.

𝑞0 𝑞1 𝑞2 𝑞𝑓
𝐴 𝐶

𝐵

𝐵

𝐴

Figure 5.22: DFA instance for property p1.

5.4 Monitoring Process
Plogchecker 2.0 implements the whole monitoring process from the data-flow point of view
in basically the same way as Plogchecker (discussed in Section 3.1). There are some ex-
ceptions, which are mainly related to the proposed enhancements. The most significant
changes can be seen in the monitoring algorithm, which is responsible for processing in-
coming events. Such algorithm is implemented in the monitor.go and parameter_table.go
files.

54

Monitor.go implements the core of the monitoring algorithm and is essentially a rewrite
of Algorithm 4.1 into the Go programming language. Parameter_table.go implements all
functions that operate over the Table structure (and its TableItem items) and are called
from the core of the monitoring algorithm.

It is important to note that this algorithm runs iteratively with each incoming event
for each defined property. Consider the property definition from Listing 5.7. With each
incoming event that passes through the filter object, the monitoring algorithm is triggered
only once because there is only one property defined. The rest of this section is dedicated
to the monitoring algorithm output. More precisely, its structure and how and when it is
generated.

Monitoring Output

The monitoring output (or the final report) has the task of sharing which properties have
been fulfilled or violated with the user. After the end of the monitoring process, one can
find the final report (report.json file) in the same folder from which the Plogchecker 2.0
was executed (if not specified otherwise, see user manual in Appendix D).

Good Properties

A good property is satisfied if all sequences created during monitoring belonging to the
given property end up in some table item from table with the final flag set to true. If some
sequence does not meet this condition, but the monitoring process is not yet complete, the
following sequence of incoming events can extend the sequence to meet the good property.
Therefore, it is impossible to evaluate the good property sequence other than after the
reception of all incoming events.

The search for such sequences starts sequentially in all tables belonging to the given
property, with the creation flag set to true. From these tables, the algorithm then tries to
search all possible sequences that were created during the monitoring. If a sequence violates
a condition defined above, it is added as a good property violation to the final report.

Bad Properties

When monitoring bad properties, a property is violated if a monitoring sequence ends in a
table item from the table with the final flag set to true. If such a sequence exists, it can be
immediately declared violated and then added to the final report.

Imagine that, during the monitoring process, the incoming event is added as a table
item to some table. If the table has the final flag set to true and at the same time does not
operate over the event from the discard events sequence, the algorithm has just detected
a violation of the bad property. Note that if the monitoring sequence ends in the table
with the discard attribute set to true, the sequence cannot be declared a violation of the
bad property (explained in Section 4.3). The monitoring algorithm then finds all tables
(belonging to the given property) that have the creation flag set to true. And starting from
these tables, it tries to find all possible sequences that end in the currently added table
item. Such sequences are then added to the final report as a bad property violation.

55

Chapter 6

Experiments and Evaluation

This chapter is devoted to evaluating Plogchecker 2.0 from different points of view. Sec-
tion 6.1 compares the performance results between Plogchecker and Plogchecker 2.0. More
precisely, it discusses two metrics, similar to Section 3.4, computation time and memory
consumption. Furthermore, unit and integration tests are described in Section 6.2. And
finally, Section 6.3 briefly lists the different architectures on which Plogchecker 2.0 has been
tested.

6.1 Benchmark
One of the indicators of the quality of the Plogchecker 2.0 is how powerful it is compared
to the Plogchecker. With data (properties and input logs) as in Section 3.4, this was
calculated for two metrics; computation time and memory consumption. The benchmark
was performed on the same machine as in Section 3.4. Furthermore, the computation time
was measured using the system utility time1, and it was limited to fifteen minutes for each
test case. Within the Plogchecker tool, the amount of consumed memory was measured
using the Python package memory-profiler2. And finally, the same, but in the context of
Plogchecker 2.0, was done using the Go package gopsutil3 and its process module. One can
find all benchmark test cases and an automatic script for running the benchmark in the
benchmarks/ directory.

Computation Time

Table 6.1 shows the benchmark results between Plogchecker and Plogchecker 2.0 in terms of
computation time within individual test cases. It also highlights the speed up of Plogchecker
2.0 against Plogchecker that was calculated by the following formula:

speed up = plogchecker_time / plogchecker2.0_time

As one can see, Plogchecker 2.0 performs better in every single test case in terms of
computation time. Next, it achieved an average acceleration of approximately 14x. Most
notable are the cases where Plogchecker generated the highest overhead during monitoring.
These are test cases 3, 7, and 10. In two of these cases, the speedup is around 30x.

1https://man7.org/linux/man-pages/man1/time.1.html
2https://pypi.org/project/memory-profiler/
3https://github.com/shirou/gopsutil/

56

https://man7.org/linux/man-pages/man1/time.1.html
https://pypi.org/project/memory-profiler/
https://github.com/shirou/gopsutil/

Another interesting observation can be seen, for example, in test cases 2 and 3. As
mentioned in Section, Plogchecker generates more computation time in test case 3 than in
test case 2 depending on the addition of monitoring properties. It seems that Plogchecker
2.0 responds much better to the addition of monitoring properties since its computation
times are more or less equal in these two test cases.

Test ID Plogchecker
time in seconds

Plogchecker 2.0
time in seconds

Speed up
of Plogchecker 2.0

Test 01 69.69 3.84 18.14x
Test 02 141.91 16.14 8.79x
Test 03 455.55 15.48 29.43x
Test 04 9.33 2.02 4.61x
Test 05 2.47 0.55 4.49x
Test 06 5.14 1.05 4.89x
Test 07 283.68 8.75 32.42x
Test 08 10.59 1.38 7.67x
Test 09 80.61 5.59 14.42x
Test 10 900.01 45.28 19.88x
Test 11 32.66 3.19 10.24x

Average 181.06 9.39 14.01x

Table 6.1: Measured computation time of Plogchecker and Plogchecker 2.0 within individual
test cases.

Memory Usage

Table 6.2 shows the memory usage of both tools during the benchmark run. The max
column represents the maximum peak detected during a given test case run. On the other
hand, the average column represents the average value of memory usage during a given test
case run. As can be seen, Plogchecker 2.0 performs better in terms of memory usage in
every single test case. In addition, it was able to save, on average, almost twice as much
memory as Plogchecker (1.82x).

Further, in Appendix B, it is possible to see the amount of consumed memory depending
on the time. Each test case is represented by its associated figure. The most interesting
test cases are the ones where the use of the automatic garbage collecting process, explained
in Section 4.4, can be seen. From these figures, it can be concluded that Plogchecker 2.0
has managed to slow down the increase of consumed memory, either in terms of adding
monitoring properties or increasing the input log volume.

57

Test ID
Plogchecker

consumed memory in
MB

Plogchecker 2.0
consumed memory in

MB
Saving

max average max average max average
Test 01 27.72 24.38 18.00 13.83 1.54x 1.76x
Test 02 28.89 25.62 23.00 18.04 1.26x 1.41x
Test 03 51.63 40.14 23.00 19.34 2.24x 2.07x
Test 04 17.73 17.27 10.00 9.31 1.77x 1.85x
Test 05 17.59 14.78 9.00 7.20 1.95x 2.05x
Test 06 17.72 16.66 10.00 8.78 1.77x 1.90x
Test 07 38.62 31.53 20.00 17.05 1.93x 1.85x
Test 08 20.08 18.71 11.00 10.00 1.83x 1.87x
Test 09 30.23 26.35 21.00 16.34 1.44x 1.61x
Test 10 65.99 49.33 32.00 25.22 2.06x 1.96x
Test 11 23.44 21.08 15.00 12.31 1.56x 1.71x

Average 30.88 25.99 17.45 14.31 1.76x 1.82x

Table 6.2: Measured memory consumption of Plogchecker and Plogchecker 2.0 within in-
dividual test cases.

6.2 Functionality Testing
Verification of the correctness of the functionality was performed using unit tests during
implementation. Furthermore, integration tests were designed to verify the tool’s function-
ality as a whole. And finally, an exemplary case was created, which demonstrates the real
use of Plogchecker 2.0 in practice.

Unit Tests

Unit testing was done using the Go package testing4, in which each test function must
be in the form func TestXxx(*testing.T), where Xxx does not start with a lowercase
letter of the alphabet. All unit tests are implemented in the project root directory. They
can be identified by the suffix _test.go. These tests can be run, from the project root
directory, using the go test . -v command where ’.’ is the current directory and -v
enables verbose output after the command execution. The unit tests were used to test the
essential elements of the tool, in particular:

• constraints_lexer_test.go - Correct functioning of lexical analysis over parametric
constraints.

• constraints_test.go - Correct parsing and evaluation of parametric constraints.

• parameter_table_builder_test.go - Correct building of table structures from
defined properties.

• properties_file_test.go - Correct parsing of a property files.
4https://pkg.go.dev/testing#section-directories

58

https://pkg.go.dev/testing##section-directories

Integration Tests

Integration tests were performed using the command line utility jd5. This utility can be
used to compare and flatten JSON values. The integration tests themselves are defined in
the integration_tests folder. This folder contains all test case folders, where each folder
contains:

• properties.yaml: properties to be monitored,

• trace.log: input log trace to be monitored,

• expected_output.json: expected final report value in JSON format.

Each test case is identified by its serial number and is divided into three different parts;
parametric, non_parametric, and combined. The parametric test case is dedicated only
to parametric events, and the non_parametric test case is just the opposite. Finally, the
combined test case is dedicated to the combination of parametric and non_parametric
events. Each test case is executed using the compiled Plogchecker 2.0 tool binary with an
associated log and property file, where the final report will be stored in the report.json
file. This file is then checked against the expected result JSON value associated with
the given test case (stored in expected_output.json file). If the two files are not equal
in terms of JSON value equivalence, the test case is considered failed. The described
process is automated by a bash script, which is located in the project root directory file,
run_integration_tests.sh.

Demonstration example

The demonstration example shows the simplicity of using Plogchecker 2.0 to monitor un-
expected access to the /etc/shadow file. The monitoring was performed over the output
of the system call, strace. The property file for this use case is shown in Figure 6.1. The
property file specifies that the sequence to be monitored starts with an open or open_at
event over the /etc/shadow filename. The event then returns some file descriptor in the
form of a numeric character. The result of this event is a non-zero number of bytes read
over the specified file descriptor.

1 bad_properties:
2 shadow: "O R"
3 events:
4 O: ’open(at)?\("/etc/shadow",.* = %{NUMBER:p2}$’
5 R: ’read\(%{NUMBER:p1},.* = %{NUMBER:p2}$’
6 constraints:
7 - "O.p2 >= 0"
8 - "O.p2 = R.p1"
9 - "R.p2 > 0"

Listing 6.1: Property file for illegal access to etc/shadow file.

Let’s say the property file of Figure 6.1 is stored in a shadow.yaml file, and the strace
log is stored in a trace.log file. Then, the validation of such a property can be executed
with the following command:

5https://github.com/josephburnett/jd#command-line-usage

59

https://github.com/josephburnett/jd##command-line-usage

plogchecker -p shadow.yaml -l trace.log -s TEXT

The final report will be printed to a standard output in text format and also saved in
the report.json file.

6.3 Cross-Platform Compilation
This section is devoted to testing Plogchecker 2.0 in terms of functionality on different
operating systems with different architectures. The correct functionality of this tool on
different platforms is important for the possibility of its use on a wide range of real systems
in the context of runtime verification. One can find all combinations of OS, Arch, CPU,
and RAM on which Plogchecker 2.0 was tested in Table 6.3. Cross-platform testing was
performed on all available unit and integration tests. On all platforms, the tests passed
successfully. Based on this, the Plogchecker 2.0 can be declared compatible across different
operating systems with different architectures.

OS Arch CPU RAM
macOS Big Sur
(version 11.6.4) x86_64 2,7 GHz Quad-Core Intel Core i7 16 GB

Windows 10 64-bit
(version 10.0.19043) x64-based AMD Ryzen 5 3600 6-Core Processor 16 GB

GNU/Linux x86-64 1,9 GHz Intel Core i7-8650U 16 GB

Table 6.3: Architectures on which Plogchecker 2.0 was tested.

60

Chapter 7

Conclusion

This thesis started with a basic description of the individual parts of runtime verifica-
tion. Then it looked more closely at regular expressions and the creation of deterministic
finite automatons from them. Since Plogchecker 2.0 mainly builds on its predecessor,
Plogchecker [12], one whole chapter is devoted to this tool. This chapter introduces the
Plogchecker tool and its approximate functioning. At the end of the chapter , its evalua-
tion in terms of computation time and memory consumption is described. The evaluation
showed that although Plogchecker works well, it is not usable for the verification of real
systems for various reasons. Then, the thesis went on to suggest possible enhancements in
the framework of Plogchecker 2.0 that were mainly focused on the monitoring algorithm
process. Further, the thesis focused on adding support for event parameter data types. And
last but not least, adding support for the discard operator within the bad properties sec-
tion. Next, an automated garbage collection process was finally proposed, without which,
this tool would not be usable as the amount of consumed memory would continuously grow
with further incoming events.

The last two sections of this thesis are devoted to the implementation and evaluation
details of Plogchecker 2.0. In the evaluation section, both unit and integration tests that
were used during the implementation of this tool were described. Next, the evaluation
section was devoted to comparing Plogchecker and Plogchecker 2.0 against each other in
terms of computation time and memory consumption. The result is that Plogchecker 2.0
performs better in both metrics. Furthermore, the comparison benchmark showed that
thanks to the automatic garbage collecting process, Plogchecker 2.0 was able to slow down
the constant increase of memory usage with each incoming event.

Although Plogchecker 2.0 has been tested, the tool contains several known issues. The
first issue relates to the non-specification of constraints between all possible event pairs
of a given property. Suppose we have a property p1: A B* C, where each event con-
tains one parameter. Next, suppose some constraint is specified between events B and C.
Further, no constraint is specified over the other possible event pairs. If the input log
contained the event sequence ’a.c’, then the property p1 would not be satisfied from the
point of view of the Plogchecker 2.0 monitoring algorithm. This is based on the way the
get_starting _tables function works (see Section 4.1). Another known issue is the lack
of support for all possible, lexically correct expressions over event parameters in the con-
straints section. Currently, only those from the AvailableLexConfigurations (Section 5.2
and Appendix A) structure are supported.

Next, one of the many interesting improvements would be to add support for the JSON
data type as an event parameter. One could then perform many interesting operations over

61

such data type. Possible improvements also include extending the context of a single event
to more than one line. Currently, Plogchecker 2.0 only supports the one row one event
strategy. However, this may often not be sufficient since one event can span over multiple
lines in many system logs.

All described issues and possible improvements should be the subject of development
either in the framework of other diploma theses or directly by the Testos1 group at the
Brno University of Technology.

1http://testos.org/

62

http://testos.org/

Bibliography

[1] Regular Expressions. [Online; accessed 18-February-2022]. Available at:
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html.

[2] Barringer, H., Rydeheard, D. and Havelund, K. Rule Systems for Run-Time
Monitoring: From Eagle to RuleR. J Logic Comput. june 2010, vol. 20. DOI:
10.1093/logcom/exn076.

[3] Chen, F. and Roşu, G. Parametric trace slicing and monitoring. In:
Springer. International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 2009, p. 246–261.

[4] Czerwonka, J. Pairwise testing in real world. In: Citeseer. 24th Pacific Northwest
Software Quality Conference. 2006, vol. 200.

[5] Havelund, K. and Peled, D. Runtime Verification: From Propositional to
First-Order Temporal Logic. In: Colombo, C. and Leucker, M., ed. Runtime
Verification. Cham: Springer International Publishing, 2018, p. 90–112. ISBN
978-3-030-03769-7.

[6] Havelund, K., Peled, D. and Ulus, D. First-order temporal logic monitoring with
BDDs. Formal Methods in System Design. Dec 2020, vol. 56, no. 1, p. 1–21. DOI:
10.1007/s10703-018-00327-4. ISSN 1572-8102. Available at:
https://doi.org/10.1007/s10703-018-00327-4.

[7] Jin, D., Meredith, P. O., Griffith, D. and Rosu, G. Garbage Collection for
Monitoring Parametric Properties. SIGPLAN Not. New York, NY, USA: Association
for Computing Machinery. jun 2011, vol. 46, no. 6, p. 415–424. DOI:
10.1145/1993316.1993547. ISSN 0362-1340. Available at:
https://doi.org/10.1145/1993316.1993547.

[8] Lamport, L. Proving the Correctness of Multiprocess Programs. IEEE Transactions
on Software Engineering. 1977, SE-3, no. 2, p. 125–143. DOI:
10.1109/TSE.1977.229904.

[9] Leucker, M. Teaching Runtime Verification. In: Khurshid, S. and Sen, K.,
ed. Runtime Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
p. 34–48. ISBN 978-3-642-29860-8.

[10] Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P. O. et al. RV-Monitor: Efficient
Parametric Runtime Verification with Simultaneous Properties. In:
Bonakdarpour, B. and Smolka, S. A., ed. Runtime Verification. Cham: Springer
International Publishing, 2014, p. 285–300. ISBN 978-3-319-11164-3.

63

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
https://doi.org/10.1007/s10703-018-00327-4
https://doi.org/10.1145/1993316.1993547

[11] Martin, M., Livshits, B. and Lam, M. S. Finding Application Errors and Security
Flaws Using PQL: A Program Query Language. SIGPLAN Not. New York, NY,
USA: Association for Computing Machinery. oct 2005, vol. 40, no. 10, p. 365–383.
DOI: 10.1145/1103845.1094840. ISSN 0362-1340. Available at:
https://doi.org/10.1145/1103845.1094840.

[12] Mutňanský, F. Ověřování parametrických vlastností nad záznamy běhů programů.
Brno, CZ, 2020. Diplomová práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Available at: https://www.fit.vut.cz/study/thesis/22424/.

[13] Sen, K. and Rosu, G. Generating Optimal Monitors for Extended Regular
Expressions. Proceedings of the 3rd International Workshop on Runtime Verification.
2003, p. 162–181. DOI: 10.1007/s10009-011-0198-6.

[14] Wikipedia. Go (programming language) — Wikipedia, The Free Encyclopedia. 2022.
[Online; accessed 12-April-2022]. Available at:
http://en.wikipedia.org/w/index.php?title=Go%20(programming%20language)&oldid=
1079071629.

[15] Wikipedia. Python (programming language) — Wikipedia, The Free Encyclopedia.
2022. [Online; accessed 12-April-2022]. Available at:
http://en.wikipedia.org/w/index.php?title=
Python%20(programming%20language)&oldid=1082277512.

[16] Češka, M. and Vojnar, T. Theoretical Computer Science. february 2009. Available
at: https://wis.fit.vutbr.cz/FIT/st/cfs.php.cs?file=
%2Fcourse%2FTIN-IT%2Ftexts%2FoporaTCS.pdf&cid=14173.

64

https://doi.org/10.1145/1103845.1094840
https://www.fit.vut.cz/study/thesis/22424/
http://en.wikipedia.org/w/index.php?title=Go%20(programming%20language)&oldid=1079071629
http://en.wikipedia.org/w/index.php?title=Go%20(programming%20language)&oldid=1079071629
http://en.wikipedia.org/w/index.php?title=Python%20(programming%20language)&oldid=1082277512
http://en.wikipedia.org/w/index.php?title=Python%20(programming%20language)&oldid=1082277512
https://wis.fit.vutbr.cz/FIT/st/cfs.php.cs?file=%2Fcourse%2FTIN-IT%2Ftexts%2FoporaTCS.pdf&cid=14173
https://wis.fit.vutbr.cz/FIT/st/cfs.php.cs?file=%2Fcourse%2FTIN-IT%2Ftexts%2FoporaTCS.pdf&cid=14173

Appendix A

Grammar Within the Constraints
Section

1 "WORD=WORD",
2 "NUMBER=NUMBER",
3 "DATESTAMP_RFC1123=DATESTAMP_RFC1123",
4 "DATE_ISO8601=DATE_ISO8601",
5 "BOOL=BOOL",
6
7 "WORD!=WORD",
8 "NUMBER!=NUMBER",
9 "DATESTAMP_RFC1123!=DATESTAMP_RFC1123",

10 "DATE_ISO8601!=DATE_ISO8601",
11 "BOOL!=BOOL",
12
13 "NUMBER>NUMBER",
14 "NUMBER<NUMBER",
15 "NUMBER>=NUMBER",
16 "NUMBER<=NUMBER",
17
18 "DATESTAMP_RFC1123>DATESTAMP_RFC1123",
19 "DATESTAMP_RFC1123<DATESTAMP_RFC1123",
20 "DATESTAMP_RFC1123>=DATESTAMP_RFC1123",
21 "DATESTAMP_RFC1123<=DATESTAMP_RFC1123",
22 "DATE_ISO8601>DATE_ISO8601",
23 "DATE_ISO8601<DATE_ISO8601",
24 "DATE_ISO8601>=DATE_ISO8601",
25 "DATE_ISO8601<=DATE_ISO8601",
26
27 "NUMBER+NUMBER=NUMBER",
28 "NUMBER+NUMBER!=NUMBER",
29 "NUMBER+NUMBER>NUMBER",
30 "NUMBER+NUMBER<NUMBER",
31 "NUMBER+NUMBER>=NUMBER",

65

32 "NUMBER+NUMBER<=NUMBER",
33
34 "DATESTAMP_RFC1123+DURATION!=DATESTAMP_RFC1123",
35 "DATESTAMP_RFC1123+DURATION=DATESTAMP_RFC1123",
36 "DATESTAMP_RFC1123+DURATION>DATESTAMP_RFC1123",
37 "DATESTAMP_RFC1123+DURATION<DATESTAMP_RFC1123",
38 "DATESTAMP_RFC1123+DURATION>=DATESTAMP_RFC1123",
39 "DATESTAMP_RFC1123+DURATION<=DATESTAMP_RFC1123",
40 "DATE_ISO8601+DURATION!=DATE_ISO8601",
41 "DATE_ISO8601+DURATION=DATE_ISO8601",
42 "DATE_ISO8601+DURATION>DATE_ISO8601",
43 "DATE_ISO8601+DURATION<DATE_ISO8601",
44 "DATE_ISO8601+DURATION>=DATE_ISO8601",
45 "DATE_ISO8601+DURATION<=DATE_ISO8601",
46
47 "NUMBER-NUMBER=NUMBER",
48 "NUMBER-NUMBER!=NUMBER",
49 "NUMBER-NUMBER>NUMBER",
50 "NUMBER-NUMBER<NUMBER",
51 "NUMBER-NUMBER>=NUMBER",
52 "NUMBER-NUMBER<=NUMBER",
53
54 "DATESTAMP_RFC1123-DATESTAMP_RFC1123=DURATION",
55 "DATESTAMP_RFC1123-DATESTAMP_RFC1123!=DURATION",
56 "DATESTAMP_RFC1123-DATESTAMP_RFC1123>DURATION",
57 "DATESTAMP_RFC1123-DATESTAMP_RFC1123<DURATION",
58 "DATESTAMP_RFC1123-DATESTAMP_RFC1123>=DURATION",
59 "DATESTAMP_RFC1123-DATESTAMP_RFC1123<=DURATION",
60 "DATE_ISO8601-DATE_ISO8601=DURATION",
61 "DATE_ISO8601-DATE_ISO8601!=DURATION",
62 "DATE_ISO8601-DATE_ISO8601>DURATION",
63 "DATE_ISO8601-DATE_ISO8601<DURATION",
64 "DATE_ISO8601-DATE_ISO8601>=DURATION",
65 "DATE_ISO8601-DATE_ISO8601<=DURATION",

Listing A.1: Full contents of AvailableLexConfigurations structure.

66

Appendix B

Memory Consumption of
Individual Benchmark Test Cases

Each figure represents a specific test case from Section 3.4, where:

• P: Memory consumption of Plogchecker over time,

• P_2: Memory consumption of Plogchecker 2.0 over time,

• P2_garbage: The time at which the garbage collector was activated automatically
within Plogchecker 2.0.

The data in these figures are sampled so that the visualization in time is approximately the
same for both tools. This is done for better visualization since Plogchecker 2.0 has shorter
run times, and the curves corresponding to it would be almost invisible.

Test 01

Figure B.1: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 01
over period of time.

67

Test 02

Figure B.2: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 02
over period of time.

Test 03

Figure B.3: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 03
over period of time.

68

Test 04

Figure B.4: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 04
over period of time.

Test 05

Figure B.5: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 05
over period of time.

69

Test 06

Figure B.6: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 06
over period of time.

Test 07

Figure B.7: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 07
over period of time.

70

Test 08

Figure B.8: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 08
over period of time.

Test 09

Figure B.9: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 09
over period of time.

71

Test 10

Figure B.10: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 10
over period of time.

Test 11

Figure B.11: Memory consumption of Plogchecker and Plogchecker 2.0 within test case 11
over period of time.

72

Appendix C

Contents of the Attached Memory
Media

This appendix lists the contents of the attached memory media. In particular, the attached
memory media contains the following:

• xcalad01-thesis-2022.pdf - This thesis in PDF format.

• thesis-latex - The source code of this thesis.

• plogcheckerng - The source code of the Plogchecker 2.0. Apart from the source
code of this tool, the folder contains data and scripts for running the benchmarks,
described in Section 6.1, in the benchmarks/ folder. A practical example for strace
log and property is also available in the examples/ folder.

73

Appendix D

Installation and User Manual

This appendix serves as an installation and user manual. A more detailed description can
be found on the Plogchecker 2.0 Gitlab repository (https://pajda.fit.vutbr.cz/testos/
plogcheckerng/-/tree/main) or in the attached memory media (Appendix C).

Before installing and using Plogchecker 2.0, it is necessary to install the Go programming
language with version at least 1.18. One can find the specific installation instructions on
its official web page1. Moreover, it is assumed that the current working directory contains
all files from the plogcheckerng directory described in Appendix C. If not, the directory
can be cloned using the git command through SSH or HTTPS as follows:

1 # SSH
2 git clone git@pajda.fit.vutbr.cz:testos/plogcheckerng.git
3 # HTTPS
4 git clone https://pajda.fit.vutbr.cz/testos/plogcheckerng.git

Installation Manual
Plogchecker 2.0 can be installed in the two following ways:

• make command: make or make build,

• go tool: go build .

The result of the installation process is a binary plogchecker, which can be used without
any other dependencies. A description of how to use this binary can be found in the
following section.

User Manual
This section assumes that the plogchecker binary is already installed. If not, check the
section above that describes how to install this binary. Plogchecker 2.0 expects two main
inputs, the properties file and the log of the monitored system. The property file must be
specified in YAML format and must meet all conditions from Section 5.1. Furthermore,
one can specify the log of the monitored system either by the specific file that contains this
log or by standard input. After running the plogchecker binary over such inputs, a report
about violations of monitored properties will be stored in the report.json file.

1https://go.dev/doc/install

74

https://pajda.fit.vutbr.cz/testos/plogcheckerng/-/tree/main
https://pajda.fit.vutbr.cz/testos/plogcheckerng/-/tree/main
https://go.dev/doc/install

Step By Step Startup Example

This section serves as a step-by-step guide on using a plogchecker binary with the specific
property file and input log.

Step 1 – Property File

Consider the property file, properties.yaml, from Listing D.1 that specifies one good
property p1 and one bad property p2. Property p1 expects two events, A and B. Each event
carries one parameter of type NUMBER, where these two parameters must be equal. Property
p2 expects only one event C, which carries one WORD type parameter.

1 properties:
2 p1: "A B"
3 bad_properties:
4 p2: "C"
5 events:
6 A: "a %{NUMBER:p1}"
7 B: "b %{NUMBER:p1}"
8 C: "c %{WORD:p1}"
9 constraints:

10 - A.p1 = B.p1

Listing D.1: Property file example.

Step 2 – Input Log

Consider the following input log, trace.log, from Listing D.2.

1 a 1
2 c word
3 a 2
4 b 1

Listing D.2: Input log example.

Step 3 – Running Plogchecker

The plogchecker binary can be then executed as follows:

• ./plogchecker -l trace.log -p properties.yaml

Step 4 – Final Report

Listing D.3 shows the violated monitoring properties after running the plogchecker binary
with properties.yaml and trace.log inputs. As you can see, the input log violated
property p1 just once. The sequence of events that violates this property is made only by
event A which is located on line number 3 of the input log. Property p1 is violated because
event B with parameter 2 did not occur after this event. Property p2, like property p1, is
violated just once. Since it is a bad property, its violation is considered to be the fulfillment
of the given event sequence. Thus, as can be seen, property p2 was violated by event C,
which is located on line number 2 of the input log.

75

1 {
2 "properties": {
3 "p1": {
4 "property": "A B",
5 "violated": [
6 [
7 {
8 "eventId": "A",
9 "lineNo": 3,

10 "lineContent": "a 2"
11 }
12]
13]
14 }
15 },
16 "badProperties": {
17 "p2": {
18 "property": "C",
19 "violated": [
20 [
21 {
22 "eventId": "C",
23 "lineNo": 2,
24 "lineContent": "c word"
25 }
26]
27]
28 }
29 }
30 }

Listing D.3: Final report in JSON format after executing plogchecker binary with
properties.yaml and trace.log inputs.

Input Arguments

The following input arguments can be used when running plogchecker binary:

-p {filename}

– Property file in YAML format. If not specified, the default value is logproper-
ties.yaml.

-l {filename}

– File that contains the log of the monitoring system. If not specified, the default
value is input from stdin.

-r {directory}

76

– Specifies the directory in which to store the file that contains the final report of
the monitoring algorithm (report.json file). If not specified, the default value
is current directory.

-s [JSON|TEXT]

– Specifies the streaming format of bad properties violations. If specified, the
valid values are JSON or TEXT. The bad properties violations are stored to
final report as well. The default value is empty string (""), which means that
streaming of bad properties violations is disabled.

-m [true|false]

– Enables (true) or disables (false) printing out the current memory allocated in
MB to stdout. If not specified, the default value is false.

77

	Introduction
	Preliminaries
	Runtime Verification Taxonomy
	Background theory on Runtime Verification
	Specifying system properties
	Generating Monitors

	Baseline – Plogchecker
	Data-Flow Structure
	Property Specification
	Monitoring Algorithm
	Plogchecker Benchmark

	Proposal of Enhancements in Plogchecker 2.0
	Monitoring algorithm
	Specification of Parametric Properties
	Discarding Monitored Sequences
	Garbage Collecting
	Implementation Language

	Implementation Details of Plogchecker 2.0
	Property File
	Constraints Section
	Creating Tables from Defined Properties
	Monitoring Process

	Experiments and Evaluation
	Benchmark
	Functionality Testing
	Cross-Platform Compilation

	Conclusion
	Bibliography
	Grammar Within the Constraints Section
	Memory Consumption of Individual Benchmark Test Cases
	Contents of the Attached Memory Media
	Installation and User Manual

