
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV INFORMAČNÍCH SYSTÉMŮ
DEPARTMENT OF INFORMATION SYSTEMS

SYSTÉMNASPRÁVUPROGRAMOVACÍCHKONVENCÍ
V PROJEKTU
CODING CONVENTIONS MANAGEMENT SYSTEM

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. MICHAL ORLÍČEK
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN PLUSKAL
SUPERVISOR

BRNO 2021

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav informačních systémů (UIFS) Akademický rok 2020/2021

 Zadání diplomové práce

Student: Orlíček Michal, Bc.
Program: Informační technologie a umělá inteligence
Specializace: Softwarové inženýrství
Název: Systém na správu programovacích konvencí v projektu
 Coding Conventions Management System
Kategorie: Softwarové inženýrství
Zadání:

1. Zjistěte, jaké konvence psaní kódu používají programátoři při vývoji open source projektů
a jakým způsobem zajišťují/vynucují jejich použití v projektu. Proveďte průzkum technologií,
který tento proces zajišťují.

2. Analyzujte vybrané projekty z bodu 1 a zjistěte, jakým způsobem byly změny v konvencích
komunikovány k programátorům a jak bylo ověřeno jejich dodržení. Dále zjistěte, jakým
způsobem se nově přispívající programátoři seznamují s konvencemi.

3. Vyberte vhodné technologie, analyzované v bodě 1 a 2. Navrhněte systém, který zajistí
správu konvencí v projektu. Systém bude schopný konvence vytvořit pro nově vznikající
projekty, zjistit aktuálně používané a komunikovat jejich změny k programátorům. Systém
musí být schopen ověřit, zdali jsou konvence dodrženy a vytvořit souhrnnou zprávu o stavu
projektu. Respektujte připomínky vedoucího k navrženému systému.

4. Navržený systém dle bodu 3 implementujte.
5. Porovnejte implementovaný systém oproti existujícím alternativám, diskutujte jeho

silné/slabé stránky a určete vhodné oblasti použití. Demonstrujte systém na vybraném open
source projektu.

Literatura:
Martin, R.C. (2008). Clean Code: A Handbook of Agile Software Craftmanship. Prentice
Hall.
Martin, R.C., Martin, M. (2006). Agile Principles, Patterns, and Practices in C#. Prentice
Hall.
Fowler, M. (2019). Refactoring: Improving the Design of Existing Code. Addison-Wesley.

Při obhajobě semestrální části projektu je požadováno:
Body 1, 2 a 3.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Pluskal Jan, Ing.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2020
Datum odevzdání: 30. července 2021
Datum schválení: 26. října 2020

Powered by TCPDF (www.tcpdf.org)

Zadání diplomové práce/23487/2020/xorlic00 Strana 1 z 1

Abstrakt
Cieľom práce je navrhnúť a implementovať systém na správu programovacích konvencií
v projekte. Pred navrhnutím samotného systému bol vykonaný prieskum benefitov prog-
ramovacích konvencií, analýza používaných konvencií v open source projektoch v službe
GitHub a analýza existujúcich technológií spravujúcich programovacie konvencie. Na ich
základe boli navrhnuté scenáre použitia, špecifikované požiadavky a určená architektúra.
Následne bol systém implementovaný ako webová aplikácia postavená na technológiách
Blazor a EditorConfig. Hlavným zámerom bolo vytvoriť systém, ktorý umožní uchovávať
všetky druhy používaných programovacích konvencií a zároveň umožní užívateľovi dané
konvencie automaticky kontrolovať a generovať. Zverejnený je pod open source licenciou
v službe GitHub a nasadený v cloudovej platforme Azure.

Abstract
The goal of this thesis is to design and implement coding conventions management system
for project. Prior to the creation of the system itself, the research of coding conventions
benefits, the analysis of used technologies in open source projects at GitHub service, and
the analysis of existing technologies managing coding conventions was done. On the basis
of that, usage scenarios were designed, requirements were specified and system architecture
was determined. Then the system was implemented as web application based on Blazor and
EditorConfig technologies. The main aim was to create a system that would allow to store
all types of programming conventions and at the same time allows users to automatically
control and generate them. It is published under an open source license within the GitHub
service and deployed on the Azure cloud platform.

Kľúčové slová
programovacie konvencie, čistý kód, open source, GitHub, EditorConfig, Blazor, ASP.NET
Core

Keywords
coding conventions, clean code, open source, GitHub, EditorConfig, Blazor, ASP.NET Core

Citácia
ORLÍČEK, Michal. Systém na správu programovacích konvencí v projektu. Brno, 2021.
Diplomová práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí
práce Ing. Jan Pluskal

Systém na správu programovacích konvencí v pro-
jektu

Prehlásenie
Prehlasujem, že som túto diplomovú prácu vypracoval samostatne pod vedením Ing. Jana
Pluskala. Uviedol som všetky literárne pramene a publikácie, z ktorých som čerpal.

. .
Michal Orlíček

30. júla 2021

Poďakovanie
Chcel by som sa poďakovať vedúcemu práce Ing. Janovi Pluskalovi za ochotu a odbornú
pomoc. Priateľom a známym za pomoc s testovaním, prekladom a korektúrou textu. A v
neposlednom rade mojej priateľke a rodine za psychickú podporu pri písaní tejto práce.

Obsah

1 Úvod 3

2 Analýza 5
2.1 Benefity programovacích konvencií . 5

2.1.1 Čistota kódu pri agilnom vývoji . 5
2.1.2 Kvalita kódu . 6
2.1.3 Problémy špinavého kódu . 7
2.1.4 Čistý kód . 7
2.1.5 Dopad programovacích konvencií na čistotu kódu 8
2.1.6 Iné spôsoby zvyšovania čistoty kódu 9

2.2 Používané programovacie konvencie . 9
2.2.1 Analýza programovacích konvencií v open source projektoch 10
2.2.2 Analýza vybraných projektov . 12
2.2.3 Ďalšie zdroje programovacích konvencií 15

2.3 Analýza technológií spravujúcich programovacie konvencie 18
2.3.1 Markdown súbory . 18
2.3.2 Issue šablóny . 19
2.3.3 Wiki a externé stránky . 19
2.3.4 EditorConfig . 20
2.3.5 Iné technológie . 21

3 Návrh 23
3.1 Požiadavky na vytváraný systém . 23

3.1.1 Porovnanie funkcií existujúcich technológií 23
3.1.2 Uvažované scenáre použitia . 25
3.1.3 Špecifikácia požiadaviek . 26

3.2 Architektúra systému . 27
3.2.1 Trojvrstvová architektúra . 28
3.2.2 Prezentačná vrstva . 29
3.2.3 Logická vrstva . 32
3.2.4 Databázová vrstva . 38

3.3 Implementácia návrhu . 39
3.3.1 Implementačné prostredie . 39
3.3.2 Problémové časti implementácie . 40
3.3.3 Nasadenie . 41

4 Testovanie 43
4.1 Demonštrácia . 43

1

4.2 Testovanie užívateľmi . 46
4.2.1 Výber účastníkov . 46
4.2.2 Priebeh . 46
4.2.3 Výsledky . 47

5 Záver 49

Literatúra k práci 51

Skratky 57

Slovník 59

Literatúra k slovníku 62

A Analyzované projekty 64

2

Kapitola 1

Úvod

V súčasnosti sa čoraz viac tímov rozhoduje vyvíjať projekty agilným spôsobom. Tento
spôsob vývoja vyžaduje ešte väčšiu čistotu kódu, ako lineárne spôsoby, ktoré sa používali
v minulosti. Vyššia úroveň čistoty umožňuje lepšiu udržateľnosť kódu, čo znižuje časovú
zložitosť pridávania nových funkcionalít v ďalších iteráciách vývoja.

Jeden z najdôležitejších indikátorov kvalitného a čistého kódu je jeho konzistencia. Ur-
čením pokynov, ktoré sú odporúčané na použitie jednej alternatívy, z rôznych možností
pri písaní určitej časti kódu, sa pri ich dodržiavaní konzistencia zvyšuje. Takto zapísané po-
kyny sa nazývajú programovacími konvenciami alebo programovacími štýlmi a môžu sa líšiť
v závislosti od programovacieho jazyka, platformy, druhu vyvíjanej aplikácie, typu súboru
alebo aj skúseností členov tímu. Pri správnom zvolení konvencií môže byť kód čitateľnejší,
kvalitnejší, konzistentnejší a môže byť potlačovaná jeho zložitosť, čo môže viesť k menej
častým alebo jednoduchším refaktorizáciam.

Cieľom práce je navrhnúť a vytvoriť systém, ktorý umožní správu programovacích kon-
vencií v projekte. Je určený primárne pre projekty, ktoré využívajú .NET ekosystém a preto
je postavený na moderných technológiách od spoločnosti Microsoft, avšak je možné ho pou-
žiť pre všetky typy projektov. Zdrojové súbory systému sú voľne dostupné v službe GitHub
pod MIT licenciou, vďaka ktorej je možné ho upravovať a používať na komerčné aj sú-
kromné účely. Výhodou zverejnenia pod voľnou licenciou je umožnenie opravovania chýb
a následný vývoj systému po dokončení diplomovej práce.

Prvá časť práce (viď 2) sa zaoberá programovacími konvenciami používanými v open
source projektoch. Rozširuje motiváciu z úvodu, obsahuje prehľad programovacích konvencií
používaných v projektoch. Bližšie analyzuje vybrané projekty a zaoberá sa ich vytváraním,
diskusiami o nich, komunikáciu k vývojárom po ich zavedení a aj následnými úpravami.
Avšak cieli aj na spôsoby, akými sa dodržuje alebo vynucuje ich použitie a ako sa s nimi
noví členovia projektov zoznamujú. Zameriava sa aj na prieskum technológií, ktoré zaisťujú
správu programovacích konvencií a na technológie, ktoré pomáhajú konvencie v projekte
dodržať. Ako prílohu, obsahuje práca zoznam open source projektov použitých pri analýze.

Druhá časť práce (viď 3) obsahuje návrh systému. Začína porovnaním existujúcich rie-
šení a používaných technológií, pričom využíva poznatky z predchádzajúcej časti. Na ich
základe špecifikuje scenáre použitia systému a formuluje požiadavky naň. Následne opisuje
navrhnutý systém, jeho architektúru a jednotlivé architektonické celky. V neposlednej rade
vysvetľuje, ako bol návrh implementovaný a aké technológie boli na implementáciu použité.

Tretia čast práce (viď 4) opisuje, akým spôsobom bol systém testovaný. Diskutujú sa
jeho výsledky, zhodnocujú sa silné a slabé stránky, limity, vhodné oblasti využitia a mož-

3

nosti pre rozšírenia a zmeny. Následne je systém demonštrovaný na zvolenom open source
projekte.

Poslednou časťou je samotný vytvorený systém s jeho dokumentáciou. Zdrojové súbory
sa nenachádzajú v texte práce, ale sú dostupné online1 a na priloženom kompaktnom disku.
Dokumentácia2 obsahuje manuál, ako do systému implementovať vlastné kontroly kódu,
spolu s API dokumentáciou kódu. Okrem toho obsahuje návod ako aplikáciu nasadiť, avšak
ten pre otestovanie systému nie je nutný, pretože v dobe jeho testovania a hodnotenia je už
nainštalovaný systém dostupný online3.

Práca obsahuje jednu prílohu (viď A), je ňou zoznam open source projektov v službe
GitHub, ktoré sú použité na analýzu v časti 2.2.1.

Pre lepšiu čitateľnosť a menej opakujúcich sa vysvetlení používam skratky a slová v texte
práce, ale ich vysvetlenie oddeľujem od jeho zvyšku. Na konci práce je dostupný zoznam
skratiek a slovník s literatúrou, použitou na jeho tvorbu. V digitálnej verzii je možné na slová
v práci kliknúť k presmerovaniu na ich význam. Práca obsahuje dva prehľady použitej
literatúry, jednu k samotnej prácu a druhú k zmienenému slovníku a skratkám. V literatúre
k slovníku sú využité prevažne terciáne informačné zdroje, ktorým som sa snažil v literatúre
k práci vyhnúť.

1https://github.com/orlicekm/CodingConventionsManagementSystem
2https://orlicekm.github.io/CodingConventionsManagementSystem
3https://ccms.orlicek.net

4

https://github.com/orlicekm/CodingConventionsManagementSystem
https://orlicekm.github.io/CodingConventionsManagementSystem
https://ccms.orlicek.net

Kapitola 2

Analýza

Kapitola sa zaoberá analýzami programovacích konvencií používaných v projektoch. Pred
začatím tvorby návrhu systému je vhodné zanalyzovať programovacie konvencie z rôz-
nych pohľadov. Prísluší sa skúmať, prečo a kedy je vhodné konvencie užívať, aké projekty
a akými spôsobmi konvencie využívajú a aké technológie k tomu používajú. Vďaka analý-
zam je možné adekvátne špecifikovať požiadavky na vytváraný systém (pre viac informácií
o návrhu systému viď kapitolu 3).

Prvá časť kapitoly sa venuje výhodám programovacích konvencií (viď sekcia 2.1). Roz-
širuje motiváciu z úvodu (viď kapitola 1) o teoretické podklady. Vysvetľuje, prečo sú prog-
ramovacie konvencie súčasťou clean code a popisuje iné spôsoby udržovania čistoty kódu.
Druhá časť kapitoly analyzuje rôzne druhy programovacích konvencií (viď sekcia 2.2). Popi-
suje, aké druhy sa používajú, pričom čerpá z rôznych zdrojov, medzi ktorými je aj päťdesiat
analyzovaných open source projektov zo služby GitHub. Následne sa podrobnejšie zaoberá
konkrétnymi projektami a pozoruje, akými spôsobmi sú konvencie v projektoch uchované,
spravované, ako k nim programátori pristupujú, zoznamujú sa s nimi a ako sa overuje alebo
vynucuje ich dodržiavanie. Posledná časť skúma existujúce technológie, ktoré sa používajú
na správu programovacích konvencií (viď sekcia 2.3). Zisťuje, aké konvencie daná technoló-
gia umožňuje spravovať, aké možnosti dáva vývojárovi pri ich správe a ako daná technológia
odporúča alebo vynucuje ich použitie v projekte.

2.1 Benefity programovacích konvencií
Prvým krokom, pri vytváraní práce je analýza teoretických podkladov programovacích kon-
vencií, za účelom zistenia, aká je motivácia na ich používanie a aké výhody poskytujú. Prvá
časť sa zameriava na rolu čistého kódu v agilnom vývoji (viď 2.1.1). Následne sa venuje
vlastnostiam kvalitného kódu (viď 2.1.2) a problémom, ktoré môžu vzniknúť, ak sa kód
pravidelne nečistí (viď 2.1.3). V ďalšej časti sa definuje čistý kód (viď 2.1.4) a programova-
cie konvencie s ich prepojením na čistotu (viď 2.1.5). Poslednú časť tvoria iné spôsoby, ako
je možné zvyšovať čistotu kódu v projektoch (viď 2.1.6).

2.1.1 Čistota kódu pri agilnom vývoji

Ako je uvedené v úvodnej kapitole, v súčasnosti sa zvyšuje množstvo projektov, ktoré sú
vyvíjané agilným spôsobom. Toto tvrdenie podporujú aj štatistiky z vyhľadávača Google,
kde agile scrum postupne okolo roku 2010 prekonal vodopádový model [37]. Jeho početné
využitie je možné vidieť aj v ankete z roku 2018 zo StackOverflow, kde na otázku, aké

5

metodológie vývoja používajú, odpovedalo 57 075 profesionálnych developerov [75]. Na pr-
vom mieste skončil agile s 85.9% a na druhom scrum, ktorý patrí pod agilné metodológie,
s 63.2% [75].

Metodiky agilného vývoja sa snažia o zvýšenie produktivity a efektivity práce a ich
výhodou je možnosť rýchlo reagovať na zmenu požiadaviek zákazníka [1]. Vývoj je založený
na krátkych iteráciách, medzi ktorými sa vytvorí časť požadovanej funkcionality a vytvorí
funkčný a otestovaný software [73]. Kniha Agile principles, patterns, and practices in C#
definuje agilný vývoj ako schopnosť vyvíjať software rýchlo v prostredí meniacich sa požia-
daviek [51]. Ak chceme dosiahnuť túto schopnosť, musíme používať postupy, ktoré poskytnú
potrebnú disciplínu a spätnú väzbu. Potrebujeme použiť princípy návrhu, ktoré udržia soft-
ware flexibilným a udržateľným a potrebujeme poznať návrhové vzory, ktoré preukázateľne
vyvažujú tieto princípy pre konkrétne problémy [51]. Z definície je pre nás najpodstatnej-
ším pojmom disciplína, vďaka ktorej nepíšeme kód podľa toho, čo subjektívne považujeme
za najlepšie, podriaďujeme sa nejakej vyššej vôli, pravidlám, ktoré sme si definovali. Pro-
stredníctvom týchto pravidiel je snaha o dosiahnutie toho, aby bol software flexibilným
a udržateľným, a teda snažia sa zvyšovať jeho kvalitu. O kvalite kódu je viac v časti 2.1.2.

V knihe Clean Code sa uvádza, ako sa scrum a agile v dnešnej dobe zameriavajú na rýchle
uvedenie produktu na trh [50]. Časti kódu sa opúšťajú predčasne, nie však z dôvodu, že
by boli dokončené, ale preto, že hodnotový systém sa zameriava viac na vonkajší vzhľad
produktu, ako na podstatu toho, čo dodávame [50]. Preto sa v scrume odporúča, aby bola
refaktorizácia (viď 2.1.6) súčasťou DoD [50]. Pri nedodržaní odporúčaní nám opravovanie
chýb, rozširovanie a udržovanie časti kódu, napísaných týmto spôsobom, ktoré nie sú do-
končené a teda vyčistené, zaberie omnoho viac času, ako keby sme čistenie vykonali pri ich
vytváraní. Viac o problémoch špinavého kódu viď časť 2.1.3.

2.1.2 Kvalita kódu

Na úvod by bolo vhodné zadefinovať, čo to vlastne kód je. Všeobecne známa definícia
kódu, ktorú môžeme nájsť vo významových slovníkoch, ho opisuje ako systém slov, písmen,
čísel alebo symbolov, ktoré reprezentujú správu alebo zaznamenávajú informáciu šifrovane
alebo v krajšej forme. V tejto práci však budeme kódom označovať zdrojový kód projektu.
LINFO definuje zdrojový kód ako verziu softvéru, ktorá je originálne napísaná človekom ako
čitateľný, neformátovaný text [80]. Kódu sa v programovaní nikdy nezbavíme [50]. V Clean
Code Robert C. Martin vysvetľuje, že dôvodom je reprezentácia detailov požiadaviek, ktoré
na určitej úrovni už nie je možné ignorovať a je nutné ich špecifikovať [50]. Následne definuje
kód ako jazyk, ktorými sú nakoniec tieto požiadavky vyjadrené [50].

Existuje viacero vlastností, ktorými sa dá určovať kvalita kódu. Avšak tieto vlastnosti nie
sú striktne vyhradené a tím si pre projekt môže definovať svoje vlastné. Medzi často použí-
vané patrí spoľahlivosť, opakovaná využiteľnosť, prenosnosť, testovateľnosť [4]. K niektorým
z týchto vlastností existuje jedna alebo viacero metrík, ktorými sa dá daná vlastnosť v kóde
merať. Napríklad je možné zistiť, na aký podiel kódu sú vytvorené testy, ale čitateľnosť
alebo pochopiteľnosť kódu je veľmi subjektívna. Prehľad analýz kvality zdrojového kódu
a aj nástrojov, ktoré analýzu vykonávajú automaticky sa nachádza napríklad v bakalárskej
práci Analýza kvality zdrojových kódů od Lukáša Voříška [85]. Niektoré súčasne používané
IDE obsahujú prvky statickej analýzy a upozorňujú na možné problémy, už pri vývoji [85].
Kniha Clean Code in C# opisuje kvalitný kód, ako základnú vlastnosť softvéru [2]. Kód,
ktorý dodržiava vysoké štandardy, bude mať kvalitnú výkonnosť, dostupnosť, bezpečnosť,
škálovateľnosť, udržateľnosť, prístupnosť, nahraditeľnosť a rozšíriteľnosť [2].

6

2.1.3 Problémy špinavého kódu

Čistý aj špinavý kód je možné preložiť, špinavý kód je však špinavý z nejakého dôvodu [2].
Písanie čistého kódu nie je otázkou iba morálnych, etických hodnôt. Naviac, strávený čas,
počas ktorého sa upravoval kód pre dodržanie vysokých kvalít, nie je vhodné ospravedlňovať
dobrou programátorskou praxou, dôvody sú čisto ekonomické [18]. Kvalitný kód dokáže
ušetriť čas, financie aj ľudské zdroje, v dlhšom časovom období. Nekonzistentný dizajn
knižníc nepriaznivo ovplyvňuje produktivitu vývojárov [59].

Kód, ktorý je vyvíjaný, bez brania ohľadu na jeho čistotu, sa pridávaním ďalších fun-
kcionalít stáva viac a viac špinavým. Čím je kód špinavším, tým ťažšie sa v ňom orientuje,
pridávanie ďalších funkcionalít trvá dlhšiu dobu, a preto sa spomaľuje jeho vývoj. Miera
spomalenia je výrazná, produktivita tímu klesá asymptoticky k nule [50]. Kód je vhodné
čistiť postupne, čím dlhšie sa čistenie kódu odkladá, tým viac času zaberie. Zmena čistého
kódu je oproti komplexnému špinavému kódu jednoduchšia [18]. Pomer času medzi čítaním
a písaním je značne cez 10:1 [50]. Kód musíme čítať vždy, keď chceme písať ďalší a preto
sa snažíme spraviť čítanie čo najjednoduchším, aj za cenu dlhšieho písania. Špinavý kód
je významná prekážka a jediným spôsobom ako vyvíjať rýchlo, je udržiavať kód čistým [50].

Čas

Produktivita

10%

100%

50%

Obr. 2.1: Klesanie produktivity pri špinavom kóde. Obrázok upravený z Clean Code [50].

Existujú rôzne metriky, ktoré dokážu vývojárom pomôcť merať čistotu kódu a tým
určovať, ktoré časti kódu je vhodné refaktorizovať pre zvýšenie kvality (viď 2.1.2).

2.1.4 Čistý kód

Aký je to čistý kód? Robert C. Martin oslovil s touto otázkou viacero profesionálov v ob-
lasti, ktorých následne v Clean Code cituje, čím ukazuje na fakt, že každý definuje čistý kód
iným spôsobom [50]. On popisuje čistý kód ako remeslo a programátora ako umelca, ktorý
dokáže premeniť prázdnu obrazovku radom transformácií, kým nezíska elegantne kódovaný
systém [50]. Písanie čistého kódu podľa neho vyžaduje disciplínu použitia nespočetného
množstva malých techník, aplikovaných prostredníctvom starostlivo získaného pocitu čis-
toty [50].

Existuje množstvo kníh a kurzov, ktoré učia technike písania čistého kódu. Niektoré
z nich, ako napríklad Clean Code, boli použité aj pri písaní tejto práce. Keď si ich pozorne
prečítame, tak zistíme, že sa v niektorých častiach líšia a niekde majú dokonca protichodné
názory. Nie je jeden správny spôsob, ako napísať čistý kód, pretože kód nie je nikdy úplne
čistý. Niekto môže za čistý považovať v danej situácii jeden konštrukt, ako niekto úplne iný.
Všetko záleží od situácie. Aj v Clean Code sa píše, že nebudeme pravdepodobne súhlasiť
100%–ne so všetkým, čo v knihe nájdeme [50].

7

Záleží na detailoch [50]. Každá menšia časť kódu, ktorá nie je napísaná v súlade s defino-
vanými pravidlami, otvára priestor pre rozšírenie, ktoré by viedlo k väčším nezrovnalostiam.
Dobrí programátori vedia, že zriedkavo je prvotný kód tým čistým a preto trávia čas jeho
čistením [18]. Pozeráme sa na to, ako rozdeliť program do menších modulov, ktoré spolu
spolupracujú na jednom funkčnom riešení, ktoré je plne testovateľné, môže na ňom pracovať
viacero tímov súčasne, a je omnoho jednoduchšie na čítanie, pochopenie a dokumentova-
nie [2]. Už v knihe The C Programming Language je odporúčané pracovať s viacerými
menšími časťami, než s jednou veľkou, pretože nepodstatné detaily môžu byť zapúzdrené
do funkcií a šanca na nežiadúce interakcie sa zmenšuje [74].

Kód časom degraduje, preto musíme byť aktívni v jeho prevencii [50]. Čistota kódu
sa časom zhoršuje a nemusí to byť nutne spôsobené prepísaním jeho častí bez vyčistenia.
Dôvodov je viacero. Môže sa jednať o zmenu pohľadu na to, čo je čisté, môžu byť do jazyka
pridané nové, čistejšie konštrukty alebo sa zmení okolie kódu a tým pádom kód nie je čistý
ako celok.

2.1.5 Dopad programovacích konvencií na čistotu kódu

Podľa Dave Thomasa, zakladateľa OTI a jedného z hlavných tvorcov nástroja Eclipse,
poskytuje čistý kód skôr jeden spôsob, ako viacero, na vykonávanie jednej veci [50]. Kód
môže obsahovať viacero programovacích štýlov, a teda jednotlivé časti kódu môže vývojár
napísať rôznymi spôsobmi, čím sa kód stáva nekonzistentným. Konzistencia je definovaná
ako rovnakosť, zhodnosť, uniformita [21]. Neochvejná konzistencia vedie ku kódu, pri kto-
rého spoznávaní môžete vytvoriť viacero predpokladov a predpovedí o jeho správaní, ktoré
budu nakoniec pravdivé [21]. Ak na projekte pracuje viac vývojárov, čo je v dnešnej dobe
pri rozšírení verzných systémov bežné, písanie čistého kódu je o konzistentnosti aj medzi
nimi. Je oveľa jednoduchšie pochopiť veľký kód, keď je písaný konzistentným štýlom [36].
Jednotný, konzistentný kód pomáha k jeho skoršiemu pochopeniu, lepšej čitateľnosti a tým
následne k rýchlejšiemu vývoju a jednoduchšej údržbe. Použitím programovacích konvencií
sa zaručuje napísanie kódu v prijatom a dohodnutom formáte, čo pomáha ľudom sústrediť
sa na podstatu kódu a tráviť menej času pochopením jeho usporiadania [2].

Každý väčší open source projekt má svojho vlastného sprievodcu štýlmi: množinu kon-
vencií o tom, ako písať pre daný projekt kód [36]. Programovacie konvencie tvoria akúsi
sadu zásad, ktorá sa dodržiava pri písaní kódu. Môžu byť podané iba ústne, ale aj forma-
lizované do sady spísaných pravidiel. Programovacie štandardy stanovujú zásady ako písať
a nepísať kód, ktoré je potrebné dodržiavať [2]. Pravidlá sa môžu deliť na mäkké a tvrdé,
pri mäkkých sa dovoľuje v niektorých situáciách ich porušenie, zatiaľ čo tvrdé musia byť
dodržané vždy. Napríklad Robert C. Martin považuje za mäkké pravidlo nevyužiť viac ako
tri argumenty [84].

Microsoft má svoje programovacie konvencie (viď 2.2.3), ktoré zväčša bývajú prebe-
rané a upravené tak, aby vyhovovali potrebám konkrétneho podniku [2]. Každý projekt
zvyčajne používa vlastné programovacie konvencie, ktoré bývajú bežne odvodené od štan-
dardov vývojárskeho tímu a firemných pokynov, s prihliadnutím na využité technológie,
programovacie jazyky a prostredie. Konvencie vytvárajú konzistentný vzhľad kódu, aby sa
čitatelia mohli sústrediť na obsah, nie na jeho rozloženie [53]. Snažia sa umožniť čitateľom
porozumieť kódu vytvorením predpokladov na základe prechádzajúcich skúseností a uľahčiť
kopírovanie, zmeny a údržbu kódu, pričom uplatňujú osvedčené postupy [53]. Z pohľadu
vývojového cyklu sú konvencie najčastejšie sledované pri kontrole navrhovaných zmien [2].

8

Zmienky o vhodnom písaní kódu je možné nájsť už v knihe The C Programming Langu-
age z roku 1978. Napríklad, podľa nej nie je vhodné písať kód, pri ktorom záleží na poradí
vyhodnotenia alebo používať výraz goto ako náhradu iných konštruktov [74]. Odporúča
použitie rekuzie a ukazovateľov. Využitie ukazovateľov väčšinou vedie k viac kompaktnému
a efektívnemu kódu [74]. Kód využívajúci rekurziu je kratší a jednoduchší na napísanie a po-
rozumenie, ako jeho nerekurzívny proťajšok [74]. Pre prehľad programovacích konvencií viď
sekcia 2.2.

2.1.6 Iné spôsoby zvyšovania čistoty kódu

Programovacie konvencie sú jedným zo spôsobov zvyšovania čistoty kódu. Ako je uvedené
v sekcii 2.1.5, nie vždy sú formalizované a zvyčajne sa na ne nekladie dôraz. Existujú ale
aj rôzne iné mechanizmy, ktoré zvyšujú čistotu, medzi ktoré patrí napríklad refaktorizácia
alebo testovanie.

Refaktorizácia je veľmi podobná optimalizácii výkonu, oboje upravujú kód, ale nemenia
funkcionalitu, rozdielom je ich účel. Refaktorizácia je zmena vykonaná v internej štruktúre
softvéru, vďaka ktorej je jednoduchší na pochopenie a jednoduchšie upraviteľný bez zmeny
jeho pozorovateľného správania [18]. Je to kľúč k udržaniu kódu čitateľným a upraviteľným,
preto je dôležitým prvkom v procese vývoja softvéru [18]. V dnešnej dobe sa čoraz častejšie
používa slovo refaktorizácia pre akékoľvek čistenie kódu. Rôzne IDE pre rozličné progra-
movacie jazyky obsahujú integrované formy refaktorizácie. Napríklad ReSharper obsahuje
rýchle akcie na extrahovanie metódy alebo automatické vyčistenie kódu.

Na to, aby refaktorizácia bola vykonaná správne, je potrebná spoľahlivá sada testov,
ktorá odhalí neodvratné chyby [18]. Čistotu a teda kvalitu kódu zvyšujú aj testy, no ich
hlavným prínosom je hľadanie chýb vo funkcionalite a v dokumentovaní kódu. V metóde
programovania TDD sa ako prvé píšu testy a až následne sa vytvára kód tak, aby testy kon-
čili úspechom [18]. Následne sa kód refaktorizuje, aby bol čo najčistejší, no stále s úspešne
prechádzajúcimi testami [18]. Dôležitým efektom napísania testov ako prvých je, že testy
fungujú ako neoceniteľná forma dokumentácie [51].

Ďalšími spôsobmi, ako zvýšiť čistotu je využitie návrhových vzorov a kontrola čis-
toty pri potvrdzovaní navrhovaných zmien. Polovica boja v programovaní čistého kódu
je v správnej implementácii a použití návrhových vzorov [2]. V čistote vie pomôcť naprí-
klad aj vhodná forma dokumentácie a pri agilnom vývoji nastavenie DoD s cielením na čis-
totu. Čistejší návrh na najvyššej úrovni aplikácie podporuje vytvorenie návrhu vo forme
diagramov ešte pred začiatkom vývoja, napríklad pomocou UML.

2.2 Používané programovacie konvencie
Pred vytvorením návrhu aplikácie je vhodné zanalyzovať programovacie konvencie, ktoré
používajú programátori pri vývoji. Prvá časť sa venuje analýze open source projektov,
pričom skúma aké konvencie a technológie sa v nich používajú (viď 2.2.1). Nasledujúca
časť podrobnejšie analyzuje konkrétne projekty z prvej časti a skúma spôsoby uchovávania
a spravovania konvencií v nich (viď 2.2.2). Posledná časť analyzuje programovacie konvencie
v ďalších zdrojoch, mimo analyzované projekty (viď 2.2.3).

Analýza sa nesnaží do detailov preskúmať všetky druhy programovacích konvencií a ani
rozhodovať, aké konvencie sú v akej situácii vhodné. Usiluje sa iba o zistenie, aké konvencie
sa v praxi reálne používajú, čo je následne využité pri návrhu systému na ich správu. Aké

9

konvencie nakoniec užívateľ použije, ponecháva na jeho vlastnom rozhodnutí, pretože on
sám najlepšie vie, čo je pre jeho projekt v aktuálnej situácii vhodné.

2.2.1 Analýza programovacích konvencií v open source projektoch

Zistiť, aké programovacie konvencie sa používajú pri vývoji open source projektov je jednou
z hlavných častí analýzy, ktorú je vhodné spraviť pred vytvorením návrhu systému. Z kaž-
doročnej správy Octoverse, ktorá ukazuje vývoj služby GitHub za posledný rok, je možné
pozorovať, ako open source komunita rastie. V grafe z roku 2020 je možné vidieť, ako percen-
tuálne rástol počet vytvorených open source projektov na aktívneho užívateľa, v porovnaní
s minulým rokom [31]. Počet príspevkov do open source projektov sa oproti predchádzajú-
cemu roku zvýšil o dvadsaťpäť percent, čomu však zrejme pomohol aj COVID–19 lockdown,
pri ktorom je značný nárast [31].

Ako zdroj open source projektov som zvolil službu GitHub. GitHub má najväčšiu open
source komunitu na svete, ktorú tvoria milióny projektov [27]. Komunitu GitHubu tvorilo
v roku 2020 cez päťdesiatšesť miliónov užívateľov a viac ako šesťdesiat miliónov repozitá-
rov [31]. Za rok 2020 bolo vytvorených takmer dve miliardy príspevkov [31]. Ku GitHub
projektom je možné nájsť v dátovom sklade BigQuery voľne prístupné dáta, z ktorých som
pri analýze čerpal.

Výber analyzovaných projektov

Dátových sád ku GitHub projektom je viac. GHTorrent [22] je relačná dátova sada, prí-
stupná z BigQuery, ktorú som ale nevyužil, keďže nie je aktualizovaná pravidelne a jej
posledná aktualizácia prebehla v júni 2019. K dispozícii je aj databáza obsahujúca kópiu
ASCII súborov menších ako 10 megabajtov, ak sa nachádzaju v open source projekte [40].
Tú som taktiež nevyužil, pretože posledná aktualizácia prebehla v marci 2019 a ani vtedy
neobsahovala všetky open source repozitáre, ale iba ich vybranú časť. Rozhodol som sa
použiť GH Archive, ktorý sleduje verejnú časovú os GitHubu, ktorú archivuje a sprístup-
ňuje pre ďalšie analyzovanie [38]. GH Archive je aktualizovaný každú hodinu a je k nemu
umožnený prístup okrem BigQuery1 aj pomocou HTTP klienta.

Pre analýzu som sa rozhodol vybrať päťdesiat open source projektov, ktorých konvencie
som následne skúmal. Získal som zoznam projektov, ktoré dostali najviac hviezdičiek (star-
gazers) za rok 2020. Následne som ich manuálne prechádzal a odfiltroval tie, ktoré nemali
open source licenciu alebo boli v inom jazyku, ako v angličtine a teda nebolo možné ich
pre analýzu použiť. Týmto spôsobom som prechádzal projekty, pokiaľ som nezískal prvých
päťdesiat, ktorých zoznam je v dostupný v prílohe A. Zvolil som tento spôsob, pretože som
chcel čo najmenej zasahovať do výberu projektov, aby som zamedzil skresleniu vyvodených
výsledkov analýzy a získal čo najobjektívnejšie výsledky. Môj vplyv na výber projektov
do analýzy teda minimalizoval a odfiltroval iba nepoužiteľné projekty.

Pri analýze som sa rozhodoval nad viacerými spôsobmi výberu projektov. Snažil som sa
o výber väčších projektov, pretože pri nich je vyššia pravdepodobnosť že budú obsahovať
programovacie konvencie (viď 2.1.5). Malé projekty často vyvíja jeden alebo malé množstvo
programátorov, a preto v nich vo väčšine prípadov niesu programovacie konvencie explicitne
uvedené a riešia sa osobitne (napríklad ústne alebo v Pull requestoch). Najväčšie projekty
majú častejšie vlastné, jedinečné, riešenia spravovania programovacích konvencií. Výber
podla hviezdičiek (stargazers) obsahoval prierez ako menších, tak aj väčších projektov, pri-

1https://console.cloud.google.com/bigquery?project=githubarchive&page=project

10

https://console.cloud.google.com/bigquery?project=githubarchive&page=project

čom väčších obsahoval viac, a preto na analýzu boli považované za najvhodnejšie. Zároveň
som sa snažil o projekty, ktoré sú stále aktívne a využívané, preto som zvolil projekty iba
za rok 2020.

Výsledky analýzy

Každý z vybraných projektov som skúmal manuálne, otvorením ich repozitára v službe
GitHub, pretože z dát dostupných na BigQuery nebolo umožnené získať potrebné informá-
cie. V tejto časti vysvetľujem, aké dáta som v projektoch analyzoval, uvádzam dôvody ich
analýzy a aké hodnoty som získal. Pre bližšie informácie o konvenciách na konkrétnych vy-
braných projektoch viď časť 2.2.2, pre informácie o konkrétnych technológiách zaisťujúcich
uchovávanie, dodržovanie a spravovanie programovacích konvencií viď časť 2.3. Pre využitie
získaných dát pri návrhu viď časť 3.1.1.

V prvom kroku som zisťoval, či repozitáre obsahujú zdrojový kód a teda či vôbec dáva
zmysel, aby obsahovali programovacie konvencie. Za repozitár, ktorý obsahuje kód som bral
do úvahy taký, ktorého kód stojí za zmyslom repozitára. Ak napríklad repozitár obsaho-
val iba Markdown súbory a jeden krátky skript, používaný na vyčistenie ich formátovania,
pričom v repozitári išlo primárne o obsahy Markdown súborov, tak som to nebral ako repo-
zitár obsahujúci kód. A to z dôvodu, že by nedávalo zmysel, aby obsahoval programovacie
konvencie. Tridsaťpäť z päťdesiat repozitárov obsahovalo zdrojový kód.

V repozitároch som hľadal aj nejaký druh sprievodcov prispievaním, čím som sa snažil
zistiť, či sa v danom repozitári vôbec očakáva prispievanie a dáva zmysel, aby repozitár ob-
sahoval programovacie konvencie. Tridsaťdeväť z päťdesiat repozitárov obsahovalo nejaký
druh vysvetlenia ako prispievať, pričom najčastejšie ho obsahoval súbor CONTRIBUTING.md.
Pri sprievodcoch prispievaním som pozoroval tri kategórie obsahu. Sprievodcov obsahujú-
cich konvencie určujúce ako pracovať s repozitárom, teda ako písať a čo majú obsahovať
Issue, ako vytvárať Pull requesty a ostatné veci, týkajúce sa práce s Gitom a GitHubom.
Sprievodcov s takýmto obsahom bolo tridsaťšesť. Sprievodcov prispievaním, ktorí obsahovali
iný obsah, prevažne etické hodnoty a princípy udržiavané v repozitári, bolo tridsaťsedem
a sprievodcov obsahujúcich programovacie konvencie bolo štrnásť, čo tvorí dvadsaťosem
percent zo všetkých päťdesiatich repozitárov. Avšak, ak odhliadneme od repozitárov, ktoré
neobsahovali žiadny kód alebo ani žiadneho sprievodcu prispievaním, tak zistíme, že repo-
zitárov s programovacími konvenciami je polovica.

Tabuľka 2.1: Súhrn projektov podľa kategórie konvencií
Počet projektov

Celkovo 50
Obsahujúcich iné konvencie 37
Obsahujúcich Git/GitHub konvencie 36
Obsahujúcich programovacie konvencie 14
Bez konvencií 8

11

Tabuľka 2.2: Súhrn projektov podľa technológii spravujúcich konvencie
Počet projektov

Celkovo 50
Obsahujúcich konvencie v Markdown súboroch 34
Obsahujúcich konvencie v Issue šablóne 25
Obsahujúcich konvencie v EditorConfig súbore 18
Obsahujúcich konvencie na externom odkaze 8
Obsahujúcich konvencie vo Wiki 7
Bez konvencií 8

Medzi konvenciami v jednotlivých repozitároch je veľká diverzita, ktorú spôsobujú rôzne
programovacie jazyky a prístupy, a preto je možné v nich nájsť prakticky všetky druhy
konvencií, opísaných v odbornej literatúre (viď 2.2.3). Medzi najčastejšie nájdené patria
menné konvencie a konvencie upravujúce formátovanie, čo je pravdepodobne spôsobené
tým, že sú to všeobecnejšie kategórie, použiteľné na väčšinu kódu. Často sa konvencie za-
oberajú aj knižnicami a testami, prípadne celkovo testovateľnosťou kódu. Pri jazykoch kde
to dáva zmysel, je možné nájsť konvencie zaoberajúce sa typmi, premennými, dokumentá-
ciou ku kódu a komentármi. Všeobecne, konvencie väčšinou prikazujú, akým konštruktom
sa vyhnúť, ktoré použiť a v akých prípadoch tak učiniť. Zväčšia ide o nižšie konštrukty
a iba v ojedinelých prípadoch riešili väčšie súvislosti, ako napríklad návrhové vzory obsahu-
júce viac prepojených tried v objektovo orientovaných jazykoch. Ku konštruktom na naj-
nižšej úrovni, ako je napríklad ukončenie súboru novým riadkom, znak na konci riadku
alebo kódovanie súborov sú používané EditorConfig súbory, prípadne iné súbory, používané
na kontrolu špecifických konvencií daného jazyka pomocou IDE alebo externého programu.
Pokiaľ konvencie nejakú tematiku neriešili explicitne, tak vo väčšine prípadov nabádali či-
tateľa k dodržiavaniu štýlu už existujúceho kódu.

2.2.2 Analýza vybraných projektov

Časť práce, ktorá sa zaoberá konkrétnymi projektami a využívaním programovacích kon-
vencií v nich. Časť analyzuje konkrétne projekty, vybrané z analýzy open source projektov
v službe GitHub (viď časť 2.2.1) a zároveň sleduje, akými spôsobmi sú konvencie v projek-
toch uchovávané a spravované, ako ku konvenciám programátori pristupujú, ako sa s nimi
nový programátori zoznamujú a ako sa overuje alebo vynucuje ich dodržiavanie. Môj výber
spočíval len v projektoch, ktoré obsahujú programovacie konvencie.

Pri výbere analyzovaných projektov som sa snažil dosiahnuť rôznorodosť, ako podľa
obsahu, tak aj podľa spôsobu uchovávania programovacích konvencií. Mojou snahou bolo
poukázať na to, ako sa reálne technológie, spravujúce programovacie konvencie na pro-
jektoch používajú, aké druhy konvencií sa využívajú a ako komunikujú s programátorom.
Projekty som nevyberal iba na základe môjho subjektívneho názoru, ale aj podľa prvenstva
v stanovených kategóriách. Ako prvý projekt analyzujem The Algorithms — Python obsa-
hujúci rôzne algoritmy, implementované v jazyku Python. Druhým projektom je Microsoft
PowerToys uchovávajúci sadu nástrojov pre efektívnejšiu prácu so systémom Windows 10 .
Posledným projektom je React, knižnica v jazyku JavaScript pre vytváranie užívateľských
rozhraní.

12

The Algorithms — Python

The Algorithms — Python [83] je repozitár, obsahujúci algoritmy, implementované v jazyku
Python. Napísaný je v jazyku Python a prispelo do neho cez šesťstopäťdesiat užívateľov.
Repozitár patrí do najväčšej open source knižnice algoritmov v službe GitHub pre rôzne
programovacie jazyky. Jazyky, spolu aj s ich repozitármi, sú dostupné na oficiálnej stránke
The Algorithms2. Algoritmy sú určené iba na edukačné a demonštračné účely, pričom ne-
musia byť vždy najoptimálnejšie. Súbor DIRECTORY.md obsahuje zoznam algoritmov v re-
pozitári, s odkazmi na súbory, v ktorých sú implementované. Jeden algoritmus je napísaný
v jednom Python súbore. Repozitár som zvolil na analýzu, pretože je prvým zo zoznamu
analyzovaných projektov (viď časť 2.2.1), ktorý obsahuje programovacie konvencie.

V Markdown súbore CONTRIBUTING.md sa nachádzajú pokyny pre prispievateľov do re-
pozitára. Pred samotným prispením sa očakáva ich prečítanie a dodržanie, pričom na prí-
padné otázky je možné použiť Issue alebo Gitter . Pre Markdown súbory ako technológiu,
spravujúcu konvencie viď 2.3.1. Medzi pokynmi sa v Markdown súbore nachádzajú aj sa-
motné konvencie. Konvencie riešia verziu programovacieho jazyka, správne pomenovania
s odkazom na externé menné konvencie, spôsob komentovania a dokumentovania a prefe-
renciu určitých konštruktov jazyka nad inými. Pokyny, okrem konvencií obsahujú aj vše-
obecné zásady, netýkajúce sa programovania, spôsob akým v projekte funguje automatické
testovanie a teóriu algoritmov.

Zmeny v konvenciách je možné sledovať v histórii súboru, keďže je uložený priamo v Git
repozitári projektu. Dodržanie konvencií je kontrolované pomocou pluginu pre–commit a po-
mocou programov black a flake8 (viď 2.3.5), čím sa kód naformátuje do správneho tvaru.
Následne je manuálne skontrolovaný v Pull requeste. Testy sú automaticky spúšťané na Tra-
vis CI s využitím Pytest a Mypy kontrolujúcim typy (viď 2.3.5). Repozitár obsahuje aj jed-
noduchú Wiki (viď 2.3.3) obsahujúcu základné informácie o repozitári a odkazy na manuál
k prispievaniu a Gitter .

Microsoft PowerToys

Microsoft PowerToys [63] je repozitár, uchovávajúci sadu nástrojov pre pokročilých užíva-
teľov, ktorí chcú zefektívniť svoju prácu so systémom Windows 10 a dosiahnuť tak vyššiu
produktivitu. Medzi hlavné nástroje patrí Color Picker, umožňujúci získať farbu z akej-
koľvek práve bežiacej aplikácie, Fancy Zones spravujúci okná a umožňujúci vytváranie ich
komplexných rozvrhnutí a PowerToys Run určený na vyhľadávanie a spúšťanie aplikácií
okamžite. Do repozitára prispelo cez stoosemdesiat užívateľov, pričom obsahuje kód pre-
važne v jazykoch C++ a C#. Prehľad nástrojov aj s návodom na inštaláciu sa nachádza
v Microsoft dokumentácii3. K analýze som zvolil repozitár, pretože je prvým z analyzova-
ných projektov (viď časť 2.2.1), ktorý obsahuje programovacie konvencie a zároveň je od
firmy Microsoft a obsahuje kód v programovacom jazyku C#. Cielenie na .NET technológie
som rozoberal v časti 3.1.2.

V súbore README.md, ktorý sa zobrazuje na hlavnej stránke repozitára, sa nachádza
časť pre prispievateľov. V časti sa píše o tom, ako projekt víta prispievanie všetkých dru-
hov, od pomoci so špecifikáciou, dizajnom, dokumentáciou, hľadaním chýb s ktorými môže
pomôcť každý, až po programovanie funkcií a opravovanie chýb. Následne časť obsahuje
odkaz na CLA, návod pre prispievateľov a vývojársku dokumentáciu. Okrem toho repo-
zitár obsahuje aj COMMUNITY.md súbor s užívateľmi, ktorí mali veľký prínos pre projekt

2https://thealgorithms.github.io
3https://docs.microsoft.com/sk-sk/windows/powertoys

13

https://thealgorithms.github.io
https://docs.microsoft.com/sk-sk/windows/powertoys

a Wiki (viď 2.3.3) so základnými informáciami pre užívateľov s odkazmi na viac informácií
v Microsoft dokumentácii.

V repozitári sa nachádza aj súbor CODE_OF_CONDUCT.md obsahujúci odkaz na Microsoft
kódex správania, ktorý definuje správanie konvencií v projekte. V návode pre prispievateľov
sa nachádzajú konvencie k vytváraniu a prispievanie do Issue. V závere návodu je odkaz
do vývojárskej dokumentácie, ktorá obsahuje konvencie k práci so samotným repozitárom.
Vývojárska dokumentácia je rozložená do viacerých Markdown súborov a sú v nej doku-
mentované významné triedy, štruktúra kódu, lokalizácia, logovanie, nastavenia, diagnostika,
pracovný tok repozitára, kompilácia a aj programovacie konvencie. Programovacie konven-
cie sa zaoberajú najmä formátovaním, k čomu používajú ClangFormat (viď 2.3.5). Okrem
toho obsahuje repozitár aj EditorConfig súbor (viď 2.3.4), ktorý v programovacích konven-
ciách spomenutý nie je, ktorý v dvoch prípadoch upravuje vážnosť problému nájdeného
pri analýze.

Pri vytváraní Issue, je na výber zo štyroch šablón (viď 2.3.2), ktoré obsahujú základné
body, ktoré by mali jednotlivé typy Issue obsahovať. Typmi šablón sú zadanie chyby, do-
kumentácie, požiadavka funkcie a lokalizácia. Okrem toho obsahuje okno vytvárania Issue
aj odkaz na nahlasovanie bezpečnostných chýb, k čomu je v repozitári vytvorený samos-
tatný Markdown súbor a odkazy na užívateľskú a vývojársku dokumentáciu. Okrem toho
vytváranie Issue upravuje aj SUPPORT.md súbor a súbor pre prispievateľov. Zmeny v kon-
venciách, nachádzajúcich sa v Markdown súboroch alebo v súbore EditorConfig a ClangFor-
mat je možné sledovať v histórii súboru, keďže sú uložené v systéme na kontrolu verzií Git.
Zmeny v šablónach nie je možné sledovať, avšak ak k zmene dôjde, do všetkých existujú-
cich Issue je možné pridať komentár na vyžiadanie ich úpravy. Dodržanie kódexu správania
je kontrolované pri každej komunikácii v projekte, programovacie konvencie sú kontrolované
pomocou automatizovaných nástrojov ClangFormat a EditorConfig a následne manuálne
kontrolované pri Pull requeste.

React

React [17] je JavaScriptová knižnica pre vytváranie užívateľských rozhraní. Jej základnou
vlastnosťou je deklaratívnosť, React umožňuje jednoducho vytvárať interaktívne užívateľ-
ské rozhrania, pre každý stav aplikácie, čo robí kód predvídateľnejším, zrozumiteľnejším
a jednoduchšie sa v ňom hľadajú chyby. React je založený na zapuzdrených komponentoch,
ktoré riadia svoj vlastný stav, efektívne sa vykresľujú a menia, pri zmene údajov na po-
zadí. Repozitár použilo cez päť miliónov užívateľov a cez tisíc päťsto do neho prispelo.
Projekt som zvolil na analýzu, pretože ako prvý obsahuje odkaz na externú dokumentá-
ciu a nepoužíva pre uchovávanie Markdown súbory. Zaujímavý je aj používaním viacerých
automatizovaných nástrojov na kontrolu programovacích konvencií.

Repozitár víta užívateľov k prispievaniu, čo je uvedené priamo na úvodnej stránke.
K repozitáru je vytvorená Wiki (viď 2.3.3) obsahujúca odkaz na externú dokumentáciu4.
Vytváranie Issue obsahuje jednu šablónu pre chybu, obsahujúcu nutné časti, ostatné druhy
issue sú bez šablóny (viď 2.3.2). Markdown súbory neobsahujú konvencie, ale odkazujú sa
na externú dokumentáciu, v prípade kódexu správania na Facebook konvencie, určujúce
správanie sa v projekte5, v otázkach bezpečnosti na Facebook whitehat6.

4https://reactjs.org/
5https://engineering.fb.com/codeofconduct/
6https://www.facebook.com/whitehat

14

https://reactjs.org/
https://engineering.fb.com/codeofconduct/
https://www.facebook.com/whitehat

Externá stránka obsahuje rozsiahlu dokumentáciu k celému projektu, jej časť je defino-
vaná pre prispievateľov. Táto časť obsahuje konvencie k vytváraniu Issue s chybou, žiadaním
o zmenu alebo návrhom novej funkcionality. Okrem toho sa zameriava aj na vytvorenie Pull
requestu s novým kódom, pričom popisuje celý proces, ktorý je nutné dodržať, čo je vhodné
si pred prispievaním prečítať. Programovacie konvencie sa v procese kontrolujú pomocou
programu Linter a formátovanie sa nastavuje pomocou programu Prettier, pre viac informá-
cií o fungovaní programov viď 2.3.5. Okrem toho repozitár obsahuje aj EditorConfig súbor
(viď 2.3.4) obsahujúci konvencie pre všetky súbory s upresnením konvencií pre Markdown
súbory. Zmeny konvencií je možné v prípade programov kontrolovať v histórii súborov v re-
pozitári, ktoré dané programy nastavujú. V prípade zmeny v procese na externej stránke
nie je možné zmeny sledovať. Dodržanie programovacích konvencií sa kontroluje okrem
automatizovaných nástrojov aj v Pull requestoch, správanie podľa kódexu je kontrolované
vo všetkej komunikácii.

2.2.3 Ďalšie zdroje programovacích konvencií

K vytvoreniu komplexného prehľadu využívaných programovacích konvencií je vhodné za-
nalyzovať aj konvencie z ďalších zdrojov, nie iba z vybraných open source projektov ana-
lyzovaných v prechádzajúcich častiach. Vzhľadom na veľké množstvo dostupných konvencií
k rôznym jazykom, som sa rozhodol spracovať zvlášť všeobecné zdroje, využiteľné pri všet-
kých jazykoch a zvlášť zdroje k jednému, referenčnému jazyku. V prvej časti analyzujem
programovacie konvencie použiteľné všeobecne pre ľubovoľný jazyk a v druhej časti sa ve-
nujem programovacím konvenciám ku jednému konkrétnemu programovaciemu jazyku.

Všeobecné programovacie konvencie

Časť práce skúmajúca programovacie konvencie použiteľné všeobecne pre ľubovoľný progra-
movací jazyk. Cieľom je získať na používané programovacie konvencie aj iný pohľad, mimo
analýzy open source projektov z časti 2.2.1 a 2.2.2. Skúma, aké druhy konvencií by mohol
chcieť použiť v projekte, čo je následne vhodné zohľadniť pri návrhu systému na ich správu.
Pri analýze som cielil na odbornú literatúru, z ktorej väčšina konvencií vychádza.

Clean Code [50] s podtitulom A Handbook of Agile Software Craftsmanship je kniha
od Robert C. Martina, ktorá sa zameriava na písanie čistého kódu. Knihu autor rozdeľuje
do troch častí. Niekoľko prvých kapitol popisuje princípy, vzorce, postupy a vhodné praktiky
pri písaní čistého kódu, ktoré obsahujú príklady v zdrojovom kóde jazyka Java [50]. Druhá
časť knihy pozostáva z niekoľkých prípadových štúdií, učiacich techniku čistenia a transfor-
mácie kódu na jeho čistejšiu, menej problémovú variantu [50]. Tretia časť obsahuje zoznam
heuristík a problémov zhromaždených z prípadových štúdií z druhej časti, ktoré slúžia ako
základňa znalostí pre ďalšie použitie [50].

V knihe je možné nájsť veľké množstvo rôznych druhov programovacích konvencií. Ob-
sahuje menné konvencie, konvencie k funkciám, objektom, triedam, dátovým štruktúram
a k písaniu testov [50]. Následne rozoberá formátovanie kódu, komentovanie kódu, prácu
s výnimkami, ale aj s kódom tretích strán a vytváraním hraníc medzi nim a vlastnými čas-
ťami kódu [50]. V neposlednom rade rieši aj konvencie na vyšších úrovniach, ako sú vzťahy
medzi objektami, asynchrónnosť, návrhové a architektonické vzory [50].

Clean Code in C# [2] s podtitulom Refactor your legacy C# code base and improve
application performance by applying best practices je kniha venujúca sa zaužívaným prakti-

15

kám pri písaní kódu, a teda aj programovacím konvenciám. Zaoberá sa správnym písaním
metód, tried, čistých funkcií alebo správnemu využitiu dedičnosti a vyhadzovaniu výni-
miek [2]. Opisuje spôsoby ako testovať kód, používať asynchrónnosť, a ako vhodne vytvá-
rať API , kontrolovať kód a spravovať projekt [2]. Kniha okrem iného opisuje aj správne
a nesprávne spôsoby komentovania kódu, organizácie tried, objektov, menných priestorov
a dátových štruktúr [2].

A okrem opísaných kategórií konvencií, kniha obsahuje aj všeobecné princípy, použí-
vané pri písaní kódu. Princíp KISS (keep it simple, stupid) cieli na písanie jednoduchého,
až primitívneho kódu [2]. YAGNI (you aren’t gonna need it) je spôsob programovania, ktorý
dovoľuje pridať ďalší kód len keď je absolútne nutný a teda drží množstvo kódu na absolút-
nom minime [2]. Princíp DRY (don’t repeat yourself) sa snaží o zníženie opakujúcich sa častí
kódu pomocou refaktorizácie [2]. SOLID je sada piatich princípov návrhu, ktorých cieľom
je vytvoriť softvér rozšíriteľný bez nutnosti úprav veľkých častí už existujúceho kódu, ktorý
je jednoduchý na čítanie, pochopenie a udržiavanie [2]. Occamova britva je fráza, ktorá
hovorí, že najjednoduchšie riešenie je najpravdepodobnejšie to správne [2].

Agile principles, patterns, and practices in C# [51] je kniha ilustrujúca základy
agilného vývoja a dizajnu na sérii prípadových štúdií. Okrem konvencií zameriavajúcich sa
na správne a nesprávne riadenie projektu agilným spôsobom obsahuje kniha aj konvencie
pre vyššie, abstraktnejšie časti rozsiahlych systémov a konvencie návrhových a architekto-
nických vzorov. Taktiež rozoberá jednotlivé princípy SOLID (viď časť Clean Code in C#)
a konvencie využívané pri návrhu aplikácií.

Refactoring [18] s podtitulom Improving the Design of Existing Code je kniha, ktorá
cieli na vylepšenie dizajnu stávajúcej verzie kódu. Obsahuje príklady, ako nevhodne napísať
kód a vysvetľuje, ako ho správne upraviť. Okrem úprav funkcií, mien alebo komentárov sa
zameriava aj na jednotlivé prvky ako sú cykly, podmienené príkazy a odložené vyhodnoco-
vanie [18]. Taktiež sa venuje úpravám dedičnosti, zapuzdrenia, testov alebo API [18].

Programovacie konvencie k jazyku c#

V úvode som spomínal, že systém je primárne určený pre projekty, ktoré využívajú .NET
ekosystém. Ako kandidáta som zvolil programovací jazyk C#, pričom som kládol dôraz
na dobrú dostupnosť relevantných zdrojov a na časté použitie pri vývoji enterprise aplikácií .
Následne som vyhľadal konvencie a štýly dostupné k tomuto jazyku.

.NET a C# som zvolil aj preto, pretože vytváraný systém je napísaný primárne v ňom
a v ankete z roku 2019 zo StackOverflow skončil .NET na druhom a .NET Core na treťom
mieste medzi najviac populárnymi rámcami [76]. Zároveň sa .NET Core umiestnil ako prvý
v najobľúbenejších rámcoch mimo web a C# ako desiaty najobľúbenejší jazyk [76].

Microsoft dokumentácia [62] je oficiálna technická dokumentácia pre konečných uží-
vateľov, vývojárov a IT špecialistov, ktorí pracujú s .NET ekosystémom. Teda aj pre jazyk
C#, ktorý bol vyvinutý okolo roku 2000 spoločnosťou Microsoft. Väčšina obsahu dokumen-
tácie je open source. Článok dokumentácie je reprezentovaný ako Markdown súbor v Git-
Hub repozitári. K jazyku C# obsahuje dokumentácia rôzne kategórie článkov: dokumen-
tuje základy práce s jazykom, prehliadku jeho funkcionalít, zmeny v jednotlivých verziách
a iné [54]. V dokumentácii sa nachádza aj stránka, rozoberajúca možnosti nastavovania
štýlov kódu pomocou EditorConfig súborov (viď 2.3.4).

16

Časť dokumentácie sa zaoberá programovacími konvenciami k jazyku C#, ktoré od-
porúča autor jazyka jeho užívateľom [53]. Rozdeľujú sa na menné, konvencie rozvrhnutia
a konvencie komentovania [53]. Následne obsahujú pokyny k jazyku, v ktorých informuje
o vhodných konštruktoch a vítaných oblastiach ich využitia [53]. V poslednej časti sa na-
chádza odkaz na pokyny k bezpečnému programovaniu [53].

V dokumentácii sa nachádza aj sekcia, ktorá poskytuje pokyny pre navrhovanie knižníc,
ktoré rozširujú a komunikujú s .NET rámcom [59]. Odporúča pokyny pre návrh a snaží
sa pomôcť zaistiť konzistenciu API a jednoduché použitie poskytnutím jednotného progra-
movacieho modelu, ktorý nie je závislý na programovacom jazyku použitom pri vývoji [59].
Sekcia sa delí na pokyny pomenovania, pokyny pre návrh typov, pokyny pre návrh členov,
pokyny pre rozšíriteľný návrh, pokyny pre použitie výnimiek, pokyny použitia bežných
typov vo verejne prístupných API a na návrhové vzory [59].

Google Style Guides [36] je repozitár7 v službe GitHub, ktorý je exportovaný do in-
ternetovej stránky. Obsahuje sprievodcov programovacími štýlmi, ktoré používa spoločnosť
Google pre svoj kód [36]. Štýly sú uložené v XML, HTML a Markdown súboroch pre mnoho
programovacích jazykov, medzi ktorými je aj C#. Repozitár je pod CC licenciou, ktorá
umožňuje jeho používanie, pod podmienkou uvedenia autora.

Štýly pre programovací jazyk C# boli vyvinuté interne v spoločnosti a sú používané ako
východiskové pre ich kód [34]. Poskytujú štylistické voľby, ktoré zodpovedajú iným v Google,
napríklad pre programovacie jazyky C++ a Java, pričom vychádzajú z menných konvencií
pre jazyk C# od spoločnosti Microsoft a z konvencií v dotnet runtime repozitári8 [34].
Rozdelené sú sa na dve časti: formátovanie jazyka a kódovanie. Časť o formátovaní obsahuje
menné konvencie, organizáciu poradia kódu a pravidlá používania neviditeľných znakov,
nasledovanú rozsiahlym príkladom súboru, na ktorom sú konvencie použité a vysvetlené
v komentároch. Kódovanie obsahuje pravidlá vhodnosti a nevhodnosti použitia jednotlivých
komponentov jazyka v určitých situáciách.

Dofactory [9] je americká firma, poskytujúca rámce návrhových vzorov pre .NET , SQL
a JavaScript. Snaží sa poskytovať jednoduchú a čistú architektúru, pre rýchly vývoj apli-
kácií. Na ich stránkach je možné nájsť programovacie konvencie, rozdelené na sedemnásť
častí, ktoré pri vývoji dodržujú a odporúčajú dodržiavať aj vývojárom pracujúcim s ich
produktami [7]. Každá z nich opisuje, ako daný konštrukt písať, nepísať alebo čomu sa
treba radšej vyhnúť [7]. Pri každej časti je príklad použitia, odôvodnenie a v niektorých
prípadoch aj príklad nesprávneho použitia alebo výnimiek [7]. Obsahovo sa jedná o pra-
vidlá, konzistentné s odporúčanými konvenciami od spoločnosti Microsoft pre .NET rámec,
pričom niektoré konvencie sú rozšírené.

GeeksforGeeks [20] je internetový portál, vytvorený pre poskytovanie dobre napísaného,
premysleného a vysvetleného riešenia otázok z oblasti programovania, algoritmizácie a po-
hovorov. Na portáli sa nachádza množstvo článkov, ako k programovaciemu jazyku C#,
celému ekosystému .NET, tak aj k iným technológiám. Okrem článkov je v portáli možné
nájsť aj pracovné ponuky, online kurzy a iné.

Článok s programovacími štandardami na začiatku opisuje jazyk C# a jeho základné
charakteristiky a históriu [69]. Následne popisuje jedenásť praktík, ktoré je vhodné pri písaní

7https://github.com/google/styleguide
8https://github.com/dotnet/runtime/blob/main/docs/coding-guidelines/coding-style.md

17

https://github.com/google/styleguide
https://github.com/dotnet/runtime/blob/main/docs/coding-guidelines/coding-style.md

kódu v jazyku využívať [69]. Ide prevažne o menné konvencie, ktoré vychádzajú z konvencií
spoločnosti Microsoft. Okrem nich rieši aj zarovnanie textu, zapuzdrenie a vhodné použitie
niektorých konštruktov.

K programovaciemu jazyku C# je možné nájsť online veľké množstvo konvencií, ktoré
si vývojári upravujú podľa vlastných potrieb. Príkladom je príspevok o programovacích
štandardoch na stránke C# Corner, ktorého cieľom je definovať pokyny, ktoré zabezpe-
čia konzistentný štýl a formátovanie kódu, čo má pomôcť vývojárom vyhnúť sa bežným
chybám [3]. Ďalším príkladom je článok na SubMail blogu, ktorý uvádza do základných
konvencií rozdelených do deviatich častí [86]. Väčšina konvencií vychádza z vyššie zmie-
nených alebo všeobecných konvencií (viď prvá časť 2.2.3) aplikovaných priamo na jazyk
C#.

2.3 Analýza technológií spravujúcich programovacie konven-
cie

Súčasťou analýzy, ktorú je vhodné spraviť pred návrhom samotného systému, je analýza
technológií, ktoré slúžia na uchovávanie, dodržiavanie a spravovanie programovacích kon-
vencií v projektoch. Analýza slúži k zhodnoteniu súčasného stavu v oblasti technológií, pou-
žívaných k spravovaniu programovacích konvencií a využíva poznatky z časti 2.2.1, v ktorej
som analyzoval päťdesiat projektov v službe GitHub.

Táto časť práce analyzuje konkrétne technológie, spravujúce programovacie konvencie
v projektoch, pričom uvádza príklady projektov, v ktorých sa dané technológie na správu
konvencií využívajú. V prvej časti sa zaoberá Markdown súbormi (viď 2.3.1), v druhej šab-
lónami pre Issue (viď 2.3.2) a v ďalšej Wiki stránkami, spolu s externými webovými strán-
kami (viď 2.3.3). V neposlednom rade preberá EditorConfig s jeho rozšíreniami (viď 2.3.4)
a ostatné, menej často používané technológie (viď 2.3.5).

2.3.1 Markdown súbory

Markdown [79] je nástroj na konverziu textu na HTML pre tvorcov webových stránok.
Umožňuje tvoriť obyčajný text, ktorý sa jednoducho píše a číta. Ten sa potom prevádza
na štrukturálne platný XHTML (alebo HTML) kód. Markdown sa skladá z dvoch častí:
syntaxe formátovania obyčajného textu a programu napísaného v Perl jazyku, ktorý text
prevádza do HTML. Hlavným cieľom syntaxe je dosiahnuť, aby bol jazyk čo najčitateľ-
nejší. Existuje niekoľko jednoduchých značkovacích jazykov, ktoré sú nadmnožinou Mar-
kdownu [5].

Markdown [29] je teda jednoduchá a ľahko použiteľná syntax pre štýlovanie všetkých
foriem písma na platforme GitHub. GitHub používa svoju vlastnú verziu syntaxe9, nazývanú
GitHub Flavored Markdown, ktorá poskytuje ďalšiu sadu užitočných funkcionalít, z ktorých
mnohé uľahčujú prácu s obsahom. Nie však všetky funkcionality sú dostupné kdekoľvek,
niektoré sú dostupné iba v popisoch a komentároch Issue a Pull requestoch. Markdown
môže byť použitý na väčšine miest na GitHube, medzi ktorými sú aj súbory s príponami
.md alebo .markdown, ktoré je možné upravovať online, priamo na stránkach GitHubu a v
reálnom čase pozorovať zmeny.

9https://github.github.com/gfm

18

https://github.github.com/gfm

Najčastejšie, v tridsiatichštyroch prípadoch z päťdesiat, boli Markdown súbory použité
ako sprievodcovia prispievaním a teda obsahovali programovacie konvencie (viď 2.2.1), prí-
kladom projektu, ktorý uchováva programovacie konvencie v Markdown súboroch je The
Algorithms — Python (viď časť 2.2.2). Časté použitie Markdown súborov prisudzujem jed-
noduchému použitiu, ktoré je priamo integrované do platformy GitHub, ako aj vysokej flexi-
bilite, ktorá umožňuje napísať konvencie a štýly akýmkoľvek spôsobom, keďže ide o textové
súbory s formátovaním. To podporuje aj analýza, pri ktorej som zistil, že medzi jednotlivými
konvenciami je veľká diverzita. Ďalšou výhodou použitia Markdown súborov je vkladanie
blokov kódu so syntaxou jazyka alebo rozdelenie konvencií do viacerých logických častí,
súborov, ktoré na seba navzájom odkazujú, čo tiež môžeme pozorovať vo viacerých repozi-
tároch z analýzy.

2.3.2 Issue šablóny

Issue [28] na platforme GitHub je spôsob, ako sledovať úlohy, vylepšenia a chyby týka-
júce sa projektov. Je to niečo ako e–mail, ale na rozdiel od neho, je tu možnosť aj zdieľať
a diskutovať o ňom so zvyškom tímu. Väčšina softvérových projektov má nejaký sledovač
chýb. Sledovač na plaforme GitHub sa volá Issues a má vlastnú sekciu v každom repozitári.
Typický Issue obsahuje názov a popis obsahu, farebné štítky, ktoré ho kategorizujú a dá sa
podľa nich filtrovať priradenú osobu, zodpovednú zaň a komentáre, ktoré dovoľujú každému
s prístupom k repozitáru poskytovať spätnú väzbu. Issue sa zhromažďujú do míľnikov, čo
je užitočné pri ich spájaní s rôznymi funkcionalitami a fázami projektu. V Issue je možné
upovedomiť iných užívateľov alebo tímy, čo poskytuje flexibilný spôsob, ako zapojiť tých
správnych ľudí do efektívneho riešenia problémov. Text Issue je formátovaný pomocou Mar-
kdown technológie a GitHub obsahuje vyhľadávač, ktorý podporuje ich prehľadávanie.

Issue može byť vytvorená na základe kódu z Pull requestu, ale aj priamo z komentára
iného Issue alebo kontroly Pull requestu [26]. Pokiaľ projekt obsahuje projektovú dosku
(board) na určovanie priorít práce, môžu byť poznámky z nej prekonvertované na jednotlivé
Issue [26]. Repozitáre môžu obsahovať šablóny, ktoré pomáhajú k vytváraniu kvalitnejších
Issue a Pull requestov [32]. Šablóny k Issue je možné vytvárať v nastaveniach repozitára [25].
GitHub umožňuje nastavenie mena, popisu, obsahu a štítkov v šablóne, ktoré sa po jej
zvolení pri vytváraní nového Issue prednastavia [25].

Práve možnosť nastavenia predvoleného obsahu Issue v šablóne v Markdown formáte
umožňuje ukladanie sprievodcom prispievaním a teda aj programovacích konvencií. Výho-
dou šablón je okrem použitia syntaxe Markdown, ktorej výhody som opisoval pri Markdown
súboroch, je už predvolený obsah Issue, ktorý stačí iba upraviť a teda je jednoduchšie do-
držať konvencie jej štruktúry. Issue šablóny v prieskume programovacích konvencií boli ako
druhé najčastejšie použité a obsahovali sprievodcov prispievaním v dvadsiatichpiatich prípa-
doch z päťdesiat (viď 2.2.1), pre príklad projektu používajúceho Issue šablóny viď Microsoft
PowerToys (2.2.2).

2.3.3 Wiki a externé stránky

Wiki stránky a externé stránky boli ďalším výrazne používaným spôsobom, ako v GitHub
projekte skladovať sprievodcov prispievaním a tým pádom aj programovacie konvencie. Ex-
terné stránky boli využité v ôsmich z päťdesiatich analyzovaných projektov a Wiki stránky
v siedmich, pre viac informácií o analýze viď časť 2.2.1. Príkladom projektu využívajúceho
Wiki je napríklad Microsoft PowerToys (viď 2.2.2), príkladom projektu odkazovaného sa
na externé stránky je React (viď časť 2.2.2).

19

Každý GitHub projekt môže obsahovať sekciu pre uchovávanie dokumentácie nazývanú
Wiki, pomocou nej je možné zdielať detailné informácie o projekte, napríklad ako ho použí-
vať, ako je navrhnutý alebo jeho základné princípy [23]. Wiki podporuje, rovnako ako Issue
alebo Markdown súbory formátovanie v Markdown syntaxi [24]. Rozdiel oproti využitiu
Markdown súborov je v tom, že Wiki je uložená v separátnom Git repozitári [24]. Wiki
teda zachováva výhody Markdown súborov, k čomu pridáva výhodu samostatného repozi-
tára, určeného na dokumentovanie projektu, na ktorý je zvyčajne odkazované z primárneho
repozitára s kódom.

Externými stránkami sú myslené webové stránky, na ktoré projekt odkazuje a slúžia
ako sprievodcovia prispievaním do projektu a teda môžu obsahovať programovacie kon-
vencie. Výhodou využitia webových stránok je určenie vlastnej dostupnosti a teda môžu
byť dostupné aj užívateľom, ktorí nemajú prístup k samotnému projektu. Takisto oproti
iným riešeniam, založených na Markdown syntaxi, poskytujú viac možností vo formátovaní
a obsahu. Externými stránkami v analýze boli zväčša detailné dokumentácie k projektom,
určené ako pre koncových užívateľov, tak pre vývojárov.

2.3.4 EditorConfig

EditorConfig [41] pomáha udržiavať konzistentný štýl kódu pre viacerých vývojárov pracu-
júcich na rovnakom projekte naprieč rôznymi editormi a IDE . EditorConfig projekt pozos-
táva z formátu súboru, slúžiaceho na definovanie programovacích štýlov a zbierky doplnkov
do rôznych textových editorov, ktoré umožňujú čítať formát súboru a dodržiavať v ňom
definované štýly. Súbory EditorConfigu sú jednoducho čitateľné a fungujú dobre s verznými
systémami.

V prípade EditorConfigu sa oproti prechádzajúcim technológiám neukladajú progra-
movacie konvencie ako formátovaný text, ale ako EditorConfig súbor, vďaka ktorému vedia
editory automaticky upraviť modifikovaný súbor tak, aby spĺňal konvencie zadané v Editor-
Config súbore. V analýze projektov (viď časť 2.2.1) bol najčastejším nástrojom používaným
k uchovávaniu programovacích konvencií, pokiaľ nepočítame aj formátované texty. Využitý
bol v osemnástich z päťdesiat projektov, pre projekt využívajúci EditorConfig viď Mic-
rosoft PowerToys (2.2.2). Ďalšie technológie umožňujúce automatickú kontrolu obsahuje
časť 2.3.5.

Štandard

EditorConfig súbory sú štandardne pomenované .editorconfig a sú vyhľadávané pri otvo-
rení súboru pomocou IDE alebo textového editoru, ktorý má EditorConfig vstavaný alebo
je do neho nainštalované EditorConfig rozšírenie [41]. EditorConfig súbor je vyhľadávaný
v adresári, v ktorom sa nachádza modifikovaný súbor s editorom a v každom nadradenom
adresári, až pokiaľ sa nenájde koreňový súbor obsahujúci pravidlo root=true [41]. Súbory
s konvenciami sú čítané zhora nadol, pričom najnovšie nájdené pravidlá majú prioritu.
Pri viacerých súboroch majú prioritu pravidlá bližšie k modifikovanému súboru [41].

EditorConfig súbory obsahujú páry kľúča a hodnoty (v závislosti od zdroja nazývané
pravidlá alebo vlastnosti), ktoré charakterizujú konvencie. Tieto páry sú umiestnené pod sek-
ciou, ktorá určuje, na aké súbory sa konvencie aplikujú [12]. Pokiaľ kľúč nie je rozpoznaný
editorom alebo rozšírením, tak je ignorovaný, čo je užitočné pri vytváraní vlastných do-
datkov. Medzi široko rozšírené, a teda takmer vždy podporované, kľúče konvencií patrí štýl
a veľkosť odsadenia, šírka tabu, znak konca riadku, kódovanie súboru, orezávanie koncových
medzier a vloženie nového riadka na koniec súboru [11]. Súbory EditorConfigu sú založené

20

na INI formáte a mali byť kódované UTF–8, pre viac informácií o formáte súborov viď
špecifikáciu EditorConfigu10.

Rozšírenia

Ako je spomenuté v prechádzajúcej časti o štandarde, pokiaľ kľúč EditorConfig pravidla
nie je rozpoznaný, tak je ignorovaný, čo umožňuje jednoduché vytváranie vlastných rozší-
rení pravidiel. Podporu rozšírení si rieši každé IDE alebo plugin samostatne. Vďaka tomu
existuje do EditorConfigu viacero rozšírení.

Rozšírenie pravidiel existuje pre napríklad pre .NET . Rozdelené je do štyroch kategórií:
pravidlá ovplyvňujúce spôsob použitia rôznych jazykových konštruktov, pravidlá identifi-
kujúce zbytočný kód, pravidlá formátovania a pravidlá pomenovania [55]. Niektorým pra-
vidlám je možné nastaviť úroveň závažnosti11. Rozšírenie je podporované viacerými IDE ,
medzi ktorými je aj Visual Studio (viď 3.3), ale pravidlá je možné vynucovať aj počas
kompilácie zdrojového kódu [55].

Ďalšie rozšírenia pre viaceré jazyky podporujú produkty od firmy JetBrains. Napríklad
v prostredí IntelliJ IDEA je možné po pridaní pluginu používať okrem základných pravi-
diel aj rozšírené, začínajú prefixom ij_ [43]. Rozšírenie ReSharper pridáva ďalšie pravidlá
pre .NET , umožňuje exportovať svoje nastavenia do EditorConfig súboru a umožňuje ho
upravovať interaktívne [44].

2.3.5 Iné technológie

Časť obsahujúca iné technológie, používané na správu programovacích konvencií, ktoré
v analýze GitHub projektov (viď časť 2.2.1) boli zastúpené sporadicky alebo majú významné
postavenie medzi technológiami, zaisťujúcimi ich uchovávanie a dodržiavanie. Technológie
sú špecializované na určité jazyky a vedia konvencie kontrolovať automaticky.

Linter

Linter je malý program, ktorý kontroluje kód kvôli štylistickým alebo programovacím chy-
bám [82]. Linter rámce sú k dispozícii pre väčšinu syntaxí programovacích jazykov [82]. Prvý
Linter rámec vznikol v roku 1978, pre analýzu kódu v programovacom jazyku C [77]. Cie-
ľom pôvodného nástroja bolo analyzovať zdrojový kód a nájsť optimalizácie kompilátora,
k čomu sa v priebehu času začali pridávať ďalšie typy kontrol a overovaní [77]. Vo vše-
obecnosti Lintre poskytujú viac typov kontrol, medzi ktoré patrí využitie statickej analýzy,
kontrola bezpečnosti alebo programovacích konvencií a formátovania [77]. Nie všetky Lintre
podporujú všetky typy kontrol a zväčša sa zameriavajú iba na nejakú ich časť, jednotlivé
kontroly sú rozdelené do pravidiel, ktoré môžu byť zapínané a vypínané podľa potreby.

ESLint je open source JavaScript Linter. JavaScript je vďaka jeho vlastnostiam ná-
chylný k vytváraniu chýb, ktoré sa typicky hľadajú spustením kódu [68]. ESLint a iné
Lintery umožňujú vývojárom odhaliť problémy s kódom bez jeho spustenia [68]. Cpplint
umožňuje kontrolu súborov voči C++ štýlom od spoločnosti Google (viď 2.2.3) [49].

10https://editorconfig-specification.readthedocs.io/#file-format
11https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/configuration-

options#severity-level

21

https://editorconfig-specification.readthedocs.io/#file-format
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/configuration-options#severity-level
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/configuration-options#severity-level

Prettier

Prettier [71] je dogmatický program, slúžiaci na formátovanie kódu podporujúci viacero
jazykov, medzi ktoré patrí JavaScript, HTML, CSS , JSON a ďalšie. Pre prehľad všetkých
podporovaných jazykov viď oficiálnu dokumentáciu12. Prettier odstráni všetko originálne
formátovanie a zabezpečí, že celý výstupný kód bude v konzistentnom štýle. Je možné ho
inštalovať lokálne do projektu ako aj volať priamo z kódu, pričom umožňuje nastavenie
niekoľkých druhov formátovania, ako aj ignorovanie určitých súborov.

Oproti Linterom je určený k formátovaniu, pričom Linter je určený predovšetkým k za-
chytávaniu chýb [70]. Formátovacie pravidlá z Linteru, ako napríklad maximálna dĺžka
riadku, nie sú vôbec pri použití potrebné, keďže Prettier celé formátovanie zmaže a vytvorí
nové, konzistentné [70]. S pravidlami v Linteroch, ktoré zvyšujú kvalitu kódu, ako naprí-
klad žiadne nevyužité premenné, Prettier nemá nič spoločné a slúžia prevažne k odhaľovaniu
chýb [70].

Mypy

Mypy [81] je dobrovoľne použiteľný nástroj kontrolujúci statické typovanie pre jazyk Python,
ktorého cieľom je spojiť výhody dynamického a statického programovania. Kombinuje silu
výrazov a pohodlie Pythonu so systémom pre kontrolu typov a s kontrolou typov pri kom-
pilácii [81]. Funguje pre štandardné Python programy, ktoré spúšťa pomocou ľubovoľnej
Python VM s takmer žiadnou réžiou [81].

Black

Black [48] je nástroj, formátujúci kód v jazyku Python. Jeho používaním užívateľ prichádza
o možnosť vlastnoručného formátovania kódu, avšak šetrí čas a vytvára deterministicky
naformátovaný kód, ktorý je rovnaký v každom projekte [48]. Užívateľ nástroja sa môže
viac sústrediť na obsah kódu ako na jeho formátovanie, kontrolovanie kódu je rýchlejšie
a produkuje menšie zmeny [48].

ClangFormat

ClangFormat [78] popisuje množinu nástrojov, formátujúcich programovacie jazyky, ktoré
sú postavené na LibFormat13. Podporuje prácu viacerými spôsobmi, vrátane samostatnej
aplikácie alebo integrácie v rôznych editoroch a IDE [78]. Samostatná aplikácia umožňuje
formátovanie jazykov C, C++, C#, Java a ďalších [78].

Flake8

Flake8 [6] je nástroj spustiteľný cez príkazový riadok, ktorý vynucuje konzistentný štýl
v Python projektoch. V základe obsahuje viacero kontrol konzistentnosti, avšak podporuje
aj rozšírenia tretích strán [6].

12https://prettier.io/docs/en/index.html
13https://clang.llvm.org/docs/LibFormat.html

22

https://prettier.io/docs/en/index.html
https://clang.llvm.org/docs/LibFormat.html

Kapitola 3

Návrh

Pred vytvorením návrhu systému je dôležité zanalyzovať požiadavky, ktoré bude daný sys-
tém plniť. Kapitola nadväzuje na predchádzajúcu, ktorá analyzuje programovacie konvencie
používané v projektoch (viď 2). Pomocou analýz z predchádzajúcej kapitoly určuje požia-
davky na vytváraný systém a následne systém pomocou vhodných technológií a architektúry
navrhuje, spĺňajúc dané požiadavky.

Prvá časť kapitoly identifikuje požiadavky na vytváraný systém na základe analýz
z predchádzajúcej kapitoly (viď 3.1). Porovnáva analyzované technológie a konvencie, kto-
rých výsledky zhŕňa do scenárov použitia a špecifikovaných požiadaviek. Ďalšia časť na-
vrhuje architektúru systému (viď 3.2). Systém rozdeľuje do vrstiev a vrstvy následne do men-
ších celkov. Navrhuje ich úlohu, vhodné technológie a popisuje ich význam. Posledná časť
vykresľuje ako bol systém implementovaný, aké problémy pri implementácii vznikli a ako
bol výsledný systém nasadený (viď 3.3).

3.1 Požiadavky na vytváraný systém
Časť práce, definujúca požiadavky na navrhovaný systém, spravujúci programovacie kon-
vencie. V prvej časti porovnáva funkcie existujúcich systémov a riešení spravujúcich prog-
ramovacie konvencie (viď 3.1.1), pričom zohľadňuje získané dáta z analýz z prechádzajúcej
kapitoly. Následne uvažuje s rôznymi scenármi použitia (viď 3.1.2), pričom vychádza najmä
zo spôsobov, ako sa obdobné technológie v analýze najčastejšie používajú. V poslednej
časti definuje priame požiadavky na systém, vychádzajúce primárne zo scenárov použitia
a analýzy existujúcich technológií a open source projektov (viď 3.1.3).

3.1.1 Porovnanie funkcií existujúcich technológií

Pred spísaním požiadaviek na systém je vhodné porovnať funkcie existujúcich technológií
spracujúcich programovacie konvencie, ktoré boli analyzované v časti 2.3 a pracovať s dátami
získanými z analýzy open source projektov v časti 2.2.2. V tejto časti si kladiem za cieľ
porovnať funkcie a možnosti jednotlivých technológií a zamyslieť sa nad ich výhodami
a nevýhodami z viacerých pohľadov. Zameriavam sa na porovnanie typov spravovaných
konvencií, spôsoby prístupu a uloženia a na históriu zmien. Porovnanie funkcií existujúcich
technológií je následne použité pri vytváraní scenárov použitia (viď 3.1.2) a špecifikácii
požiadaviek (viď 3.1.3).

23

Porovnanie typov konvencií

V prvom rade je vhodné porovnať, aké konvencie je možné pomocou ktorých technológií
spravovať, a teda aké možnosti nám rôzne technológie ponúkajú. Technológie je možné
rozdeliť podľa konvencií na dva segmenty. Prvým sú technológie. umožňujúce spracovanie
akýchkoľvek konvencií, keďže sú uložené v ľudskom jazyku pomocou formátovaného textu,
čoho následkom je nemožnosť automatizovanej kontroly. Druhým segmentom sú technológie,
spracúvajúce konvencie vo forme jazyka, ktorému technológie rozumejú, sú schopné ho
spracovať a konvencie kontrolovať, avšak jazyk je obmedzenejší ako pri prvom type. Medzi
technológiami sa nenachádzala žiadna komplexnejšia, ktorá by ponúkala výhody z oboch
druhov, teda možnosť uloženia akýchkoľvek konvencií, ale zároveň ich umožnila automaticky
kontrolovať.

Markdown súbory, spolu s Issue šablónami a Wiki stránkami (viď 2.3) podporujú správu
akýchkoľvek konvencií, keďže ich ukladajú vo forme formátovaného textu. Tieto technológie
boli v analýze programovacích konvencií v open source projektoch zastúpené výrazne častej-
šie (viď 2.2.1). Formátovaný text umožňuje pracovať s akýmikoľvek konvenciami, ľubovoľne
ich zoradiť, združiť a formulovať, vďaka čomu je ich použitie všeobecnejšie, dajú sa použiť
pre akýkoľvek jazyk, akokoľvek užívateľ vyžaduje. Pri analýze sa mi podarilo zistiť, že v po-
užití programovacích konvencií medzi projektami je veľká diverzita a teda využitie uloženia
vo forme textu je výhodou. Výhodou je aj možnosť pracovať so zložitejšími konvenciami,
ktoré by aj tak nebolo možné jednoduchým spôsobom kontrolovať automatizovane. Nevýho-
dou uloženia vo forme textu je teda nemožnosť kontrolovať konvencie priamo technológiou,
čo by bolo aj zložité, pri voľnom spôsobe ich zápisu. Technológie dávajú užívateľom možnosť
formulovať text akokoľvek potrebujú, v podstate sú to technológie určené na správu textu.
v ktorých sa užívatelia rozhodli spravovať konvencie.

Technológie ako EditorConfig, Linter, Prettier a ďalšie (viď 2.3) umožňujú kontrolu kon-
vencií automatizovane a ohraničujú, aké konvencie je možné v nich spravovať. V analýze
programovacích konvencií boli zastúpené v menšej miere (viď 2.2.1). Zväčša sa obmedzujú
na kontrolu konkrétnych konvencií v určitých jazykoch, v ktorých sa sústredia na jedno-
duchšie, automaticky kontrolovateľné prvky (ako je napríklad formátovanie a mená pre-
menných, funkcií a podobne) alebo umožňujú kontrolu nižšie úrovňových konvencií, spo-
ločných pre viaceré jazyky (napríklad maximálnej dĺžky riadku textu v súbore). Pridávanie
vlastných konvencií väčšina technológií neumožňuje, Editorconfig dovoľuje ich pridávanie
do konfiguračných súborov, avšak je nutné ich kontrolu naprogramovať. Nastavenie kontro-
lovaných konvencií majú rozličné formy, v závislosti od technológie. Niektoré technológie
nie je možné nijako nastavovať a kontrolujú sadu predpripravených konvencií, ale pri iných
je možné vyberať, ktoré konvencie budú kontrolované. Editorconfig umožňuje okrem výberu
konvencií aj výber priečinkov a prípon súborov, na ktorých budú konvencie kontrolované.
Od rozličných foriem nastavení sa odvíjajú aj možnosti radenia a združovania konvencií.
Technológie, ktoré dovoľujú vyberať konvencie použité na kontrolu sú zväčša logicky uspo-
riadané. V Editorconfigu sú konvencie združené podľa prípon súborov, v ktorých je možné
jednotlivé konvencie vkladať ľubovolne.

Porovnanie uloženia konvencií

Ako je spomínané v prechádzajúcej časti, nie všetky technológie kontrolujúce konvencie
ukladajú nastavenia. Technológie, ktoré ich neukladajú sa buď nijak nenastavujú a kontro-
lujú predvytvorenú sadu konvencií alebo sa musia nastavovať vždy znovu, čo nie je uží-
vateľsky prívetivé. Rôzne technológie ukladajú konvencie rôznymi spôsobmi. Technológie

24

spravujúce a kontrolujúce konvencie lokálne u užívateľa zväčša používajú lokálne databázy
alebo konfiguračné súbory. Nevýhodou lokálnych nastavení je ich zdieľanie. Konfiguračné
súbory, ktoré používa napríklad Editorconfig, sú často zdieľané pomocou verzných systémov,
ale nastavenia z databáz musia byť exportované a znovu importované u iného užívateľa.

Technológie pracujúce s formátovaným textom sa zvyčajne ukladajú ako Markdown
súbory, ktoré sú uložené v Git repozitári, čo umožňuje prístup všetkým jeho užívateľom.
Issue šablóny a GitHub Wiki stránky sú dostupné v rámci GitHub repozitára. Programova-
cie konvencie uložené na externých stránkach, majú rôzne spôsoby uloženia, zvolené danou
stránkou alebo službou.

Porovnanie obmedzenia prístupu ku konvenciám

Medzi analyzovanými technológiami sa nachádzali také, ktoré vedeli obmedziť prístup ku kon-
venciám určitým ľudom, ale aj také, ktoré boli verejné a mohol si ich prehliadnuť každý.
Open source projekty poskytujú používané konvencie typicky verejne, aby sa s nimi mohli
prispievajúci užívatelia zoznámiť.

Technológie spravujúce a kontrolujúce technológie lokálne, zväčša poskytujú prístup
ku konvenciám iba ich užívateľovi. Uložené sú v lokálnych databázach a je nutné ich
pre získanie prístupu iného užívateľa exportovať. Editorconfig pracujúci s konfiguračnými
súbormi síce umožňuje kontrolovať zmeny lokálne, ale konfiguračné súbory sa zväčša ukla-
dajú do verzného systému, a teda ku konvenciám majú prístup užívatelia, ktorí majú prístup
k repozitáru. Ku konvenciám uloženým v Markdown súboroch, Issue šablónach a GitHub
Wiki stránkach majú taktiež prístup užívatelia repozitára. Ak je repozitár verejný, aj prí-
stup ku konvenciám je verejný. Pri konvenciách uložených na externých stránkach záleží
od konkrétnej služby. Stránky zhromažďujúce programovacie konvencie sú zväčša verejne
dostupné všetkým, ale môžu byť dostupné iba vybraným užívateľom po prihlásení.

Porovnanie zmien v konvenciách a histórie

Pre technológiu je výhodou, ak zaznamenáva zmeny v konvenciách, históriu ich úprav
a umožňuje užívateľom, aby sa ku konvenciám vyjadrovali. Vďaka tomu je možné spätne
zisťovať dôvody jednotlivých zmien a zaznamenávať si, ktoré konvencie už boli aplikované
na kód, ako aj viesť diskusiu o budúcich zmenách v konvenciách. História zmien pomáha
aj k lepšiemu pochopeniu konvencií pre nových vývojárov.

Konvencie v Markdown súboroch ukladajú svoju históriu pomocou verzného systému,
rovnako je možné ukladať históriu aj konfiguračných súborov rôznych technológií, umožňu-
júcich automatickú kontrolu. Lokálne technológie pracujúce s databázou, určené pre jedného
užívateľa často neumožňujú sledovať históriu zmien. Prikladám to tomu, že výhody sledova-
nia zmien v lokálnych technológiách strácajú význam, keďže sú primárne určené pre jedného
užívateľa. Technológie spravujúce konvencie na externých stránkach implementujú históriu
zmien a komentovanie v závislosti na type služby.

3.1.2 Uvažované scenáre použitia

Na základe porovnaní funkcií existujúcich technológií spravujúcich programovacie konvencie
(viď 3.1.1) a na základe analýzy open source projektov v časti 2.2.2 je možné definovať
niekoľko základných scenárov použitia systému. Scenáre budú následne využité v časti 3.1.3
pre formálne definovanie požiadaviek na systém.

25

Správa konvencii

Systém slúži ako databáza konvencií pre projekt v ľubovoľnom jazyku, pričom na jednom
projekte môže pracovať viacero vývojárov. Konvencie sa zadávajú do systému pomocou
formátovaného textu, čo umožňuje spísanie rôznorodých konvencií. Systém spravuje kon-
vencie a umožňuje sledovať ich históriu a je schopný vytvoriť konvencie pre novovznikajúce
projekty, ako aj zistiť aktuálne používané. Pri každej konvencii je možné komunikovať v dis-
kusnom vlákne pre riešenie možných zmien a ujasnenie si nejasností. Celý systém funguje
ako báza znalostí konvencií v projekte pre nových členov tímu a ako spôsob zoznamovania
sa s novými a zmenenými konvenciami.

Kontrola a generovanie konvencií

V systéme je možné ku každej konvencii pridať formálny zápis, pomocou ktorého je možné
konvenciu na projekte automatizovane kontrolovať. Automatizovaná kontrola konvencií vy-
tvára súhrnnú správu dodržania konvencií v projekte, tak ako je uvedené v zadaní práce.
Formálne zápisy je možné generovať z aktuálneho stavu projektu. Kontrolu a generovanie
je možné rozšíriť o vlastné definované pravidlá.

Open source systém

Programovacie konvencie k projektu sú voľne prístupné, keďže systém je primárne určený
pre open source projekty. Užívateľ sa do systému prihlasuje pomocou GitHub účtu. Kód
systému je verejne dostupný pod open source licenciou, čo umožňuje systém upravovať
a pridávať vlastné kontroly konvencií.

3.1.3 Špecifikácia požiadaviek

Pred výberom implementačných technológií, špecifikáciou architektúry a návrhom jednot-
livých modulov systému, je vhodné formálne špecifikovať požiadavky, ktoré by mal cieľový
systém spĺňať. Požiadavky majú byť jednoznačné, testovateľné, uskutočniteľné, merateľné
a nezávislé na implementácii, pričom sú definované dostatočne detailne pre návrh sys-
tému [87]. Požiadavky boli špecifikované s ohľadom na uvažované scenáre použitia a analýzu
existujúcich technológií. Následne som pri špecifikácii vychádzal zo zadania práce, analýzy
a uskutočnených konzultácii.

Požiadavky na výsledný systém

Požiadavky na výsledný systém definujú predovšetkým požiadavky, ktoré súvisia s vývojom
a nasadením systému, ako je napríklad počítačové a programové vybavenie, prenositeľnosť
a bezpečnosť [47]. V prípade vytváraného systému, ide primárne o definovanie druhu sys-
tému, licencie a spôsobu nasadenia.

∙ Systém je vytvorený ako webová aplikácia, ktorá komunikuje s užívateľom pomocou
webového rozhrania. Aplikácia taktiež komunikuje s databázou, v ktorej uchováva
perzistentné dáta a s aplikačným programovacím rozhraním služby GitHub.

∙ Systém je zverejnený pod open source licenciou v službe GitHub a obsahuje všetky
potrebné náležitosti, umožňujúce vlastné nasadenie a ďalší vývoj komunitou. Systém
je zverejnený v celom rozsahu a teda je možné ho stiahnuť, ľubovoľne upraviť a nasadiť

26

užívateľom. K systému je vytvorená dokumentácia, obsahujúca návod ako systém
nasadiť.

∙ Inštancia systému bude nasadená a dostupná pri jeho testovaní a následnom hodnotení
(pre nasadenie inštancie viď 3.3.3).

Funkcionálne požiadavky

Ide o základný typ požiadaviek, ktorý určuje, čo má vyvíjaný systém robiť a aké sú jeho
funkcionality [47]. Pri špecifikácii som sa zameral hlavne na tento typ požiadaviek, keďže
pre navrhovaný systém je primárne definovať jeho funkcionality.

∙ Do systému sa užívatelia prihlasujú pomocou užívateľských účtov v službe GitHub.
Následne užívateľ pristupuje k repozitárom zo služby GitHub, v ktorých spravuje
programovacie konvencie. V systéme užívateľ môže pristupovať ako k verejným, tak
ku privátnym repozitárom, v ktorých má administrátorské práva alebo práva na zápis.

∙ Konvencie môže užívateľ v systéme uchovávať vo forme formátovaného textu. Okrem
toho, každá konvencia obsahuje vlastné diskusné vlákno a históriu zmien.

∙ Každá konvencia môže obsahovať aj formálny zápis v EditorConfig formáte. Systém
umožňuje automatizovanú kontrolu konvencií v projekte, na základe ich formálneho
zápisu, z ktorého vypíše súhrnnú správu. Systém taktiež umožňuje vygenerovať for-
málny zápis konvencií zo zdrojových súborov, pričom systém zistí pravdepodobnosť
jej použitia a konečný výber nechá na užívateľovi. Systém dovoľuje sledovať históriu
súhrnných správ a aj históriu zmien formálneho textu.

∙ Generovanie formálneho zápisu konvencií z projektu, ako aj ich kontrolu v projekte,
je možné rozšíriť o vlastne definované formálne pravidlá. Vlastne pravidlá je možné
vytvárať pomocou nových tried, implementujúc preddefinované rozhrania v kóde sys-
tému. Využitím rozhraní, systém zaručuje nepovinné implementovanie generovania
formálneho zápisu a aj kontroly na projekte. K vytváraniu vlastných pravidiel je vy-
tvorený návod, pre užívateľov systém obsahuje zoznam už implementovaných pravidiel
s ich popisom.

3.2 Architektúra systému
Časť práce popisujúca architektúru navrhovaného systému na správu programovacích kon-
vencií. Navrhnutá architektúra vyplýva zo špecifikácie požiadaviek (viď 3.1.3) a z uvažova-
ných scenárov použitia (viď 3.1.2), pričom cieli na využitie moderných technológií a prístupu
k vývoju.

Systém bude serverová aplikácia používajúca štandardný klient–server prístup v .NET
prostredí, ktorá bude postavená na technológii Blazor (viď 3.2.2), pomocou server hosting
modelu. Pre .NET som sa rozhodol kvôli mojej osobnej znalosti prostredia a preto, že veľmi
rýchlo narastá popularita technológie Blazor, čo je možné pozorovať na jej použitiach1.
Blazor som sa rozhodol použiť ako kľúčovú pre vývoj aplikačnej vrstvy.

1https://trends.builtwith.com/framework/Microsoft-Blazor

27

https://trends.builtwith.com/framework/Microsoft-Blazor

3.2.1 Trojvrstvová architektúra

Systémové riešenie je rozdelené do troch vrstiev, projektov. Trojvrstvová architektúra roz-
deľuje aplikácie na tri výpočtové vrstvy, je prevládajúcou softvérovou architektúrou pre tra-
dičné klient–server aplikácie [42]. Jednotlivé vrstvy sú od seba logicky oddelené. Hlavnou
výhodou trojvrstvovej architektúry je jednoduché inovovanie alebo nahradzovanie vrstvy,
bez vplyvu na ostatné [72].

Presentation Layer

Business Logic Layer

Data Access Layer

Data
Source

Obr. 3.1: Trojvrstvová architektúra napojená na databázu použitá v projekte.

Najvyššia, prezentačná vrstva je užívateľským a komunikačným rozhraním systému,
pomocou ktorého koncoví užívatelia intereagujú s aplikáciou [42]. V systéme má za cieľ
zobrazovať užívateľovi informácie, zbierať ich od neho a posielať ich do nižšej, logickej
vrstvy. Tá obsahuje služby a v prípade návrhu tohto systému Viewmodely (viď 3.2.3),
na ktoré sa prezentačná vrstva napája.

V strede sa nachádza logická vrstva, tiež nazývaná aplikačná, biznisová alebo stredná
vrstva. Vrstva riadi základné funkcionality systému spracovaním dát [72]. Vo vrstve sa
informácie zhromaždené z prezentačnej vrstvy spracúvajú pomocou špecifikovaných pravi-
diel [42]. Vrstva sa v prípade potreby napája na databázovú, z ktorej čerpá perzistentné
dáta, alebo na iné služby, s ktorými systém komunikuje. Výstupom vrstvy sú služby a Vie-
wmodely, na ktoré sa napája prezentačná vrstva.

Najnižšie je položená databázová vrstva. Slúži na oddelenie databázovej logiky od logiky
aplikácie [72]. V prípade tohto systému komunikuje s databázou pomocou ORM a vytvára
rozhrania, na ktoré sa v prípade potreby komunikácie s databázou napája logická vrstva.
V trojvrstvovej aplikácii musí ísť celá komunikácia z databázovej do prezentačnej vrstvy
cez logickú, dátová vrstva s prezentačnou nemôže komunikovať priamo [42].

28

3.2.2 Prezentačná vrstva

Ako je spomínané v úvode k trojvrstvovej architektúre, prezentačná vrstva slúži ku komu-
nikácii konečného užívateľa s aplikáciou. K tomu je v systéme využitá technológia Blazor.
Okrem užívateľského rozhrania vrstva zabezpečuje aj autorizáciu užívateľa a spravuje De-
pendency Injection (DI) kontajner, do ktorého si pridáva služby z logickej vrstvy.

Blazor

Blazor je open source vývojársky rámec pre vývoj jedno stránkových aplikácií, ktorý vzni-
kol z kombinácie slov Browser a Razor (.NET HTML modul generujúci zobrazenia) [65].
Blazor ponúka dva modely hostingu. WebAssembly model, ktorý beží na klientskej strane
v prehliadači pomocou WebAssembly. Blazor stránka a jej závislosti sa pri WebAssembly ini-
cializácii stiahnu do prehliadača klienta, ktorý následne spúšťa kód [52]. Druhým modelom
je Server model, pri ktorom je aplikácia vykonávaná na serveri.

Browser
Blazor

SignalR
ASP.NET Core

dotnet.exe

Obr. 3.2: Blazor Server model použitý v aplikácii. Aplikácia sa vykonáva na serveri
v ASP.NET Core. Užívateľské rozhranie, udalosti a JavaScript volania sa spracúvajú po-
mocou SignalR spojenia. Obrázok upravený z Microsoft dokumentácie [52].

Rozhodol som sa použiť Server hosting model, pričom využitie každého z modelov má
svoje výhody aj nevýhody. Server hosting model neodosiela celú stránku ku klientovi, takže
sa načítava rýchlejšie a pre spustenie aplikácie nie je v prehliadači nutná podpora We-
bAssembly [52]. Všetky výpočty bežia na serveri, takže nie je nutné výpočty validovať
a postačuje riešiť validáciu z užívateľského rozhrania. Pri ASP.NET core (open source web
rámci, ktorý využíva Blazor Server hosting model) som rozhodol pre verziu 5.0, keďže v čase
návrhu je najnovšom stabilnou.

Užívateľské rozhranie

Blazor využíva k vytváraniu stránok Razor Pages. Ide o syntax kombinujúcu HTML kód
s kódom v jazyku C# [61]. V jednom súbore je možné striedať oba jazyky [61].

Pri tvorbe užívateľských rozhraní, je možné využívať štandardné HTML komponenty
a CSS . Avšak pre vytvorenie stránky s kvalitnejším a responzívnejším dizajnom som sa
rozhodol využiť open source knižnicu Radzen2 komponent pre Blazor. Existuje viacero
knižných, ktoré pridávajú vlastné komponenty, ako napríklad Blazorise, BlazorStrap alebo
MudBlazor. Jedine Radzen pridáva komponent HTML editoru, ktorý je vhodné použiť
pri práci s formátovaným textom konvencií. Okrem knižnice Radzen som sa rozhodol využiť
Bootstrap3, open source CSS rámec, ktorý je už implicitne vložený v základnej šablóne Bla-

2https://blazor.radzen.com
3https://getbootstrap.com

29

https://blazor.radzen.com
https://getbootstrap.com

zor aplikácie. Ikony a obrázky som sa rozhodol čerpať z Google Fonts4 a z Material Design
Icons5.

Architektonický vzor Model–View–ViewModel

Model–View–ViewModel (MVVM) je softvérový architektonický vzor, ktorý uľahčuje odde-
lenie vývoja GUI (View) od vývoja biznis logiky. Pomáha mať lepší SoC , meniť jednotlivé
View za iné bez zmeny ViewModelu, navrhovať dizajn aplikácie bez nutnosti siahať do lo-
giky aplikácie a naopak [19]. Využívaný je prevažne s technológiou WPF [19].

View

ViewModel

Model

Obr. 3.3: Architektonický vzor Model–View–ViewModel skladajúci sa z troch častí: View,
ViewModel a Model. View si kladie za úlohu reprezentovať dáta koncovému užívateľovi,
definuje štruktúru, rozloženie a vzhľad užívateľského rozhrania. ViewModel je prostrední-
kom medzi View a Modelom, udržiava v sebe aktuálny stav systému a dostupné operácie
(napríklad odkaz aktuálne zvolený repozitár). Model predstavuje dátovú časť programu
(napríklad objekt repozitára, na ktorý sa odkazuje ViewModel).

Kvôli značným výhodám v separácii jednotlivých celkov systému som sa rozhodol apliká-
ciu navrhnúť v súlade s architektonickým vzorom Model–View–ViewModel. Prezenčná časť
aplikácie obsahuje jednotlivé pohľady (View), ktoré sú v prípade technológie Blazor repre-
zentované pomocou Razor Pages. Pohľady obsahujú iba užívateľské rozhranie, bez vnútornej
logiky. Pre získavanie stavu aplikácie, dát a spúšťanie operácii sa odkazujú na ViewModely,
ktoré sú uložené spolu s Modelmi v logickej vrstve.

Užívateľské rozhranie som rozdelil do niekoľkých pohľadov/stránok, s ohľadom na požia-
davky na systém:

∙ Úvodná stránka, domov aplikácie
∙ Menu celej stránky, hlavička a pätka
∙ Zobrazenie dostupných reporitárov
∙ Zobrazenie zvoleného repozitára, konvencií v ňom

4https://fonts.google.com/icons
5https://materialdesignicons.com

30

https://fonts.google.com/icons
https://materialdesignicons.com

∙ Zobrazenie zvolenej konvencie a dát v nej:

– Zobrazenie aktuálneho formátovaného/formálneho textu
– Zobrazenie komentárov
– Pridanie komentára

∙ Pridanie/mazanie a úprava mena konvencie
∙ Importovanie formálnych pravidiel z repozitára
∙ Kontrola formálnych pravidiel na repozitári
∙ Zobrazenie histórie formátovaného/formálneho textu
∙ Upravenie formátovaného/formálneho textu konvencie
∙ Zobrazenie implementovaných formálnych pravidiel
∙ Neexistujúca, nenájdená alebo chybová stránka

Autorizácia

Funkcionálne požiadavky požadujú prihlasovanie užívateľov do systému pomocou služby
GitHub. Okrem toho je však vhodné, aby po prihlásení systém naďalej vedel komunikovať
s užívateľovým účtom v službe GitHub a pracovať s dátami užívateľa v nej. To je vhodné
docieliť pomocou protokolu OAuth, ktorý GitHub podporuje a umožní následné spytovanie
nad API .

OAuth je autorizačný protokol alebo rámec. Je otvoreným štandardom popisujúcim ako
môžu nesúvisiace servery a služby bezpečne povoliť overený prístup bez zdieľania svojich
počiatočných prihlasovacích údajov [39]. Ten spôsob overenia je známy ako treťou stranou
zabezpečená delegovaná autorizácia [39].

Protokol bude použitý k prístupu do vytvoreného systému pomocou účtu v službe Git-
Hub. ASP.NET core, nad ktorým beží Blazor, obsahuje už vstavané možnosti ako s protoko-
lom pracovať, ktoré je následne možné rozšíriť o NuGet balíček obsahujúci implementáciu
jednotlivých OAuth poskytovateľov6. Samotná autorizácia bude prebiehať na prezentačnej
vrstve, keďže obsahuje vhodné prostredie na jej realizáciu, ale prístupový token získaný
autorizáciou bude uložený na logickej vrstve a ku GitHub API sa bude pristupovať z nej.

Vkladanie závislostí

ASP.NET Core podporuje návrhový vzor pre vkladanie závislostí, Dependency Injection
(DI), čo je technika na dosiahnutie Inversion of Control (IoC) medzi triedami a ich závis-
losťami [56]. Výhodou je registrácia závislosti v kontajneri služieb, služby môžu byť následne
vkladané do konštruktov tried, pričom zodpovednosť za konštrukciu a dekonštrukciu tried
preberá framework [57].

Existujú aj rôzne iné balíčky, zaisťujúce Dependency Injection, avšak pre jednoduchosť
a natívne prepojenie som sa rozhodol pre použitie Dependency Injection z ASP.NET Core.
Priamo v šablóne Blazor aplikácie je kontajner zaregistrovaný Startup súbore. V logickej
a dátovej vrstve je možné vytvoriť poskytovateľa služieb, ktorý služby z danej vrstvy pridá
do kontajnera. Následne si môže vrstva pridať do kontajnera služby z využívanej nižšie
postavenej vrstvy pomocou poskytovateľa služieb nižšej vrstvy.

6https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers

31

https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers

Pri registrácii služby do kontajnera, je možné vybrať jednu z nasledujúcich druhov
životností:

∙ Prechodná (Transient) životnosť, s ktorou sa vytvára nová inštancia služba vždy, keď
je o ňu požiadané [57].

∙ Rozsahová (Scoped) životnosť, s ktorou sa pri webových aplikáciach vytvára jedna
inštancia pre jedno pripojenie klienta [57]. Ten vďaka tomu dostáva po požiadaní
vždy rovnakú inštanciu.

∙ Jedináčik (Singleton), ktorý sa vytvára jeden a jeho inštancia je vždy pri požiadaní
vrátená [57].

Služby Radzenu pre fungovanie upozornení, dialógov alebo menu sú zaregistrované ako
Scoped.

3.2.3 Logická vrstva

Logická vrstva obsahuje základné funkcionality systému, rozdelené do logických celkov,
služieb. Keďže služby neuchovávajú žiaden stav, sú v zaregistrované do DI kontajnera ako
Singleton. Výnimkou sú ViewModely, ktoré uchovávajú stav aplikácie pre každého užívateľa,
preto sú zaregistrované ako Scoped. Aby nebolo nutné každú službu po jej vytvorení regis-
trovať osobitne, budú v logickej vrstve vytvorené rozhrania pre jednotlivé druhy živostnosti.
Následne bude stačiť, aby trieda reprezentujúca službu rozhranie implementovala. Pri re-
gistrovaní vrstvy sa prejde pomocou knižnice Reflection menný priestor vrstvy a služby sa
zaregistrujú do kontajnera s príslušnou životnosťou.

V prípade potreby sa vrstva napája na databázu pomocou databázovej služby, ktorá vy-
užíva databázovú vrstvu systému. Pre viac informácií o tom, ako funguje napojenie na da-
tabázu viď 3.2.4.

ViewModely

Ako je spomínané v prezentačnej vrstve (viď 3.2.2), ViewModely z architektonického vzoru
Model–View–ViewModel (MVVM) sú uložené v logickej vrstve. Nie sú navrhnuté tak, aby
existovali pre každý View z aplikačnej vrstvy, ale sú skonštruované podľa druhu spravova-
ných dát. Napríklad pre pohľad zobrazenia histórie formálneho/formátovaného textu a pre
jeho úpravu je použitý jeden ViewModel spravujúci formálne a formátované texty.

ViewModel je vstupným bodom prezentačnej vrstvy systému. Stará sa o volanie ďalších
služieb z logickej vrstvy, prípadne o získavanie dát z iných ViewModelov. ViewModely medzi
sebou komunikujú a posieľajú si správy o zmenách pomocou návrhového vzoru Messenger,
niekedy nazývaného mediátor.

32

ViewModelA ViewModelB

Messenger

Send Message Register Callback

Obr. 3.4: Jednotlivé ViewModely si do Messengera registrujú správy, ktoré chcú prijímať.
Keď ViewModel odošle správu, nastane spätné volanie a ViewModely, ktoré správu zaregis-
trovali, ju dostanú. Vďaka tomu nemusia mať ViewModely medzi sebou závislosti a môžu
spolu komunikovať pomocou správ. Obrázok upravený z DotNetPattern [10].

Modely

Modely predstavujú v MVVM dátovú časť programu, tak ako bolo vysvetlené v prezentačnej
vrstve (viď 3.2.2). Sú to objekty, uchovávajúce dáta systému. Môže sa na ne referovať aj ako
na doménové objekty.

Modely sa v systéme rozdeľujú do dvoch druhov, detailné modely a modely pre zoznamy.
Detailné modely obsahujú všetky dáta, ktoré k modelu existujú, zatiaľ čo modely pre zo-
znamy obsahujú iba ich časť, využívanú pre zobrazenie v zozname. Napríklad, pri zozname
používateľových repozitárov nie je nutné, aby model obsahoval všetky svoje konvencie, ale
stačí poznať ich počet, čo môže byť užívateľovi v zozname zobrazené. Primárnym dôvodom
využívania dvoch druhov konvencií je zníženie veľkosti dát, jednak kvôli ich prenosu, ale
aj pre ich spracovávanie a mapovanie. V prípade rozsiahlejších systémov je možné modely
rozdeľovať na viacero druhov, presne podľa aktuálne potrebných dát.

Pretváranie jedného objektu na iný sa nazýva mapovanie. Všetky objekty, ktoré logická
vrstva získa z iných služieb pretvára na modely, s ktorými ďalej pracuje. Napríklad databá-
zová vrstva vráti objekt vo formáte entity, ktorý sa následne premapuje na vhodný model.
K mapovaniu systém využije NuGet balíček AutoMapper7. AutoMapper je jednoduchá
malá knižnica, vytvorená na zbavenie sa kódu, ktorý mapoval jeden objekt na druhý [45].
Pri použití balíčku stačí v kóde vytvoriť mapu medzi dvoma objektami, ktoré je následne
možné pomocou automappera mapovať. Pri vytváraní mapy je možné definovať, ako sa
mapovanie bude správať. Vlastnosti objektov s rovnakými názvami sa vedia medzi sebou
mapovať bez nastavení.

GitHub API služba

Navrhnutou autorizáciou z prezentačnej vrstvy (viď 3.2.2) získa systém prístupový token
užívateľa ku GitHub API . Token bude systém využívať k získavaniu informácií o užívateľovi
a jeho repozitároch, ku ktorým sa v systéme spravujú konvencie.

Logická vrstva obsahuje službu zabezpečujúcu volania do GitHub API . Služba je na-
vrhnutá tak, aby využívala NuGet balíček Oktokit8. Octokit je klientská knižnica, ktorá
poskytuje jednoduchý spôsob interakcie s GitHub API [30]. Služba získa požadované in-

7https://www.nuget.org/packages/automapper
8https://www.nuget.org/packages/Octokit

33

https://www.nuget.org/packages/automapper
https://www.nuget.org/packages/Octokit

formácie, premapuje ich na príslušné modely a vráti ich ViewModelom alebo inej službe,
ktorá dáta požadovala.

Služba zmien textov

Ako je špecifikované v požiadavkách, užívatelia môžu konvencie ukladať pomocou formá-
tovaného textu, ku ktorému je dostupná história zmien. Každá konvencia môže taktiež
obsahovať formálny zápis pravidiel, ku ktorému je história dostupná. Ukladanie celého for-
málneho a formátovaného textu do databázy je obzvlášť pri väčšom množstve textov a ich
väčšej dĺžke nepraktické.

Do databázy sa teda budú ukladať iba zmeny medzi jednotlivými textami. K tomu
navrhnujem použiť NuGet balíček diff–match–patch9. Balíček, ktorý v origináli vznikol
v roku 2006 na podporu Google dokumentov, ponúka robustné algoritmy na vykonávanie
operácií, potrebných na synchronizáciu textu [35]. Medzi ne patrí aj vytváranie patchu,
listu zmien medzi dvoma textami. Patch je následne možné aplikovať na text, aby z neho
vznikol text druhý.

Databáza bude obsahovať iba patche na predchádzajúce verzie a aktuálny text. Keď
užívateľ požiada o históriu zmien textu, je možné ju pomocou aktuálneho textu a patchov
vygenerovať, spolu s príslušnými zmenami.

Služba zvýrazňujúca časti formálneho textu

Konvencie obsahujú formálny text v EditorConfig formáte, ktorý je založený na INI for-
máte (pre viac informácií viď 2.3.4). Pre zlepšenie užívateľskej skúsenosti je vhodné, aby
boli jednotlivé časti formálneho textu v užívateľskom rozhraní zvýraznené. Farebné zvýraz-
nenie odlíši jednotlivé druhy textu vo formáte, napríklad sekcie budú inou farbou a v inom
formáte ako komentáre. Tým by mal užívateľ jednoduchšie identifikovať, že nejde o prostý,
ale o formálny text. Zvýrazňovanie prípadne pomôže aj pri hľadaní chýb vo formáte textu.

Pre implementáciu zvýrazňovania jednotlivých častí formálneho textu priamo v systéme
by bolo nutné implementovať analýzu INI formátov, čo by bolo časovo náročné. Preto som sa
rozhodol o využitie extérneho riešenia. Za vhodnú považujem webovú aplikáciu hilite.me10.
Ide o malú webovú aplikáciu, ktorá kód v prostom texte prevádza do pekne zvýrazneného
HTML formátu [46]. Je k nej vytvorené API 11, ktoré zjednodušuje jej automatizované
použitie.

Služba zvýrazňujúca časti formálneho textu pošle cez API do webovej aplikácie hilite.me
text na zvýraznenie. Vrátený text služba prejde a upraví jeho formátovanie, aby bolo v sú-
lade s témou systému. Následne text v HTML formáte vráti službe alebo ViewModelu,
ktorý o zvýraznenie požiadal.

Pravidlá EditorConfigu

Formálny text v EditorConfig formáte obsiahnutý v konvenciách obsahuje páry kľúča a hod-
noty. Kľúč sa nazýva vlastnosťou (property) alebo pravidlom (rule). Tieto páry sú umiest-
nené pod sekciou, ktorá určuje, na aké súbory sa ich kontrola aplikuje. Pár určuje, aké
pravidlo a s akou hodnotou sa aplikuje. Formálne texty a teda ich pravidlá bude možné

9https://www.nuget.org/packages/Diff.Match.Patch
10http://hilite.me
11http://hilite.me/api

34

https://www.nuget.org/packages/Diff.Match.Patch
http://hilite.me
http://hilite.me/api

v systéme kontrolovať na repozitári konvencie, ako aj importovať z repozitára. Pre viac
informácií o fungovaní EditorConfigu viď 2.3.4.

EditorConfig v základe podporuje 7 pravidiel, ktoré budú implementované v logickej
vrstve systému v EditorConfig službe. Špeciálna vlastnosť root, ktorá určuje koreňový Edi-
torConfig súbor v súborovom systéme implementovaná nebude, keďže pri využívaní mimo
súborový systém je bezvýznamná. Následne je vhodné definovať zoznam pravidiel s ich
podporou v systéme, pričom podporou je myslená možnosť kontrolovať alebo importovať
pravidlá, či už z časti alebo celkovo:

∙ charset: Určuje znakovú sadu (encoding) súboru. Plne podporovaná.
∙ end_of_line: Určuje reprezentáciu konca riadku. Plne podporovaná.
∙ indent_size: Určuje počet stĺpcov pre úroveň odsadenia a šírku tabulátorov. Šírka

tabulátorov nie je a nemôže byť podporovaná. Je vlastnosťou IDE , nie súboru.
∙ indent_style: Určuje použitie medzier alebo tabov pri odsadení. Plná podpora.
∙ insert_final_newline: Určuje či je súbor ukončený novým riadkom. Plná podpora.
∙ tab_width: Určuje počet stĺpcov reprezentujúcich znak tabu. Vytvorená, avšak ne-

podporuje import ani kontrolu. Nemožno podporovať mimo IDE . Je vlastnosťou IDE ,
nie súboru.

∙ trim_trailing_whitespace: Určuje, či môžu byť prázdne znaky znakom nového
riadka. Plná podpora.

Okrem základných pravidiel som sa rozhodol pridať podporu aj pre vlastnosti špe-
cifického jazyka. Pridanie ďalších, rozširujúcich pravidiel má ukázať, ako sa do systému
pridávajú ďalšie pravidlá. K čiastočnému cieleniu ukážok ďalších pravidiel som sa rozhodol,
pretože väčšina automatizovaných nástrojov je cielených na určité jazyky, čím sa vyme-
dzujú ku konvenciám štandardne používaným v danom jazyku. Systém budem vytvárať
v .NET ekosystéme, preto som sa rozhodol vytvoriť ukážky vlastností používaných v .NET
prostredí. Ďalším dôvodom zvolenia je existencia rozšírení pre .NET (vid rozšírenia Edi-
torConfigu v 2.3.4), čo umožňuje implementovať už existujúce a používané pravidlá. Ďalšie
pravidlá, ktoré navrhujem implementovať:

∙ csharp_new_line_before_catch: Určuje, či je výraz catch na novom riadku v kóde
jazyka C#. Plná podpora.

∙ csharp_new_line_before_else: Určuje, či je výraz else na novom riadku v kóde
jazyka C#. Plná podpora.

∙ csharp_new_line_before_finally: Určuje, či je výraz finally na novom riadku
v kóde jazyka C#. Plná podpora.

Pravidlá kontrolujú v kóde vlastnosti, pre ktoré je nutné spraviť syntaktickú a lexikálnu
analýzu. K tomu je možné použiť Roslyn. Roslyn je open source implementácia prekladača
jazyka C# s API pre budovanie nástrojov na analýzu kódu [66]. Pomocou neho je možné
z kódu vytvoriť syntaktický strom, nájsť hľadané výrazy a skontrolovať ich okolie.

Pridávanie pravidiel

Základnou požiadavkou na systém je možnosť pridávať vlastné pravidlá. Tá je zabezpe-
čená vytvorením rozhrania IProperty, ktorého implementovaním sa trieda stáva pravidlom

35

(vlastnosťou). K vytváraniu pravidiel bude vytvorená dokumentácia. Viac informácií k do-
kumentácii sa nachádza na konci časti o návrhu logickej vrstvy.

Property

«interface»
ISingleton

IProperty
«interface» «interface» «interface»

ICheckable IImportable

Obr. 3.5: Obrázok zobrazujúci vlasnosť (pravidlo), ktorá implementuje rozhrania pre ňu ur-
čené. Implementácia rozhrania IProperty je povinná, ňou sa začne trieda považovať za vlas-
nosť. Tým že IProperty implementuje ISingleton sa vlastnosť automatický zaregistruje aj do
IoC kontajnera. Implementácia rozhraní IImportable a ICheckable je nepovinná. Rozhra-
nia sa implementujú v prípade, ak má byť vlastnosť kontrolovateľná alebo importovateľná
z repozitára. Viac informácií o rozhraniach pre kontrolu a import pravidiel sa nachádza
v častiach o nich.

Z požiadaviek na systém vyplýva, že systém by mal obsahovať zoznam implementova-
ných pravidiel s ich popisom. Rozhranie IProperty preto núti triedy, aby obsahovali meno
a popis pravidla. Zoznam pravidiel sa následne získa pomocou knižnice Reflection z tried
implementujúcich rozhranie. V zozname implementovaných pravidiel je viditeľné, či je pra-
vidlo kontrolovateľné podľa toho, či implementuje korešpondujúce rozhranie.

Import pravidiel

Importovanie pravidiel (vlastností) z GitHub repozitárov je možné implementovaním IIm-
portable rozhrania. Import sa prevádza na formálnom texte konvencie. V prvom kroku si
užívateľ import pravidiel nastavuje. Najprv si zvolí, či chce formálny text rozšíriť o novo
získané pravidlá, alebo ho chce nahradiť. Taktiež si vyberie vetvu v repozitári, z ktorej sa
budú pravidlá importovať a zvolí pravidlá, ktoré si praje importovať. Pri každom pravidle
si zvolí sekciu v repozitári v EditorConfig formáte. Prvotne sa užívateľovi zvolí implicitná
sekcia, ktorú musí definovať každé pravidlo, ktoré implementovalo IImportable rozhranie.
Sekcia určuje, z akých súborov v repozitári sa bude pravidlo importovať. Pri výbere impor-
tovaných pravidiel bude možné zvoliť výber všetkých naraz, pre uľahčenie práce pri nových
repozitároch v systéme.

Po zvolení nastavení prebehne samotný import, ktorý má niekoľko fáz. Počas priebehu
môže byť prerušený využitím tokenu prerušenia (cancelation token). Jednotlivé fázy importu
sú:

1. Inicializácia, vytvorenie potrebných štruktúr, získanie služieb z IoC kontajnera.

36

2. Stiahnutie zvolenej vetvy repozitára na server.
3. Investigácia stiahnutých súborov. Jednotlivým pravidlám sa priradia cesty k súborom

podľa zvolených sekcií.
4. Zavolanie Import metódy pre každé pravidlo na každom súbore z investigácie. Import

metódu implementuje každé pravidlo implementovaním IImportable rozhrania.
5. Zjednotenie výsledkov Import metód pre každé pravidlo.
6. Zmazanie vetvy repozitára, ukončenie importu.

Zisťovanie, či súbor korešponduje so sekciou pravidla a teda, či sa má pravidlo zo sú-
boru importovať bude riešené pomocou Roslyna. Po otvorení riešenia (solution) vo Visual
Studiu, ktoré natívne EditorConfig podporuje, sa Roslyn pokúša nájsť EditorConfig súbory
a dodržiavať ich. Roslyn teda obsahuje funkcionalitu na prácu s EditorConfig súbormi.

Import metóda ma jeden parameter a tým je súbor na ktorom je spustená. Ako výsledok
vracia dvojice hodnoty pravidla a váhy, s akou je v súbore hodnota zastúpená. Napríklad
pre pravidlo csharp_new_line_before_else na súbore, kde by bol výraz else dvakrát
na novom riadku a raz nie, by mohla byť hodnota true s váhou dva a hodnota false
s váhou jedna.

Po ukončení importu sa užívateľovi zobrazia všetky importované pravidlá s nájdenými
hodnotami a ich percentuálnym zastúpením. Z hodnôt sa automaticky zvolí tá s najvyšším
zastúpením, avšak užívateľ ju môže zmeniť, nastaviť na unset alebo vôbec nenaimportovať.
U všetkých pravidiel hodnota unset ruší efekt daného pravidla, keď bolo nastavené už
predtým [41].

Kontrola pravidiel

Kontrolu bude možné spúšťať na pravidlách (vlastnostiach), ktoré implementujú ICheckable
rozhranie. Pre implementovanie rozhrania je nutné vytvoriť texty, ktoré užívateľom objas-
nia, aké sú povolené hodnoty a typy súborov pri danej kontrole. Implementovať je nutné
aj metódu Check, ktorá na súbore spustí dané pravidlo so zadanou hodnotou. Výsledkom
metódy je úspešná alebo neúspešná kontrola s chybovou správou.

Kontrola pravidiel sa bude spúšťať v systéme v pohľade zvoleného repozitára. Užívateľ
si zvolí kontrolované konvencie a vetvu repozitára, na ktorej kontrola prebehne. Následne
sa spustí kontrola, skladajúca sa z viacerých fáz. Kontorla môže byť prerušená využitím
tokenu prerušenia (cancelation token). Jednotlivé fázy kontroly sú:

1. Inicializácia, vytvorenie potrebných štruktúr, získanie služieb z IoC kontajnera.
2. Stiahnutie zvolenej vetvy repozitára na server.
3. Prepojenie stiahnutých súborov s pravidlami. Pravidlám v konvenciách sa priradia

cesty k súborom podľa ich sekcií.
4. Zavolanie Check metódy pre každé pravidlo na každom súbore.
5. Zjednotenie a normalizovanie výsledkov kontroly.
6. Uloženie výsledkov do databázy.
7. Zmazanie vetvy repozitára, ukončenie kontroly.

Pri prepojení repozitárov s formálnymi textami konvencií je nutné formálne texty spra-
covať a získať z nich pravidlá s ich hodnotami v príslušných sekciách. K tomu využijem

37

rovnako ako pri importe pravidiel Roslyna, ktorý obsahuje funkcionalitu na prácu s Editor-
Config súbormi. Ošetrenie zadania neexistujúceho pravidla je riešené na úrovni kontroly.
Tá pravidlo detekuje a nastaví ho na neúspešné so zodpovedajúcou chybovou správou. Ne-
správna hodnota pravidla sa detekuje v Check metóde, ktorá vráti príslušnú výnimku, ktorú
odchytí kontrola a taktiež nastaví pravidlo na neúspešné s chybovou správou.

Výsledky sú užívateľovi prezentované ako formálne texty konvencií. Jednotlivé riadky
sú sfarbené buď na zeleno v prípade úspechu alebo na červeno v prípade neúspechu. Riadok
sa nezafarbí, ak neobsahuje pravidlo alebo pravidlo nebolo na žiadnom súbore spustené.
Riadky sfarbené na červeno bude možné otvoriť a sledovať u nich správy k chybám na sú-
boroch. Každá kontrola sa automaticky ukladá do databázy a je možné sa k jej výsledkom
vrátiť.

Dokumentácia

Z požiadaviek na navrhovaný systém vystáva vytvorenie návodu na nasadenie systému a na
implementáciu vlastných pravidiel vo formálnom texte. Pre dokumentáciu som sa rozhodol
využiť DocFX. DocFX je generátor API dokumentácie pre .NET , ktorý generuje doku-
mentáciu z dokumentačných komentárov v kóde [60]. Podporuje taktiež využitie Markdown
súborov na vytvorenie ďalších tém, ako sú návody a články [60].

DocFX som sa rozhodol využiť pre jeho napojenie na .NET ekosystém, ktorý je k rieše-
niu systému využitý. Návody vytvorím ako Markdown súbory a možnosť generovania doku-
mentácie z dokumentačných komentárov využijem pri návode na implementáciu vlastných
pravidiel. K časti kódu, do ktorej sa budú pravidlá pridávať, vytvorím API dokumentáciu,
na ktorú sa budem odkazovať z návodu. Dokumentáciu následne spoločne so systémom uve-
rejním v službe GitHub, pričom z nej vytvorím stránku pomocou GitHub Pages. GitHub
Pages je spôsob ako hostovať stránku priamo z GitHub repozitára [33].

3.2.4 Databázová vrstva

Databázová vrstva slúži ako prístupový bod k perzistentným dátam pre logickú vrstvu.
Vytvorením databázovej vrstvy sa oddeľuje logika databázy od logiky aplikácie. Logická
vrstva sa stáva nezávislá na spôsobe uloženia dát a druhu databázy. K práci s databázou
je v návrhu systému použitý Entity Framework.

Entity Framework

Entity Framework je open source ORM rámec pre .NET aplikácie, podporovaný Microsof-
tom [16]. Umožňuje vývojárom pracovať s databázovými objektami a tabuľkami ako s .NET
objektami, čo eliminuje väčšinu kódu napísaného k prístupu k databáze [16]. Konkrétne na-
vrhujem využitie Entity Framework Core, ktorý je novšou odľahčenejšou verziou Entity
Frameworku, s použitím Code–First prístupu. Code–First prístup sa zameriava na doménu
aplikácie, vytvárajú sa pri ňom triedy nazývané entity reprezentujúce dizajn databázy,
z ktorých sa následne vygeneruje databázová schéma [15].

Entity Framework Core sa do projektu inštaluje pomocou nuget balíčku12. Po jeho na-
inštalovaní bude možné vytvoriť kontext databázy vytvorením triedy dediacej DbContext
triedu. DbContext je neoddeliteľnou súčasťou Entity Frameworku, jeho inštancia reprezen-
tuje reláciu s databázou, ktorú je možné použiť na dotazovanie a ukladanie inštancií entít

12https://www.nuget.org/packages/Microsoft.EntityFrameworkCore

38

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore

do databázy [13]. Do triedy reprezentujúcej kontext databázy sa vložia entity a prístupové
údaje k databáze. Následne je možné vygenerovať a aplikovať databázovú migráciu.

Entity

Entita je v Entity Frameworku trieda, ktorá sa mapuje na databázovú tabuľku. Musí byť
pridaná ako DbSet<TEntity> do DbContext triedy [14]. Entity Framework mapuje každú
entitu na tabuľku a každú vlasnosť entity na stĺpec v tabuľke, čo umožňuje vytvárať dizajn
databázy. Referencovaním medzi entitami je možné vytvárať referencie medzi tabuľkami.

V databáze budú uložené údaje o užívateľoch, ich repozitároch a ich konvenciách.
Ku konvencii budú uložené informácie k jej komentárom, formálnemu a formátovanému
textu. K textom bude uložená história v podobe zmien medzi ich verziami. K repozitárom
budú uložené záznamy o vykonaných kontrolách konvencií na nich.

Návrhový vzor Repozitár a UnitOfWork

Na odtienenie použitej technológie na prácu s databázou som sa rozhodol využiť návrhové
vzory Repozitár a UnitOfWork. Odtienením sa logická vrstva stáva nezávislou na použitom
rámci a druhu databázy v databázovej vrstve.

Repozitár je iba trieda, ktorá implementuje logiku prístupu k dátam [67]. V systéme
bude existovať generický repozitár obsahujúci základné operácie nad dátami, ako je vyhľa-
dávanie podľa identifikátora, pridávanie, mazanie a aktualizovanie entít. Operácie špecifické
pre danú entitu budú riešené pomocou rozširujúcich metód (extensions methods).

UnitOfWork sa správa ako obchodná transakcia, spája transakcie zo všetkých repozi-
tárov do jednej, ktorá sa vykoná naraz [67]. UnitOfWork v navrhnutom systéme obsahuje
repozitár pre každú entitu. Dovoľuje vytvoriť transakciu, vykonať čiastkové transakcie z re-
pozitárov a vykonať ich nad databázou spolu, prípadne všetky vrátiť späť a nevykonať
žiadnu, ak v priebehu nastala chyba. V logickej vrstve sa vytvorí databázová služba, ktorá
bude obsahovať komplexné transakcie nad databázou podľa potreby vrstvy.

Do IoC kontajnera je ako jedináčik zaregistrovaný UnitOfWork manažér, ktorého úče-
lom je vytvárať novú inštanciu UnitOfWork pre každú transakciu. Na logickej vrstve požiada
služba alebo ViewModel o novú inštanciu UnitOfWork. Následne v repozitároch inštancie
vykoná požadované transakcie a pomocou UnitOfWork zmeny odošle.

3.3 Implementácia návrhu
Časť práce popisujúca implementáciu systému. Webovú aplikáciu a dokumentáciu som im-
plementoval v súlade s navrhnutou architektúrou (viď 3.2). Snažil som sa o vytvorenie
kvalitného, čistého a ľahko rozšíriteľného kódu. V prvej časti sa venujem prostrediu, po-
užitého k implementácii (viď 3.3.1), následne popisujem problémové časti implementácie
(viď 3.3.1) a jej nasadenie (viď 3.3.3).

3.3.1 Implementačné prostredie

Systém bol implementovaný na operačnom systéme Windows 10 v prostredí Visual Studio
2019. Visual Studio 201913 je plnohodnotné IDE pre operačný systém Windows 10 vyvi-
nuté firmou Microsoft [58]. Prostredie som zvolil, pretože je doporučeným IDE so všetkými

13https://visualstudio.microsoft.com

39

https://visualstudio.microsoft.com

funkcionalitami pre vývoj .NET aplikácií. V prostredí som využil rozšírenie ReSharper14,
ktoré rozširuje IDE o ďalšie funkcionality zrýchľujúce vývoj a zvyšujúce kvalitu kódu. Tak-
tiež som využil rozšírenie Markdown editor15, ktoré do prostredia pridáva editor Markdown
súborov. Výsledný systém obsahuje Markdown súbory v dokumentácii a Markdown README
súbor v koreňovej zložke projektu.

Visual Studio som okrem samotného písania kódu, hľadania chýb a lokálneho nasadzo-
vania systému využíval aj k udržiavaniu tajomstiev ako je prístupový reťazec do databázy,
klientské tajomstvo a klientské ID ku GitHub OAuth aplikácii. K implementácii som využí-
val verzný systém Git priamo v prostredí Visual Studia, ktoré obsahuje vstavané nástroje
na prácu s Git repozitárom. Zdrojové súbory systému som uchovával v privátnom projekte
služby GitLab, kde som si zaznamenával aj informácie k aktuálneemu stavu diplomovej
práce. Po dokončení vývoja som zdrojové súbory zverejnil v službe GitHub a nasadil v clou-
dovej platforme Azure (pre viac informácií viď 3.3.3).

3.3.2 Problémové časti implementácie

Vďaka navrhnutiu architektúry systému bolo už pred začiatkom implementácie jasné, aké
funkcionality bude mať výsledný systém, na aké časti bude systém rozdelený a za čo budú
mať časti zodpovednosť, poprípade aká technológia bude pre ich implementáciu využitá.
Pri implementácii niektorých častí nastali problémy, s ktorými architektúra systému nepo-
čítala. V tejto časti sa snažím ilustrovať najpodstatnejšie z týchto problémov a popísať ako
boli vyriešené.

Model–View–ViewModel

Implementovanie Model–View–ViewModel bolo problematické. Vzor je využívaný prevažne
s technológiou WPF , ku ktorej existujú NuGet balíčky na jej jednoduchšiu implementáciu.
Tieto balíčky pri View počítajú s použitím xaml súborov pre užívateĺské rozhranie, čo nie
je kompatibilné s Razor Pages pri technológii Blazor. Tieto baličky sú prevažne pre .NET
Framework, ktorý nie je plne kompatibilný s .NET Core.

Problematická bola časť rozdelenia logiky View a ViewModela. Nepodarilo sa mi imple-
mentovať View bez C# kódu na pozadí, ktorý by komunikoval s ViewModelmi. Problém
je vyriešený tenkou vrstvou C# kódu na strane View, ktorý volá jednotlivé časti ViewMo-
delov. Riešenie z časti narušuje čistotu kódu, avšak na používanie aplikácie nemá žiadny
vplyv.

Taktiež sa mi nepodarilo implementovať návrhový vzor Command, tak ako je využívaný
vo WPF . Command je návrhový vzor, ktorý zapuzdruje požiadavku do objektu [8]. Prob-
lémové bolo naviazanie Commandu na View. Namiesto Commandu je v systéme použité
priame volanie metódy ViewModela.

Návrhový vzor Messenger bol implementovaný pomocou nuget balíčka MvvmLight-
Libs16 pre .NET Standard. ViewModely medzi sebou nemajú závislosti a komunikujú
cez Messenger. Práca s formálnymi a formátovanými textami konvencie je riešená pomocou
dialógov volaných z pohľadu konvencie. ViewModel formálneho a formátovaného textu by
mal veľkú závislosť na ViewModel konvencie, čo by zapríčiňovalo posielanie veľkého množ-
stva správ medzi nimi. Preto som sa rozhodol tieto ViewModely zlúčiť a spravovať formálne
a formátované texty konvencií vo ViewModeli konvencie.

14https://www.jetbrains.com/resharper
15https://github.com/madskristensen/MarkdownEditor
16https://www.nuget.org/packages/MvvmLightLibsStd10

40

https://www.jetbrains.com/resharper
https://github.com/madskristensen/MarkdownEditor
https://www.nuget.org/packages/MvvmLightLibsStd10

História formátovaného textu

Tak ako je špecifikované, k vytváraniu zmien textov v systéme je použitý NuGet balíček
diff–match–patch17. Ten je však určený na prácu s prostými textami bez formátovania.
Pri použití formátovaného textu nemusí aplikácia zmien dopadnúť správne.

Preto sa pred vytvorením nových zmien z textu odstráni formátovanie a do databázy sa
uložia iba prosté zmeny bez neho. V databáze sa nachádza aktuálny text s formátovaním
a jeho história bez formátovania. Systém teda podporuje formátovaný text, avšak pri histórii
si formátovanie nepamätá.

Charset pravidlo

Pravidlo Charset určuje znakovú sadu (encoding) súboru, tu nie je vždy možné presne
rozoznať, keďže súbor nemusí obsahovať dostatočné informácie. Roslyn sa k problému stavia
tak, že znakovú sadu prehlási za utf-8, ak sa mu nepodari zistiť iná.

K zisteniu znakovej sady súboru systém používa StreamReader. Pri jeho použití sa
môže zameniť latin1 a utf-8 kódovanie za utf-8bom. Problém nie je riešiteľný a na danú
skutočnosť systém upozorňuje v popise pravidla.

Roslyn

V návrhu je Roslyn použitý na na zisťovanie, či sekcia pravidla korešponduje s cestou
k súboru a teda či má byť pravidlo na súbore kontrolované alebo z neho importované.
Roslyn danú funkcionalitu obsahuje, avšak nie je verejná a je ju teda možné použiť iba
zvnútra. Problém som vyriešil použitím knižnice Reflection, pomocou ktorej systém získa
prístup k neverejnej metóde Roslyna a zavolá ju danými parametrami.

Podobný problém nastal pri využití Roslyna na získanie pravidiel s ich hodnotami a sek-
ciami z formátovaného textu. Roslyn zadanú funkcionalitu obsahuje, avšak nie je verejne
dostupná. V tomto prípade ani nebolo vhodné ju zavolať cez Reflection, pretože pracuje
s inými typmi objektov a mapovanie by bolo komplikované. Časť potrebnú na získavanie
pravidiel Roslyna som skopíroval do kódu systému, pozmenil, aby bolo možné ju použiť
a označil jej pôvod.

3.3.3 Nasadenie

Systém bol po dokončení implementácie nasadený v cloudovej platforme Azure18. Azure
je cloudová platforma s viac ako dvesto produktami a službami od spoločnosti Microsoft [64].
Zvolil som ju, pretože podporuje ASP.NET aplikácie a je natívne prepojená s Visual Stu-
diom. Systém ostane nasadený počas testovania a následného hodnotenia.

Inštancia je nasadená ako aplikačná služba úrovne B1, ktorá poskuje 1.75 GB pamäte
a 100 ACU . K aplikácii je vytvorený SQL server a Key vault, ktorý udržiava jej tajomstvá.
Pri zvolenom výkone nasadenia je vhodná primárne na testovacie účely s využívaním im-
portu a kontroly na repozitároch do 1000 súborov. K aplikácii je naviazaná vlastná doména
a SSL certifikát. K nasadeniu systému je vytvorený článok v dokumentácii19.

17https://www.nuget.org/packages/Diff.Match.Patch
18https://ccms.orlicek.net/
19https://orlicekm.github.io/CodingConventionsManagementSystem/articles/deployment.html

41

https://www.nuget.org/packages/Diff.Match.Patch
https://ccms.orlicek.net/
https://orlicekm.github.io/CodingConventionsManagementSystem/articles/deployment.html

Okrem nasadenia inštancie systému som po dokončení implementácie zverejnil zdrojové
súbory spolu s dokumentáciou v službe GitHub20. Následne som z dokumentácie z repozitára
vytvoril stránku pomocou GitHub Pages21.

20https://github.com/orlicekm/CodingConventionsManagementSystem
21https://orlicekm.github.io/CodingConventionsManagementSystem

42

https://github.com/orlicekm/CodingConventionsManagementSystem
https://orlicekm.github.io/CodingConventionsManagementSystem

Kapitola 4

Testovanie

Kapitola sa zaoberá procesom testovania vytvoreného systému potencionálnymi užívateľmi
(viď 4.2). Dôraz bol kladený na výsledky testovania s ohľadom na silné a slabé stránky
systému a vhodné oblasti použitia. K testovaniu bola vytvorená aj demonštrácia systému
na open source projekte (viď 4.1).

4.1 Demonštrácia
Časť práce demonštrujúca použitie systému na vybranom open source projekte. Pre demon-
štráciu som vybral projekt Microsoft PowerToys z analýzy vybraných projektov (viď 2.2.2).
Projekt som vybral, pretože bol v práci analyzovaný a z časti obsahuje aj kód v jazyku C#,
čo umožní demonštrovanie využitia pravidiel pre jeho kontrolu.

Pre prácu s projektom v systéme som si vytvoril jeho kópiu pomocou funkcie Fork. Ak
by som chcel, aby mal v systéme k repozitáru prístup aj iný užívateľ bolo by nutné ho
pridať ako prispievateľa do projektu v službe GitHub.

Testovať aplikáciu na nasadenej inštancii neodporúčam s viac ako 1000 súbormi v repo-
zitári. Pri zvolenom projekte, ktorý obsahuje viac ako 2800 súborov, trval import konvencií
približne 5 minút a ich kontrola trvala približne 8 minút. Pre prácu s väčšími repozitármi
je vhodné systém nasadiť na výkonnejšie riešenie.

Prihlasovanie do systému

Užívateľ sa do systému prihlasuje v pravom hornom rohu aplikácie pomocou GitHub účtu.
Pri prvom prihlásení je nutné systému povoliť prístup k informáciám o účte a repozitároch.
Bez prihlásenia nie je možné systém používať.

Výber repozitára

Užívateľ môže v systéme zvoliť repozitár, na ktorom bude spravovať programovacie konven-
cie. K repozitárom sa užívateľ dostane zvolením repozitárov (Repositories) v ľavom menu
aplikácie. Následne si zvolí repozitár kliknutím naň. K repozitárom sú zobrazené užitočné
údaje. ktorými sú popis, jazyk, licencia, počet konvencií, počet kontrol, počet forkov, počet
hviezdičiek (stargazers) alebo počet otvorených problémov (open issues). Medzi repozitármi
je možné vyhľadávať. Svoj aktuálne zvolený repozitár môže užívateľ vidieť v pravom spod-
nom rohu aplikácie. Ja som zvolil repozitár PowerToys, na ktorom je systém demonštrovaný.

43

Správa konvencií

Po zvolení repozitára sa užívateľovi otvorí pohľad spravovania konvencií na danom repozi-
tári. Do okna sa vie spätne dostať zvolením konvencií (Conventions) v ľavom menu aplikácie.
Kliknutím na tlačítko pridať (Add) sa užívateľovi otvorí dialóg pridávania konvencie. Pri-
dané konvencie sa následne zobrazujú užívateľovi spolu s užitočnými údajmi, ktorými sú
popis konvencie, počet sekcií vo formálnom texte, počet pravidiel vo formálnom texte alebo
počet komentárov. Medzi konvenciami je možné vyhľadávať.

Obr. 4.1: Do repozitára som pridal dve konvencie, jedna bude slúžiť na spravovanie pred-
volených konvencií ku všetkému, zatiaľ čo druhá sa bude sústrediť na jazyk C#.

Po kliknutí na pridanú konvenciu sa užívateľovi otvorí pohľad konvencie. V ňom môže
konvenciu premenovať alebo zmazať.

Komentovanie

V spodnej časti pohľadu konvencie užívateľ vidí komentáre k danej konvencii. Napísaním
textu a kliknutím na tlačítko pridať, môže ku konvencii pridať vlastný komentár.

Podporované vlastnosti

Zvolením vlastnosti (Properties) v ľavom menu aplikácie sa užívateľovi zobrazia systémom
podporované vlastnosti (alebo inak nazývané pravidlá). V nich si vie pozrieť popis, podpo-
rované súbory alebo hodnoty a zistiť, či je možné ich kontrolovať a importovať.

Správa textov

V pohľade konvencie môže užívateľ spravovať formátovaný (Description) a formálny (Pro-
perties) text konvencie. Kliknutím na tlačítko upraviť, ho môže meniť a kliknutím na his-
tóriu môže sledovať históriu zmien daného textu.

44

Obr. 4.2: Upravený formátovaný a formálny text konvencie, formálny text bude kontrolovať
kódovanie všetkých súborov.

Import vlastností

Vlastnosti je možné importovať kliknutím na šípku v tlačítku upraviť (Edit) pri formálnom
texte konvencie. Následne si užívateľ zvolí, či chcel text pridať alebo nahradiť, z akej vetvy
bude import prebiehať a aké vlastnosti (pravidlá) bude importovať v akých sekciách. Potom
spustí samotný import. Po jeho skončení si užívateľ zvolí hodnoty, ktoré chce importovať.

Obr. 4.3: Do formálneho textu som dal importovať zvyšné predvolené pravidlá. Po dokončení
som zvolil najčastejšie nájdené hodnoty.

Kontrola vlastností

Kontrolovať vlastnosti je možné v pohľade repozitára kliknutím na tlačítko kontrola (Check).
Následne si užívateľ zvolí vetvu repozitára a konvencie, ktoré chce na nej kontrolovať. Po-
tom spustí samotnú kontrolu. Po jej skončení si užívateľ môže prezerať výsledky, ktoré sú
automaticky uložené do databázy. K výsledkom predošlých kontrol sa môže vrátiť kliknutím
na šípku tlačítka kontrola.

45

Obr. 4.4: Po importovaní pravidiel aj pre C# konvencie, som spustil na repozitári kontrolu.
Na obrázku je možné vidieť jej výsledok. Zelené pravidlá prešli, zatiaľ čo pri červených
nastala chyba. Tie je možné rozkliknúť, na zistenie podrobností.

4.2 Testovanie užívateľmi
Časť práce popisujúca priebeh testovania systému jeho potencionálnymi užívateľmi. V prvej
časti vysvetľuje, ako boli účastníci testovania vybraný (viď 4.2.1), následne popisuje prie-
beh (viď 4.2.2) a v poslednej časti diskutuje silné a slabé stránky systému, určuje vhodné
oblasti použitia s ohľadom na výsledky testovania. Pre porovnanie existujúcich technológii
s funkcionalitami navrhované systému viď 3.1.1 a 3.1.2.

4.2.1 Výber účastníkov

Pri volení kritérií na účastníkov testovania som sa snažil zvoliť také, aby účasníci čo najlepšie
reprezovali možných užívateľov systému. Preto som od účastníkov očakával:

∙ Aspoň jeden rok skúseností s programovaním.
∙ Poznanie pojmu open source a stretnutie sa open source projektom.
∙ Chápanie programovacích konvencií a ich významu.

Pod stretnutím sa s open source projektom myslím zoznámenie sa so zdrojovým kódom
a spôsobom akým nejaký open source projekt funguje. Celkovo som oslovil trinásť ľudí
spĺňajúcich dané kritéria.

4.2.2 Priebeh

Účastníci testovania dostali prístup k demonštrácii projektu, ktorá bola prepisom demon-
štrácie z tejto práce (viď 4.1). Následne dostali odkazy k repozitáru v službe GitHub, doku-
mentácii a nasadenej inštancii systému. Od účastníkov som očakával že si projekt naštudujú

46

a vrátia mi spätnú väzbu. Odpoveď mala formát volného textu, keďže som im poslal textový
súbor s dvoma sadami otázok:

∙ Vedeli by ste projekt využiť? Ak áno, na akých projektoch a za akých podmienok?
∙ Čo Vám v systéme chýba? Co by ste chceli zmeniť? Čo Vám naopak systéme vyhovuje?

Z trinásť dotázaných ľudí som dostal deväť odpovedí. Jedna z nich neodpovedala na otázky,
ale iba stručne hodnotila, že systém je v poriadku.

4.2.3 Výsledky

Výsledky od účastníkov som rozdelil do štyroch kategórii. V prvej sa venujem vhodným
oblastiam použitia systému. V nasledujúcej zmenám, ktoré by bolo vhodné v systéme spra-
viť, aby bol viac užívateľsky prívetivý a vhodný na použitie. V ďalšej menujem rozšírenia
systému a v poslednej aspekty, ktoré užívateľom na systéme vyhovovali.

Vhodne oblasti využitia

Väčšina, šesť z ôsmich účastníkov odpovedala, že by projekt využiť v aktuálnom stave nedo-
kázala. Dvaja účastníci ktorý by projekt využiť vedeli a kontrolovali by vždy všetky konven-
cie na každom projekte. Ďalší traja účastníci si vedia predstaviť projekt využiť pri pridaní
väčšieho množstva kontrol na špecifické jazyky.

Z môjho pohľadu sú vhodnými projektami na využitie také, ktoré vyžadujú vyššiu kva-
litu kódu (pre viac informácii viď 2.1). Medzi oblasti v ktorých sa vyžaduje vyššia kvalita
kódu patrí napríklad zdravotníctvo, letectvo, armáda alebo autonómne vozidlá.

Vhodné zmeny

Väčšina navrhovaných zmien sa týkala užívateľského rozhrania:

∙ Premiestnenie zobrazovania zvoleného repozitára.
∙ Osobitné tlačítka pre históriu kontroly a importovanie.
∙ Väčšie okná pre dialógy importu a kontroly, možnosť expandovať dialóg na celú ob-

razovku.
∙ Chyby v textoch.
∙ Prerobenie okna kontroly, zobrazovať namiesto čísla riadka priamo jeho text, poprí-

pade celú časť a súboru a v nej chybu zvýrazniť. Nepraktické hľadanie chýb pri ich
väčšom množstve.

Chyby v textoch som v aplikácii opravil.

Vhodné rozšírenia

Rozšírenia, ktoré užívatelia žiadali sa týkali prevažne rozsiahlejších zásahov do systému:

∙ Pridanie ďalších pravidiel na importovanie a kontrolovanie.
∙ Pridanie módu na čítanie (read-only mode) pre verejné projekty, ktorých nie je uží-

vateľ účastníkom.

47

∙ Preloženie demonštrácie do angličtiny a vloženie do dokumentácie.
∙ Možnosť vytvoriť pull request na repozitár na základe kontroly.
∙ Spúšťanie kontroly na každom vytvorenom pull requeste, pridanie možnosti spustenia

kontoroly pomocou GitHub Actions.
∙ Ku každému pravidlu pridať do ich zoznamu príklad použitia.

Vyhovujúce aspekty

Zoznam aspektov, ktorý užívateľom na systéme vyhovoval:

∙ Priama interakcia a napojenie na GitHub.
∙ Možnosť kontrolovať všetko v každom programovacom jazyku.
∙ Formát formálnych textov.
∙ Zdieľanie konvencii na rovnakom projekte medzi užívateľmi.

V zozname som neuviedol nešpecifikované odpovede ako „všetko“ alebo „práca s kon-
venciami“.

48

Kapitola 5

Záver

Cieľom práce je navrhnúť a implementovať systém na správu programovacích konvencií
v projekte. Motiváciou využitia programovacích konvencií v projekte je zvýšenie čistoty
kódu, ktorá zefektívňuje vývoj. Hlavným zámerom bolo vytvoriť systém, ktorý umožní
uchovávať všetky druhy používaných programovacích konvencií a zároveň umožní užívateľovi
dané konvencie automaticky kontrolovať a generovať. Systém je cielený primárne pre verejne
dostupné open source projekty na platforme GitHub.

Pri vytváraní návrhu systému som uskutočnil niekoľko prieskumov. V prvom rade som
zisťoval, aké benefity využitia programovacích konvencií v projektoch prinesie (viď 2.1).
Následne som robil prieskum konvencií v open source projektoch (viď 2.2.1), z ktorých
som vybral určité projekty pre podrobnejšiu analýzu (viď 2.2.2). Okrem toho som usku-
točnil analýzu technológií spravujúcich programovacie konvencie, vďaka čomu som zistil,
že väčšina projektov používa na uloženie konvencií iba nejakú formu formátovaného textu.
Najčastejšie používaným automatizovaným nástrojom bol EditorConfig (viď 2.3.4), ktorý
som sa rozhodol použiť pri návrhu a zapracovať do vytvoreného systému.

Pri prieskume konvencií v projektoch som skúmal päťdesiat projektov v službe GitHub,
ktoré získali najviac hviezdičiek (stargazers) za rok 2020 a zároveň obsahujú open source
licenciu. Zoznam projektov som získal v BigQuery dátovom sklade, uchovávajúcom informá-
cie o službe GitHub. Z prieskumu som zistil, že veľké množstvo projektov konvencie vôbec
neobsahuje a tie, ktoré ich obsahovali mali medzi sebou veľkú diverzitu.

Systém som sa rozhodol navrhnúť ako webovú službu s využitím technológie Blazor,
napojenú na databázu a uloženú na Azure cloude, pričom som sa pokúsil o využitie najnov-
ších technológií. Taktiež som sa snažil cieliť na open source projekty, preto je prihlasovanie
navrhnuté cez protokol OAuth pomocou GitHub účtu.

Navrhnutý systém som následne implementoval, vytvoril k nemu dokumentáciu a nasadil
ho do cloudovej platformy Azure. Pri implementácii som sa stretol s niekoľkými problema-
tickými časťami (viď 3.3.2), v ktorých som nemohol postupovať podľa návrhu. Tie som
následne ilustroval a popísal, akým spôsobom boli vyriešené.

Ako pri analýze, tak aj pri návrhu som sa nestretol so žiadnymi vážnejšími problémami.
Najväčšou výzvou bolo pre mňa nájdenie vhodnej knižnej literatúry k programovacím kon-
venciám, keďže sa mi nedarilo nájsť knihy zamerané priamo na túto tematiku. Avšak existuje
mnoho kníh zameraných na refaktorizáciu a čistotu kódu, ktoré túto tematiku riešia.

K systému bola vytvorená dokumentácia, nasadená ako GitHub Pages stránka, obsa-
hujúca návod ako systém nasadiť a ako do systému pridať vlastné pravidlá na kontrolu
konvencií, spolu s API dokumentáciou. Projekt bol demonštrovaný na open source projekte
a testovaný možnými užívateľmi.

49

Na záver by som zmienil, že prácu by bolo možné ešte rozšíriť o ďalšie funkcionality,
pričom inšpirácia by sa čerpala z dát získaných z testovania. Výsledný systém obsahuje iba
základné funkcionality, získane z analýz na spravovanie programovacích konvencií. Pre lepšie
využitie by bolo vhodné systém spraviť pohodlnejším na používanie. To by šlo docieliť
najmä integrovaním systému do viacerých verzných služieb a pridaním rôznych druhov
importov a exportov konvencií, ako aj pridaním viacerých pravidiel pre kontrolu. Verím,
že implementovaný systém a vykonané analýzy v tejto práci pomôžu rozšíreniu výskumu
a vývoju technológii v oblasti spravovania programovacích konvencií.

50

Literatúra k práci

[1] Agile Alliance. What is Agile? Agile 101 [online]. [cit. 2020-11-18]. Dostupné z:
https://www.agilealliance.org/agile101.

[2] Alls, J. Clean Code in C#: Refactor your legacy C# code base and improve
application performance by applying best practices. Packt Publishing, 2020. ISBN
978-1-8389-8297-3.

[3] Ankur. C# Coding Standards [online]. [cit. 2021-03-10]. Dostupné z: https:
//www.c-sharpcorner.com/UploadFile/ankurmalik123/C-Sharp-coding-standards.

[4] Bellairs, R. Coding best practices. What is code quality? And how to improve code
quality [online]. [cit. 2020-11-18]. Dostupné z: https:
//www.perforce.com/blog/sca/what-code-quality-and-how-improve-code-quality.

[5] Cone, M. Advanced features that build on the basic Markdown syntax. Extended
Syntax [online]. [cit. 2020-12-30]. Dostupné z:
https://www.markdownguide.org/extended-syntax.

[6] Cordasco, I. S. Flake8 [online]. [cit. 2021-03-17]. Dostupné z:
https://flake8.pycqa.org/en/latest/manpage.html.

[7] Data & Object Factory, LLC.. C# Coding Standards and Naming Conventions
[online]. [cit. 2020-11-23]. Dostupné z:
https://www.dofactory.com/reference/csharp-coding-standards.

[8] Data & Object Factory, LLC. C# Command [online]. [cit. 2021-07-28]. Dostupné
z: https://www.dofactory.com/net/command-design-pattern.

[9] Data & Object Factory, LLC.. Dofactory [online]. [cit. 2020-11-23]. Dostupné z:
https://www.dofactory.com.

[10] DotNetPattern.com. MVVM Light Messenger [online]. [cit. 2021-07-27]. Dostupné
z: http://dotnetpattern.com/mvvm-light-messenger.

[11] EditorConfig Team.. EditorConfig Properties [online]. [cit. 2021-01-04]. Dostupné
z: https://github.com/editorconfig/editorconfig/wiki/EditorConfig-Properties.

[12] EditorConfig Team.. EditorConfig Specification [online]. [cit. 2021-01-04].
Dostupné z: https://editorconfig-specification.readthedocs.io.

[13] EntityFrameworkTutorial.net. Entity Framework Core: DbContext [online].
[cit. 2021-07-28]. Dostupné z: https:
//www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx.

51

https://www.agilealliance.org/agile101
https://www.c-sharpcorner.com/UploadFile/ankurmalik123/C-Sharp-coding-standards
https://www.c-sharpcorner.com/UploadFile/ankurmalik123/C-Sharp-coding-standards
https://www.perforce.com/blog/sca/what-code-quality-and-how-improve-code-quality
https://www.perforce.com/blog/sca/what-code-quality-and-how-improve-code-quality
https://www.markdownguide.org/extended-syntax
https://flake8.pycqa.org/en/latest/manpage.html
https://www.dofactory.com/reference/csharp-coding-standards
https://www.dofactory.com/net/command-design-pattern
https://www.dofactory.com
http://dotnetpattern.com/mvvm-light-messenger
https://github.com/editorconfig/editorconfig/wiki/EditorConfig-Properties
https://editorconfig-specification.readthedocs.io
https://www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx
https://www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx

[14] EntityFrameworkTutorial.net. What is an Entity in Entity Framework?
[online]. [cit. 2021-07-28]. Dostupné z:
https://www.entityframeworktutorial.net/basics/entity-in-entityframework.aspx.

[15] EntityFrameworkTutorial.net. What is Code–First? [online]. [cit. 2021-07-28].
Dostupné z:
https://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx.

[16] EntityFrameworkTutorial.net. What is Entity Framework? [online]. [cit.
2021-07-27]. Dostupné z:
https://www.entityframeworktutorial.net/what-is-entityframework.aspx.

[17] Facebook. React [online]. [cit. 2021-01-07]. Dostupné z:
https://github.com/facebook/react.

[18] Fowler, M. Refactoring: Improving the Design of Existing Code. Druhé.
Addison-Wesley, 2019. ISBN 978-1-5093-0698-5.

[19] García, I. S. The theory beyond the pattern. Learn MVVM [online]. [cit.
2021-07-27]. Dostupné z: https://www.learnmvvm.com/theory.html.

[20] GeeksforGeeks. GeeksforGeeks [online]. [cit. 2020-11-24]. Dostupné z:
https://www.geeksforgeeks.org.

[21] Gefroh, J. Software engineering is a lot easier in consistent systems. Why
consistency is one of the top indicators of good code [online]. [cit. 2020-11-19].
Dostupné z: https://medium.com/@jgefroh/why-consistency-is-one-of-the-top-
indicators-of-good-code-352ba5d62020.

[22] GHTorrent. GHTorrent on the Google cloud [online]. [cit. 2020-12-20]. Dostupné z:
https://ghtorrent.org/gcloud.html.

[23] GitHub. About wikis [online]. [cit. 2021-01-02]. Dostupné z: https://docs.github.com/
en/free-pro-team@latest/github/building-a-strong-community/about-wikis.

[24] GitHub. Adding or editing wiki pages [online]. [cit. 2021-01-02]. Dostupné z:
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-
community/adding-or-editing-wiki-pages.

[25] GitHub. Configuring issue templates for your repository [online]. [cit. 2021-01-01].
Dostupné z: https://docs.github.com/en/free-pro-team@latest/github/building-a-
strong-community/configuring-issue-templates-for-your-repository.

[26] GitHub. Creating an issue [online]. [cit. 2021-01-01]. Dostupné z:
https://docs.github.com/en/free-pro-team@latest/github/managing-your-work-on-
github/creating-an-issue.

[27] GitHub. The largest open source community in the world [online]. [cit. 2020-12-17].
Dostupné z: https://github.com/open-source.

[28] GitHub. Mastering Issues [online]. [cit. 2020-12-31]. Dostupné z:
https://guides.github.com/features/issues.

52

https://www.entityframeworktutorial.net/basics/entity-in-entityframework.aspx
https://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx
https://www.entityframeworktutorial.net/what-is-entityframework.aspx
https://github.com/facebook/react
https://www.learnmvvm.com/theory.html
https://www.geeksforgeeks.org
https://medium.com/@jgefroh/why-consistency-is-one-of-the-top-indicators-of-good-code-352ba5d62020
https://medium.com/@jgefroh/why-consistency-is-one-of-the-top-indicators-of-good-code-352ba5d62020
https://ghtorrent.org/gcloud.html
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/about-wikis
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/about-wikis
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/adding-or-editing-wiki-pages
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/adding-or-editing-wiki-pages
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/configuring-issue-templates-for-your-repository
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/configuring-issue-templates-for-your-repository
https://docs.github.com/en/free-pro-team@latest/github/managing-your-work-on-github/creating-an-issue
https://docs.github.com/en/free-pro-team@latest/github/managing-your-work-on-github/creating-an-issue
https://github.com/open-source
https://guides.github.com/features/issues

[29] GitHub. Mastering Markdown [online]. [cit. 2020-12-30]. Dostupné z:
https://guides.github.com/features/mastering-markdown.

[30] GitHub. Octokit — GitHub API Client Library for .NET [online]. [cit. 2021-06-29].
Dostupné z: https://github.com/octokit/octokit.net.

[31] GitHub. Octoverse [online]. [cit. 2020-12-22]. Dostupné z:
https://octoverse.github.com.

[32] GitHub. Using templates to encourage useful issues and pull requests [online]. [cit.
2021-01-01]. Dostupné z:
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-
community/using-templates-to-encourage-useful-issues-and-pull-requests.

[33] GitHub, Inc.. GitHub Pages [online]. [cit. 2021-07-27]. Dostupné z:
https://pages.github.com.

[34] Google. C# at Google Style Guide [online]. [cit. 2020-11-24]. Dostupné z:
https://google.github.io/styleguide/csharp-style.html.

[35] Google. Diff Match Patch [online]. [cit. 2021-06-30]. Dostupné z:
https://github.com/google/diff-match-patch.

[36] Google. Google Style Guides [online]. [cit. 2020-11-24]. Dostupné z:
https://google.github.io/styleguide.

[37] Google, LLC. Waterfall model vs agile scrum. Google Trends [online]. [cit.
2020-11-15]. Dostupné z: https://trends.google.com/trends/explore?date=all&q=
waterfall%20model,agile%20scrum.

[38] Grigorik, I. GH Archive [online]. [cit. 2020-12-22]. Dostupné z:
https://www.gharchive.org.

[39] Grimes, R. A. a Fruhlinger, J. What is OAuth? How the open authorization
framework works [online]. [cit. 2021-01-17]. Dostupné z: https://www.csoonline.com/
article/3216404/what-is-oauth-how-the-open-authorization-framework-works.html.

[40] Hoffa, F. Analyzing GitHub [online]. [cit. 2020-12-22]. Dostupné z:
https://github.com/fhoffa/analyzing_github.

[41] Hunner, T. a Xu, H. EditorConfig [online]. [cit. 2021-01-02]. Dostupné z:
https://editorconfig.org.

[42] IBM Cloud Education. Three–Tier Architecture [online]. [cit. 2021-07-22].
Dostupné z: https://www.ibm.com/cloud/learn/three-tier-architecture.

[43] JetBrains s.r.o.. IntelliJ IDEA overview [online]. [cit. 2021-03-12]. Dostupné z:
https://www.jetbrains.com/help/idea/discover-intellij-idea.html#editorconfig.

[44] JetBrains s.r.o.. Use EditorConfig [online]. [cit. 2021-03-12]. Dostupné z:
https://www.jetbrains.com/help/resharper/Using_EditorConfig.html.

[45] Jimmy Bogard. AutoMapper [online]. [cit. 2021-07-27]. Dostupné z:
https://automapper.org/.

53

https://guides.github.com/features/mastering-markdown
https://github.com/octokit/octokit.net
https://octoverse.github.com
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/using-templates-to-encourage-useful-issues-and-pull-requests
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/using-templates-to-encourage-useful-issues-and-pull-requests
https://pages.github.com
https://google.github.io/styleguide/csharp-style.html
https://github.com/google/diff-match-patch
https://google.github.io/styleguide
https://trends.google.com/trends/explore?date=all&q=waterfall%20model,agile%20scrum
https://trends.google.com/trends/explore?date=all&q=waterfall%20model,agile%20scrum
https://www.gharchive.org
https://www.csoonline.com/article/3216404/what-is-oauth-how-the-open-authorization-framework-works.html
https://www.csoonline.com/article/3216404/what-is-oauth-how-the-open-authorization-framework-works.html
https://github.com/fhoffa/analyzing_github
https://editorconfig.org
https://www.ibm.com/cloud/learn/three-tier-architecture
https://www.jetbrains.com/help/idea/discover-intellij-idea.html#editorconfig
https://www.jetbrains.com/help/resharper/Using_EditorConfig.html
https://automapper.org/

[46] Kojevnikov, A. Hilite.me [online]. [cit. 2021-06-30]. Dostupné z:
https://github.com/alexkay/hilite.me.

[47] Křena, B. a Kočí, R. Studijní opora. Úvod do softwarového inženýrství [online].
FIT VUT v Brně, 2010 [cit. 2021-05-22]. Dostupné z:
https://wis.fit.vutbr.cz/FIT/st/cfs.php/course/IUS-IT/texts/IUS_opora.pdf.

[48] Langa Łukasz. Black [online]. [cit. 2021-03-17]. Dostupné z:
https://github.com/psf/black.

[49] Light, A. Cpplint [online]. [cit. 2021-03-12]. Dostupné z:
https://github.com/google/styleguide/tree/gh-pages/cpplint.

[50] Martin, R. C. Clean Code: A Handbook of Agile Software Craftmanship. Prentice
Hall, 2008. ISBN 978-0-1323-5088-4.

[51] Martin, R. C. a Martin, M. Agile principles, patterns, and practices in C#.
Prentice Hall, 2006. ISBN 978-0-1318-5725-4.

[52] Microsoft. ASP.NET Core Blazor hosting models [online]. [cit. 2021-01-17].
Dostupné z:
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=
aspnetcore-5.0.

[53] Microsoft. C# Programming Guide. C# Coding Conventions [online]. [cit.
2020-11-19]. Dostupné z: https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/inside-a-program/coding-conventions.

[54] Microsoft. C# Guide. C# documentation [online]. [cit. 2020-11-21]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/csharp.

[55] Microsoft. Code style rule options [online]. [cit. 2021-03-12]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/code-style-
rule-options.

[56] Microsoft. Dependency injection in ASP.NET Core [online]. [cit. 2021-07-27].
Dostupné z: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
dependency-injection?view=aspnetcore-5.0.

[57] Microsoft. Dependency injection in .NET [online]. [cit. 2021-07-27]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection.

[58] Microsoft. Visual Studio 2019. Downloads [online]. [cit. 2021-01-17]. Dostupné z:
https://visualstudio.microsoft.com/downloads.

[59] Microsoft. Framework Design Guidelines [online]. [cit. 2020-11-22]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines.

[60] Microsoft. Getting Started with DocFX [online]. [cit. 2021-07-27]. Dostupné z:
https://dotnet.github.io/docfx/tutorial/docfx_getting_started.html.

[61] Microsoft. Introduction to ASP.NET Core Blazor [online]. [cit. 2021-07-27].
Dostupné z:
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-5.0.

54

https://github.com/alexkay/hilite.me
https://wis.fit.vutbr.cz/FIT/st/cfs.php/course/IUS-IT/texts/IUS_opora.pdf
https://github.com/psf/black
https://github.com/google/styleguide/tree/gh-pages/cpplint
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/code-style-rule-options
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/code-style-rule-options
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://visualstudio.microsoft.com/downloads
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines
https://dotnet.github.io/docfx/tutorial/docfx_getting_started.html
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-5.0

[62] Microsoft. MICROSOFT DOCUMENTATION [online]. [cit. 2020-11-21]. Dostupné
z: https://docs.microsoft.com.

[63] Microsoft. Microsoft PowerToys [online]. [cit. 2021-01-07]. Dostupné z:
https://github.com/microsoft/PowerToys.

[64] Microsoft. What is Azure? [online]. [cit. 2021-01-17]. Dostupné z:
https://azure.microsoft.com/en-us/overview/what-is-azure.

[65] Morris, P. What is Blazor? [online]. [cit. 2021-01-17]. Dostupné z:
https://blazor-university.com/overview/what-is-blazor.

[66] .NET Foundation. Roslyn [online]. [cit. 2021-07-26]. Dostupné z:
https://github.com/dotnet/roslyn.

[67] Nguyen, L. How to implement Repository & Unit of Work design patterns in .NET
Core [online]. [cit. 2021-07-28]. Dostupné z:
https://enlabsoftware.com/development/how-to-implement-repository-unit-of-
work-design-patterns-in-dot-net-core-practical-examples-part-one.html.

[68] OpenJS Foundation. ESLint: About [online]. [cit. 2021-03-12]. Dostupné z:
https://eslint.org/docs/about.

[69] Prakash, S. C# Coding Standards. GeeksforGeeks [online]. [cit. 2020-11-24].
Dostupné z: https://www.geeksforgeeks.org/c-sharp-coding-standards.

[70] Prettier. Prettier vs. Linters [online]. [cit. 2021-01-05]. Dostupné z:
https://prettier.io/docs/en/comparison.html.

[71] Prettier. What is Prettier? [online]. [cit. 2021-01-05]. Dostupné z:
https://prettier.io/docs/en/index.html.

[72] Rabelo, J. Three-Tier Architecture [online]. [cit. 2021-07-22]. Dostupné z:
https://www.techopedia.com/definition/24649/three-tier-architecture.

[73] Rasmusson, J. Agile’s engine for getting things done. Iterations [online]. [cit.
2020-11-18]. Dostupné z: http://www.agilenutshell.com/iterations.

[74] Ritchie, D. a Kernighan, B. The C Programming Language. Druhé. New Jersey:
Prentice Hall, 1988. ISBN 978-0-1311-0370-2.

[75] Stack Overflow. 2018. Developer Survey Results [online]. [cit. 2020-11-16].
Dostupné z: https://insights.stackoverflow.com/survey/2018.

[76] Stack Overflow. 2019. Developer Survey Results [online]. [cit. 2021-03-09].
Dostupné z: https://insights.stackoverflow.com/survey/2019.

[77] Testim. What Is a Linte [online]. [cit. 2021-01-05]. Dostupné z: https://
www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide.

[78] The Clang Team. ClangFormat [online]. [cit. 2021-03-18]. Dostupné z:
https://clang.llvm.org/docs/ClangFormat.html.

[79] The Daring Fireball Company LLC.. Markdown [online]. [cit. 2020-12-30].
Dostupné z: https://daringfireball.net/projects/markdown.

55

https://docs.microsoft.com
https://github.com/microsoft/PowerToys
https://azure.microsoft.com/en-us/overview/what-is-azure
https://blazor-university.com/overview/what-is-blazor
https://github.com/dotnet/roslyn
https://enlabsoftware.com/development/how-to-implement-repository-unit-of-work-design-patterns-in-dot-net-core-practical-examples-part-one.html
https://enlabsoftware.com/development/how-to-implement-repository-unit-of-work-design-patterns-in-dot-net-core-practical-examples-part-one.html
https://eslint.org/docs/about
https://www.geeksforgeeks.org/c-sharp-coding-standards
https://prettier.io/docs/en/comparison.html
https://prettier.io/docs/en/index.html
https://www.techopedia.com/definition/24649/three-tier-architecture
http://www.agilenutshell.com/iterations
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2019
https://www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide
https://www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide
https://clang.llvm.org/docs/ClangFormat.html
https://daringfireball.net/projects/markdown

[80] The Linux Information Project. Source Code Definition [online]. [cit.
2020-10-11]. Dostupné z: http://www.linfo.org/source_code.html.

[81] The mypy project. Mypy [online]. [cit. 2021-03-17]. Dostupné z:
http://mypy-lang.org.

[82] The SublimeLinter Community. About SublimeLinter [online]. [cit. 2021-01-05].
Dostupné z: http://www.sublimelinter.com/en/v3.10.10/about.html.

[83] TheAlgorithms. The Algorithms - Python [online]. [cit. 2021-01-07]. Dostupné z:
https://github.com/TheAlgorithms/Python.

[84] UnityCoin. Clean Code — Uncle Bob / Lesson 1 [online]. [cit. 2020-11-19]. Dostupné
z: https://www.youtube.com/watch?v=7EmboKQH8lM.

[85] Voříšek, L. Analýza kvality zdrojových kódů [online]. 2015. Bakalárska práca. České
vysoké učení technické v Praze.

[86] Vuollet, P. The 9 Coding Standards C# Developers Need to Get Started [online].
[cit. 2021-03-10]. Dostupné z:
https://blog.submain.com/coding-standards-c-developers-need.

[87] Zielczynski, P. Requirements Management Using IBM Rational RequisitePro. Prvé.
IBM Press, 2007. ISBN 978-0-321-38300-6.

56

http://www.linfo.org/source_code.html
http://mypy-lang.org
http://www.sublimelinter.com/en/v3.10.10/about.html
https://github.com/TheAlgorithms/Python
https://www.youtube.com/watch?v=7EmboKQH8lM
https://blog.submain.com/coding-standards-c-developers-need

Skratky

ACU Azure compute unit. 41

API Application Programming Interface Str. 4, 16, 17, 31, 33, 34, 35, 38, 49

ASCII American Standard Code for Information Interchange Str. 10

CC Creative Commons Str. 17

CI Continuous integration Str. 60

CLA Contributor License Agreement Str. 13

CLR Common Language Runtime Str. 59

CSS Cascading Style Sheets Str. 22, 29

DI Dependency injection. 29, 31, 32

DoD Definition of Done Str. 6, 9

GUI Graphical user interface. 30

HTML Hyper Text Markup Language Str. 17, 18, 22, 29, 34

HTTP Hypertext Transfer Protocol Str. 10

IDE Integrated development environment Str. 6, 9, 12, 20, 21, 22, 35, 39, 40, 59, 60

INI Initialization File Str. 21, 34

IoC Inversion of control. 31, 36, 37, 39

JSON JavaScript Object Notation Str. 22

LINFO The Linux Information Project Str. 6

MIT Massachusetts Institute of Technology Str. 3

MVVM Model–View–ViewModel. 30, 32

ORM Object-relational mapping Str. 28, 38

57

https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://sproutsocial.com/insights/what-is-an-api/
https://en.wikipedia.org/wiki/ASCII
https://creativecommons.org/licenses/
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Contributor_License_Agreement
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/Dependency_injection
https://www.agilealliance.org/glossary/definition-of-done
https://en.wikipedia.org/wiki/Graphical_user_interface
https://www.w3schools.com/html/html_intro.asp
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/JSON
http://www.linfo.org/
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/Model-view-viewmodel
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

OTI Object Technology International Str. 8

SoC Separation of concerns. 30

SQL Structured Query Language Str. 17, 59

TDD Test-driven development Str. 9

UML Unified Modeling Language Str. 9

VM Virtual machine Str. 22

WPF Windows Presentation Foundation. 30, 40

XHTML Extensible HyperText Markup Language Str. 18

XML eXtensible Markup Language Str. 17

58

https://en.wikipedia.org/wiki/Object_Technology_International
https://en.wikipedia.org/wiki/Separation_of_concerns
https://www.infoworld.com/article/3219795/what-is-sql-the-lingua-franca-of-data-analysis.html
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/XHTML
https://www.w3schools.com/xml/xml_whatis.asp

Slovník

.NET je zastrešujúci názov pre súbor technológií v softvérových produktoch1 od spo-
ločnosti Microsoft, ktoré tvoria spoločnú platformu. Štandardizovanou špecifikáciou
.NET jadra je CLR [18]. Str. 3, 16, 17, 21, 27, 29, 35, 38, 40

Agilný vývoj softvéru je vývoj založený na iteráciách. Dokáže reagovať na zmenu po-
žiadaviek počas priebehu vývojového cyklu. Protikladom je lineárny vodopádový mo-
del [8]. Pre viac informácií z práce viď 2.1.1. Str. 3, 5, 6, 16, 60

BigQuery je plne spravovateĺný serverless dátový sklad, ktorý umožnuje škálovaľnú ana-
lýzu na veľkom množstve dát a podporuje dopytovanie pomocou SQL [9]. Str. 10

Clean code je neredundantný kód, napísaný systematicky tak, aby ho iný programátor
mohol jednoducho pochopiť a upraviť [24]. Pre viac informácií z práce viď 2.1.4. Str.
3, 5

Eclipse je IDE obsahujúce základný pracovný priestor a rozšíriteľný systém doplnkov
na jeho prispôsobenie. Primárne využitie je pre vývoj Java aplikácií [11]. Str. 8

Enterprise softvér je počítačový softvér, ktorý sa používa skôr na uspokojenie potrieb
organizácie ako jednotlivých používateľov [12]. Str. 16

Git je systém na kontrolu verzií, ktoré umožňujú sledovanie zmien v súboroch a koordináciu
prác na týchto súboroch medzi viacerými programátormi [13]. Str. 11, 13, 14, 25, 59,
60

GitHub je hostingová služba2 pre verzný systém Git, ktorá bola nedávno odkúpená spo-
ločnosťou Microsoft. Služba sa používa predovšetkým na zdieľanie počítačového kódu
a umožňuje vytvorenie repozitára zadarmo, vďaka čomu je bežne používaná na open
source projekty [14]. Str. 3, 4, 5, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27, 31,
33, 36, 38, 40, 42, 43, 46, 48, 49, 59, 60, 64

GitHub Issue je spôsob ako sledovať úlohy, vylepšenia a chyby v projektoch [2]. Str. 11,
13, 14, 15, 18, 19, 24, 25

Gitter je platforma na chatovanie, ktorá pomáha spravovať a rozširovať komunity pro-
stredníctvom správ. Výhodou je integrovatelnosť s viacerými službami, medzi ktoré
patrí napríklad GitHub [6]. Str. 13

1https://dotnet.microsoft.com/
2https://github.com/

59

https://dotnet.microsoft.com/
https://github.com/

JavaScript multiplatformný, objektovo orientovaný skriptovací jazyk [15]. Str. 12, 14, 17,
21, 22, 29

Markdown je odľahčený značkovací jazyk, ktorý slúži na úpravu prostého textu a jeho
následný prevod na formátovaný text publikovateľný na webe [16]. Pre viac o Mar-
kdown súboroch ako spôsobe ukladania programovacích konvencií viď 2.3.1. Str. 11,
13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 38, 40

NuGet je bezplatný a open source manažér pre správu balíčkov, určený pre vývojovú
platformu spoločnosti Microsoft [7]. Str. 31, 33, 34, 40, 41

Open source produkty obsahujú oprávnenia na použitie zdrojových súborov, dizajnových
dokumentov alebo ich obsahu. Často sa spája s open source modelom, ktorý je za-
ložený na otvorenej spolupráci a v ktorom sú produkty vydané pod open source
licenciami. [19]. Str. 3, 4, 5, 8, 9, 10, 12, 13, 15, 16, 21, 23, 24, 25, 26, 29, 35, 38, 43,
46, 49, 59, 60, 64

Pull request je navrhovaná zmena do Git repozitára, odoslaná od užívateľa a akceptovaná
alebo odmietaná spolupracovníkmi repozitára [3]. Str. 10, 11, 13, 14, 15, 18, 19, 48

Pytest je rozhranie pre Python, ktoré umožňuje ľahké písanie malých testov, ale podporuje
komplexné funkcionálne testovanie aplikácií a knižníc [4]. Str. 13

Python je vysoko úrovňový skriptovací programovací jazyk, vyvíjaný ako open source
projekt [20]. Str. 12, 13, 22, 60

Refaktorizácia je proces reštrukturalizácie existujúceho počítačového kódu bez zmeny
jeho vonkajšieho správania. Refaktorizácia je určená na zlepšenie dizajnu, štruktúry
a implementácie softvéru pri zachovaní jeho funkčnosti [10]. Pre viac informácií z práce
viď 2.1.6. Str. 3, 6, 7, 9, 16

ReSharper je rozšírenie do IDE Visual Studio, ktore rozšíruje o viac ako 2200 inšpekcií
kódu za behu, na ktoré ponúka rýchle opravy [5]. Str. 9, 21, 40

Scrum je agilný rámec na vývoj, dodávanie a udržiavanie komplexných produktov. Je ur-
čený pre tímy s 10 a menej členmi, ktorí rozdeľujú svoju prácu na ciele, ktoré je možné
splniť v rámci časovo obmedzených iterácií [21]. Str. 5, 6

Stargazer (GitHub) je človek, ktorý dal hviedzičku repozitáru v službe GitHub [1]. Str.
10, 43, 49

Travis CI je hostovaná CI služba, používaná na CI projektov v službách GitHub a Bit-
Bucket [6]. Str. 13

Vodopádový model je zloženie vývoja do lineárnych sekvenčných fáz, kde každá závisí
na predchádzajúcej. Protikladom je agilný vývoj softvéru [22]. Str. 3, 5, 59

60

WebAssembly je otvorený štandard, ktorý definuje prenosný formát binárneho kódu
pre spustiteľné programy, ako aj pre rozhrania na uľahčenie interakcií medzi týmito
programami a ich hostiteľským prostredím [23]. Jeho hlavným cieľom je umožniť vy-
tváranie vysoko výkonných aplikácií na webových stránkach, ale formát je navrhnutý
na vykonávanie a integráciu aj v iných prostrediach [23]. Str. 29

Windows je séria niekoľkých rodín operačných systémov od spoločnosti Microsoft [17].
Str. 12, 13

61

Literatúra k slovníku

[1] GitHub. List stargazers [online]. [cit. 2021-07-26]. Dostupné z:
https://docs.github.com/en/rest/reference/activity#list-stargazers.

[2] GitHub. Mastering Issues [online]. [cit. 2020-12-31]. Dostupné z:
https://guides.github.com/features/issues.

[3] GitHub Incorporation. Pull request — GitHub Glossary [online]. [cit. 2021-01-23].
Dostupné z: https://help.github.com/articles/github-glossary/#pull-request.

[4] Holger Krekel and pytest-dev team. Pytest [online]. [cit. 2021-07-26].
Dostupné z: https://docs.pytest.org/en/6.2.x.

[5] JetBrains s.r.o.. Reshaper [online]. [cit. 2021-07-25]. Dostupné z:
https://www.jetbrains.com/resharper.

[6] New Vector Ltd. Gitter [online]. [cit. 2021-07-25]. Dostupné z: https://gitter.im.

[7] Wikipedia.

[8] Wikipedia. Agile software development — Wikipedia, The Free Encyclopedia
[online]. [cit. 2020-09-29]. Dostupné z: http://en.wikipedia.org/w/index.php?title=
Agile%20software%20development&oldid=979979593.

[9] Wikipedia. BigQuery — Wikipedia, The Free Encyclopedia [online]. [cit. 2021-07-26].
Dostupné z:
http://en.wikipedia.org/w/index.php?title=BigQuery&oldid=1017050899.

[10] Wikipedia. Code refactoring — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-11-01]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=Code%20refactoring&oldid=985307174.

[11] Wikipedia. Eclipse (software) — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-11-02]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=Eclipse%20(software)&oldid=980854952.

[12] Wikipedia. Enterprise software — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-07-25]. Dostupné z: http://en.wikipedia.org/w/index.php?title=
Enterprise%20software&oldid=1028172826.

[13] Wikipedia. Git — Wikipedia, The Free Encyclopedia [online]. [cit. 2020-09-30].
Dostupné z: http://en.wikipedia.org/w/index.php?title=Git&oldid=979088000.

62

https://docs.github.com/en/rest/reference/activity#list-stargazers
https://guides.github.com/features/issues
https://help.github.com/articles/github-glossary/#pull-request
https://docs.pytest.org/en/6.2.x
https://www.jetbrains.com/resharper
https://gitter.im
http://en.wikipedia.org/w/index.php?title=Agile%20software%20development&oldid=979979593
http://en.wikipedia.org/w/index.php?title=Agile%20software%20development&oldid=979979593
http://en.wikipedia.org/w/index.php?title=BigQuery&oldid=1017050899
http://en.wikipedia.org/w/index.php?title=Code%20refactoring&oldid=985307174
http://en.wikipedia.org/w/index.php?title=Eclipse%20(software)&oldid=980854952
http://en.wikipedia.org/w/index.php?title=Enterprise%20software&oldid=1028172826
http://en.wikipedia.org/w/index.php?title=Enterprise%20software&oldid=1028172826
http://en.wikipedia.org/w/index.php?title=Git&oldid=979088000

[14] Wikipedia. GitHub — Wikipedia, The Free Encyclopedia [online]. [cit. 2020-09-30].
Dostupné z: http://en.wikipedia.org/w/index.php?title=GitHub&oldid=981138144.

[15] Wikipedia. JavaScript — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-01-14]. Dostupné z:
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1000595969.

[16] Wikipedia. Markdown — Wikipedia, The Free Encyclopedia [online]. [cit. 2021-01-14].
Dostupné z:
https://en.wikipedia.org/w/index.php?title=Markdown&oldid=1000478104.

[17] Wikipedia. Microsoft Windows — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-01-14]. Dostupné z:
https://sk.wikipedia.org/w/index.php?title=Microsoft_Windows&oldid=6925930.

[18] Wikipedia. .NET — Wikipedia, The Free Encyclopedia [online]. [cit. 2020-09-30].
Dostupné z: http://sk.wikipedia.org/w/index.php?title=.NET&oldid=6465183.

[19] Wikipedia. Open source — Wikipedia, The Free Encyclopedia [online]. [cit.
2020-09-30]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=Open%20source&oldid=979840260.

[20] Wikipedia. Python — Wikipedia, The Free Encyclopedia [online]. [cit. 2021-01-18].
Dostupné z: https://en.wikipedia.org/w/index.php?title=
Python_(programming_language)&oldid=1000914465.

[21] Wikipedia. Scrum (software development) — Wikipedia, The Free Encyclopedia
[online]. [cit. 2021-11-01]. Dostupné z: http://en.wikipedia.org/w/index.php?title=
Scrum%20(software%20development)&oldid=985930384.

[22] Wikipedia. Waterfall model — Wikipedia, The Free Encyclopedia [online]. [cit.
2020-09-29]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=Waterfall%20model&oldid=979592091.

[23] Wikipedia. WebAssembly — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-07-27]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=WebAssembly&oldid=1035244878.

[24] Wiktionary. clean code — Wiktionary, The Free Dictionary [online]. [cit.
2020-09-30]. Dostupné z:
https://en.wiktionary.org/w/index.php?title=clean_code&oldid=59815596.

63

http://en.wikipedia.org/w/index.php?title=GitHub&oldid=981138144
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1000595969
https://en.wikipedia.org/w/index.php?title=Markdown&oldid=1000478104
https://sk.wikipedia.org/w/index.php?title=Microsoft_Windows&oldid=6925930
http://sk.wikipedia.org/w/index.php?title=.NET&oldid=6465183
http://en.wikipedia.org/w/index.php?title=Open%20source&oldid=979840260
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1000914465
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1000914465
http://en.wikipedia.org/w/index.php?title=Scrum%20(software%20development)&oldid=985930384
http://en.wikipedia.org/w/index.php?title=Scrum%20(software%20development)&oldid=985930384
http://en.wikipedia.org/w/index.php?title=Waterfall%20model&oldid=979592091
http://en.wikipedia.org/w/index.php?title=WebAssembly&oldid=1035244878
https://en.wiktionary.org/w/index.php?title=clean_code&oldid=59815596

Príloha A

Analyzované projekty

Open source projekty v službe GitHub použité na analýzu v časti 2.2.1.

Tabuľka A.1: Analyzované projekty 1. časť
Repository

1 jwasham/coding-interview-university
2 donnemartin/system-design-primer
3 EbookFoundation/free-programming-books
4 danistefanovic/build-your-own-x
5 TheAlgorithms/Python
6 microsoft/PowerToys
7 trekhleb/javascript-algorithms
8 denoland/deno
9 flutter/flutter
10 sindresorhus/awesome
11 ytdl-org/youtube-dl
12 florinpop17/app-ideas
13 vuejs/vue
14 CSSEGISandData/COVID-19
15 facebook/react
16 bradtraversy/design-resources-for-developers
17 ohmyzsh/ohmyzsh
18 microsoft/vscode
19 cli/cli
20 goldbergyoni/nodebestpractices
21 torvalds/linux
22 github/gitignore
23 ossu/computer-science
24 microsoft/playwright
25 huggingface/transformers
26 Genymobile/scrcpy
27 willmcgugan/rich
28 gothinkster/realworld
29 tiangolo/fastapi
30 PanJiaChen/vue-element-admin
31 jlevy/the-art-of-command-line

64

Tabuľka A.2: Analyzované projekty 2. časť
Repository

32 microsoft/terminal
33 GitSquared/edex-ui
34 evanw/esbuild
35 tensorflow/tensorflow
36 anuraghazra/github-readme-stats
37 vinta/awesome-python
38 freeCodeCamp/freeCodeCamp
39 ryanmcdermott/clean-code-javascript
40 angular/angular
41 golang/go
42 tuvtran/project-based-learning
43 30-seconds/30-seconds-of-code
44 electronicarts/CnC_Remastered_Collection
45 excalidraw/excalidraw
46 beurtschipper/Depix
47 3b1b/manim
48 airbnb/javascript
49 tannerlinsley/react-query
50 lydiahallie/javascript-questions

65

	Úvod
	Analýza
	Benefity programovacích konvencií
	Čistota kódu pri agilnom vývoji
	Kvalita kódu
	Problémy špinavého kódu
	Čistý kód
	Dopad programovacích konvencií na čistotu kódu
	Iné spôsoby zvyšovania čistoty kódu

	Používané programovacie konvencie
	Analýza programovacích konvencií v open source projektoch
	Analýza vybraných projektov
	Ďalšie zdroje programovacích konvencií

	Analýza technológií spravujúcich programovacie konvencie
	Markdown súbory
	Issue šablóny
	Wiki a externé stránky
	EditorConfig
	Iné technológie

	Návrh
	Požiadavky na vytváraný systém
	Porovnanie funkcií existujúcich technológií
	Uvažované scenáre použitia
	Špecifikácia požiadaviek

	Architektúra systému
	Trojvrstvová architektúra
	Prezentačná vrstva
	Logická vrstva
	Databázová vrstva

	Implementácia návrhu
	Implementačné prostredie
	Problémové časti implementácie
	Nasadenie

	Testovanie
	Demonštrácia
	Testovanie užívateľmi
	Výber účastníkov
	Priebeh
	Výsledky

	Záver
	Literatúra k práci
	Skratky
	Slovník
	Literatúra k slovníku
	Analyzované projekty

