VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGII
FACULTY OF INFORMATION TECHNOLOGY

USTAV INFORMACNICH SYSTEMU
DEPARTMENT OF INFORMATION SYSTEMS

SYSTEM NA SPRAVU PROGRAMOVACICH KONVENCI
V PROJEKTU

CODING CONVENTIONS MANAGEMENT SYSTEM

DIPLOMOVA PRACE
MASTER’S THESIS

AUTOR PRACE Bc. MICHAL ORLICEK
AUTHOR

VEDOUCI PRACE Ing. JAN PLUSKAL
SUPERVISOR

BRNO 2021

Vysoké uceni technické v Brné
Fakulta informaénich technologii

Ustav informaénich systéma (UIFS) Akademicky rok 2020/2021

Zadani diplomové prace ||“””L'L'!!!"”"“

Student: Orlicek Michal, Bc.

Program: Informaéni technologie a uméla inteligence
Specializace: Softwarové inzenyrstvi
Nazev: Systém na spravu programovacich konvenci v projektu

Coding Conventions Management System
Kategorie: ~ Softwarové inzenyrstvi
Zadani:

1. Zjistéte, jaké konvence psani kédu pouZzivaji programatofi pfi vyvoji open source projektd
a jakym zplsobem zajist uji/vynucuiji jejich pouziti v projektu. Proved'te prizkum technologif,
ktery tento proces zajist uji.

2. Analyzujte vybrané projekty z bodu 1 a zjistéte, jakym zplsobem byly zmény v konvencich
komunikovany k programatorim a jak bylo ovéfeno jejich dodrzeni. Dale zjistéte, jakym
zplsobem se noveé pfispivajici programatofi seznamuiji s konvencemi.

3. Vyberte vhodné technologie, analyzované v bodé 1 a 2. Navrhnéte systém, ktery zajisti
spravu konvenci v projektu. Systém bude schopny konvence vytvofit pro nové vznikajici
projekty, zjistit aktualné pouzivané a komunikovat jejich zmény k programatoriim. Systém
musi byt schopen ovéfit, zdali jsou konvence dodrzeny a vytvofit souhrnnou zpravu o stavu
projektu. Respektujte pfipominky vedouciho k navrzenému systému.

4. NavrZeny systém dle bodu 3 implementujte.

5. Porovnejte implementovany systém oproti existujicim alternativam, diskutujte jeho
silné/slabé stranky a uréete vhodné oblasti pouziti. Demonstrujte systém na vybraném open
source projektu.

Literatura:
e Martin, R.C. (2008). Clean Code: A Handbook of Agile Software Craftmanship. Prentice
Hall.
e Martin, R.C., Martin, M. (2006). Agile Principles, Patterns, and Practices in C#. Prentice
Hall.

e Fowler, M. (2019). Refactoring: Improving the Design of Existing Code. Addison-Wesley.
Pfi obhajobé semestralni ¢asti projektu je pozadovano:
e Body 1,22 3.
Podrobné zavazné pokyny pro vypracovani prace viz https://www.fit.vut.cz/study/theses/
Vedouci prace: Pluskal Jan, Ing.
Vedouci Ustavu: Kolaf Dusan, doc. Dr. Ing.
Datum zadéni: 1. listopadu 2020
Datum odevzdani: 30. Cervence 2021
Datum schvaleni: 26. fijna 2020

Zadani diplomové prace/23487/2020/xorlic00 Strana 1z 1

Abstrakt

Cielom préace je navrhnuf a implementovat systém na spravu programovacich konvencii
v projekte. Pred navrhnutim samotného systému bol vykonany prieskum benefitov prog-
ramovacich konvencii, analyza pouzivanych konvencii v open source projektoch v sluzbe
GitHub a analyza existujucich technol6gii spravujucich programovacie konvencie. Na ich
zaklade boli navrhnuté scenare pouzitia, Specifikované poziadavky a urcena architektuira.
Nasledne bol systém implementovany ako webova aplikacia postavend na technolégidch
Blazor a EditorConfig. Hlavnym zamerom bolo vytvorif systém, ktory umozni uchovavat
vsetky druhy pouzivanych programovacich konvencii a zdroven umozni uzivatelovi dané
konvencie automaticky kontrolovat a generovaf. Zverejneny je pod open source licenciou
v sluzbe GitHub a nasadeny v cloudovej platforme Azure.

Abstract

The goal of this thesis is to design and implement coding conventions management system
for project. Prior to the creation of the system itself, the research of coding conventions
benefits, the analysis of used technologies in open source projects at GitHub service, and
the analysis of existing technologies managing coding conventions was done. On the basis
of that, usage scenarios were designed, requirements were specified and system architecture
was determined. Then the system was implemented as web application based on Blazor and
EditorConfig technologies. The main aim was to create a system that would allow to store
all types of programming conventions and at the same time allows users to automatically
control and generate them. It is published under an open source license within the GitHub
service and deployed on the Azure cloud platform.

Klticové slova
programovacie konvencie, ¢isty kod, open source, GitHub, EditorConfig, Blazor, ASP.NET
Core

Keywords

coding conventions, clean code, open source, GitHub, EditorConfig, Blazor, ASP.NET Core

Citacia

ORLICEK, Michal. Systém na sprdvu programovacich konvenci v projektu. Brno, 2021.
Diplomova prace. Vysoké uceni technické v Brné, Fakulta informacnich technologii. Vedouci
prace Ing. Jan Pluskal

Systém na spravu programovacich konvenci v pro-
jektu

Prehlasenie

Prehlasujem, ze som tuto diplomovi pracu vypracoval samostatne pod vedenim Ing. Jana
Pluskala. Uviedol som vsetky literarne pramene a publikéacie, z ktorych som cerpal.

Michal Orli¢ek
30. jula 2021

Podakovanie

Chcel by som sa podakovat vedicemu prace Ing. Janovi Pluskalovi za ochotu a odbornu
pomoc. Priatelom a zndmym za pomoc s testovanim, prekladom a korektirou textu. A v
neposlednom rade mojej priatelke a rodine za psychickt podporu pri pisani tejto prace.

Obsah

1 Uvod
2 Analyza
2.1 Benefity programovacich konvenciio
2.1.1 Cistota kédu pri agilnom vivoji.
2.1.2 Kvalitakdédu
2.1.3 Problémy Spinavého kéduo
2.1.4 Cisty k6d
2.1.5 Dopad programovacich konvencii na ¢istotu kédu
2.1.6 Iné sposoby zvySovania ¢istoty kédu oL
2.2 Pouzivané programovacie konvencieo
2.2.1 Analyza programovacich konvencii v open source projektoch
2.2.2 Analyza vybranych projektov o oL
2.2.3 Dalsie zdroje programovacich konvencil
2.3 Analyza technolégii spravujicich programovacie konvencie
2.3.1 Markdown stbory
2.3.2 Issuesablény
2.3.3 Wiki aexterné stranky oL
2.3.4 EditorConfig
2.3.5 Iné technoldgie
3 Navrh
3.1 Poziadavky na vytvarany systém
3.1.1 Porovnanie funkcii existujtcich technolégii.
3.1.2 Uvazované scenare pouzitia
3.1.3 Specifikdcia poziadaviek
3.2 Architektura systému
3.2.1 Trojvrstvova architektura
3.2.2 Prezentacnd vrstva L
3.2.3 Logickd vrstva
3.2.4 Databazova vrstva L o
3.3 Implementacia navrhu oL L Lo
3.3.1 Implementac¢né prostredie,
3.3.2 Problémové casti implementacie
3.3.3 Nasadenie L

4 Testovanie
4.1 DemonStracia o e e

w

© 00 ~J =1 O Ut ot G

N DN = = = = =
—_ O © © oo Ut O ©

23
23
23
25
26
27
28
29
32
38
39
39
40
41

43

4.2 Testovanie uzivatelmi. L

4.2.1 Vyber GCastnikovo

422 Priebeh

4.2.3 Vysledky L
5 Zaver

Literatura k praci
Skratky

Slovnik

Literatara k slovniku

A Analyzované projekty

49

51

57

59

62

64

Kapitola 1

Uvod

V sicasnosti sa Coraz viac timov rozhoduje vyvijat projekty agilngm spésobom. Tento
sposob vyvoja vyzaduje eSte vacsiu cistotu kodu, ako linedrne sposoby, ktoré sa pouzivali
v minulosti. VysSia troven ¢istoty umoznuje lepsiu udrzatelnost kédu, ¢o znizuje ¢asovi
zlozitost pridavania novych funkcionalit v dalsich iteraciach vyvoja.

Jeden z najddlezitejsich indikatorov kvalitného a cistého kddu je jeho konzistencia. Ur-
¢enim pokynov, ktoré si odporiucané na pouzitie jednej alternativy, z réznych moznosti
pri pisani urcitej ¢asti kédu, sa pri ich dodrziavani konzistencia zvysuje. Takto zapisané po-
kyny sa nazyvaju programovacimi konvenciami alebo programovacimi $tylmi a moézu sa 1isit
v zavislosti od programovacieho jazyka, platformy, druhu vyvijanej aplikécie, typu siboru
alebo aj sktisenosti ¢lenov timu. Pri spravnom zvoleni konvencii méze byt kod citatelnejsi,
kvalitnejsi, konzistentnejsi a moze byt potlacovand jeho zlozitost, o moéze viest k menej
castym alebo jednoduchsim refaktorizaciam.

Cielom prace je navrhnit a vytvorit systém, ktory umozni spravu programovacich kon-
vencii v projekte. Je uréeny primarne pre projekty, ktoré vyuzivaju .NET ekosystém a preto
je postaveny na modernych technolégiach od spolo¢nosti Microsoft, avsak je mozné ho pou-
zit pre vSetky typy projektov. Zdrojové sibory systému st volne dostupné v sluzbe GitHub
pod MIT licenciou, vdaka ktorej je mozné ho upravovat a pouzivat na komeréné aj si-
kromné ucely. Vyhodou zverejnenia pod volnou licenciou je umoznenie opravovania chyb
a nasledny vyvoj systému po dokonceni diplomovej prace.

Prva cast prace (vid 2) sa zaoberd programovacimi konvenciami pouzivanymi v open
source projektoch. Rozsiruje motivaciu z ivodu, obsahuje prehlad programovacich konvencii
pouzivanych v projektoch. Blizsie analyzuje vybrané projekty a zaobera sa ich vytvaranim,
diskusiami o nich, komunikaciu k vyvojarom po ich zavedeni a aj naslednymi tpravami.
Avsak cieli aj na sposoby, akymi sa dodrzuje alebo vynucuje ich pouzitie a ako sa s nimi
novi ¢lenovia projektov zoznamuji. Zameriava sa aj na prieskum technolégii, ktoré zaistuju
spravu programovacich konvencii a na technoldgie, ktoré pomahaji konvencie v projekte
dodrzat. Ako prilohu, obsahuje praca zoznam open source projektov pouzitych pri analyze.

Druhé cast prace (vid 3) obsahuje navrh systému. Zacina porovnanim existujtcich rie-
seni a pouzivanych technol6gii, pricom vyuziva poznatky z predchadzajicej casti. Na ich
zéklade Specifikuje scenare pouzitia systému a formuluje poziadavky nan. Nasledne opisuje
navrhnuty systém, jeho architektiru a jednotlivé architektonické celky. V neposlednej rade
vysvetluje, ako bol ndvrh implementovany a aké technolégie boli na implementaciu pouzité.

Tretia Cast prace (vid 4) opisuje, akym sposobom bol systém testovany. Diskutuju sa
jeho vysledky, zhodnocuju sa silné a slabé stranky, limity, vhodné oblasti vyuzitia a moz-

nosti pre rozsirenia a zmeny. Nésledne je systém demonstrovany na zvolenom open source
projekte.

Poslednou castou je samotny vytvoreny systém s jeho dokumentaciou. Zdrojové sibory
sa nenachadzaji v texte prace, ale st dostupné online' a na prilozenom kompaktnom disku.
Dokumentacia’ obsahuje manual, ako do systému implementovat vlastné kontroly kédu,
spolu s API dokumentaciou kédu. Okrem toho obsahuje nédvod ako aplikdciu nasadit, avsak
ten pre otestovanie systému nie je nutny, pretoze v dobe jeho testovania a hodnotenia je uz
nainstalovany systém dostupny online®.

Prica obsahuje jednu prilohu (vid A), je nou zoznam open source projektov v sluzbe
GitHub, ktoré su pouzité na analyzu v Casti 2.2.1.

Pre lepsiu ¢itatelnost a menej opakujicich sa vysvetleni pouzivam skratky a slova v texte
prace, ale ich vysvetlenie oddelujem od jeho zvysku. Na konci prace je dostupny zoznam
skratiek a slovnik s literatirou, pouzitou na jeho tvorbu. V digitalnej verzii je mozné na slova
v praci kliknut k presmerovaniu na ich vyznam. Praca obsahuje dva prehlady pouzitej
literatury, jednu k samotnej pracu a druhti k zmienenému slovniku a skratkam. V literattire
k slovniku st vyuzité prevazne terciane informacné zdroje, ktorym som sa snazil v literattre
k praci vyhnut.

"https://github.com/orlicekm/CodingConventionsManagementSystem
*https://orlicekm.github.io/CodingConventionsManagementSystem
*https://ccms.orlicek.net

https://github.com/orlicekm/CodingConventionsManagementSystem
https://orlicekm.github.io/CodingConventionsManagementSystem
https://ccms.orlicek.net

Kapitola 2

Analyza

Kapitola sa zaoberd analyzami programovacich konvencii pouzivanych v projektoch. Pred
zacatim tvorby navrhu systému je vhodné zanalyzovat programovacie konvencie z roz-
nych pohladov. Prislusi sa skimat, preco a kedy je vhodné konvencie uzivat, aké projekty
a akymi sposobmi konvencie vyuzivaju a aké technolégie k tomu pouzivaji. Vdaka analy-
zam je mozné adekvatne Specifikovat poziadavky na vytvarany systém (pre viac informacii
o navrhu systému vid kapitolu 3).

Prva ¢ast kapitoly sa venuje vyhodam programovacich konvencii (vid sekcia 2.1). Roz-
Siruje motivaciu z uvodu (vid kapitola 1) o teoretické podklady. Vysvetluje, preco st prog-
ramovacie konvencie sicastou clean code a popisuje iné spésoby udrzovania Cistoty kodu.
Druh4 ¢ast kapitoly analyzuje rézne druhy programovacich konvencii (vid sekcia 2.2). Popi-
suje, aké druhy sa pouzivaju, pricom cerpa z réznych zdrojov, medzi ktorymi je aj patdesiat
analyzovanych open source projektov zo sluzby GitHub. Nasledne sa podrobnejsie zaobera
konkrétnymi projektami a pozoruje, akymi spésobmi st konvencie v projektoch uchované,
spravované, ako k nim programatori pristupuji, zoznamuju sa s nimi a ako sa overuje alebo
vynucuje ich dodrziavanie. Poslednd cast skiima existujiice technolégie, ktoré sa pouzivaju
na spravu programovacich konvencii (vid sekcia 2.3). Zistuje, aké konvencie dané technolé-
gia umoznuje spravovat, aké moznosti dava vyvojarovi pri ich sprave a ako dané technolégia
odportuca alebo vynucuje ich pouzitie v projekte.

2.1 Benefity programovacich konvencii

Prvym krokom, pri vytvarani prace je analyza teoretickych podkladov programovacich kon-
vencii, za icelom zistenia, aka je motivacia na ich pouzivanie a aké vyhody poskytuji. Prva
¢ast sa zameriava na rolu ¢istého kédu v agilnom vyvoji (vid 2.1.1). Nésledne sa venuje
vlastnostiam kvalitného kédu (vid 2.1.2) a problémom, ktoré mézu vzniknut, ak sa kéd
pravidelne necisti (vid 2.1.3). V dalSej casti sa definuje ¢isty kéd (vid 2.1.4) a programova-
cie konvencie s ich prepojenim na ¢istotu (vid 2.1.5). Poslednu ¢ast tvoria iné sposoby, ako
je mozné zvysovat Cistotu kodu v projektoch (vid 2.1.6).

2.1.1 Cistota kédu pri agilnom vyvoji

Ako je uvedené v uivodnej kapitole, v stcasnosti sa zvySuje mnozZstvo projektov, ktoré su
vyvijané agilngm spdsobom. Toto tvrdenie podporuju aj statistiky z vyhladavaca Google,
kde agile scrum postupne okolo roku 2010 prekonal vodopddovy model [37]. Jeho pocetné
vyuzitie je mozné vidiet aj v ankete z roku 2018 zo StackOuverflow, kde na otézku, aké

metodolégie vyvoja pouzivaji, odpovedalo 57 075 profesiondlnych developerov [75]. Na pr-
vom mieste skondil agile s 85.9% a na druhom scrum, ktory patri pod agilné metodoldgie,
s 63.2% [75].

Metodiky agilného vyvoja sa snazia o zvysenie produktivity a efektivity prace a ich
vyhodou je moznost rychlo reagovat na zmenu poziadaviek zdkaznika [1]. Vyvoj je zaloZeny
na kratkych iterdciach, medzi ktorymi sa vytvori ¢ast pozadovanej funkcionality a vytvori
funkény a otestovany software [73]. Kniha Agile principles, patterns, and practices in C#
definuje agilny vyvoj ako schopnost vyvijat software rychlo v prostredi meniacich sa pozia-
daviek [51]. Ak chceme dosiahnut tito schopnost, musime pouzivat postupy, ktoré poskytna
potrebnu disciplinu a spatna vizbu. Potrebujeme pouzit principy navrhu, ktoré udrzia soft-
ware flexibilnym a udrzatelnym a potrebujeme poznat navrhové vzory, ktoré preukazatelne
vyvazuju tieto principy pre konkrétne problémy [51]. Z definicie je pre nds najpodstatnej-
$im pojmom disciplina, vdaka ktorej nepiseme kéd podla toho, ¢o subjektivne povazujeme
za najlepsie, podriadujeme sa nejakej vyssej voli, pravidlam, ktoré sme si definovali. Pro-
strednictvom tychto pravidiel je snaha o dosiahnutie toho, aby bol software flexibilnym
a udrzatelnym, a teda snazia sa zvysovat jeho kvalitu. O kvalite kddu je viac v casti 2.1.2.

V knihe Clean Code sa uvadza, ako sa scrum a agile v dnesnej dobe zameriavaji na rychle
uvedenie produktu na trh [50]. Casti kédu sa opustaju predcasne, nie viak z dovodu, ze
by boli dokoncené, ale preto, Ze hodnotovy systém sa zameriava viac na vonkajsi vzhlad
produktu, ako na podstatu toho, ¢o doddvame [50]. Preto sa v scrume odportca, aby bola
refaktorizdcia (vid 2.1.6) stcastou DoD [50]. Pri nedodrzani odportac¢ani ndm opravovanie
chyb, rozsirovanie a udrzovanie ¢asti kédu, napisanych tymto spésobom, ktoré nie st do-
koncené a teda vycistené, zaberie omnoho viac ¢asu, ako keby sme Cistenie vykonali pri ich
vytvarani. Viac o problémoch spinavého kédu vid ¢ast 2.1.3.

2.1.2 Kvalita kédu

Na 1ivod by bolo vhodné zadefinovat, ¢o to vlastne kéd je. VSeobecne zndma definicia
kédu, ktortt mozeme najst vo vyznamovych slovnikoch, ho opisuje ako systém slov, pismen,
c¢isel alebo symbolov, ktoré reprezentuji spravu alebo zaznamenavaju informaciu sifrovane
alebo v krajsej forme. V tejto praci vSak budeme kédom oznacovat zdrojovy kéd projektu.
LINFO definuje zdrojovy kod ako verziu softvéru, ktora je origindlne napisana ¢lovekom ako
¢itatelny, neformatovany text [80]. K6du sa v programovani nikdy nezbavime [50]. V Clean
Code Robert C. Martin vysvetluje, ze dovodom je reprezentacia detailov poziadaviek, ktoré
na urcitej urovni uz nie je mozné ignorovat a je nutné ich specifikovat [50]. Nésledne definuje
kéd ako jazyk, ktorymi st nakoniec tieto poziadavky vyjadrené [50].

Existuje viacero vlastnosti, ktorymi sa dé urcovat kvalita kédu. AvSak tieto vlastnosti nie
su striktne vyhradené a tim si pre projekt moze definovat svoje vlastné. Medzi ¢asto pouzi-
vané patri spolahlivost, opakovand vyuzitelnost, prenosnost, testovatelnost [4]. K niektorym
z tychto vlastnosti existuje jedna alebo viacero metrik, ktorymi sa da dana vlastnost v kéde
merat. Napriklad je mozné zistit, na aky podiel koédu si vytvorené testy, ale citatelnost
alebo pochopitelnost kédu je velmi subjektivna. Prehlad analyz kvality zdrojového kédu
a aj nastrojov, ktoré analyzu vykonavaji automaticky sa nachadza napriklad v bakalarskej
praci Analjza kvality zdrojovijch kédi od Lukasa Voriska [85]. Niektoré sicasne pouzivané
IDE obsahuju prvky statickej analyzy a upozornuji na mozné problémy, uz pri vyvoji [85].
Kniha Clean Code in C# opisuje kvalitny kéd, ako zdkladnt vlastnost softvéru [2]. Kod,
ktory dodrziava vysoké standardy, bude mat kvalitni vykonnost, dostupnost, bezpecnost,
skélovatelnost, udrzatelnost, pristupnost, nahraditelnost a rozsiritelnost [2].

2.1.3 Problémy Spinavého kédu

Cisty aj $pinavy kéd je mozné prelozit, $pinavy kod je viak spinavy z nejakého dévodu [2].
Pisanie ¢istého kédu nie je otdzkou iba moralnych, etickych hodnot. Naviac, straveny cas,
pocas ktorého sa upravoval kéd pre dodrzanie vysokych kvalit, nie je vhodné ospravedlnovat
dobrou programatorskou praxou, dévody su ¢isto ekonomické [18]. Kvalitny kéd dokéze
usetrit cas, financie aj Tudské zdroje, v dlhSsom casovom obdobi. Nekonzistentny dizajn
kniznic nepriaznivo ovplyviuje produktivitu vyvojarov [59].

Kod, ktory je vyvijany, bez brania ohladu na jeho ¢istotu, sa pridavanim dalsich fun-
kcionalit stéva viac a viac pinavym. Cim je kéd $pinavsim, tym tazsie sa v fiom orientuje,
pridavanie dalSich funkcionalit trva dlhsiu dobu, a preto sa spomaluje jeho vyvoj. Miera
spomalenia je vyraznd, produktivita timu klesd asymptoticky k nule [50]. Kéd je vhodné
Cistif postupne, ¢im dlhSie sa Cistenie kddu odkladé, tym viac ¢asu zaberie. Zmena Cistého
kédu je oproti komplexnému Spinavému kédu jednoduchsia [18]. Pomer ¢asu medzi ¢itanim
a pisanim je znacne cez 10:1 [50]. Kéd musime ¢itat vzdy, ked chceme pisat dalsi a preto
sa snazime spravit ¢ftanie ¢o najjednoduchsim, aj za cenu dlhsieho pisania. Spinavy kéd
je vyznamna prekazka a jedinym sposobom ako vyvijat rychlo, je udrziavat kod ¢cistym [50].

Produktivita
100%

50%

1 .'"-.-.....----........--- ~
0% Cas

=

Obr. 2.1: Klesanie produktivity pri Spinavom kéde. Obrazok upraveny z Clean Code [50].

Existuji rézne metriky, ktoré dokazu vyvojarom pomoct meraf Cistotu kédu a tym
urcovat, ktoré casti kédu je vhodné refaktorizovat pre zvysenie kvality (vid 2.1.2).

2.1.4 Cisty kéd

Aky je to Cisty k6d? Robert C. Martin oslovil s touto otdzkou viacero profesiondlov v ob-
lasti, ktorych nasledne v Clean Code cituje, ¢im ukazuje na fakt, ze kazdy definuje ¢isty kod
inym spdsobom [50]. On popisuje ¢isty kod ako remeslo a programétora ako umelca, ktory
dokéze premenit prazdnu obrazovku radom transformaécii, kym neziska elegantne kédovany
systém [50]. Pisanie ¢istého kédu podla neho vyzaduje disciplinu pouZitia nespoc¢etného
mnozstva malych technik, aplikovanych prostrednictvom starostlivo ziskaného pocitu cis-
toty [50].

Existuje mnozstvo knih a kurzov, ktoré ucia technike pisania cistého kédu. Niektoré
z nich, ako napriklad Clean Code, boli pouzité aj pri pisani tejto prace. Ked si ich pozorne
precitame, tak zistime, ze sa v niektorych castiach liSia a niekde maji dokonca protichodné
nazory. Nie je jeden spravny spdsob, ako napisat ¢isty kéd, pretoze kod nie je nikdy tplne
c¢isty. Niekto moze za Cisty povazovat v danej situacii jeden konstrukt, ako niekto tiplne iny.
Vsetko zalezi od situacie. Aj v Clean Code sa pise, ze nebudeme pravdepodobne siihlasit
100%—ne so vSetkym, ¢o v knihe ndjdeme [50].

Zalezi na detailoch [50]. Kazda mensia ¢ast kodu, ktora nie je napisana v stlade s defino-
Dobri programatori vedia, ze zriedkavo je prvotny kéd tym cistym a preto travia cas jeho
¢istenim [18]. Pozerdme sa na to, ako rozdelit program do mensich modulov, ktoré spolu
spolupracuji na jednom funkénom rieseni, ktoré je plne testovatelné, moze na nom pracovat
viacero timov sucasne, a je omnoho jednoduchsSie na ¢itanie, pochopenie a dokumentova-
nie [2]. Uz v knihe The C Programming Language je odportucané pracovat s viacerymi
mensSimi ¢astami, nez s jednou velkou, pretoze nepodstatné detaily mézu byt zapuzdrené
do funkcif a Sanca na neziadice interakcie sa zmensuje [74].

Kéd ¢asom degraduje, preto musime byt aktivni v jeho prevencii [50]. Cistota kédu
sa ¢asom zhorsuje a nemusi to byt nutne sposobené prepisanim jeho ¢asti bez vycistenia.
Dévodov je viacero. Moze sa jednat o zmenu pohladu na to, ¢o je ¢isté, mozu byt do jazyka
pridané nové, cistejsie konstrukty alebo sa zmeni okolie kédu a tym padom kdd nie je ¢isty
ako celok.

2.1.5 Dopad programovacich konvencii na cCistotu kédu

Podla Dave Thomasa, zakladatela OTI a jedného z hlavnych tvorcov nastroja FEclipse,
poskytuje ¢isty kod skor jeden sposob, ako viacero, na vykondvanie jednej veci [50]. Kod
moze obsahovat viacero programovacich stylov, a teda jednotlivé ¢asti kodu moze vyvojar
napisat réznymi spésobmi, ¢im sa kod stava nekonzistentnym. Konzistencia je definovana
ako rovnakost, zhodnost, uniformita [21]. Neochvejnéd konzistencia vedie ku kédu, pri kto-
rého spoznavani moézete vytvorit viacero predpokladov a predpovedi o jeho spravani, ktoré
budu nakoniec pravdivé [21]. Ak na projekte pracuje viac vyvojarov, ¢o je v dnesnej dobe
pri rozsireni verznych systémov bezné, pisanie ¢istého kédu je o konzistentnosti aj medzi
nimi. Je ovela jednoduchsie pochopit velky kéd, ked je pisany konzistentnym sStylom [36].
Jednotny, konzistentny kéd poméha k jeho skorSiemu pochopeniu, lepsej ¢itatelnosti a tym
nasledne k rychlejsiemu vyvoju a jednoduchsej idrzbe. Pouzitim programovacich konvencii
sa zarucuje napisanie kédu v prijatom a dohodnutom formate, ¢o pomaha ludom sustredit
sa na podstatu kddu a travit menej ¢asu pochopenim jeho usporiadania [2].

Kazdy vacsi open source projekt ma svojho vlastného sprievodcu stylmi: mnozinu kon-
vencii o tom, ako pisat pre dany projekt kéd [36]. Programovacie konvencie tvoria akusi
sadu zasad, ktora sa dodrziava pri pisani kédu. M6zu byt podané iba ustne, ale aj forma-
lizované do sady spisanych pravidiel. Programovacie Standardy stanovuji zasady ako pisat
a nepisat kéd, ktoré je potrebné dodrziavat [2]. Pravidld sa mézu delit na méikké a tvrdé,
pri makkych sa dovoluje v niektorych situacidch ich porusenie, zatial ¢o tvrdé musia byt
dodrzané vzdy. Napriklad Robert C. Martin povazuje za méakké pravidlo nevyuzit viac ako
tri argumenty [84].

Microsoft ma svoje programovacie konvencie (vid 2.2.3), ktoré zvicsa byvaji prebe-
rané a upravené tak, aby vyhovovali potrebam konkrétneho podniku [2]. Kazdy projekt
zvycajne pouziva vlastné programovacie konvencie, ktoré byvaji bezne odvodené od stan-
dardov vyvojarskeho timu a firemnych pokynov, s prihliadnutim na vyuzité technologie,
programovacie jazyky a prostredie. Konvencie vytvaraju konzistentny vzhlad kédu, aby sa
¢itatelia mohli sustredit na obsah, nie na jeho rozlozenie [53]. Snazia sa umoznit ¢itatelom
porozumiet kédu vytvorenim predpokladov na zaklade prechadzajtcich skiisenosti a ulahcit
kopirovanie, zmeny a tdrzbu kédu, pricom uplatiiuji osvedéené postupy [53]. Z pohladu
vyvojového cyklu st konvencie najéastejsie sledované pri kontrole navrhovanych zmien [2].

Zmienky o vhodnom pisani kédu je mozné najst uz v knihe The C Programming Langu-
age z roku 1978. Napriklad, podla nej nie je vhodné pisat kéd, pri ktorom zélezi na poradi
vyhodnotenia alebo pouzivat vyraz goto ako ndhradu inych konstruktov [74]. Odporica
pouzitie rekuzie a ukazovatelov. Vyuzitie ukazovatelov véicsinou vedie k viac kompaktnému
a efektivnemu kédu [74]. Kéd vyuzivajici rekurziu je kratsi a jednoduchsi na napisanie a po-
rozumenie, ako jeho nerekurzivny protajsok [74]. Pre prehlad programovacich konvencii vid
sekcia 2.2.

2.1.6 Iné sposoby zvySovania Cistoty kédu

Programovacie konvencie si jednym zo sposobov zvysovania cistoty kédu. Ako je uvedené
v sekcii 2.1.5, nie vzdy sa formalizované a zvycajne sa na ne nekladie doraz. Existuju ale
aj rozne iné mechanizmy, ktoré zvysuju cistotu, medzi ktoré patri napriklad refaktorizacia
alebo testovanie.

Refaktorizdcia je velmi podobnd optimalizacii vykonu, oboje upravuji kéd, ale nemenia
funkcionalitu, rozdielom je ich ucel. Refaktorizdcia je zmena vykonand v internej struktire
softvéru, vdaka ktorej je jednoduchsi na pochopenie a jednoduchsie upravitelny bez zmeny
jeho pozorovatelného spravania [18]. Je to klu¢ k udrzaniu kédu ¢itatelnym a upravitelnym,
preto je dolezitym prvkom v procese vyvoja softvéru [18]. V dnesnej dobe sa ¢oraz Castejsie
pouziva slovo refaktorizdcia pre akékolvek cistenie kodu. Rozne IDE pre rozlicné progra-
movacie jazyky obsahuji integrované formy refaktorizacie. Napriklad ReSharper obsahuje
rychle akcie na extrahovanie metody alebo automatické vycistenie kodu.

Na to, aby refaktorizdcia bola vykonand spréavne, je potrebnd spolahlivd sada testov,
ktora odhali neodvratné chyby [18]. Cistotu a teda kvalitu kédu zvy$uji aj testy, no ich
hlavnym prinosom je hladanie chyb vo funkcionalite a v dokumentovani koédu. V metode
programovania T'DD sa ako prvé pisu testy a az nasledne sa vytvara kéd tak, aby testy kon-
¢ili uspechom [18]. Néasledne sa kéd refaktorizuje, aby bol ¢o najcistejsi, no stéle s ispesne
prechddzajicimi testami [18]. Dolezitym efektom napisania testov ako prvych je, Ze testy
funguji ako neocenitelna forma dokumentécie [51].

Dalsimi sposobmi, ako zvysit Gistotu je vyuzitie ndvrhovych vzorov a kontrola &is-
toty pri potvrdzovani navrhovanych zmien. Polovica boja v programovani ¢istého kédu
je v spravnej implementécii a pouZiti ndvrhovych vzorov [2]. V ¢istote vie pomdct napri-
klad aj vhodné forma dokumentdacie a pri agilnom vyvoji nastavenie DoD s cielenim na Cis-
totu. Cistejsi ndvrh na najvysSej trovni aplikdcie podporuje vytvorenie navrhu vo forme
diagramov este pred zaciatkom vyvoja, napriklad pomocou UML.

2.2 Pouzivané programovacie konvencie

Pred vytvorenim névrhu aplikicie je vhodné zanalyzovat programovacie konvencie, ktoré
pouzivaji programatori pri vyvoji. Prva cast sa venuje analyze open source projektov,
pricom skima aké konvencie a technolégie sa v nich pouzivaji (vid 2.2.1). Nasledujica
cast podrobnejsie analyzuje konkrétne projekty z prvej ¢asti a skiima sp6soby uchovavania
a spravovania konvencii v nich (vid 2.2.2). Posledné ¢ast analyzuje programovacie konvencie
v dalsich zdrojoch, mimo analyzované projekty (vid 2.2.3).

Analyza sa nesnazi do detailov preskimat vsSetky druhy programovacich konvencii a ani
rozhodovat, aké konvencie s v akej situacii vhodné. Usiluje sa iba o zistenie, aké konvencie
sa v praxi realne pouzivaji, ¢o je nasledne vyuzité pri navrhu systému na ich spravu. Aké

konvencie nakoniec uzivatel pouzije, ponechdva na jeho vlastnom rozhodnuti, pretoze on
sam najlepsie vie, ¢o je pre jeho projekt v aktudlnej situacii vhodné.

2.2.1 Analyza programovacich konvencii v open source projektoch

Zistit, aké programovacie konvencie sa pouzivaju pri vyvoji open source projektov je jednou
z hlavnych ¢asti analyzy, ktord je vhodné spravit pred vytvorenim nédvrhu systému. Z kaz-
doro¢nej spravy Octoverse, ktord ukazuje vyvoj sluzby GitHub za posledny rok, je mozné
pozorovat, ako open source komunita rastie. V grafe z roku 2020 je mozné vidiet, ako percen-
tualne rastol pocet vytvorenych open source projektov na aktivneho uzivatela, v porovnani
s minulym rokom [31]. Pocet prispevkov do open source projektov sa oproti predchadzaji-
cemu roku zvysil o dvadsatpét percent, comu vsak zrejme pomohol aj COVID-19 lockdown,
pri ktorom je zna¢ny narast [31].

Ako zdroj open source projektov som zvolil sluzbu GitHub. GitHub ma najvacsiu open
source komunitu na svete, ktoru tvoria miliény projektov [27]. Komunitu GitHubu tvorilo
v roku 2020 cez péatdesiatsest milibnov uzivatelov a viac ako Sestdesiat milibnov repozita-
rov [31]. Za rok 2020 bolo vytvorenych takmer dve miliardy prispevkov [31]. Ku GitHub
projektom je mozné najst v datovom sklade BigQuery volne pristupné data, z ktorych som
pri analyze Cerpal.

Vyber analyzovanych projektov

Détovych sadd ku GitHub projektom je viac. GHTorrent [22] je relacnd détova sada, pri-
stupnéd z BigQuery, ktori som ale nevyuzil, kedZe nie je aktualizovana pravidelne a jej
poslednd aktualizacia prebehla v juni 2019. K dispozicii je aj databaza obsahujica képiu
ASCII siborov mensich ako 10 megabajtov, ak sa nachddzaju v open source projekte [40].
Tt som taktiez nevyuzil, pretoze posledna aktualizacia prebehla v marci 2019 a ani vtedy
neobsahovala vsetky open source repozitare, ale iba ich vybrant c¢ast. Rozhodol som sa
pouzit GH Archive, ktory sleduje verejnu ¢asovi os GitHubu, ktora archivuje a spristup-
nuje pre dalSie analyzovanie [38]. GH Archive je aktualizovany kazdu hodinu a je k nemu
umozneny pristup okrem BigQuery' aj pomocou HTTP klienta.

Pre analyzu som sa rozhodol vybrat patdesiat open source projektov, ktorych konvencie
som nésledne skimal. Ziskal som zoznam projektov, ktoré dostali najviac hviezdiciek (star-
gazers) za rok 2020. Nésledne som ich manudlne prechddzal a odfiltroval tie, ktoré nemali
open source licenciu alebo boli v inom jazyku, ako v angli¢tine a teda nebolo mozné ich
pre analyzu pouzif. Tymto spésobom som prechadzal projekty, pokial som neziskal prvych
péatdesiat, ktorych zoznam je v dostupny v prilohe A. Zvolil som tento spésob, pretoze som
chcel ¢o najmenej zasahovat do vyberu projektov, aby som zamedzil skresleniu vyvodenych
vysledkov analyzy a ziskal ¢o najobjektivnejsie vysledky. M&j vplyv na vyber projektov
do analyzy teda minimalizoval a odfiltroval iba nepouzitelné projekty.

Pri analyze som sa rozhodoval nad viacerymi spésobmi vyberu projektov. Snazil som sa
o vyber vacsich projektov, pretoze pri nich je vyssia pravdepodobnost Ze budd obsahovat
programovacie konvencie (vid 2.1.5). Malé projekty ¢asto vyvija jeden alebo malé mnozstvo
programétorov, a preto v nich vo véicsine pripadov niesu programovacie konvencie explicitne
uvedené a riesia sa osobitne (napriklad tstne alebo v Pull requestoch). Najvicsie projekty
maju Castejsie vlastné, jedinecné, riesenia spravovania programovacich konvencii. Vyber

.....

1https ://console.cloud.google.com/bigquery?project=githubarchive&page=project

10

https://console.cloud.google.com/bigquery?project=githubarchive&page=project

.....

som sa snazil o projekty, ktoré su stale aktivne a vyuzivané, preto som zvolil projekty iba
za rok 2020.

Vysledky analyzy

Kazdy z vybranych projektov som sktimal manudlne, otvorenim ich repozitara v sluzbe
GitHub, pretoze z dat dostupnych na BigQuery nebolo umoznené ziskat potrebné informé-
cie. V tejto casti vysvetlujem, aké data som v projektoch analyzoval, uvadzam dévody ich
analyzy a aké hodnoty som ziskal. Pre blizsie informacie o konvenciach na konkrétnych vy-
branych projektoch vid ¢ast 2.2.2, pre informécie o konkrétnych technolégidch zaistujtcich
uchovavanie, dodrzovanie a spravovanie programovacich konvencii vid ¢ast 2.3. Pre vyuzitie
ziskanych dat pri navrhu vid ¢ast 3.1.1.

V prvom kroku som zistoval, ¢i repozitdre obsahuji zdrojovy kéd a teda ¢i vobec déva
zmysel, aby obsahovali programovacie konvencie. Za repozitar, ktory obsahuje kod som bral
do uvahy taky, ktorého kéd stoji za zmyslom repozitara. Ak napriklad repozitar obsaho-
val iba Markdown subory a jeden kratky skript, pouzivany na vycistenie ich forméatovania,
pricom v repozitari islo priméarne o obsahy Markdown stiborov, tak som to nebral ako repo-
zitar obsahujici kéd. A to z dovodu, ze by nedédvalo zmysel, aby obsahoval programovacie
konvencie. Tridsatpat z péfdesiat repozitarov obsahovalo zdrojovy koéd.

V repozitaroch som hladal aj nejaky druh sprievodcov prispievanim, ¢im som sa snazil
zistit, ¢i sa v danom repozitari vobec ocakava prispievanie a dava zmysel, aby repozitar ob-
sahoval programovacie konvencie. Tridsatdevat z péafdesiat repozitarov obsahovalo nejaky
druh vysvetlenia ako prispievat, pricom najcastejsie ho obsahoval siibor CONTRIBUTING.md.
Pri sprievodcoch prispievanim som pozoroval tri kategdrie obsahu. Sprievodcov obsahuji-
cich konvencie urcujice ako pracovat s repozitidrom, teda ako pisat a ¢o maji obsahovat
Issue, ako vytvarat Pull requesty a ostatné veci, tykajice sa prace s Gitom a GitHubom.
Sprievodcov s takymto obsahom bolo tridsatsest. Sprievodcov prispievanim, ktori obsahovali
iny obsah, prevazne etické hodnoty a principy udrziavané v repozitari, bolo tridsatsedem
a sprievodcov obsahujucich programovacie konvencie bolo strnast, ¢o tvori dvadsatosem
percent zo vSetkych pétdesiatich repozitarov. Avsak, ak odhliadneme od repozitarov, ktoré
neobsahovali ziadny kéd alebo ani ziadneho sprievodcu prispievanim, tak zistime, Ze repo-
zitarov s programovacimi konvenciami je polovica.

Tabulka 2.1: Sthrn projektov podla kategdrie konvencii

Pocet projektov
Celkovo 50
Obsahujucich iné konvencie 37
Obsahujucich Git/GitHub konvencie 36
Obsahujtcich programovacie konvencie 14
Bez konvencii 8

11

Tabulka 2.2: Stihrn projektov podla technolégii spravujicich konvencie

Pocet projektov
Celkovo 50
Obsahujucich konvencie v Markdown siiboroch 34
Obsahujtcich konvencie v Issue Sabléne 25
Obsahujtcich konvencie v EditorConfig stibore 18
Obsahujtcich konvencie na externom odkaze 8
Obsahujucich konvencie vo Wiki 7
Bez konvencii 8

Medzi konvenciami v jednotlivych repozitaroch je velka diverzita, ktort spésobuji rozne
programovacie jazyky a pristupy, a preto je mozné v nich najst prakticky vsetky druhy
konvencii, opisanych v odbornej literature (vid 2.2.3). Medzi najcastejsie najdené patria
menné konvencie a konvencie upravujice formatovanie, ¢o je pravdepodobne spésobené
tym, Ze st to vieobecnejsie kategérie, pouzitelné na vicsinu kédu. Casto sa konvencie za-
oberaju aj kniznicami a testami, pripadne celkovo testovatelnostou kodu. Pri jazykoch kde
to dédva zmysel, je mozné najst konvencie zaoberajice sa typmi, premennymi, dokumenta-
ciou ku kédu a komentarmi. Vseobecne, konvencie vacsinou prikazuji, akym konstruktom
sa vyhnut, ktoré pouzit a v akych pripadoch tak ucinif. Zvécsia ide o nizsie konstrukty
a iba v ojedinelych pripadoch riesili vacsie suvislosti, ako napriklad navrhové vzory obsahu-
juce viac prepojenych tried v objektovo orientovanych jazykoch. Ku konstruktom na naj-
nizsej urovni, ako je napriklad ukoncenie stiboru novym riadkom, znak na konci riadku
alebo kédovanie stiborov st pouzivané EditorConfig sibory, pripadne iné subory, pouzivané
na kontrolu specifickych konvencii daného jazyka pomocou IDE alebo externého programu.
Pokial konvencie nejakt tematiku neriesili explicitne, tak vo vécsine pripadov nabadali ¢i-
tatela k dodrziavaniu stylu uz existujiceho kédu.

2.2.2 Analyza vybranych projektov

Cast préce, ktora sa zaobera konkrétnymi projektami a vyuzivanim programovacich kon-
vencii v nich. Cast analyzuje konkrétne projekty, vybrané z analyzy open source projektov
v sluzbe GitHub (vid ¢ast 2.2.1) a zaroven sleduje, akymi sposobmi st konvencie v projek-
toch uchovavané a spravované, ako ku konvenciam programétori pristupuji, ako sa s nimi
novy programatori zoznamuju a ako sa overuje alebo vynucuje ich dodrziavanie. M6j vyber
spocival len v projektoch, ktoré obsahujti programovacie konvencie.

Pri vybere analyzovanych projektov som sa snazil dosiahnuf réznorodost, ako podla
obsahu, tak aj podla sp6sobu uchovivania programovacich konvencii. Mojou snahou bolo
poukézat na to, ako sa realne technoldgie, spravujice programovacie konvencie na pro-
jektoch pouzivaja, aké druhy konvencii sa vyuzivaji a ako komunikuja s programétorom.
Projekty som nevyberal iba na zaklade m6jho subjektivneho nazoru, ale aj podla prvenstva
v stanovenych kategéridach. Ako prvy projekt analyzujem The Algorithms — Python obsa-
hujtci rézne algoritmy, implementované v jazyku Python. Druhym projektom je Microsoft
PowerToys uchovavajici sadu nastrojov pre efektivnejsiu pracu so systémom Windows 10.
Poslednym projektom je React, kniznica v jazyku JavaScript pre vytvaranie uzivatelskych
rozhrani.

12

The Algorithms — Python

The Algorithms — Python [83] je repozitér, obsahujici algoritmy, implementované v jazyku
Python. Napisany je v jazyku Python a prispelo do neho cez Seststopatdesiat uzivatelov.
Repozitar patri do najvicsej open source kniznice algoritmov v sluzbe GitHub pre rézne
programovacie jazyky. Jazyky, spolu aj s ich repozitarmi, si dostupné na oficialnej stranke
The Algorithms’. Algoritmy st uréené iba na edukacéné a demonstracné tcéely, pri¢om ne-
musia byt vzdy najoptiméalnejsie. Siibor DIRECTORY .md obsahuje zoznam algoritmov v re-
pozitari, s odkazmi na stbory, v ktorych st implementované. Jeden algoritmus je napisany
v jednom Python stibore. Repozitar som zvolil na analyzu, pretoze je prvym zo zoznamu
analyzovanych projektov (vid ¢ast 2.2.1), ktory obsahuje programovacie konvencie.

V Markdown sibore CONTRIBUTING.md sa nachddzaji pokyny pre prispievatelov do re-
pozitara. Pred samotnym prispenim sa ocakava ich precitanie a dodrzanie, pri¢om na pri-
padné otazky je mozné pouzit Issue alebo Gitter. Pre Markdown stbory ako technolégiu,
spravujucu konvencie vid 2.3.1. Medzi pokynmi sa v Markdown sibore nachddzaja aj sa-
motné konvencie. Konvencie rieSia verziu programovacieho jazyka, sprdvne pomenovania
s odkazom na externé menné konvencie, spésob komentovania a dokumentovania a prefe-
renciu urcitych konstruktov jazyka nad inymi. Pokyny, okrem konvencii obsahuji aj vse-
obecné zasady, netykajice sa programovania, sposob akym v projekte funguje automatické
testovanie a tedriu algoritmov.

Zmeny v konvenciach je mozné sledovat v histérii siboru, kedze je ulozeny priamo v Git
repozitari projektu. Dodrzanie konvencii je kontrolované pomocou pluginu pre—commit a po-
mocou programov black a flake8 (vid 2.3.5), ¢im sa kéd naformatuje do spravneho tvaru.
Nésledne je manualne skontrolovany v Pull requeste. Testy si automaticky spustané na Tra-
vis CI s vyuzitim Pytest a Mypy kontrolujucim typy (vid 2.3.5). Repozitar obsahuje aj jed-
noducht Wiki (vid 2.3.3) obsahujicu zdkladné informécie o repozitéri a odkazy na manual
k prispievaniu a Gitter.

Microsoft PowerToys

Microsoft PowerToys [63] je repozitar, uchovavajuci sadu nastrojov pre pokrocilych uziva-
telov, ktori checi zefektivnif svoju pracu so systémom Windows 10 a dosiahnut tak vyssiu
produktivitu. Medzi hlavné néstroje patri Color Picker, umoznujuci ziskat farbu z akej-
kolvek prave beziacej aplikacie, Fancy Zones spravujici oknad a umoznujici vytvaranie ich
komplexnych rozvrhnuti a PowerToys Run urCeny na vyhladavanie a spustanie aplikécii
okamzite. Do repozitara prispelo cez stoosemdesiat uzivatelov, pricom obsahuje kéd pre-
vazne v jazykoch C++ a C#. Prehlad néstrojov aj s ndavodom na instalaciu sa nachidza
v Microsoft dokumentacii®. K analyze som zvolil repozitar, pretoze je prvym z analyzova-
nych projektov (vid ¢ast 2.2.1), ktory obsahuje programovacie konvencie a zaroven je od
firmy Microsoft a obsahuje kéd v programovacom jazyku C#. Cielenie na .NET technologie
som rozoberal v Casti 3.1.2.

V stbore README.md, ktory sa zobrazuje na hlavnej stranke repozitara, sa nachadza
cast pre prispievatelov. V Casti sa pise o tom, ako projekt vita prispievanie vsetkych dru-
hov, od pomoci so Specifikaciou, dizajnom, dokumentaciou, hladanim chyb s ktorymi moze
pomoct kazdy, az po programovanie funkcii a opravovanie chyb. Nasledne ¢ast obsahuje
odkaz na CLA, navod pre prispievatelov a vyvojarsku dokumentéciu. Okrem toho repo-
zitar obsahuje aj COMMUNITY.md suibor s uzivatelmi, ktori mali velky prinos pre projekt

2https://thealgorithms.github.io
3https://docs.microsoft.com/sk-sk/windows/powertoys

13

https://thealgorithms.github.io
https://docs.microsoft.com/sk-sk/windows/powertoys

a Wiki (vid 2.3.3) so zakladnymi informéciami pre uzivatelov s odkazmi na viac informécii
v Microsoft dokumentacii.

V repozitari sa nachadza aj sibor CODE_OF_CONDUCT .md obsahujici odkaz na Microsoft
kédex spravania, ktory definuje spravanie konvencii v projekte. V navode pre prispievatelov
sa nachddzaju konvencie k vytvaraniu a prispievanie do Issue. V zavere navodu je odkaz
do vyvojarskej dokumentécie, ktora obsahuje konvencie k préci so samotnym repozitarom.
Vyvojarska dokumentacia je rozlozena do viacerych Markdown siborov a st v nej doku-
mentované vyznamné triedy, struktira kédu, lokalizacia, logovanie, nastavenia, diagnostika,
pracovny tok repozitara, kompilacia a aj programovacie konvencie. Programovacie konven-
cie sa zaoberaji najmé forméatovanim, k ¢omu pouzivaju ClangFormat (vid 2.3.5). Okrem
toho obsahuje repozitar aj EditorConfig sibor (vid 2.3.4), ktory v programovacich konven-
ciach spomenuty nie je, ktory v dvoch pripadoch upravuje vaznost problému néjdeného
pri analyze.

Pri vytvarani Issue, je na vyber zo Styroch sablén (vid 2.3.2), ktoré obsahuji zakladné
body, ktoré by mali jednotlivé typy Issue obsahovat. Typmi Sablén st zadanie chyby, do-
kumentéacie, poziadavka funkcie a lokalizacia. Okrem toho obsahuje okno vytvarania Issue
aj odkaz na nahlasovanie bezpec¢nostnych chyb, k ¢omu je v repozitari vytvoreny samos-
tatny Markdown stbor a odkazy na uzivatelskt a vyvojarsku dokumentaciu. Okrem toho
vytvaranie Issue upravuje aj SUPPORT.md siibor a siibor pre prispievatelov. Zmeny v kon-
venciach, nachadzajucich sa v Markdown siboroch alebo v sibore EditorConfig a ClangFor-
mat je mozné sledovat v histoérii siboru, kedze st ulozené v systéme na kontrolu verzii Git.
Zmeny v Sablénach nie je mozné sledovat, avsak ak k zmene dbjde, do vsetkych existuju-
cich Issue je mozné pridat komentar na vyziadanie ich ipravy. Dodrzanie kédexu spravania
je kontrolované pri kazdej komunikacii v projekte, programovacie konvencie st kontrolované
pomocou automatizovanych nastrojov ClangFormat a EditorConfig a nasledne manudlne
kontrolované pri Pull requeste.

React

React [17] je JavaScriptovd kniznica pre vytvaranie uzivatelskych rozhrani. Jej zékladnou
vlastnostou je deklarativnost, React umoznuje jednoducho vytvarat interaktivne uzivatel-
ské rozhrania, pre kazdy stav aplikacie, ¢o robi kéd predvidatelnejsim, zrozumitelnejSim
a jednoduchsie sa v nom hladaju chyby. React je zalozeny na zapuzdrenych komponentoch,
ktoré riadia svoj vlastny stav, efektivne sa vykresluji a menia, pri zmene tdajov na po-
zadi. Repozitar pouzilo cez paf miliénov uzivatelov a cez tisic pafsto do neho prispelo.
Projekt som zvolil na analyzu, pretoze ako prvy obsahuje odkaz na externt dokumenta-
ciu a nepouziva pre uchovavanie Markdown stbory. Zaujimavy je aj pouzivanim viacerych
automatizovanych nastrojov na kontrolu programovacich konvencii.

Repozitar vita uzivatelov k prispievaniu, ¢o je uvedené priamo na tvodnej stranke.
K repozitaru je vytvorena Wiki (vid 2.3.3) obsahujica odkaz na externi dokumenticiu®.
Vytvaranie Issue obsahuje jednu Sablénu pre chybu, obsahujicu nutné ¢asti, ostatné druhy
issue si bez Sablony (vid 2.3.2). Markdown subory neobsahuji konvencie, ale odkazuju sa
na externi dokumentaciu, v pripade kodexu spravania na Facebook konvencie, urcujice
spravanie sa v projekte’, v otdzkach bezpe¢nosti na Facebook whitehat®.

‘https://reactjs.org/
"https://engineering.fb.com/codeofconduct/
Shttps://www.facebook.com/whitehat

14

https://reactjs.org/
https://engineering.fb.com/codeofconduct/
https://www.facebook.com/whitehat

Externd stranka obsahuje rozsiahlu dokumentaciu k celému projektu, jej cast je defino-
vané pre prispievatelov. Tato ¢ast obsahuje konvencie k vytvaraniu Issue s chybou, ziadanim
o zmenu alebo ndvrhom novej funkcionality. Okrem toho sa zameriava aj na vytvorenie Pull
requestu s novym kodom, pricom popisuje cely proces, ktory je nutné dodrzat, o je vhodné
si pred prispievanim precitat. Programovacie konvencie sa v procese kontroluji pomocou
programu Linter a forméatovanie sa nastavuje pomocou programu Prettier, pre viac informa-
cii o fungovani programov vid 2.3.5. Okrem toho repozitar obsahuje aj EditorConfig sibor
(vid 2.3.4) obsahujuci konvencie pre vSetky stibory s upresnenim konvencii pre Markdown
stbory. Zmeny konvencii je mozné v pripade programov kontrolovat v histérii siborov v re-
pozitari, ktoré dané programy nastavuji. V pripade zmeny v procese na externej stranke
nie je mozné zmeny sledovat. Dodrzanie programovacich konvencii sa kontroluje okrem
automatizovanych nastrojov aj v Pull requestoch, spravanie podla kédexu je kontrolované
vo vsetkej komunikacii.

2.2.3 Dalsie zdroje programovacich konvencii

K vytvoreniu komplexného prehladu vyuzivanych programovacich konvencii je vhodné za-
nalyzovat aj konvencie z dalsich zdrojov, nie iba z vybranych open source projektov ana-
lyzovanych v prechadzajtcich castiach. Vzhladom na velké mnozstvo dostupnych konvencit
k réznym jazykom, som sa rozhodol spracovat zvlast vseobecné zdroje, vyuzitelné pri vset-
kych jazykoch a zvlast zdroje k jednému, referenénému jazyku. V prvej casti analyzujem
programovacie konvencie pouzitelné vseobecne pre lubovolny jazyk a v druhej casti sa ve-
nujem programovacim konvencidm ku jednému konkrétnemu programovaciemu jazyku.

Vseobecné programovacie konvencie

Cast préce skiimajiica programovacie konvencie pouzitelné vieobecne pre lubovolny progra-
movaci jazyk. Cielom je ziskaf na pouzivané programovacie konvencie aj iny pohlad, mimo
analyzy open source projektov z Casti 2.2.1 a 2.2.2. Skiima, aké druhy konvencii by mohol
chciet pouzit v projekte, ¢o je nasledne vhodné zohladnit pri navrhu systému na ich spravu.
Pri analyze som cielil na odbornt literatiru, z ktorej vacsina konvencii vychadza.

Clean Code [50] s podtitulom A Handbook of Agile Software Craftsmanship je kniha
od Robert C. Martina, ktord sa zameriava na pisanie ¢istého kédu. Knihu autor rozdeluje
do troch casti. Niekolko prvych kapitol popisuje principy, vzorce, postupy a vhodné praktiky
pri pisani ¢istého kédu, ktoré obsahuji priklady v zdrojovom kéde jazyka Java [50]. Druhd
cast knihy pozostava z niekolkych pripadovych studii, uciacich techniku Cistenia a transfor-
mécie kédu na jeho ¢istejsiu, menej problémovi variantu [50]. Tretia ¢ast obsahuje zoznam
heuristik a problémov zhromazdenych z pripadovych studii z druhej casti, ktoré sltzia ako
zékladna znalosti pre dalsie pouzitie [50].

V knihe je mozné najst velké mnozstvo réznych druhov programovacich konvencii. Ob-
sahuje menné konvencie, konvencie k funkcidm, objektom, triedam, datovym struktdram
a k pisaniu testov [50]. Nésledne rozoberéd formatovanie kddu, komentovanie kédu, pracu
s vynimkami, ale aj s kddom tretich stran a vytvaranim hranic medzi nim a vlastnymi cas-
tami kédu [50]. V neposlednom rade riesi aj konvencie na vyssich drovniach, ako st vztahy
medzi objektami, asynchrénnost, navrhové a architektonické vzory [50].

Clean Code in C# [2] s podtitulom Refactor your legacy C# code base and improve
application performance by applying best practices je kniha venujtca sa zauzivanym prakti-

15

kam pri pisani kédu, a teda aj programovacim konvenciam. Zaobera sa spravnym pisanim
metod, tried, ¢istych funkcii alebo spravnemu vyuzitiu dedi¢nosti a vyhadzovaniu vyni-
miek [2]. Opisuje sposoby ako testovat kéd, pouzivat asynchrénnost, a ako vhodne vytva-
rat API, kontrolovat kéd a spravovat projekt [2]. Kniha okrem iného opisuje aj spravne
a nespravne sposoby komentovania koédu, organizacie tried, objektov, mennych priestorov
a datovych struktar [2].

A okrem opisanych kategérii konvencii, kniha obsahuje aj vseobecné principy, pouzi-
vané pri pisani kédu. Princip KISS (keep it simple, stupid) cieli na pisanie jednoduchého,
az primitivneho kédu [2]. YAGNI (you aren’t gonna need it) je spésob programovania, ktory
dovoluje pridat dalsi kéd len ked je absolitne nutny a teda drzi mnozstvo kédu na absolut-
nom minime [2]. Princip DRY (don’t repeat yourself) sa snazi o zniZenie opakujtcich sa ¢asti
kédu pomocou refaktorizacie [2]. SOLID je sada piatich principov névrhu, ktorych cielom
je vytvorit softvér rozsiritelny bez nutnosti aprav velkych ¢asti uz existujiceho kédu, ktory
je jednoduchy na citanie, pochopenie a udrziavanie [2]. Occamova britva je fraza, ktora
hovori, Ze najjednoduchsie riesenie je najpravdepodobnejsie to spravne [2].

Agile principles, patterns, and practices in C# [51] je kniha ilustrujica zaklady
agilného vyvoja a dizajnu na sérii pripadovych stidii. Okrem konvencii zameriavajtcich sa
na spravne a nespravne riadenie projektu agilngm spdsobom obsahuje kniha aj konvencie
pre vyssie, abstraktnejsie casti rozsiahlych systémov a konvencie navrhovych a architekto-
nickych vzorov. Taktiez rozoberd jednotlivé principy SOLID (vid ¢ast Clean Code in C#)
a konvencie vyuzivané pri navrhu aplikacii.

Refactoring [18] s podtitulom Improving the Design of Ezisting Code je kniha, ktord
cieli na vylepSenie dizajnu stavajicej verzie kodu. Obsahuje priklady, ako nevhodne napisat
kéd a vysvetluje, ako ho spravne upravit. Okrem tprav funkcii, mien alebo komentarov sa
zameriava aj na jednotlivé prvky ako si cykly, podmienené prikazy a odlozené vyhodnoco-
vanie [18]. Taktiez sa venuje tipravdm dedi¢nosti, zapuzdrenia, testov alebo API [18].

Programovacie konvencie k jazyku c#

V tvode som spominal, Ze systém je primarne uréeny pre projekty, ktoré vyuzivaju .NET
ekosystém. Ako kandiddta som zvolil programovaci jazyk C#, pricom som kladol déraz
na dobri dostupnost relevantnych zdrojov a na ¢asté pouzitie pri vyvoji enterprise aplikdcii.
Nasledne som vyhladal konvencie a styly dostupné k tomuto jazyku.

.NET a C# som zvolil aj preto, pretoze vytviarany systém je napisany primarne v nom
a v ankete z roku 2019 zo StackOverflow skoncil . NET na druhom a .NET Core na tretom
mieste medzi najviac populdrnymi ramcami [76]. Zaroven sa . NET Core umiestnil ako prvy
v najoblibenejsich rdmcoch mimo web a C# ako desiaty najoblibenejsi jazyk [76].

Microsoft dokumentacia [62] je oficidlna technickéd dokumentdcia pre koneénych uzi-
vatelov, vyvojarov a I'T Specialistov, ktor{ pracuji s .NET ekosystémom. Teda aj pre jazyk
C#, ktory bol vyvinuty okolo roku 2000 spolo¢nostou Microsoft. Vacsina obsahu dokumen-
tacie je open source. Clanok dokumentécie je reprezentovany ako Markdown stibor v Git-
Hub repozitari. K jazyku C# obsahuje dokumentacia rozne kategoérie ¢lankov: dokumen-
tuje zaklady préace s jazykom, prehliadku jeho funkcionalit, zmeny v jednotlivych verzidch
a iné [54]. V dokumentdcii sa nachddza aj stranka, rozoberajica moznosti nastavovania
stylov kédu pomocou EditorConfig siborov (vid 2.3.4).

16

Cast dokumentécie sa zaobera programovacimi konvenciami k jazyku C#, ktoré od-
poruca autor jazyka jeho uzivatelom [53]. Rozdeluji sa na menné, konvencie rozvrhnutia
a konvencie komentovania [53]. Nésledne obsahuju pokyny k jazyku, v ktorych informuje
o vhodnych konstruktoch a vitanych oblastiach ich vyuzitia [53]. V poslednej casti sa na-
chadza odkaz na pokyny k bezpeénému programovaniu [53].

V dokumentécii sa nachddza aj sekcia, ktord poskytuje pokyny pre navrhovanie kniznic,
ktoré rozsiruju a komunikuji s .NET rdamcom [59]. Odporu¢a pokyny pre ndvrh a snazi
sa pomoOct zaistit konzistenciu A PI a jednoduché pouzitie poskytnutim jednotného progra-
movacieho modelu, ktory nie je zavisly na programovacom jazyku pouzitom pri vyvoji [59].
Sekcia sa deli na pokyny pomenovania, pokyny pre navrh typov, pokyny pre navrh ¢lenov,
pokyny pre rozsiritelny névrh, pokyny pre pouzitie vynimiek, pokyny pouzitia beznych
typov vo verejne pristupnych API a na ndvrhové vzory [59].

Google Style Guides [36] je repozitar’ v sluzbe GitHub, ktory je exportovany do in-
ternetovej stranky. Obsahuje sprievodcov programovacimi stylmi, ktoré pouziva spolo¢nost
Google pre svoj kéd [36]. Styly st ulozené v XML, HTML a Markdown stiboroch pre mnoho
programovacich jazykov, medzi ktorymi je aj C#. Repozitar je pod CC licenciou, ktora
umoznuje jeho pouzivanie, pod podmienkou uvedenia autora.

Styly pre programovaci jazyk C# boli vyvinuté interne v spolo¢nosti a st pouzivané ako
vychodiskové pre ich kéd [34]. Poskytuju stylistické volby, ktoré zodpovedaji ingym v Google,
napriklad pre programovacie jazyky C++ a Java, pricom vychadzaji z mennych konvencii
pre jazyk C# od spolo¢nosti Microsoft a z konvencii v dotnet runtime repozitari® [34].
Rozdelené sii sa na dve ¢asti: formatovanie jazyka a kédovanie. Cast o formatovani obsahuje
menné konvencie, organizaciu poradia kédu a pravidla pouzivania neviditelnych znakov,
nasledovanu rozsiahlym prikladom siboru, na ktorom si konvencie pouzité a vysvetlené
v komentaroch. Kédovanie obsahuje pravidla vhodnosti a nevhodnosti pouzitia jednotlivych
komponentov jazyka v urcitych situdciach.

Dofactory [9] je americkd firma, poskytujica rdmce navrhovych vzorov pre .NET, SQL
a JavaScript. Snazi sa poskytovat jednoduchu a ¢istu architekttaru, pre rychly vyvoj apli-
kécii. Na ich strankach je mozné najst programovacie konvencie, rozdelené na sedemnast
casti, ktoré pri vyvoji dodrzuji a odporicaju dodrziavat aj vyvojarom pracujicim s ich
produktami [7]. Kazda z nich opisuje, ako dany konstrukt pisat, nepisat alebo ¢omu sa
treba radsej vyhnit [7]. Pri kazdej casti je priklad pouzitia, odévodnenie a v niektorych
pripadoch aj priklad nesprdvneho pouzitia alebo vynimiek [7]. Obsahovo sa jednd o pra-
vidla, konzistentné s odporicanymi konvenciami od spolo¢nosti Microsoft pre .NET ramec,
pricom niektoré konvencie si rozsirené.

GeeksforGeeks [20] je internetovy portél, vytvoreny pre poskytovanie dobre napisaného,
premysleného a vysvetleného riesenia otdzok z oblasti programovania, algoritmizacie a po-
hovorov. Na portdli sa nachddza mnozstvo ¢lankov, ako k programovaciemu jazyku C#,
celému ekosystému .NET, tak aj k inym technolégiam. Okrem c¢lankov je v portali mozné
najst aj pracovné ponuky, online kurzy a iné.

Clénok s programovacimi Standardami na zaciatku opisuje jazyk C# a jeho zdkladné
charakteristiky a histériu [69]. Nasledne popisuje jedendst praktik, ktoré je vhodné pri pisani

"https://github.com/google/styleguide
8https://github.com/dotnet/runtime/blob/main/docs/coding-guidelines/coding-style.md

17

https://github.com/google/styleguide
https://github.com/dotnet/runtime/blob/main/docs/coding-guidelines/coding-style.md

kédu v jazyku vyuzivat [69]. Ide prevazne o menné konvencie, ktoré vychadzaju z konvencii
spolo¢nosti Microsoft. Okrem nich riesi aj zarovnanie textu, zapuzdrenie a vhodné pouzitie
niektorych konstruktov.

K programovaciemu jazyku C# je mozné néajst online velké mnozstvo konvencii, ktoré
si vyvojari upravuju podla vlastnych potrieb. Prikladom je prispevok o programovacich
standardoch na stranke C# Corner, ktorého cielom je definovat pokyny, ktoré zabezpe-
¢ia konzistentny s$tyl a formatovanie kédu, ¢o ma pomdct vyvojarom vyhnut sa beznym
chybam [3]. Dalsim prikladom je ¢ldanok na SubMail blogu, ktory uvadza do zakladnjch
konvencii rozdelenych do deviatich ¢asti [86]. Vac¢sina konvencii vychadza z vysSie zmie-
nenych alebo vSeobecnych konvencii (vid prva cast 2.2.3) aplikovanych priamo na jazyk

C#.

2.3 Analyza technologii spravujicich programovacie konven-

Cle

Sucastou analyzy, ktord je vhodné spravit pred navrhom samotného systému, je analyza
technologii, ktoré slizia na uchovavanie, dodrziavanie a spravovanie programovacich kon-
vencii v projektoch. Analyza sltzi k zhodnoteniu sticasného stavu v oblasti technolégii, pou-
zivanych k spravovaniu programovacich konvencii a vyuziva poznatky z casti 2.2.1, v ktorej
som analyzoval patdesiat projektov v sluzbe GitHub.

Tato cast prace analyzuje konkrétne technolégie, spravujice programovacie konvencie
v projektoch, pricom uvadza priklady projektov, v ktorych sa dané technoldgie na spravu
konvencii vyuzivaju. V prvej ¢asti sa zaoberd Markdown sibormi (vid 2.3.1), v druhej sab-
lénami pre Issue (vid 2.3.2) a v dalsej Wiki strankami, spolu s externymi webovymi stran-
kami (vid 2.3.3). V neposlednom rade prebera EditorConfig s jeho rozsireniami (vid 2.3.4)
a ostatné, menej casto pouzivané technolégie (vid 2.3.5).

2.3.1 Markdown subory

Markdown [79] je nastroj na konverziu textu na HTML pre tvorcov webovych stranok.
Umoznuje tvorit obycajny text, ktory sa jednoducho pise a ¢ita. Ten sa potom prevadza
na Strukturdlne platny XHTML (alebo HTML) kéd. Markdown sa skladd z dvoch casti:
syntaxe formatovania obycCajného textu a programu napisaného v Perl jazyku, ktory text
prevadza do HTML. Hlavnym cielom syntaxe je dosiahnut, aby bol jazyk ¢o najcitatel-
nejsi. Existuje niekolko jednoduchych znackovacich jazykov, ktoré st nadmnozinou Mar-
kdownu [5].

Markdown [29] je teda jednoduchd a lahko pouzitelnd syntax pre Stylovanie vSetkych
foriem pisma na platforme GitHub. GitHub pouziva svoju vlastni verziu syntaxe”’, nazjvani
GitHub Flavored Markdown, ktord poskytuje dalsiu sadu uzito¢nych funkcionalit, z ktorych
mnohé ulahc¢uju pracu s obsahom. Nie vSak vSetky funkcionality st dostupné kdekolvek,
niektoré st dostupné iba v popisoch a komentaroch Issue a Pull requestoch. Markdown
moze byt pouzity na vacsine miest na GitHube, medzi ktorymi st aj sibory s priponami
.md alebo .markdown, ktoré je mozné upravovat online, priamo na strankach GitHubu a v
realnom case pozorovat zmeny.

“https://github.github.com/gfm

18

https://github.github.com/gfm

Najcastejsie, v tridsiatichstyroch pripadoch z péatdesiat, boli Markdown siibory pouzité
ako sprievodcovia prispievanim a teda obsahovali programovacie konvencie (vid 2.2.1), pri-
kladom projektu, ktory uchovava programovacie konvencie v Markdown suboroch je The
Algorithms — Python (vid éast 2.2.2). Casté pouzitie Markdown stiborov prisudzujem jed-
noduchému pouzitiu, ktoré je priamo integrované do platformy GitHub, ako aj vysokej flexi-
bilite, ktora umoznuje napisat konvencie a $tyly akymkolvek sp6sobom, kedZe ide o textové
subory s formatovanim. To podporuje aj analyza, pri ktorej som zistil, ze medzi jednotlivymi
konvenciami je velkd diverzita. Dalsou vyhodou pouzitia Markdown stiborov je vkladanie
blokov kédu so syntaxou jazyka alebo rozdelenie konvencii do viacerych logickych casti,
stuborov, ktoré na seba navzajom odkazuju, ¢o tiez mbézeme pozorovat vo viacerych repozi-
taroch z analyzy.

2.3.2 Issue sablény

Issue [28] na platforme GitHub je sposob, ako sledovat tlohy, vylepsenia a chyby tyka-
jace sa projektov. Je to nieco ako e—mail, ale na rozdiel od neho, je tu moznost aj zdielat
a diskutovat o nom so zvyskom timu. Vacsina softvérovych projektov mé nejaky sledovac
chyb. Sledovac na plaforme GitHub sa vola Issues a ma vlastni sekciu v kazdom repozitari.
Typicky Issue obsahuje ndzov a popis obsahu, farebné stitky, ktoré ho kategorizuju a d4 sa
podla nich filtrovat priradenti osobu, zodpovednt zan a komentére, ktoré dovoluji kazdému
s pristupom k repozitdru poskytovat spatni viazbu. Issue sa zhromazduja do milnikov, ¢o
je uzitoéné pri ich spajani s roznymi funkcionalitami a fazami projektu. V Issue je mozné
upovedomit inych uzivatelov alebo timy, ¢o poskytuje flexibilny spdsob, ako zapojit tych
spravnych Tudi do efektivneho riesenia problémov. Text Issue je formatovany pomocou Mar-
kdown technolégie a GitHub obsahuje vyhladavac, ktory podporuje ich prehladavanie.

Issue moze byt vytvorena na zaklade kédu z Pull requestu, ale aj priamo z komentara
iného Issue alebo kontroly Pull requestu [26]. Pokial projekt obsahuje projektovi dosku
(board) na urcovanie priorit prace, moézu byt poznamky z nej prekonvertované na jednotlivé
Issue [26]. Repozitare mdzu obsahovat sablény, ktoré pomdahaju k vytvaraniu kvalitnejsich
Issue a Pull requestov [32]. Sablény k Issue je mozné vytvarat v nastaveniach repozitara [25].
GitHub umozinuje nastavenie mena, popisu, obsahu a stitkov v Sabléne, ktoré sa po jej
zvoleni pri vytvarani nového Issue prednastavia [25].

Prave moznost nastavenia predvoleného obsahu Issue v Sabléne v Markdown formate
umoznuje ukladanie sprievodcom prispievanim a teda aj programovacich konvencii. Vyho-
dou sablén je okrem pouzitia syntaxe Markdown, ktorej vyhody som opisoval pri Markdown
stboroch, je uz predvoleny obsah Issue, ktory staci iba upravit a teda je jednoduchsie do-
drzat konvencie jej struktury. Issue Sablény v prieskume programovacich konvencii boli ako
druhé najcastejsie pouzité a obsahovali sprievodcov prispievanim v dvadsiatichpiatich pripa-
doch z patdesiat (vid 2.2.1), pre priklad projektu pouzivajiceho Issue sablony vid Microsoft
PowerToys (2.2.2).

2.3.3 Wiki a externé stranky

Wiki stranky a externé stranky boli dalsim vyrazne pouzivanym spdsobom, ako v GitHub
projekte skladovat sprievodcov prispievanim a tym padom aj programovacie konvencie. Ex-
terné stranky boli vyuzité v 6smich z péatdesiatich analyzovanych projektov a Wiki stranky
v siedmich, pre viac informécii o analyze vid cast 2.2.1. Prikladom projektu vyuzivajiceho
Wiki je napriklad Microsoft PowerToys (vid 2.2.2), prikladom projektu odkazovaného sa
na externé stranky je React (vid cast 2.2.2).

19

Kazdy GitHub projekt moze obsahovat sekciu pre uchovavanie dokumentacie nazyvani
Wiki, pomocou nej je mozné zdielat detailné informéacie o projekte, napriklad ako ho pouzi-
vat, ako je navrhnuty alebo jeho zdkladné principy [23]. Wiki podporuje, rovnako ako Issue
alebo Markdown stbory formétovanie v Markdown syntaxi [24]. Rozdiel oproti vyuzitiu
Markdown stiborov je v tom, ze Wiki je ulozend v separdtnom Git repozitari [24]. Wiki
teda zachovava vyhody Markdown stborov, k ¢omu pridava vyhodu samostatného repozi-
tara, urceného na dokumentovanie projektu, na ktory je zvycajne odkazované z primarneho
repozitara s kédom.

Externymi strdnkami s myslené webové stranky, na ktoré projekt odkazuje a slizia
ako sprievodcovia prispievanim do projektu a teda mo6zu obsahovat programovacie kon-
vencie. Vyhodou vyuzitia webovych stranok je urcenie vlastnej dostupnosti a teda moézu
byt dostupné aj uzivatelom, ktori nemaju pristup k samotnému projektu. Takisto oproti
inym rieSeniam, zaloZenych na Markdown syntaxi, poskytujui viac moznosti vo formatovani
a obsahu. Externymi strankami v analyze boli zvicsa detailné dokumentacie k projektom,
uréené ako pre koncovych uzivatelov, tak pre vyvojarov.

2.3.4 EditorConfig

EditorConfig [41] pomaha udrziavat konzistentny $tyl kédu pre viacerych vyvojarov pracu-
jacich na rovnakom projekte naprie¢ réznymi editormi a IDE. EditorConfig projekt pozos-
tava z formatu stiboru, sliziaceho na definovanie programovacich stylov a zbierky doplnkov
do réznych textovych editorov, ktoré umoznuju citat format suboru a dodrziavat v nom
definované styly. Subory EditorConfigu st jednoducho c¢itatelné a funguja dobre s verznymi
systémami.

V pripade EditorConfigu sa oproti prechadzajicim technolégiam neukladaji progra-
movacie konvencie ako formatovany text, ale ako EditorConfig subor, vdaka ktorému vedia
editory automaticky upravit modifikovany stibor tak, aby spiiial konvencie zadané v Editor-
Config stbore. V analyze projektov (vid ¢ast 2.2.1) bol najéastejsim nastrojom pouzivanym
k uchovavaniu programovacich konvencii, pokial nepoc¢itame aj formatované texty. Vyuzity
bol v osemnéstich z pétdesiat projektov, pre projekt vyuzivajuci EditorConfig vid Mic-
rosoft PowerToys (2.2.2). Dalsie technolégie umoziiujtice automaticki kontrolu obsahuje
cast 2.3.5.

Standard

EditorConfig sibory st standardne pomenované .editorconfig a st vyhladavané pri otvo-
reni siboru pomocou IDFE alebo textového editoru, ktory ma EditorConfig vstavany alebo
je do neho nainstalované EditorConfig rozsirenie [41]. EditorConfig sibor je vyhladdvany
v adresari, v ktorom sa nachadza modifikovany stibor s editorom a v kazdom nadradenom
adresdri, az pokial sa nenéjde koreriovy sibor obsahujici pravidlo root=true [41]. Stibory
s konvenciami st ¢itané zhora nadol, pricom najnovsie ndjdené pravidld maja prioritu.
Pri viacerych stiiboroch maji prioritu pravidld blizsie k modifikovanému siboru [41].
EditorConfig sibory obsahuju pary klica a hodnoty (v zéavislosti od zdroja nazyvané
pravidla alebo vlastnosti), ktoré charakterizuji konvencie. Tieto pary si umiestnené pod sek-
ciou, ktord urcuje, na aké stibory sa konvencie aplikuji [12]. Pokial kIG¢ nie je rozpoznany
editorom alebo rozsirenim, tak je ignorovany, ¢o je uzitoéné pri vytvarani vlastnych do-
datkov. Medzi siroko rozsirené, a teda takmer vzdy podporované, klice konvencii patri styl
a velkost odsadenia, sirka tabu, znak konca riadku, kddovanie siiboru, orezavanie koncovych
medzier a vloZzenie nového riadka na koniec stiboru [11]. Stibory EditorConfigu si zalozené

20

na INI forméate a mali byt kédované UTF-8, pre viac informécii o formate siborov vid

Specifikdciu EditorConfigu'’.

Rozsirenia

Ako je spomenuté v prechadzajicej casti o Standarde, pokial klu¢ EditorConfig pravidla
nie je rozpoznany, tak je ignorovany, ¢o umoznuje jednoduché vytvaranie vlastnych rozsi-
reni pravidiel. Podporu rozsireni si riesi kazdé IDE alebo plugin samostatne. Vdaka tomu
existuje do EditorConfigu viacero rozsireni.

Rozsirenie pravidiel existuje pre napriklad pre .NET. Rozdelené je do styroch kategorii:
pravidla ovplyvnujice spdsob pouzitia réznych jazykovych konstruktov, pravidla identifi-
kujtice zbytoény kéd, pravidld formétovania a pravidld pomenovania [55]. Niektorym pra-
vidlam je mozné nastavif droven zavaznosti''. Rozsirenie je podporované viacerymi IDE,
medzi ktorymi je aj Visual Studio (vid 3.3), ale pravidld je mozné vynucovat aj pocas
kompildcie zdrojového kédu [55].

Dalsie rozsirenia pre viaceré jazyky podporuji produkty od firmy JetBrains. Napriklad
v prostredi IntelliJ IDEA je mozné po pridani pluginu pouzivat okrem zdkladnych pravi-
diel aj rozsirené, zac¢inaju prefixom ij_ [43]. Rozsirenie ReSharper priddva dalsie pravidla
pre .NET, umoznuje exportovat svoje nastavenia do EditorConfig siboru a umoznuje ho
upravovat interaktivne [44].

2.3.5 1Iné technolégie

Cast obsahujtica iné technolégie, pouzivané na spravu programovacich konvencii, ktoré
v analyze GitHub projektov (vid ¢ast 2.2.1) boli zastiipené sporadicky alebo maju vyznamné
postavenie medzi technolégiami, zaistujicimi ich uchovavanie a dodrziavanie. Technologie
su Specializované na urcité jazyky a vedia konvencie kontrolovat automaticky.

Linter

Linter je maly program, ktory kontroluje kéd kvéli stylistickym alebo programovacim chy-
bam [82]. Linter ramce su k dispozicii pre vacsinu syntaxi programovacich jazykov [82]. Prvy
Linter rdamec vznikol v roku 1978, pre analyzu kédu v programovacom jazyku C [77]. Cie-
lom pévodného nastroja bolo analyzovat zdrojovy kéd a najst optimalizacie kompildtora,
k ¢omu sa v priebehu ¢asu zacali priddvat dalsie typy kontrol a overovani [77]. Vo vSe-
obecnosti Lintre poskytuju viac typov kontrol, medzi ktoré patri vyuzitie statickej analyzy,
kontrola bezpeénosti alebo programovacich konvencii a formétovania [77]. Nie vsetky Lintre
podporuju vSetky typy kontrol a zvéicsa sa zameriavaji iba na nejaku ich cast, jednotlivé
kontroly s rozdelené do pravidiel, ktoré mézu byt zapinané a vypinané podla potreby.
ESLint je open source JavaScript Linter. JavaScript je vdaka jeho vlastnostiam né-
chylny k vytvaraniu chyb, ktoré sa typicky hladaji spustenim koédu [68]. ESLint a iné
Lintery umoznuji vyvojarom odhalit problémy s kédom bez jeho spustenia [68]. Cpplint
umoznuje kontrolu siborov vo¢i C++ stylom od spolo¢nosti Google (vid 2.2.3) [49].

Ohttps://editorconfig-specification.readthedocs.io/#file-format
"https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/configuration-
options#severity-level

21

https://editorconfig-specification.readthedocs.io/#file-format
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/configuration-options#severity-level
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/configuration-options#severity-level

Prettier

Prettier [71] je dogmaticky program, sliziaci na forméatovanie kédu podporujici viacero
jazykov, medzi ktoré patri JavaScript, HTML, CSS, JSON a dalSie. Pre prehlad vSetkych
podporovanych jazykov vid oficidlnu dokumentéciu'?. Prettier odstrani vsetko originilne
formatovanie a zabezpeci, ze cely vystupny kéd bude v konzistentnom style. Je mozné ho
instalovat lokalne do projektu ako aj volat priamo z kédu, pricom umoznuje nastavenie
niekolkych druhov formatovania, ako aj ignorovanie urcitych siborov.

Oproti Linterom je uréeny k formatovaniu, pricom Linter je ur¢eny predovsetkym k za-
chytavaniu chyb [70]. Formétovacie pravidld z Linteru, ako napriklad maximélna dlzka
riadku, nie su vébec pri pouziti potrebné, kedze Prettier celé formatovanie zmaze a vytvori
nové, konzistentné [70]. S pravidlami v Linteroch, ktoré zvysuji kvalitu kédu, ako napri-
klad Ziadne nevyuzité premenné, Prettier nema nic¢ spolo¢né a slizia prevazne k odhalovaniu

chyb [70].

Mypy

Mypy [81] je dobrovolne pouzitelny nastroj kontrolujici statické typovanie pre jazyk Python,
ktorého cielom je spojit vyhody dynamického a statického programovania. Kombinuje silu
vyrazov a pohodlie Pythonu so systémom pre kontrolu typov a s kontrolou typov pri kom-
pildcii [81]. Funguje pre standardné Python programy, ktoré spusta pomocou lubovolnej
Python VM s takmer ziadnou réziou [81].

Black

Black [48] je nastroj, formétujuci kéd v jazyku Python. Jeho pouzivanim uzivatel prichddza
o moznost vlastnoru¢ného forméatovania kédu, avsak Setri cas a vytvara deterministicky
naformatovany kdd, ktory je rovnaky v kazdom projekte [48]. Uzivatel ndstroja sa moze
viac sustredit na obsah kédu ako na jeho formdatovanie, kontrolovanie kédu je rychlejsie
a produkuje mensie zmeny [48].

ClangFormat

ClangFormat [78] popisuje mnozinu nastrojov, formatujtcich programovacie jazyky, ktoré
st postavené na LibFormat'®. Podporuje pracu viacerymi spésobmi, vratane samostatnej
aplikacie alebo integracie v roznych editoroch a IDE [78]. Samostatnd aplikdcia umoznuje
formétovanie jazykov C, C++, C#, Java a dalsich [78].

Flake8

Flake8 [6] je néstroj spustitelny cez prikazovy riadok, ktory vynucuje konzistentny styl
v Python projektoch. V zaklade obsahuje viacero kontrol konzistentnosti, avsak podporuje
aj rozsirenia tretich stran [6].

Phttps://prettier.io/docs/en/index.html
Bhttps://clang.1lvm.org/docs/LibFormat.html

22

https://prettier.io/docs/en/index.html
https://clang.llvm.org/docs/LibFormat.html

Kapitola 3

Navrh

Pred vytvorenim navrhu systému je ddlezité zanalyzovat poziadavky, ktoré bude dany sys-
tém plnit. Kapitola nadvazuje na predchadzajicu, ktord analyzuje programovacie konvencie
pouzivané v projektoch (vid 2). Pomocou analyz z predchadzajicej kapitoly uréuje pozia-
davky na vytvarany systém a néasledne systém pomocou vhodnych technolégii a architektiry
navrhuje, spliiajic dané poziadavky.

Prva cast kapitoly identifikuje poziadavky na vytvarany systém na zaklade analyz
z predchadzajucej kapitoly (vid 3.1). Porovnava analyzované technolégie a konvencie, kto-
rych vysledky zhifia do scendrov pouzitia a $pecifikovanych poziadaviek. Dalsia ¢ast na-
vrhuje architektiru systému (vid 3.2). Systém rozdeluje do vrstiev a vrstvy nésledne do men-
sich celkov. Navrhuje ich tlohu, vhodné technolégie a popisuje ich vyznam. Posledna cast
vykresluje ako bol systém implementovany, aké problémy pri implementacii vznikli a ako
bol vysledny systém nasadeny (vid 3.3).

3.1 Poziadavky na vytvarany systém

Cast préce, definujtica poziadavky na navrhovany systém, spravujtci programovacie kon-
vencie. V prvej Casti porovnava funkcie existujicich systémov a rieseni spravujucich prog-
ramovacie konvencie (vid 3.1.1), pricom zohladnuje ziskané déata z analyz z prechddzajicej
kapitoly. Nésledne uvazuje s roznymi scenarmi pouzitia (vid 3.1.2), pricom vychadza najmé
zo spoOsobov, ako sa obdobné technolégie v analyze najcastejsie pouzivaji. V posledne;j
casti definuje priame poziadavky na systém, vychadzajice primarne zo scendrov pouzitia
a analyzy existujucich technolégii a open source projektov (vid 3.1.3).

3.1.1 Porovnanie funkcii existujicich technolégii

Pred spisanim poziadaviek na systém je vhodné porovnat funkcie existujicich technolégit
spracujucich programovacie konvencie, ktoré boli analyzované v casti 2.3 a pracovat s datami
ziskanymi z analyzy open source projektov v Casti 2.2.2. V tejto casti si kladiem za ciel
porovnat funkcie a moznosti jednotlivych technolégii a zamysliet sa nad ich vyhodami
a nevyhodami z viacerych pohladov. Zameriavam sa na porovnanie typov spravovanych
konvencii, spésoby pristupu a uloZenia a na histériu zmien. Porovnanie funkcii existujtcich
technoldgii je nésledne pouzité pri vytvarani scendrov pouzitia (vid 3.1.2) a Specifikdcii
poziadaviek (vid 3.1.3).

23

Porovnanie typov konvencii

V prvom rade je vhodné porovnat, aké konvencie je mozné pomocou ktorych technolédgii
spravovat, a teda aké moznosti nam rbézne technologie poniikaji. Technologie je mozné
rozdelit podla konvencii na dva segmenty. Prvym st technoldogie. umoznujice spracovanie
akychkolvek konvencii, kedze st ulozené v Iudskom jazyku pomocou forméatovaného textu,
¢oho nasledkom je nemoznost automatizovanej kontroly. Druhym segmentom st technolégie,
spracuvajuce konvencie vo forme jazyka, ktorému technoldgie rozumeji, st schopné ho
spracovat a konvencie kontrolovat, avsak jazyk je obmedzenejsi ako pri prvom type. Medzi
technologiami sa nenachddzala ziadna komplexnejsia, ktord by pontikala vyhody z oboch
druhov, teda moznost ulozenia akychkolvek konvencii, ale zaroven ich umoznila automaticky
kontrolovat.

Markdown stibory, spolu s Issue Sablénami a Wiki strankami (vid 2.3) podporuji spravu
akychkolvek konvencii, kedze ich ukladaji vo forme formatovaného textu. Tieto technologie
boli v analyze programovacich konvencii v open source projektoch zastipené vyrazne castej-
sie (vid 2.2.1). Formatovany text umoznuje pracovat s akymikolvek konvenciami, lubovolne
ich zoradit, zdruzit a formulovat, vdaka ¢omu je ich pouzitie vseobecnejsie, daju sa pouzit
pre akykolvek jazyk, akokolvek uzivatel vyzaduje. Pri analyze sa mi podarilo zistit, ze v po-
uziti programovacich konvencii medzi projektami je velkd diverzita a teda vyuzitie ulozZenia
vo forme textu je vyhodou. Vyhodou je aj moznost pracovat so zlozitejsimi konvenciami,
ktoré by aj tak nebolo mozné jednoduchym sposobom kontrolovat automatizovane. Nevyho-
dou ulozenia vo forme textu je teda nemoznost kontrolovat konvencie priamo technolégiou,
¢o by bolo aj zlozité, pri volnom spésobe ich zapisu. Technoldgie davaji uzivatelom moznost
formulovat text akokolvek potrebuji, v podstate st to technolégie urcené na spravu textu.
v ktorych sa uzivatelia rozhodli spravovat konvencie.

Technolégie ako EditorConfig, Linter, Prettier a dalsie (vid 2.3) umoznuji kontrolu kon-
vencii automatizovane a ohranicuji, aké konvencie je mozné v nich spravovat. V analyze
programovacich konvencii boli zastiipené v mensej miere (vid 2.2.1). Zvicsa sa obmedzuju
na kontrolu konkrétnych konvencii v urcitych jazykoch, v ktorych sa ststredia na jedno-
duchsie, automaticky kontrolovatelné prvky (ako je napriklad formdtovanie a mend pre-
mennych, funkcii a podobne) alebo umoziuji kontrolu nizsie troviiovych konvencii, spo-
loénych pre viaceré jazyky (napriklad maximalnej dlzky riadku textu v stibore). Pridévanie
vlastnych konvencii vac¢sina technolégii neumoznuje, Editorconfig dovoluje ich pridavanie
do konfiguracnych stborov, avsak je nutné ich kontrolu naprogramovat. Nastavenie kontro-
lovanych konvencii maju rozlicné formy, v zavislosti od technoldgie. Niektoré technologie
nie je mozné nijako nastavovat a kontroluji sadu predpripravenych konvencii, ale pri inych
je mozné vyberat, ktoré konvencie budt kontrolované. Editorconfig umoznuje okrem vyberu
konvencii aj vyber prie¢inkov a pripon suborov, na ktorych budi konvencie kontrolované.
Od rozliénych foriem nastaveni sa odvijaji aj moznosti radenia a zdruzovania konvencii.
Technolégie, ktoré dovoluju vyberat konvencie pouzité na kontrolu si zvécsa logicky uspo-
riadané. V Editorconfigu si konvencie zdruzené podla pripon stborov, v ktorych je mozné
jednotlivé konvencie vkladat Tubovolne.

Porovnanie uloZenia konvencii

Ako je spominané v prechidzajicej casti, nie vSetky technoldgie kontrolujice konvencie
ukladaji nastavenia. Technoldgie, ktoré ich neukladaji sa bud nijak nenastavuji a kontro-
luja predvytvorenii sadu konvencii alebo sa musia nastavovat vzdy znovu, ¢o nie je uzi-
vatelsky privetivé. Rozne technolégie ukladaju konvencie roznymi sposobmi. Technologie

24

spravujuce a kontrolujtice konvencie lokdlne u uzivatela zvicsa pouzivaju lokalne databédzy
alebo konfigura¢né sibory. Nevyhodou lokalnych nastaveni je ich zdielanie. Konfigura¢né
stubory, ktoré pouziva napriklad Fditorconfig, su casto zdielané pomocou verznych systémov,
ale nastavenia z databaz musia byt exportované a znovu importované u iného uzivatela.

Technolégie pracujice s formatovanym textom sa zvycajne ukladaju ako Markdown
stubory, ktoré su ulozené v Git repozitari, ¢o umoznuje pristup vsetkym jeho uzivatelom.
Issue sablony a GitHub Wiki stranky st dostupné v ramci GitHub repozitara. Programova-
cie konvencie ulozené na externych strankach, maji rézne sposoby ulozenia, zvolené danou
strankou alebo sluzbou.

Porovnanie obmedzenia pristupu ku konvenciam

Medzi analyzovanymi technolégiami sa nachidzali také, ktoré vedeli obmedzit pristup ku kon-
venciam urcitym Tudom, ale aj také, ktoré boli verejné a mohol si ich prehliadnuf kazdy.
Open source projekty poskytuji pouzivané konvencie typicky verejne, aby sa s nimi mohli
prispievajuci uzivatelia zoznamit.

Technolégie spravujice a kontrolujuce technolégie lokdlne, zviacsa poskytuju pristup
ku konvenciam iba ich uzivatelovi. Ulozené st v lokalnych databdzach a je nutné ich
pre ziskanie pristupu iného uzivatela exportovat. Editorconfig pracujici s konfiguracnymi
sibormi sice umoznuje kontrolovat zmeny lokélne, ale konfigura¢né sibory sa zvicsa ukla-
daji do verzného systému, a teda ku konvencidm maju pristup uzivatelia, ktori majua pristup
k repozitaru. Ku konvencidm ulozenym v Markdown siboroch, Issue Sablonach a GitHub
Wiki strankach maju taktiez pristup uzivatelia repozitara. Ak je repozitdr verejny, aj pri-
stup ku konvencidm je verejny. Pri konvencidch uloZzenych na externych strankach zalezi
od konkrétnej sluzby. Stranky zhromazdujice programovacie konvencie s zvacsa verejne
dostupné vsetkym, ale mozu byt dostupné iba vybranym uzivatelom po prihlaseni.

Porovnanie zmien v konvenciach a historie

Pre technoldgiu je vyhodou, ak zaznamenava zmeny v konvencidch, histéoriu ich tprav
a umoznuje uzivatelom, aby sa ku konvenciam vyjadrovali. Vdaka tomu je mozné spétne
zistovat dovody jednotlivych zmien a zaznamendvat si, ktoré konvencie uz boli aplikované
na kéd, ako aj viest diskusiu o budtcich zmenéich v konvencidch. Histéria zmien pomédha
aj k lepsiemu pochopeniu konvencii pre novych vyvojarov.

Konvencie v Markdown stiboroch ukladaji svoju histériu pomocou verzného systému,
rovnako je mozné ukladat histériu aj konfiguracnych stborov réznych technologii, umoznu-
jucich automatickt kontrolu. Lokalne technolégie pracujice s databazou, uréené pre jedného
uzivatela casto neumoznuju sledovat histériu zmien. Prikladam to tomu, ze vyhody sledova-
nia zmien v lokalnych technoldgidch stracaji vyznam, kedze st primarne urcené pre jedného
uzivatela. Technoldgie spravujice konvencie na externych strankach implementuji histériu
zmien a komentovanie v zavislosti na type sluzby.

3.1.2 Uvazované scenare pouzitia

Na zaklade porovnani funkcii existujicich technolégii spravujtcich programovacie konvencie
(vid 3.1.1) a na zéklade analyzy open source projektov v ¢asti 2.2.2 je mozné definovat
niekolko zakladnych scenarov pouzitia systému. Scenare budi nasledne vyuzité v ¢asti 3.1.3
pre forméalne definovanie poziadaviek na systém.

25

Sprava konvencii

Systém sluzi ako databaza konvencii pre projekt v lubovolnom jazyku, pricom na jednom
projekte moéze pracovat viacero vyvojarov. Konvencie sa zadavaji do systému pomocou
formatovaného textu, ¢o umoznuje spisanie réznorodych konvencii. Systém spravuje kon-
vencie a umoznuje sledovat ich histériu a je schopny vytvorit konvencie pre novovznikajice
projekty, ako aj zistit aktudlne pouzivané. Pri kazdej konvencii je mozné komunikovat v dis-
kusnom vlakne pre riesenie moznych zmien a ujasnenie si nejasnosti. Cely systém funguje
ako baza znalosti konvencii v projekte pre novych ¢lenov timu a ako spésob zoznamovania
sa s novymi a zmenenymi konvenciami.

Kontrola a generovanie konvencii

V systéme je mozné ku kazdej konvencii pridat formalny zapis, pomocou ktorého je mozné
konvenciu na projekte automatizovane kontrolovat. Automatizovana kontrola konvencii vy-
tvara sihrnnt spravu dodrzania konvencii v projekte, tak ako je uvedené v zadani prace.
Formalne zapisy je mozné generovat z aktualneho stavu projektu. Kontrolu a generovanie
je mozné rozsirit o vlastné definované pravidla.

Open source systém

Programovacie konvencie k projektu st volne pristupné, kedze systém je primérne urceny
pre open source projekty. Uzivatel sa do systému prihlasuje pomocou GitHub uc¢tu. Kod
systému je verejne dostupny pod open source licenciou, ¢o umoznuje systém upravovat
a pridavat vlastné kontroly konvencii.

3.1.3 Specifikacia poziadaviek

Pred vyberom implementacnych technologii, specifikdciou architektiary a navrhom jednot-
livych modulov systému, je vhodné formélne Specifikovat poziadavky, ktoré by mal cielovy
systém spliiat. Poziadavky maji byt jednoznaéné, testovatelné, uskutocnitelné, meratelné
a nezavislé na implementacii, pricom su definované dostatocne detailne pre navrh sys-
tému [87]. Poziadavky boli specifikované s ohladom na uvazované scendre pouzitia a analyzu
existujucich technolégii. Nasledne som pri Specifikdcii vychadzal zo zadania prace, analyzy
a uskutocnenych konzultécii.

Poziadavky na vysledny systém

Poziadavky na vysledny systém definuji predovsetkym poziadavky, ktoré suvisia s vyvojom
a nasadenim systému, ako je napriklad pocéitacové a programové vybavenie, prenositelnost
a bezpecnost [47]. V pripade vytviaraného systému, ide primérne o definovanie druhu sys-
tému, licencie a spésobu nasadenia.

e Systém je vytvoreny ako webova aplikéicia, ktord komunikuje s uzivatelom pomocou
webového rozhrania. Aplikacia taktiez komunikuje s databazou, v ktorej uchovava
perzistentné data a s aplikaénym programovacim rozhranim sluzby GitHub.

e Systém je zverejneny pod open source licenciou v sluzbe GitHub a obsahuje vsetky
potrebné nalezitosti, umoznujice vlastné nasadenie a dalsi vyvoj komunitou. Systém
je zverejneny v celom rozsahu a teda je mozné ho stiahnut, lubovolne upravit a nasadit

26

uzivatelom. K systému je vytvorend dokumentécia, obsahujica navod ako systém
nasadit.

e Instancia systému bude nasadend a dostupnad pri jeho testovani a naslednom hodnoteni
(pre nasadenie instancie vid 3.3.3).

Funkcionalne poziadavky

Ide o zakladny typ poziadaviek, ktory urcuje, ¢o ma vyvijany systém robit a aké sa jeho
funkcionality [47]. Pri Specifikdcii som sa zameral hlavne na tento typ poziadaviek, kedze
pre navrhovany systém je primarne definovat jeho funkcionality.

e Do systému sa uzivatelia prihlasuji pomocou uzivatelskych actov v sluzbe GitHub.
Nésledne uzivatel pristupuje k repozitarom zo sluzby GitHub, v ktorych spravuje
programovacie konvencie. V systéme uzivatel moéze pristupovat ako k verejnym, tak
ku privatnym repozitarom, v ktorych mé administratorské prava alebo prava na zapis.

e Konvencie méze uzivatel v systéme uchovavat vo forme formatovaného textu. Okrem
toho, kazd4a konvencia obsahuje vlastné diskusné vlakno a histériu zmien.

e Kazda konvencia moéze obsahovat aj formalny zapis v EditorConfig formate. Systém
umoznuje automatizovani kontrolu konvencii v projekte, na zdklade ich forméalneho
zapisu, z ktorého vypise sithrnnt spravu. Systém taktiez umoznuje vygenerovat for-
malny zapis konvencii zo zdrojovych siiborov, pricom systém zisti pravdepodobnost
jej pouzitia a konec¢ny vyber nechd na uzivatelovi. Systém dovoluje sledovat histériu
sthrnnych sprav a aj historiu zmien forméalneho textu.

e Generovanie formalneho zapisu konvencii z projektu, ako aj ich kontrolu v projekte,
je mozné rozsirit o vlastne definované forméalne pravidla. Vlastne pravidld je mozné
vytvarat pomocou novych tried, implementujic preddefinované rozhrania v kbde sys-
tému. Vyuzitim rozhrani, systém zarucuje nepovinné implementovanie generovania
formélneho zapisu a aj kontroly na projekte. K vytvaraniu vlastnych pravidiel je vy-
tvoreny navod, pre uzivatelov systém obsahuje zoznam uz implementovanych pravidiel
s ich popisom.

3.2 Architektara systému

Cast préace popisujiica architektiru navrhovaného systému na spravu programovacich kon-
vencii. Navrhnutd architektura vyplyva zo specifikdcie poziadaviek (vid 3.1.3) a z uvazova-
nych scendrov pouzitia (vid 3.1.2), pricom cieli na vyuzitie modernych technoldgii a pristupu
k vyvoju.

Systém bude serverova aplikacia pouzivajica standardny klient—server pristup v .NET
prostredi, ktord bude postavend na technolégii Blazor (vid 3.2.2), pomocou server hosting
modelu. Pre .NET som sa rozhodol kvoli mojej osobnej znalosti prostredia a preto, ze velmi
rychlo narastd popularita technolégie Blazor, ¢o je mozné pozorovat na jej pouzitiach'.
Blazor som sa rozhodol pouzit ako klticovi pre vyvoj aplikacnej vrstvy.

https://trends.builtwith.com/framework/Microsoft-Blazor

27

https://trends.builtwith.com/framework/Microsoft-Blazor

3.2.1 Trojvrstvova architektiara

Systémové riesenie je rozdelené do troch vrstiev, projektov. Trojvrstvova architektira roz-
deluje aplikacie na tri vypoctové vrstvy, je prevladajicou softvérovou architektirou pre tra-
di¢né klient—server aplikdcie [42]. Jednotlivé vrstvy st od seba logicky oddelené. Hlavnou
vyhodou trojvrstvovej architektiry je jednoduché inovovanie alebo nahradzovanie vrstvy,
bez vplyvu na ostatné [72].

Presentation Layer

<

Business Logic Layer

Data Access Layer

Obr. 3.1: Trojvrstvova architektira napojend na databazu pouzita v projekte.

Najvyssia, prezentacna vrstva je uzivatelskym a komunika¢nym rozhranim systému,
pomocou ktorého koncovi uzivatelia intereaguji s aplikdciou [42]. V systéme mé za ciel
zobrazovat uzivatelovi informacie, zbieraf ich od neho a posielat ich do nizsej, logickej
vrstvy. T4 obsahuje sluzby a v pripade navrhu tohto systému Viewmodely (vid 3.2.3),
na ktoré sa prezentacnd vrstva napéaja.

V strede sa nachadza logicka vrstva, tiez nazyvand aplikacnd, biznisova alebo stredna
vrstva. Vrstva riadi zdkladné funkcionality systému spracovanim dat [72]. Vo vrstve sa
informéacie zhromazdené z prezentacnej vrstvy spractvaju pomocou Specifikovanych pravi-
diel [42]. Vrstva sa v pripade potreby napéja na databdzovi, z ktorej ¢erpd perzistentné
déta, alebo na iné sluzby, s ktorymi systém komunikuje. Vystupom vrstvy su sluzby a Vie-
wmodely, na ktoré sa napdja prezentacna vrstva.
aplikdcie [72]. V pripade tohto systému komunikuje s databdzou pomocou ORM a vytvara
rozhrania, na ktoré sa v pripade potreby komunikacie s databazou napaja logicka vrstva.
V trojvrstvovej aplikdcii musi ist celd komunikacia z databazovej do prezentacnej vrstvy
cez logicki, ddtova vrstva s prezentacnou nemdze komunikovat priamo [42].

3.2.2 Prezentacna vrstva

Ako je spominané v uvode k trojvrstvovej architektire, prezentacna vrstva slazi ku komu-
nikdcii konec¢ného uzivatela s aplikdciou. K tomu je v systéme vyuzita technolégia Blazor.
Okrem uzivatelského rozhrania vrstva zabezpecuje aj autorizaciu uzivatela a spravuje De-
pendency Injection (DI) kontajner, do ktorého si priddva sluzby z logickej vrstvy.

Blazor

Blazor je open source vyvojarsky ramec pre vyvoj jedno strankovych aplikacii, ktory vzni-
kol z kombindcie slov Browser a Razor (.NET HTML modul generujici zobrazenia) [65].
Blazor poniika dva modely hostingu. WebAssembly model, ktory bezi na klientskej strane
v prehliadaci pomocou WebAssembly. Blazor stranka a jej zavislosti sa pri WebAssembly ini-
cializacii stiahnu do prehliadaca klienta, ktory nasledne spista kéd [52]. Druhym modelom
je Server model, pri ktorom je aplikédcia vykondvanda na serveri.

dotnet.exe
SignalR
ASP.NET Core
Browser <}:{>
Blazor

Obr. 3.2: Blazor Server model pouzity v aplikacii. Aplikdcia sa vykondva na serveri
v ASP.NET Core. Uzivatelské rozhranie, udalosti a JavaScript volania sa spracivajd po-
mocou SignalR spojenia. Obrazok upraveny z Microsoft dokumentécie [52].

Rozhodol som sa pouzit Server hosting model, pricom vyuzitie kazdého z modelov m4
svoje vyhody aj nevyhody. Server hosting model neodosiela cela stranku ku klientovi, takze
sa nacitava rychlejsie a pre spustenie aplikacie nie je v prehliada¢i nutnd podpora We-
bAssembly [52]. VSetky vypoCty bezia na serveri, takze nie je nutné vypocty validovat
a postacuje riesit validdciu z uzivatelského rozhrania. Pri ASP.NET core (open source web
ramci, ktory vyuziva Blazor Server hosting model) som rozhodol pre verziu 5.0, kedze v ¢ase
navrhu je najnovSom stabilnou.

Uzivatelské rozhranie

Blazor vyuziva k vytvaraniu stranok Razor Pages. Ide o syntax kombinujicu HTML kéd
s kédom v jazyku C# [61]. V jednom stbore je mozné striedat oba jazyky [61].

Pri tvorbe uzivatelskych rozhrani, je mozné vyuzivat standardné HTML komponenty
a CSS. Avsak pre vytvorenie stranky s kvalitnejSim a responzivnejs$im dizajnom som sa
rozhodol vyuzit open source kniznicu Radzen’ komponent pre Blazor. Existuje viacero
kniznych, ktoré pridavaju vlastné komponenty, ako napriklad Blazorise, BlazorStrap alebo
MudBlazor. Jedine Radzen pridava komponent HTML editoru, ktory je vhodné pouzit
pri praci s formatovanym textom konvencii. Okrem kniznice Radzen som sa rozhodol vyuzit
Bootstrap®, open source CSS ramec, ktory je uz implicitne vlozeny v zakladnej $abléne Bla-

2https://blazor.radzen.com
3https://getbootstrap.com

29

https://blazor.radzen.com
https://getbootstrap.com

zor aplikacie. Ikony a obrazky som sa rozhodol ¢erpat z Google Fonts" a z Material Design
Icons®.

Architektonicky vzor Model-View—ViewModel

Model-View—ViewModel (M VVM) je softvérovy architektonicky vzor, ktory ulahc¢uje odde-
lenie vyvoja GUI (View) od vyvoja biznis logiky. Pomdha mat lepsi SoC, menit jednotlivé
View za iné bez zmeny ViewModelu, navrhovat dizajn aplikicie bez nutnosti siahat do lo-
giky aplikédcie a naopak [19]. Vyuzivany je prevazne s technolégiou WPF [19].

View

ViewModel

Model

Obr. 3.3: Architektonicky vzor Model-View—ViewModel skladajici sa z troch casti: View,
ViewModel a Model. View si kladie za tlohu reprezentovat data koncovému uzivatelovi,
definuje struktiru, rozlozenie a vzhlad uzivatelského rozhrania. ViewModel je prostredni-
kom medzi View a Modelom, udrziava v sebe aktudlny stav systému a dostupné operécie
(napriklad odkaz aktudlne zvoleny repozitar). Model predstavuje datovi cast programu
(napriklad objekt repozitara, na ktory sa odkazuje ViewModel).

Kvoli zna¢nym vyhodam v separacii jednotlivych celkov systému som sa rozhodol apliké-
ciu navrhnuat v stilade s architektonickym vzorom Model-View—ViewModel. Prezen¢na cast
aplikdcie obsahuje jednotlivé pohlady (View), ktoré su v pripade technoldgie Blazor repre-
zentované pomocou Razor Pages. Pohlady obsahujt iba uzivatelské rozhranie, bez vntitorne;j
logiky. Pre ziskavanie stavu aplikécie, dat a spistanie operacii sa odkazuji na ViewModely,
ktoré st ulozené spolu s Modelmi v logickej vrstve.

Uzivatelské rozhranie som rozdelil do niekolkych pohladov/stranok, s ohladom na pozia-
davky na systém:
e Uvodn4 stranka, domov aplikdcie
e Menu celej stranky, hlavicka a péatka
e Zobrazenie dostupnych reporitarov

e Zobrazenie zvoleného repozitara, konvencii v nom

‘https://fonts.google.com/icons
Shttps://materialdesignicons.com

30

https://fonts.google.com/icons
https://materialdesignicons.com

e Zobrazenie zvolenej konvencie a dat v nej:

— Zobrazenie aktualneho formatovaného/formélneho textu
— Zobrazenie komentarov

— Pridanie komentara

e Pridanie/mazanie a tiprava mena konvencie

e Importovanie formalnych pravidiel z repozitara

e Kontrola formélnych pravidiel na repozitari

e Zobrazenie histérie forméatovaného/formélneho textu
e Upravenie formatovaného/formalneho textu konvencie
e Zobrazenie implementovanych forméalnych pravidiel

e Neexistujica, nendjdend alebo chybova stranka

Autorizacia

Funkcionalne poziadavky pozaduju prihlasovanie uzivatelov do systému pomocou sluzby
GitHub. Okrem toho je vsak vhodné, aby po prihlaseni systém nadalej vedel komunikovat
s uzivatelovym tuctom v sluzbe GitHub a pracovat s datami uzivatela v nej. To je vhodné
docielit pomocou protokolu OAuth, ktory GitHub podporuje a umozni nésledné spytovanie
nad API.

OAuth je autoriza¢ny protokol alebo rdmec. Je otvorenym standardom popisujicim ako
mozu nesuvisiace servery a sluzby bezpecne povolit overeny pristup bez zdielania svojich
pociatocnych prihlasovacich tdajov [39]. Ten spdsob overenia je zndmy ako tretou stranou
zabezpecend delegovand autorizacia [39].

Protokol bude pouzity k pristupu do vytvoreného systému pomocou uctu v sluzbe Git-
Hub. ASP.NET core, nad ktorym bezi Blazor, obsahuje uz vstavané moznosti ako s protoko-
lom pracovat, ktoré je nasledne mozné rozsirit o NuGet balicek obsahujici implementaciu
jednotlivych OAuth poskytovatelov’. Samotna autorizicia bude prebiehat na prezentacnej
vrstve, kedze obsahuje vhodné prostredie na jej realizaciu, ale pristupovy token ziskany
autorizaciou bude ulozeny na logickej vrstve a ku GitHub API sa bude pristupovat z nej.

Vkladanie zavislosti

ASP.NET Core podporuje navrhovy vzor pre vkladanie zavislosti, Dependency Injection
(DI), ¢o je technika na dosiahnutie Inversion of Control (IoC') medzi triedami a ich zavis-
lostami [56]. Vyhodou je registréacia zavislosti v kontajneri sluzieb, sluzby mézu byt nasledne
vkladané do konstruktov tried, pricom zodpovednost za konsStrukciu a dekonstrukciu tried
prebera framework [57].

Existuju aj rozne iné balicky, zaistujice Dependency Injection, avsak pre jednoduchost
a nativne prepojenie som sa rozhodol pre pouzitie Dependency Injection z ASP.NET Core.
Priamo v Sablone Blazor aplikacie je kontajner zaregistrovany Startup sibore. V logickej
a datovej vrstve je mozné vytvorit poskytovatela sluzieb, ktory sluzby z danej vrstvy prida
do kontajnera. Nésledne si moéze vrstva pridat do kontajnera sluzby z vyuzivanej nizsie
postavenej vrstvy pomocou poskytovatela sluzieb nizsej vrstvy.

Shttps://github.com/aspnet-contrib/AspNet.Security.0Auth.Providers

31

https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers

Pri registracii sluzby do kontajnera, je mozné vybraf jednu z nasledujicich druhov
Zivotnosti:

e Prechodnd (Transient) zivotnost, s ktorou sa vytvara nova instancia sluzba vzdy, ked
je o nu poziadané [57].

e Rozsahova (Scoped) zivotnost, s ktorou sa pri webovych aplikdciach vytvara jedna
instancia pre jedno pripojenie klienta [57]. Ten vdaka tomu dostédva po poziadani
vzdy rovnaku instanciu.

e Jedinacik (Singleton), ktory sa vytvara jeden a jeho instancia je vzdy pri poziadani
vratend [57].

Sluzby Radzenu pre fungovanie upozorneni, dialégov alebo menu si zaregistrované ako
Scoped.

3.2.3 Logicka vrstva

Logicka vrstva obsahuje zakladné funkcionality systému, rozdelené do logickych celkov,
sluzieb. Kedze sluzby neuchovavaju ziaden stav, su v zaregistrované do DI kontajnera ako
Singleton. Vynimkou st ViewModely, ktoré uchovavaju stav aplikacie pre kazdého uzivatela,
preto su zaregistrované ako Scoped. Aby nebolo nutné kazdu sluzbu po jej vytvoreni regis-
trovat osobitne, budui v logickej vrstve vytvorené rozhrania pre jednotlivé druhy zivostnosti.
Nasledne bude stacit, aby trieda reprezentujiica sluzbu rozhranie implementovala. Pri re-
gistrovani vrstvy sa prejde pomocou kniznice Reflection menny priestor vrstvy a sluzby sa
zaregistruji do kontajnera s prislusnou zivotnostou.

V pripade potreby sa vrstva napdja na databazu pomocou databazovej sluzby, ktora vy-
uziva databazovi vrstvu systému. Pre viac informacii o tom, ako funguje napojenie na da-
tabazu vid 3.2.4.

ViewModely

Ako je spominané v prezentacnej vrstve (vid 3.2.2), ViewModely z architektonického vzoru
Model-View—ViewModel (MVVM) st ulozené v logickej vrstve. Nie st navrhnuté tak, aby
existovali pre kazdy View z aplikacnej vrstvy, ale su skonstruované podla druhu spravova-
nych dat. Napriklad pre pohlad zobrazenia histérie formalneho/formétovaného textu a pre
jeho tpravu je pouzity jeden ViewModel spravujici forméalne a formatované texty.

ViewModel je vstupnym bodom prezentacnej vrstvy systému. Stara sa o volanie dalsich
sluzieb z logickej vrstvy, pripadne o ziskavanie dat z inych ViewModelov. ViewModely medzi
sebou komunikuja a posielaja si spravy o zmenach pomocou néavrhového vzoru Messenger,
niekedy nazyvaného mediator.

32

Messenger

Send Message egister Callback

\4

ViewModel A ViewModelB

Obr. 3.4: Jednotlivé ViewModely si do Messengera registruju spravy, ktoré chci prijimat.
Ked ViewModel odosle spravu, nastane spatné volanie a ViewModely, ktoré spravu zaregis-
trovali, ju dostani. Vdaka tomu nemusia mat ViewModely medzi sebou zavislosti a mo6zu
spolu komunikovat pomocou spréav. Obrazok upraveny z DotNetPattern [10].

Modely

Modely predstavuji v MVVM datovt ¢ast programu, tak ako bolo vysvetlené v prezentacne;j
vrstve (vid 3.2.2). Si to objekty, uchovavajice ddta systému. Mdéze sa na ne referovat aj ako
na doménové objekty.

Modely sa v systéme rozdeluji do dvoch druhov, detailné modely a modely pre zoznamy.
Detailné modely obsahuju vsetky data, ktoré k modelu existuji, zatial o modely pre zo-
znamy obsahuju iba ich ¢ast, vyuzivani pre zobrazenie v zozname. Napriklad, pri zozname
pouzivatelovych repozitarov nie je nutné, aby model obsahoval vSetky svoje konvencie, ale
sta¢i poznat ich pocet, ¢o mdze byt uzivatelovi v zozname zobrazené. Primarnym dévodom
vyuzivania dvoch druhov konvencii je znizenie velkosti dat, jednak kvoli ich prenosu, ale
aj pre ich spracovavanie a mapovanie. V pripade rozsiahlejsich systémov je mozné modely
rozdelovat na viacero druhov, presne podla aktualne potrebnych dat.

Pretvaranie jedného objektu na iny sa nazyva mapovanie. VSetky objekty, ktoré logicka
vrstva ziska z inych sluzieb pretvara na modely, s ktorymi dalej pracuje. Napriklad databa-
zova, vrstva vrati objekt vo formate entity, ktory sa nasledne premapuje na vhodny model.
K mapovaniu systém vyuzije NuGet balicek AutoMapper’. AutoMapper je jednoducha
mald kniznica, vytvorend na zbavenie sa kodu, ktory mapoval jeden objekt na druhy [45].
Pri pouziti balicku staci v kéde vytvorit mapu medzi dvoma objektami, ktoré je nédsledne
mozné pomocou automappera mapovat. Pri vytvarani mapy je mozné definovat, ako sa
mapovanie bude spravat. Vlastnosti objektov s rovnakymi ndzvami sa vedia medzi sebou
mapovat bez nastaveni.

GitHub API sluzba

Navrhnutou autorizéciou z prezentacnej vrstvy (vid 3.2.2) ziska systém pristupovy token
uzivatela ku GitHub API. Token bude systém vyuzivat k ziskavaniu informacii o uzivatelovi
a jeho repozitaroch, ku ktorym sa v systéme spravuji konvencie.

Logicka vrstva obsahuje sluzbu zabezpecujicu volania do GitHub API. Sluzba je na-
vrhnuté tak, aby vyuzivala NuGet bali¢ek Oktokit®. Octokit je klientska kniznica, ktora
poskytuje jednoduchy sposob interakcie s GitHub API [30]. Sluzba ziska pozadované in-

"https://www.nuget.org/packages/automapper
Shttps://www.nuget.org/packages/0Octokit

33

https://www.nuget.org/packages/automapper
https://www.nuget.org/packages/Octokit

formécie, premapuje ich na prislusné modely a vrati ich ViewModelom alebo inej sluzbe,
ktora data pozadovala.

Sluzba zmien textov

Ako je specifikované v poziadavkach, uzivatelia mézu konvencie ukladat pomocou forma-
tovaného textu, ku ktorému je dostupnd historia zmien. Kazdé konvencia moze taktiez
obsahovat formalny zapis pravidiel, ku ktorému je histéria dostupna. Ukladanie celého for-
malneho a formatovaného textu do databazy je obzvlast pri via¢Som mnozstve textov a ich
viiéSej dizke nepraktické.

Do databéazy sa teda budd ukladat iba zmeny medzi jednotlivymi textami. K tomu
navrhnujem pouzit NuGet balicek diff-match—patch’. Baliek, ktory v origindli vznikol
v roku 2006 na podporu Google dokumentov, ponika robustné algoritmy na vykonavanie
operacii, potrebnych na synchronizdciu textu [35]. Medzi ne patri aj vytvaranie patchu,
listu zmien medzi dvoma textami. Patch je nasledne mozné aplikovat na text, aby z neho
vznikol text druhy.

Databédza bude obsahovat iba patche na predchadzajice verzie a aktualny text. Ked
uzivatel poziada o histériu zmien textu, je mozné ju pomocou aktualneho textu a patchov
vygenerovat, spolu s prislusnymi zmenami.

Sluzba zvyraznujica cCasti formalneho textu

Konvencie obsahuja formalny text v EditorConfig forméte, ktory je zalozeny na INI for-
méte (pre viac informécii vid 2.3.4). Pre zlepSenie uzivatelskej skisenosti je vhodné, aby
boli jednotlivé casti formdalneho textu v uzivatelskom rozhrani zvyraznené. Farebné zvyraz-
nenie odlisi jednotlivé druhy textu vo formate, napriklad sekcie budii inou farbou a v inom
formate ako komentare. Tym by mal uzivatel jednoduchsie identifikovat, Ze nejde o prosty,
ale o formalny text. Zvyraznovanie pripadne poméze aj pri hladani chyb vo formate textu.

Pre implementéaciu zvyraznovania jednotlivych ¢asti formalneho textu priamo v systéme
by bolo nutné implementovat analyzu INI formatov, ¢o by bolo ¢asovo ndro¢né. Preto som sa
rozhodol o vyuzitie extérneho rieenia. Za vhodni povazujem webovi aplikiciu hilite.me'".
Ide o mala webovi aplikiaciu, ktora kéd v prostom texte prevadza do pekne zvyrazneného
HTML formétu [46]. Je k nej vytvorené API'') ktoré zjednoduSuje jej automatizované
pouzitie.

Sluzba zvyraznujica casti formalneho textu posle cez API do webovej aplikacie hilite.me
text na zvyraznenie. Vrateny text sluzba prejde a upravi jeho formatovanie, aby bolo v st-
lade s témou systému. Nésledne text v HI'ML formate vrati sluzbe alebo ViewModelu,
ktory o zvyraznenie poziadal.

Pravidla EditorConfigu

Formaélny text v EditorConfig formate obsiahnuty v konvenciach obsahuje pary klica a hod-
noty. KIi¢ sa nazyva vlastnostou (property) alebo pravidlom (rule). Tieto pary si umiest-
nené pod sekciou, ktord urcuje, na aké subory sa ich kontrola aplikuje. Par urcuje, aké
pravidlo a s akou hodnotou sa aplikuje. Forméalne texty a teda ich pravidla bude mozné

‘https://www.nuget.org/packages/Diff.Match.Patch
Ohttp://hilite.me
"http://hilite.me/api

34

https://www.nuget.org/packages/Diff.Match.Patch
http://hilite.me
http://hilite.me/api

v systéme kontrolovaf na repozitari konvencie, ako aj importovat z repozitara. Pre viac
informacii o fungovani FEditorConfigu vid 2.3.4.

EditorConfig v zéklade podporuje 7 pravidiel, ktoré budi implementované v logickej
vrstve systému v EditorConfig sluzbe. Specialna vlastnost root, ktors uréuje korenovy Edi-
torConfig stibor v siborovom systéme implementovand nebude, kedze pri vyuzivani mimo
suborovy systém je bezvyznamna. Nasledne je vhodné definovaf zoznam pravidiel s ich
podporou v systéme, pricom podporou je myslend moznost kontrolovat alebo importovat
pravidld, ¢i uz z casti alebo celkovo:

e charset: Urcuje znakovi sadu (encoding) stiboru. Plne podporovana.
e end_of_line: Urcuje reprezentaciu konca riadku. Plne podporovana.

e indent_size: Urcuje pocet stlpcov pre troveri odsadenia a Sirku tabuldtorov. Sirka
tabulatorov nie je a nemé6ze byt podporovana. Je vlastnostou IDFE, nie siboru.

e indent_style: Urcuje pouzitie medzier alebo tabov pri odsadeni. Plnd podpora.
e insert_final_newline: Urcuje ¢i je sibor ukonéeny novym riadkom. Plné podpora.

e tab_width: Urcuje pocet stipcov reprezentujicich znak tabu. Vytvorens, aviak ne-
podporuje import ani kontrolu. Nemozno podporovat mimo IDFE. Je vlastnostou IDFE,
nie suboru.

e trim_trailing whitespace: UrcCuje, ¢i mozu byt prazdne znaky znakom nového
riadka. Plna podpora.

Okrem zdkladnych pravidiel som sa rozhodol pridat podporu aj pre vlastnosti Spe-
cifického jazyka. Pridanie dalSich, rozsirujiacich pravidiel ma ukazat, ako sa do systému
pridavaju dalsie pravidla. K ¢iastoé¢nému cieleniu ukazok dalsich pravidiel som sa rozhodol,
pretoze vacsina automatizovanych nastrojov je cielenych na urcité jazyky, ¢im sa vyme-
dzuju ku konvencidm Standardne pouzivanym v danom jazyku. Systém budem vytvarat
v .NET ekosystéme, preto som sa rozhodol vytvorit ukézky vlastnosti pouzivanych v .NET
prostredi. Dalsim dévodom zvolenia je existencia rozsireni pre .NET (vid rozsirenia Edi-
torConfigu v 2.3.4), ¢o umoziiuje implementovat uz existujiice a pouzivané pravidla. Dalsie
pravidla, ktoré navrhujem implementovat:

e csharp_new_line_before_catch: Urcuje, ¢i je vyraz catch na novom riadku v kdde
jazyka C+#. Plnd podpora.

e csharp_new_line_before_else: UrcCuje, ¢i je vyraz else na novom riadku v kdéde
jazyka C+#. Plnd podpora.

e csharp_new_line_before_finally: Urcuje, ¢i je vyraz finally na novom riadku
v kéde jazyka C#. Plna podpora.

Pravidla kontroluju v kéde vlastnosti, pre ktoré je nutné spravif syntakticki a lexikalnu
analyzu. K tomu je mozné pouzit Roslyn. Roslyn je open source implementacia prekladaca
jazyka C# s API pre budovanie ndstrojov na analyzu kédu [66]. Pomocou neho je mozné
z kbédu vytvorit syntakticky strom, najst hladané vyrazy a skontrolovat ich okolie.

Pridavanie pravidiel

Zékladnou poziadavkou na systém je moznost pridavat vlastné pravidla. T4 je zabezpe-
¢end vytvorenim rozhrania IProperty, ktorého implementovanim sa trieda stava pravidlom

35

(vlastnostou). K vytvaraniu pravidiel bude vytvorend dokumentécia. Viac informécii k do-
kumentacii sa nachadza na konci ¢asti o navrhu logickej vrstvy.

«interface»
ISingleton
A
«interface» «interface» «interface»
IProperty ICheckable I[Importable
& v g
Property

Obr. 3.5: Obrazok zobrazujuci vlasnost (pravidlo), ktorad implementuje rozhrania pre nu ur-
¢ené. Implementécia rozhrania IProperty je povinnd, nou sa zacne trieda povazovat za vlas-
nost. Tym ze IProperty implementuje ISingleton sa vlastnost automaticky zaregistruje aj do
IoC' kontajnera. Implementécia rozhrani IImportable a ICheckable je nepovinna. Rozhra-
nia sa implementuji v pripade, ak ma byt vlastnost kontrolovatelnd alebo importovatelna
z repozitara. Viac informécii o rozhraniach pre kontrolu a import pravidiel sa nachidza
v castiach o nich.

7 poziadaviek na systém vyplyva, ze systém by mal obsahovaf zoznam implementova-
nych pravidiel s ich popisom. Rozhranie IProperty preto nuti triedy, aby obsahovali meno
a popis pravidla. Zoznam pravidiel sa nasledne ziska pomocou kniznice Refilection z tried
implementujicich rozhranie. V zozname implementovanych pravidiel je viditeIné, ¢i je pra-
vidlo kontrolovatelné podla toho, ¢i implementuje korespondujice rozhranie.

Import pravidiel

Importovanie pravidiel (vlastnosti) z GitHub repozitarov je mozné implementovanim II'm-
portable rozhrania. Import sa prevadza na formélnom texte konvencie. V prvom kroku si
uzivatel import pravidiel nastavuje. Najprv si zvoli, ¢i chce formélny text rozsirit o novo
ziskané pravidla, alebo ho chce nahradit. Taktiez si vyberie vetvu v repozitari, z ktorej sa
budu pravidla importovat a zvoli pravidla, ktoré si praje importovat. Pri kazdom pravidle
si zvoli sekciu v repozitari v EditorConfig formate. Prvotne sa uzivatelovi zvoli implicitna
sekcia, ktord musi definovat kazdé pravidlo, ktoré implementovalo IImportable rozhranie.
Sekcia urcuje, z akych stiborov v repozitari sa bude pravidlo importovat. Pri vybere impor-
tovanych pravidiel bude mozné zvolit vyber vsetkych naraz, pre ulahéenie préce pri novych
repozitaroch v systéme.

Po zvoleni nastaveni prebehne samotny import, ktory mé niekolko faz. Pocas priebehu
moze byt preruseny vyuzitim tokenu prerusenia (cancelation token). Jednotlivé fazy importu
st:

1. Inicializacia, vytvorenie potrebnych struktir, ziskanie sluzieb z IoC' kontajnera.

36

2. Stiahnutie zvolenej vetvy repozitara na server.

3. Investigacia stiahnutych siborov. Jednotlivym pravidlam sa priradia cesty k siborom
podla zvolenych sekcii.

4. Zavolanie Import metédy pre kazdé pravidlo na kazdom stibore z investigacie. Import
metddu implementuje kazdé pravidlo implementovanim IImportable rozhrania.

5. Zjednotenie vysledkov Import metdd pre kazdé pravidlo.

6. Zmazanie vetvy repozitara, ukoncéenie importu.

Zistovanie, ¢i subor koresponduje so sekciou pravidla a teda, ¢i sa ma pravidlo zo su-
boru importovat bude rieSené pomocou Roslyna. Po otvoreni rieSenia (solution) vo Visual
Studiu, ktoré nativne EditorConfig podporuje, sa Roslyn pokusa najst EditorConfig subory
a dodrziavat ich. Roslyn teda obsahuje funkcionalitu na pracu s EditorConfig sibormi.

Import metdéda ma jeden parameter a tym je stibor na ktorom je spustena. Ako vysledok
vracia dvojice hodnoty pravidla a vahy, s akou je v sibore hodnota zastipend. Napriklad
pre pravidlo csharp_new_line_before_else na stubore, kde by bol vyraz else dvakrat
na novom riadku a raz nie, by mohla byt hodnota true s vdhou dva a hodnota false
s vahou jedna.

Po ukonceni importu sa uzivatelovi zobrazia vsetky importované pravidla s najdenymi
hodnotami a ich percentudlnym zastipenim. Z hodndt sa automaticky zvoli ta s najvyssim
zastupenim, avsak uzivatel ju moze zmenit, nastavit na unset alebo vObec nenaimportovat.
U vsetkych pravidiel hodnota unset rusi efekt daného pravidla, ked bolo nastavené uz
predtym [41].

Kontrola pravidiel

Kontrolu bude mozné spustat na pravidlach (vlastnostiach), ktoré implementuji ICheckable
rozhranie. Pre implementovanie rozhrania je nutné vytvorit texty, ktoré uzivatelom objas-
nia, aké si povolené hodnoty a typy siborov pri danej kontrole. Implementovat je nutné
aj metoédu Check, ktora na subore spusti dané pravidlo so zadanou hodnotou. Vysledkom
metddy je tspesnd alebo netspesnd kontrola s chybovou spravou.

Kontrola pravidiel sa bude spustat v systéme v pohlade zvoleného repozitara. Uzivatel
si zvoli kontrolované konvencie a vetvu repozitara, na ktorej kontrola prebehne. Nésledne
sa spusti kontrola, skladajica sa z viacerych faz. Kontorla moéze byt prerusend vyuzitim
tokenu prerusenia (cancelation token). Jednotlivé fazy kontroly si:

1. Inicializacia, vytvorenie potrebnych Struktir, ziskanie sluzieb z IoC' kontajnera.

2. Stiahnutie zvolenej vetvy repozitara na server.

3. Prepojenie stiahnutych stborov s pravidlami. Pravidlam v konvencidch sa priradia
cesty k siborom podla ich sekcii.

4. Zavolanie Check metddy pre kazdé pravidlo na kazdom stbore.
5. Zjednotenie a normalizovanie vysledkov kontroly.

6. UlozZenie vysledkov do databazy.

7. Zmazanie vetvy repozitara, ukoncenie kontroly.

Pri prepojeni repozitarov s formalnymi textami konvencii je nutné formalne texty spra-
covat a ziskat z nich pravidla s ich hodnotami v prislusnych sekcidach. K tomu vyuzijem

37

rovnako ako pri importe pravidiel Roslyna, ktory obsahuje funkcionalitu na pracu s Editor-
Config sibormi. Osetrenie zadania neexistujiceho pravidla je riesené na trovni kontroly.
T4 pravidlo detekuje a nastavi ho na netspesné so zodpovedajicou chybovou spravou. Ne-
spravna hodnota pravidla sa detekuje v Check metdde, ktora vrati prislusni vynimku, ktoru
odchyti kontrola a taktiez nastavi pravidlo na netspesné s chybovou spravou.

Vysledky st uzivatelovi prezentované ako formalne texty konvencii. Jednotlivé riadky
su sfarbené bud na zeleno v pripade tispechu alebo na ¢erveno v pripade netspechu. Riadok
sa nezafarbi, ak neobsahuje pravidlo alebo pravidlo nebolo na ziadnom stbore spustené.
Riadky sfarbené na cerveno bude mozné otvorit a sledovat u nich spravy k chybdm na su-
boroch. Kazd4a kontrola sa automaticky uklada do databazy a je mozné sa k jej vysledkom
vratit.

Dokumentéacia

7 poziadaviek na navrhovany systém vystava vytvorenie ndvodu na nasadenie systému a na
implementaciu vlastnych pravidiel vo formalnom texte. Pre dokumentaciu som sa rozhodol
vyuzit DocFX. DocFX je generator API dokumentacie pre .NET, ktory generuje doku-
mentaciu z dokumentacénych komentarov v kéde [60]. Podporuje taktiez vyuzitie Markdown
stiborov na vytvorenie dalsich tém, ako si navody a ¢lanky [60].

DocFX som sa rozhodol vyuzit pre jeho napojenie na .NET ekosystém, ktory je k riese-
niu systému vyuzity. Navody vytvorim ako Markdown stibory a moznost generovania doku-
mentacie z dokumentaénych komentirov vyuzijem pri ndvode na implementéciu vlastnych
pravidiel. K ¢asti kédu, do ktorej sa budt pravidld pridavat, vytvorim API dokumentéciu,
na ktort sa budem odkazovat z ndvodu. Dokumentéciu nasledne spolo¢ne so systémom uve-
rejnim v sluzbe GitHub, pricom z nej vytvorim stranku pomocou GitHub Pages. GitHub
Pages je sposob ako hostovat stranku priamo z GitHub repozitara [33].

3.2.4 Databazova vrstva

Databéazova vrstva slizi ako pristupovy bod k perzistentnym datam pre logickt vrstvu.
Vytvorenim databdzovej vrstvy sa oddeluje logika databazy od logiky aplikacie. Logicka
vrstva sa stava nezavisld na spoésobe ulozenia dat a druhu databazy. K préaci s databazou
je v ndvrhu systému pouzity Entity Framework.

Entity Framework

Entity Framework je open source ORM ramec pre .NET aplikacie, podporovany Microsof-
tom [16]. Umoziiuje vyvojarom pracovat s databédzovymi objektami a tabulkami ako s NET
objektami, ¢o eliminuje va¢sinu kddu napisaného k pristupu k databéze [16]. Konkrétne na-
vrhujem vyuzitie Entity Framework Core, ktory je novSou odlahcenejSou verziou Entity
Frameworku, s pouzitim Code—First pristupu. Code—First pristup sa zameriava na doménu
aplikacie, vytvaraju sa pri nom triedy nazyvané entity reprezentujice dizajn databizy,
z ktorych sa nasledne vygeneruje databdzova schéma [15].

Entity Framework Core sa do projektu instaluje pomocou nuget balicku'?. Po jeho na-
instalovani bude mozné vytvorif kontext databazy vytvorenim triedy dediacej DbContext
triedu. DbContext je neoddelitelnou sucastou Entity Frameworku, jeho inStancia reprezen-
tuje relaciu s databdzou, ktort je mozné pouzit na dotazovanie a ukladanie instancii entit

2https://www.nuget.org/packages/Microsoft.EntityFrameworkCore

38

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore

do databazy [13]. Do triedy reprezentujicej kontext databédzy sa vlozia entity a pristupové
udaje k databaze. Nésledne je mozné vygenerovat a aplikovat databazovi migraciu.

Entity

Entita je v Entity Frameworku trieda, ktora sa mapuje na databazovia tabulku. Musi byt
pridand ako DbSet<TEntity> do DbContext triedy [14]. Entity Framework mapuje kazdd
entitu na tabulku a kazdu vlasnost entity na stipec v tabulke, ¢o umoziiuje vytvarat dizajn
databazy. Referencovanim medzi entitami je mozné vytvarat referencie medzi tabulkami.

V databaze budu ulozené udaje o uzivateloch, ich repozitaroch a ich konvenciach.
Ku konvencii budt ulozené informaécie k jej komentarom, formalnemu a formatovanému
textu. K textom bude uloZend histéria v podobe zmien medzi ich verziami. K repozitdrom
budi ulozené zadznamy o vykonanych kontrolach konvencii na nich.

Navrhovy vzor Repozitar a UnitOfWork

Na odtienenie pouzitej technolégie na pracu s databdzou som sa rozhodol vyuzit navrhové
vzory Repozitar a UnitOfWork. Odtienenim sa logicka vrstva stdva nezavislou na pouzitom
ramci a druhu databazy v databdzovej vrstve.

Repozitar je iba trieda, ktord implementuje logiku pristupu k ddtam [67]. V systéme
bude existovat genericky repozitar obsahujuci zakladné operacie nad datami, ako je vyhla-
dévanie podla identifikdtora, pridavanie, mazanie a aktualizovanie entit. Operacie Specifické
pre dani entitu budi riesené pomocou rozsirujicich metdéd (extensions methods).

UnitOfWork sa sprava ako obchodnd transakcia, spaja transakcie zo vsetkych repozi-
tarov do jednej, ktora sa vykond naraz [67]. UnitOfWork v navrhnutom systéme obsahuje
repozitar pre kazdu entitu. Dovoluje vytvorit transakciu, vykonat ¢iastkové transakcie z re-
pozitarov a vykonat ich nad databédzou spolu, pripadne vsetky vratit spaf a nevykonat
ziadnu, ak v priebehu nastala chyba. V logickej vrstve sa vytvori databazova sluzba, ktora
bude obsahovat komplexné transakcie nad databazou podla potreby vrstvy.

Do IoC kontajnera je ako jedinacik zaregistrovany UnitOfWork manazér, ktorého tce-
lom je vytvarat novi instanciu UnitOfWork pre kazdu transakciu. Na logickej vrstve poziada
sluzba alebo ViewModel o novt instanciu UnitOfWork. Nasledne v repozitaroch instancie
vykond pozadované transakcie a pomocou UnitOfWork zmeny odosle.

3.3 Implementacia navrhu

Cast prace popisujtica implementéciu systému. Webovii aplikiciu a dokumentéciu som im-
plementoval v stilade s navrhnutou architektirou (vid 3.2). Snazil som sa o vytvorenie
kvalitného, cistého a lahko rozsiritelného kédu. V prvej Casti sa venujem prostrediu, po-
uzitého k implementacii (vid 3.3.1), nédsledne popisujem problémové casti implementécie
(vid 3.3.1) a jej nasadenie (vid 3.3.3).

3.3.1 Implementacné prostredie

Systém bol implementovany na operac¢nom systéme Windows 10 v prostredi Visual Studio
2019. Visual Studio 2019 je plnohodnotné IDE pre operaény systém Windows 10 vyvi-
nuté firmou Microsoft [58]. Prostredie som zvolil, pretoze je doporuc¢enym IDFE so vSetkymi

Bhttps://visualstudio.microsoft.com

39

https://visualstudio.microsoft.com

funkcionalitami pre vyvoj .NET aplikacii. V prostredi som vyuzil rozsirenie ReSharper'?,
ktoré rozsiruje IDE o dalsie funkcionality zrychlujtice vyvoj a zvysujice kvalitu kédu. Tak-
tiez som vyuzil rozsirenie Markdown editor'®, ktoré do prostredia pridava editor Markdown
suborov. Vysledny systém obsahuje Markdown sibory v dokumentacii a Markdown README
stubor v korenovej zlozke projektu.

Visual Studio som okrem samotného pisania kédu, hladania chyb a lokdlneho nasadzo-
vania systému vyuzival aj k udrziavaniu tajomstiev ako je pristupovy retazec do databazy,
klientské tajomstvo a klientské ID ku GitHub OAuth aplikécii. K implementécii som vyuzi-
val verzny systém Git priamo v prostredi Visual Studia, ktoré obsahuje vstavané nastroje
na pracu s Git repozitdrom. Zdrojové stbory systému som uchovéval v privitnom projekte
sluzby GitLab, kde som si zaznamenaval aj informéacie k aktudlneemu stavu diplomovej
prace. Po dokonceni vyvoja som zdrojové sibory zverejnil v sluzbe GitHub a nasadil v clou-
dovej platforme Azure (pre viac informacii vid 3.3.3).

3.3.2 Problémové cCasti implementacie

Vdaka navrhnutiu architektiry systému bolo uz pred zaciatkom implementécie jasné, aké
funkcionality bude mat vysledny systém, na aké ¢asti bude systém rozdeleny a za ¢o budu
mat casti zodpovednost, popripade aka technoldgia bude pre ich implementéiciu vyuzita.
Pri implementécii niektorych casti nastali problémy, s ktorymi architektira systému nepo-
c¢itala. V tejto casti sa snazim ilustrovat najpodstatnejsie z tychto problémov a popisat ako
boli vyriesené.

Model-View—ViewModel

Implementovanie Model-View—ViewModel bolo problematické. Vzor je vyuzivany prevazne
s technolégiou WPF, ku ktorej existuju NuGet balicky na jej jednoduchsiu implementaciu.
Tieto balitky pri View poéitaji s pouzitim xaml siborov pre uzivatelské rozhranie, ¢o nie
je kompatibilné s Razor Pages pri technologii Blazor. Tieto balicky st prevazne pre .NET
Framework, ktory nie je plne kompatibilny s .NET Core.

Problematicka bola ¢ast rozdelenia logiky View a ViewModela. Nepodarilo sa mi imple-
mentovat View bez C# kdédu na pozadi, ktory by komunikoval s ViewModelmi. Problém
je vyrieseny tenkou vrstvou C# kdédu na strane View, ktory vold jednotlivé casti ViewMo-
delov. Riesenie z Casti narusuje ¢istotu kédu, avsak na pouzivanie aplikdcie nema ziadny
vplyv.

Taktiez sa mi nepodarilo implementovat ndvrhovy vzor Command, tak ako je vyuzivany
vo WPF. Command je névrhovy vzor, ktory zapuzdruje poziadavku do objektu [8]. Prob-
lémové bolo naviazanie Commandu na View. Namiesto Commandu je v systéme pouzité
priame volanie metédy ViewModela.

Néavrhovy vzor Messenger bol implementovany pomocou nuget balicka MvvmLight-
Libs'® pre .NET Standard. ViewModely medzi sebou nemaji zavislosti a komunikuji
cez Messenger. Prica s formalnymi a formatovanymi textami konvencie je rieSend pomocou
dialégov volanych z pohladu konvencie. ViewModel formalneho a formatovaného textu by
mal velkt zavislost na ViewModel konvencie, ¢o by zapric¢inovalo posielanie velkého mnoz-
stva sprav medzi nimi. Preto som sa rozhodol tieto ViewModely zlucit a spravovat formalne
a formétované texty konvencii vo ViewModeli konvencie.

Mhttps://wuw.jetbrains.com/resharper
https://github.com/madskristensen/MarkdownEditor
https://www.nuget.org/packages/MvvnLightLibsStd10

40

https://www.jetbrains.com/resharper
https://github.com/madskristensen/MarkdownEditor
https://www.nuget.org/packages/MvvmLightLibsStd10

Histéria formatovaného textu

Tak ako je specifikované, k vytvaraniu zmien textov v systéme je pouzity NuGet balicek
diff match-patch'”. Ten je vSak urceny na pracu s prostymi textami bez formétovania.
Pri pouziti formatovaného textu nemusi aplikdcia zmien dopadnit spravne.

Preto sa pred vytvorenim novych zmien z textu odstrani formatovanie a do databazy sa
ulozia iba prosté zmeny bez neho. V databéaze sa nachddza aktudlny text s formétovanim
a jeho histéria bez formatovania. Systém teda podporuje forméatovany text, avsak pri historii
si formatovanie nepaméta.

Charset pravidlo

Pravidlo Charset urcuje znakovi sadu (encoding) stboru, tu nie je vzdy mozné presne
rozoznat, kedze stibor nemusi obsahovat dostato¢né informacie. Roslyn sa k problému stavia
tak, ze znakovt sadu prehlasi za utf-8, ak sa mu nepodari zistit ind.

K zisteniu znakovej sady stiboru systém pouziva StreamReader. Pri jeho pouziti sa
moze zamenit latinl a utf-8 kédovanie za utf-8bom. Problém nie je riesitelny a na dant
skutocnost systém upozornuje v popise pravidla.

Roslyn

V navrhu je Roslyn pouzity na na zistovanie, ¢i sekcia pravidla koresponduje s cestou
k stiboru a teda ¢i ma byt pravidlo na stbore kontrolované alebo z neho importované.
Roslyn dant funkcionalitu obsahuje, avSak nie je verejna a je ju teda mozné pouzit iba
zvnutra. Problém som vyriesil pouzitim kniznice Reflection, pomocou ktorej systém ziska
pristup k neverejnej metéde Roslyna a zavolda ju danymi parametrami.

Podobny problém nastal pri vyuziti Roslyna na ziskanie pravidiel s ich hodnotami a sek-
ciami z formatovaného textu. Roslyn zadant funkcionalitu obsahuje, avSak nie je verejne
dostupné. V tomto pripade ani nebolo vhodné ju zavolat cez Reflection, pretoze pracuje
s inymi typmi objektov a mapovanie by bolo komplikované. Cast potrebnii na ziskavanie
pravidiel Roslyna som skopiroval do kédu systému, pozmenil, aby bolo mozné ju pouzit
a oznacil jej povod.

3.3.3 Nasadenie

Systém bol po dokonceni implementécie nasadeny v cloudovej platforme Azure'®. Azure
je cloudova platforma s viac ako dvesto produktami a sluzbami od spolo¢nosti Microsoft [64].
Zvolil som ju, pretoze podporuje ASP.NET aplikicie a je nativne prepojend s Visual Stu-
diom. Systém ostane nasadeny pocas testovania a nasledného hodnotenia.

Instancia je nasadend ako aplikacna sluzba drovne B1, ktora poskuje 1.75 GB pamaéte
a 100 ACU. K aplikacii je vytvoreny SQL server a Key vault, ktory udrziava jej tajomstva.
Pri zvolenom vykone nasadenia je vhodnd primédrne na testovacie tcely s vyuzivanim im-
portu a kontroly na repozitaroch do 1000 stiiborov. K aplikécii je naviazand vlastna doména

a SSL certifikat. K nasadeniu systému je vytvoreny ¢lanok v dokumentécii'”.

"https://wuw.nuget.org/packages/Diff.Match.Patch
Bnttps://cems.orlicek.net/
Yhttps://orlicekm.github.io/CodingConventionsManagementSystem/articles/deployment.html

41

https://www.nuget.org/packages/Diff.Match.Patch
https://ccms.orlicek.net/
https://orlicekm.github.io/CodingConventionsManagementSystem/articles/deployment.html

Okrem nasadenia instancie systému som po dokonceni implementacie zverejnil zdrojové
stibory spolu s dokumentaciou v sluzbe GitHub’". Nasledne som z dokumentécie z repozitara
vytvoril stranku pomocou GitHub Pages?'.

Onttps://github.com/orlicekm/CodingConventionsManagementSystem
21 https://orlicekm.github.io/CodingConventionsManagementSystem

42

https://github.com/orlicekm/CodingConventionsManagementSystem
https://orlicekm.github.io/CodingConventionsManagementSystem

Kapitola 4

Testovanie

Kapitola sa zaobera procesom testovania vytvoreného systému potencionalnymi uzivatelmi
(vid 4.2). Doraz bol kladeny na vysledky testovania s ohladom na silné a slabé stranky
systému a vhodné oblasti pouzitia. K testovaniu bola vytvorena aj demonstricia systému
na open source projekte (vid 4.1).

4.1 Demonstracia

Cast prace demonstrujica pouzitie systému na vybranom open source projekte. Pre demon-
straciu som vybral projekt Microsoft PowerToys z analyzy vybranych projektov (vid 2.2.2).
Projekt som vybral, pretoze bol v praci analyzovany a z casti obsahuje aj kéd v jazyku C#,
¢o umozni demonstrovanie vyuzitia pravidiel pre jeho kontrolu.

Pre pracu s projektom v systéme som si vytvoril jeho képiu pomocou funkcie Fork. Ak
by som chcel, aby mal v systéme k repozitdru pristup aj iny uzivatel bolo by nutné ho
pridat ako prispievatela do projektu v sluzbe GitHub.

Testovat aplikdciu na nasadenej instancii neodporucam s viac ako 1000 siibormi v repo-
zitari. Pri zvolenom projekte, ktory obsahuje viac ako 2800 stborov, trval import konvencit

.....

je vhodné systém nasadif na vykonnejsie rieSenie.

Prihlasovanie do systému

Uzivatel sa do systému prihlasuje v pravom hornom rohu aplikdcie pomocou GitHub uctu.
Pri prvom prihlaseni je nutné systému povolit pristup k informéciam o 1ic¢te a repozitaroch.
Bez prihlasenia nie je mozné systém pouzivat.

Vyber repozitara

Uzivatel moze v systéme zvolit repozitar, na ktorom bude spravovat programovacie konven-
cie. K repozitdrom sa uzivatel dostane zvolenim repozitdrov (Repositories) v lavom menu
aplikacie. Nasledne si zvoli repozitar kliknutim nan. K repozitdrom st zobrazené uzitoéné
udaje. ktorymi st popis, jazyk, licencia, pocet konvencii, pocet kontrol, pocet forkov, pocet
hviezdic¢iek (stargazers) alebo pocet otvorenych problémov (open issues). Medzi repozitdrmi
je mozné vyhladavat. Svoj aktualne zvoleny repozitar méze uzivatel vidiet v pravom spod-
nom rohu aplikécie. Ja som zvolil repozitar PowerToys, na ktorom je systém demonstrovany.

43

Sprava konvencii

Po zvoleni repozitara sa uzivatelovi otvori pohlad spravovania konvencii na danom repozi-
tari. Do okna sa vie spatne dostat zvolenim konvencii (Conventions) v lavom menu aplikécie.
Kliknutim na tlaé¢itko pridat (Add) sa uzivatelovi otvori dial6g priddvania konvencie. Pri-
dané konvencie sa nasledne zobrazuju uzivatelovi spolu s uzitoénymi tdajmi, ktorymi st
popis konvencie, poc¢et sekcii vo formélnom texte, pocet pravidiel vo formalnom texte alebo
pocet komentarov. Medzi konvenciami je mozné vyhladavat.

= Coding Conventions Management System ‘_""\, orlicekm E» Sign out

Home
Repositores PowerToys conventions Search..

Conventions X N
Ci# conventions

Updated just now by 1, orlicekm
Edit this for convention description.

Properties

Default conventions
Updated just now by #}, orlicekm
Edit this for convention description.

Obr. 4.1: Do repozitara som pridal dve konvencie, jedna bude slizit na spravovanie pred-
volenych konvencii ku vSetkému, zatial ¢o druhé sa bude ststredit na jazyk C+#.

Po kliknuti na pridant konvenciu sa uzivatelovi otvori pohlad konvencie. V niom moze
konvenciu premenovat alebo zmazaft.

Komentovanie

V spodnej casti pohladu konvencie uzivatel vidi komentare k danej konvencii. Napisanim
textu a kliknutim na tlacitko pridat, méze ku konvencii pridat vlastny komentéar.

Podporované vlastnosti

Zvolenim vlastnosti (Properties) v lavom menu aplikdcie sa uzivatelovi zobrazia systémom
podporované vlastnosti (alebo inak nazyvané pravidld). V nich si vie pozriet popis, podpo-
rované sibory alebo hodnoty a zistit, ¢i je mozné ich kontrolovat a importovat.

Sprava textov

V pohlade konvencie méze uzivatel spravovat formatovany (Description) a formalny (Pro-
perties) text konvencie. Kliknutim na tlacitko upravit, ho méze menit a kliknutim na his-
toriu moze sledovat histériu zmien daného textu.

44

Default conventions o Remore

Updated just now by ¢, orlicekm

Description 7 Edit

Default conventions:
1. Write clean code
2. Write clean code
3. Write clean code

Properties

[*1
charset = utf-8-bom

Obr. 4.2: Upraveny formatovany a formélny text konvencie, formalny text bude kontrolovat
kédovanie vsetkych siiborov.

Import vlastnosti

Vlastnosti je mozné importovat kliknutim na sipku v tlac¢itku upravit (Edit) pri forméalnom
texte konvencie. Nasledne si uzivatel zvoli, ¢i chcel text pridat alebo nahradit, z akej vetvy
bude import prebiehat a aké vlastnosti (pravidla) bude importovat v akych sekcidch. Potom
spusti samotny import. Po jeho skonceni si uzivatel zvoli hodnoty, ktoré chce importovat.

Import from Repository % Import from Repository % Import from Repository X
G Settings 2 Brecution 3 Result 1 settings Q Bxecution 3 Results 1 2 ation (@) Resutts
29(0.02%) 45(0.02%) 51(0.02%)
Import Branch @ rritializing 64(0.019%) 33(0.01%) 72(0.01%)
Append text - Bero-WW + 1 019
O App betsegaw/reenable-aero-ww @ Eranch content downloading 43(0.01%) 47(0.01%) 41(0.01%)
Replace text 39(0.01%) 11(0.01%) 53(0.01%)
Content investigatin
Conventions (name and section) o eeiine 42(0.01%) 37(0%) ST (0%) 38 (0%)
end_of _line - n @ Importing 69 (0%) 50 (0%) 55 (0%) 75 (0%)
@ Mergingand normalizing results 67 (0%) 61 (0%) 71(0%) 54 (0%)
indent_size - n @ Cleaningup 76 (0%) 49 (0%) unset none
indent_style - n @ Import finished indent_style [*]
© space (98.57%) tab (1.43%) unset none
insert_final_newline - n nsert final_newline]
tim_trailing_whitespace ~ ﬂ O true (52.74%) false (47.26%) unset none
trim_trailing_whitespace [*]
O true (98.63%) false (1.37%) unset none
Next > < Previous Next > < Previous
X Cancel X Cancel Save X Cancel

Obr. 4.3: Do formélneho textu som dal importovat zvysné predvolené pravidla. Po dokonceni
som zvolil najcastejsie najdené hodnoty.

Kontrola vlastnosti

Kontrolovat vlastnosti je mozné v pohlade repozitdra kliknutim na tlacitko kontrola (Check).
Nasledne si uzivatel zvoli vetvu repozitara a konvencie, ktoré chce na nej kontrolovat. Po-
tom spusti samotni kontrolu. Po jej skonceni si uzivatel méze prezerat vysledky, ktoré su
automaticky ulozené do databazy. K vysledkom predoslych kontrol sa méze vratit kliknutim
na sipku tlacitka kontrola.

45

Check Conventions X

1 etting 2 Executior o Results

C# conventions

[cs]

csharp_new_line_before_catch = true
src/tests/win-app-driver/TestShortcutHelper.cs: No newline found
on the line(s) 92, 121.

csharp_new_line_before_else =true
csharp_new_line_before_finally = true

Default conventions
[l

charset = utf-8-bom

'l

end_of_line =If

<>

indent_size=4

<> <> <>

indent_style = space
< Previous

X Close

Obr. 4.4: Po importovani pravidiel aj pre C# konvencie, som spustil na repozitari kontrolu.
Na obrazku je mozné vidiet jej vysledok. Zelené pravidla presli, zatial o pri cervenych
nastala chyba. Tie je mozné rozkliknut, na zistenie podrobnosti.

4.2 Testovanie uzivatelmi

Cast préce popisujtica priebeh testovania systému jeho potencionalnymi uzivatelmi. V prvej
Casti vysvetluje, ako boli ui¢astnici testovania vybrany (vid 4.2.1), nasledne popisuje prie-
beh (vid 4.2.2) a v poslednej casti diskutuje silné a slabé stranky systému, uréuje vhodné
oblasti pouzitia s ohladom na vysledky testovania. Pre porovnanie existujucich technologii
s funkcionalitami navrhované systému vid 3.1.1 a 3.1.2.

4.2.1 Vyber ucastnikov

Pri voleni kritérii na ticastnikov testovania som sa snazil zvolit také, aby ticasnici ¢o najlepsie
reprezovali moznych uzivatelov systému. Preto som od tcastnikov ocakéaval:

e Aspon jeden rok skusenosti s programovanim.

e Poznanie pojmu open source a stretnutie sa open source projektom.

e Chépanie programovacich konvencii a ich vyznamu.

Pod stretnutim sa s open source projektom myslim zoznamenie sa so zdrojovym kédom
a sposobom akym nejaky open source projekt funguje. Celkovo som oslovil trinast Tudi
splnajicich dané kritéria.

4.2.2 Priebeh

Ucastnici testovania dostali pristup k demonstréacii projektu, ktora bola prepisom demon-
stracie z tejto prace (vid 4.1). Nésledne dostali odkazy k repozitaru v sluzbe GitHub, doku-
mentécii a nasadenej instancii systému. Od tcastnikov som oc¢akéval Ze si projekt nastuduju

46

a vratia mi spatna vazbu. Odpoved mala forméat volného textu, kedze som im poslal textovy
stbor s dvoma sadami otazok:

e Vedeli by ste projekt vyuzit? Ak ano, na akych projektoch a za akych podmienok?

e Co Vam v systéme chyba? Co by ste chceli zmenit? Co VAm naopak systéme vyhovuje?

Z trinast dotazanych ludi som dostal devéit odpovedi. Jedna z nich neodpovedala na otazky,
ale iba stru¢ne hodnotila, ze systém je v poriadku.

4.2.3 Vysledky

Vysledky od tcastnikov som rozdelil do styroch kategorii. V prvej sa venujem vhodnym
oblastiam pouzitia systému. V nasledujicej zmendm, ktoré by bolo vhodné v systéme spra-
vit, aby bol viac uzivatelsky privetivy a vhodny na pouzitie. V dalsej menujem rozsirenia
systému a v poslednej aspekty, ktoré uzivatelom na systéme vyhovovali.

Vhodne oblasti vyuzitia

Vicsina, Sest z 6smich tcastnikov odpovedala, ze by projekt vyuzit v aktudlnom stave nedo-
kézala. Dvaja ticastnici ktory by projekt vyuzif vedeli a kontrolovali by vzdy vsetky konven-
cie na kazdom projekte. Dalsf traja ticastnici si vedia predstavit projekt vyuzit pri pridani
vacsieho mnozstva kontrol na Specifické jazyky.

Z mojho pohladu st vhodnymi projektami na vyuzitie také, ktoré vyzaduju vyssiu kva-
litu kédu (pre viac informécii vid 2.1). Medzi oblasti v ktorych sa vyzaduje vyssia kvalita
kédu patri napriklad zdravotnictvo, letectvo, arméada alebo autonémne vozidla.

Vhodné zmeny

Véadsina navrhovanych zmien sa tykala uzivatelského rozhrania:

e Premiestnenie zobrazovania zvoleného repozitara.
e Osobitné tlac¢itka pre historiu kontroly a importovanie.

e Vicsie okna pre dialégy importu a kontroly, moznost expandovat dialég na celid ob-
razovku.

e Chyby v textoch.

e Prerobenie okna kontroly, zobrazovaf namiesto ¢isla riadka priamo jeho text, popri-
pade celt cast a suboru a v nej chybu zvyraznit. Nepraktické hladanie chyb pri ich
vacsom mnozstve.

Chyby v textoch som v aplikacii opravil.

Vhodné rozsirenia

Rozsirenia, ktoré uzivatelia ziadali sa tykali prevazne rozsiahlejsich zasahov do systému:

e Pridanie dalsich pravidiel na importovanie a kontrolovanie.

e Pridanie médu na ¢itanie (read-only mode) pre verejné projekty, ktorych nie je uzi-
vatel ucastnikom.

47

Prelozenie demonstracie do angli¢tiny a vlozenie do dokumentacie.

Moznost vytvorit pull request na repozitar na zaklade kontroly.

Spustanie kontroly na kazdom vytvorenom pull requeste, pridanie moznosti spustenia
kontoroly pomocou GitHub Actions.

Ku kazdému pravidlu pridat do ich zoznamu priklad pouzitia.

Vyhovujice aspekty
Zoznam aspektov, ktory uzivatelom na systéme vyhovoval:
e Priama interakcia a napojenie na GitHub.
e Moznost kontrolovat vsetko v kazdom programovacom jazyku.

e Format formalnych textov.

e Zdielanie konvencii na rovnakom projekte medzi uzivatelmi.

V zozname som neuviedol nespecifikované odpovede ako ,,vsSetko* alebo ,préica s kon-
venciami®

48

Kapitola 5

Zaver

Cielom préace je navrhnit a implementovat systém na spravu programovacich konvencii
v projekte. Motivaciou vyuzitia programovacich konvencii v projekte je zvysenie cistoty
kédu, ktord zefektiviiuje vyvoj. Hlavnym zamerom bolo vytvorif systém, ktory umozni
uchovavat vsetky druhy pouzivanych programovacich konvencii a zdroven umozni uzivatelovi
dané konvencie automaticky kontrolovat a generovat. Systém je cieleny primarne pre verejne
dostupné open source projekty na platforme GitHub.

Pri vytvarani navrhu systému som uskutoc¢nil niekolko prieskumov. V prvom rade som
zistoval, aké benefity vyuzitia programovacich konvencii v projektoch prinesie (vid 2.1).
Nésledne som robil prieskum konvencii v open source projektoch (vid 2.2.1), z ktorych
som vybral uréité projekty pre podrobnejsiu analyzu (vid 2.2.2). Okrem toho som usku-
to¢nil analyzu technolégii spravujicich programovacie konvencie, vdaka ¢omu som zistil,
Ze vacsina projektov pouziva na ulozenie konvencii iba nejaki formu forméatovaného textu.
Najcastejsie pouzivanym automatizovanym néstrojom bol EditorConfig (vid 2.3.4), ktory
som sa rozhodol pouzit pri navrhu a zapracovat do vytvoreného systému.

Pri prieskume konvencii v projektoch som skimal péatdesiat projektov v sluzbe GitHub,
ktoré ziskali najviac hviezdiciek (stargazers) za rok 2020 a zaroven obsahuju open source
licenciu. Zoznam projektov som ziskal v BigQuery datovom sklade, uchovavajicom informa-
cie o sluzbe GitHub. Z prieskumu som zistil, ze velké mnozstvo projektov konvencie vébec
neobsahuje a tie, ktoré ich obsahovali mali medzi sebou velkt diverzitu.

Systém som sa rozhodol navrhntat ako webovi sluzbu s vyuzitim technolégie Blazor,
napojenu na databdzu a ulozent na Azure cloude, pricom som sa pokusil o vyuzitie najnov-
sich technolégii. Taktiez som sa snazil cielit na open source projekty, preto je prihlasovanie
navrhnuté cez protokol OAuth pomocou GitHub Gctu.

Navrhnuty systém som nasledne implementoval, vytvoril k nemu dokumentaciu a nasadil
ho do cloudovej platformy Azure. Pri implementécii som sa stretol s niekolkymi problema-
tickymi castami (vid 3.3.2), v ktorych som nemohol postupovat podla navrhu. Tie som
nasledne ilustroval a popisal, akym sp6sobom boli vyriesené.

Ako pri analyze, tak aj pri ndvrhu som sa nestretol so ziadnymi vaznejsimi problémami.
Najvécsou vyzvou bolo pre mna najdenie vhodnej kniznej literatiry k programovacim kon-
vencidm, kedZe sa mi nedarilo najst knihy zamerané priamo na ttto tematiku. Avsak existuje
mnoho knih zameranych na refaktorizaciu a Cistotu kodu, ktoré tuto tematiku riesia.

K systému bola vytvorena dokumentécia, nasadena ako GitHub Pages stranka, obsa-
hujtica navod ako systém nasadif a ako do systému pridat vlastné pravidla na kontrolu
konvencii, spolu s API dokumentéaciou. Projekt bol demonstrovany na open source projekte
a testovany moznymi uzivatelmi.

49

Na zaver by som zmienil, Zze pracu by bolo mozné este rozsirit o dalsie funkcionality,
pricom inspiracia by sa ¢erpala z dat ziskanych z testovania. Vysledny systém obsahuje iba
zakladné funkcionality, ziskane z analyz na spravovanie programovacich konvencii. Pre lepsie
vyuzitie by bolo vhodné systém spravit pohodlnej$im na pouzivanie. To by $lo docielit
najma integrovanim systému do viacerych verznych sluzieb a pridanim réznych druhov
importov a exportov konvencii, ako aj pridanim viacerych pravidiel pre kontrolu. Verim,
ze implementovany systém a vykonané analyzy v tejto praci pomdzu rozsireniu vyskumu
a vyvoju technolégii v oblasti spravovania programovacich konvencii.

50

Literattura k praci

[1] AGILE ALLIANCE. What is Agile? Agile 101 [online]. [cit. 2020-11-18]. Dostupné z:
https://www.agilealliance.org/agilel01.

[2] ALLs, J. Clean Code in C#: Refactor your legacy C# code base and improve
application performance by applying best practices. Packt Publishing, 2020. ISBN
978-1-8389-8297-3.

[3] ANKUR. C# Coding Standards [online]. [cit. 2021-03-10]. Dostupné z: https:
//www.c-sharpcorner.com/UploadFile/ankurmalik123/C-Sharp-coding-standards.

[4] BELLAIRS, R. Coding best practices. What is code quality? And how to improve code
quality [online]. [cit. 2020-11-18]. Dostupné z: https:
//wwu.perforce.com/blog/sca/what-code-quality-and-how-improve-code-quality.

[5] CoNE, M. Advanced features that build on the basic Markdown syntax. Eztended
Syntaz [online]. [cit. 2020-12-30]. Dostupné z:
https://www.markdownguide.org/extended-syntax.

[6] CORDASCO, L. S. Flake8 [online]. [cit. 2021-03-17]. Dostupné z:
https://flake8.pycqa.org/en/latest/manpage.html.

[7] DaTAa & OBJIECT FACTORY, LLC.. C# Coding Standards and Naming Conventions
[online]. [cit. 2020-11-23]. Dostupné z:
https://www.dofactory.com/reference/csharp-coding-standards.

[8] DATA & OBJECT FACTORY, LLC. C# Command [online]. [cit. 2021-07-28]. Dostupné
Z: https://www.dofactory.com/net/command-design-pattern.

[9] DAaTA & OBJIECT FACTORY, LLC.. Dofactory [online]. [cit. 2020-11-23]. Dostupné z:
https://www.dofactory.com.

[10] DOTNETPATTERN.COM. MVVM Light Messenger [online]. [cit. 2021-07-27]. Dostupné
Z: http://dotnetpattern.com/mvvm-light-messenger.

[11] EDITORCONFIG TEAM.. EditorConfig Properties [online]. [cit. 2021-01-04]. Dostupné
7: https://github.com/editorconfig/editorconfig/wiki/EditorConfig-Properties.

[12] EDITORCONFIG TEAM.. EditorConfig Specification [online]. [cit. 2021-01-04].
Dostupné z: https://editorconfig-specification.readthedocs.io.

[13] ENTITYFRAMEWORKTUTORIAL.NET. Entity Framework Core: DbContext [online].
[cit. 2021-07-28]. Dostupné z: https:
//www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx.

51

https://www.agilealliance.org/agile101
https://www.c-sharpcorner.com/UploadFile/ankurmalik123/C-Sharp-coding-standards
https://www.c-sharpcorner.com/UploadFile/ankurmalik123/C-Sharp-coding-standards
https://www.perforce.com/blog/sca/what-code-quality-and-how-improve-code-quality
https://www.perforce.com/blog/sca/what-code-quality-and-how-improve-code-quality
https://www.markdownguide.org/extended-syntax
https://flake8.pycqa.org/en/latest/manpage.html
https://www.dofactory.com/reference/csharp-coding-standards
https://www.dofactory.com/net/command-design-pattern
https://www.dofactory.com
http://dotnetpattern.com/mvvm-light-messenger
https://github.com/editorconfig/editorconfig/wiki/EditorConfig-Properties
https://editorconfig-specification.readthedocs.io
https://www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx
https://www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx

[14] ENTITYFRAMEWORKTUTORIAL.NET. What is an Entity in Entity Framework?
[online]. [cit. 2021-07-28]. Dostupné z:
https://www.entityframeworktutorial.net/basics/entity-in-entityframework.aspx.

[15] ENTITYFRAMEWORKTUTORIAL.NET. What is Code—F'irst? [online]. [cit. 2021-07-28].
Dostupné z:
https://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx.

[16] ENTITYFRAMEWORKTUTORIAL.NET. What is Entity Framework? [online]. [cit.
2021-07-27]. Dostupné z:

https://www.entityframeworktutorial.net/what-is-entityframework.aspx.

[17] FACEBOOK. React [online]. [cit. 2021-01-07]. Dostupné z:
https://github.com/facebook/react.

[18] FOWLER, M. Refactoring: Improving the Design of Existing Code. Druhé.
Addison-Wesley, 2019. ISBN 978-1-5093-0698-5.

[19] GARcia, I. S. The theory beyond the pattern. Learn MVVM [online]. [cit.
2021-07-27]. Dostupné z: https://www.learnmvvm.com/theory.html.

[20] GEEKSFORGEEKS. GeeksforGeeks [online]. [cit. 2020-11-24]. Dostupné z:
https://www.geeksforgeeks.org.

[21] GEFROH, J. Software engineering is a lot easier in consistent systems. Why
consistency is one of the top indicators of good code [online]. [cit. 2020-11-19].
Dostupné z: https://medium.com/@jgefroh/why-consistency-is-one-of-the-top-
indicators-of-good-code-352babd62020.

[22] GHTORRENT. GHTorrent on the Google cloud [online]. [cit. 2020-12-20]. Dostupné z:
https://ghtorrent.org/gcloud.html.

[23] GITHUB. About wikis [online]. [cit. 2021-01-02]. Dostupné z: https://docs.github.com/
en/free-pro-team@latest/github/building-a-strong-community/about-wikis.

[24] GiTHUB. Adding or editing wiki pages [online|. [cit. 2021-01-02]. Dostupné z:
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-
community/adding-or-editing-wiki-pages.

[25] GITHUB. Configuring issue templates for your repository [online]. [cit. 2021-01-01].
Dostupné z: https://docs.github.com/en/free-pro-team@latest/github/building-a-
strong-community/configuring-issue-templates-for-your-repository.

[26] GITHUB. Creating an issue [online]. [cit. 2021-01-01]. Dostupné z:
https://docs.github.com/en/free-pro-team@latest/github/managing-your-work-on-
github/creating-an-issue.

[27] GiTHUB. The largest open source community in the world [online]. [cit. 2020-12-17].
Dostupné z: https://github.com/open-source.

[28] GITHUB. Mastering Issues [online]. [cit. 2020-12-31]. Dostupné z:
https://guides.github.com/features/issues.

52

https://www.entityframeworktutorial.net/basics/entity-in-entityframework.aspx
https://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx
https://www.entityframeworktutorial.net/what-is-entityframework.aspx
https://github.com/facebook/react
https://www.learnmvvm.com/theory.html
https://www.geeksforgeeks.org
https://medium.com/@jgefroh/why-consistency-is-one-of-the-top-indicators-of-good-code-352ba5d62020
https://medium.com/@jgefroh/why-consistency-is-one-of-the-top-indicators-of-good-code-352ba5d62020
https://ghtorrent.org/gcloud.html
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/about-wikis
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/about-wikis
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/adding-or-editing-wiki-pages
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/adding-or-editing-wiki-pages
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/configuring-issue-templates-for-your-repository
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/configuring-issue-templates-for-your-repository
https://docs.github.com/en/free-pro-team@latest/github/managing-your-work-on-github/creating-an-issue
https://docs.github.com/en/free-pro-team@latest/github/managing-your-work-on-github/creating-an-issue
https://github.com/open-source
https://guides.github.com/features/issues

[29] GiTHUB. Mastering Markdown [online]. [cit. 2020-12-30]. Dostupné z:
https://guides.github.com/features/mastering-markdown.

[30] GiTHUB. Octokit — GitHub API Client Library for .NET [online]. [cit. 2021-06-29].
Dostupné z: https://github.com/octokit/octokit.net.

[31] GITHUB. Octoverse [online]. [cit. 2020-12-22]. Dostupné z:
https://octoverse.github.com.

[32] GiTHUB. Using templates to encourage useful issues and pull requests [online]. [cit.
2021-01-01]. Dostupné z:
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-
community/using-templates-to-encourage-useful-issues-and-pull-requests.

[33] GiTHUB, INC.. GitHub Pages [online]. [cit. 2021-07-27]. Dostupné z:
https://pages.github.com.

[34] GOOGLE. C# at Google Style Guide [online]. [cit. 2020-11-24]. Dostupné z:
https://google.github.io/styleguide/csharp-style.html.

[35] GOOGLE. Diff Match Patch [online]. [cit. 2021-06-30]. Dostupné z:
https://github.com/google/diff-match-patch.

[36] GOOGLE. Google Style Guides [online]. [cit. 2020-11-24]. Dostupné z:
https://google.github.io/styleguide.

[37] GooGLE, LLC. Waterfall model vs agile scrum. Google Trends [online|. [cit.
2020-11-15]. Dostupné z: https://trends.google.com/trends/explore?date=all&q=
waterfall’,20model,agile’20scrum.

[38] GRIGORIK, I. GH Archive [online]. [cit. 2020-12-22]. Dostupné z:
https://www.gharchive.org.

[39] GRIMES, R. A. a FRUHLINGER, J. What is OAuth? How the open authorization
framework works [online]. [cit. 2021-01-17]. Dostupné z: https://www.csoonline.com/
article/3216404/what-is-oauth-how-the-open-authorization-framework-works.html.

[40] HOFFA, F. Analyzing GitHub [online]. [cit. 2020-12-22]. Dostupné z:
https://github.com/fhoffa/analyzing_github.

[41] HUNNER, T. a Xu, H. EditorConfig [online]. [cit. 2021-01-02]. Dostupné z:
https://editorconfig.org.

[42] IBM CLouD EDUCATION. Three—Tier Architecture [online]. [cit. 2021-07-22].
Dostupné z: https://www.ibm.com/cloud/learn/three-tier-architecture.

[43] JETBRAINS S.R.O.. IntelliJ IDEA overview [online]. [cit. 2021-03-12]. Dostupné z:
https://www.jetbrains.com/help/idea/discover-intellij-idea.html#editorconfig.

[44] JETBRAINS S.R.O.. Use EditorConfig [online]. [cit. 2021-03-12]. Dostupné z:
https://www.jetbrains.com/help/resharper/Using_EditorConfig.html.

[45] JiMMY BOGARD. AutoMapper [online]. [cit. 2021-07-27]. Dostupné z:
https://automapper.org/.

53

https://guides.github.com/features/mastering-markdown
https://github.com/octokit/octokit.net
https://octoverse.github.com
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/using-templates-to-encourage-useful-issues-and-pull-requests
https://docs.github.com/en/free-pro-team@latest/github/building-a-strong-community/using-templates-to-encourage-useful-issues-and-pull-requests
https://pages.github.com
https://google.github.io/styleguide/csharp-style.html
https://github.com/google/diff-match-patch
https://google.github.io/styleguide
https://trends.google.com/trends/explore?date=all&q=waterfall%20model,agile%20scrum
https://trends.google.com/trends/explore?date=all&q=waterfall%20model,agile%20scrum
https://www.gharchive.org
https://www.csoonline.com/article/3216404/what-is-oauth-how-the-open-authorization-framework-works.html
https://www.csoonline.com/article/3216404/what-is-oauth-how-the-open-authorization-framework-works.html
https://github.com/fhoffa/analyzing_github
https://editorconfig.org
https://www.ibm.com/cloud/learn/three-tier-architecture
https://www.jetbrains.com/help/idea/discover-intellij-idea.html#editorconfig
https://www.jetbrains.com/help/resharper/Using_EditorConfig.html
https://automapper.org/

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[54]

[55]

KOJEVNIKOV, A. Hilite.me [online|. [cit. 2021-06-30]. Dostupné z:
https://github.com/alexkay/hilite.me.

KRENA, B. a Koci, R. Studijni opora. Uvod do softwarového inZengjrstvi [online].
FIT VUT v Brné, 2010 [cit. 2021-05-22]. Dostupné z:
https://wis.fit.vutbr.cz/FIT/st/cfs.php/course/IUS-IT/texts/IUS_opora.pdf.

LANGA Lukasz. Black [online]. [cit. 2021-03-17]. Dostupné z:
https://github.com/psf/black.

LicHT, A. Cpplint [online]. [cit. 2021-03-12]. Dostupné z:
https://github.com/google/styleguide/tree/gh-pages/cpplint.

MARTIN, R. C. Clean Code: A Handbook of Agile Software Craftmanship. Prentice
Hall, 2008. ISBN 978-0-1323-5088-4.

MARTIN, R. C. a MARTIN, M. Agile principles, patterns, and practices in C#.
Prentice Hall, 2006. ISBN 978-0-1318-5725-4.

MiCcROSOFT. ASP.NET Core Blazor hosting models [online]. [cit. 2021-01-17].
Dostupné z:
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=
aspnetcore-5.0.

MICROSOFT. C# Programming Guide. C# Coding Conventions [online]. [cit.
2020-11-19]. Dostupné z: https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/inside-a-program/coding-conventions.

MICROSOFT. C# Guide. C# documentation [online]. [cit. 2020-11-21]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/csharp.

MICROSOFT. Code style rule options [online]. [cit. 2021-03-12]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/code-style-
rule-options.

MICROSOFT. Dependency injection in ASP.NET Core [online]. [cit. 2021-07-27].
Dostupné z: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
dependency-injection?view=aspnetcore-5.0.

MICROSOFT. Dependency injection in .NET [online]. [cit. 2021-07-27]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection.

MICROSOFT. Visual Studio 2019. Downloads [online]. [cit. 2021-01-17]. Dostupné z:
https://visualstudio.microsoft.com/downloads.

MICROSOFT. Framework Design Guidelines [online]. [cit. 2020-11-22]. Dostupné z:
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines.

MICROSOFT. Getting Started with DocFX [online]. [cit. 2021-07-27]. Dostupné z:
https://dotnet.github.io/docfx/tutorial/docfx_getting_started.html.

MICROSOFT. Introduction to ASP.NET Core Blazor [online]. [cit. 2021-07-27].
Dostupné z:
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-5.0.

54

https://github.com/alexkay/hilite.me
https://wis.fit.vutbr.cz/FIT/st/cfs.php/course/IUS-IT/texts/IUS_opora.pdf
https://github.com/psf/black
https://github.com/google/styleguide/tree/gh-pages/cpplint
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/code-style-rule-options
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/code-style-rule-options
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://visualstudio.microsoft.com/downloads
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines
https://dotnet.github.io/docfx/tutorial/docfx_getting_started.html
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-5.0

[62]

[63]

[64]

[65]

[66]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

MICROSOFT. MICROSOFT DOCUMENTATION |online]. [cit. 2020-11-21]. Dostupné

7: https://docs.microsoft.com.

MICROSOFT. Microsoft PowerToys [online]. [cit. 2021-01-07]. Dostupné z:
https://github.com/microsoft/PowerToys.

MICROSOFT. What is Azure? [online]. [cit. 2021-01-17]. Dostupné z:
https://azure.microsoft.com/en-us/overview/what-is-azure.

MoRrris, P. What is Blazor? [online]. [cit. 2021-01-17]. Dostupné z:

https://blazor-university.com/overview/what-is-blazor.

.NET FOUNDATION. Roslyn [online]. [cit. 2021-07-26]. Dostupné z:
https://github.com/dotnet/roslyn.

NGUYEN, L. How to implement Repository € Unit of Work design patterns in .NET
Core [online]. [cit. 2021-07-28]. Dostupné z:
https://enlabsoftware.com/development/how-to-implement-repository-unit-of-

work-design-patterns-in-dot-net-core-practical-examples-part-one.html.

OPENJS FOUNDATION. ESLint: About [online]. [cit. 2021-03-12]. Dostupné z:
https://eslint.org/docs/about.

PrAKASH, S. C# Coding Standards. GeeksforGeeks [online]. [cit. 2020-11-24].
Dostupné z: https://www.geeksforgeeks.org/c-sharp-coding-standards.

PRETTIER. Prettier vs. Linters [online]. [cit. 2021-01-05]. Dostupné z:
https://prettier.io/docs/en/comparison.html.

PRETTIER. What is Prettier? [online|. [cit. 2021-01-05]. Dostupné z:
https://prettier.io/docs/en/index.html.

RABELO, J. Three-Tier Architecture [online]. [cit. 2021-07-22]. Dostupné z:
https://www.techopedia.com/definition/24649/three-tier-architecture.

RASMUSSON, J. Agile’s engine for getting things done. Iterations [online]. [cit.
2020-11-18]. Dostupné z: http://www.agilenutshell.com/iterations.

RiTcHIE, D. a KERNIGHAN, B. The C Programming Language. Druhé. New Jersey:
Prentice Hall, 1988. ISBN 978-0-1311-0370-2.

STACK OVERFLOW. 2018. Developer Survey Results [online]. [cit. 2020-11-16].
Dostupné z: https://insights.stackoverflow.com/survey/2018.

STACK OVERFLOW. 2019. Developer Survey Results [online]. [cit. 2021-03-09].
Dostupné z: https://insights.stackoverflow.com/survey/2019.

TESTIM. What Is a Linte [online]. [cit. 2021-01-05]. Dostupné z: https://
www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide.

THE CLANG TEAM. ClangFormat [online]. [cit. 2021-03-18]. Dostupné z:
https://clang.llvm.org/docs/ClangFormat.html.

THE DARING FIREBALL COMPANY LLC.. Markdown [online]. [cit. 2020-12-30].
Dostupné z: https://daringfireball.net/projects/markdown.

55

https://docs.microsoft.com
https://github.com/microsoft/PowerToys
https://azure.microsoft.com/en-us/overview/what-is-azure
https://blazor-university.com/overview/what-is-blazor
https://github.com/dotnet/roslyn
https://enlabsoftware.com/development/how-to-implement-repository-unit-of-work-design-patterns-in-dot-net-core-practical-examples-part-one.html
https://enlabsoftware.com/development/how-to-implement-repository-unit-of-work-design-patterns-in-dot-net-core-practical-examples-part-one.html
https://eslint.org/docs/about
https://www.geeksforgeeks.org/c-sharp-coding-standards
https://prettier.io/docs/en/comparison.html
https://prettier.io/docs/en/index.html
https://www.techopedia.com/definition/24649/three-tier-architecture
http://www.agilenutshell.com/iterations
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2019
https://www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide
https://www.testim.io/blog/what-is-a-linter-heres-a-definition-and-quick-start-guide
https://clang.llvm.org/docs/ClangFormat.html
https://daringfireball.net/projects/markdown

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

THE LINUX INFORMATION PROJECT. Source Code Definition [online]. [cit.
2020-10-11]. Dostupné z: http://www.linfo.org/source_code.html.

THE MYPY PROJECT. Mypy [online]. [cit. 2021-03-17]. Dostupné z:
http://mypy-lang.org.

THE SUBLIMELINTER COMMUNITY. About SublimeLinter [online]. [cit. 2021-01-05].
Dostupné z: http://www.sublimelinter.com/en/v3.10.10/about.html.

THEALGORITHMS. The Algorithms - Python [online]. [cit. 2021-01-07]. Dostupné z:
https://github.com/TheAlgorithms/Python.

UNITYCOIN. Clean Code — Uncle Bob / Lesson 1 [online]. [cit. 2020-11-19]. Dostupné
Z: https://www.youtube.com/watch?v=7EmboKQH81M.

VORISEK, L. Analyza kvality zdrojovych kédi [online]. 2015. Bakaldrska praca. Ceské
vysoké uceni technické v Praze.

VUOLLET, P. The 9 Coding Standards C# Developers Need to Get Started [online].
[cit. 2021-03-10]. Dostupné z:
https://blog.submain.com/coding-standards-c-developers-need.

ZIELCZYNSKI, P. Requirements Management Using IBM Rational RequisitePro. Prvé.
IBM Press, 2007. ISBN 978-0-321-38300-6.

56

http://www.linfo.org/source_code.html
http://mypy-lang.org
http://www.sublimelinter.com/en/v3.10.10/about.html
https://github.com/TheAlgorithms/Python
https://www.youtube.com/watch?v=7EmboKQH8lM
https://blog.submain.com/coding-standards-c-developers-need

Skratky

ACU Azure compute unit. 41
API Application Programming Interface Str. 4, 16, 17, 31, 33, 34, 35, 38, 49

ASCII American Standard Code for Information Interchange Str. 10

CC Creative Commons Str. 17

CI Continuous integration Str. 60

CLA Contributor License Agreement Str. 13
CLR Common Language Runtime Str. 59

CSS Cascading Style Sheets Str. 22, 29

DI Dependency injection. 29, 31, 32

DoD Definition of Done Str. 6, 9
GUI Graphical user interface. 30

HTML Hyper Text Markup Language Str. 17, 18, 22, 29, 34

HTTP Hypertext Transfer Protocol Str. 10

IDE Integrated development environment Str. 6, 9, 12, 20, 21, 22, 35, 39, 40, 59, 60
INT Initialization File Str. 21, 34

IoC Inversion of control. 31, 306, 37, 39
JSON JavaScript Object Notation Str. 22
LINFO The Linux Information Project Str. 6

MIT Massachusetts Institute of Technology Str. 3

MVVM Model-View-ViewModel. 30, 32

ORM O0Object-relational mapping Str. 28, 38

57

https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://sproutsocial.com/insights/what-is-an-api/
https://en.wikipedia.org/wiki/ASCII
https://creativecommons.org/licenses/
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Contributor_License_Agreement
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/Dependency_injection
https://www.agilealliance.org/glossary/definition-of-done
https://en.wikipedia.org/wiki/Graphical_user_interface
https://www.w3schools.com/html/html_intro.asp
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/JSON
http://www.linfo.org/
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/Model-view-viewmodel
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

OTI Object Technology International Str. 8

SoC Separation of concerns. 30

SQL Structured Query Language Str. 17, 59
TDD Test-driven development Str. 9

UML Unified Modeling Language Str. 9

VM Virtual machine Str. 22

WPF Windows Presentation Foundation. 30, 40

XHTML Extensible HyperText Markup Language Str. 18

XML eXtensible Markup Language Str. 17

58

https://en.wikipedia.org/wiki/Object_Technology_International
https://en.wikipedia.org/wiki/Separation_of_concerns
https://www.infoworld.com/article/3219795/what-is-sql-the-lingua-franca-of-data-analysis.html
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/XHTML
https://www.w3schools.com/xml/xml_whatis.asp

Slovnik

.NET je zastresujtci nazov pre stibor technolégii v softvérovych produktoch' od spo-
lo¢nosti Microsoft, ktoré tvoria spolo¢nt platformu. Standardizovanou $pecifikéciou
NET jadra je CLR [18]. Str. 3, 16, 17, 21, 27, 29, 35, 38, 40

Agilny vyvoj softvéru je vyvoj zalozeny na iteraciach. Dokaze reagovat na zmenu po-
ziadaviek pocas priebehu vyvojového cyklu. Protikladom je linedarny vodopddovy mo-
del [8]. Pre viac informécii z prace vid 2.1.1. Str. 3, 5, 6, 16, 60

BigQuery je plne spravovatelny serverless détovy sklad, ktory umoznuje $kdlovalnd ana-
Iyzu na velkom mnozstve ddt a podporuje dopytovanie pomocou SQL [9]. Str. 10

Clean code je neredundantny koéd, napisany systematicky tak, aby ho iny programator
mohol jednoducho pochopit a upravit [24]. Pre viac informécii z prace vid 2.1.4. Str.
3,5

Eclipse je IDE obsahujice zakladny pracovny priestor a rozsiritelny systém doplnkov
na jeho prispdsobenie. Primédrne vyuzitie je pre vyvoj Java aplikdcii [11]. Str. 8

Enterprise softvér je pocitacovy softvér, ktory sa pouziva skor na uspokojenie potrieb
organizicie ako jednotlivych pouzivatelov [12]. Str. 16

Git je systém na kontrolu verzii, ktoré umoznuju sledovanie zmien v stitboroch a koordinaciu
prac na tychto siboroch medzi viacerymi programétormi [13]. Str. 11, 13, 14, 25, 59,
60

GitHub je hostingova sluzba”’ pre verzny systém Git, ktord bola neddvno odktipend spo-
lo¢nostou Microsoft. Sluzba sa pouziva predovsetkym na zdielanie pocitacového kédu
a umoznuje vytvorenie repozitara zadarmo, vdaka comu je bezne pouzivana na open
source projekty [14]. Str. 3, 4, 5, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27, 31,
33, 36, 38, 40, 42, 43, 46, 48, 49, 59, 60, 64

GitHub Issue je sposob ako sledovat tlohy, vylepsenia a chyby v projektoch [2]. Str. 11,
13, 14, 15, 18, 19, 24, 25

Gitter je platforma na chatovanie, ktord pomaha spravovat a rozsirovat komunity pro-
strednictvom sprav. Vyhodou je integrovatelnost s viacerymi sluzbami, medzi ktoré
patri napriklad GitHub [6]. Str. 13

"https://dotnet.microsoft.com/
*https://github.com/

59

https://dotnet.microsoft.com/
https://github.com/

JavaScript multiplatformny, objektovo orientovany skriptovaci jazyk [15]. Str. 12, 14, 17,
21, 22, 29

Markdown je odlahéeny znackovaci jazyk, ktory slizi na dpravu prostého textu a jeho
néasledny prevod na formétovany text publikovatelny na webe [16]. Pre viac o Mar-
kdown stuboroch ako spdsobe ukladania programovacich konvencii vid 2.3.1. Str. 11,
13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 38, 40

NuGet je bezplatny a open source manazér pre spravu balickov, uréeny pre vyvojovi
platformu spolo¢nosti Microsoft [7]. Str. 31, 33, 34, 40, 41

Open source produkty obsahuji opravnenia na pouzitie zdrojovych siiborov, dizajnovych
dokumentov alebo ich obsahu. Casto sa spaja s open source modelom, ktory je za-
loZzeny na otvorenej spolupraci a v ktorom st produkty vydané pod open source
licenciami. [19]. Str. 3, 4, 5, 8, 9, 10, 12, 13, 15, 16, 21, 23, 24, 25, 26, 29, 35, 38, 43,
46, 49, 59, 60, 64

Pull request je navrhovand zmena do Git repozitara, odoslana od uzivatela a akceptovand
alebo odmietana spolupracovnikmi repozitara [3]. Str. 10, 11, 13, 14, 15, 18, 19, 48

Pytest je rozhranie pre Python, ktoré umoznuje lahké pisanie malych testov, ale podporuje
komplexné funkciondlne testovanie aplikacii a kniznic [4]. Str. 13

Python je vysoko urovnovy skriptovaci programovaci jazyk, vyvijany ako open source
projekt [20]. Str. 12, 13, 22, 60

Refaktorizacia je proces restrukturalizicie existujiceho pocitacového kédu bez zmeny
jeho vonkajsieho spravania. Refaktorizacia je ur¢end na zlepsenie dizajnu, Struktiry
a implementdcie softvéru pri zachovani jeho funkénosti [10]. Pre viac informécii z préce
vid 2.1.6. Str. 3, 6, 7, 9, 16

ReSharper je rozsirenie do IDFE Visual Studio, ktore rozsiruje o viac ako 2200 inspekcii
kédu za behu, na ktoré ponika rychle opravy [5]. Str. 9, 21, 40

Scrum je agilny ramec na vyvoj, dodavanie a udrziavanie komplexnych produktov. Je ur-
¢eny pre timy s 10 a menej ¢lenmi, ktori rozdeluji svoju pracu na ciele, ktoré je mozné
splnit v rdmci ¢asovo obmedzenych iteracii [21]. Str. 5, 6

Stargazer (GitHub) je clovek, ktory dal hviedzicku repozitdru v sluzbe GitHub [1]. Str.
10, 43, 49

Travis CI je hostovand CI sluzba, pouzivand na CI projektov v sluzbach GitHub a Bit-
Bucket [6]. Str. 13

Vodopadovy model je zlozenie vyvoja do linedrnych sekvenénych faz, kde kazda zavisi
na predchédzajicej. Protikladom je agilng vyvoj softvéru [22]. Str. 3, 5, 59

60

WebAssembly je otvoreny standard, ktory definuje prenosny forméat binarneho kdédu
pre spustitelné programy, ako aj pre rozhrania na ulahcenie interakcii medzi tymito
programami a ich hostitelskym prostredim [23]. Jeho hlavnym cielom je umoznit vy-
tvaranie vysoko vykonnych aplikicii na webovych strankach, ale format je navrhnuty
na vykondvanie a integraciu aj v inych prostrediach [23]. Str. 29

Windows je séria niekolkych rodin operacnych systémov od spolo¢nosti Microsoft [17].
Str. 12, 13

61

Literatura k slovniku

1]

[12]

[13]

GITHUB. List stargazers [online]. [cit. 2021-07-26]. Dostupné z:
https://docs.github.com/en/rest/reference/activity#list-stargazers.

GITHUB. Mastering Issues [online]. [cit. 2020-12-31]. Dostupné z:
https://guides.github.com/features/issues.

GITHUB INCORPORATION. Pull request — GitHub Glossary [online]. [cit. 2021-01-23].
Dostupné z: https://help.github.com/articles/github-glossary/#pull-request.

HOLGER KREKEL AND PYTEST-DEV TEAM. Pytest [online]. [cit. 2021-07-26].
Dostupné z: https://docs.pytest.org/en/6.2.x.

JETBRAINS S.R.O.. Reshaper [online]. [cit. 2021-07-25]. Dostupné z:

https://www.jetbrains.com/resharper.
NEwW VECTOR LTD. Gitter [online]. [cit. 2021-07-25]. Dostupné z: https://gitter.im.
WIKIPEDIA.

WIKIPEDIA. Agile software development — Wikipedia, The Free Encyclopedia
[online]. [cit. 2020-09-29]. Dostupné z: http://en.wikipedia.org/w/index.php7title=
Agile’,20software’20development&oldid=979979593.

WIKIPEDIA. BigQuery — Wikipedia, The Free Encyclopedia [online]. [cit. 2021-07-26].
Dostupné z:
http://en.wikipedia.org/w/index.php?title=BigQuery&oldid=1017050899.

WIKIPEDIA. Code refactoring — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-11-01]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=Code}20refactoring&oldid=985307174.

WIKIPEDIA. Eclipse (software) — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-11-02]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=Eclipse20(software)&oldid=980854952.

WIKIPEDIA. Enterprise software — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-07-25]. Dostupné z: http://en.wikipedia.org/w/index.php?title=
Enterprise’,20software&oldid=1028172826.

WIKIPEDIA. Git — Wikipedia, The Free Encyclopedia [online]. [cit. 2020-09-30].
Dostupné z: http://en.wikipedia.org/w/index.php?title=Git&oldid=979088000.

62

https://docs.github.com/en/rest/reference/activity#list-stargazers
https://guides.github.com/features/issues
https://help.github.com/articles/github-glossary/#pull-request
https://docs.pytest.org/en/6.2.x
https://www.jetbrains.com/resharper
https://gitter.im
http://en.wikipedia.org/w/index.php?title=Agile%20software%20development&oldid=979979593
http://en.wikipedia.org/w/index.php?title=Agile%20software%20development&oldid=979979593
http://en.wikipedia.org/w/index.php?title=BigQuery&oldid=1017050899
http://en.wikipedia.org/w/index.php?title=Code%20refactoring&oldid=985307174
http://en.wikipedia.org/w/index.php?title=Eclipse%20(software)&oldid=980854952
http://en.wikipedia.org/w/index.php?title=Enterprise%20software&oldid=1028172826
http://en.wikipedia.org/w/index.php?title=Enterprise%20software&oldid=1028172826
http://en.wikipedia.org/w/index.php?title=Git&oldid=979088000

[14] WIKIPEDIA. GitHub — Wikipedia, The Free Encyclopedia [online]. [cit. 2020-09-30].
Dostupné z: http://en.wikipedia.org/w/index.php?title=GitHub&oldid=981138144.

[15] WIKIPEDIA. JavaScript — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-01-14]. Dostupné z:
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1000595969.

[16] WIKIPEDIA. Markdown — Wikipedia, The Free Encyclopedia [online]. [cit. 2021-01-14].
Dostupné z:
https://en.wikipedia.org/w/index.php?title=Markdown&oldid=1000478104.

[17] WIKIPEDIA. Microsoft Windows — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-01-14]. Dostupné z:
https://sk.wikipedia.org/w/index.php?title=Microsoft_Windows&oldid=6925930.

[18] WIKIPEDIA. .NET — Wikipedia, The Free Encyclopedia [online]. [cit. 2020-09-30].
Dostupné z: http://sk.wikipedia.org/w/index.php?title=.NET&01did=6465183.

[19] WIKIPEDIA. Open source — Wikipedia, The Free Encyclopedia [online]. [cit.
2020-09-30]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=0pen’20source&oldid=979840260.

[20] WIKIPEDIA. Python — Wikipedia, The Free Encyclopedia [online]. [cit. 2021-01-18].
Dostupné z: https://en.wikipedia.org/w/index.php?title=
Python_(programming_language)&oldid=1000914465.

[21] WIKIPEDIA. Scrum (software development) — Wikipedia, The Free Encyclopedia
[online]. [cit. 2021-11-01]. Dostupné z: http://en.wikipedia.org/w/index.php?title=
Scrum¥20 (software’,20development)&o01did=985930384.

[22] WIKIPEDIA. Waterfall model — Wikipedia, The Free Encyclopedia [online]. [cit.
2020-09-29]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=Waterfall’,20model&oldid=979592091.

[23] WIKIPEDIA. WebAssembly — Wikipedia, The Free Encyclopedia [online]. [cit.
2021-07-27]. Dostupné z:
http://en.wikipedia.org/w/index.php?title=WebAssembly&oldid=1035244878.

[24] WIKTIONARY. clean code — Wiktionary, The Free Dictionary [online]. [cit.
2020-09-30]. Dostupné z:
https://en.wiktionary.org/w/index.php?title=clean_code&oldid=59815596.

63

http://en.wikipedia.org/w/index.php?title=GitHub&oldid=981138144
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1000595969
https://en.wikipedia.org/w/index.php?title=Markdown&oldid=1000478104
https://sk.wikipedia.org/w/index.php?title=Microsoft_Windows&oldid=6925930
http://sk.wikipedia.org/w/index.php?title=.NET&oldid=6465183
http://en.wikipedia.org/w/index.php?title=Open%20source&oldid=979840260
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1000914465
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1000914465
http://en.wikipedia.org/w/index.php?title=Scrum%20(software%20development)&oldid=985930384
http://en.wikipedia.org/w/index.php?title=Scrum%20(software%20development)&oldid=985930384
http://en.wikipedia.org/w/index.php?title=Waterfall%20model&oldid=979592091
http://en.wikipedia.org/w/index.php?title=WebAssembly&oldid=1035244878
https://en.wiktionary.org/w/index.php?title=clean_code&oldid=59815596

Priloha A

Analyzované projekty

Open source projekty v sluzbe GitHub pouzité na analyzu v Casti 2.2.1.

Tabulka A.1: Analyzované projekty 1. cast
Repository
jwasham /coding-interview-university
donnemartin/system-design-primer
EbookFoundation/free-programming-books
danistefanovic/build-your-own-x
TheAlgorithms/Python
microsoft /PowerToys
trekhleb/javascript-algorithms
denoland/deno
9 flutter/flutter
10 sindresorhus/awesome
11 ytdl-org/youtube-dl
12 florinpopl7/app-ideas
13 vuejs/vue
14 CSSEGISandData/COVID-19
15 facebook/react
16 bradtraversy/design-resources-for-developers
17 ohmyzsh/ohmyzsh
18 microsoft/vscode
19 cli/cli
20 goldbergyoni/nodebestpractices
21 torvalds/linux
22 github/gitignore
23 ossu/computer-science
24 microsoft /playwright
25 huggingface/transformers
26 Genymobile/scrcpy
27 willmcgugan /rich
28 gothinkster /realworld
29 tiangolo/fastapi
30 PanJiaChen/vue-element-admin
31 jlevy/the-art-of-command-line

0O UL W

64

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Tabulka A.2: Analyzované projekty 2. cast

Repository

microsoft /terminal

GitSquared /edex-ui

evanw /esbuild

tensorflow /tensorflow
anuraghazra/github-readme-stats
vinta/awesome-python
freeCodeCamp/freeCodeCamp
ryanmcdermott /clean-code-javascript
angular/angular

golang/go
tuvtran/project-based-learning
30-seconds/30-seconds-of-code
electronicarts/CnC_ Remastered__Collection
excalidraw /excalidraw

beurtschipper /Depix

3blb/manim

airbnb /javascript

tannerlinsley /react-query
lydiahallie/javascript-questions

65

	Úvod
	Analýza
	Benefity programovacích konvencií
	Čistota kódu pri agilnom vývoji
	Kvalita kódu
	Problémy špinavého kódu
	Čistý kód
	Dopad programovacích konvencií na čistotu kódu
	Iné spôsoby zvyšovania čistoty kódu

	Používané programovacie konvencie
	Analýza programovacích konvencií v open source projektoch
	Analýza vybraných projektov
	Ďalšie zdroje programovacích konvencií

	Analýza technológií spravujúcich programovacie konvencie
	Markdown súbory
	Issue šablóny
	Wiki a externé stránky
	EditorConfig
	Iné technológie

	Návrh
	Požiadavky na vytváraný systém
	Porovnanie funkcií existujúcich technológií
	Uvažované scenáre použitia
	Špecifikácia požiadaviek

	Architektúra systému
	Trojvrstvová architektúra
	Prezentačná vrstva
	Logická vrstva
	Databázová vrstva

	Implementácia návrhu
	Implementačné prostredie
	Problémové časti implementácie
	Nasadenie

	Testovanie
	Demonštrácia
	Testovanie užívateľmi
	Výber účastníkov
	Priebeh
	Výsledky

	Záver
	Literatúra k práci
	Skratky
	Slovník
	Literatúra k slovníku
	Analyzované projekty

