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Abstract
Landmark detection is a frequent step during medical data analysis. More and more often,
these data are represented in the form of 3D models – an example is a 3D intraoral scan
of dentition. Deep neural networks are an appropriate way of detecting landmarks in
images. In terms of 3D data, the processing comes with high memory requirements and
computational time, which does not meet the needs of medical applications. In this work,
I propose a method that eliminates this problem and detects landmarks on the surface of
polygonal models of jaws. Different architectures of neural networks, all of which are based
on the U-Net architecture, are used in this work. The multi-view approach transforms
the task into a 2D domain, where the suggested networks detect landmarks by heatmap
regression from several viewpoints. Using a consensus method, final estimates from multiple
views are predicted in 3D space. This work introduces experiments with two consensus
methods – a centroid of predictions and a geometric approach based on the RANSAC
algorithm and least-squares fit. Experiments have shown that a combination of Attention
U-Net, 100 viewpoints, and RANSAC consensus method, is able to detect landmarks with
an error of 1.20 ± 1.81 mm, while 94.01% of landmarks is predicted with an error of less
than 2 mm.

Abstrakt
Detekcia významných bodov je častým krokom pri analýze medicínskych dát. Čoraz bežne-
jšie sú tieto dáta reprezentované vo forme 3D modelov, príkladom sú povrchové skeny zub-
ného oblúka pacienta. Hlboké neurónové siete sú vhodný spôsob, ako detekovať významné
body v obraze. V prípade 3D dát je však toto spracovanie časovo i pamäťovo náročné,
čo nevyhovuje požiadavkám kladeným medicínskymi aplikáciami. V tejto práci navrhujem
metódu, ktorá tento problém eliminuje a detekuje významné body na povchu polygonál-
nych modelov čeľustí. V metóde sú použité rôzne architektúry neurónových sietí, založené
na architektúre U-Net. Viacpohľadový prístup presúva spracovanie do 2D, kde navrhnuté
architektúry detekujú body regresiou tepelných máp z niekoľkých pohľadov. Pomocou kon-
senzus metódy je následne z týchto pohľadov určená konečná pozícia bodov v 3D priestore.
V práci sú predstavené experimenty s dvoma konsenzus metódami – stredná hodnota predik-
cií a geometrický prístup založený na algoritme RANSAC a metóde najmenších štvorcov.
Experimenty ukázali, že varianta kombinujúca Attention U-Net, 100 pohľadov a geomet-
rickú konsenzus metódu je schopná detekovať významné body s chybou 1.20 ± 1.81 mm,
pričom 94.01% predikcií dosahuje chybu menšiu ako 2 mm.
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Rozšírený abstrakt

Úvod

Detekcia významných bodov je častým krokom pri analýze medicínskych dát. So stále
zväčšujúcou sa dostupnosťou 3D zariadení sú medicínske dáta čoraz častejšie reprezentované
vo forme 3D modelov. Táto reprezentácia je vhodná napríklad v digitálnej ortodoncii, keďže
zubný oblúk pacienta naskenovaný vo forme povrchového modelu umožňuje jednoduchšiu
tvorbu ukážky chrupu po dokončení liečby. Pri spracovaní 3D modelov neurónovými sieťami
je však nutné počítať so zvýšením pamäťových nárokov a času potrebného na výpočet.
Príkladom je operácia konvolúcie, pri ktorej sa časová zložitosť pre 3D vstup zvýši na
𝒪(n6) zo zložitosti 𝒪(n4) pri 2D konvolúcii.

Cieľom tejto práce je detekovať významné body na povrchu 3D modelov ľudských čeľustí,
ako je možné vidieť na Obrázku 1. Ide o 32 bodov – dva pre každý zub na danej čeľusti.
Motiváciou je zautomatizovať prácu ortodontistov, keďže v súčasnej dobe musia v procese
tvorby modelu vyliečeného chrupu tieto body anotovať manuálne.
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(a) Vstup metódy (b) Príslušný výstup

Obrázok 1: Ukážka vstupu a príslušného výstupu metódy. Metóda načíta poly-
gonálny model ľudského chrupu, na ktorý automaticky nadetekuje významné body. Farba
jednotlivých bodov v obrázku (b) popisuje radiálnu chybu, s akou metóda daný bod nade-
tekovala.

Popis riešenia

Keďže navrhovaná metóda je založená na neurónových sieťach, jej kľúčovým prvkom je
dataset. V práci je použitý dataset ľudských čeľustí vo forme polygonálnych modelov. Tento
dataset bol poskytnutý bez skutočných pozícií bodov (“ground truths”), preto súčasťou tejto
práce je aj anotačný nástroj, ktorým je možné tieto hodnoty získať. Častým problémom
medicínskych dát je ich nedostatok. Podobne je to aj v tomto prípade, keďže na natréno-
vanie, validáciu a vyhodnotenie systému je k dispozícii 269 povrchových modelov zubných
oblúkov.

Navrhovaná metóda berie v úvahu oba aspekty, a to síce nedostatok dát a taktiež ich
formu (3D polygonálne modely), ktorá značne zvyšuje pamäťovú a časovú náročnosť. Preto
je zložená z troch primárnych častí:



• použitie viacpohľadových neurónových sietí [43],

• použitie architektúr neurónových sietí vychádzajúcich zo siete U-Net [35],

• nájdenie výsledného odhadu pozície z viacerých pohľadov vhodnou konsenzus metó-
dou.

Viacpohľadový prístup je jedným zo spôsobov spracovania 3D modelov neurónovými
sieťami. Model v scéne je vyhodnocovaný z niekoľkých pohľadov, vždy na 2D renderi scény.
Metóda nepracuje s renderom geometrie, ale v každom pohľade je model renderovaný vo
forme hĺbkovej mapy. Podľa použitého počtu pohľadov má metóda k dispozícii príslušný
počet predikcií každého významného bodu vo forme obrazových súradníc.

V práci porovnávam dve konsenzus metódy, ktoré z niekoľkých predikcií vypočítajú
jednu, finálnu pozíciu.

Prvá konsenzus metóda je založená na výpočte strednej hodnoty z daných predikcií.
Tento konsenzus vyžaduje prvotnú konverziu obrazových súradníc do svetových súradníc,
a to v každom z pohľadov. Pre dosiahnutie akceptovateľných presností bol stanovený pred-
poklad, ktorý očakáva predikcie zo všetkých pohľadov nasledujúce podobný vzor, čo zna-
mená, že neurónová sieť nebude produkovať veľké množstvo nepresných predikcií. Inak by
bola konečná predikcia ovplyvnená týmito chybnými predikciami.

Druhá konsenzus metóda je geometrická a využíva algoritmus RANSAC [11] v kom-
binácii s metódou najmenších štvorcov. Geometrická metóda v každom pohľade nevyžaduje
konvertovanie predikcie do svetových koordinátov. Predikcia je interpretovaná ako polpri-
amka smerujúca z aktuálnej pozície kamery, pretínajúca pohľadovú rovinu v predikovanom
bode. Táto skutočnosť výrazne urýchľuje detekciu významných bodov a zároveň prináša
zvýšenú presnosť, keďže táto konsenzus metóda pri výpočte finálnej predikcie zanedbáva
predikcie klasifikované ako extrémne prípady (tzv. “outliers”).

Ako bolo spomenuté vyššie, použité architektúry vychádzajú z architektúry U-Net.
V práci sú použité tri modifikácie. Prvá z nich, BatchNorm U-Net, je podobná pôvodnej
architektúre U-Net, no obsahuje navyše batch (dávkovú) normalizáciu medzi konvolučnou
a ReLU vrstvou. Ďalšie použité architektúry sú Attention U-Net [28] a Nested U-Net [50].

Všetky architektúry sú trénované na regresnej úlohe, kde sú obrazové koordináty výz-
namných bodov reprezentované ako 2D Gaussovské rozloženia so stredom v danom bode.
Ide teda o metódu regresie tepelných máp, ktorá sa pre tento typ úlohy ukázala ako najlepšia
a používa sa často [10, 29, 30, 31, 49].

Experimenty

Súčasťou práce je sada experimentov, ktorá vyhodnocuje presnosť detekcie. Vrámci exper-
imentov sú porovnané rôzne kombinácie navrhnutých architektúr a konsenzus metód. Tak-
tiež sú vykonané experimenty s rôznym počtom pohľadov potrebných pre viacpohľadový
prístup. Konkrétne ide o 9, 25 a 100 pohľadov, pričom bola stanovená hypotéza, že použitím
väčšieho počtu pohľadov bude dosiahnutých lepších výsledkov.

Z experimentov vyplynulo, že z navrhnutých architektúr dosahuje najlepšie výsledky At-
tention U-Net. V každej z kombinácií konsezus metód a počtu pohľadov zaznemanala táto
architektúra najmenšiu priemernú radiálnu chybu, ako aj mieru úspešnosti pri povolenej
chybe 2 mm. Následne som analyzoval rozdiely pri použitých konsenzus metódach. Ukázalo
sa, geometrický prístup dosahuje oveľa lepšie presnosti v porovnaní s priemerovaním predik-
cií. Spolu so skutočnosťou, že jeho vyhodnotenie spotrebuje menej výpočetného času som



prišiel k záveru, že táto konsenzus metóda je jednoznačne lepšia pre danú úlohu. Zvýšujúci
sa počet pohľadov zvyšuje presnosť predikcií, avšak iba pri použití geometrickej konsen-
zus metódy, čím sa čiastočne potvrdila hypotéza. So zvyšujúcim sa počtom pohľadov sa
generuje viac extrémnych prípadov, čo zhoršuje výsledky pri priemerovaní.

Najlepšiu celkovú presnosť teda dosahuje kombinácia Attention U-Net architektúry a ge-
ometrickej konsenzus metódy za použitia 100 pohľadov. Táto kombinácia dosahuje chyby
1.20± 1.81 mm, pričom miera úspešnosti predikcie významných bodov pri povolenej chybe
2 mm je 94.01%.

Súčasťou experimentov bolo taktiež pozorovanie, či je možné analýzou predikovaných
tepelných máp určiť prítomnosť významného bodu na povrchu polygonálneho modelu. Hy-
potézou bolo, že tepelná mapa bodu neležiaceho na povrchu 3D modelu bude obsahovať
veľmi nízku maximálnu hodnotu (blízku k nule). Naopak, ak je bod predikovaný s veľkou
istotou, príslušná tepelná mapa bude obsahovať maximálnu hodnotu blízku k hodnote 1,
keďže neurónové siete boli trénované regresiou tepelných máp s amplitúdou 1. Experi-
mantami bolo zistené, že čisto analýzou tepelných máp je možné klasifikovať prítomnosť
významných bodov s presnosťou 94.33%.

Zhrnutie výsledkov práce

V práci som navrhol spôsob, akým je možné detekovať významné body na povrchu 3D
modelov, ktoré majú charakter medicínskych dát a pochádzajú z obmedzeného datasetu.

Za týmto účelom som vyhodnotil rôzne varianty architektúry U-Net, zistil som, aký má
vplyv počet pohľadov pri viacpohľadovom prístupe na celkové výsledky a taktiež som ukázal
chovanie dvoch konsenzus metód – priemerovania predikcií a geometrickej metódy založenej
na algoritme RANSAC a metóde najmenších štvorcov. Navyše som vykonal analýzu max-
imálnych hodnôt tepelných máp, ktorej účelom bolo zistiť, či je táto informácia dostačujúca
na tvrdenie, že daný významný bod sa na povrchu modelu naozaj nachádza alebo nie.

Ďalšie kroky tejto práce môžu smerovať k zníženiu chyby detekcie. V tomto ohľade by
najviac pomohlo získať viac dát z menšinových tried. Ide konkrétne o povrchové modely
chrupov, ktoré obsahujú tretie stoličky, keďže v trénovacej sade bolo takýchto modelov málo
a tak je znižená celková presnosť metódy. Rovnako je možné vykonať dôkladnejšiu analýzu
tepelných máp za účelom detekcie prítomnosti významného bodu na povrchu modelu. Táto
analýza by mohla brať v úvahu počet predikcií, ktoré sú klasifikované ako extrémne, či fakt,
že významné body sa na povrchu modelu vyskytujú vždy v dvojiciach.
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Chapter 1

Introduction

Localization of landmarks plays a crucial role in many tasks related to image analysis
in medicine. Deep learning has demonstrated great success in this field, outperforming
conventional machine learning methods. With the widespread availability of accurate 3D
scanning devices, this task has moved into a 3D domain. This brings the possibility of
automation of clinical application tasks that operate on 3D models, such as in digital
orthodontics.

Taking into account the enormous increase in an input feature vector, a noticeable
challenge has emerged. The time of computation of such deep neural networks is not
suitable for a clinical application. 3D medical data analysis reckons with another challenge.
The limited amount of medical data is a common struggle in medical image processing.

This work aims to develop solution for a fully automated orthodontics landmark de-
tection on 3D jaw scans, which are represented as polygon meshes. The proposed method
considers the limitation of the dataset and the need for low computational time, which
is not standard in 3D deep learning. The method uses architecture designs that respect
the dataset limitation, all of which are based on the U-Net architecture. Additionally, the
task is trasfered into a 2D domain as it uses the multi-view CNN approach, where pro-
posed networks detect landmark by heatmap regression from several viewpoints. Finally,
the predictions from multiple views are used in a consensus method, where the final posi-
tions of landmarks in 3D space are detected. A comparison of two consensus methods is
presented in this work – a method that calculates the mean value of multiple predictions
and a geometric method based on the RANSAC algorithm and least-squares fit.

Conducted experiments have shown that the proposed method can detect orthodontics
landmarks on surface models with an error of 1.20 ± 1.81 mm while 94.01% of detected
landmarks achieve an error less than 2 mm. These results are obtained using the U-Net
with integrated attention gates, 100 viewpoints, and RANSAC consensus method.

Firstly, this work introduces the base knowledge of dental anatomy and orthodontics
in Chapter 2. The possible application of deep learning in digital orthodontics is then
presented. Chapter 3 then explores current approaches to landmark detection. The U-
Net architecture, its application in landmarking, and some significant modifications are
discussed in this chapter as well. Lastly, an overview of CNN methods that process 3D
data is depicted, focusing on the multi-view approach. The proposed solution for landmark
detection is explored in detail in Chapter 4. This chapter outlines the overall method and
closely describes its parts. The technologies used to implement this work are defined in
Chapter 5. The custom annotation tool is introduced in this chapter too. Lastly, the
evaluation of the proposed method can be found in Chapter 6.
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Chapter 2

Landmark Detection in
Orthodontics

To present the potential application of landmark detection in orthodontics, some basic
terminology used in teeth morphology and orthodontics must be acquainted. This chapter
firstly presents adequate vocabulary. Afterward, the malocclusion treatment process is
described with a focus on automatic landmark detection applications.

2.1 Basic Dental Anatomy of a Human
The teeth in the human mouth form an arranged set called dentition. People have two
dentition throughout life – the primary dentition during childhood and the secondary (also
called permanent) dentition throughout adulthood. Teeth located on the upper jaw (also
known as maxilla) form an arch called the maxillary arch. Analogically, teeth on the
lower jaw (called the mandible) form an arch called the mandibular arch. Furthermore,
each arch is divided into two halves resulting in the four-quadrant division of human den-
tition [33]. For the rest of this work, the secondary dentition only will be taken
into account.

2.1.1 Tooth Identification Systems

Figure 2.1 illustrates the division and naming of teeth. Such naming is unnecessarily com-
plex for routine clinic tasks and for storing in computer memory. To utilize a more sophis-
ticated and practical way of tooth identification, unified notations were stated. Dentists
use three main notation systems throughout the world.

The Universal Numbering System assigns numbers for teeth sequentially. Numbers
from range 1 to 32 are used to distinguish the teeth, starting from the 3rd right molar on
maxillary arch. The sequential pattern is followed until the 3rd left molar on maxillary arch,
which is assigned by number 16. A similar pattern can be observed on the mandibular arch,
starting from the 3rd left molar (number 17) until the 3rd right molar (number 32) [36].

Other notation systems are the World Dental Federation Notation and the Palmer
Notation System. The notation of each of these systems is summarized in Table 2.1. The
Universal Numbering System is used throughout the rest of this work to ensure
consistency.

4



Figure 2.1: Scheme of maxillary and mandibular permanent dentition. It shows
a complete dentition of a human adult. A complete secondary dentition contains 32 teeth,
sub-divided into four quadrants. Furthermore, the quadrants are divided into different
sub-groups. Adapted from [33].

2.1.2 Surfaces of the Teeth

Besides the tooth designation presented in Section 2.1.1, a reference to a more specific area
of a tooth is often inevitable. For this purpose, there exist five types of surface per tooth:

• Occlusal/incisal surface is the chewing surface of a tooth,

• Mesial surface is the surface towards the midline of the dentition,

• Distal surface is the surface further from the midline,

5



• Buccal/vestibular/facial surface is the surface facing the cheek of the oral cavity,

• Lingual/palatal surface is the surface facing the inside of the oral cavity.

Tooth World Dental Palmer Universal
Right Left Right Left Right Left

M
ax

ill
ar

y
ar

ch

Central incisor 11 21 1⌋ ⌊1 8 9
Lateral incisor 12 22 2⌋ ⌊2 7 10
Canine 13 23 3⌋ ⌊3 6 11
First premolar 14 24 4⌋ ⌊4 5 12
Second premolar 15 25 5⌋ ⌊5 4 13
First molar 16 26 6⌋ ⌊6 3 14
Second molar 17 27 7⌋ ⌊7 2 15
Third molar 18 28 8⌋ ⌊8 1 16

M
an

di
bu

la
r

ar
ch

Central incisor 41 31 1⌉ ⌈1 25 24
Lateral incisor 42 32 2⌉ ⌈2 26 23
Canine 43 33 3⌉ ⌈3 27 22
First premolar 44 34 4⌉ ⌈4 28 21
Second premolar 45 35 5⌉ ⌈5 29 20
First molar 46 36 6⌉ ⌈6 30 19
Second molar 47 37 7⌉ ⌈7 31 18
Third molar 48 38 8⌉ ⌈8 32 17

Table 2.1: Summary table of most used tooth notations. The World Dental Fed-
eration Notation, the Palmer Notation System, and the Universal Numbering System are
summarized.

Figure 2.2: Example of occlusal and incisal surface (surfaces colored by purple).
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Figure 2.3: Left picture shows mesial surface – areas with high green intensity. Right
picture shows distal surface – areas with high orange intensity.

Figure 2.4: Example of tongue facing surfaces (left) and cheek facing surfaces (right).

In Figures 2.2, 2.3, and 2.4, detailed images for each surface group on the left mandibular
quadrant are presented. The first mentioned figure shows two chewing surfaces – occlusal
surface on teeth 18–20 and incisal surface on teeth 21–24. Teeth 19 and 21 in Figure 2.3
are used to demonstrate the mesial and distal surface.

2.2 Orthodontics
An ideal occlusion is defined as an anatomically perfect arrangement of the teeth [40]. In
the wake of genetic predispositions and environmental factors, different types of anomalies
are observed in human dentition. A branch of dentistry called orthodontics concerns the
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diagnosis, interception, and treatment of such anomalies. An example of these anomalies
is malocclusion. It is deviance from an ideal occlusion. As this deviance is common [34],
there is a substantial desire for a modern and reliable treatment method.

2.2.1 Orthodontic Treatment

Malocclusion causes concerns related to health and quality of life, including speech quality,
appearance, and psychological well-being. Malocclusion treatment (Figure 2.5) brings the
benefits of aesthetics, speech, and dental health improvement.

The treatment process usually starts with the diagnosis during a routine dental ex-
amination. According to the type and severity, the malocclusion class is determined, and
a proper treatment process is chosen. When a patient had been diagnosed with malocclu-
sion, a model of his future ideal occlusion is created, which is how the treatment result is
communicated [6].

Figure 2.5: Malocclusion treatment in process. The top image presents the dentition
of a 12-year-old with a malocclusion. The bottom left image shows the treatment with the
focus on maxillary arch alignment. The bottom right image presents the results of the
malocclusion treatment on both dentition. Adapted from [40], edited.

2.2.2 Digital Orthodontics

Digitization has a significant impact on a variety of aspects of people’s lives, including
orthodontics. Digital orthodontics simplifies the malocclusion treatment and brings a new,
faster communication with the patient [14].

With the rise of digital intraoral devices allowing 3D model capture, the orthodontic
office workflow has simplified. As Taneva et al. present in their work [46]: “In-office
chairside or send to the lab, the digital models give the flexible options for designing and
manufacturing a large range of dental restorations, implants, study models, and orthodontic
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appliances such as customized indirect brackets, archwires, expanders, aligners, retainers,
etc.”

As described in [32], the main advantages of digital models in orthodontics are reduced
storage, effortless transfer and access, and simple integration into a patient’s digital health
record. Another remarkable advantage is the automation of routine tasks where machine
learning comes forward. Machine learning systems provide good decision support that helps
orthodontists work more efficiently with eliminated subjectivity and reduced variability [19].

2.3 Landmarks in Digital Orthodontics
Besides the aforementioned decision support, machine learning provides techniques for ac-
curate landmark detection, more in Chapter 3. As shown in Figure 2.6, the digital workflow
of an appliance creation is composed of four steps:

1. Patient’s maxillary or mandibular arch is scanned into a 3D model.

2. The appliance is designed. This step requires manual annotation of two
landmarks on each tooth. It is the most time-consuming step of digital workflow,
thus offers tasks to be automatized.

3. 3D printing of designed appliance.

4. Delivery of appliance to patient.

Traditional workflow Digital workflow

Alginate
or PVS

impression
Plaster
model

Send to
lab

Design and
casting

Manual
finishReceive from

lab

Digital
scan

Applience
design

3D printing

Appliance
delivery

Appliance
delivery

Figure 2.6: Traditional versus digital workflow in the orthodontic office. The
digital workflow consists of a lower number of steps as the appliance design is modeled using
an orthodontics software. The digital appliance saves a lot of time and space. Adapted
from [46], edited.

Let’s elaborate on the design process. In the existing orthodontics planning software,
each tooth must be first annotated with two landmarks to form a model of ideal occlusion.
These landmarks define the mesial and distal location of each tooth and are
placed on the occlusal surface on molars and premolars and the incisal surface
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on canines and incisors, as close to the cheek-facing surfaces as possible. In other
words, 32 landmarks must be placed on one arch in case of full dentition. Figure 2.7 shows
an example of a professionally annotated model of the mandibular arch.

This annotation must be done precisely as its quality reflects in further automatic
teeth segmentation. It is a time-consuming task, which must be done manually by the or-
thodontist. This substep of the digital workflow could be automatized by the deep learning
methods for accurate landmark detection.

After the annotation is done, individual teeth are segmented. Manual post-processing
is usually necessary due to segmentation errors. Each tooth’s position in the scene can be
individually changed, so the model of ideal occlusion is created [37].

(a) Annotation by an orthodontist (b) Resulting teeth segmentation

Figure 2.7: Depiction of a professionally annotated model and its further pro-
cessing. Picture (a) shows a 3D model annotated by an orthodontist during the design
process, and the post-processed teeth segmentation is depicted in the picture (b). Each
tooth has two landmarks placed on the incisal and occlusal surfaces. They define the mesial
and distal tooth location. This information is subsequently used in the aforementioned seg-
mentation. Note that the resulting segmentation is here just for illustration of further
landmark placement usage. It is not a point of interest of this work. Adapted from [37],
edited.
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Chapter 3

Overview of the Current State

Image landmark detection has been a fundamental step in many computer vision tasks for
years. One of these tasks is the detection of anatomical landmarks, for example, the de-
tection of cephalometric landmarks in the cephalometric analysis [21, 49] or the detection
of landmarks in X-Rays of the pelvis [3] or cardiac CTA scans [27]. The usage of accurate
automatic landmark prediction in the medical field is simply wide-ranging, which moti-
vated people to solve these problems years before the widespread popularity of deep neural
networks in 2015 [22].

Early studies in this area focused primarly on the classification of bounding boxes con-
taining landmarks [18] or voxels’ classification [8, 25]. These tasks typically exploit only
the local image information and used conventional machine learning approaches.

Rather than focusing on a single voxel of interest, the classification and determination
of the volume of interest were combined to reduce computational costs [23]. Furthermore,
classification was not the only way of detecting landmarks. Regression was used to predict
landmark points [12, 15] as well.

Hough forests were used for landmark detection as they combined regression and classifi-
cation. It was shown [9] that this combination leads to better results compared to regression
only.

As convolutional neural networks (CNNs) gained in popularity, more and more scientific
papers concerning their usage in landmark detection emerged. Some of these methods
detected the landmark position directly from its coordinates, regressing its 𝑥 and 𝑦 values.
For example, Sun et al. [45] adopted cascaded convolutional neural networks for facial
point detection. Lv et al. [24] proposed a regression in a two-stage manner, still locating
landmarks directly.

This chapter describes proven methods that use convolutional networks to detect land-
marks and keypoints. The most significant one is the regression of heatmaps. Afterward,
the U-Net network is presented together with its usage in landmarking and possible modifi-
cations. Lastly, a summary of the approaches of 3D data processing by CNNs is presented,
with the focus on the multi-view approach.

3.1 Heatmaps in Landmarking
Pfister et al. [31] worked on a model that regresses human joint positions. Instead of directly
regressing the (𝑥, 𝑦) joint position, they regressed a joint position’s heatmap. During the
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training, the ground truth labels are transformed into heatmaps by placing a Gaussian with
fixed variance at each of the joint coordinates. This can be seen in Figure 3.1.

Figure 3.1: Landmarks representation by heatmaps. The network learns on
a heatmap with a synthesized Gaussian with a fixed variance centered at the ground truth
joint position for each of 𝑘 joints. Adapted from [31].

They denoted the training example as a tuple (X, y), where X is the input image and
y stands for the coordinates of 𝑘 joints located in image X. Furthermore, the training data
were denoted as 𝑁 = {X, y} and the network regressor as 𝜑. Then, the training objective
is the estimation of the network weights 𝜆:

argmin
𝜆

∑︁
(𝑋,𝑦)∈𝑁

∑︁
𝑖,𝑗,𝑘

‖𝐺𝑖,𝑗,𝑘(𝑦𝑘)− 𝜑𝑖,𝑗,𝑘(𝑋,𝜆)‖2 (3.1)

where 𝐺𝑖,𝑗,𝑘(𝑦𝑖) =
1

2𝜋𝜎2 𝑒
−[(𝑦1𝑘−𝑖)2+(𝑦2𝑘−𝑗)2]/2𝜎2 is a Gaussian centered at joint 𝑦𝑘 with fixed 𝜎.

Using this approach, the last convolutional layer’s output is a heatmap represented as
a fixed-size 𝑖 × 𝑗 × 𝑘-dimensional matrix.

On top of the appliance of spatial fusion layers and optical flow, they discussed the
benefits of regressing a heatmap rather than (𝑥, 𝑦) coordinates directly. They concluded
that the benefits are twofold: (i) the process of network training can be visualized in such
a way that one can understand the network learning failures, and (ii) the network output can
acquire confidence at multiple spatial locations. The incorrect ones are slowly suppressed
later in the training process. In contrast, regressing the (𝑥, 𝑦) coordinates directly, the
network would have a lower loss only if it predicts the coordinate correctly, even if it was
“growing confidence” in the correct position.

This approach seemed alluring for people in the medical image processing community.
Inspired by this method, Payer et al. [30] presented multiple architectures that detect
keypoints in X-Ray images of hands and 3D hand MR scans. They affirmed that it is
possible to achieve state-of-the-art localization performance in both 2D and 3D domains
while dealing with medical data shortage by regressing heatmaps. Outline of thier method
is depicted in Figure 3.2.
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Figure 3.2: Overall framework for hand keypoints detection. In this work, the
heatmap regression was used to predict landmarks on hands. In the optimization step,
the local appearance of a landmark is combined with the spatial configuration of all other
landmarks. This minimizes ambiguities caused by similarly-looking landmarks, e.g., finger-
prints. Adapted from [30].

3.2 U-Net Network
U-Net network [35] was initially presented as an architecture for biomedical image segmen-
tation. Yielding a u-shaped design, it can output a class label assigned to each pixel of the
input image.

3.2.1 Network Architecture

The main idea of this architecture is its division into two parts, as shown in Figure 3.3: (i) the
contracting path (left side), also called the encoder or the analysis path with the typical
architecture of a convolutional network and (ii) the expansive path (right side), also called
the decoder or the synthesis path. The contracting path consists of repeated blocks of
two 3x3 unpadded convolutions, each followed by a rectified linear unit activation func-
tion (ReLU) [26] and a 2x2 max pooling for downsampling. Each downsampling step
doubles the number of feature channels. On the contrary, the expansive path performs the
upsampling and a 2x2 “up-convolution”, that halves the number of feature channels. A cor-
respondingly cropped feature map from the left part is concatenated at each level, followed
by two 3x3 convolutions and a ReLU. Finally, a 1x1 convolution maps 64 feature channels
into the desired number of classes. This original U-Net architecture with an almost sym-
metrical u-like style demonstrated excellent segmentation results on multiple segmentation
tasks.

The original U-Net, however, is not the only architecture of its type. The immense
growth of U-Net papers since 2017 has brought many modifications such as the Nested U-
Net [50], Attention U-Net [28], or Residual U-Net [1]. The most important modifications,
along with hundreds of examples of U-Net usages, are summarized in [39].

3.2.2 U-Net for Landmark Detection

In the wake of the success in segmentation tasks, the U-Net with different modifications
found its usage in landmark detection. As presented in [30], this model design performed
very well in combination with the heatmap regression approach. The main idea is to use
the encoder-decoder approach to get a heatmap for each landmark of the exact resolution
as the input image.
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Figure 3.3: U-Net architecture. The U-Net is an encoder-decoder architecture initially
presented for biomedical image segmentation. The number on top of the boxes indicates
corresponding feature channels. The x, y size is provided at the bottom-left corner. An in-
put image of size 572× 572 is downsampled to 32× 32 image. The decoder part enlarges the
image to produce a segmentation map of size 388 × 388. Introduced by Ronneberger et al.
in [35].

Figure 3.4: Overall structure of global and regional stage approach using U-
Net. (a) Global stage. During the global stage, coarse attention is created and later used
as a guidance in the local stage. (b) Local stage with attention-guide. This stage uses
a patch-based U-Net model. Guided by the coarse attention from the Global stage, local
stage searches in the proposal regions, regressing the heatmap patches in a high resolution.
(c) Modified U-Net structure for both global and local stages. Adapted from [49].
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To design a fully symmetric architecture, they used fixed linear upsampling kernels
in the decoder part. Zhong et al. [49] used U-Net in a two-staged framework to detect
2D cephalometric landmarks. The first, “global stage” regresses the global heatmaps. Con-
sequently, the information from the global stage is used in the patch-based local model. See
Figure 3.4 for the illustration of the overall structure of their system.

3.2.3 Attention U-Net

One of the U-Net modifications is the Attention U-Net proposed in [28]. This architecture
extends the original U-Net by the usage of Attention gates (AGs). The motivation for the
AGs integration is an increase in accuracy. AGs progressively suppress feature responses
in irrelevant regions without any additional supervision. In the U-Net model, they are
incorporated to highlight salient features passed through the skip connections. Information
from coarse-scale is then used in gating to disambiguate noisy responses in skip connec-
tions. Figure 3.5 shows the Attention U-Net model in a block diagram. It also depicts the
schematic of the attention gate.

H
1
 x

 W
1
 x

 D
1

1

input
image

file

H
1
 x

 W
1
 x

 D
1

F1

H
2
 x

 W
2
 x

 D
2

F1

H
2
 x

 W
2
 x

 D
2

F2

H
3
 x

 W
3
 x

 D
3

F2

H
3
 x

 W
3
 x

 D
3

F3

H
4
 x

 W
4
 x

 D
4

F3

H
4
 x

 W
4
 x

 D
4

F4

H
3
 x

 W
3
 x

 D
3

F3

H
3
 x

 W
3
 x

 D
3

F2

H
3
 x

 W
3
 x

 D
3

F3
H

2
 x

 W
2
 x

 D
2

F2

H
2
 x

 W
2
 x

 D
2

F1

H
2
 x

 W
2
 x

 D
2

F2

H
1
 x

 W
1
 x

 D
1

F1

H
1
 x

 W
1
 x

 D
1

NC

H
1
 x

 W
1
 x

 D
1

F1

output
NC

segmentation
maps

conv 3x3, ReLU (2x)

skip connection

max pool 2x2

gating signal (query)

Attention Gate

upsampling 2x2

(a)

Wg = 1 x 1 x 1g

Wx = 1 x 1 x 1xl

ReLU (σ1)

ψ = 1 x 1 x 1

Sigmoid (σ1) Resampler

Hx x Wx x Dx

α xl

Fint x Hg Wg Dg Hg Wg Dg

Fl x Hx x Wx x Dx

(b)

Figure 3.5: (a) A block diagram of the Attention U-Net model. The input image
is downsampled by a factor of 2 on each level of the encoder part. Attention gates filter the
skip connection features. (b) Attention gate. Input features 𝑥𝑙 are scaled with attention
coefficients 𝛼. 𝛼 identify salient image regions and prune feature responses to preserve the
relevant activations only. Gating signal 𝑔 is collected from the coarser scale. The output of
an AG is the product of input feature maps and attention coefficients. Originally presented
in [28].
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3.2.4 Nested U-Net

Zhou et al. [50] presented a U-Net modification called Nested U-Net, where they redesigned
the skip pathways. The encoder and decoder parts of the network are connected through
a series of nested, dense skip pathways. The aim is to reduce the semantic gap between
the feature maps of the encoder and the sub-networks. Authors argue that to capture
the fine-grained details of the foreground objects more effectively, the gradual enrichment
of high-resolution feature maps from the encoder prior to fusion with the corresponding
semantically rich feature maps from the decoder part should be ensured. Additionally, they
state that the optimizer would deal with an easier learning task, as the concatenated feature
maps are semantically similar. Figure 3.6 shows the architecture design and how it extends
the original U-Net.
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(b)

Figure 3.6: (a) A diagram of the Nested U-Net architecture. Purple indicates the
Original U-Net structure. Green and blue components distinguish the Nested U-Net from
the Original U-Net. The semantic gap between the encoder and decoder is bridged before
the fusion. This can be seen, for instance, at the semantic gap between (x0,0, x1,3), which is
bridged by a dense convolution block with three convolution layers. (b) Detailed analysis
of the first skip pathway. Operation H represents the concatenation. Presented initially
in [50].
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Moreover, they propose to use deep supervision [20] in Nested U-Nets. It enables model
pruning [4] that brings speed gain as it reduces network parameters. Thanks to the nested
skip pathways, the full resolution feature maps are generated at multiple semantic levels:
x0,j, j ∈ {1, 2, 3, 4}. They are amenable to deep supervision. The model pruning process
and the resulting performance after applying different pruning levels are in detail described
in the paper [50].

3.3 Processing of 3D Data by Deep Neural Networks
Although the extension of deep neural network operations such as convolution from 2D to
3D domain seems natural, the additional computational complexity introduces notable
challenges. Having volumetric data (for example, voxel models) or 3D surface data (for
example, represented as polygon meshes) as an input to deep neural networks has a consid-
erable drawback in computational time and memory requirements. With the advances in
low-cost 3D acquisition devices, analyzing 3D shapes for tasks like classification, segmenta-
tion, or landmark detection became critical in many fields. A key technique is image feature
extraction, where CNNs demonstrate their advantages. Several approaches were presented
to address the non-trivial task of the appliance of CNN techniques on 3D models.

3.3.1 Voxel-based Approach

Voxel-based approaches model the input 3D data as a function sampled on voxels. Addi-
tionally, they define a 3D CNN over voxels for shape analysis. Wu et al. [48] introduce 3D
ShapeNets – a CNN for object recognition and shape completion. This approach is limited
to low resolutions due to the high memory and computational cost. A 3D voxel volume
in this work is limited to resolution of 303, which has almost the same dimension as a 2D
image of a resolution of 165 × 165. This method is full-voxel-based.

Rather than applying the CNN operations on the whole voxel volume, Graham et al. [13]
propose the 3D sparse CNNs. These CNNs apply operations on active voxels only. This
approach is efficient for architectures with a low number of convolution layers but becomes
less efficient for deeper networks.

Built upon the octree representation of 3D shapes, Wang et al. [47] present Octree-
based Convolutional Neural Networks (O-CNNs). The motivation behind their work is to
decrease the computational time and memory requirements of 3D voxel volumes processing.
The key idea is to present the 3D shapes with octrees and perform 3D CNN operations only
on the sparse octants occupied by the boundary surfaces. They also design a novel octree
structure that stores the features and associated octant information into the GPU memory
to support all 3D CNN operations on GPU. Compared to the full-voxel-based approach,
O-CNN can process voxel volumes of size 2563 with significantly less memory occupation
in much less time.

3.3.2 Manifold-based Approach

Manifold-based methods perform CNN operations over the features extracted from the
geometry of a 3D mesh. Some of these methods convert the 3D surfaces into a geometry
image so that standard CNNs can be directly used to learn 3D shapes [41]. Furthermore,
a group of techniques called Geometric deep learning was introduced to generalize deep
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learning to non-Euclidean domains such as graphs and manifolds. The concept of Geometric
deep learning is explained in [5].

3.3.3 Multi-view Approach

An alternative way of 3D data processing by neural networks is a multi-view approach.
Obtaining state-of-the-art results on 3D classification, Su et al. [43] presented the multi-
view CNN idea. It is relatively straightforward and consists of three main steps:

1. Render a 3D shape into several images using varying camera extrinsics.

2. Extract features from each acquired view.

3. Process features from different viewpoints in a way suitable for a given task. In [43],
a pooling layer followed by fully connected layers was used to get class predictions,
as shown in Figure 3.7.

Figure 3.7: Outline of the method of multi-view 3D shape recognition. 3D shape
is rendered from 12 different views and passed to CNN1 modules. Outputs are pooled and
passed through CNN2 to obtain output class predictions. Adapted from [43].

Multi-view-based methods can process high-resolution 2D inputs, which can be rendered
either from volumetric or surface 3D data. This study, however, leaves many questions unan-
swered. It is still unclear how to properly choose the viewpoint number and distribution,
so it is always necessary to verify their fit for the given new task.

3.3.4 Applying a Multi-view Approach for Landmarking

Paulsen et al. [29] proposed a multi-view approach to identify feature points on facial
surfaces. They have decided to use more views for image rendering, specifically 100. As
the dataset is not purely medical, they chose a modified stacked hourglass architecture (see
Figure 3.8) rather than the U-Net. They created several types of rendered images from
each of the camera’s positions to run their experiments. Besides the geometry rendering
and texture surface rendering (RGB), OpenGL z-buffer was used to compute the depth
map. Authors discussed the popularity of depth maps in machine learning, as it is often
used as the input to the system, for example, when depth sensors are used to obtain data.
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Additionally, the curvature was rendered and eventually combined with a depth map to
scale down the localization error.

This paper’s main contribution is the demonstration of the rendering pipeline, which
offers an alternative way to handle complicated landmark placement on 3D surfaces. They
discussed multiple geometry derivatives and experimented with their combinations to bring
state-of-the-art results in feature point detection on facial 3D scans while decreasing the
prohibitive GPU memory requirements needed for true 3D processing.

Figure 3.8: Network design for facial landmark localization presented in [29]. No-
tice that the input channels vary as the model works with different rendering configurations
(RGB surface, curvature, geometry, or depth map). Adapted from [29].

Additionally, they proposed a consensus method to find the final estimate, which com-
bines least squares fit and RANdom SAmple Consensus (RANSAC) [11]. For each land-
mark, 𝑁 rays in 3-space are the outputs of the proposed method. To robustly estimate
a 3D point from several potentially noisy rays, they defined each ray by its origin 𝑎𝑖 and
a unit direction vector 𝑛𝑖. Then, the sum of squared distances from a point 𝑝 is calculated
as follows: ∑︁

𝑖

𝑑2𝑖 =
∑︁
𝑖

[(𝑝− 𝑎𝑖)
𝑇 (𝑝− 𝑎𝑖)− [(𝑝− 𝑎𝑖)

𝑇𝑛𝑖]
2]. (3.2)

It is necessary to differentiate this equation with respect to 𝑝. It brings the solution
𝑝 = 𝑆+𝐶, where 𝑆+ denotes the pseudo-inverse of 𝑆. In this case, 𝑆 =

∑︀
𝑖(𝑛𝑖𝑛

𝑇
𝑖 − 𝐼)

and 𝐶 =
∑︀

𝑖(𝑛𝑖𝑛
𝑇
𝑖 − 𝐼)𝑎𝑖. RANSAC procedure initially estimates the value of 𝑝 by three

randomly chosen rays. The residual is computed as the sum of squared distances (see Equa-
tion 3.2) from 𝑝 to the included rays, and the iterative RANSAC algorithm then performs
𝐼 iterations. In each of these iterations, the number of inliers and outliers is calculated,
respecting a predefined threshold 𝜏 . For further reading about the RANSAC algorithm,
Section 4.5.2 describes its usage in this work. Even more details can be found in [11, 16].
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Chapter 4

Proposed Solution for
Orthodontics Landmark Detection
on 3D Models

This chapter introduces the proposed solution for the detection of landmarks on the surface
of polygonal models. At first, the task definition is presented. Afterward, the dataset of
dentition used in this work is described. Later in this chapter, the overall method outline
is introduced. The most essential concepts of the method are described in detail: the
multi-view rendering pipeline, the design of proposed CNNs, and consensus methods.

4.1 Task Definition and Dataset
The main objective of this task is to automate the landmark placement in digital orthodon-
tics. The goal is to detect points on specific surfaces of teeth (the desired positions of
landmarks were discussed in Section 2.3). Figure 4.1 illustrates an example of an input
surface model with corresponding annotated landmarks.

This task has two noteworthy and — in some way — contrary elements: (i) it is intended
to be used as a part of a clinical application, thus, the computational time and memory
requirements should be as low as possible, and (ii) the input data are represented in the
form of 3D polygonal models. This representation yields significantly more information than
a 2D image but has some drawbacks when processed in convolutional neural networks, as
discussed in Section 3.3. Additionally, neural networks usually benefit from a large number
of observed data. Limitations of the dataset of medical data must be taken into account.

I find it important to stress the difference between keypoint1 and landmark detection,
as their meanings are sometimes interchanged. Keypoint is an unlabeled point without any
further meaning. It is described by its position in the world space2 only. Landmarks have
additional semantics. Each detected landmark is associated with a label. It always depends
on the task that is solved, whether to use keypoint or landmark detection. See Figure 4.3
for an illustration of the distinction.

1also called interest points or feature points
2the world space position is a keypoint descriptor specific for the 3D scene, it might be expressed differ-

ently in other setups
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(a) Example of an input polygonal model (b) Result of the landmark detection

Figure 4.1: Illustration of an input and corresponding output. The method loads
a surface model and finds the positions of the orthodontics landmarks, as suggested in
Section 2.3.

4.1.1 Proposed Multi-view Landmark Detection Approach

To accomplish the goal of this task, a method that combines multiple state-of-the-art ap-
proaches is presented. This method works out the high computational time of 3D data
CNN processing and data shortage on several levels:

1. Simplification of the task of 3D landmark detection by moving to 2D space
2D images are rendered and used per consequens as inputs to neural networks to
decrease the computational time. Networks are trained and evaluated on depth maps
rather than on model geometry.

2. Regressing heatmaps rather than (𝑥, 𝑦) coordinates directly
This approach is widely used in both medical and non-medical fields. Its benefits are
elaborated in Section 3.1.

3. Usage of model designs that respect dataset limitation
The U-Net architecture (see Section 3.2) was designed to bring satisfying results even
on small medical datasets. Its offshoots are used to regress heatmaps with a Gaussian
placed on ground truth landmark positions.

4. Making use of 3D information by applying the multi-view approach
Dropping the third dimension data completely might be highly disadvantageous. The
model is observed in the scene from multiple views. In comparison to a single view,
this method should bring more accurate predictions. A similar approach to the one
discussed in Section 3.3.3 is presented.

5. Finding a consensus method that predicts the positions with the highest
accuracy
Multi-view approach comes with an additional task. If the model is observed from
N views, there are logically N predicted positions. It is necessary to find a final
estimate by applying a consensus on acquired predictions.
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4.1.2 Dataset

In this work, 491 polygonal models of human dentition in STL3 format were provided.4
Both maxillary and mandibular dentition occur within the dataset. These dentition scans
were obtained from different patients, bringing significant variation among the models,
primarily due to the frequent teeth missing. Neither public datasets of similar 3D models
of dentition nor the landmark ground truths are available. The ground truth annotation
was done by myself with a custom annotation tool, which will be presented in Section 5.3.
The process of landmarking was done without any professional orthodontist supervision,
but it was shown to me by the thesis supervisor.

Figure 4.2: Typical cases of discarded models. Discarded polygons are typically
castings of teeth or contain significant noise from the scanning process. Such deflexions
would confuse the network as they have no teeth surfaces for proper landmark placement.

Some of the provided models were discarded as the dentition was partially or entirely
missing (see Figure 4.2 for examples), resulting in 269 polygonal models suitable for
training, evaluation, and testing.

Those models, however, are not in a feasible format to serve as an input to the proposed
method. The method is designed to process 2D data, as discussed in Section 4.1. With

3https://docs.fileformat.com/cad/stl/
4The dataset used in this work was provided by TESCAN 3DIM, s.r.o.
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the custom annotation tool, a dataset of depth maps with corresponding ground truths is
created. In terms of dataset preparation, the multi-view rendering pipeline serves as an
additional augmentation tool that significantly increases the dataset. With the number of
views set to 100 and with 269 polygonal models, 26 900 depth maps are available to train
and evaluate the system.

Landmarking

Keypoint detection Labeling

Figure 4.3: Difference between keypoint and landmark detection. The landmark-
ing process can be sub-split into keypoint detection and labeling. In this work, landmarks
are detected, as their label is vital for further processing.

4.2 Method Outline
The detailed outline of the proposed method is depicted in Figure 4.4. The rendering
pipeline (Section 4.3) is used to obtain N depth maps from N different views. The num-
ber of views is chosen experimentally and serves as a possible hyperparameter for exper-
imenting with the system. To illustrate — as discussed in Section 3.3 — in the work of
Su et al. [43], 12 views were used. Furthermore, in [29], multiple experiments with multiple
(25, 50, 75, and 100) N values were conducted.

The predictions from the network are 32 heatmaps representing the coordinate estimates
for each landmark. It is necessary to calculate a display coordinate (𝑥, 𝑦) in IR2 from each
of the heatmaps. Assuming the highest confidence in the point where the maximum value
occurs, the Non-Maximum Suppression (NMS) algorithm is used to find that position. The
aforementioned (𝑥, 𝑦) values are the landmark’s display coordinates, as the network is
trained to regress the converted world coordinates to display coordinates (Section 5.3).

The (𝑥, 𝑦) display coordinates of one view are not the final outcome. It is indispensable
to propagate the information into a world coordinate system IR3 and find a final estimate
by combining outputs from several camera views.

The information propagation to IR3 is done by coordinate conversion. With the known
position of the center of projection, the prediction for a single view of one landmark can be
interpreted as (i) a ray defined by the origin in the corresponding center of projection and
the point on the view plane at detected display coordinates or (ii) simply a point in the
3D scene, i.e., the converted display coordinate into 3-space.

However, this still does not cover the multi-view approach. Two consensus methods are
used and presented in Section 4.5, one for each of the aforementioned interpretations. These
methods find the estimation among multiple predictions. The last necessary step is to find
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Method outline

Multi-view rendering pipeline

Polygon in .stl format

View 1 ...  View 1 < n < N  ...          View N

CNN CNN CNN...                            ... 

...                            ... 

...}

32

...}

32

...}

32

...                            ... 

NMS
+

2D ↦ 3D

NMS
+

2D ↦ 3D...                            ... 

Predictions: points/rays

Consensus method
+

Octree based space-division search

Result: predicted landmarks in 3-space

NMS
+

2D ↦ 3D

Figure 4.4: Overall method outline. The evaluated 3D model serves as an input
to the multi-view rendering pipeline. According to the number of views, a corresponding
number of depth maps is evaluated by CNN modules. The extracted display coordinates
of landmarks in each view are used in the consensus method to get a single estimate.

the closest point on the surface of the polygonal model, as the consensus output does not
guarantee the placement on the model surface. An octree data structure contains a recur-
sively sub-divided target polygonal model. Each node stores an explicit 3D point, which
is the center of a given subdivision. In the leaf nodes, individual surfaces of the polygonal
model are stored. With such representation, the octree-based space-division search algo-
rithm can be used to estimate the final output. The closest point on the surface of the
polygonal model to the consensus output is considered to be the final estimate.

4.3 Multi-view Rendering Pipeline
I defined the task as a 2D regression of heatmaps (see Section 3.1) that respects the multi-
view approach. To accomplish that, it is necessary to render the 3D object into a suitable
format. I have decided not to render the object geometry directly but to use the given
object’s depth maps instead. From the view of a human, object geometry contains more
information about the rendered model – it is more obvious where to place a landmark. This
is not necessarily the case of neural networks – they are able to obtain more information
from the depth value in each pixel. The type of rendering might vary according to the task
that is solved. A similar approach was chosen in the work described in Section 3.3.4, but
they used other geometry derivatives as well.

To meet the goal of multiple depth map rendering, a multi-view rendering pipeline was
designed. It is depicted in Figure 4.5. The rendering pipeline is used in the annotation tool
as well as during the evaluation of unseen polygons.
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The model is loaded into the scene and must be placed within the viewing frustum
in a position that meets the needs of the solved task. Afterward, the model is observed
from several views. Different observations are obtained by moving the camera in the scene.
Finally, the scene is rendered in each of the views. The number of observations should
always be cross-validated for the given task. The same applies for the camera positions.

Rendering pipeline

Initial model translation and rotation

Various camera positions

Output: N rendered depth maps

Figure 4.5: Outline of the multi-view rendering pipeline. After the initial appli-
cation of affine transformations, the z-buffer is used to calculate the depth value of each
pixel of the observed scene to form a depth map. Furthermore, this depth map rendering
is done with multiple (N ) camera extrinsics to follow the multi-view approach. Therefore,
the output of the rendering pipeline is N depth maps from N different views.

4.4 Proposed Designs of CNN Models
To get the landmark predictions, three neural network architectures were trained. Each of
these networks is trained on the depth maps generated by the proposed annotation tool.
The network does not distinguish between mandibular and maxillary dentition. In the
latter case, the model is rotated to be in the requisite position. The first proposed network
is a BatchNorm U-Net. This network has a similar design as the original U-Net, which
was discussed in Section 3.2. I applied additional batch normalization layers between the
convolutional and ReLU activation layer. Additionally, the input size to the network is
128 × 128, as I was limited by the computational power. I used padding to prevent the loss
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of border pixels. Thus, the exact dimensions (not the size of features) as the input image
are produced. The number of output features is changed, so it corresponds to the number
of detected landmarks. Figure 4.6 shows the modifications applied to the original U-Net.
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Figure 4.6: BatchNorm U-Net used in this work. Comparing with the original U-
Net [35], the dimensions of the input image are changed. Padding is used to produce feature
maps of the exact dimensions as the input image. Batch normalization is inserted between
the convolution and activation layers to speed up the training and reduce generalization
error.

The second trained network is the Attention U-Net, which integrates the Atten-
tion gates into the original U-Net. Detailed descriptions, as well as the architecture design,
can be found in Section 3.2.3. The input image size is 128 × 128, and the number of output
feature channels is 32.

The third trained network is the Nested U-Net. This network design is described
in Section 3.2.4. The input size is again set to 128 × 128, and the number of output
channels is 32. I assume that reducing the semantic gap between the encoder and the
sub-networks brings more accurate predictions, even on the heatmap regression task. No
network pruning was integrated. The architecture of the Attention U-Net and the Nested
U-Net was desgined according to the original papers [28, 50], and the implementation is
also inspired by [2], where authors shared their source files online.5

4.5 Consensus Methods
One of the critical steps in a multi-view approach is to find a final estimate from all cal-
culated predictions. In this work, the prediction can be interpreted either as a point in
the world coordinate system or as a ray passing through the center of projection and the

5https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets
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predicted display coordinate. As Figure 4.7 indicates, point 𝐿 represents the point in-
terpretation, and

−−→
𝐶𝐿′ represents the ray interpretation in the world coordinate system.

To compere these two representations and how they are used in consensus methods, see
Figure 4.9.

C

Viewing frustum 

L(xw, yw, zw)

L'(xd, yd)

View plane

Figure 4.7: The depiction of a polygonal model in a scene. The model is placed
within the viewing frustum. 𝐿 stands for a point representing a randomly selected keypoint
on a polygonal model, located at 𝑥𝑤, 𝑦𝑤, 𝑧𝑤 within the world coordinate system IR3. When
the depth map is rendered, point 𝐿′ is calculated. It represents the corresponding point
position within the display coordinates 𝑥𝑑, 𝑦𝑑 in IR2. Point 𝐶 represents the center of
projection.

4.5.1 Centroid of Points in 3D space

Let’s consider 𝑁 as the number of views used in the multi-view approach. Let’s also
interpret the single-view evaluation output as a point on the target polygonal model. With
𝑁 views, the consensus output P is a single point in Euclidean 3-space IR3 and is calculated
from 𝑁 points in IR3 as follows:

P = [

∑︀𝑁
𝑖=1 𝑥𝑖
𝑁

,

∑︀𝑁
𝑖=1 𝑦𝑖
𝑁

,

∑︀𝑁
𝑖=1 𝑧𝑖
𝑁

] (4.1)

where 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 are the (𝑥, 𝑦, 𝑧) coordinates of 𝑖th output. Note that this point is
not the final estimate because it is not automatically located on the surface of the target
polygonal model.

4.5.2 Random Sample Consensus

To suppress the potential accuracy loss brought by the presence of outliers, the RAN-
dom SAmple Consensus (RANSAC) comes forward. The algorithm was initially proposed
by Fischler and Bolles [11], and it is a general parameter estimation approach designed
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Figure 4.8: Depiction of the Centroid value without and with outliers. The red
point represents point P from Equation 4.1, blue and orange points represent the input
points. The left picture shows the ideal situation, where all points follow one distribution.
In the right picture, two different distributions were used to generate the points. Orange
points present potential outliers produced by some of the predictions. The result is highly
affected by them.

to cope with a large proportion of outliers in the input data. The final estimate of each
landmark could be found as an intersection of corresponding rays in IR3.

As the rays are (post-processed) estimates from a neural network, it is necessary to
consider that it predicts the outputs with uncertainty. Then, the benefits of RANSAC in
this task can be twofold: (i) The consensus estimate of one point out of 𝑁 predictions and
(ii) the division of predictions into inliers and outliers.

As for the consensus estimate, the RANSAC algorithm is combined with least-squares
fit (LSQ) in a similar way as in [29]. Their approach is summarized in Section 3.3.4. The
algorithm is as follows:

Algorithm 1: RANSAC and LSQ to find the landmark estimate from 𝑁 rays in
IR3

Result: A point estimate in 3-space
1 Select randomly 𝑛 rays, where 𝑛 < 𝑁 ;
2 Find the initial estimate of point 𝑃 by finding the intersection point of selected

rays in 3-space, in the least-squares sense;
3 Compute the sums of squared distances from all rays and point 𝑃 ;
4 Determine how many rays from the set of all rays fit with the predefined

tolerance 𝜖, i.e., determine the number of inliers;
5 If the fraction of the number of inliers over 𝑁 exceeds a predefined threshold 𝜏 ,

re-estimate the point 𝑃 using all the identified inliers. Compute the sum of squared
distances from all rays and re-estimated point 𝑃 . If the sum is lower than the best
sum, this sum is now the best one and 𝑃 is considered as the best estimate;

6 Repeat steps 1 through 5, a maximum of 𝐼 times.
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The number of views 𝑁 in this work is various, namely 9, 25, and 100. Number 𝑛 is
chosen to be 3. The tolerance 𝜖 is 5 mm – if the distance from a ray to point 𝑃 is less than
5 mm, such a ray is classified as an inlier. Threshold 𝜏 is set to be one-quarter of 𝑁 . The
algorithm stops after 50 iterations, i.e., 𝐼 = 50.

(a) 100 point predictions (b) Corresponding Centroid output

(c) 100 ray predictions (d) Corresponding RANSAC output

Figure 4.9: Centroid and RANSAC as consensus methods. Picture (a) shows
100 predicted point positions for the mesial landmark of tooth 25. (b) shows the re-
sult of the calculation of Centroid. (c) shows the 100 predictions interpreted as rays.
Finally, (d) depicts the output of the RANSAC consensus method. Speaking of both out-
puts, it is not located on the polygon surface directly as the last step of the pipeline has
not been applied yet.
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Chapter 5

Implementation

This chapter introduces the technologies used for the implementation of the proposed
method. Later in this chapter, the details about the implementation of the rendering
pipeline and the annotation tool are described.

5.1 Technologies
I have chosen Python as a programming language. The main reason for choosing Python is
its simplicity, which allows me to focus on the application logic. Another reason is the avail-
ability of packages and frameworks for machine learning tasks. Two major Python libraries
were used to implement this work. The Visualisation Toolkit1 is essential for the depth map
rendering, multi-view rendering pipeline, coordinate propagation, and landmark placement
on the surface of the target model. PyTorch2 is used for the training and evaluation of the
proposed neural networks.

The Visualisation Toolkit

The Visualisation Toolkit (VTK) is open-source software for scientific data manipulation
and visualization, 3D graphics, image rendering, and more. VTK is implemented in C++,
but as it allows binding to other languages, for example, Python, the performance of C++
is acquired while writing a simple syntax Python code.

PyTorch

PyTorch is a Python deep learning framework. It provides two key features:

• Replacement of NumPy3 operations with operations accelerated by GPU,

• API for deep neural networks construction.

This framework is leaning towards Python in the words of simplicity and used con-
cepts. Its ease of use surfaces from dynamic computation and straightforward syntax.
Dynamic computation brings immense flexibility, especially when complex architectures
are constructed. Concepts like classes and structures are used extensively, similar to those

1https://vtk.org/
2https://pytorch.org/
3https://numpy.org/
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in Python. Unlike other deep learning frameworks, PyTorch allows the building of deep
neural networks in a pure object-oriented paradigm without bringing its own programming
techniques [44].

5.2 Rendering Pipeline Configuration
The first step of the rendering pipeline (Section 4.3) is the object loading into the scene.
At first, its center of mass is calculated, and the model is translated as close to the origin
of the world coordinate system as possible. Furthermore, the method expects to have two
prior information about the rendered model: (i) the dentition type (maxillary or mandibu-
lar) and (ii) the transformation matrix provided in corresponding XML4 file. These two
pieces of information are used to create a composed affine transformation applied to the
rendered polygonal model. However, after some observations of the dataset, there are some
exceptions when the meshes are not always rotated correctly. For that reason, some manual
manipulation of the camera is allowed, such as zooming, rotating, and panning, to ensure
the model and camera are suitable for depth map rendering. The possibility of manual
camera settings actually makes the aforementioned prior information unnecessary, making
the pipeline general and not specific for the dataset used in this work. However, the trans-
formations are applied in this work anyway, just to eliminate the time needed for manual
interaction. The requisite position of the polygonal model is described and depicted in
Figure 5.1.

(a) Maxillary dentition (b) Mandibular dentition

Figure 5.1: Requisite position of both dentition types. Pictures (a) and (b) show
the ideal position of the polygonal model in the 3D scene. The goal is to face the occlusal
and incisal surfaces towards the camera. Additionally, the maxillary dentition is rotated
to be in the same position as the mandibular dentition. This i.a. means that from the
perspective of network training and evaluation, the dentition type is not distinguished.

The near and far planes are set so the model is in the viewing frustum. Afterward, the
camera is set to N different positions. The camera positions are not set randomly, but they

4https://www.w3schools.com/xml/xml_whatis.asp
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follow a particular pattern. The first rendered image is obtained with the camera’s azimuth
and elevation, both set to −30°. The camera’s azimuth and elevation are then iteratively
modified, ending with the azimuth’s values and elevation, both set to +30° concerning the
initial value. I find it unnecessary to set the camera to positions where the side or the
model’s back would be observed. This approach is appropriate for tasks like classification
or shape synthesis, where the features acquired from such views are valuable [42, 43]. The
rays representing each of the views form geometry similar to pyramid. A similar approach
was chosen in [29], with the difference of variant camera position settings. Finally, at each
of the camera’s positions, the depth map is rendered. The OpenGL z-buffer is used to
compute this distance map.

5.3 Annotation Tool
As I described in Section 4.1.2, the polygonal models were provided unannotated. The
precision of annotations is essential for the overall results of the system. It is a highly
time-consuming and repetitive task. A custom annotation tool that suits the particular
needs of the task was designed and developed, its outline is depicted in Figure 5.2.

Modified rendering pipeline

Initial model translation and rotation

Various camera 
positions with display 

coordinate 
calculation

Output: N rendered depth maps with 
corresponding landmarks display 

coordinates

Landmark annotation

Camera reset to initial position

For each of the view

Depth map + 32 ground truth heatmaps

...}

32

Annotation process

+

Figure 5.2: Annotation process. It starts with the first step of a rendering pipeline –
the initial model transformation. Afterward, the manual camera manipulation is available,
and the annotator creates the landmarks annotations in two steps – keypoint placement
and labeling. The camera is set to the initial position, and the steps from the rendering
pipeline then continue, enriched by the calculation of all landmarks’ display coordinates.
In the last step, for each of the views, ground truth heatmaps are created by applying a 2D
Gaussian filter with the peak in each of the landmarks’ positions.
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The core of the annotation tool is the multi-view rendering pipeline. It contains an
additional stage, during which the annotator is allowed to add keypoints on the surface of
the dentition model and eventually label them with appurtenant tooth notation. The whole
annotation process takes place in the 3D scene before the multi-view depth map rendering.
This brings high annotation accuracy, as the camera operations like zooming, rotating, and
panning allow the annotator to observe the model surface at close quarters. The process
is designed to annotate keypoints first and label them in a separate step. This separation
of landmarking process makes the tool more general, as the keypoint placement part is the
same among all tasks. If additional keypoint semantics is demanded, the labeling part is
easily modifiable. The annotated positions are exported in a form of csv5 files.
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Figure 5.3: Teeth and landmarks notation. This figure shows the difference between
a tooth and a landmark notation. The left parts of the pictures show the notation of
the teeth on maxillary and mandibular dentition, respectively. The maxillary dentition is
rotated, so it is in a requisite position. The landmark notations are the same for both the
maxilla and the mandible. This means that the network does not distinguish between these
two. The landmark notation is composed of three characters: the first one represents the
Left or Right part, the second describes the tooth number within the quadrant, and the
third one says whether the given landmark is on the Mesial or Distal surface.

Keypoints and landmarks in the scene are represented in the form of geometric primitives
(spheres). Keypoints are placed in the scene by keyboard interaction. When the key 𝑃 is

5https://docs.fileformat.com/spreadsheet/csv/
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pressed, a ray is cast in the scene through the display coordinate at the mouse position.
Keypoint is placed on the coordinate of intersection of the ray with the annotated 3D
model. The labeling is done with the keyboard interaction as well. Landmarks 1 – 8 are
labeled with the keys 1 to 8, with the need of switching between the left and right side
of the dentition. Labeling of landmarks follows the notation depicted in Figure 5.3. By
pressing the key 𝐷, a misplaced keypoint or landmark is deleted.

The annotation prior to the depth maps rendering has a substantial advantage – the
annotation is done just once for 100 depth maps. This is possible thanks to the conver-
sion of the world coordinates in IR3 of all landmarks into the display coordinates
IR2 at each of the camera’s positions. In other words, at each of the camera’s positions,
a tuple (𝑋, 𝑦) is created, where 𝑋 stands for the calculated depth map and 𝑦 are the values
of display coordinates of 𝑘 landmarks.

Additionally, the generated tuple (𝑋, 𝑦) is modified to a tuple (𝑋, 𝑦ℎ), where 𝑋 is the
unchanged depth map, and 𝑦ℎ is an 𝑛 × 𝑛 × 32 volume of heatmaps, where 𝑛 is the depth
map and ground truth heatmap dimension. Each of the heatmaps is generated during an
additional step, where a 2D Gaussian filter with the variance of 10 and the amplitude of 1 is
used to convolve the original screen landmark coordinates. This ensures that the network
regresses heatmaps rather than the (𝑥, 𝑦) coordinates directly, as defined in Section 4.1.
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Chapter 6

Experiments and Results

The main interest of this chapter is to describe the conducted experiments and present their
results. To find the best-performing method configuration, the following method parts are
validated and compared:

1. Different network architectures
Experiments test the proposed method with three trained architectures described in
Section 4.4: BatchNorm U-Net, Attention U-Net, and Nested U-Net. I ex-
pected the integration of attention gates and the dense skip pathways to bring more
accurate results than BatchNorm U-Net.

2. Consensus methods
Besides the landmarking accuracy, the experiments conclude which consensus method
should be preferred when the multi-view CNN approach is used. I compare the
performance of the Centroid consensus method (Section 4.5.1) with the performance
of the geometric approach (Section 4.5.2).

3. Number of views used for the multi-view approach
The number of views is still an unclear parameter of the multi-view approach, as
discussed in Section 3.3.3. I have chosen three numbers of views – 9, 25, and 100.
I hypothesize that the accuracy should increase with the increasing number of views.

Results of a set of experiments are presented in this chapter. This set contains the
comparisons of the performance of the overall method with all possible combinations of the
aforementioned architectures, consensus methods, and the numbers of views. The goal of
the experiments is to find the best-performing combination of these configurations. It also
analyses the comparison of consensus methods and whether the increase in the number of
views really brings better results.

All metrics are measured in physical units (mm) since the end clinical application is
related to physical units. In terms of 3D landmark detection, no prior experiments were
conducted on polygonal models from this dataset. All results are measured as an average of
five evaluations as the model positioning in the requisite position slightly affects the results.
Only positive patterns that are correctly classified are measured (for example, false positive
landmark placement is not taken into account in accuracy measurements). Descriptions of
all metrics used in this chapter can be found in Appendix A.
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6.1 Training Procedure
The input to the proposed neural networks is a single channel depth map of size 128 × 128.
This size was chosen as a compromise between acceptable training times and preserved im-
age information. The training procedure ran on an NVIDIA GeForce RTX 2060 with 6 GB
of memory.

6.1.1 Data Split and Augmentation

The polygonal models were divided into two groups – those used in the training proce-
dure and those used for the evaluation. From the 269 valid polygonal models, 208 mod-
els (20 800 depth maps) were used for the network training, and 61 models were used to
evaluate the proposed method. Furthermore, the 20 800 depth maps were split in the ra-
tio of 4:1 into a training set and validation set, respectively.

Although the rendering pipeline brings one form of augmentation (see Section 4.1.2 and
Section 4.3), some other augmentations were applied on the training and validation depth
maps and ground truth heatmaps:

• Scale from the range [0.90, 1.10],

• Rotation from the range [−11.25, 11.25] degrees,

• Translation from the range [−10 px, 10 px] and applied in both vertical and hori-
zontal directions.

1[17] 2[18] 3[19] 4[20] 5[21] 6[22] 7[23] 8[24] 9[25] 10[26]11[27]12[28]13[29]14[30]15[31]16[32]
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Figure 6.1: Graph describes the teeth presence in polygonal models. With
the total number of 269 suitable models, the imbalance in terms of the teeth missing is
significant. Teeth 1 (17) and 16 (32) are present in less than 10% of the polygons used
for training. On the other hand, canines and incisors are present in the vast majority of
models. Note that teeth 1 and 17 are considered the same, likewise to the rest of the teeth.
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6.1.2 Training Parameters and Loss Function

Networks are trained using the Adam optimizer with the weight decay set to 10−3. These
specifics were chosen to keep the weights small and avoid exploding gradient, leading to
reduced overfitting. The learning rate is initially set to 10−3. Its value is dynamically
reduced using learning rate scheduler.1 The scheduler is used to get out of a loss
plateau caused by reaching saddle points or local minima. The learning rate is reduced by
a factor of 0.5 every time the value of validation loss has not improved for 5 consecutive
epochs. The validation loss is monitored for the early stopping2 as well. If the validation
loss value does not improve for more than 30 consecutive epochs, the training is stopped.
To reduce the memory requirements during training, the automatic mixed precision
was used. It tries to match each operation with its appropriate data type. Operations
like linear layers are much faster in float16. Other operations, on the other hand, like
reductions, require the dynamic range of float32. The autocast3 and GradScaler4 are used
to accomplish the mixed precision. The batch size is set to 32. With this size of the batch,
I was able to train solely the BatchNorm U-Net. To train the Attention U-Net and Nested
U-Net, I applied gradient accumulation. These models require more memory, which
caused out of memory issues. The accumulation keeps adding gradients of the parameters
for 4 number of batches. The batch size is set to 8, and then after 4 batch iterations, the
updates are applied using the average of all gradients accumulated over 4 iterations.

To train the models on a regression problem, which is the case of this task, the Root
Mean Square Error (RMSE) loss was used:

RMSE =

√︂∑︀𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)2

𝑛
(6.1)

where 𝑛 is the batch size, 𝑦𝑖 is the 𝑖th model prediction and 𝑦𝑖 is the 𝑖th actual value.
RMSE is the same loss function as the Mean Squared Error (MSE) [38] loss but has a re-
duced order, which is ensured by taking the root of the MSE. The RMSE allows direct data
correlation with the error as they both have the same order.

A data over-sampling technique was applied to address frequent missing teeth 1, 16,
17, and 32 (Figure 6.1). It ensures that at least one depth map containing the aforemen-
tioned teeth is present in each batch. Without the over-sampling, the network would ignore
the teeth during evaluation, as it would almost certainly expect the absence of given teeth.

6.2 Overall Results
To find the most accurate system configuration, all three architectures were evaluated in
different setups. Firstly, the results of a system that uses a single-view approach were
measured. Using this approach, no consensus method is needed. I chose the BatchNorm
U-Net with a single-view approach as the baseline method. After the initial evaluation
of the baseline method, I noticed that the frequent missing of the 3rd molars causes high
radial errors of the corresponding landmarks. To decrease the error, over-sampling of the
data containing these teeth was added.

1https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau
2https://github.com/Bjarten/early-stopping-pytorch. No official implementation is available.
3https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast
4https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
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Single-view Multi-view
Architecture & 𝑁 = 9 𝑁 = 25 𝑁 = 100

consensus method 𝑅
(mm)

SD
(mm)

𝑅
(mm)

SD
(mm)

𝑅
(mm)

SD
(mm)

𝑅
(mm)

SD
(mm)

BN U-Net Centroid 2.94 4.62 3.00 3.37 2.74 3.33 2.80 2.96
RANSAC 2.24 3.86 2.02 3.75 1.61 4.28

Att U-Net Centroid 2.47 4.06 2.45 2.60 2.39 2.43 2.37 2.42
RANSAC 1.80 2.80 1.69 2.42 1.20 1.91

Nes U-Net Centroid 2.84 4.16 3.09 3.00 2.82 2.74 2.88 2.75
RANSAC 1.99 3.05 1.72 2.73 1.39 2.23

Table 6.1: Overall results of the individual networks with different multi-view
settings. Table compares system performance with different combinations of architec-
tures, consensus methods, and numbers of viewpoints. A combination of Attention U-Net
architecture, RANSAC consensus method, and 100 rendered views achieves the best per-
formance. 𝑅 stands for the mean radial error, and 𝑆𝐷 stands for standard deviation. All
values are measured on networks with applied over-sampling of minority data.

Afterward, I started experimenting with the multi-view approach and with other net-
work architectures. I proposed three different numbers of viewpoints – 9, 25, and 100.
I expected an inversely proportional trend – the higher the number of viewpoints, the lower
the radial errors and standard deviations. I also expected the RANSAC consensus method
to achieve better results than Centroid as the networks produce outliers. Table 6.1 summa-
rizes the system performance. It shows that with the Attention U-Net, the RANSAC
consensus method, and 100 viewpoints, the best results are acquired.

I also measured the SDRs for different acceptance values. The acceptable distance is
set to be 2 millimeters, i.e., if the vast majority of predictions have the radial error less
than 2 mm, the system could be eventually used as a part of the clinical application. The
SDRs for 2.5 mm and 4 mm are measured as well. I measure them to observe whether the
predictions with a radial error higher than the acceptable distance (2 mm) are “close” to
2 mm, or their value is completely unacceptable.

0.0 mm
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4.0 mm

6.0 mm

8.0 mm

10.0+ mm

0.0 mm

2.0 mm

4.0 mm

6.0 mm

8.0 mm

10.0+ mm

(a) 1 view (b) 100 views

Figure 6.2: Comparison of the landmark placement with single view and 100
views. These results are obtained using the Attention U-Net and geometric consensus
method. Color of landmark represents the value of its radial error.
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Figure 6.3: SDRs for BatchNorm U-Net. The best performing configuration with
this architecture is the RANSAC as a consensus method with 100 views. This configuration
achieved an SDR of 89.54% for 2 mm and 93.07% for 4 mm.
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Figure 6.4: SDRs for Attention U-Net. The best performance (94.01% for 2 mm)
was again achieved with RANSAC applied on 100 predictions. SDR for acceptance value
of 4 mm is 95.31%.
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Figure 6.5: SDRs for Nested U-Net. 100 viewpoints with RANSAC achieved the best
results – 91.40% for acceptance value of 2 mm. This configuration achieved 92.99%
SDR for 4 mm.

The SDR values for BatchNorm U-Net, Attention U-Net, and Nested U-Net are shown
in Figures 6.3, 6.4, and 6.5, respectively. These figures confirm that Attention U-Net with
RANSAC and 100 viewpoints are the best performing combination.

It is also evident that RANSAC as a consensus method outperforms Centroid by a
large margin. RANSAC achieves approximately 20–40% better SDR with the acceptance
value of 2 mm. It also achieves a descent of 𝑅, on average by approximately 1 mm, compared
to Centroid. The difference in results might be explained by the strength of the geometric
method in terms of outlier detection, whereas the Centroid method is calculated from the
predictions of all views. Figure 6.10 shows example outputs using both of the consenus
methods.

Considering all of these, I recommend the combination of the Attention U-Net
and RANSAC consensus method.

As for the number of viewpoints needed for the multi-view approach, I hypothesized that
the increase in the number of views brings better results. This hypothesis is confirmed –
it really comes with an increase in the accuracy. However, as for the Centroid consensus
method, the SDR values of configurations that use 100 viewpoints achieve the worst results.
The observed decrease in the SDR for such configurations is certainly due to the increase of
outliers that comes with the increase of viewpoints. In the case of this task, the 100 views
approach is considered as the best performing, although it must be combined with the
RANSAC consensus method. Figure 6.2 shows example outputs of single view and 100
views combined with the RANSAC consensus method.
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6.2.1 Computational Time

The high number of viewpoints, however, comes with a trade-off. For each of the views, the
network must produce predictions for a new depth map. It means that it is necessary to
count with increased computational time. Additionally, the multi-view evaluation consumes
some computational time during the consensus estimation in contrast to the single-view
approach. The best performing combination – the Attention U-Net, 100 viewpoints, and
RANSAC takes about 4.5 seconds to evaluate. Using fewer camera views, a decrease of
computational time is ensured while achieving good results (for example, with Attention
U-Net, RANSAC, and 25 views, the increase in 𝑅 is 0.49 mm and the time needed for
such evaluation is approximately 1 second). The RANSAC consensus method consumes
around 1 second to produce the point estimate from multiple views. Table 6.2 shows the
computational times5 for the Attention U-Net for different number of views.

Multi-view number of viewpoints
𝑁 = 9 𝑁 = 25 𝑁 = 100

Evaluation 380.44 ms 1 074.63 ms 4 446.02 ms

RANSAC 1 178.59 ms 1 252.57 ms 1 306.31 ms

Total 1 559.03 ms 2 327.20 ms 5 752.33 ms

Table 6.2: Average computational time of the evaluation and consensus method
outcome calculation of one polygonal mesh with the best-performing network:
the Attention U-Net. These values were measured on the evaluation dataset – they
represent the average values measured during the evaluation of 61 testing meshes.

6.3 Analysis of Individual Landmark Accuracies
Networks are trained to predict 32 landmarks on 16 teeth. These teeth, however, are not
always present on the evaluated mesh. The third molars are a good example as the presence
of polygon meshes that contain these teeth is around 10% (see Figure 6.1). Concerning the
fact that the models were obtained by scanning human dentition, such imbalance is natural.
Although I applied over-sampling of inferiorly present data, such imbalance on such a small
dataset produces some deviation in terms of system performance.

To observe whether the imbalance affects the overall results, prediction accuracies of
individual landmarks were measured. As Figure 6.6 illustrates, the values of the radial
errors of third molar landmarks (landmarks L8D, L8M, R8M, and R8D) are higher, com-
pared to the rest of the landmarks, even with applied over-sampling. This means that
the high absence of depth maps that contain such landmarks influences the radial error of
corresponding landmarks during evaluation. In essence, the results of the third molar
landmarks deviate from the radial errors of the rest of the landmarks. See Figure 6.9
for example outputs. If the presence of polygonal meshes with dentition that contains the
third molars in the dataset was higher, the overall performance would be increased. Fig-
ures 6.7 and 6.8 illustrate the matching acceptances graphs of two system configurations.
In the latter case, it is a system that achieves the best results. Most of the landmarks

5Measured on a laptop with Intel Core i7-8750H CPU @ 2.20 GHz and NVIDIA GeForce RTX 2060
with 6 GB of memory
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achieve SDRs between 90 to 100% at the acceptance value of 2 mm. Again, the third molar
landmarks deviate from this standard and achieve such SDRs at higher acceptance values.
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Figure 6.6: Box plots of the radial error values for individual landmarks with
two different example setups. Graph (a) shows the box plots for the following com-
bination – BatchNorm U-Net, 100 views, and Centroid. Graph (b) shows, on the other
hand, the best combination – Attention U-Net, 100 viewpoints, and RANSAC. Notice that
in both cases, the radial errors of landmarks on third molars (L8D, L8M, R8M, R8D) are
higher than the rest of the landmarks.
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Figure 6.7: Matching acceptances graph for BatchNorm U-Net, 100 viewpoints
and Centroid consensus method. Individual landmarks achieve an SDR of 100% around
10 mm. For instance, landmark L8D was never predicted with a radial error of less than
2 mm.
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Figure 6.8: Matching acceptances graph for Attention U-Net, 100 viewpoints
and RANSAC consensus method. Individual landmarks mostly achieve the SDR be-
tween 90% to 100% for the acceptance value of 2 mm. Landmarks on third molars (L8D,
L8M, R8M, and R8D) achieve worse results. This corresponds with the radial errors pre-
sented in Figure 6.6.
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Figure 6.9: Example of predictions of landmarks on third molars. Image (b)
illustrates an example of incorrect predictions – the landmarks are incorrectly placed on the
second molars. This phenomenon is present almost exclusively on the 3rd molar landmarks.
Image (a) shows a valid prediction on the third right molar. Predictions are acquired using
Attention U-Net, RANSAC, and 100 viewpoints.
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Figure 6.10: Example of detections with different consensus methods. On aver-
age, the geometric method based on the RANSAC algorithm achieves lower values of radial
errors. Detected landmarks were obtained using the Attention U-Net and 100 views, in
both images.

6.4 Detection of Landmarks Presence
Besides the accurate landmark placement, this task has an additional challenge. As already
discussed in previous sections of this work, the absence of teeth is quite frequent. It is
relatively rare to find a full secondary dentition within the dataset. For each detected
landmark, it is necessary to decide whether the corresponding tooth is present on the
evaluated dentition or not. This decision is a binary classification task as there are two
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possible outcomes – landmark is either placed on the surface of the polygon mesh or not.
This goes to show that the prediction can be classified as:

• True positive (TP): CNN predicts that the landmark is present and the ground
truth corresponds to that decision,

• False positive (FP): CNN predicts landmark placement, but the appropriate tooth
is absent,

• False negative (FN): CNN predicts that the landmark should not be placed on the
surface of the target polygonal model, but it is a misclassification,

• True negative (TN): CNN correctly predicts that the landmark should not be placed
on the evaluated polygonal mesh.

The classifier should produce as many TP and TN predictions as possible while sup-
pressing FP and FN predictions.

I wanted to test whether the outputs of neural networks used for the landmark lo-
calization task can be used as the aforementioned classifier without any additional inter-
vention. Even though the problem is formulated as a regression (see Section 4.1), the
output heatmaps might contain sufficient information for the landmark presence detection.
Drevický hypothesized in his work [10], that the peaks of predicted heatmaps may indicate
the model’s uncertainty in its prediction, with higher values indicating higher certainty.
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Figure 6.11: Examples of predicted heatmaps. The left picture illustrates an example
of a prediction with an extremely low peak value (0.012). Referencing to corresponding
ground truth, this landmark is not present on the surface of the polygonal model. The
right picture, on the other hand, shows the opposite situation. According to the ground
truth, the peak value is relatively high, and this landmark is really present on evaluated
polygon mesh. Note that the maximal possible value in a heatmap is 1.

Networks were trained by regressing heatmaps containing a Gaussian activation with
the amplitude of 1. The predictions should follow a similar trend. If a landmark was
missing on the polygonal model during training, there was no Gaussian in the ground truth
image. This implies that the predictions should be either heatmaps with a peak value close
to 1 or heatmaps with all values close to 0. Figure 6.11 shows an example for both of
these situations. It is necessary to find the peak (threshold) value that ensures the best
performing binary classification.
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Figure 6.12: ROC curve for proposed classification method. Classification purely
from the predicted heatmaps achieves an AUC value of 0.958. The best threshold value
is 0.375. These values were measured on Attention U-Net with the RANSAC consensus
method and 100 viewpoints.

6.4.1 Evaluation of the Landmark Presence Detection

The performance of the landmark absence detection was measured on the Attention U-Net
with the RANSAC consensus method and 100 views. To find a threshold that classifies the
landmark presence with the best accuracy, the ROC curve was created. I tested 20 different
threshold values to find the best trade-off between sensitivity and specificity.
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Figure 6.13: Confusion matrix of proposed classifier with threshold set to 0.375.
The matrix shows the TP, TN, FP, and FN values of the classification according to the
heatmap peak value. These values were measured on the evaluation dataset (61 polygonal
models) with 100 viewpoints. The system predicts 32 landmarks. Thus, the total number
of values is 61 × 100 × 32 = 195 200.
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Figure 6.12 shows the ROC curve for the classifier. By classifying purely from the
heatmap predictions, AUC value of 0.958 is achieved. See Equation A.11 for the formula.
Threshold value that brings off the best sensitivity and specificity values is 0.375. Note
that for a different dataset, I recommend verifying the fit of this value. The corresponding
confusion matrix is shown in Figure 6.13.

I calculated the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 from confusion matrix values. With the best performing
threshold value (0.375), the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 calculated by Equation A.5 is 0.9433. It means that
purely from the analysis of peak values in predicted heatmaps, the proposed method can
correctly detect landmark presence with the accuracy of 94.33%.

6.5 Summary
I proposed three neural network architectures, all of which are based on the U-Net network.
The first one is the BatchNorm U-Net. This network contains additional batch normaliza-
tion layers between the convolutional and activation layers. The second proposed network
is the Attention U-Net, which integrates attention gates into the original U-Net. The last
network is the Nested U-Net, which applies dense skip pathways into the original U-Net.

I started conducting experiments with the point estimates propagated in the IR3 world
coordinate system. With a single view, the Attention U-Net achieved the best results with
the radial error value of 2.47 ± 4.06 mm and with the success detection rate for 2 mm of
77.08%. The BatchNorm U-Net performed the worst.

Experiments have demonstrated that this approach does not perform well enough to
be integrated into a clinical application. I decided to experiment with a multi-view CNN
approach, which renders the evaluated model from several views and eventually combines
the predictions by a consensus method.

I proposed experiments with two consensus methods – Centroid and RANSAC, and ex-
perimented with several views – 9, 25, and 100. As a result of experimenting with all possible
combinations of architectures, consensus methods, and numbers of views, I concluded that
the best performing combination uses Attention U-Net, RANSAC as a consensus method,
and 100 viewpoints. This combination achieved the error value of 1.20 ± 1.81 mm, and it
can predict 94.01% of landmarks with the radial error of less than 2 mm. Another aspect
that emerged from the analysis is the relevancy of geometric consensus method. It outper-
formed the statistic approach by a large margin and I highly recommend its usage when
solving similar tasks.

Besides the accurate landmark placement, the method should be able to decide whether
a given landmark should indeed be placed on the model’s surface or not. I wanted to test
whether the method can produce such decisions without the need to implement an addi-
tional binary classifier. The decision is made purely from the peak values of the predicted
heatmaps. With the optimal threshold value, the proposed method can correctly detect
landmark presence with the accuracy of 94.33%.

6.6 Future Work
Although the experiments demonstrate that the overall results satisfy the needs of the
end clinical application, there is still a place for future development. Results of this work
might be improved and extended in both landmarks position detection and the detection
of landmarks presence on the 3D model surface.
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As for the landmark placement, a method that does not require the initial model rota-
tion (occlusal and incisal surfaces of the teeth must face the camera) would be convenient.
This would diminish the time needed for the evaluation, and it would eliminate the human
intervention required for the landmarking process. Additionally, the re-balancing strategy
used to address the problems caused by minority classes might be replaced by more ad-
vanced techniques, such as class-balanced loss based on an effective number of samples [7].
Extending the dataset — primarily by the dentition with third molars — appears to be
helpful as well.

There is also a place for the improvement of the accuracy of the landmark presence
classifier. One of the improvements might stem from the fact that a pair of landmarks
is detected on the surface of each tooth. If a tooth is missing, both landmarks should
be classified as absent. Then, the final decision of landmark presence might take into
account the information from the pair landmark as well. Another improvement related to
the classifier might advantage from the multi-view approach. Besides the point estimate,
the RANSAC consensus method outputs the information about inliers and outliers. This
information might be valuable for the decision process.
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Chapter 7

Conclusion

This Bachelor’s thesis aimed to estimate the orthodontics landmarks on the surfaces of
polygonal models from a limited medical dataset. A method based on convolutional neural
networks was designed for this purpose.

The proposed method transfers the training and evaluation process into the Euclidean
2D space. Instead of directly regressing the landmark coordinates, the proposed networks
are trained to regress heatmaps containing Gaussians centered at landmark positions.

Suggested approach uses three architecture designs: the BatchNorm U-Net, the Atten-
tion U-Net, and the Nested U-Net. 3D Scans of dentition are evaluated in a multi-view CNN
matter, so the model is observed from multiple viewpoints, which produces corresponding
number of predictions for each landmark. These predictions are evaluated in a consensus
method, which produces the final estimate in 3D space. A consensus method based on the
RANSAC algorithm and least-squares fit produces the best results.

A combination of Attention U-Net, RANSAC consensus method, and 100 views per-
formed the best and achieved the error value of 1.20± 1.81 mm, and it can predict 94.01%
of landmarks with the radial error of less than 2 mm. According to the competent profes-
sionals from TESCAN 3DIM, s.r.o., these results are satisfactory for a practical deployment
in an existing orthodontics planning software.

To summarize, I proposed a method that can predict orthodontics landmarks on polyg-
onal models with acceptable error values. I compared the performance of different network
architectures, numbers of viewpoints, and consensus methods. Taken together, these find-
ings suggest that the multi-view approach combined with the RANSAC consensus method,
and architectures based on U-Net can provide acceptable accuracies even on a limited med-
ical dataset. A further collaboration involving method enhancement and integration into
existing orthodontics software is discussed with the thesis supervisor.
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Appendix A

Evaluation Metrics

This appendix contains metrics used for system performance evaluation. It is divided into
two sections. The first Section introduces metrics for the measurement of accuracy of
predictions. Then, metrics for a binary classifier are presented. Metrics from the latter
case are used in this work to evaluate the landmark presence on the surface of 3D models.

A.1 Landmark Detection Accuracy Metrics
To measure the landmark detection accuracy, several metrics are used – the radial error, the
mean radial error, the standard deviation, and matching acceptances graphs, which depict
the relation between the success detection rate and the corresponding acceptance value.
In a Euclidean 3-space IR3, the radial error 𝑅 is defined as

𝑅 =
√︀

(�̂�− 𝑥)2 + (𝑦 − 𝑦)2 + (𝑧 − 𝑧)2 (A.1)
where 𝐴(�̂�, 𝑦, 𝑧) in IR3 is the ground truth landmark position and 𝐵(𝑥, 𝑦, 𝑧) in IR3 is
the predicted value. Two other metrics associated with the radial error are used. The
mean radial error 𝑅 is calculated as

𝑅 =

∑︀𝑁
𝑖=1𝑅𝑖

𝑁
(A.2)

where 𝑁 is the total number of predictions. The standard deviation (𝑆𝐷) is then computed
by the following formula:

𝑆𝐷 =

√︃∑︀𝑁
𝑖=1(𝑅𝑖 −𝑅)2

𝑁
(A.3)

with 𝑁 denoting the total number of predictions again. The aforementioned measures are
used to evaluate the overall performance of the system.

The success detection rate (𝑆𝐷𝑅) is calculated as follows:

𝑆𝐷𝑅𝑣 =
#{𝑖 : ‖𝐵(𝑖)−𝐴(𝑖)‖ < 𝑣}

𝑁
× 100% (A.4)

where 𝐵 in IR3 is the predicted landmark position, 𝐴 in IR3 is the ground truth landmark
position, 𝑣 is the corresponding acceptance value and 𝑁 is the total number of landmarks.
It can be used to form matching acceptances graphs, which denote the relation between
several acceptance values and corresponding SDRs.
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A.2 Binary Classifier Metrics
Four values are typically measured and used for the evaluation of a binary classifier. These
are:

• True Positive (TP): number of positive instances that are correctly classified,

• True Negative (TN): number of negative instances that are correctly classified,

• False Positive (FP): number of misclassified negative instances,

• False Negative (FN): number of misclassified positive instances.

Aforementioned values (TP, TN, FP, and FN) are typically used in threshold metrics
for classification evaluations [17]. A fundamental way of the evaluation of a classifier is
confusion matrix. It is a 2×2 matrix1, where each row represents an actual class, while
each column represents a predicted class. Items of the matrix are measured TP, TN, FP,
and FN values.

Another binary classifier metric is the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. In general, the accuracy metric mea-
sures the ratio of correct predictions over the total number of instances evaluated and is
calculated as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(A.5)

where TP, TN, FP, and FN refer to the values described above. Error rate (err) measures
the ratio of incorrect predictions over the total number of evaluated instances:

𝑒𝑟𝑟 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(A.6)

To measure the fraction of positive patterns that are correctly classified, the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
is measured. It is calculated by following formula:

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (A.7)

Another metric is the 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. This metric is used to measure the fraction of negative
patterns that are correctly classified. It is defined as

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (A.8)

Precision and recall are used to measure the performance of a binary classifier as well.
Precision is used to measure the positive patterns that are predicted correctly out of all
predictions from positive class:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (A.9)

Recall, on the other hand, measures the fraction of positive patterns that are correctly
classified, and is calculated as follows:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
. (A.10)

1this size is used for a binary classifier and it increases with the number of classes
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Note that there are plenty of different metrics by which the classifier performance might be
evaluated. A summary of such metrics can be found in [17].

A valuable metric is the Receiver Operating Characteristics (ROC) curve, which mea-
sures the performance at various thresholds. The ROC curve is plotted with 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
against 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, where 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is on the y-axis and 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 is on the
x-axis.

ROC curve comes with additional metric – the Area Under the ROC Curve (AUC).
AUC represents the degree or measure of separability. It tells how much the model is
capable of distinguishing between classes. The higher the AUC, the better the model is at
distinguishing between landmark presence/absence. AUC can be calculated as below:

𝐴𝑈𝐶 =
𝑆𝑝 − 𝑛𝑝(𝑛𝑛 + 1)/2

𝑛𝑝𝑛𝑛
(A.11)

where 𝑆𝑝 is the sum of all positive examples ranked, and 𝑛𝑝 and 𝑛𝑛 define the number
of positive and negative examples, respectively.

59



Appendix B

Contents of the Included Storage
Media

• data/test/ Folder with polygonal models for testing.1

• data/train/ Folder with data for network training.2

• saved-models/ Folder with trained networks.

• src/ Folder with source files.

• src-tech-report/ Folder with LATEX source files.

• videos/ Folder with demonstration videos.

• annotate.sh Script to run the annotation tool.

• evaluate.sh Script to run the evaluation.

• LICENCE Project licence.

• poster.pdf Poster summarizing this work.

• README.md Project description.

• requirements.txt List of required Python libraries.

• tech-report.pdf Technical report.

• tech-report-print.pdf Technical report for two-sided printing.3

1Note that the provided data are for demonstration purposes only and they are just a small portion of
the whole dataset. The complete dataset of 3D scans provided by TESCAN 3DIM, s.r.o. as well as the
generated 2D data in this work are not available for privacy reasons.

2See footnote 1.
3Content is the same as in the version for the electronic submission
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Appendix C

Poster
DEEP NEURAL NETWORKS 

FOR LANDMARK DETECTION 
ON 3D MODELS

Michal Španěl (supervisor)

GOAL
Detecting

orthodontics landmarks
on the surface of polygonal
models of human dentition

from limited medical dataset

PROPOSED MULTI-VIEW CNN APPROACH

View 1

View 2

View N

Experimenting with 
different
numbers of viewpoints 
used for rendering, 
namely 1, 9, 25, and 100.

Three different 
architectures were 

trained: the 
BatchNorm U-Net, the 
Attention U-Net, and 
the Nested U-Net.

Networks are 
trained to regress 

heatmaps with 
Gaussian placed at 

the center of 
landmark 

coordinates.

Predictions from multiple viewpoints 
are used in consensus methods to find 

the final estimate. Two consensus 
methods were proposed: the Centroid, 

and a geometric consensus method 
based on the RANSAC algorithm, and 

least-squares fit.

RESULTS

0.0

8 mm

Tibor Kubík

CNNmodule

CNNmodule

CNNmodule

Overall Radial Error 
of 1.20 ± 1.81 mm.

Success Detection 
Rate of 94.01% for 

an acceptance 
value of 2 mm.

Best-performing 
configuration: 

Attention U-Net, 
100 viewpoints, 

and RANSAC 
consensus method.

10 mm+

6 mm

4 mm

2 mm

0 mm
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