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Abstract
This work aims to implement, test, and evaluate a speaker-conditioned Voice Activity
Detection (VAD) method called “Personal VAD”. The method builds upon an LSTM-based
approach to VAD and its purpose is to introduce a system that can reliably detect speech
of a target speaker, while retaining the typical characteristics of a VAD system, mainly in
terms of small model size, low latency, and low necessary computational resources. The
system is trained to distinguish between three classes: non-speech, target speaker speech,
and non-target speaker speech. For this purpose, the method utilizes speaker embeddings
as a part of the input feature vector to represent the target speaker. Some of the more
heavyweight personal VAD variants also make use of speaker verification scores issued to
each frame based on the target embedding, resulting in a more robust system. In addition
to the one scoring method presented in the original article, two other scoring approaches
are introduced, both outperforming the baseline method and improving the performance
even for acoustically challenging conditions.

Abstrakt
Cílem této práce je implementovat, otestovat a vyhodnotit řečníkem podmíněnou metodu
pro detekci hlasu (Voice Activity Detection, VAD) nazvanou “Personal VAD”. Pro detekci
využívá tato metoda LSTM neuronových sítí a jejím účelem je vytvoření systému schopného
spolehlivě detekovat řečové signály cílového řečníka při zachování vlastností typického VAD
systému co se velikosti modelu, odezvy a nízkých nároků na zdroje týče. Systém je trénován
pro klasifikaci řečových rámců do tří tříd: neřeč, řeč necílového a řeč cílového řečníka. Za
tímto účelem využívá metoda speaker embedding vektory pro reprezentaci cílového řečníka
jako součást vstupních příznaků. Některé z náročnějších variant systému využívají skórování
rámců systémem pro verifikaci řečníka, což vede ke zvýšení spolehlivosti klasifikace. Vedle
základní metody skórování představené v originálním článku byly navrženy dvě modifikace,
jež základní metodu překonaly a zlepšily spolehlivost výsledného systému i v akusticky
náročných prostředích.
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Rozšířený abstrakt
Tato práce se zabývá implementací a evaluací řečníkem podmíněné metody detekce hlasu

(Voice Activity Detection, VAD), původně nazvané “Personal VAD” (PVAD). Tato metoda
byla poprvé představena v [13] a jejím cílem je vytvoření VAD systému, který je schopen
rozlišit řečové rámce jednoho cílového řečníka od řečových rámců ostatních mluvčích.

Původní motivací pro vytvoření takového systému bylo jeho potenciální využití pro on-
device rozpoznávání řeči u osobních a mobilních zařízení. Pro tento účel by bylo výhodné,
aby si výsledný systém zachoval základní charakteristiky typického VAD systému, primárně
co se nároků na zdroje a odezvy týče. z tohoto důvodu je tedy snaha o adaptaci klasick-
ého VAD systému na daného cílového řečníka potenciálně výhodnější než například přímé
využití diarizačních systémů nebo systémů pro verifikaci řečníka pro stejný účel.

Výsledný systém je založen na architektuře LSTM neuronových sítích, které jsou jed-
nou z populárních architektur neuronových sítí pro tvorbu VAD systémů [14], a které
umožňují elegantní modelování temporálního kontextu ve vstupních datech a poskytují
možnost proudového zpracování. Tato architektura je pro všechny PVAD systémy společná
a výsledný model má pak něco málo přes 130 tisíc parametrů. Pro adaptaci na cílového
mluvčího jsou pak využity dva typy vstupních příznaků specifických pro daného řečníka.
Jednotlivé varianty PVAD systémů se pak liší právě tím, jakou kombinaci těchto vstupních
příznaků využijí.

Prvním z těchto příznaků je řečníkova d-vector embedding [48] reprezentace. Ta má
v prvé řadě sloužit jako jakýsi abstraktní vzor pro výsledný PVAD systém, na základě
kterého má cílového řečníka v akustických příznacích identifikovat. Tento embedding vektor
je využíván primárně architekturou ET, která představuje ideální řešení problému PVAD,
protože nemá žádné speciální nároky na zdroje, na rozdíl od ostatních PVAD variant. Dále
je tato embedding reprezentace využívána jako součást příznakového vektoru architektury
SET.

Náročnější varianty PVAD (co se nároků na zdroje týče) pak mohou tuto d-vector
reprezentaci možné využít i pro skórování jednotlivých akustických rámců. Pro každý jed-
notlivý rámec je extrahován sekundární d-vector, který je kosinovou podobností porovnán
s embedding vektorem cílového řečníka. Takto dostaneme skalární skóre, které lze využít
jako další příznak na vstupu systému. Toto skóre je využíváno architekturami SC, ST
a SET. Architektura SET tedy využívá jak embedding vektor cílového řečníka, tak zmíněná
skóre, a je tedy očekáváno, že bude mít nejlepší klasifikační výsledky.

Pro natrénování jednotlivých PVAD architektur je také třeba najít vhodnou datovou
sadu. Ideální datová sada by obsahovala střídavé promluvy řečníků, ale také jejich samostatné
promluvy v dostatečné kvalitě, které by bylo možné využít pro extrakci výchozích d-vector
reprezentací každého řečníka. Pro trénování PVAD architektur, které využívají právě pouze
tuto výchozí reprezentaci, je pak také třeba, aby daná datová sada obsahovala dostatečnou
variabilitu řečníků, tedy jejich dostatečný počet.

Pro tento účel byl využit standardní LibriSpeech [32] korpus, s pomocí kterého byly
střídavé promluvy simulovány konkatenací několika promluv několika náhodně zvolených
řečníků. Výsledné systémy pak byly trénovány na celém téměř tisíci-hodinovém rozsahu
LibriSpeech korpusu, přičemž byla na vygenerovanou trénovací datovou sadu aplikována
augmentace, která dále zvětšila její rozsah na čtyřnásobek.

Výsledky základních experimentů se všemi čtyřmi architekturami přinesly jeden důležitý
poznatek: hodnoty skóre pro verifikaci řečníka přiřazená každému rámci u architektur SC,
ST a SET nebyly co se týče rozlišení cílových (target speaker speech, tss) a necílových
(non-target speaker speech, ntss) řečových rámců dostatečně diskriminativní. Architektura



ST, která pro detekci tss rámců vedle akustických příznaků využívá právě pouze toto
skóre, dosáhla pro čistou validační sadu přesnosti klasifikace pouze 84.29% (tedy podíl
korektně klasifikovaných rámců). Oproti tomu architektura ET, využívající pouze d-vector
embedding reprezentaci cílového řečníka dosáhla pro stejný úkol dosáhla přesnosti 88.02%.

Z tohoto důvodu byly navrženy dvě modifikace základní metody skórování, které v průběhu
zpracování vstupní nahrávky extrahují embedding vektory s využitím posuvného kontex-
tuálního okna. Tím je za cenu drobného zvýšení nároků na zdroje dosaženo vyšší kvality
extrahovaných sekundárních embedding vektorů a tím i vyšší diskriminativity výsledných
hodnot skóre. Architektury ST a SET natrénovány s takto získanými skóre zaznamenaly
výrazné zlepšení ve schopnosti rozlišování tss a ntss rámců (a to i v akusticky náročných
situacích) a překonaly tak výsledky nejlepšího SET systému prezentovaného v [13]. Nejlepší
SET systém využívající těchto modifikací skórování dosáhl pro čistou řeč přesnosti 92.23%.

U architektury ET bylo také experimentováno s jinými typy vektorů pro reprezentaci
cílového řečníka, konkrétně i-vector [11] a x-vector [43]. Přestože oba typy reprezentací
dosáhly obstojných výsledků, v případě x-vectorů bylo dosaženo výsledků téměř srovnatel-
ných s d-vectory, nebyla zaznamenána žádná zlepšení oproti ET systému využívajícího
d-vector reprezentace.

Pro další zlepšení dosažených výsledků a zvýšení robustnosti všech PVAD systémů by
do budoucna bylo vhodné využít pro jejich trénování kromě simulovaných také reálná data.
Toto by umožnilo řádné vyhodnocení schopnosti adaptace jednotlivých systémů například
na překrývající se řeč v klasifikovaných nahrávkách.
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Chapter 1

Introduction

Voice Activity Detection (VAD) is the problem of distinguishing speech signals in audio
recordings from silence and background noise. It is typically used as a part of most speech
processing systems, taking a role of a pre-processing component, responsible for filtering
out irrelevant information from the processed signal. This is beneficial for a multitude of
reasons.

One, the downstream system might be sensitive to noise, and filtering out such signals
might improve the system’s performance.

Two, the likes of speaker verification and automatic speech recognition systems are typ-
ically quite expensive to run in terms of the required computational resources, which is
especially crucial when dealing with mobile personal devices. Voice activity detection can
therefore somewhat limit the resource and energy consumption by triggering the down-
stream systems only when necessary.

For some scenarios, it might be useful to extend the basic VAD problem by introducing
a speaker constraint – detecting speech frames of one target speaker and distinguishing
them from other non-target speakers.

This could generally be addressed by utilizing a speaker verification or a speaker di-
arization system, however, it can be argued that a dedicated solution might offer some
advantages.

One such dedicated solution was recently proposed in [13], presenting a method of adapt-
ing a classical LSTM-based VAD system to the target speaker by utilizing their d-vector [48]
speaker embedding representation. One of the primary goals of this method (originally
called “Personal VAD”) is for the resulting system to maintain the characteristics of a typ-
ical VAD system. That is mainly in terms of latency and low resource requirements so
that such a system could be used even for on-device speech recognition scenarios. However,
some more heavyweight approaches to the personal VAD problem are also proposed, as in
some situations, the additional robustness might prove useful even despite the additional
resource requirements.

This thesis aims to implement, evaluate and expand upon this speaker-conditioned VAD
method, as there is currently no working implementation of this method (or training/eval-
uation data for that matter) available to the public.

The rest of this thesis is organized as follows: Chapter 2 provides a brief introduction to
the topic of artificial neural networks, focusing on their use for temporal context modeling.
Special attention is given to recurrent neural networks, as they are at the core of the
VAD systems implemented in this work. Chapter 3 introduces the concept of speaker
representation vectors, also referred to as speaker embeddings. In Chapter 4, common

3



approaches to voice activity detection are discussed, as well as the core speaker-conditioned
VAD approach explored in this work. Chapter 5 describes the data used for training the
implemented systems. Chapter 6 explains some of the key details regarding the feature
extraction, and personal VAD system implementation and training processes. Lastly, in
Chapter 7, the systems are evaluated and some potential ways of expanding the system
capabilities and improving the obtained results are introduced and discussed.
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Chapter 2

Artificial Neural Networks

This chapter gives a brief introduction to the topic of Artificial Neural Networks (ANN) –
predominantly their types, architectures, use cases, the process of their design, and training.
Special attention is given to recurrent neural networks as they are the core network type
used in this work. The contents of this chapter (both for sections about feed-forward and
recurrent neural networks) were mostly derived from [16] and [3].

2.1 Feed-forward neural networks
Deep feed-forward networks (also referred to as feed-forward neural networks) are a ma-
chine learning model type, which allowed the creation and evolution of the deep learning
discipline. a feed-forward network essentially has one task, which is to approximate some
arbitrary function 𝑓*. This function represents a mapping of a system’s inputs to their cor-
responding outputs – for example, for a classification problem, the target mapping could
be defined as assigning a category label to the classified input. The neural network then
defines a mapping1:

y = 𝑓(x; 𝜃),

where x is the input feature vector, y is the network’s output vector, 𝑓(·) is the mapping
function and 𝜃 represents the network’s learned parameters. The network is supposed to
learn 𝜃 in such a way that results in 𝑓 becoming the best possible approximation of the
target function 𝑓*.

Deep feed-forward networks are called deep because they consist of several layers: an
input layer, an output layer, and a number of the so-called hidden layers. These layers are
stacked one behind the other, each taking the output of the previous layer as its input, thus
creating a network.

Each layer consists of a number of artificial neurons, which are called hidden units for
the hidden layers or output units for the output layer. Every artificial neuron has a vector
of input weights w and a bias 𝑏; parameters, which the neuron uses to transform its input
x:

𝑎 = w𝑇x+ 𝑏 (2.1)
1Regarding vector notation: in this section, any variable that is a vector or matrix is depicted as bold to

differentiate them from scalar values. However, in later sections, some equations only contain vectors and
matrices and since it is unnecessary to distinguish them from scalars, they are written in a regular font only
to improve readability.
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This single neuron case can be generalized for the whole layer, giving us the following
affine transformation:

a𝑖 = W𝑖z𝑖−1 + b𝑖, (2.2)

where z𝑖−1 is the output vector of the previous hidden layer serving as the input of the
current 𝑖-th layer, and W𝑖 is a matrix of weights assigned to the inputs. The dimensionality
of the weight matrix corresponds to the number of hidden units in the current layer and
the dimensionality of z𝑖−1. Finally, b𝑖 is a vector of biases assigned to the hidden units,
and a𝑖 is a vector of output activations.

These activations are then transformed using a non-linear, differentiable (with some
exceptions) activation function ℎ(·):

z𝑖 = ℎ(a𝑖), (2.3)

giving us z𝑖, the final output of the layer.
Which activation function should be used depends on several factors. Usually, the

activation function used by the hidden units will be different from the one used in the
output layer. The output layers typically use either the logistic sigmoid or the softmax for
classification problems. For regression problems, no activation function is used. For hidden
units, the rectified linear unit (and its variants) has become very popular in recent years,
although there are many other options – such as the hyperbolic tangent or the previously
mentioned and in the past widely used logistic sigmoid, both of which are often used inside
recurrent neural network cells. All of these activation functions are shown in Figure 2.1.

2 0 2
1

0

1
ReLU

5 0 5
1

0

1
Sigmoid

5 0 5
1

0

1
TanH

Figure 2.1: Visualization of the rectified linear unit (ReLU), logistic sigmoid (Sigmoid) and
the hyperbolic tangent (TanH) activation functions.

Above all, it is crucial for the activation function to be non-linear. The non-linearity al-
lows the network to perform complex input transformations, not just affine transformations
(rotation, translation, shear). These complex transformations allow the network to fold and
warp the input feature space2 so that, for example in the case of a complex classification
problem, boundaries between classes can be modeled more easily.

It is apparent that a deep neural network simply represents a series of non-trivial func-
tional transformations. It should be stated that according to the universal approximation
theorem [18], a neural network with only one hidden layer with a non-linear activation
function can approximate any Borel-measurable function to any desired degree of accuracy.
This assumes that the hidden layer is given enough hidden units. In practice, a solution

2A nice visualization of these effects can be found on Christopher Olah’s blog: https://colah.github
.io/posts/2014-03-NN-Manifolds-Topology/
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of this nature is however often unscalable as the width of the hidden layer would become
impractically large for even very simple problems. Moreover, there is virtually no guarantee
that the network would be able to learn the desired approximation in real-life scenarios.
It is therefore common – and intuitively makes much sense – to deepen the network by
adding more hidden layers. This allows the network to better approximate more complex
functions using a series of simpler transformations, rather than only one much very complex
transformation.

2.2 Training the network
As it was established in Section 2.1, the goal for the network is to approximate some
target function 𝑓*. Additionally, it was established that the network represents a series of
differentiable functional transformations, each having its own set of parameters.

The process of training the network is therefore nothing more than an optimization
problem – one of finding a network parameter set 𝜃 that allows the network to approximate
the target function 𝑓* in the best possible way.

To evaluate the quality of this approximation, we choose a differentiable objective func-
tion (often also referred to as loss or error function), which allows us to quantify the
accuracy of the network’s predictions. Which particular loss function should be used is
determined by the nature of the problem that the network is meant to solve – for regres-
sion problems, one can use the mean squared error loss, for classification purposes, the
cross-entropy loss is a common choice.

The process of minimizing the value of the chosen loss function then corresponds to
optimizing the network parameters to achieve better performance. We say that the network
learns the parameter values by minimizing the loss. Because the loss function is always
differentiable with respect to any weight or bias in the network, a gradient-based numerical
approach to the parameter optimization can be used.

To update the network parameters, first, it is necessary to compute the gradients of the
loss function with respect to every network parameter. This is done using the backpropaga-
tion algorithm. The computed gradients indicate the direction of the steepest loss function
value increase. Therefore, subtracting the gradient (multiplied by a small constant called
learning rate) from the corresponding parameter values is directly equal to updating the
network parameters in such a way that the loss function value decreases.

This whole process of obtaining the network prediction for the training set, computing
the loss function value, computing the gradients, and then updating the network parameters
accordingly is referred to as the gradient descent algorithm. This algorithm also has many
variants, which further optimize and increase the efficiency of the whole learning process,
typically based on some stochastic assumptions, e.g. the stochastic gradient descent variant.

2.3 The problem of sequential modeling
The traditional feed-forward neural network topology, although powerful, is not a universal
solution for all deep learning problems. One of the limitations of this architecture is its
implicit ability to only process each input data point as a singular piece of information with
no temporal context. For each input vector, we typically obtain one corresponding output
regardless of what other inputs the network has seen up to this point – in other words,
feed-forward networks have no sense of memory.
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For some deep learning problems and tasks, this temporal context is absolutely crucial,
if we are to find an effective solution. Domains like speech recognition, speaker verification,
and natural language processing (or in the case of this thesis – voice activity detection)
present us with challenges requiring us to be able to process sequential data.

Some neural network topologies are able to address such problems without introduc-
ing significant changes to the basic model structure, for example, time-delay neural net-
works [47, 35], which have been found quite successful in solving many speech processing-
related problems such as speaker identification [43]. Other approaches simply combine the
input features at several neighboring time steps into one feature vector, bringing in some
sense of the past and future temporal contexts, and use it as an input of a regular deep
feed-forward network [45].

However, there is one neural network topology, whose most basic purpose is to be able
to model these temporal dependencies implicitly – recurrent neural networks.

2.4 Recurrent neural networks
Recurrent Neural Networks (RNN) are a class of artificial neural networks designed primar-
ily for sequence modeling. Rather than regular artificial neurons, RNNs consist of units
referred to as recurrent cells. These cells have two special properties the regular neurons
lack:

• a hidden state (sometimes referred to as a cell state),

• a recurrent connection to the hidden state from the previous time step.

The hidden state is the cell’s abstract representation of previous time steps, essentially
acting as a memory unit. This allows the RNN cell to condition its output not only on
its learned parameters and the current input but also on the accumulated value of this
hidden state. Therefore the network can learn to account for temporal dependencies in the
processed data, thus becoming suitable for sequential modeling.

The basic, simple recurrent neural network layer can be formalized using the following
formulas:

𝑎𝑡 = 𝑏+𝑊ℎ𝑡−1 + 𝑈𝑥𝑡,

ℎ𝑡 = tanh (𝑎𝑡), (2.4)
𝑜𝑡 = 𝑐+ 𝑉 ℎ𝑡,

where 𝑈, 𝑉,𝑊 are weight matrices, 𝑏, 𝑐 denote the bias vectors, 𝑎𝑡 is the vector of hidden
state activations for time step 𝑡, ℎ𝑡 is the hidden state vector transformed using the hyper-
bolic tangent function, ℎ𝑡−1 is the hidden state vector from the previous time step, and 𝑜𝑡
denotes the output activation of the recurrent layer for time step 𝑡. The output activation
vector then can be further transformed using another non-linear activation function.

Recurrent networks can be visualized in the form of a computational graph as shown in
Fig. 2.2. This graph can also be depicted as unfolded, meaning we visualize the dependencies
between the individual time steps, emphasizing the recurrent connections.

2.4.1 Modeling long temporal dependencies

Recurrent neural networks could – in theory – be used for many types of tasks, that are
sequential in nature. However, it turns out that the basic simple RNN architecture car-

8



Figure 2.2: Visualization of a recurrent neural network, depicted both in the regular and
unfolded variants. The diagram was taken from [31].

ries some crucial limitations, which prevent it from being practically applicable to most
problems.

The basic problem is that it is rather difficult to reliably train RNNs, as they tend to
suffer from the problems of vanishing and exploding gradients when using traditional simple
gradient-based optimization methods [1, 2, 33].

Moreover, even if the network is stable during training (the gradients do not explode),
and can store memories, it is generally unable to reliably learn and represent long-term de-
pendencies in the input data. This is because the weights assigned to long-term interactions
become exponentially smaller compared to the short-term ones.

Long temporal dependencies are however crucial for some types of problems. Taking
an anecdotal example: long sentences often contain words at the beginning, which are
crucial for a correct understanding of the sentence – they provide long-term context, which
sometimes prevails across multiple sentences.

These limitations eventually led to the introduction of Gated Recurrent Neural Networks
(gated RNNs). Gated RNNs are a special category of recurrent neural networks which
expand upon the basic simple RNN architecture by introducing several internal gating
mechanisms. These gating mechanisms have two primary roles:

1. They introduce recurrent pathways, where gradients can flow more freely, as these
pathways are not statically controlled by any weight matrices, but rather dynamically
using these gates, whose parameters are learned instead.

2. They allow the network to form its hidden state in a more refined manner, preserv-
ing important contextual information or, on the contrary, intentionally ignoring or
forgetting other pieces of it.

The two main representatives of this class of RNNs are the Long Short-term Memory
(LSTM) and the Gated Recurrent Unit (GRU). The LSTM – the most widely used gated
RNN variant nowadays – is discussed in the next Section 2.4.2.

2.4.2 Long short-term memory

The Long Short-term Memory (LSTM) is a gated RNN variant first introduced in [17]. Its
purpose is to address some of the problems described in Section 2.4.1, most importantly
the problem of learning and exploiting long temporal contexts.

The LSTM splits the original RNN state into two properties, both of which are recurrent.
The first property is the LSTM cell state 𝑐𝑡, which serves as an information accumulator
and is controlled by the LSTM gating mechanisms. The second property, now called the
hidden state ℎ𝑡, becomes the output of the LSTM cell at each time step while also being
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Figure 2.3: Diagram of an LSTM cell. The 𝜎 and tanh symbols denote the logistic sigmoid
and hyperbolic tangent activation functions, respectively. 𝑐𝑡, and 𝑐𝑡−1 denote the cell state
values, ℎ𝑡, and ℎ𝑡−1 denote the hidden state values, and 𝑥𝑡 denotes the input of the LSTM
cell. The diagram was obtained from [10] and is licensed under the CC-BY License, by
Guillaume Chevalier. The legend part of the original image was removed.

recurrent. For each gating mechanism, this hidden state value is used as a secondary input
along with the LSTM input 𝑥𝑡 (see Figure 2.3).

An LSTM layer (and every cell for that matter) has three separate gating mecha-
nisms [31, 51], the first one being the so-called forget gate:

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ), (2.5)

where 𝑊𝑓 , 𝑈𝑓 are weight matrices, 𝑏𝑓 is the bias vector, 𝑓𝑡 denotes the forget gate value
vector at time step 𝑡, 𝜎(·) is the logistic sigmoid, and ℎ𝑡−1 is the hidden state vector from
the previous time step. The forget gate can restrict the information retained in the cell
state.

The second gating mechanism is the input gate, which controls the accumulation of the
LSTM cell input to the internal cell state:

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖). (2.6)

The last gating mechanism is the output gate, which controls the output of the LSTM
cell:

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜). (2.7)

Before updating the LSTM state, a vector of candidate values 𝐶𝑡 is computed. These
values could potentially be accumulated to the cell state, that is if the input gate allows it.
This candidate vector is then combined with the previous cell state vector 𝐶𝑡−1, controlled
by the forget and input gates, resulting in a new value of the cell state 𝐶𝑡:

𝐶𝑡 = tanh(𝑊𝐶𝑥𝑡 + 𝑈𝐶ℎ𝑡−1 + 𝑏𝐶) (2.8)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡,

where ⊙ denotes element-wise multiplication (also known as the Hadamard product).
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The resulting new cell state is then further transformed using the hyperbolic tangent
function and the current value of the output gate, to produce the new hidden state vector
ℎ𝑡:

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡). (2.9)

Contrary to the fixed-value weight assigned to the recurrent connection of a regular
RNN hidden unit, the gates allow the LSTM cell to manipulate the internal cell state
dynamically – information accumulated at one time step can be retained for many time
steps, or suddenly discarded or added to if a more crucial piece of information emerges in
the input. Of course, the parameters – the weights and biases – corresponding to these
gates are learned during training.

The LSTM is nowadays by far the most widely and commonly used RNN variant,
achieving state-of-the-art performance for many sequential modeling problems.
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Chapter 3

Speaker representations

This chapter briefly introduces the concept of speaker embeddings1 – low-dimensional vectors
of fixed length, used as a means for representing a particular speaker.

These speaker representations are a crucial concept in the speaker identification/verifi-
cation domain since they allow to compactly store information about an utterance’s acoustic
characteristics. When used for speech, these vectors contain information about a particular
speaker’s voice characteristics, essentially creating a voice print of the encoded speaker.

The encoded information can be extracted in a number of ways, depending on the em-
bedding type. Some types of speaker representations are based on a statistical approach to
speaker modeling (i.e. i-vectors [11]), other types are extracted using deep neural networks
that are generally trained for the task of speaker identification/verification (x-vectors [43],
d-vectors [45, 48]). Each speaker embedding type, therefore, has different properties, dif-
ferent interpretations, and can be suitable for different applications.

Apart from speaker recognition-related tasks, speaker embeddings can also be used to
perform speaker adaptation, if one is to build a system that requires such techniques for
optimal performance – this is further discussed in Chapter 4.

The following Sections 3.1, 3.2, and 3.3 introduce three of the nowadays most widely
used types of speaker representations. Special attention is given to the d-vector, as this
embedding type is integral to the target speaker voice activity detection method explored
in this work.

3.1 i-vectors
The first speaker vector type to discuss is the i-vector [11]. I-vectors (also referred as in-
termediate or identity vectors) are speaker representation vectors based on a statistical,
unsupervised approach to speaker modeling. The method was first introduced as an evolu-
tion of the Joint Factor Analysis (JFA) [22] approach to speaker representation.

The JFA approach was based on the notion of modeling the channel and speaker vari-
ability as independent subspaces. However, later experiments showed that the resulting
estimated channel factors also contain information about the speakers, despite being sup-
posed to only model channel effects. As a consequence, these two subspaces are for the
purpose of i-vector estimation considered as one total variability space.

1Even though the term embedding is generally used for speaker representations obtained from a deep
neural network, to avoid confusion, please note that in this thesis this term is sometimes used even for
i-vectors, as they in a sense fit the definition of an embedding vector too.
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I-vector extraction is the process of mapping a sequence of feature vectors (typically
Mel-frequency cepstral coefficients), to a fixed-length vector. First, a k-component Gaussian
Mixture Model (GMM) referred to as the Universal Background Model (UBM) has to be
computed using high amounts of training data. The encoded speaker utterance is then
represented by a speaker and channel-dependent supervector 𝑀 , which is obtained by
appending together first-order Baum-Welch statistics extracted from the utterance using
the UBM. That is for each GMM component of the UBM. The obtained supervector is then
assumed to obey a factor analysis model:

𝑀 = 𝑚+ 𝑇𝑤 (3.1)

where 𝑚 is a speaker and channel-independent mean supervector, obtained from the UBM,
𝑇 is the so-called total variability matrix, rectangular and of low-rank. This matrix contains
the eigenvectors with the largest eigenvalues of the total variability covariance matrix,
essentially modeling the directions of the largest variability in the training data. Finally,
𝑤 is a latent vector with a standard-normal prior, which represents the total variability
factors.

Given an utterance 𝑢, the i-vector is then obtained as a MAP point estimate of 𝑤 for
this utterance [15].

3.2 x-vectors
I-vectors were for a long time the industry standard for both text-dependent and text-
independent speaker recognition tasks for many years. However, given the success of deep
neural networks in virtually any other machine learning domain, a lot of research had been
dedicated to deep neural network-based speaker modeling, resulting in the introduction of
new embedding types such as x-vectors and d-vectors.

X-vectors [42, 43] are a speaker embedding type extracted using a time-delay neural
network [47, 35], which is trained to identify the speakers from the training set based on
the supplied utterance (see Figure 3.1).

The network processes the utterance frame by frame as a whole, passing the output
to a statistics pooling layer. This layer aggregates over the input segment and computes
its mean and standard deviation. These statistics are then concatenated and passed to an
additional hidden layer, from which the resulting embedding vectors can be extracted.

X-vectors are nowadays a widely used speaker embedding type and are a popular speaker
embedding choice e.g. for speaker diarization purposes [25].

3.3 d-vectors
The third and in the context of this work the most important speaker embedding type is the
d-vector. The d-vector is a term that can generally be used for a speaker embedding, which
is extracted from a deep neural network trained for the speaker verification/identification
task (one of the key differences from x-vectors being the absence of the statistics pooling
layer in d-vector systems).

The d-vector concept was first introduced as a deep neural network speaker embedding
in [45]. This approach was designed for text-dependent speaker verification tasks, though it
was suggested to be extendable to text-independent problems. The method utilized a deep
feed-forward network architecture, to process the input filterbank features on frame-level.
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Figure 3.1: Simplified visualization of the DNN used to extract x-vectors. The frame-level
segment depicts the time-delay neural network part of the whole system, passing its output
to the segment-level part of the network, which ultimately produces probabilities for each
speaker in the training set. The x-vectors are then extracted at the embedding layer a.
The diagram was obtained from [42].

The filterbank features from several neighboring frames are combined into one feature
vector, bringing in some sense of the present and future temporal contexts, and passed
through the network. At each time step, the activations from the last hidden layer are
extracted, L2-normalized, and averaged over the whole utterance, resulting in an utterance-
level embedding vector, the d-vector.

Consequently, a lot of effort has been dedicated to researching DNN-based speaker
verification systems, which rely on an end-to-end training approach [9, 26, 52].

One of the more prominent end-to-end approaches was recently introduced in [48]. In
this approach, an LSTM-based speaker verification system was trained using a custom
loss function, referred to as the generalized end-to-end loss, designed to always maximize
the discriminativity between the most similar speaker pairs. The d-vector embeddings
are extracted in a sliding-window manner, L2 normalized, and averaged over the whole
utterance (as shown in Figure 3.2).

This system achieved state-of-the-art performance for both text-dependent and text-
independent speaker verification tasks, being successfully used (among other areas) for
speaker diarization [49], source separation [50], or target-speaker voice activity detec-
tion [13].
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Figure 3.2: Visualization of the sliding window d-vector embedding inference from [48].
The diagram was obtained from the same source.

3.4 Embedding similarity metrics
For some scenarios – typically for the purpose of speaker verification – it is useful to be
able to quantify the similarity of two embedding vectors, with the result ideally in the
form of a scalar similarity score. The method used for computing the speaker verification
score for the two vectors is then usually dependent on the type of the embedding vectors,
assumptions about their spatial distribution, etc.

Speaker verification systems based on i-vectors often use a Probabilistic Linear Discrim-
inant Analysis (PLDA) [19] backend to compare the speaker representations and enable the
speaker verification decisions. However, PLDA-based classifiers are not limited to i-vectors
only, as they are often used for other embedding types, such as x-vectors [43].

Another (rather simpler) similarity measure that can be used is the cosine similarity.
The cosine similarity score of two vectors is computed using the following formula:

similarity =
A ·B

‖A‖ · ‖B‖
, (3.2)

where A and B are the two embedding vectors respectively.
The value of the score is directly dependent on the angle between the vectors – vectors

that form a smaller angle will also have a higher cosine similarity score. Intuitively, this
angle, especially in the case of the high-dimensional, sparse embedding space, can be a good
indication as to whether the two embedding vectors are similar or not.

The speaker verification decision can then be made by simply choosing a score threshold
– if the cosine similarity value is higher than the chosen threshold, it can be ruled that the
embeddings come from the same speaker.
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Chapter 4

Speech detection

In this chapter, the core topic explored in this work is covered – target speaker speech
detection.

Section 4.1 starts with presenting the general problem of voice activity detection, dis-
cussing some of the typically used techniques to implement voice activity detection systems.

Section 4.2 then expands upon the basic problem by focusing on a particular target
speaker when trying to detect speech signals. Section 4.2.1 then covers the speaker-
conditioned voice activity detection method proposed in [13], which is the core target
speaker speech detection approach investigated in this thesis.

4.1 Voice activity detection
Voice Activity Detection (VAD) represents the problem of detecting speech in audio signals.
In its purest form, it can be thought of as a binary classification problem. Every frame of
the source audio is evaluated against two hypotheses [37]:

𝐻0 : x𝑡 = 𝑛 (4.1)
𝐻1 : x𝑡 = 𝑛+ 𝑠,

where the first hypothesis 𝐻0 indicates that the classified frame only consists of non-speech
signals 𝑛 such as noise, and the second hypothesis 𝐻1 expresses that the current frame
consists of a speech signal 𝑠 and potential background noise signals.

To classify the frame, one can simply choose the hypothesis with the higher posterior
conditional probability of the two with respect to the current frame x𝑡, effectively enforcing
the maximum a posteriori classification approach:

VAD(x𝑡) =

{︂
non-speech 𝑃 (𝐻0|x𝑡) > 𝑃 (𝐻1|x𝑡)
speech else. (4.2)

Voice activity detection is typically used as a pre-processing component of larger speech
processing systems [37]. This is because the presence of irrelevant information and noise
in the processed speech signal can hinder the performance of systems such as Automatic
Speech Recognition systems (ASR) or Speaker Verification systems (SV). Moreover, ASR
and SV systems are typically quite demanding in terms of computational resources, espe-
cially when compared to a typically very small and lightweight VAD model. Therefore it
might be desirable to simply discard all source audio frames that do not contain any speech
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information, as doing so can both improve the downstream system performance and save
some computational power.

On the other hand, it is undesirable for any VAD system to false-reject any speech
frames as then important information might be lost. This is especially a challenge if the
VAD is to operate in acoustically challenging conditions, including environments with high
levels of background noise or reverb. It is therefore both useful and necessary to account
for these conditions when designing the system, for example by applying augmentation
strategies to the training data.

Voice activity detection usually consists of three main stages:
1. Feature extraction,

2. VAD decision,

3. and VAD decision smoothing.
The feature extraction stage is highly dependent on the approach taken to VAD mod-

eling, as different methods might require different features. However, since most modern
machine learning-based VAD methods primarily use acoustic features only, it can be useful
to build the VAD system around the same acoustic feature type used by the downstream
components. This can lead to further resource savings, as the acoustic features are in this
case computed only once.

The task of the VAD model itself is then to classify the input features as either speech
or non-speech. The possible approaches to implementing such a model are discussed in
Section 4.1.1.

Feature
extraction

x(n)

x(l)
Decision
module

Decision
smoothing

VAD(l
0(l)

Figure 4.1: Example of a typical VAD system architecture. Diagram taken from [37].

Lastly, the decision smoothing stage is used to combat VAD decision errors, most often
caused due to high levels of background noise. In such conditions, the VAD decision might
become “jittery” and unreliable, increasing the amount of false negative/positive decisions.

The heuristics used for VAD decision post-processing are generally quite simple, with
one of the most widely used ones being hangover [4].

4.1.1 Voice activity detection methods

Depending on the use case, available resources, or system accuracy/performance require-
ments, one can choose one of many methods to implement voice activity detection. Gener-
ally, there are two main ways to categorize the different approaches:

• Feature and heuristics-driven methods, which make use of different features and statis-
tics extracted from the source audio.
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• Machine learning-based methods, which rely on statistical or neural network-based
approaches to infer the decision policies from the training data.

Feature and heuristics-driven methods typically extract a number of different features
from the processed signal and try to make an informed decision, often with the help of
a heuristic or a specialized algorithm [44]. The extracted features often include energy
information, spectral information, zero-crossing rate, long-term spectral divergence [38],
etc.

The heuristics-driven methods were, however, slowly driven out by machine learning-
based VAD approaches, which nowadays offer state-of-the-art performance, accuracy, and
noise robustness. On the other hand, some applications might still find benefit even in
naive VAD methods such as simple spectral energy thresholding – used for example in [42]
– if excellent noise robustness is not required.

Some of the newer VAD methods rely on a statistical approach to the problem [6]. How-
ever, even the statistical approaches are being pushed aside by VAD methods that utilize
artificial neural networks, typically operating on acoustic features only. a multitude of neu-
ral network architectures have been tried and evaluated for this task [53, 8], with one of the
more popular being the LSTM [14, 7], showing state-of-the-art performance. Additionally,
LSTM-based approaches are especially interesting in the context of this particular work,
because LSTM networks can be used as streaming models, making them easily adaptable
for online inference scenarios.

4.2 Speaker-conditioned voice activity detection
Speaker-conditioned Voice Activity Detection (SCVAD) is essentially an evolution of the
standard VAD task, as now the system is also required to distinguish between speech frames
coming from one particular target speaker and everyone else. We can therefore modify the
the hypotheses defined in Equation 4.1 to accommodate for the new classification classes:

𝐻0 : x𝑡 = 𝑛 (4.3)
𝐻1 : x𝑡 = 𝑛+ 𝑠𝑛

𝐻2 : x𝑡 = 𝑛+ 𝑠𝑡,

where 𝑠𝑡 and 𝑠𝑛 denote target speaker and non-target speaker speech signals, respectively.
Similarly to the previous binary VAD classification case, we can again choose the hy-

pothesis with the highest posterior probability:

SCVAD(x𝑡) = argmax
𝑤

𝑃 (𝐻𝑤|x𝑡), 𝑤 ∈ {0, 1, 2}. (4.4)

The first thing that comes to mind when designing a SCVAD system is that there are
already two important speech processing disciplines, which focus primarily on being able
to distinguish between different speakers: speaker recognition and speaker diarization.

Therefore naturally, the first possible way to approach implementing a SCVAD system
would be to combine a speaker recognition system with a classical VAD system. The
speaker recognition system would then simply classify the audio frames that the VAD had
labeled as speech. The problem with such an approach is that speaker verification systems
are generally implemented using models that are quite big, typically in terms of millions of
parameters. Using such a system therefore inherently leads to higher resource consumption,
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limiting its usefulness in scenarios, where the resources are expensive. This is especially
apparent in contrast to the generally very lightweight basic VAD models.

Additionally, one of the challenges this VAD and SV system combination would have to
overcome is the final decision granularity. VAD systems are generally capable of frame-level
streaming inference, producing a speech/non-speech probability for every individual frame.
On the other hand, SV systems often operate in a window-level or a segment-level manner,
which could result in higher overall decision latency. What is more, adapting a speaker
verification system to frame-level inference can pose quite a challenge in terms of retaining
the speaker verification decision quality.

The second option would be to directly use a speaker diarization system. Speaker di-
arization is the problem of establishing boundaries between individual speakers in a record-
ing – which brings us to the first drawback.

A conventional diarization system [25, 49] is designed to establish boundaries between
all present speakers. Therefore, a lot of effort has to go towards determining the number
of speakers in the recording. That includes extracting embedding representations for the
whole utterance in a sliding window manner, clustering, and then segmenting the original
recording based on the calculated boundaries (see Figure 4.2).

…… sliding
windows

window step

window size

…… d-vectors

…… segments

…… diarization
results

Run LSTM

Aggregate

Cluster

Process

Figure 4.2: Example of a clustering-based speaker diarization method utilizing d-vector
embeddings. Flowchart obtained from [49].

For one target speaker, all this is unnecessary, as it is only the target speaker that the
system is required to find reliably. Therefore, again, such a solution is needlessly expensive
in terms of computational resources, though it would most likely provide the desired results
accuracy-wise.

The third option for implementing a SCVAD system would be to adopt a conventional
VAD system for target speaker speech detection. This could potentially result in a SCVAD
system, that retains the typical VAD system characteristics in terms of model size, resource
demand, and latency, while still being able to detect a target speaker’s speech signals.

To perform such adaptation, the system could be trained to draw its attention to-
wards the target speaker by providing their abstract representation along with the acoustic
features, most often in the form of a speaker embedding (i-vectors, d-vectors) obtained
previously during an enrollment phase. These representations are often obtained from sys-
tems much more complex than a typical VAD, so effectively, the aim would be to teach
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the VAD to “distill” some knowledge from these abstract representations and identify the
target speaker based on their acoustic “profile”.

Similar speaker adaptation approaches have previously been adopted also in the do-
mains of speech recognition [21], speech extraction [50, 12], and quite successfully also in
diarization [30]. Some of these approaches use secondary auxiliary systems trained to ex-
tract the speaker representation in a way that is specific for that particular system, other
approaches use speaker embedding vectors directly.

4.2.1 Personal voice activity detection approach overview

One method, which utilizes embedding-based speaker adaptation, is the rather novel ap-
proach to speaker-conditioned VAD recently introduced in [13].

This method, originally called Personal VAD (PVAD), aims to address the SCVAD
problem by expanding the classification capabilities of an LSTM-based classical VAD model.
The whole system is trained to distinguish not only between speech and non-speech audio
frames but also to detect and identify speech frames belonging to a particular target speaker.

The original motivation for this SCVAD method was its potential use for on-device
speech recognition scenarios. That is, the goal was to create a system capable of detecting
speech signals of a target speaker in real-time, ideally while also retaining some of the
characteristics of a typical VAD system. The end result would ideally be:

• A small, lightweight model with minimal latency and minimal computational resource
requirements.

• A model that is able to operate accurately in acoustically challenging environments,
including noisy and reverberant conditions.

As we are dealing with an online classification scenario (and to minimize latency), it
would be best if the resulting system could operate as a streaming model. This is why
using a VAD architecture based on an LSTM network might be desirable. LSTM-based
VAD architectures have become increasingly popular for sequential modeling of the VAD
task, all that while showing state-of-the-art performance even in acoustically challenging
conditions [14].

Now, not all methods presented in this work do actually meet the lightweight criteria
for the system. Some of the personal VAD architecture variants presented in section 4.2.2
require a speaker verification system at runtime, essentially creating a fusion of SV, diariza-
tion, and VAD systems. That being said, the more heavy-weight solutions generally offer
better performance in terms of prediction accuracy. Therefore, it can be argued that it is
still worth exploring those particular approaches, as they might prove useful in situations,
where resource limits are not a concern.

The following Section 4.2.2 describes the four main personal VAD architectures as pre-
sented in [13].

4.2.2 Personal voice activity detection system architecture

A personal VAD system consists of two main components.

Speaker verification system The first component is a speaker verification system used
to extract speaker embeddings from the processed audio. For this purpose, the text-
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independent d-vector system introduced in [48] was used. This system has two primary
uses:

1. To extract an enrollment speaker embedding for the target speaker. The embedding
will be used to either provide the system with a representation of the target speaker’s
voice characteristics or to obtain speaker verification scores for each individual frame.

2. To extract frame-level embedding vectors over the whole processed utterance. These
secondary embedding vectors are used to issue speaker verification scores to each
individual frame.

To satisfy the latter of these two requirements for the SV system, it was necessary to modify
the actually used implementation of the system.

The d-vector system used for embedding extraction operates in a sliding window man-
ner, always returning one 256-dimensional embedding vector for a window of 160 frames.
However, as the system’s architecture is LSTM-based, the system can be modified to op-
erate in a streaming manner, returning an embedding vector for every single input frame.
Each d-vector is then compared with the target speaker enrollment embedding using cosine
similarity, giving us the speaker verification scores for each frame.

Obviously, such modification can raise questions about the quality of the extracted d-
vectors, as the system is forced to process sequences of arbitrary lengths, without resetting
the LSTM state. These concerns are addressed in Section 7.5, where this baseline scoring
method is evaluated against two other methods that I propose as potential alternatives.

VAD system The second and primary component is the actual VAD system, which will
be trained for the personal VAD task. This system was proposed to consist of a 2-layer
LSTM network of 64 cells, followed by one additional fully connected layer of 64 neurons.
This network architecture is the same for all personal VAD system variants described in
the following sections.

The inputs of the personal VAD are then a combination of the following:

• Acoustic features x𝑡,

• the speaker verification scores 𝑠𝑡 issued to each individual frame,

• the target speaker embedding etarget obtained during the enrollment process.

The acoustic features used in this work were 40-dimensional log Mel-filterbank energies
with 25 ms width and 10 ms overlap. The same acoustic features are used by the d-vector
extractor system, therefore they can be extracted only once and used for both the SV and
the VAD systems. This is especially helpful when performing frame scoring, as every frame
has to be processed by the SV system to obtain a speaker verification score, and afterward,
both the obtained score and the audio frame are passed to the PVAD system.

The resulting combined feature vector x̂𝑡 is then used as the input of the personal VAD
system, which produces class probabilities z𝑡 for target speaker speech (tss), non-target
speaker speech (ntss) and non-speech (ns):

PVAD(x̂𝑡) = z𝑡 = [𝑧ns
𝑡 , 𝑧ntss

𝑡 , 𝑧tss
𝑡 ]. (4.5)

The following sections further describe the four personal VAD architecture variants, as
they were introduced in [13]. The main differences between the systems stemming from the
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input feature combination used by each particular architecture. Three of the architectures
– SC, ST, and SET – make use of a speaker verification system to support the personal
VAD decision. Diagrams for architectures are depicted in Figure 4.3.
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Figure 4.3: Personal VAD architecture diagrams. (a) depicts the baseline SC architecture,
(b) depicts the ST architecture, which utilizes a combination of acoustic features and frame
scoring. (c) depicts the embedding conditioned ET architecture, and (d) is the SET system,
which combines the acoustic features, the scores and the target speaker embedding vector.
The diagrams were taken from [13]

System 1: Score combination (SC)

The baseline architecture for the personal VAD task consists of a classical VAD model,
which takes the acoustic features features as input and produces speech probability 𝑝𝑠𝑡 for
each incoming frame x𝑡 at each time step 𝑡:

𝑝𝑠𝑡 = VAD(x𝑡).

Each individual frame is also passed through the speaker verification model1 and a d-vector
embedding e𝑡 is obtained for that frame. This d-vector is then compared with the target
speaker embedding etarget using cosine similarity, thus obtaining a speaker verification score
for each frame:

𝑠𝑡 = cos(e𝑡, etarget).

The obtained score is then combined with the speech probability 𝑝𝑠𝑡 to produce unnor-
malized personal VAD probability value 𝑧𝑘𝑡 for every class 𝑘, using the following formula:

𝑧ns
𝑡 = 1− 𝑝𝑠𝑡

𝑧ntss
𝑡 = (1− 𝑠𝑡) · 𝑝𝑠𝑡 (4.6)
𝑧tss
𝑡 = 𝑠𝑡 · 𝑝𝑠𝑡

It is obvious, that this baseline system represents quite a naive approach to the personal
VAD task. The biggest issue with this approach is that there is no explicit threshold selected
for the speaker verification scores – it would at least be sensible to statistically derive
this threshold using the training score values. This was tried in the final experiments in
Section 7.3, however, with not much success. The next architecture addresses this problem
by treating the score value as an additional feature.

1Which is, as previously mentioned, modified to support frame-level streaming d-vector inference.
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System 2: Score conditioned training (ST)

The ST architecture expands on the baseline by combining the acoustic features x𝑡 with
the speaker verification score 𝑠𝑡 into one 41-dimensional feature vector:

x̂𝑡 = [x𝑡, 𝑠𝑡].

The system is then trained using these features to directly produce Personal VAD class
probabilities – non-speech, non-target speaker speech and target-speaker speech:

z𝑡 = [𝑧ns
𝑡 , 𝑧ntss

𝑡 , 𝑧tss
𝑡 ].

This system is expected to perform better than the baseline, as it learns to infer the
output probabilities from the input acoustic features and scores directly, rather than using
a set-in-stone transformation function as the SC architecture.

However, the main drawback of this architecture – which is shared between the ST and
the SC systems – still prevails. It is the fact that the quality and accuracy of the system’s
final decision are directly dependent on the utilized speaker verification score values. In
order for this system to perform well, the discriminativity of the embedding vectors used
for frame scoring has to be as high as possible. Otherwise, the system’s output will contain
more false positives and false negatives for both target and non-target speaker speech. This
problem is further addressed and discussed in Section 7.5.

System 3: Embedding conditioned training (ET)

The ET architecture represents the ideal desired solution to the personal voice activity
detection problem, as it does not require a speaker verification system at runtime for frame
scoring, making it a very lightweight solution.

This architecture combines the enrollment embedding etarget for the target speaker with
the acoustic features, resulting in a 296-dimensional feature vector:

x̂𝑡 = [x𝑡, etarget].

This system is expected to learn to infer the relationship between the input features
and the target embedding, distilling this knowledge for classification purposes, and adapting
to the target speaker. However, as the d-vector embedding space can potentially be quite
sparse due to the dimensionality of the embeddings, it is expected that this system will only
perform and generalize well when trained on a dataset with a large number of speakers.

System 4: Score and embedding conditioned training (SET)

The last personal VAD architecture combines the characteristics of the previous two sys-
tems. The system input consists of the acoustic features, the target speaker embedding, as
well as the speaker verification score for the current frame. This gives us a 297-dimensional
input feature vector:

x̂𝑡 = [x𝑡, 𝑠𝑡, etarget].

Even though it is expected that this architecture will provide the best results of the
four, it still requires a running speaker verification model at runtime, so that frame scoring
can be performed.
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4.2.3 Loss functions

Because personal VAD represents a multiclass classification problem, it is possible to train
the model by minimizing the categorical cross-entropy loss (also known as the softmax loss):

𝐿CE(𝑦, z) = − log
exp(𝑧𝑦)∑︀
𝑘 exp(𝑧

𝑘)
, (4.7)

where z is the vector of pre-softmax network outputs for each class, 𝑦 denotes the target
class label, 𝑧𝑦 denotes the system’s output for the target class and 𝑧𝑘 denotes the system’s
output for the 𝑘-th class.

Additionally, [13] also proposes the use of a new loss function, the Weighted Pairwise
Loss (WPL), which allows to issue different weights to each class pair:

𝐿WPL(𝑦, z) = −E𝑘 ̸=𝑦

[︂
𝑤<𝑘,𝑦> · log exp(𝑧𝑦)

exp(𝑧𝑦) + exp(𝑧𝑘)

]︂
, (4.8)

where 𝑤<𝑘,𝑦> is the weight between the classes 𝑘 and 𝑦. In doing so, confusion errors
between certain classes can have lesser impact on the system’s performance. By setting the
weight of (ns,ntss) to a smaller value than (tss,ntss) or (ns,tss), the system should focus
more on distinguishing the target speaker’s speech from the other two classes, more so than
preoccupying itself with (ns,ntss) confusion errors.
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Chapter 5

Data

To train the proposed systems, it is necessary to find a suitable speech dataset, ideally one
with the following properties:

• The dataset should contain speaker turns so that the system can learn to distinguish
the target speaker from the other speakers present in the recording.

• For each individual speaker, enrollment utterances should be present so that it is
possible to extract their embedding representations.

For this purpose, the openly available LibriSpeech [32] corpus was used to generate
a dataset that would match the criteria above. The process of generating the resulting
dataset is further described in Section 5.2.

5.1 LibriSpeech
The LibriSpeech [32] corpus is a standard, freely available1 dataset of read English speech,
totaling at almost 1000 hours of speech data.

LibriSpeech consists of seven separate subsets, each having one of two suffixes: clean
or other. These suffixes were assigned to the particular speakers in the sets based on
word error rate scores achieved in one of the initial LibriSpeech evaluations. There are
four smaller subsets: two dev sets, and two test sets, primarily meant for development
and testing, respectively. Then, the three primary LibriSpeech subsets are the 100-hour,
360-hour, and 500-hour train sets. The parameters of the individual subsets are shown in
Table 5.1.

The whole LibriSpeech corpus was sampled at 16 kHz and the audio is stored in the
flac format. Additionally, word transcripts are provided for all utterances.

Lastly, to create VAD ground truth annotations for the data, it was necessary to get
hold of transcript alignments for each individual utterance in the LibriSpeech dataset. The
alignments used in this work were obtained from [27] and originally generated using the
Montreal Forced Aligner [29].

5.2 Generating the dataset
To simulate speaker turns in the training data, I adopted the approach presented in [13].
The approach suggests to always retrieve 𝑛 randomly chosen utterances from the original

1https://www.openslr.org/12

25

https://www.openslr.org/12


subset hours per-speaker
minutes

female
speakers

male
speakers

total
speakers

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

Table 5.1: LibriSpeech corpus subsets and their respective parameters. Table taken
from [32].

dataset, each coming from a different speaker. The parameter 𝑛 coming from a uniform
distribution:

𝑛 ∼ Uniform(𝑎, 𝑏),

where 𝑎 = 1 and 𝑏 = 3. These utterances are then concatenated, as are their ground
truth annotations. After the selected utterances are used, they are erased from the pool of
available utterances, so that no utterance is used more than once.

Additionally, at the time of feature extraction, a speaker present in the resulting utter-
ance is chosen randomly as the target speaker and the ground truth labels are also altered
accordingly. It should also be noted that since augmentation is performed on the generated
data, the chosen target speaker may differ across the augmented variants of the original
utterance, providing a little more variety.

A method that one could call speaker dropout, inspired by [30], was also experimented
with. This approach alters the way a target speaker is chosen for utterances consisting
of only one speaker’s speech, randomly selecting a different speaker as the target with
a probability of 0.3. This approach was, however, not used in the final generated datasets,
as no improvements in the trained system performances were observed.

Using this approach, two separate datasets were generated for model training and eval-
uation, respectively. Because the system is expected to separate the target speakers from
the non-targets, it was – for the purposes of cross-validation – important to make the vali-
dation set to be completely separate from the training set. That way, all the speakers in the
validation set would represent novelty encounters for the system and the obtained results
would better indicate the system’s ability to generalize.

Training set The training set was generated using the three main LibriSpeech subsets.
The three train sets together – the 100-hour, the 360-hour, and the 500-hour – end up
totaling at around 960 hours of recorded speech and 2338 different speakers. Using the
method described in Section 5.2, approximately 140 thousand unique concatenated utter-
ances were generated, with no source utterance being used more than once. a histogram of
the resulting concatenated utterance lengths is shown in Figure 5.1.

Validation set The validation set was generated using the remaining LibriSpeech subsets,
concretely the two dev2 and two test subsets. These four subsets are completely separate

2The dev subsets were used in addition to the test sets to provide some additional speaker variability
to the validation set.
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Figure 5.1: Histogram of utterance length distribution in the generated training set of 140
thousand concatenated utterances.

from the three main ones and though they are much smaller – totaling at around 20 hours
of speech when combined only – they contain recordings of 146 more unique speakers that
are not present in the three main partitions. The resulting generated validation set consists
of approximately 5500 concatenated utterances.

5.3 Data augmentation
A very important aspect of creating a robust and accurate VAD system is to ensure its
ability to perform well even in acoustically challenging conditions. These conditions can
include the effects of reverberant rooms and spaces, and often also high levels of background
noise. It is therefore desirable to augment the training data to match these potential
conditions so that the model can learn to account for them.

To augment the training and testing data, the MUSAN [41] corpus was used in con-
junction with a set of room both real and simulated room impulse responses from [24]. The
resulting augmentation strategy used in this work is similar to [43]. Each concatenated
utterances is augmented and thus replicated three times using:

1. Reverb – an impulse response is randomly chosen from the RIRS_NOISES corpus and
applied to the clean utterance via convolution.

2. Noise – randomly chosen background noises are added to the clean track at one-
second intervals, at levels ranging from 0 to 15 dB SNR.

3. Music – an instrumental music piece is randomly chosen from MUSAN and added
to the clean utterance at levels ranging from 5 to 15 dB SNR.

The same augmentation strategy was applied to both the training and validation sets,
resulting in both sets becoming four times their original size after augmentation.
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Chapter 6

Implementation

This chapter discusses some of the interesting implementation aspects of creating the data
preparation, feature extraction, and model training pipelines.

6.1 Data preparation and feature extraction
The implementation of the data preparation and feature extraction pipelines was one of
the more challenging aspects of this work and has gone through multiple iterations. The
pipelines were implemented using the Python 3 language in combination with some oc-
casional shell scripting. Shell scripts were primarily used for manipulating the generated
dataset and features and also to interface with the Kaldi Speech Recognition Toolkit [36],
which was used for data augmentation.

The initial notion for the pipeline was to first generate the concatenated utterances and
then use the Kaldi toolkit for augmentation and feature extraction. However, this turned
out to be unscalable due to the incompatibility between the Kaldi filterbank implementation
and the features required by the speaker verification system used to extract frame-level d-
vectors. It was necessary to only extract the acoustic features once and use them both
as PVAD input features as well as input to the d-vector extractor, otherwise, too much
computation time would be consumed. Therefore, this approach was abandoned and Kaldi
was used for quick and efficient augmentation only.

That being said, what turned out to be quite useful, was Kaldi’s system for describing
and storing data and features.

Kaldi utilizes pairs of .scp and .ark files to efficiently store and describe data. The .scp
files usually hold information about how to obtain a particular resource, which is identified
by a key (for example the utterance id). Each key is then associated with a recipe, which
describes how the resource can be obtained. This could for example be the path to the
source file, a shell command describing the augmentation process of an utterance, or an
address referring to a specific position in an .ark file.

The .ark files are essentially archive files designed for efficient data storing, typically
used to store extracted features. Initially, NumPy’s serialization interface was used for
feature storing, however, using the .scp/.ark framework proved to be a much more sensible
approach, both in terms of accessing the resources and especially in terms of disc space
savings.
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The kaldiio1 Python library was used for interfacing the Kaldi file formats, both in
terms of reading and writing resources from and to the .scp/.ark files.
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Figure 6.1: Illustration of the implemented feature extraction pipeline. The gray areas on
the left and on the right denote the source dataset, and the generated training features and
labels, respectively. The purple area denotes the GPU worker, responsible for frame-level
d-vector extraction.

The final iteration of the process of preparing the training data and extracting the
features can be summarized into the following stages:

1. Utterance concatenation. Generate the concatenated utterances, combine their
respective transcripts. Describe the generated dataset using Kaldi-specific description
files: wav.scp, utt2spk, spk2utt. Extract enrollment d-vector2 embeddings for each
speaker in the dataset.

2. Augmentation. Perform data augmentation via Kaldi. Combine the augmented
wav.scp files into one that describes the whole dataset.

3. Feature extraction. For each utterance in the augmented wav.scp, load the wave-
form, extract the acoustic features, choose the target speaker and generate ground
truth labels for the whole utterance. Then, perform frame scoring using the target
speaker’s enrollment embedding. Save the extracted features and ground truth labels
into separate .scp and .ark files.

The feature extraction stage was particularly heavy on both resources and time required
for processing the whole dataset. To at least somewhat mitigate this, multiprocessing was
used. An arbitrary number of CPU worker processes load the augmented waveform and
extract acoustic features. Then these features are passed to a secondary GPU worker

1https://github.com/nttcslab-sp/kaldiio
2For later experiments i-vectors and x-vectors were also extracted, however, they are not necessary for

the feature extraction stage.
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process, which is responsible for extracting the d-vector embedding for each frame in the
utterance. The d-vectors are then returned to the original CPU worker so that SV scores
can be computed.

6.1.1 Speaker embedding extractors

Aside from feature extraction, multiple types of speaker embedding vectors were also used
for training. Following are the systems, which were used for extracting these speaker
representations.

d-vectors The d-vector extractor implementation used in this work is called Resem-
blyzer3. It is a freely available community implementation of the text-independent speaker
verification method proposed in [48]. For the purpose of this work, the actual model class
had to be modified to support frame-level embedding extraction in addition to the default
method, which extracts one d-vector for a sliding window of 160 frames. The extracted
d-vectors have a dimensionality of 256.

x-vectors The x-vector implementation used in the conducted experiments is available
via the SpeechBrain [39] toolkit. This system was trained on the VoxCeleb4 dataset and
is based on the original x-vector approach proposed in [43]. The extracted x-vectors have
a dimensionality of 512.

i-vectors Lastly, the i-vector system used in the experiments was kindly provided by the
Speech@FIT research group via my supervisor, Ing. Ján Švec. The extracted i-vectors have
a dimensionality of 400.

When extracting the enrollment embedding vectors, three utterances were randomly
selected for each speaker and concatenated to provide the systems with enough information
about the speaker’s voice characteristics.

6.2 Model implementation and training
Similar to the feature extraction pipeline, the training pipeline was also implemented using
the Python 3 language.

Specifically, the popular PyTorch [34] deep learning toolkit was used for implementing
the models described in Section 4.2.2, and also for training. The crucial part being the
ability to use GPU acceleration to speed up the training process.

For training, each model has a dedicated dataset class, which is used for loading features
and labels from .scp and .ark files and building the final feature vector from the acoustic
features, scores, and target speaker embedding vector, depending on the PVAD architecture.

The loading itself is managed by a data loader class, which is additionally responsible
for batching the loaded data. The data loader class also utilizes multiprocessing to avoid
CPU/GPU data transfer bottlenecks. There are two instances of this class for each training
session: one used for the training data, and one used for the validation data.

3https://github.com/resemble-ai/Resemblyzer
4https://www.robots.ox.ac.uk/~vgg/data/voxceleb/

30

https://github.com/resemble-ai/Resemblyzer
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/


6.2.1 Dealing with utterances of variable lengths

One of the challenges of training RNN models in PyTorch (and generally) for speech pro-
cessing tasks is that the training data often consists of utterances of variable lengths. When
used for training, the extracted features then form mini-batches of variable sizes. This pre-
vents us from converting the mini-batches into PyTorch tensors and stacking them together
to form the training batch tensor, as the tensors would have to be of the same dimensions.

There are two main ways to generally address this problem. One is to simply split
the training utterances into partial utterances, which would all have the same length. The
resulting training batch is then created from these partial utterances. The partial utterances
may or may not vary in lengths across batches. An example of this technique can be found
in [48].

However, there are two problems with this approach in the case of this work. The
dataset that was generated (see Section 5.2) for personal VAD training varies quite heavily
in terms of utterance lengths and it is undesirable to split the longer utterances into multiple
shorter ones. This is because personal VAD is supposed to operate as a streaming model
with frame-level inference. Thus it is crucial not to constrain its training to limited context
windows. The longest utterances in the dataset also contain three different speakers. In
order to reliably detect the speech frames of the target speaker, the model has to learn to
adapt to the speaker context changes present in these longer utterances.

The second method of addressing the problem of variable-length utterances is utilizing
padding [46], for which PyTorch has dedicated functions. All feature vectors in the batch
are padded to the length of the longest sequence in the batch. The lengths of the original
sequences before applying padding are stored and will be used later when calculating the
loss. The padded batch is then passed to the model to perform the forward pass.

Figure 6.2: Visualization of a batch of six padded sequences and its packed sequence coun-
terpart. Diagram taken from [46].
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Before processing the batch via the RNN, the padded sequences are flattened via the
pack_padded_sequence function, the resulting packed sequence format being suitable for
RNN processing (see Figure 6.2 for a visualized example of a packed sequence structure).
After the RNN pass, the sequences are padded once again, using the pad_packed_sequence
function. Regular hidden layers can process the padded sequences without any modification.

When calculating the loss, the original sequence lengths are used to mask out the
padding, so that it does not affect gradient calculations.
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Chapter 7

Experiments

In this chapter, the systems presented in Chapter 4 are evaluated. Section 7.1 introduces
the main metrics used for performance evaluation,

Section 7.3 then evaluates the baseline versions of the four personal VAD systems as
presented in Section 4.2.2.

Section 7.4 then explores the possibilities of using i-vectors and x-vectors as the target
speaker embedding vectors with the ET architecture.

Lastly, in Section 7.5 I also investigate the performance of the baseline streaming frame-
level scoring method introduced in Section 4.2.2, address some concerns about its perfor-
mance, and propose two alterations to this frame scoring method.

For all experiments, evaluation is performed twice. First, each system is evaluated
using the clean utterances from the validation set only to establish the system’s baseline
performance level for clean speech. Then the whole augmented scope of the validation set is
used to determine the system performance for clean and noisy speech combined, simulating
the ever-changing real-life acoustic conditions.

7.1 Evaluation metrics
The information presented in this section was derived from [40].

The main metrics used for model evaluation were the Average Precision (AP) and
Mean Average Precision (mAP). In order to properly understand these two metrics, it is
first necessary to define precision an recall.

Intuitively, precision is a measure classifier’s ability not to label negative samples as
positive for a particular decision threshold (often referred to as the operating point of the
classifier). It is defined using the following formula:

Precision =
TP

TP + FP , (7.1)

where TP denotes the number of true positives and FP denotes the number of false positives.
Recall on the other hand represents the ability of the classifier to find all the positive

samples in the set, again for a particular decision threshold:

Recall = TP
TP + FN , (7.2)

where TP denotes the number of true positives and FN denotes the number of false nega-
tives.
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Average precision then summarizes the relationship between precision and recall across
different classifier operating points:

AP =
∑︁
𝑛

(𝑅𝑛 −𝑅𝑛−1) · 𝑃𝑛, (7.3)

where 𝑃𝑛 and 𝑅𝑛 denote precision and recall at an operating point 𝑛, respectively, with the
difference in the recall at thresholds 𝑛 and 𝑛 − 1 being used as a weight to the precision
value at 𝑛. This effectively corresponds to computing the area under the precision-recall
curve constructed for the different decision thresholds. It should however be noted, that this
is the sklearn’s1 uninterpolated AP implementation, as AP computed from the linearly
interpolated precision-recall curve might at times be too optimistic.

In the conducted experiments, AP was always computed for every class to quantify how
precise the model is with respect to that particular class.

To quantify the overall model performance, mean average precision was then computed
across all classes, adopting the micro-mean approach, which calculates the AP metric across
all predicted samples.

In addition to mAP, raw classification accuracy (as in the percentage of correctly clas-
sified samples in the validation set) for each model is also reported to provide an easily
interpretable, general indicator of the model performance:

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (7.4)

Lastly, confusion matrices were used to better understand the model performance in
terms of distinguishing between different class pairs. On one axis, the confusion matrix is
indexed by the true class of the sample, on the other axis by the actually predicted class.
Therefore, given two indexes, 𝑖 and 𝑗, the confusion matrix entry at these indices is the
count of how many times class 𝑖 was predicted given that the true class was 𝑗2.

7.2 Training configuration and conditions
All systems were trained and evaluated using the same training and validation datasets.
The final augmented training set consisted of approximately 562 thousand utterances and
the augmented validation set of approximately 22 thousand utterances. More on the process
of creating the training and validation sets can be found in Sections 5.2, and 6.1.

The final model consisted of a 2-layer LSTM network of 64 cells each, followed by
one hidden layer of 64 neurons. The activation function assigned to this hidden layer
depends on the performed experiment, more about this is explained in Section 7.2.1. In
this configuration, the model only has 130 thousand parameters.

During training, the Adam optimizer [23] was used with a variable learning rate set to
1 × 10−3 for the first epoch, progressing down to 1 × 10−5 using learning rate scheduling.
The models, which utilized the target embedding vectors as one of the features, were trained
for 10 epochs maximum to avoid overfitting. The models without the target embedding
among the input features were trained for 8 epochs maximum.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_sco
re.html

2This, of course, depends on the orientation of the confusion matrix, as different implementations might
have the axes swapped.
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The computational resources required for feature extraction and training were kindly
provided by MetaCentrum3.

7.2.1 Last hidden layer activation functions

An important aspect of the conducted experiments was to determine which activation
function works the best for the one hidden layer after the LSTM. The compared activation
functions were the hyperbolic tangent (tanh), the leaky rectified linear unit (leaky relu). On
top of that, the activation function was removed altogether, leaving us with just a linear
activation.

As the fully connected layer is only really supposed to further transform the LSTM
output, it is expected that the potential differences in the results should not be too dramatic.
The 2-layer LSTM should be powerful enough to suffice for the personal VAD task by itself
and the fully-connected layer should therefore play the role of a “stabilizer”, refining the
LSTM output.

However, it was quickly determined that using the leaky relu is not ideal for any of the
model variants as the obtained results were albeit marginally but consistently worse than
any of the results obtained with the tanh and linear activations.

It seems that the ability of these two latter activation functions to better preserve
negative values has a positive effect on the accuracy of the system, as the leaky relu discards
most of the negative value information. Therefore, in the further comparisons, only the
results for the tanh and linear activations are reported4, as the leaky relu model variants
provided no useful results.

7.3 Comparing the architectures
In this set of experiments, all four personal VAD architectures as presented in Section 4.2.2
were trained and compared. This is to establish a performance baseline for other ex-
periments and also to compare the implemented system performances against the results
published in [13]. The experiment results are shown in Table 7.2.

For the SC system, only the linear baseline VAD system variant was used, since it
showed slightly better performance as shown in Table 7.1. For all other systems, results for
both the linear and tanh system variants are reported.

System Clean Augmented
ns s mAP acc [%] ns s mAP acc [%]

VAD (linear) 0.949 0.998 0.995 96.48 0.915 0.996 0.991 94.93
VAD (tanh) 0.947 0.998 0.995 96.34 0.913 0.996 0.990 94.85

Table 7.1: Baseline pure VAD system evaluation results. The ns and s labels denote non-
speech and speech AP scores, respectively.

As expected, the SC baseline system performed rather poorly in this comparison, reach-
ing AP scores of only 0.846 and 0.864 for clean tss and ntss, respectively.

The ST architectures ended up providing much better results than the baseline SC, with
the tanh ST variant reaching AP score of 0.920/0.864 for clean/augmented tss. However,

3https://metavo.metacentrum.cz
4To differentiate between the used activations in the text, the particular model is always referred to as

a “variant”, for example, the tanh ET system variant.
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in comparison to the ST architecture from [13], this result is still quite poor. The reason
for this is most likely stems from the d-vector extractor system used in this work and its
poor adaptation to streaming frame-level d-vector inference. Therefore, it seems that the
frame-level speaker verification scores used by the SC, ST, and SET architectures are not
discriminative enough for the systems to perform optimally.

The ET architectures ended up reaching quality results, even surpassing the original
work’s results for clean tss and ntss AP scores. However, that is for the systems trained
using cross-entropy. The best ET model presented in the original work was trained using
the WPL and scored an AP score for clean tss of 0.955. This is further discussed in
Section 7.3.1.

Even though the ET architecture results seem decent, it looks like this architecture is
still quite sensitive to noise. As shown in Fig. 7.1, it is apparent that the presence of noise
affects the system’s ability to distinguish tss frames from ntss. While this architecture
offers decent performance for clean speech, for it to be effective and reliable in acoustically
challenging environments, the amount of tss frames misclassified as ntss would have to
be reduced. Of course, this is not an easy problem to solve, mostly due to the self-imposed
resource demand limitations for this architecture. The SET architecture represents a partial
solution to this problem, especially when paired with a modified version of the baseline
scoring method. This is further discussed in Section 7.5.
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Figure 7.1: Comparison of confusion matrices for the ET (linear) system, obtained for the
clean (left) and the augmented (right) validation sets.

The SET systems were the best performing models in this comparison, both for clean
and augmented speech. However, due to the apparent poor quality of the used speaker
verification scores, the SET systems were unable to surpass the original paper’s results. In
Section 7.5, this problem is addressed by introducing two alterations to the baseline scoring
method, resulting in ST and SET systems capable of outperforming the original results.

Lastly, to address the rather naive approach of the SC system to the personal VAD task,
a modified version of the SC architecture was also experimented with. The modification
involved treating the SC architecture as a twofold classification problem. First, the VAD
would determine, whether the current frame is a speech frame. Then, the speaker verifica-
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System Clean Augmented
ns ntss tss mAP acc [%] ns ntss tss mAP acc [%]

SC (linear) 0.948 0.846 0.864 0.825 73.44 0.915 0.775 0.811 0.796 72.09
ST (linear) 0.932 0.914 0.918 0.916 84.19 0.893 0.860 0.864 0.863 78.20
ST (tanh) 0.933 0.919 0.920 0.921 84.29 0.893 0.865 0.867 0.868 78.25

ET (linear) 0.936 0.951 0.945 0.948 88.02 0.897 0.931 0.924 0.924 84.73
ET (tanh) 0.936 0.946 0.938 0.942 87.10 0.897 0.925 0.916 0.918 83.84

SET (linear) 0.933 0.962 0.962 0.958 89.14 0.894 0.938 0.937 0.930 85.31
SET (tanh) 0.929 0.961 0.960 0.957 89.10 0.889 0.937 0.934 0.929 85.26

SC (orig. paper) 0.970 0.872 0.886 0.900 - - - - - -
ST (orig. paper) 0.968 0.956 0.956 0.957 - - - - - -
ET (orig. paper) 0.962 0.946 0.932 0.946 - - - - - -
SET (orig. paper) 0.969 0.972 0.970 0.969 - - - - - -

Table 7.2: Average precision score comparison of different personal VAD architectures for
clean and augmented speech. Class labels: ns for non-speech, ntss for non-target speaker
speech and tss for target speaker speech. The bottom part of the table shows the architec-
ture results for clean speech obtained in [13]. The augmented results are not shown here,
as different augmentation strategies were used.

tion score would be thresholded using its tss/ntss classification EER threshold value (see
Section 7.5 for more information).

This way, the probabilistic nature of the classifier is lost, however, the raw classification
accuracy was improved to 77.57% (clean) and 74.46% (augmented). The improvement in
classification accuracy is rather noticeable, however, the ST architectures still outperform
this modified SC system by a significant margin. This might indicate the LSTM’s ability
to not only learn the optimal decision threshold from the score values but also its ability to
dynamically adjust this threshold based on the current temporal context in the processed
score value stream. For this reason, the SC approach was not pursued anymore in the
following experiments.

7.3.1 Weighted pairwise loss

To evaluate the effects of the weighted pairwise loss (WPL) (for further details see Sec-
tion 4.2.3), the ET architecture was retrained several times, always using different <ns, ntss>

values.
In [13], it is suggested that 𝑤<ns, ntss> values between 0.1 and 0.5 should help increase

the AP score for tss. Weight values above and below these should generally lead to perfor-
mance degradation as either not enough or needlessly much attention is given to <ns, ntss>

confusion errors.
Therefore, both the tanh and linear ET variants were evaluated using the following set

of 𝑤<ns, ntss> values: {0.1, 0.3, 0.5, 0.7}. The best results are compared against the baseline
systems trained with cross-entropy (see Table 7.3).

The tanh ET variant did, in fact, benefit from using the WPL. However, it turns out
that even though the value of 𝑤<ns, ntss> = 0.1 was supposed to give the best performance,
that was actually not the case for this experiment. For the tanh variant, the value of 0.1
lead to tss AP degradation, performing worse than the cross-entropy baseline.

For values of 0.3 and 0.5 however, the performance of the system improved over the
baseline. For the value of 0.5, it reached the best AP score of 0.946/0.924 for clean/aug-
mented tss, outperforming even the best linear ET variant from the previous experiment
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in this aspect. Unfortunately, not even this system was able to outperform the best WPL-
trained ET system from [13]. The effects of different <ns, ntss> weight values on tss AP
score for the tanh ET system are shown in Fig. 7.2.

System Loss 𝑤
Clean Augmented

ns ntss tss mAP acc [%] ns ntss tss mAP acc [%]
ET (linear) CE - 0.936 0.951 0.945 0.948 88.02 0.897 0.931 0.924 0.924 84.73
ET (tanh) - 0.936 0.946 0.938 0.942 87.10 0.897 0.925 0.916 0.918 83.84

ET (linear) WPL 0.5 0.932 0.950 0.943 0.946 87.74 0.893 0.928 0.921 0.921 84.38
ET (tanh) 0.5 0.931 0.952 0.946 0.947 87.89 0.893 0.931 0.924 0.923 84.59

ET (orig. paper) WPL 0.1 0.965 0.961 0.955 0.959 - - - - - -

Table 7.3: Comparison of the two best ET systems trained using the cross-entropy loss
(CE), and their best weighted pairwise loss (WPL) counterparts. The 𝑤 column denotes the
<ns, ntss> weight value used for WPL training. Both WPL models gave best performance
when trained using 𝑤<ns, ntss> = 0.5. The last row shows the best WPL-trained ET system
from [13].
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Figure 7.2: Effects of the weighted pairwise loss on tss AP score for the tanh ET system.
The gray lines denote the tss AP scores of the baseline ET tanh system trained using
cross-entropy for easy comparison with the WPL results.

For the linear ET variant, unfortunately, no performance improvements were observed,
though the weight value effect on tss was similar to that of the tanh variant. The weight
value of 0.5 still gave the best results (as shown in Table 7.3) but was unable to outperform
the baseline linear ET system trained using cross-entropy. This experiment was conducted
multiple times to rule out the possibility of the WPL model not converging properly, how-
ever, with no success.

The reason for this apparent ineffectiveness of the WPL might stem from multiple
aspects of the training process. It is possible that the ground truth labels generated from
the used LibriSpeech alignments did not allow the WPL to fully exploit the importance of
<ns, ntss> errors, as generally, the trained models have a worse ns AP scores than in [13].
It is also possible that the best linear ET system variant from Section 7.3 was simply lucky
enough to converge better than any other system during training and because of that,
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the WPL was unable to surpass this result. It is, therefore, possible that further tuning
and optimization of the model and training hyperparameters would in the end bring the
desired improvements even for the linear ET variant, potentially even surpassing the results
published in the original paper.

7.4 Comparison of different target speaker embedding types
Since in [13], only d-vectors are used as target speaker embeddings, I experiment with using
two other speaker embedding types as targets in addition to the d-vector – the x-vector and
the i-vector. I-vectors were successfully used in [30] for a task very similar to that explored
in this work. On the other hand, the same paper was unable to successfully use x-vectors
for the same task, suggesting that the system may have had an overfitting issue due to
the sparse nature of the x-vector embedding space. The experiments were once again done
using the ET architecture, both for the linear and tanh variants.

When training the first x-vector system, the same issue as in [30] was encountered –
the system was unable to learn anything at all, reaching only 52.4% in raw accuracy. That
was, however, not the case for the i-vector system, which was able to learn and perform
reasonably well (see Table 7.4 for results), though definitely not on par with the baseline
d-vector system.

The reason for the x-vector system performing so poorly was most likely that the value
distributions for the individual x-vector dimensions generally had too large of a variance
and it was impossible for the network to make use of the values.

On the other hand, i-vectors are by definition subjects of a standard normal distribution.
Therefore the i-vector values are nicely centered around zero with a variance of one.

Additionally, the d-vectors computed using the method from [48] are, as it was previ-
ously established, L2-normalized after extraction, restricting them to the surface of a unit
hypersphere. That is, most likely, why the system was able to generalize for i-vectors and
d-vectors but not for x-vectors.

It is a common practice to apply length normalization to speaker vectors before backend
modeling, restricting them to a smaller area in the embedding space. This can help limit
the intra-speaker variability of the embedding vectors, while still retaining the inter-speaker
variability [43, 5, 20]. Therefore, to address the sparsity problem of the x-vector and i-vector
spaces, L2 normalization was applied to both i-vectors and x-vectors.

In the case that the L2 normalization was to cause (though very unlikely) a significant
degradation to the inter-speaker variability of the speaker vector space, even a simple visual
analysis such as t-SNE [28] could potentially show the loss of some or all discriminative
properties of the embedding vectors.

To test this, 40 speakers were chosen from the LibriSpeech dataset. For each speaker, 40
i-vectors and 40 x-vectors were computed, each speaker vector from a different enrollment
utterance. This way, 1600 i-vectors, and 1600 x-vectors were obtained in total. Both of
these speaker vector sets were then L2-normalized and compared against the original ones
using t-SNE. The results are shown in Fig. 7.3.

The results indicate the expected: there is indeed no visible significant degradation in
the quality of the speaker vectors after applying L2 normalization. On the contrary, it seems
that the L2 normalization could have potentially even benefited the i-vectors. This could
be because the L2 normalization also has the effect of essentially spreading out vectors that
lie close to the origin, pushing them away to a unit distance from it.
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i-vectors (regular) i-vectors (L2 normalized)
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Figure 7.3: t-SNE visualization of both raw and L2 normalized i-vectors (top) and x-vectors
(bottom). Each plot contains 1600 embedding vectors (40 from 40 different speakers). The
speakers are the same in all four plots and each is represented by a single color.

Activation Embedding
type

Clean Augmented
ns ntss tss mAP acc [%] ns ntss tss mAP acc [%]

linear d-vector 0.936 0.951 0.945 0.948 88.02 0.897 0.931 0.924 0.924 84.73
tanh5 0.931 0.952 0.946 0.947 87.89 0.893 0.931 0.924 0.923 84.59
linear i-vector 0.930 0.860 0.854 0.830 78.16 0.892 0.834 0.831 0.810 75.97
tanh 0.931 0.863 0.854 0.833 78.43 0.892 0.839 0.833 0.816 76.37

linear i-vector (L2) 0.939 0.927 0.918 0.918 85.00 0.901 0.904 0.895 0.895 82.18
tanh 0.940 0.926 0.923 0.921 85.39 0.904 0.905 0.900 0.898 82.62

linear x-vector (L2) 0.938 0.939 0.928 0.935 86.30 0.901 0.920 0.907 0.912 83.21
tanh 0.940 0.945 0.936 0.942 87.12 0.904 0.925 0.914 0.919 83.93

Table 7.4: ET architecture performance comparison for different speaker embedding types.
The best tss AP and raw accuracy scores for each embedding type are highlighted in bold.

After training the system with L2-normalized i-vectors and x-vectors, it is apparent
that applying L2 normalization to the speaker vectors – restricting them to the surface of
a unit hypersphere – does indeed help the model to generalize (see Table 7.4 for results).
So much so that the tanh model variant trained with x-vectors performs almost on par with
the models trained with d-vectors.

The i-vector system accuracy was greatly improved in comparison to the pre-L2 i-
vectors, though not reaching the same performance level as x-vectors or d-vectors. This

5This is the tanh ET system that was trained using the WPL and scored the best result among the ET
tanh model variants.
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is possibly due to some residual channel information encoded in the i-vectors, which the
model was unable to account for.

This experiment shows that for the personal VAD task it is possible to use also other
speaker embedding types in addition to the d-vector. The only restriction being that
for the network to generalize properly, it is important to length normalize the speaker
vectors, restricting them to constrained space. This can be achieved for example via L2
normalization.

7.5 Altering the frame scoring method
So far, the speaker verification frame scoring method used in the experiments in Section 7.3
has been the one proposed by [13], described more in detail in Section 4.2.2. However, given
the rather non-optimal performance of both the baseline SC and the ST architectures, in
this section, I further analyze this scoring method and propose two modified alternatives
to the original one.

In [13], some concern was expressed regarding the performance of the speaker verification
system used to extract frame-level d-vectors. This is because the system’s architecture is
based on an LSTM network, and though LSTM networks can generally process sequences
of variable lengths, the system proposed in [48] was trained on context windows of 140 –
180 frames (as was the Resemblyzer d-vector system implementation used in this work).
Therefore, intuitively, optimal performance is guaranteed for these limited context windows
only. In other words, the system may suffer from performance degradation when having to
deal with long temporal contexts, as would be the case in a streaming frame-level inference
scenario, which is used in the context of the baseline scoring method.

Additionally, due to an implementation decision specific for the Resemblyzer speaker
encoder, the resulting d-vectors always have only positive values in all dimensions. Though
this may not at first glance affect the discriminative properties of the d-vectors, it certainly
limits the cosine similarity score value domain, concretely to the interval of < 0, 1 >.

For these reasons, I propose two alterations to the original scoring method, taking
inspiration from conventional speaker diarization approaches [49]. Both new methods re-
frain from the streaming frame-level embedding extraction approach and instead utilize
the d-vector extractor in the manner it was trained to – window-level d-vector inference.
a diagram depicting the window-level d-vector inference can be found in Section 3.3.

Both scoring method alterations process the input utterance in a sliding window manner,
extracting one d-vector for a window of 160 frames, with a 40 frame step in between the
individual windows. These d-vectors are obtained at each time step 𝑡:

𝑡 = 160 + 𝑘 · 40; 𝑘 = 0, 1, 2, . . . , (7.5)

each representing the past 40 frames, with the first d-vector representing the first 160 frames
of the utterance. Then, the d-vectors at these time steps are compared against the target
speaker embedding, once again using cosine similarity. This way, speaker verification scores
are obtained for each time step 𝑡.

7.5.1 Comparing frame-level and window-level d-vector discriminativity

Before proceeding, it has to be determined, whether these window-level d-vectors have
better discriminative properties than the ones extracted at frame-level using the original
approach. What is especially crucial, is how discriminative the d-vectors are for utterances
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containing speaker turns, as it is uncertain if the streaming frame-level d-vector extraction
approach can properly “react” to these speaker context changes. For this, the following
simple test was conducted.

For each utterance in the whole training set, the original frame-level scores were sub-
sampled at the same time steps described in Equation 7.5. That is to obtain frame-level
score values at time steps corresponding to the window-level scores.

For both speech classes (considering tss and ntss only, assuming that the VAD correctly
discards ns frames) and d-vector extraction methods, the resulting cosine similarity score
values were plotted in a histogram, which can is shown in Figure 7.4.
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Figure 7.4: Comparison of the speaker verification score value distributions for the two
d-vector extraction methods. Comparison for tss is in the upper part of the figure, ntss
comparison is situated in the lower part.

The histogram clearly shows that while both d-vector extraction methods perform sim-
ilarly well for ntss, the window-level d-vectors generally produce a higher cosine similarity
score for tss. This intuitively corresponds to higher window-level d-vector discriminativity,
as the system is much more confident in the resulting embedding representation, clearly
benefiting from the limited context windows. The reason, why the frame-level approach
falls behind is apparently due to the long temporal contexts the system has to process while
at the same time dealing with speaker turns.

Additionally, using the same set of sub-sampled scores which was used for plotting the
histograms, Receiver Operating Characteristic (ROC) and Equal Error Rate (EER) were
computed for both methods, concretely for the task of classifying the corresponding speech
frames as either tss and ntss based solely on the score values. For the baseline frame-level
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Figure 7.5: Receiver Operating Characteristic (ROC) comparison for the two embedding
extraction methods, evaluated for tss/ntss classification based on the obtained speaker
verification scores.

method, the EER was 0.238, whereas the window-level method scored an EER score of
0.132, clearly outperforming the baseline. The ROC comparison is shown in Fig. 7.5.

7.5.2 Proposed scoring methods

Now that it was established that the window-level d-vectors provide superior discriminativ-
ity and classification accuracy, it is necessary to distribute the speaker verification scores
across the 40 frames they are supposed to represent (the 40 frames representing the step
between the adjacent score values). This is where the two scoring alterations differ from
each other.

The Partially Constant (PC) method The PC method simply assigns the same score
value for the whole 40 frame segment. In other words, the speaker verification score value
is now constant for each partial segment of 40 frames represented by the original d-vector.

The Linearly Interpolated (LI) method Rather than assigning the same score value
for the whole 40 frame segment, the LI method linearly interpolates every two adjacent
score values, resulting in a linear score change within the 40 frame segment. This method
aims to simulate the more gradual score value change of the baseline frame-level scoring
method.

A visualized example of all three scoring methods (the baseline frame-level, PC, LI) can
be seen in Fig. 7.6, with the cosine similarity scores being plotted against the ground truth.
The figure also shows the tendency of the baseline method scores to decline over time,
whereas the altered methods roughly maintain the cosine similarity score values around
a constant value for each ground truth segment.
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Figure 7.6: Exemplary comparison of the three frame scoring methods. Blue and orange
areas denote tss and ntss segments, respectively.

7.5.3 Scoring alteration performance results

To evaluate the proposed scoring alterations, the ST and SET (and both the tanh and
the linear activation variants) architectures were retrained using the newly obtained score
values.

System Scoring
method

Clean Augmented
ns ntss tss mAP acc [%] ns ntss tss mAP acc [%]

ST (tanh) baseline 0.933 0.919 0.920 0.921 84.29 0.893 0.865 0.867 0.868 78.25
SET (linear) 0.933 0.962 0.962 0.958 89.14 0.894 0.938 0.937 0.930 85.31
ST (linear)

PC

0.933 0.978 0.979 0.973 91.42 0.894 0.952 0.954 0.944 86.85
ST (tanh) 0.936 0.980 0.981 0.975 91.95 0.896 0.955 0.957 0.948 87.33

SET (linear) 0.933 0.980 0.982 0.976 92.10 0.894 0.961 0.963 0.954 88.35
SET (tanh) 0.934 0.981 0.983 0.976 92.23 0.895 0.962 0.964 0.954 88.46
ST (linear)

LI

0.927 0.974 0.972 0.967 90.89 0.887 0.946 0.944 0.937 86.25
ST (tanh) 0.935 0.974 0.976 0.970 90.86 0.895 0.947 0.950 0.940 86.39

SET (linear) 0.935 0.978 0.980 0.974 91.69 0.897 0.959 0.960 0.952 88.08
SET (tanh) 0.932 0.977 0.979 0.972 91.47 0.893 0.957 0.958 0.949 87.64

ST (orig. paper) baseline 0.968 0.956 0.956 0.957 - - - - - -
SET (orig. paper) 0.969 0.972 0.970 0.972 - - - - - -

Table 7.5: Performance comparison of different frame scoring methods. The newly trained
systems are compared against the best performing systems utilizing the baseline frame-
level scoring method. The best tss AP, ntss AP, and accuracy results for both ST and
SET are highlighted in bold. The last two rows show the performance of the ST and SET
systems from [13], for which only the clean speech results are shown since the used data
augmentation strategy is different in this work.

The results, which are shown in Table 7.5, are clear. Both the PC and the LI scoring
methods outperform the baseline by a significant margin with the PC method performing
the best for both ST and SET. For the PC method, the tanh system variants seem to have
a slight edge on the linear in terms of overall model accuracy and tss AP scores in this
comparison. For the LI method, the opposite is true.

Overall, the PC scoring improved the raw model accuracy by more than 7.23/8.56%
absolute (clean/augmented) for the ST architectures and at least 2.96/3.04% absolute
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(clean/augmented) for the SET architectures. This experiment, therefore, resulted in the
best performing system created in this work, as the SET tanh variant utilizing the PC scor-
ing method achieved 92.23% and 88.46% raw accuracy for clean and augmented evaluation
sets, respectively, additionally scoring a tss AP score of 0.983/0.964 (clean/augmented).
Moreover, both the PC and LI outperform even the best SET system presented in [13] in
terms of tss and ntss AP scores.
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Figure 7.7: Confusion matrix comparison for the SET tanh systems trained using the
baseline scoring method (left) and the PC scoring method (right). The model performance
was evaluated for the augmented validation set.

Generally, the scoring modifications also improve the system’s robustness against back-
ground noise. An example of this is shown in Figure 7.7, where the <tss, ntss> confusion
error rates of the SET tanh system for augmented speech were visibly reduced by utilizing
the PC scoring method.

It should be noted that even though the proposed scoring methods both bring significant
classification improvements, they also require more computational power due to the window-
level d-vector extraction. With the sliding window step set to 40 frames, most frames will
be processed up to four times. The size of the sliding window step can, however, be
experimented with and possibly lowered to save resources. Overall, it can be argued that
these scoring method alterations might prove useful in scenarios, where the resource limits
are not a concern, as they both provide results that are superior to all other presented
systems.

7.6 Summary and possible improvements
The target ET architecture (the linear variant presented in Section 7.3) ended up providing
solid results for clean speech classification. However, for augmented speech, the performance
for tss/ntss classification seems to decline. This is most likely caused by the background
noise essentially masking out the target speaker’s voice characteristics, resulting in the
system classifying those particular frames as ntss.
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In order for the ET architecture to perform optimally under most conditions, it would
probably be necessary to implement some model decision post-processing techniques to both
smoothen out the system decision and perhaps to favor the tss class if the model becomes
unsure. This could be done since the primary goal for the model is not to perform robust
speaker verification but rather to filter out most of the irrelevant information. Therefore,
occasionally classifying some ntss frames as tss would not harm the system’s purpose in
a significant way.

Obviously, if the situation and use-case allow it, the best overall solution would be
to utilize one of the SET architectures along with the modified scoring methods. These
architectures provided the best results for both clean and augmented speech and if one was
to apply post-processing to the model decision, the systems provide good, usable results.

On the other hand, it can be ruled out that the baseline SC and the ST architectures
are in the end not too relevant, especially in comparison to the SET architecture. The SET
architecture offers a slight edge on the performance of any ST system simply due to the
utilization of the target speaker embedding vector. In most situations, there would be little
reason not to use this embedding representation in one can already perform frame scoring.

When contemplating how to further improve the obtained results, a few general points
immediately come to mind.

First, while the generated concatenated utterance dataset might serve well as a base-
line, a dataset consisting of real-life conversations would be incredibly beneficial for per-
sonal VAD development. That is mainly to fully test the capabilities and limits of the
implemented systems, while also better preparing them for real-life scenarios. Ideally, such
a real-life dataset would also contain overlapping speech, as it is unclear, how well would
the current personal VAD implementations handle such situations.

Additionally, apart from real-life conversation data, training the systems using actual
voice command recordings from actual mobile device users (essentially training the systems
on in-domain data) may potentially bring some improvements, as this would allow for the
models to be trained for the actual end goal use case scenario.

Second, the architecture of the model itself could be experimented with. Apart from ex-
perimenting with neural network topologies such as bidirectional LSTM networks, some ba-
sic speech enhancement methods could potentially increase the system’s robustness against
noise and thus reduce the number of tss frames classified as ntss. Implementing such
architectural changes is, however, not completely straightforward with the original frame-
level streaming model inference in mind and would therefore have to be considered with
regard to a specific use case.

Lastly, in order to obtain the best results, it would be beneficial to further optimize
the training process in terms of batch sizes and model parameter regularization, as most
models show some improvement potential even at the very end of the training. This could
also lead to the WPL providing better results, which would allow the models to further
improve their precision regarding tss and ntss frame detection.
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Chapter 8

Conclusions

This work aimed to implement, evaluate and expand upon a speaker-conditioned voice
activity detection method proposed by [13], referred to as personal VAD. This method
was based on adapting a conventional LSTM-based VAD model to the speech signals of
a particular speaker. To do this, the method utilizes speaker embedding representations
(namely d-vectors [48]) of the target speaker, either as a part of the input feature vector or
to issue speaker verification scores to each individual acoustic feature frame.

To train the models, suitable training and evaluation datasets had to be created first.
For this purpose, the standard LibriSpeech dataset was used to simulate speaker turns
in recordings by concatenating multiple utterances from different speakers into one. The
resulting training dataset utilized the full 1000-hour scale of the LibriSpeech dataset, con-
sisting of approximately 140 thousand concatenated utterances. The generated datasets
were also augmented using noise, music, and reverb to account for acoustically challenging
conditions.

Four different personal VAD architectures were implemented and trained, each utilizing
a different set of input features to identify the target speaker’s speech frames. One of the
more interesting architectures of the four was the ET system, mainly due to its lightweight
properties, as this system utilizes the target speaker embedding only and does not require
a speaker verification system at runtime. The best ET architecture reached an accuracy
score of 88.02/84.73% for clean and augmented speech, respectively.

In addition to the d-vector, also i-vectors and x-vectors were experimented with as the
target speaker embeddings in conjunction with the ET architecture, showing decent results
with the x-vectors reaching a performance level similar to that of the d-vector-trained
systems.

Architectures, which utilize also the frame-level speaker verification scores as a part
of the input feature vector, did not bring great results at first. This was due to how the
d-vector system was altered to operate in a streaming manner, producing one d-vector for
each individual acoustic frame, as the original inference model of the d-vector extractor
was sliding-window based. The obtained score values, therefore, did not have good enough
discriminative properties for distinguishing tss frames from ntss.

To address the poor performance of the baseline frame scoring method, I propose two
alterations to this method, which utilize sliding window d-vector inference. These alter-
ations significantly improved the discriminativity of the obtained score values, resulting in
the best performing SET system presented in this work. This system reached an accuracy
score of 92.23/88.46% for clean and augmented speech, respectively, while also outperform-
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ing the best SET system presented in the original work in terms of both tss and ntss
average precision scores.

The next step in the development of personal VAD systems would be to train and evalu-
ate them using real-life conversation data, as it is unclear, how well can the current models
handle factors such as overlapping speech. Training on real data could also better prepare
the systems for real-life use-case scenarios and increase the robustness of the models.
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Appendix A

Contents of the enclosed storage
unit

• xsedla1h_thesis.pdf – The final .pdf file version of this thesis.

• xsedla1h_thesis.zip – A .zip file containing the LATEX source code files for this
thesis.

• src/ – A folder containing the source code files.

• data/ – A folder containing a sample evaluation dataset, trained model files, and
a LibriSpeech sample for data preparation and feature extraction demonstration.

• README.md – A file documenting the rest of the codebase and containing further
instructions for using the software.

54


	Introduction
	Artificial Neural Networks
	Feed-forward neural networks
	Training the network
	The problem of sequential modeling
	Recurrent neural networks
	Modeling long temporal dependencies
	Long short-term memory


	Speaker representations
	i-vectors
	x-vectors
	d-vectors
	Embedding similarity metrics

	Speech detection
	Voice activity detection
	Voice activity detection methods

	Speaker-conditioned voice activity detection
	Personal voice activity detection approach overview
	Personal voice activity detection system architecture
	Loss functions


	Data
	LibriSpeech
	Generating the dataset
	Data augmentation

	Implementation
	Data preparation and feature extraction
	Speaker embedding extractors

	Model implementation and training
	Dealing with utterances of variable lengths


	Experiments
	Evaluation metrics
	Training configuration and conditions
	Last hidden layer activation functions

	Comparing the architectures
	Weighted pairwise loss

	Comparison of different target speaker embedding types
	Altering the frame scoring method
	Comparing frame-level and window-level d-vector discriminativity
	Proposed scoring methods
	Scoring alteration performance results

	Summary and possible improvements

	Conclusions
	Bibliography
	Contents of the enclosed storage unit

