
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DARKMARKET FORENSICS
FORENZNÍ ANALÝZA TEMNÝCH TRŽIŠŤ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. DANIEL DOLEJŠKA
AUTOR PRÁCE

SUPERVISOR Ing. VLADIMÍR VESELÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav informačních systémů (UIFS) Akademický rok 2020/2021

 Zadání diplomové práce

Student: Dolejška Daniel, Bc.
Program: Informační technologie a umělá inteligence Specializace: Počítačové sítě
Název: Forenzní analýza temných tržišť
 Darkmarket Forensics
Kategorie: Počítačové sítě
Zadání:

1. Nastudujte problematiku temných tržišť (darkmarket) v síti TOR. Zaměřte se přitom na jejich
obchodní model, zpracování webové aplikace, strukturu inzerátů a identifikujte data
a metadata zajímavá z forenzního hlediska.

2. Prozkoumejte možnosti extrakce dat z webových stránek (HTML obsah) pomocí crawlingu
a scrapingu. Popište aktuální trendy při programatickém zpracování vybraného
kryptoměnového blockchainu.

3. Navrhněte systém, který bude z vytipovaného temného tržiště dlouhodobě sbírat informace o
aktivitě uživatelů, konkrétně realizované obchody a poskytnutá finanční plnění.

4. Implementujte navržený systém dle doporučení vedoucího a uveďte ho v dlouhodobější
provoz. Analyzujte posbíraná data a pokuste se korelovat obchodní aktivitu uživatelů na
tržišti s transakcemi v blockchainu.

5. Pokuste se vyhodnotit míru přesnosti korelace. Diskutujte dosažené výsledky a navrhněte
další možný postup v tomto tématu.

Literatura:
Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and
cryptocurrency technologies: a comprehensive introduction. Princeton University Press.
Hayes, Darren R., Francesco Cappa, and James Cardon. "A framework for more effective
dark web marketplace investigations." Information 9.8 (2018): 186.
Christin, Nicolas. "Traveling the Silk Road: A measurement analysis of a large anonymous
online marketplace." Proceedings of the 22nd international conference on World Wide Web.
2013.

Při obhajobě semestrální části projektu je požadováno:
Body 1 až 3 včetně.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Veselý Vladimír, Ing., Ph.D.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2020
Datum odevzdání: 19. května 2021
Datum schválení: 27. října 2020

Powered by TCPDF (www.tcpdf.org)

Zadání diplomové práce/23563/2020/xdolej08 Strana 1 z 1

Abstract
Overlay networks (like Tor or I2P) create a suitable environment for criminality to thrive on
the Internet. Dark marketplaces (a.k.a. cryptomarkets) are one such example of criminal
activities. They act as an intermediary in the trade of illegal goods and services. This
project focuses on forensic analysis of such web services and subsequent extraction of non-
trivial information about the realised orders and payments from selected marketplaces. The
main goal is to pinpoint the time interval when an order has been completed on selected
marketplaces and its following correlation with cryptocurrency blockchains. The imple-
mented program provides fully automated non-stop monitoring of selected cryptomarkets.
That, under certain conditions, allows detection of realised purchases, detailed product and
vendor monitoring and collection of various meta-data entries. Law enforcement agencies
can use acquired data as support evidence regarding the operation of selected cryptomarkets
and their vendors. The obtained information can also indicate current trends in products
supply and demand.

Abstrakt
Překryvné počítačové sítě (jako například Tor či I2P) vytváří ideální prostředí pro rozmach
kriminality na Internetu. Temná tržiště jsou jedním takovým příkladem kriminální činnosti.
Jejich cílem je zrpostředkování obchodu s nelegálním zbožím a službami. Tento projekt se
zaměřuje na forenzní analýzu těchto webových služeb a na následné získávání netriviálních
informací o realizovaných finančních plněních na vybraných tržištích. Hlavním cílem je
schopnost určit časový interval ve kterém byl nákup produktu dokončen a tuto skutečnost
korelovat s transakcemi v kryptoměnových blockchainech. Vzniklý nástroj umožňuje plně
automatizované a nepřerušované sledování vybraných tržišť. To za určitých podmínek do-
voluje detekci dokončených nákupů, sběr detailních informací o nabízených produktech
a prodejcích či dalších metadat. Orgány činné v trestním řízení mohou pak tyto informace
použít jako podpůrný důkazní materiál proti vybraným tržištím a na něm aktivních prode-
jcům. Získaná data mohou také indikovat trendy v aktuální nabídce a poptávce na temném
webu.

Keywords
forensic analysis, dark marketplace, trade, cryptocurrencies, blockchain, anonymisation,
Tor, proxy, dark web, darknet, automation, web processing, crawling, scraping, captcha,
monitoring, monopoly market

Klíčová slova
forenzní analýza, temné tržiště, obchod, kryptoměny, blockchain, anonymizace, Tor, proxy,
temný web, dark web, automatizace, zpracování webu, crawling, scraping, captcha, moni-
toring, monopoly market

Reference
DOLEJŠKA, Daniel. Darkmarket Forensics. Brno, 2021. Master’s thesis. Brno University
of Technology, Faculty of Information Technology. Supervisor Ing. Vladimír Veselý, Ph.D.

Rozšířený abstrakt
Nezastavitelný vývoj Internetu, šifrování a softwaru věnujícímu se soukromí uživatelů dal
na Internetu vzniku novému nebezpečnému místu, které rychle získává na popularitě, tem-
nému webu. Tato část Internetu je konvenčními vyhledávači a webovými prohlížeči ne-
dosažitelná. K připojení je třeba specializovaného programu, který svým uživatelům na
Internetu poskytne vysokou míru anonymity. Hlavní motivací pro zvýšení anonymity uži-
vatelů na Internetu je poskytnutí prostoru pro svobodu projevu, necenzurované zpravoda-
jství či jako forma boje proti neustálému sledování uživatelů. V dnešní době ovšem většina
aktivit na temném webu legální není. Kriminalita byla vždy součástí lidské historie, nyní
ale dosahuje dříve nepoznaného celosvětového rozměru. Kvůli moderním nástrojům pro
anonymitu je značně složité proti kriminalitě na Internetu efektivně bojovat. Cílem této
práce je především:

• analýza tržišť aktivních na temném webu,

• návrh a implementace programu umožňující sledování aktivit vybraných tržišť,

• nasazení a proměření implementovaného nástroje v rámci delšího časového horizontu,

• pokus o korelaci získaných dat s transakcemi z relevantních kryptoměnových blockchainů.

Analýza

Práce se nejdříve zaměří na to, jakým způsobem funguje překryvná síť Tor1. Ta totiž
reprezentuje jeden z možných přístupů k temnému webu. Následně se práce zabývá we-
bovými stránkami a poté i přímo temnými tržišti dostupnými v rámci sítě Tor. Text pak
představuje co to temná tržiště vůbec jsou, jak fungují, jakými pravidly se typicky řídí a jaké
informace je z nich možné získat. Zároveň se ale také věnuje anonymním nákupům na tem-
ném webu všeobecně. Popisuje k čemu a v jaké míře se na temném webu používá PGP2.
Tento software totiž není použit pouze za účelem zajištění důvěrnosti při komunikaci ale
možná především k zajištění nepopiratelnosti pro ověřování totožností jak webových portálů
tržišť tak i prodejců na nich aktivních. Dále je pak věnována pozornost kryptoměnám jako
prostředku pro anonymní přenos hodnoty při nákupu. Zde je z implementačního hlediska
především zajímavá datová struktura blockchain. Kapitola analýzy je uzavřena rozborem
možností zpracování webových stránek s důrazem na kompletní automatizaci. Automati-
zace je v prostředí temného webu značně komplikovaná, především kvůli všudypřítomným
CAPTCHA výzvám a naprosté nedůvěře webovým klientům.

Návrh

Práce diskutuje návrh systému, který zcela automatizovaně a dlouhodobě sleduje vybrané
webové stránky. Z těchto vybraných stránek pak extrahuje a ukládá všechny informace,
které implementace uzná za vhodné. Je navržen modulární přístup k implementaci umožňu-
jící snadnou rozšiřitelnost a znovupoužitelnost výsledného nástroje. Jednotlivé moduly sys-
tému budou moci být při dodržení implementačního rozhraní zcela nezávislé na ostatních.
Moduly implementované pro jednotlivé webové stránky pak umožní naprostou kontrolu nad
tím, jak a jaké informace se z daného webu sbírají, kam a v jaké formě se ukládají a které
další moduly jsou pro to využity.

1https://www.torproject.org
2https://www.openpgp.org

https://www.torproject.org
https://www.openpgp.org

Implementace

Kapitola implementace detailně popisuje jak byl navržený program implementován, kterých
programů, postupů a technologií bylo k implementaci využito a jak daný nástroj funguje.
Navržená aplikace byla naprogramována v jazyce Python a to především kvůli poskyt-
nuté flexibilitě a existujícím knihovnám v oblasti zpracování dat. Tato kapitola se nejdříve
věnuje tomu, jaké byly při implementaci využity knihovny (jako například BeautifulSoup4,
aiohttp a sqlalchemy) a software (zde především Docker, PostgreSQL a Redis). Uvádí,
proč byly zvoleny právě uvedené zdroje také popisuje k čemu jsou v práci využity. Text pak
představuje modulární strukturu implementovaného řešení a popisuje různé zásuvné mod-
uly implementované pro jednotlivé části programu. Dále také líčí a implementuje plně kon-
tejnerizované nasazení dané aplikace umožňující automatické aktualizace (CI/CD), rychlé
migrace a nasazení i částečnou platformní nezávislost (ačkoliv implementovaná aplikace
je schopna běžet jak v prostředí operačních systému na bázi UNIX tak i Windows). Ve
svém závěru se pak část implementace zaměřuje na funkcionalitu korelačního analyzátoru.
A to především jaký je algoritmický postup korelátoru, k jakým datům přistupuje a jaké
heuristické metody pro hodnocení transakcíc používá.

Nasazení a dosažené výsledky

Program byl nasazen více než 70 dní, během kterých byl na zvoleném tržišti schopen najít
914 různých produktů v 39 jednotlivých kategoriích (které reprezentují různé drogy) a de-
tekovat více než 15 600 nákupů. Agregovaný pohled na některé měřitelné metriky může být
vidět na Obrázku 1. Práce v kapitole nasazení a testování prezentuje i další metriky pro-
duktů, jejich kategorií, odpovídajících prodejců či tržiště jako celku které bylo ze získaných
dat možno zjistit.

Cannabis 31.1%
Stimulants 25.1%
Psychedelics 14.8%
Benzos 11.1%
Dissociatives 6.2%
Ecstasy 5.8%
Prescription 2.7%
Opioids 2.4%
Steroids 0.7%

(a) Kategorie produktů dle počtu nákupů

 0:00 4:00 8:00 12:00 16:00 20:00 24:00
Time of Day (UTC)

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f S
al

es

(b) Počet nákupů na základě denní doby

Obrázek 1: Ukázka agregovaných výsledků na základě získaných dat
Obrázek nalevo (a) zobrazuje poměr kategorií produktů v závistlosti na počtu jejich nákupů.

Obrázek napravo (b) pak zobrazuje počty detekovaných nákupů v závislosti na čase jejich detekce
programem.

Obsahem sekce testování je také ukázka monitorování programu za pomoci systémů
Netdata3, Graylog4 a Grafana5. Nasazení používá všechny tyto tři monitorovací systémy,
protože každý z nich je zaměřen na jeden specifický zdroj informací. Jejich kombinace
pak poskytne všechny důležité informace a může dopomoct k verifikaci správného chodu
programu.

Souhrn

Navržený nástroj a postup se podařilo implementovat, nasadit, proměřit a získat tak cenná
a podrobná data o jednom z temných tržišť. Nástroj je funknčí a je možné jej jednoduše
rozšířit vytvořením nových modulů pro sledování dalších vybraných webových stránek. Na
základě analýzy získaných dat bylo na sledovaném tržišti možné:

• odhalit složení a poměry detekováných nákupů,

• popsat trendy v prodejích jednotlivých produktů, tříd drog i prodejců,

• hrubě odhadnout získané výdělky jednotlivých prodejců a samotného tržiště,

• získat některé globálně sledovatelné informace o prodejcích a jejich produktech,

• později použít získaná data k dalším analýzám.

Zveřejnění této dokumentace bylo odloženo o 3 roky a to především z důvodu, že
výsledky této práce jsou nedílnou součástí projektu BAZAR6, v rámci kterého již různé
orgány činné v trestním řízení (nejen z České republiky) projevily zájem o získaná data
a implementovaný nástroj.

3https://www.netdata.cloud
4https://graylog.org
5https://grafana.com
6https://www.fit.vut.cz/research/project/1447, https://bazar.nesad.fit.vutbr.cz

https://www.netdata.cloud
https://graylog.org
https://grafana.com
https://www.fit.vut.cz/research/project/1447
https://bazar.nesad.fit.vutbr.cz

Darkmarket Forensics

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Vladimír Veselý, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Daniel Dolejška

May 18, 2021

Acknowledgements
Here I am, on the verge of becoming a master in the field of information technology, while
it feels like I was still at high school just a few months ago. I am so very grateful that
I could get to this point in my life, and I would like to express my appreciation to those
closest to me who made all this possible. However, to do that, it will be best to use my
native language. So, please, allow me.

Rád bych poděkoval celé své rodině za všechno, co pro mne kdy udělala. Vím, že jsem
Vám to kolikrát moc neusnadňoval, ale přesto jste na mě nezanevřeli a zachovali ve mě
důvěru. Především bych chtěl poděkovat mamince Gábince, za všechnu její lásku, péči,
a podporu, kterou mi vždy věnovala. Děkuji také babičce Haničce a dědečkovi Járovi, za
jejich trpělivost, důvěru a lásku. Také doufám, že se zvládnete smířit s tím, co ze mě
vyrostlo, já jsem ale šťastný a spokojený, že jsem takový jaký jsem. Konec konců, je to
především díky Vám. Bez Vás všech bych si nic z tohoto nedovedl představit. Jsem moc
rád, že právě vy můžete být mou rodinou.

Furthermore, I would like to appreciate and mention two of my dearest friends — Lukáš
and Michal. Our friendship began through an online game where we grew to know each
other better. It now seems that the game brought out the worst in all of us, but we stayed
friends anyway. Thank you both for your presence in my life; I believe you have made me
a much better person than I was. I hope that our friendships are far away from being over.
I look forward to making new unforgettable memories together!

I would be a fool to forget about the most influential and excellent teachers from my
high school, František Haas (my programming and IT teacher) and Vladimíra Fryntová
(my English teacher). You were not satisfied with the average, and you pushed me to be
better because you knew I could be. You shaped me as a person, made me realise what
is important and taught me some important life lessons. To you, Mr Haas, thank you for
waking up and nurturing my passion for programming and this field in general. Since the
first line of code I’ve written during your lesson, I knew that it was something exceptional.
And to you, Ms Fryntová, thank you for constantly pushing me to be my best self. I
sure know it was no easy task. All I ever wanted was to just be at home, playing “those
dumb video games.” But I believe that you have somehow succeeded. You both brought
something yours, something unique and valuable, into the way you teach, and I want you
to know that it is greatly appreciated! You have indeed changed my life — for the better.

Last but not least, I would like to thank my supervisor and mentor, the networking
superhero Vladimír Veselý. Thank you for all your hard work, dedication and enthusiasm
with which you approach challenges. I have always had a blast during any of your lectures,
and I guess you’ve also taught me a few things. Just kidding, you are a fantastic teacher
and a person; and I believe you have taught me a lot. I have really enjoyed working with
you on something that actually matters, and I look forward to continuing to do so. Once
again, thank you for all the time you have invested not only in this thesis, keep up the great
work that you do.

Now, as it is customary, I would like to share one of my most beloved recipes with you.
Something that always pushed me forward and something I could never get enough of — my
grandma’s apple strudel. You will need filo pastry, apples, butter, raisins, breadcrumbs,
salt, vanilla sugar, cinnamon powder, nuts and lemon juice for this recipe.

1. Preheat the oven to 190∘C.

2. Wash, peel, core and grate the apples.

3. Mix the apples with lemon juice, salt, sugar, spices and nuts, set aside.

4. Spread the pastry on a piece of cloth and roll it out slightly.

5. Brush melted butter over the pastry and add some breadcrumbs. Leave enough space
around the borders of the pastry — about 2cm everywhere.

6. Add the apples mixed with spices, spread evenly over the breadcrumbs.

7. Flip shorter sides inwards and wrap from the longer side.

8. Brush with melted butter and bake until golden brown.

9. Enjoy!

8

Contents

1 Introduction 7
1.1 Chapter Contents . 7

2 Theory 9
2.1 Tor Network (Dark Web) . 9

2.1.1 How Does It Work . 10
2.1.2 Misuse of the Network . 12
2.1.3 Attacks and Monitoring . 13

2.2 Dark Marketplaces . 13
2.2.1 Business Model . 15
2.2.2 Marketplace as a Service . 16
2.2.3 Website Standards . 17
2.2.4 Available Listing Information . 19

2.3 Cryptography . 20
2.3.1 PGP . 20

2.4 Cryptocurrencies . 21
2.4.1 Blockchain . 22

2.5 Automated Website Processing . 23
2.5.1 Crawling . 23
2.5.2 Scraping . 25
2.5.3 Human Verification . 25

3 Design 28
3.1 Accessing the Service . 28

3.1.1 Accessing the Network . 28
3.1.2 Looking Up Concrete Services . 29
3.1.3 Human Verification . 30

3.2 Automated Crawling . 31
3.2.1 Different Page Types . 32
3.2.2 Processing Pages . 32

3.3 Automated Scraping . 33
3.3.1 Required Data . 34
3.3.2 Locating Data and Meta-data . 34
3.3.3 Processing Pages . 34

3.4 Persistence and Archiving . 35
3.4.1 Storage Structure . 36

3.5 Analysis . 36
3.5.1 Numeric Deltas . 37

1

3.6 Cryptocurrency Blockchain Analysis . 37
3.6.1 Relevant Blocks and Transactions 38
3.6.2 Transaction Matching . 38

4 Implementation 40
4.1 Used Software and Libraries . 40

4.1.1 Program Core . 40
4.1.2 Database . 42
4.1.3 Data Analyser / Blockchain Correlator 43

4.2 Program Machinery . 43
4.2.1 Core Functionality . 44
4.2.2 Database Plugins . 48
4.2.3 API Plugins . 52
4.2.4 Service Plugins . 54
4.2.5 Utilities and Utility Plugins . 58

4.3 Database . 61
4.3.1 Query Examples . 61

4.4 Data Analyser . 63
4.4.1 Price and Variant Mapping . 65
4.4.2 Correlation Strategies . 66

5 Deployment and Testing 67
5.1 Task Specifications . 67
5.2 System Monitoring . 68
5.3 Results . 70

5.3.1 Program Statistics . 70
5.3.2 Marketplace Statistics . 71
5.3.3 Database Statistics . 74
5.3.4 Transaction Correlation Statistics . 77

6 Conclusion 79

Bibliography 81

A Contents of the Included SD Card 84

B Acronyms 85

C Tables 87

D Other Application Resources 88

E Market Screenshots and Photos 103

2

List of Figures

2.1 Tor client communicates with a publicly accessible server 10
2.2 Tor client communicates with a Tor hidden service 11
2.3 Tor Network Attacks Mindmap . 14
2.4 Simplified Bitcoin Blockchain Diagram . 22
2.5 Merkle (Hashed) Tree Diagram . 23
2.6 Graph of Website Links . 24
2.7 Google’s reCAPTCHA Version Examples 26
2.8 CAPTCHA examples from selected darknet websites 27

3.1 Crawler Flow Diagram . 33
3.2 Scraper Flow Diagram . 35
3.3 Storage Entity Relationship Diagram . 37

4.1 Default Database Schema . 50
4.2 Partial Database Schema with Darkmarket Plugin Pack 51
4.3 Partial Database Schema with PGP Plugin Pack 52
4.4 Operations from Darkmarket API Resource Plugins 53
4.5 Operations from ManualCaptcha API Resource Plugins 54
4.6 Operations from TwoCaptcha API Resource Plugins 55
4.7 Class Diagram of Monopoly Market’s Crawler Service 56
4.8 Class Diagram of Monopoly Market’s Scraper Service 57
4.9 Class Diagram of Generic PGP Scraper Service 58
4.10 Multiple Coordinate CAPTCHA Solutions 60
4.11 Multiple Coordinate CAPTCHA Solutions with Clustering 61

5.1 Detected HTTP Request Timeout Count Graph from Graylog 68
5.2 Detected Purchase and New Scrape Counts Graph from Grafana 69
5.3 Application Container’s CPU Usage Graph from Netdata 70
5.4 Drug Class Total Purchase Amount . 72
5.5 Official Leaderboard Displayed at Monopoly Market 73
5.6 Product Purchases by Time of Day . 74
5.7 Cumulative Summary and Trend of Detected Sales Over Time 75

D.1 Sequential Diagram of a Initial Request from Monopoly’s Crawler 91
D.2 Overview of API Endpoints Provided by the Default Plugin Pack 92
D.3 Partial Application Container Overview from a Netdata Dashboard 93
D.4 Partial Database Container Overview from a Netdata Dashboard 94
D.5 Partial System Overview from a Netdata Dashboard 95
D.6 Complete Application Database Schema . 96

3

D.7 Application Performance Metrics Overview from a Grafana Dashboard . . . 97
D.8 Long-term Sales Overview from a Grafana Dashboard 98
D.9 Comparison of Products per Country of Origin from a Grafana Dashboard . 99
D.10 Application Performance Metrics Overview from a Graylog Dashboard . . . 100
D.11 API Access Statistics from a Graylog Dashboard 101
D.12 Swagger UI Generated from Application’s OpenAPI Description 102

E.1 White House Market - No JavaScript Page 104
E.2 Invictus Market - JavaScript Warning Message 104
E.3 White House Market - Entry CAPTCHA 105
E.4 Invictus Market - Entry CAPTCHA . 105
E.5 Monopoly Market - PGP Order Requirements 106
E.6 The Majestic Garden - PGP Registration Requirements 106
E.7 Dark0de Market - Landing Page . 107
E.8 Cannazon - Login Page . 107
E.9 Monopoly Market - Tutorials List Page . 108
E.10 Monopoly Market - Tutorial Article Page 108
E.11 Product Listing Example - Cannabis Infused Gum 109
E.12 Product Listing Example - Cannabis Candy 109
E.13 Product Listing Example - Cannabis Buds 110
E.14 Product Listing Example - Mushrooms . 110
E.15 Product Listing Example - Cocaine . 111
E.16 Product Listing Example - Methylphenidate 111

4

List of Tables

2.1 Imperiya Bundle Offer Comparison . 17

4.1 Cascading Authorisation Scopes . 47

5.1 Top 10 Products by Purchases . 71
5.2 Top 10 Vendors by Total Sales . 72
5.3 Absolutely Minimal Revenue Estimate of NextGeneration Vendor 73
5.4 Database Table Statistics . 76
5.5 Database Table Rates of Change . 76
5.6 Results Matched by the Single Output Correlation Strategy 77
5.7 Order Details with Addresses Belonging to NextGeneration 78

C.1 Tor Network Traffic Sample from 2008 . 87
C.2 Tor Network Traffic Sample from 2010 . 87

5

Listings

4.1 Package Extension Allowing Imports from Scattered Packages 44
4.2 API Resource Plugin Class Import . 45
4.3 Database Plugin Class Import . 46
4.4 Examples of JWT Payloads with Authorisation Scopes 47
4.5 ORM-built Database Query Example . 48
4.6 Counts of Scraping Entries over Time . 62
4.7 Counts of Product Listing Removals over Time 62
4.8 The Most Purchased Products with Categories 63
4.9 Countries of Origin with the Most Products 63

D.1 Algorithm for a Recursive Python Module Lookup and Import 88
D.2 Algorithm for Listing and Filtering Classes in a Python Module 89
D.3 Database Query for Minimal Vendor Revenue Estimation 89
D.4 Partial Algorithm for Monopoly’s Product Listing Data Extraction 90

6

Chapter 1

Introduction

With the unstoppable evolution of the Internet, cryptography and privacy related software,
a new and dangerous place on the Internet has emerged and is gaining popularity, the dark
web. This part of the Internet contains services inaccessible by conventional search engines
and web browsers. Accessing this part of the Internet requires specialised software providing
its users with a high level of anonymity. The original incentive to improve anonymity on the
Internet was to allow free speech, uncensored news reporting and fight against constant user
tracking. However, most activities taking place on the dark web are illegal. Criminality
has always been present in human history, but now it reaches a whole new global level.
Instead of the necessity to know people to buy or trade with illegal goods, information or
services, people can now go online and purchase such things with a few simple keystrokes
and clicks. Thanks to modern privacy tools, it is pretty challenging to fight against illegal
activity sources on the Internet effectively.

This thesis focuses on acquiring information from services operating on the dark web
specialising in the trade of illegal items, the dark marketplaces. The ultimate goal is to
design, implement, deploy and measure software allowing a certain level of tracking of
purchases made on some of the marketplaces operating on the dark web. The design of
such software shall emphasise modular, scalable and extensible approach. By implement-
ing modules tailored for individual sites, the program can gather precise and remarkably
detailed information over time. Long-term monitoring can produce vital information about
the website, offered products, active vendors and even the purchases themselves. Such data
can later provide a deep insight into the operations of the selected sites, show current trends
and reveal otherwise hidden knowledge.

One of the essential features of the designed software should also be the automated
creation of a complete chain of custody when acquiring any significant data from the mar-
ketplace websites. In this way, it allows for implementing the acquired information in
cooperation with law enforcement authorities.

1.1 Chapter Contents
Chapter 2 covers the necessary basics to understand the work covered in the following
chapters. That includes the introduction to the Tor network in Section 2.1 on page 9, dark
marketplace analysis in Section 2.2 on page 13, related topics from cryptography in Section
2.3 on page 20, some cryptocurrency background in Section 2.4 on page 21 and topics about
automated website processing in Section 2.5 on page 23.

7

Chapter 3 follows the Theory chapter, providing software design ideas, their consider-
ations and potential requirements. This chapter’s sections describe individual modules of
the software like accessing the service in Section 3.1 on page 28, approaches of automated
website crawling in Section 3.2 on page 31 and scraping in Section 3.3 on page 33, acquired
data persistence considerations and archiving in Section 3.4 on page 35, the analysis and
post-processing of acquired data in Section 3.5 on page 36 and finally the analysis and
correlation possibilities in Section 3.6 on page 37.

The following, Chapter 4, presents a detailed description and feature analysis of the
implemented application. Starting with Section 4.1 on page 40, which lists all the used
software and libraries and explains why they were selected and what were they used for.
The most extensive is Section 4.2 beginning on page 43. It describes all the application
modules in detail, lists implemented plugins and demonstrates essential program parts.
Section 4.3 on page 61 follows; it further describes the selected database used and showcases
some vital SQL queries. The implementation chapter ends with Section 4.4 on page 63.
This last section discusses the implementation of a data analyser/cryptocurrency blockchain
correlation program.

After the implementation is covered, Chapter 5 on page 67 presents the results and
analyses the application’s real-world deployment. Section 5.1 on page 67 first describes the
environment in which was the program deployed. Section 5.1 is followed by Section 5.2
on page 68, presenting tools used for practical application monitoring and selected system
metrics. Finally, Section 5.3 on page 70 presents the achieved results and discusses various
aggregated statistics of each system module.

Lastly, a conclusion of this thesis can be found in Chapter 6 on page 79. It contains
a summary of what was achieved and a brief look into the future of this work.

8

Chapter 2

Theory

This chapter presents some knowledge necessary to understand the rest of this thesis. It
discusses current trends on the dark web with a specific focus on dark marketplaces. More-
over, this chapter aims to provide an introduction into the context of the problem this
project aims to deal with.

The first section of this chapter is going to be about the Tor1 network; reasons of its
existence, current use (and misuse) of the service, a general concept of how this service
works and what it provides for its users is discussed in Section 2.1 on page 9. This thesis is
also heavily focused on dark marketplace trend analysis. Services as such are described in
slightly more detail in Section 2.2 on page 13. This section then primarily focuses on what
kind of services are offered, what is required of users to join, how trading works, and their
business model in general, but specific examples are also described. Section 2.4 on page 21
covers topics such as; what are cryptocurrencies, how do they work, and what is their role
in the context of dark marketplaces. Finally, Section 2.5 on page 23 describes how website
processing can be automated and the potential difficulties of an automated approach.

2.1 Tor Network (Dark Web)
Tor is a distributed low-latency anonymity overlay network using onion routing and tele-
scoping principles. The onion routing is “a general-purpose infrastructure for private com-
munication over a public network”. It provides anonymous connections that are strongly
resistant to both eavesdropping and traffic analysis, as described by David Goldschlag [13]
and Michael Reed [30]. Tor provides anonymity to clients connecting via its network to
publicly accessible servers. It can also provide anonymity for the servers — services deployed
as “hidden services” inside the Tor network are provided with the same anonymity as are
the clients. [1, 5]

With rising concerns about user privacy on the Internet, the existence of Tor network (or
other anonymising services, such as I2P2 or JonDonym3) has been quite inevitable. How-
ever, privacy issues in general will also have to be addressed on a different level as descibed
by Jim Isaak [15], who discusses the Cambridge Analytica Facebook scandal. Tor allows
users to freely and anonymously browse the Internet and creates an environment supporting
free speech, allowing them to fight against oppressive regimes, geographical restrictions and

1https://torproject.org
2https://geti2p.net
3https://anonymous-proxy-servers.net

9

https://torproject.org
https://geti2p.net
https://anonymous-proxy-servers.net

constant user tracking. Section 2.1.1 explains how does the Tor network work. Sadly, not
everything Tor is currently being used for is legal or even morally acceptable. Some of the
current misuses of this service is going to be described in Section 2.1.2 on page 12. Existing
types of attacks and network monitoring possibilities will be mentioned in Section 2.1.3 on
page 13. One concrete type of services running in the Tor network — dark marketplaces,
some of which are used as a target of this thesis — is looked upon in greater detail in Section
2.2 on page 13.

2.1.1 How Does It Work

The explanation and description do not go into immense technical detail. The total under-
standing of which messages and data are being sent and how the protocol exactly works is
not necessary to comprehend the upcoming chapters.

The situation in which the client connects to a publicly accessible server is pretty
straightforward. Since the destination server is public, there is no need for its participation
in the Tor network. The client’s Tor proxy creates a random circuit of Tor routers —
typically three, entry guard node, relay node and exit node — which relay all client’s com-
munication with the server.

The original communication between the client and the target server is encapsulated in
multiple layers of encryption. Each layer of encryption can only be removed by a particular
node from the circuit — this gives each participating node information about the next node
in the circuit but prevents them from reading the communication contents. Only the exit
node can learn what the original communication contains.

The exit node then communicates with the target server on behalf of the user. It is
essential to understand that the exit node forwards any underlying protocol used by the
client to connect to the target server — this means that if the client is using insecure pro-
tocols like HTTP, FTP or Telnet, the exit node has unrestricted access to any information
contained within. Figure 2.1 depicts the previously described communication.

Client Tor Router #10

⋮

Tor Router #11

Tor Router #20

Tor Router #22Tor Router #12

Tor Router #21

⋮

⋮

Tor Router #30

Tor Router #31

⋮

Tor Router #32

⋮

Server

⋮

Figure 2.1: Tor client communicates with a publicly accessible server
The client establishes a Tor circuit through random Tor routers (usually of length 3), final (exit)
router in the chain (in this case #31) communicates with the server on behalf of the client. Black

lines represent original communication contents, each coloured line then a layer of encryption.

The communication with the hidden service (further referred to as HS) is not as simple
as communication with a public server. To provide anonymity to both communicating

10

parties — the client and the target server — the communication model must differ slightly
from the latter.

First, the client has to contact Tor HS directories and locate the service’s descriptors4

from them. This step is not visualised in the corresponding Figure 2.2. The client knows
which directories to contact based on the provided .onion address. The descriptor contains
information about the service’s introduction points (abbreviated by IP). Service IPs are
random Tor routers selected by the HS. These nodes allow the client to initiate a connection
to the HS without knowing the HS’s actual address. [31, 1]

The client then establishes a new random Tor circuit. That can be seen as step 1 in
Figure 2.2. The exit node of this circuit is going to be the rendezvous point (abbreviated
by RP). The RP is a Tor router acting as a middleman in the communication between the
client and the HS. [31, 1]

The client now sends information about selected RP to the HS via its IP, previously
discovered from the service descriptor (step 2, Figure 2.2). Shared keys, necessary to
establish end-to-end encryption with the HS, are part of this communication. In turn, this
IP sends this information to the actual HS (step 3, Figure 2.2). Tor’s connection model can
also be used to authenticate clients5 connecting to the HS. [31, 1]

Client Tor Router #10

⋮

Tor Router #11

Tor Router #20

Tor Router #21

Tor Router #12

Tor Router #13

Tor Router #22

(4)

⋮

⋮

Tor Router #30
(2)

(1)
Tor Router #31

Tor Router #23

Tor Router #32

⋮

⋮

(3)

Tor Router #33

⋮

Server

Figure 2.2: Tor client communicates with a Tor hidden service (HS)
Client first fetches service descriptor from responsible Tor router based on provided .onion

address and then (1) establishes a new Tor circuit ending at a randomly selected Tor
router — designating it a rendezvous point (RP). (2) The client then propagates selected RP to the
HS through its introduction point (IP). (3) After validation, the IP then forwards this message to
the HS itself. (4) The HS establishes a new Tor circuit ending at the RP obtained through its IP.

The RP now forwards all communication between the two parties (this communication is
end-to-end encrypted). Black lines represent original communication contents, each coloured line

then a layer of encryption.

After receiving information about the RP selected by the client, the HS establishes
its circuit to the RP (step 4, Figure 2.2). When the node circuits have been successfully
established, both parties can start communicating via the RP — it now acts as an interme-
diary in the communication between the parties. The other party’s actual address in the
communication is known by neither the client nor the HS itself. [31, 1]

4https://stem.torproject.org/api/descriptor/hidden_service.html
5https://community.torproject.org/onion-services/advanced/client-auth/

11

https://stem.torproject.org/api/descriptor/hidden_service.html
https://community.torproject.org/onion-services/advanced/client-auth/

The scenario in which the client accesses the server deployed as a hidden service signif-
icantly improves the anonymity of the client’s connection too. That is because the com-
munication between the client and the HS is always encrypted comparison the previously
described connection model to any publicly accessible server, which uses protocol used by
the client to connect to the server, not necessarily encrypted course.

2.1.2 Misuse of the Network

With the existence of services that provide almost total anonymity on the Internet, it has
been inevitable that those services would be used for purposes for which they were not
designed. A legal point of view to the anonymity provided by Tor is presented and its
criminal misuse discussed by Tomáš Minárik [23].

In the sense of conflict with the service’s intentions — to provide a safe environment
free of user tracking and monitoring some hidden services violate some state laws or even
fundamental human rights. Websites that aim to provide their users with a service of
some kind make up an overwhelming majority of the Tor hidden services. However, Eric
Jardine [17] estimates, that only a small fraction of users (6̃.7% globally) connects to Tor
hidden services on an average day and discusses such use in correlation to country’s political
conditions. Also, most Internet users now understand websites quite well, making browsing
the dark web quite natural and straightforward to them, making it quite simple for illegal
businesses to grow and thrive on the dark web.

A large portion of those websites provides a place to buy and sell illegal substances,
goods or services ranging from stolen credit cards and accounts on the Internet to guns and
hired assassinations to drugs such as heroin, cocaine and others. These websites are the
primary focus of this thesis and are further described and analysed in their own, separate
Section 2.2.

Streaming services similar to YouTube, without any user guidelines or regulations of
the uploaded content, exist on the dark web. They provide a platform for sharing various
video “genres” generally unavailable on the public Internet. Genres include murder, rape,
human disfigurement, religious executions, traffic accident victims, generic gore, and many
more. Some of those might not be illegal per se but are indeed deeply disturbing.

Shamefully, child pornography makes up a large chunk of the available content on the
dark web too. Whole collections of thousands and thousands of photos and videos are being
sold there. Moreover, even “production studios” with the sole purpose of creating content
like that exist and operate under the veil of darkness and anonymity on the dark web.

Everything previously mentioned is only a fraction of what happens on the dark web
and the Tor network itself, but it paints a vile and disturbing picture of the current state
and misuse of the service. There are currently, of course, more sources of the Tor network’s
misuse. How should the service be used by its users? The interactive protocols such as
HTTP and HTTPS should have a substantial majority share in all the network traffic,
which might not necessarily be the case. It might not be the case because there is no way
to know the exact protocol composition of the network’s traffic for sure. However, the
existing studies of the Tor network strongly suggest there indeed is a significant imbalance
between the interactive and non-interactive traffic.

According to research in publications by Damon McCoy [22] and Abdelberi Chaabane
[5] (from 2008 and 2010 respectively), HTTP does account for an overwhelming amount
of measured connections. Still, it uses very little bandwidth overall (in proportion to the
measured number of connections made). Also, note that HTTPS (displayed as SSL in

12

the relevant tables) only accounts for a fraction of what HTTP does. On the other hand,
a significant amount of traffic within the network belongs to a few non-interactive proto-
cols, one of them a file-sharing protocol — none other than BitTorrent. Protocols such as
BitTorrent or generally any other protocol with high bandwidth usage degrades the service
quality. Analysis of this issue from previously mentioned publications was quite some time
ago, which means that the current state could already be much worse for interactive web
traffic. There has also been a non-negligible number of other protocols being used in the
Tor network. Protocols for remote management like FTP or Telnet (both of which are not
encrypted) are still being used, which makes the task of stealing information from such
sources a simple one for Tor router managers who would wish to do that. Corresponding
traffic statistics can be seen in tables C.1 and C.2 in appendices on page 87.

2.1.3 Attacks and Monitoring

There is a whole range of attacks in various categories (targeting different aspects) against
the Tor network. Categories such as network disruption attacks, censorship attacks and
de-anonymisation attacks. Ishan Karunanayake [20] introduces and describes some of these
attacks while primarily focusing on the client de-anonymisation attacks. Furthermore,
a comprehensive overview and attack categorisation are presented by B. Evers in the “Thir-
teen years of Tor Attacks” [8] publication.

As can be seen in Figure 2.3 there is a significant number of de-anonymisation attacks.
Steven Murdoch [26] describes an attack on the Tor networking using traffic analysis on
a corrupted Tor router. Traffic analysis and classification is key to understanding what is
happening in the Tor network; Alfredo Cuzzocrea [6] describes possibilities and implemen-
tation of Tor traffic analysis and detection using machine learning techniques. Finally, Rob
Jansen [16] describes measuring the network from the point of view of a middle Tor relay in
particular. Their results show that the middle position enables wide-scale monitoring and
measurement not possible from a comparable resource deployment in other relay positions.

It is vital to know that such techniques exist; however, since this work focuses neither on
client de-anonymisation nor disruption of the network or monitoring traffic on the network
level, these topics will not be discussed further.

2.2 Dark Marketplaces
These services are the foundation stone of this work. Dark marketplaces are services that
provide the means for its users to buy or sell illegal goods. Those goods can be stolen credit
card information, online account credentials, guns, drugs and more.

Julia Buxton [3] offers an overview of the issues and challenges cryptomarkets pose
on the Internet. She discusses the history of the subject, presents used technologies and
underlines issues faced by law enforcement agencies. A more in-depth look at the structure
and contents of various marketplaces is offered by Julian Broséus [2]. He provides a detailed
view of the marketplace listings, product categories and vendors. He also shows several
aggregated statistics which identify popular product categories and vendor practices across
marketplaces. Tuomas Harviainen [14] focuses on the social aspect of drug traders and users
on a specific dark marketplace website. This is done through the analysis of the website
contents created by its anonymous users.

Dark marketplaces can exist in several different forms. From online forums, where people
create posts in specific categories when looking to buy or sell something, to e-shops, where

13

Tor attack

Lawyer-based
Attack

Revealing
Hidden
Services
Attack

First node
 attack

Clock Skew
 Atack

De-
anonymization

Attack

Fingerprinting
 Attack

Relay Early
 Attack

Raptor
 Attack

Correlation
Attack

Replay
Attack

Cell Counter
 Based Attack

Correlation-based
Tra�c-Analysis

 attack

Low Resource
Routing At-

 tack

HTTP Pattern
injection attack

Packet timing
watermarking

 attack

Bad Apple
 Attack

Probabalistic
 Attack Attack

Congestion
 Attack

Indirect Rate
Reduction
 Attack

Bandwidth
Estimation
 Attack

Supportive
Attack

Sybil Attack

Influencing
Tor’s Guard

 Selection

Tor Au-
thentication

Protocol
 AttackPacket Size

Analysis
 Attack

 DoS
Attack

Sniper
 Attack

Botnet
Flooding

 Attack

CellFlood
 Attack

Figure 2.3: Tor Network Attacks Mindmap, adapted from [8]
This figure shows concrete attacks against different aspects of the Tor network in their

corresponding categories.

a user’s only worry is adding the products to their basket, providing delivery information
and paying for said goods.

Dark marketplaces in the form of community forums do not account for a majority of
them. On the other hand, it allows for more extensive flexibility of the demanded or sold
goods or services. The only necessary thing to do is select the correct category for the listing
to be created. The forums are more versatile than the e-shop based services, though they
lack simplicity and ease of use. With no strictly enforced form for the forum posts/listings,
they also lack vital information that this thesis is further based upon and requires. Forum
operators often require user accounts to be the first “verified” and activated by posting
their intentions and category interests to an introductory topic category.

The e-shop based services are considerably more user friendly for the vendors and the
customers alike. They provide a familiar environment for their users and define a straight-
forward management interface with the shop. The operation of such services must be much

14

more straightforward than running a forum-based “community,” too. There are two main
branches to the e-shop based services:

1. true e-shops where the operators of such services usually sell the goods directly by
themselves without any external vendors present;

2. marketplace services — a much more common service type that aims to provide a re-
liable platform for vendors to sell their goods at (under a commission).

The e-shop system allows the simple creation of a trustworthy incentive for the cus-
tomers to buy the advertised listings — a reliable ordered/delivered counter. Services
voluntarily having such features available to their users improve their trustworthiness to
them. The presence of this information is crucial, and its importance will become appar-
ent in the following chapters. The marketplace vendors are usually manually verified and
approved by the service operators before being able to post any listings.

Some of the websites will not even require an account to be created by the buyer before
being able to make a purchase on the site (compared to the forums where you, in most
cases, need one). Not having an account automatically means that users do not have to
send their money to the marketplace operators first. Sending the funds straight to the
vendor is called a direct deal. There is also an escrow purchase option employed mainly
(but not exclusively) by marketplaces with internal wallets — these two options are further
described in the following section.

There is a considerable “issue” with “exit scams” among the dark marketplaces6. The
exit scam happens when the marketplace operators close their service without any further
notice to the users and keep all the funds from the internal cryptocurrency wallets to
themselves. This fact makes wallet-less marketplaces much more reliable and dependable
for both the merchants and the customers, resulting in a drastic rise in their popularity.
Such marketplaces are further described and examined in the following section.

2.2.1 Business Model

The marketplaces’ business model is generally based on per purchase commission percentage
(but completely free marketplaces also exist). What does differ is how the commission gets
to the marketplace operators, which is further based on the type of payment arrangement
for the purchase itself:

Escrow The customer typically sends the funds to “their” internal wallet at the market-
place site and then makes the purchase. Though this type of deal is also possible
without the customer’s marketplace wallet — this type of purchase only signifies that
the marketplace is a middleman between the vendor and the shopper.
In this situation, the vendor cannot steal the customers’ money because they only
receive the money after delivery. On the other hand, the marketplace operators now
have access to all the funds, which allows the exit scam to happen.

Direct deal In this case, there is no party acting as a middleman between the vendor
and the shopper. The funds are transferred from the client’s account straight to the
vendor’s account.

6https://www.darknetstats.com/fears-grow-of-exit-scam,
https://www.darknetstats.com/do-not-deposit-apollon-market,
https://www.darknetstats.com/grey-market-may-have-exit-scammed,
https://www.darknetstats.com/nightmare-market-is-pulling-up-an-exit-scam

15

https://www.darknetstats.com/fears-grow-of-exit-scam
https://www.darknetstats.com/do-not-deposit-apollon-market
https://www.darknetstats.com/grey-market-may-have-exit-scammed
https://www.darknetstats.com/nightmare-market-is-pulling-up-an-exit-scam

That results in marketplace operators not having direct access to the funds but now
allows the vendor to keep the money. Nevertheless, this situation can still be im-
proved (from the viewpoint of the marketplace) by employing the vendor’s previously
mentioned counter of successfully delivered orders.

The marketplace’s commission is typically subtracted immediately in the case of escrow
deals. The vendor then receives the rest of the funds. As for the direct deal, the commission
payment is in the competence of the vendor. Some services require the commission payment
weekly, some every month. These are some selected rules and information, according to the
official Monopoly Market forum post7 regarding vendor applications:

• “We charge a flat rate of 5% per sale, you are expected to pay your fees once per
month. We do not take fees out of your orders directly. . . ”

• “We expect all vendors to login everyday (weekdays), we do not require you to login
on the weekends. If you do not login for 72 hours you will be automatically placed
on vacation mode, if this continues to happen you will be removed. . . ”

• “. . . Vendors with large defect ratings (disputes/issues) will be further investigated for
scamming and possibly removed. . . ”

• “. . . New vendors are forced to use escrow where as Established vendors can use both
escrow and direct deals, you have the ability to toggle each setting on or off. You also
have the ability to offer a flat % discount for DD8 orders, this is displayed as a notice
on your listings. . . ”

2.2.2 Marketplace as a Service

If vendors have no programming or IT experience in general but still wish to have their
own dark marketplace on the Internet, it is not the end of the world — solutions do exist.
A darknet “company” named Imperiya Inc9 is selling marketplaces as a service. They offer
convenient product bundles ranging from 5, 000 EUR to 35, 000 EUR containing various
feature plugins and customer services. Detailed bundle comparison can be seen in Table
2.1 below.

Imperiya offers hosted marketplace solution with their own Content Management Sys-
tem (CMS). That is, of course, just the tip of the iceberg. They offer a wide range of plugins
(some of which are a part of the service bundles, hence be seen in the Table 2.1) such as:

• tumbler plugins — “. . . allows you to participiate inside of Imperiya Plus program
where you can earn from fee done by Imperiya Tumbler;”

• referral plugin — “. . . allows you to have your own marketing team who you will pay
by perentage they reffer to buyers allows you to boost sale boost your presence and
many more;”

• giftcard plugin — “. . . allows you to sale your own giftcards which can be reedem
inside of your shop;”

7http://4jm77gv7h36xfnvnslizyavt2anhhxk4ihv5yqoatak6yzgkjsfthkid.onion/forum/viewtopic.php?id=35
8direct deal
9http://imperiyakggyacaf.onion

16

Table 2.1: Imperiya Bundle Offer Comparison

Standard Business Plus Ultimate
5, 000 EUR 10, 000 EUR 15, 000 EUR 35, 000 EUR

Payment Gateway Bitcoin, Monero, Litecoin
Imperiya Central Listing + featured for 3 months
DeepWebTimes Listing + Banner + Article
Technical Support 3 3 3 3

Customized Template 3 3 3 3

Own Logo 3 3 3 3

Envoy11 Verified Vendor Rank 3 3 3 3

Live Chat Addon 3 3 3 3

Escrow Plugin 3 3 3 3

Marketing Support Separately Lite Medium Highest
Customized Tor Domain Separately 3 3 3

Clearnet .to Domain Separately 3 3 3

Marketplace Feedback Plugin Separately 3 3 3

Refferal Code Plugin Separately 3 3 3

Lottery Plugin Separately Separately 3 3

Slot Machine Plugin Separately Separately 3 3

Any Other Plugins Separately Separately Separately All

This table displays marketplace service bundles offered by Imperiya and the differences in included
features or services among them. Features/Services marked with Separately are not included in the

corresponding bundle but can be ordered separately at any time.

• lottery plugin — “. . . allows to simulate lottery like in casino where you can put win
prize and price of lottery ticket and our machine automaticly choose winners you can
put is there 3 winners 1 winner or multiple winners;”

• slot machine plugin — “. . . allows to simulate slot machine like in casino where you
can put products and winning for example 3 weed logo gives 5g of weed and every spin
is charged 5 EUR you can edit chances of win for multiple combination of winning
which will interact your customers and boost your earnings;”

• and a few more.

The descriptions above were taken directly from Imperiya’s website without any mod-
ification. As can be seen, they offer a wide range of plugins, services, provide support of
payment gates for several cryptocurrencies and a Cloudflare-like CAPTCHA landing stop-
page. An example of the CAPTCHA landing provided as a service can be seen in Figure
E.4 on page 105 from the Invictus Market10.

2.2.3 Website Standards

This section presents several features that are often present across websites and some rules
generally followed by website operators on the dark web:

10http://invicus3w24e22upa4scshje3e5rxqjjv4hf7l7p6lckzkukylsewwid.onion
11http://envoys5appps3bin.onion (Envoy Forum, a forum for cryptomarket vendors)

17

• A majority of the dark market websites follow and enforce a strict zero JavaScript
policy. Animations and dynamic elements are often still present but are only imple-
mented using CSS version 3. This feature can be seen in Figures E.1 (in the form of
strict no JavaScript policy) and E.2 (in a more permissive JavaScript enabled warning
form) on page 104.
JavaScript can be used to acquire some additional information about the user’s ses-
sion, as demonstrated by Keaton Mowery [24] or Martin Mulazzani [25]. That is due
to the various browser features like Cookies, LocalStorage or IndexDB being available
from JavaScript. Furthermore, browser fingerprinting principles can be employed to
track the user’s session even further.

• Access to websites is virtually always CAPTCHA protected. There is no accessing
the website’s contents without passing the challenge prompts. Also, the challenges
are not standardised and frequently self-implemented and customised. Third-party
CAPTCHA providers (such as Google’s reCAPTCHA or Cloudflare’s protection) are
not used. Real examples from the dark web are shown in Figures E.3 and E.4 (both
taken from the market’s landing page) on page 105.

• Some websites require users to log in to their accounts before accessing the website’s
contents; an example screenshot was taken from Dark0de Market in Figure E.7 on
page 107 (next web page after passing CAPTCHA prompt). Some allow browsing
the listings without an account and only require logging in to make a purchase; that
is the case for the Cannazon market shown in Figure E.8 on page 107. Although
completely account-less and therefore wallet-less services do exist too.

• Approximately half of the services require their internal account wallets to be used to
make a purchase, effectively forbidding direct financial contact between the customer
and the marketplace vendor. The other half either does not force their users to first
charge their account wallets before making a purchase or does not have an internal
account wallet at all.

• Some very exclusive markets may require invitation or reference to allow a user to sign
up, but an overwhelming majority will not require this step. Account registrations are
email-less and typically do not require any further verification. Because there is no
way to recover lost passwords via email, the sites will ordinarily generate a mnemonic
string (some 20 random words long) which can be used to reset the account password.

• While placing an order, the user’s sensitive data must be encrypted by the users
themselves using the PGP standard or are automatically encrypted by the website.
The public keys necessary for the encryption are typically part of the vendors’ ac-
counts. The buyers either have their public key as a part of their account or provide
the key when posting the order. In the case of Monopoly Market (an account-less
marketplace), Figure E.5 (page 106), the PGP key is provided and validated by the
site when posting an order. Other implementation, shown in Figure E.6 (page 106),
taken from The Majestic Garden market, requires users to provide a valid PGP key
while creating an account at the market’s website.

Some services even include comprehensive and well laid out tutorials for their users.
The subjects are well explained and even illustrated with screenshots. The covered topics

18

range from “Using the Tor Browser securely” to “Creating own Bitcoin address” to “Com-
municating securely using PGP.” It is relatively safe to say that even an absolute beginner
could quickly and anonymously order illegal stuff from the Internet. One such page with
a few articles, taken from Monopoly Market, is shown in Figure E.9 on page 108. A part
of the specific article from the previous selection is shown in Figure E.10 on page 108.

2.2.4 Available Listing Information

The available information about the listings and their structure depends mainly on the type
of the marketplace (forum based × e-shop based, as mentioned before). These are some of
the information fields typically available:

Category The listing category is one of the fields that are present almost always regardless
of the marketplace type. Some basic structure must always be followed by the website
operators to allow some form of management.
Category specification varies; some marketplaces are working with pretty generic cat-
egories like “Drugs” or “Stolen Accounts” where some drug-focused marketplaces go
into detail “Opioids – Buprenorphine”, “Ecstasy – Methylone & BK”, . . .

Vendor Some basic information about the vendor is always present too. The more in-
formation there is about the merchant, the more genuine the listing looks for the
customers. Country of origin and a brief history of the vendor is sometimes given
too.

Age It can often be determined as to how long the listing has been posted on the market-
place, providing the exact or at least rough date of the listing’s creation.

Price Of course, price is typically part of the posted listing; this does not apply only in
rare circumstances or particular listing categories. As a rule of thumb, the prices are
not listed in the related cryptocurrencies but rather in a usual fiat currency such as
US dollars or euros. Some marketplaces even allow the user to select the preferred
currency displayed.

Description Customarily, a short description of the product or service is also given. The
contents vary and depend on the category of the listing. For drugs, that usually
includes the recommended dosage or a few “trip” tips. Some additional shipping
information or product updates are often part of the description too. For stolen
credit cards or payment accounts, it might be the current balance and other relevant
information.

There is also some information that is not always available but is exceptionally useful
for tracking the listing. All of the following are customarily only available on e-shop based
marketplaces:

Purchases A purchase counter is an essential feature for the customer to raise the trust-
worthiness of the listing and marketplace, but it is also crucial information for effective
automated tracking.

Views A listing view counter is not as important as the purchase counter, but it can
provide an exciting insight into the product’s popularity. Combined with the number
of orders, a purchase percentage can be calculated.

19

Stock Not particularly frequent information to be present in the listing, but selected e-
shops have been observed to provide such data. The presence of this information
again allows for a deeper insight into the listing’s monitoring.

Vendor Specifics It is not unusual for a marketplace to provide information such as
the current number of vendor’s active orders, number of active disputes or the total
number of successful/failed deliveries. Public availability of such information improves
the marketplace and the vendors’ trustworthiness; however, it also provides valuable
tracking data.

All the data entries above can be collected over time (even automatically, after solving
some previously mentioned obstacles) and utilised to monitor the vendor’s activities or the
listings themselves effectively. Storing the values of these attributes as integers allows to
detect their changes over time conclusively. That is the core principle this project will work
with later on.

2.3 Cryptography
Encryption is a foundation of privacy anywhere on the Internet, darknet included. The
need for privacy and hence the encryption has already been discussed by Whitfield Diffie
and Martin Hellman [7] back in 1979. Nowadays, some form of cryptography is used in
almost everything to ensure the authenticity, integrity and privacy of the data in question.
Specifically, it is used in cryptocurrencies, obviously, in onion routing principles and Tor
itself, and even directly in purchases on dark marketplaces.

2.3.1 PGP

Pretty Good Privacy (PGP) is software based on OpenPGP, an RFC4880 [10] standard
providing encryption, decryption, signing and function for key management [12, 34]. There
is support for both symmetric and asymmetric encryption algorithms and hash functions
[10].

This program is used almost everywhere on the dark web and not exclusively for en-
crypting sensitive information shared through an untrusted third party. It is also used as
a public authenticity verification mechanism for the entities operating on the dark web as
risks of phishing schemes are very high, especially among the dark marketplaces. Typi-
cally, the website operators publish their public PGP keys with a message (usually called
a canary) they periodically update and sign using their private PGP key. Using the given
public key, website URL, and the message, any user can validate the authenticity of any
currently visited website.

Many popular darknet websites (not just marketplaces exclusively) follow and imple-
ment the Onion Mirror Guidelines (OMG)12 — a set of rules and instructions defined by
dark.fail13 to “. . . reduce the impact of phishing and to ease automatic PGP verification of
mirrors. . . ” The actual verification of PGP signed messages from websites following the
OMG is very quick and straightforward. That is thanks to a publicly available PGP tool14

also implemented by dark.fail. This tool leverages the adoption of OMG by partnered
websites to provide users with a simplistic and trustworthy PGP key and signed message

12https://dark.fail/spec/omg.txt
13https://dark.fail
14https://dark.fail/pgp

20

https://dark.fail/spec/omg.txt
https://dark.fail
https://dark.fail/pgp

verification. It also allows dark.fail to automatically monitor, verify and keep track of
corresponding .onion domains.

The encryption capability of PGP is primarily used when sending or exchanging sensitive
information such as delivery addresses. PGP is a generally used and accepted standard for
this kind of task across all dark marketplaces. It typically does not have viable competition.

Interest in collecting any public PGP keys found on the dark web is also well justified
since it can be leveraged to gain additional information about the key owner. Public PGP
keys always contain the key’s creation time, owner’s name, and email address. It is to
be expected that these fields will not contain the actual real names of, for example, the
vendors, though anything is possible. At any rate, it does provide additional information,
and it can be used to unequivocally identify unique users when used on multiple sites on
the dark web.

2.4 Cryptocurrencies
Cryptocurrencies are the last puzzle piece necessary for almost completely anonymous trad-
ing over the Internet. Browsing privacy is handled by Tor using appropriate encryption.
The private communication and sharing of sensitive data over the Internet are covered
by asymmetric PGP encryption, and finally, anonymous payments are possible thanks to
cryptocurrencies.

Instead of the owner’s name and account number, as used in banks, the cryptocurrencies
use addresses as account (wallet) identifiers. These identifiers provide only a single piece
of information — the target account. Who owns the account is unknown, and there is no
way to get that information from the cryptocurrency system itself; that information is not
part of the account. The transactions are stored in a ledger which is implemented using
the blockchain data structure. This structure allows the system to maintain the integrity
of the data. Cryptocurrencies are also distributed systems which means that no one, in
particular, manages the cryptocurrency system. Distributed system (using the blockchain
structure to store its data) signifies that no single entity can change the data and get away
with it (even though the entity actually can change the data). [27]

One of the most well-known cryptocurrencies is Bitcoin. It uses a public ledger of
transactions in the form of the blockchain, which is one of the reasons this thesis focuses but
does not limit itself exclusively on Bitcoin. It is currently widely used almost everywhere;
darknet included even though its privacy is not guaranteed by itself.

Customarily, at least Bitcoin and Monero are the primary payment methods widely
accepted on an overwhelming majority of dark marketplaces. Specific markets support
even more coins in addition to Bitcoin and Monero, such as ZCash or Litecoin.

A recipe for “safe” purchases on the dark marketplaces with Monero according to a tu-
torial article15 at Monopoly Market:

1. buy Bitcoin;

2. exchange Bitcoin for Monero;

3. receive Monero in a holding wallet;

4. send your Monero to a new wallet;

15http://4jm77gv7h36xfnvnslizyavt2anhhxk4ihv5yqoatak6yzgkjsfthkid.onion/tutorials/cleancoins

21

5. fund your order.

Users are instructed to use the mainstream websites like LocalBitcoins16, Coinbase17 or
Coinmama18 to buy their Bitcoins. Which they should then exchange for Monero to “clean”
them. It is also said that they can alternatively buy Monero directly at LocalMonero19 or
Kraken20.

2.4.1 Blockchain

Simply put, the blockchain is a linked list of transactions with some additional informa-
tion working in a distributed environment on a consensus basis, as presented by Sarah
Underwood [32]. The ability to transfer some value from one account to another within the
bitcoin is provided by transactions. A transaction is an entry within a given block. The
blocks are linked together and secured with hashes creating the blockchain representing the
public transaction ledger. The simplified blockchain structure can be seen in Figure 2.4.

Merkle Tree RootMerkle Tree Root

Previous Block
Header Hash

Block n-1
Header

Previous Block
Header Hash

Previous Block
Header Hash

Block n
Header

Previous Block
Header Hash

Previous Block
Header Hash

Block n+1
Header

Previous Block
Header Hash

Merkle Tree Root

… …

Figure 2.4: Simplified Bitcoin Blockchain Diagram
The blocks of transactions contain a reference to the last block, effectively creating a chain of

blocks — the blockchain. This structure ensures the integrity of the information within the whole
system.

As it has been said before, Bitcoin’s blockchain is actually completely public. However,
that is not a rule [32]; for example, Monero’s blockchain is private. The blockchain of
a cryptocurrency is an equivalent of bank account statements of all the accounts at a bank
only without knowing who owns which accounts. This information can still be used as
transactions can be easily monitored in such an environment. What is more important, the
blockchain history dates back literally to the first second of its creation. Such a fact means
that the whole history of the currency and all the accounts is available too.

The Figure 2.5 shows another critical part of the cryptocurrency blockchain, a Merkle
tree. This is the data structure that ensures the validity of all the pieces of data within
a single block. It is a tree structure where leaf nodes contain hashes of the data and tree
nodes contain a combined hash of both its branches. This way, when there is a change in
the block’s data, the original hashes within the tree will not match with the hashes of the
new data, and the change will be detected. The integrity of the whole tree will be ensured
by the next block when placing the tree root into the header of the current block. [21]

16https://localbitcoins.com
17https://www.coinbase.com
18https://www.coinmama.com
19https://localmonero.co
20https://www.kraken.com

22

https://localbitcoins.com
https://www.coinbase.com
https://www.coinmama.com
https://localmonero.co
https://www.kraken.com

hash(left, right)

Merkle Root

hash(left, right)

Merkle Node

hash(data)

Merkle Node

Data Data Data Data

hash(data)

Merkle Node

hash(left, right)

Merkle Node

hash(data)

Merkle Node
hash(data)

Merkle Node

Figure 2.5: Merkle (Hashed) Tree Diagram
This figure displays an example Merkle tree with four data entries. Data hashes are stored in the
leaf nodes, tree nodes then contain hashes of their child nodes. This repeats all the way up to the

root node. Hash of the root node can then be used as a data signature ensuring their integrity.

2.5 Automated Website Processing
This section covers techniques allowing the computer to, in some limited form, understand
the information contained by web pages. The ability to automatically and periodically track
what is happening on a given website is a large and necessary part of this work. The ability
to do just that in conjunction with understanding what the web pages contain would allow
the computer to monitor changes happening on the given websites (marketplaces) over time.
Websites are somewhat “alive” in a sense, and that especially applies to marketplaces —
new listings are being added, listings being sold out and eventually removed, new vendors
showing up, etc. Using tools for automated website processing would allow the computer
to make sense of what is happening at given websites.

Web page link location, extraction and website structure mapping is covered by crawling
principles in Section 2.5.1. Then, some of the options available when trying to make sense
of information within the source code of web pages are looked into in Section 2.5.2.

2.5.1 Crawling

Website crawling is the Internet’s daily bread. Search engines, such as Google, Bing, Yahoo!
or most probably some other, use web crawlers of some sort in their indexing algorithms.
Their target is to discover and map the websites’ structure (and, in a way, the World Wide
Web as a whole) while indexing the page contents to allow effective searching in the content
published “anywhere” on the Internet. Since the Web is not a static collection of pages but
a distributed system, its automated exploration is necessary to navigate the Web’s ever-
changing contents. An internet-wide search for any specific information would be arduous
without the search engines and their indexing of public websites.

Based on [4, 28, 29], web-crawlers themselves are programs that take advantage of the
Web’s graph structure as a means of its exploration. Furthermore, Gautam Pant [28]
says that in their simplest form, given a starting location — seed page — they process its

23

contents, looking for website links to follow. Following internal website links (a reference to
a different page on the same site) helps map the given site’s structure. In contrast, external
links inform of the existence of different sites and, in this way, allow their mapping as well
(a visualisation can be seen in Figure 2.6). Exploring parts of the Internet that themselves
wish to be explored and typically try to make the mapping of the site as easy as possible
is, of course, more superficial. Applying the same exploration techniques on the dark web
would not yield results as useful since almost all preset websites try to protect themselves
from visits of any automated entities.

/

https://external-site.com /contact /category …

/category/1 /category/2 …

/listing/1a /listing/1b … /listing/2a /listing/2b …

Figure 2.6: Graph of Website Links
Each line represents a link (either internal or external) within a given page. The graph shown in
this figure has already been converted to a corresponding tree representation with the root at the
site’s landing page. If that were not true, the graph would also have to contain reversed edges in
some cases (e.g., if all the pages contained a global menu, then the graph of such links would be
a complete graph — because it is possible to get from each page to any other page via the menu).
One such tree representation could be generated by a breadth-first search (BFS) based crawling

algorithm.

Basic principles of website crawling are uncomplicated:

1. access the website — this customarily poses no problems on the Internet, but this is
a serious issue on the dark web that must be solved or worked around;

2. download the website contents — the web page in question can be downloaded by
sending an HTTP request via curl or other relevant libraries and software;

3. locate and extract links to other pages from the website’s source;

4. persist (if desirable) the link to the current page and its meta-data (such as crawl
timestamp, referrer link, etc.) and recursively explore them later.

Crawlers can still gather precious information about the concrete web pages whilst
accessing them and looking for other page links, such as:

• access date and time — this can be used to determine when were some pages re-
moved/hidden or became otherwise unavailable;

• list of referring pages — information about referring pages can later describe the struc-
ture of the whole website (and even point to other relevant sites);

24

• all the information from HTTP request/response headers — such entries can leak and
reveal much critical information about the webserver;

• HTTP status codes; website hosts; web page URL paths;

• other relevant, related or affiliated websites (from links to external websites);

• and possibly many more.

The “naive” crawling (consisting only of HTTP/HTTPS request to get the web page’s
source) may work with many websites on the Internet; however, it will often not be enough.
A modern website built as a dynamic single page application (SPA), hugely relying on
JavaScript, will pose a problem to the scraper. Typically, no data can be acquired from such
websites without really “running” the page. Headless and programmatically controllable
web browser proxies are typically used to work with such websites. Another difficulty may
arise when CAPTCHA challenge prompts are a part of the targeted website, or the remote
web server enforces a restrictive HTTP request limit. Each of these challenges can be
handled somehow; however, as they can be combined, it may require a significant amount
of engineering ingenuity to bypass all these measures automatically.

2.5.2 Scraping

Website scraping is closely related to the previously described crawling. The aim of crawling
is website structure mapping and page discovery. At the same time, the purpose of scraping
is the extraction of specific interesting data and metadata from given website pages which
is typically a more complex task.

It depends on the used scraper to what extent is the data extracted from the web page’
source and how detailed the persisted output is. There are several options:

• generic lookup scrapers — methods in this category work with any provided web pages,
the structure of the page’s source is not at all critical, they use regular expressions or
concrete lookup strings to locate interesting parts of the page and then extract such
information;

• specialised scrapers — these methods are created for concrete websites and are (at
least partially) dependent on the structure of the pages, they are exact, their output
is trustworthy and reliable (until the page’s structure changes) and can extract any
necessary information from the given page in great detail;

• last but not least are smart generic scrapers leveraging spatial information of the
page’s structure and its other properties — such methods are, simply put, trying to
“comprehend” the web page as any human reader would, these are profoundly ad-
vanced and difficult to implement (currently subject of work to many researchers).

The potential obstacles of scraping are virtually the same as previously described for
crawlers (since crawlers could be defined as generic lookup scrapers): human verification
challenges, rate limiting, dynamically loaded page content, etc.

2.5.3 Human Verification

Neither crawling nor scraping themselves typically represent a problem for ordinary websites
on the Internet. Sadly, that is not the case on the dark web. Almost everyone is trying to

25

prevent bots from accessing their websites to the maximum extent possible, which results
in frequent CAPTCHA challenge prompts and other “aliveness” verification methods. Such
methods can also be used as a form of DDoS protection.

Some basic challenge types can be beaten using machine learning techniques or, in
some cases, intelligent algorithms using the trial and error approach. Nevertheless, modern
CAPTCHA challenges have evolved, and typically computer vision and machine learning
cannot help. Only one possible solution is left when completely automated algorithm-
based solutions fail — to pay people who would solve the challenge prompts on behalf of
the program.

Some companies employ people to solve CAPTCHAs and offer that as a per-prompt
paid service, and it is a flourishing business. That means that crawling and scraping bots
can still be highly automated using such services. For costs around 0.8 USD per 1000 solved
non-reCAPTCHA21 entries and 2.99 USD per 1000 solved reCAPTCHAs21 or 0.6 USD per
1000 solved image entries22 and 2.00 USD per 1000 reCAPTCHAs22, the prices are very
reasonable for small scale operations.

CAPTCHAs

Challenge prompts validating visitor’s aliveness exist in various forms, all of which take
advantage of different mechanisms which are usually hard to solve for a computer but are
not too difficult for people [33]. Google’s reCAPTCHA23 is one of the most well-known
CAPTCHA nowadays, currently in versions 2 and 3. Version 2 checkbox mode can be seen
in Figure 2.7(b); the invisible mode badge then in Figure 2.7(c) The significantly more
time-consuming version 1 was deprecated by Google a few years ago (example in Figure
2.7(a)).

(a)
(b) (c)

Figure 2.7: Google’s reCAPTCHA Version Examples
This figure shows the reCAPTCHA in version 1, deprecated on 2018-03-31 (a), version 2 checkbox

mode (b) and invisible mode (c).

Such prompts can be encountered in various forms in the darknet’s wilderness, some
of them significantly more twisted than Google’s reCAPTCHA v1. A few examples taken
directly from selected darknet marketplaces are shown in Figure 2.8. Additional full web
page screenshots with CAPTCHA prompts can also be seen in Figures E.3 and E.4 on page
105.

The differences between challenges shown in Figures 2.7 and 2.8 should be pretty easy to
spot. As shown by reCAPTCHA in Figure 2.7, the trend aims to simplify the steps necessary
to provide quality protection. That is, of course, at the expense of heavy JavaScript usage
in conjunction with a need for communication with external services. That is also discussed

21https://2captcha.com
22https://anti-captcha.com
23https://www.google.com/recaptcha

26

https://2captcha.com
https://anti-captcha.com
https://www.google.com/recaptcha

(a)
(b)

(c)

(d)

(e)
(f)

Figure 2.8: CAPTCHA examples from selected darknet websites
This figure shows a pretty unique “click inside the broken circle” CAPTCHA challenge (a); various

comparatively standard CAPTCHA prompts (b), (c) and (d) and two relatively modern and
sophisticated CAPTCHAs using various form field types as their inputs (e) and (f).

in-depth by Ruti Gafni [11] and Christos Fidas [9]. Who both discuss, not only, the need
to focus on the ratio between difficulty and appropriate user security.

Aliveness verification on the dark web is somewhat specific to the rest of the internet.
Dark web CAPTCHAs try to be self-sufficient (they do not require any external services)
and do not require JavaScript. There is a limit to what can be achieved without JavaScript
while still providing a reasonable user experience and necessary website protection. Not
caring about user experience is, no doubt, also a possible way on the dark web.

Other Means of Limitation

Limitations and monitoring imposed on the client by the webserver do not end with
CAPTCHA challenge prompts. There are several more options for client monitoring and
human verification. Because of that, the automated client connecting to the webserver must
seem and act like a human and behave “politely”.

The remote web server might limit the rate at which it accepts requests sent by HTTP
clients. When a client goes over such a limit (by sending too many requests in a short
period), the remote server may impose some restrictions on the misbehaving client. Those
may include user session getting revoked (getting logged out of the account, CAPTCHA
challenge popping up) or, more drastically, IP address (or whole IP subnet) of the client
getting temporarily blocked by the server.

There is even more information for the server to validate and monitor, such as various
HTTP request headers (User-Agent, Accept-Language, Accept, etc.) or cookies. The
server can even employ a type of advanced client behaviour monitoring based on received
HTTP requests. However, these measures are quite extreme and not encountered too
frequently.

27

Chapter 3

Design

This chapter proposes possible solutions for each step of the program, from accessing the
service within the Tor network to analysing the acquired data. Furthermore, it discusses
potential implementation considerations and offers a broad overview of each problem along
the way. The proposed features and possible solutions try to address the program’s long-
term deployment, future extensibility and modular design while trying not to constrain the
programming language or the platform of the resulting implementation.

The two main areas of the implementation — data acquisition and data analysis — are
further split into several subsequent steps/modules described in the upcoming sections.
The following Section 3.1 covers the access to a service — looking up the address of the
web services in Tor, programmatically connecting to Tor network or the web services and
potential automation pitfalls. Usage of crawling and scraping principles to extract crucial
information from the web pages is described by Sections 3.2 (page 31) and 3.3 (page 33).
Section 3.4 on page 35 then focuses on the aspects of data persistence — which data need
to be persisted, how they could be stored, and the possible storage options. The analysis
and post-processing of the relevant data are covered by Section 3.5 on page 36. The last
section of this chapter, 3.6 (page 37), is devoted to the cryptocurrency blockchain analysis.
It aims to provide a few valuable ideas for the transaction correlation implementation.

3.1 Accessing the Service
This section focuses on the first step in the journey of automated scraping of web services
running inside the Tor network. The section covers the general idea behind regular browser-
based/automated access to the Tor network, their differences, and the possible challenges
arising from the usage of automation.

The options of accessing the Tor network itself is covered in Section 3.1.1. Section 3.1.2
then describes accessing the website available from within the Tor network. Finally, Section
3.1.3 talks about some of the challenges lying behind simple “access” to the service.

3.1.1 Accessing the Network

Accessing the network interactively is relatively straightforward — starting by downloading
the Tor Browser package from the official website1 and installing it. The web services
operating inside the Tor network are now accessible via the browser — though this is only

1https://www.torproject.org/download

28

https://www.torproject.org/download

handy for people. What has happened in the background is that the Tor Browser launched
a proxy client responsible for relaying the connection to the Tor network and is requesting
the websites through that proxy. The Tor proxy is part of the installed package and can
be used as a standalone component.

There are two ways the program can work. Either the program is implemented to ignore
the fact that it first needs to connect to the Tor network and lets the user take care of it.
Alternatively, the program launches and uses the proxy client itself. The former option is
more simple implementation-wise; the program does not have to worry about setting up,
launching and connecting to the proxy. The user themselves would have to set up the proxy
and route the program’s connections through the proxy. This option is convenient when
running the tools in containerised environments (safer, transferable and easily manageable).
The latter increases the flexibility and control options of the program, typically with the
cost of having to launch and manage the Tor proxy instance by the program. However,
containerised Tor Proxies exist too — this potentially could combine the benefits of both
the approaches — the proxy is ready to be used in a container but can still be controlled by
the program if needed.

The program’s target platform would not be constrained in any way since the Tor proxy
is available for both Windows and UNIX-based operating systems.

3.1.2 Looking Up Concrete Services

Accessing any website publicly available on the Internet via the Tor proxy should already be
working. How the connections are made via the proxy is explained in detail in the previous
Section 2.1.1. However, to have the ability to access the services within the Tor network
(also known as Tor hidden services), it is necessary to know its .onion address — the
“domain name” of the site. This initial step must typically be done manually since there is
no reliable and straightforward way of automating such complex information lookup, though
well-known services (some mentioned below) could be scraped to acquire such information
automatically.

One might now ask, where do to acquire the .onion address of a particular website?
One of the easiest sources of up-to-date .onion addresses is dark.fail2, DeepDotWeb3,
DarknetLive4 or Dread5. Website addresses can also be found in many Tor and dark web
articles all over the Internet. Lastly, there is a number of search engines operating inside
Tor such as Torch Search Engine6, Ahmia7, Onion Land8, Kilos9, Not Evil10 and others.
Using these websites might also provide addresses of websites one might look for.

Nothing lasts forever, and neither do the acquired .onion addresses. It is common prac-
tice to periodically change the addresses of the services operating inside the Tor network.
Nevertheless, no one wants to lose some of their visitors/customers each time this happens;
hence it is also prevalent for a service to have several addresses, ranging from two to four
or six. Those addresses (also called mirrors) are usually visibly displayed on the actual

2https://dark.fail
3https://www.deepdotweb.com
4http://darkzzx4avcsuofgfez5zq75cqc4mprjvfqywo45dfcaxrwqg6qrlfid.onion/markets
5http://dreadditevelidot.onion
6https://torsearch.org (http://cnkj6nippubgycuj.onion)
7http://msydqstlz2kzerdg.onion
8http://3bbaaaccczcbdddz.onion
9http://dnmugu4755642434.onion

10http://hss3uro2hsxfogfq.onion

29

https://dark.fail
https://www.deepdotweb.com
https://torsearch.org

website, and users are encouraged to save them. This significantly simplifies the collection
of the mirror addresses in case some of the currently used addresses stop working. There
is also an interesting “protocol” developed by a previously mentioned site — dark.fail. The
Onion Mirror Guidelines (OMG)11 define rules necessary to follow in order for sites to be
listed and automatically verified on the dark.fail website. The guidelines define some files,
their structure, contents and expected HTTP response code when accessing the given files.

The program can start by using manually defined URLs assigned to the target service
to access it. After reaching the service’s website, additional service URLs (mirrors) may
be acquired by either scraping the corresponding web page or exploiting the OMG (if
implemented by the service). If the manual definition is unsuitable, the program can first
scrape the public Internet’s websites (such as dark.fail or deepdotweb.com) containing
links to certain darknet websites.

3.1.3 Human Verification

Assuming the .onion address of the website is correct and the website is available, a con-
nection can now be established. Moreover, as mentioned before, specifically in Section
2.5.3, the implementation now reaches its first real struggle. As a defence mechanism,
mainly against DDoS, a substantial majority of web services operating inside the Tor net-
work employ some user verification before allowing them to access website contents. Such
mechanisms consist mainly of CAPTCHA challenges, exceedingly long times of a website’s
first load and required account sign-ins.

The website can be reached, but no viable information can be acquired because it
is being blocked by a verification mechanism. Custom CAPTCHA implementations are
encountered most of the time (some real-life examples can be seen in Figure 2.8, page 27).
Challenges include the classics — type text/digits from a picture, select pictures of some
object — but also new types of challenges, such as click on/inside some object, select image
different from the rest and a few more. Some websites are actually provided as a service by
a third party, including custom-made DDoS protection landing pages with various types of
challenges. A fair number of websites also force their visitors to sign into their accounts
(this can either be after they have passed the CAPTCHA challenge or in its stead).

There are several possible solutions or workarounds for these kinds of complications,
though none are flawless:

• creation of a custom solver for a selected type of challenge — typically for a single
custom CAPTCHA implementation not based on “type from image”;

• this is only mentioned for the sake of completeness since training own machine learning
model for various custom CAPTCHA implementations is probably overkill;

• challenge on-demand solving by a third party “anti-CAPTCHA services” (such as
Anticaptcha12, 2Captcha13, Captchas.io14, and many more), which provide reasonable
reliability and full automation support but obviously require payment;

• manual challenge solving is always an option; while having obvious scaling issues, it
can reliably cover any type of challenge, and it is usable at least in the early stages
of the development.

11https://dark.fail/spec/omg.txt
12https://anti-captcha.com
13https://2captcha.com
14https://captchas.io

30

https://dark.fail/spec/omg.txt
https://anti-captcha.com
https://2captcha.com
https://captchas.io

Using manual CAPTCHA solving during prototyping and development stages would
certainly simplify and speed up the workflow. Having this option always available might
also prove helpful when certain aspects of the service change and something stops working.
It costs nothing; it is absolutely reliable and fast, though it requires someone (typically
the programmer) to be present whenever necessary. Since the real-world use will most
probably involve many targeted websites, the deployed program should almost certainly
use the CAPTCHA solving services allowing the deployment to be fully automated. In this
case, the manual mode should only be used as a backup.

The application must also know how to work with HTTP cookies since they represent
the state in the HTTP protocol. When solving any website’s access challenge, a state must
be changed accordingly to distinguish new and already established trusted user sessions.
That is typically done by storing a corresponding session UID in the HTTP cookies for the
client to keep.

3.2 Automated Crawling
The program’s crawling module’s task is the periodical collection of all the existing pages on
the given sites. Collected pages should also be categorised before passing on the data (over
to the scraping module). This module’s implementation should be as generic and simplistic
as possible since the only information necessary in this stage are the links contained in
a given page and its type, which can be simply determined from its URL address.

What to focus on when determining the page type is described in Section 3.2.1. Section
3.2.2 then focuses on how the scraper should proceed when processing the contents of web
pages, what it should and should not do.

Even though some fully-featured web crawling and scraping services exist, none offer
the required customizability and flexibility (CAPTCHA bypassing has to be implemented,
service sign-ins might be necessary, etc.). Hence, the implementation would either have to
stick with some of the existing open-source crawling/scraping frameworks (such as Scrapy15,
Apify16, Jaunt/Jauntium17, Kimurai18 and many others) or use various HTTP libraries
(requests19, Axios20, Faraday21, and more, each with their strengths and weaknesses) to
implement the required program logic from scratch. In addition to all previously mentioned
software, frameworks capable of using actual browser instances to load, view, control, exe-
cute and navigate the web pages such as Selenium22 should not be forgotten.

All of the software above provide functionality relevant to accessing the web pages and
program module decomposition. The initial web page link must be provided before any of
those tools can be used. Regular expressions (typically part of any modern programming
language) are enough to extract all possibly existing links from the page. If something
more complex is necessary, some HTML parsers such as BeautifulSoup could be used —
more about such software in the scraping section.

15https://scrapy.org (Python)
16https://sdk.apify.com (JavaScript, Node.js)
17https://jaunt-api.com, https://jauntium.com (Java)
18https://github.com/vifreefly/kimuraframework (Ruby)
19https://requests.readthedocs.io, (Python)
20https://github.com/axios/axios (JavaScript)
21https://lostisland.github.io/faraday (Ruby)
22https://www.selenium.dev (Python, JavaScript, Java, Ruby, . . .)

31

https://scrapy.org
https://sdk.apify.com
https://jaunt-api.com
https://jauntium.com
https://github.com/vifreefly/kimuraframework
https://requests.readthedocs.io
https://github.com/axios/axios
https://lostisland.github.io/faraday
https://www.selenium.dev

3.2.1 Different Page Types

What structure does the website have? What kind of information can be acquired? Where
can the information be located? Those are just some of the questions this section should
address.

Ideally, all the information fields listed in Section 2.2.4 (page 19) would be found.
However, that is customarily not the case. Sites marginally differ in the sets of obtainable
data and meta-data. Such differences lead to the necessity of custom solutions for each
given marketplace web service.

This task could also be automated to a certain degree — however, given that the mar-
ketplace websites are often quite mutually distinct and that the aim is to extract a set of
factual information, it would be a waste of time trying to automate this step. It is much eas-
ier just to look at the website and the provided fields to figure out what can and cannot be
done. Understanding which information can be acquired is a prerequisite for programming
the scraping module (the crawling module can run independently of this knowledge).

Identifying Key Pages

The pages available on a given website can be sorted into various categories or be as-
signed a type (such as landing page, vendor profile, listing details, etc.). Each page type
(or category) can offer a different set of information, e.g., the landing page might contain
information about the latest listings, newest vendors, or it might not contain any informa-
tion at all, vendor profile pages might contain summaries of completed orders, the activity
of the vendor and other interesting information, etc. Categorising the pages is necessary
to determine later which information should be obtainable (this information is essential for
the scraper module).

3.2.2 Processing Pages

The crawling process should start with an initial page URL of the selected website (typically
the landing page, but this is arbitrary). The algorithm should then continue exploring any
newly uncovered page addresses.

The page may contain external links to affiliated sites or other websites closely related
to the marketplace itself (user forum, site support, news/announcements, etc.). Such links
are customarily unimportant to the scraping module. However the information may still be
relevant somehow. Hence, dealing with external links depends on the specific implementa-
tion. Processing the page should result in a list of website links which the crawler should
continue processing next. It is essential to mention that the crawling process also creates
a byproduct — previously downloaded contents of the given web page. The scraper module
can use the previously mentioned content to prevent unnecessary HTTP requests.

The crucial part of the scraper module is the correct selection of the URLs to follow.
Blindly picking links from some list will be neither efficient nor will it work (the pages
could create an infinite loop). A proposed solution uses a priority queue or ordered set to
manage the order of the links to follow. When first encountered, each new link would be
assigned a timestamp of the next crawl based on its category. Any links already present
in the queue should be ignored. After processing the contents of a given page, that page
should be “re-scheduled” — returned to the queue with its timestamp increased accordingly.
The re-scheduling time delay should reflect the web page’s type (e.g., crawling/scraping the

32

landing page each minute and the listing pages each hour does not typically make much
sense).

The links discovered by the scraper should be persisted (even the external links) along
with the web’s graph structure. It might be used later to provide some additional insights
into the service. It is important to keep in mind that the crawler is responsible for locating
the web pages while the web itself is not static. This means that the crawler would have to be
responsible for marking the pages removed when they become unreachable (start reporting
404, redirecting to a landing page, etc.), though still keeping records of the existence of
such pages.

Access
Webpage Request

Publish Contents

Bypass CAPTCHA

Extract

Persist Persist

Document Links

Store in DatabaseStore in Database

Download

Relevant Data

CAPTCHA
Detected

Load from Cache

Webpage Request
Schedule

Document
Not Cached

Bundle, Compress

Store on Disk

Filter, Rank, Sort

Store in Cache

Figure 3.1: Crawler Flow Diagram
This figure describes the designed flow of the web crawler module. The process is split into four
stages: web service access with CAPTCHA solving, relevant link extraction (extract stage),

linked document download and finally, data persistence (persist stage).

3.3 Automated Scraping
This module is responsible for extracting data and meta-data from the sources of given
web pages. Since the program is tasked with acquiring very factual information and is
supposed to work over a more extended period, it would be best always to design site-
specific scrapers. The idea and the process behind the module would be the same, but
a plugin-based approach should be supported to allow easy extensibility of the program.

Data that are going to be used by the implemented modules are described in Section
3.3.1. The Section 3.3.3 then focuses on how should the extraction process look and what
steps it consists of.

33

Libraries and toolsets relevant to this topic (extraction of data from text/HTML) may
include BeautifulSoup23 (using lxml24 and/or html5lib25 on the background), Parse526,
Cheerio27, Jsoup28, Nikogiri29. Natively (customary in modern programming languages)
implemented tools such as regular expressions could be considered too.

3.3.1 Required Data

The scraping process of a given page should only depend on a minimum amount of infor-
mation about the page, and such data should already be available from the crawler:

Source website identification is the first substantial information. Based on this, the
module could determine which site plugin is responsible for processing the page.

Page category (type) is the second essential piece of information. The scraper would de-
cide how to parse and further process the provided data based on the page’s category.

Page contents (its source code) is the third vital information provided to the scraper. All
the information to be extracted is located within.

The module can indeed be provided with some additional information according to the
specific needs of the implementation, for example, HTTP headers of the corresponding web
page request.

3.3.2 Locating Data and Meta-data

As previously mentioned, it would be ideal to locate most of the information fields listed in
Section 2.2.4 (page 19), such as listing category, vendor information, current price, purchase
count, etc. Though, that would rarely happen. Which information is available and where
they are located on the website should already be known following the Section 3.2.1. Specific
options of the information location and extraction from the page’s source code are presented
below.

One of the possibilities of locating information within the source code is the employment
of regular expressions. Implementation and usage of regular expressions is straightforward
and practical — they can be handy for extracting some types of information, typically with
some specific structure, from anywhere within the source. The regex approach cannot be
used every time. The other option is to use the website’s HTML structure. The page
structure rarely changes, which allows the program to follow a specific predefined structure
to find the information it is looking for.

3.3.3 Processing Pages

There should be no need for the scraper module to make a new HTTP request to the target
website because the page source should already be available through the crawler module.
This feature can save time as well as simplify the program’s implementation.

23https://www.crummy.com/software/BeautifulSoup (Python)
24https://lxml.de (Python)
25https://github.com/html5lib/html5lib-python (Python)
26https://github.com/inikulin/parse5 (JavaScript, Node.js)
27https://cheerio.js.org (JavaScript, Node.js)
28https://jsoup.org/ (Java)
29https://nokogiri.org (Ruby)

34

https://www.crummy.com/software/BeautifulSoup
https://lxml.de
https://github.com/html5lib/html5lib-python
https://github.com/inikulin/parse5
https://cheerio.js.org
https://jsoup.org/
https://nokogiri.org

The processing of a given page can be broken down into the following steps (following
the previously mentioned plugin-based approach):

1. looking up the corresponding website plugin because each site would most probably
have its own scraper module — this allows complete customisation of the scraping
process to suit the unique needs of each website;

2. determining which strategy to use (based on the additional information provided by
the crawler module), providing it with required data and running it;

3. persisting the results — this step should probably be done by the corresponding page
strategy since the persistent storage schema/structure might differ from the proposed
ideas.

Access
Subscribe to Contents

Receive Contents

Extract

Persist

Select Strategy

Relevant Data

Store in Database

Figure 3.2: Scraper Flow Diagram
This figure describes the designed flow of the web scraper module. The process is split into three
stages: web page content access, relevant data extraction (extract stage) and data persistence

(persist stage).

The algorithm should reschedule the scraping of this same page after the processing of
the web page is finished. When it is time for a new scrape, the rescheduling mechanism
should prompt the crawler to provide an up-to-date page.

3.4 Persistence and Archiving
The results of the program’s efforts have to be persisted in some manner, and the possibili-
ties to do so are endless. Due to the nature of the information acquired (currently focusing
on the data extracted by the scraper module), the relational databases should be the
first on the list of considerations — mainly because the data in question can be trivially
stored in normalised tables. The scraper results are not the only data that should be per-
sisted — whole pages should also be archived. Safekeeping copies of source pages over time
would allow the creation and subsequent verification of a chain of custody, which can
become extremely useful given the right circumstances.

Feasible relational database software includes but is not limited to PostgreSQL30, Mari-
aDB31 or Microsoft SQL Server32 as representatives of self-hosted solutions, Microsoft Azure

30https://www.postgresql.org
31https://mariadb.org
32https://www.microsoft.com/en-gb/sql-server

35

https://www.postgresql.org
https://mariadb.org
https://www.microsoft.com/en-gb/sql-server

SQL Database33, Google Cloud SQL34 and Amazon Relational Database Service35 as avail-
able cloud solutions.

Insight into what the database structure should contain and look like is provided in the
following Section 3.4.1.

3.4.1 Storage Structure

The final set of factual information to be collected by the implementation is unknown at this
stage. Nevertheless, a generic table base schema can still be constructed. Such base schema
should address the relations between obvious tables to keep the database tables normalised
(this assumes the database management system is relational, as proposed earlier). The
suggested tables in the base schema are as follows:

Websites table, which contains unique entry per targeted website with all the relevant
information. The data acquired by crawling and scraping then only refer to such
single entries by their own unique identifier (UID). Shown as website entity in Figure
3.3.

Hosts table contains .onion host addresses (base URLs) belonging to a single website.
Since the website is expected to change its host addresses over time, this table allows
structured storage of such occurrences. Shown as host entity in Figure 3.3.

Pages/URLs table containing entries of website pages discovered by the crawler module.
A number of relevant information fields should be part of this table, such as the
hierarchy of the pages (a reference to where has this page been discovered from),
important timestamps (last time of visit, unreachable since, etc.) and possibly other
meta-data. Reference (foreign key) to the related website is also necessary. Shown as
page entity in Figure 3.3.

Listing entries table then contains the listing information provided by the scraper mod-
ule. Table fields would most probably include items like scrape timestamp (when was
the entry been created), reference to the source page and, of course, the extracted
data and meta-data. Shown as listing entity in Figure 3.3.

Page source entries table accounts for the previously mentioned possibility of archiving
the whole web pages. This table can either contain paths to the file archives/directo-
ries containing the web page contents with its attachments located at arbitrary local
storage or all the aforementioned data in the form of Binary Large Object (BLOB)
fields. Shown as source entity in Figure 3.3.

3.5 Analysis
Further analysis of the extracted data from a given website might be available depending
on which information has been obtained by the program. This process may highlight
potentially essential events or information among all the extracted data. Assuming that
the data storage is capable of data querying and aggregation (as database management

33https://azure.microsoft.com/en-gb/free/services/sql-database
34https://cloud.google.com/sql
35https://aws.amazon.com/rds

36

https://azure.microsoft.com/en-gb/free/services/sql-database
https://cloud.google.com/sql
https://aws.amazon.com/rds

hostwebsite
1

N
page

1

N

listing1
N

source1
N

Figure 3.3: Storage Entity Relationship Diagram
The relationship of proposed storage entities is depicted in this figure. The website entity
represents a website as a whole (e.g., Monopoly Market, Empire Market, etc.). Since host

addresses may change over time, the host entity represents each such .onion address. The page
entity then represents a single web page belonging to a particular host address.

system (DBMS) should be), the DBMS itself can perform all (or, at least, most of) the
operations with the data; no external tools should be necessary.

3.5.1 Numeric Deltas

The current section assumes that the purchase count field (or additionally stock count,
vendor dispute count and other numeric information fields — for more refer to the Section
2.2.4, page 19) has been extracted. Calculating deltas for given numeric fields allows simple
localisation of significant data entries (which the program should be looking for) and filtering
insignificant/unimportant data entries (which may save some storage space).

3.6 Cryptocurrency Blockchain Analysis
This last step uses some important events identified from the scraped information to corre-
late the events within specific cryptocurrency blockchains. The focus should be primarily
on using the purchase counter deltas and registered listing prices to identify potentially
corresponding transactions in various cryptocurrency blockchains, but any other relevant
information can be used in the correlation process.

To correlate the value of the purchase (derived from the scraping data) with the value of
the transactions in the blockchain, the program needs to have access to all the transactions
and their corresponding values within the blockchain. The other important information is
the time of occurrence of the transactions — this allows the program to pinpoint appropriate
intervals in time containing specific amounts of relevant transactions processed during that
time. The localisation of such interval and related blocks/transactions is covered in the
following Section 3.6.1. The second section, 3.6.2, then describes defining and using certain
heuristic functions to rate, sort and filter transactions from the blockchain.

The correlation algorithm can use several systems providing certain APIs allowing sim-
ple programmatic access to the cryptocurrency blockchain data such as Blockbook36, smart-
bit37, ChainQuery38 and others.

36https://github.com/trezor/blockbook (self-hosted, provides REST API, supports over 30 coins)
37https://www.smartbit.com.au/api (online, provides REST API, supports only Bitcoin)
38https://chainquery.com (online, provides JSON RPC API, supports only Bitcoin)

37

https://github.com/trezor/blockbook
https://www.smartbit.com.au/api
https://chainquery.com

3.6.1 Relevant Blocks and Transactions

The program needs to calculate an interval of relevant blocks containing the transactions
that occurred during a critical time interval, that would be the time interval when a purchase
was made on the marketplace in this case.

In order to do that, the program must first approximate an initial block number. The
approximation can be made depending on how often cryptocurrency blocks are released
(e.g., the average Bitcoin block time is approximately 10 minutes). The initial approxi-
mation of the first block’s number can be calculated by equation 3.1, where 𝐵current is the
number of the latest block, 𝑇now and 𝑇event represents the current and the purchase event’s
timestamp respectively and finally 𝑡block which contains the before-mentioned approximate
time for a block to be released.

𝐵0
upper = 𝐵current −

⌈︂
𝑇now − 𝑇event

𝑡block

⌉︂
(3.1)

𝐵𝑖+1
upper = 𝐵𝑖

upper −

⌈︃
𝑇𝐵𝑖

upper
− 𝑇event

𝑡block

⌉︃
(3.2)

𝑇𝐵𝑖
upper−1 < 𝑇event ≤ 𝑇𝐵𝑖

upper
(3.3)

Once 𝐵0
upper is calculated and the condition defined by 3.3 is not met, the program can

use modified equation 3.2 to iteratively continue the calculation of 𝐵upper = 𝐵𝑖
upper, 𝑖 ≥ 0

until the condition 3.3 is met. The condition ensures the approximated block number is
the closest possible block after the event occurred.

The lower bound 𝐵lower = 𝐵𝑖
lower, 𝑖 ≥ 0 can now be calculated similarly, where the 𝑇event

is substituted by 𝑇lower (with its value being arbitrarily defined by the algorithm such that
𝑇lower < 𝑇event, the value determines the lower bound of the payment window) in both 3.1
and 3.2 equations and condition 3.3. The resulting 𝐵lower equation can be seen in 3.4 with
its iterative version in 3.5 and iteration condition in 3.6.

𝐵0
lower = 𝐵current −

⌈︂
𝑇now − 𝑇lower

𝑡block

⌉︂
(3.4)

𝐵𝑖+1
lower = 𝐵𝑖

lower −

⌈︃
𝑇𝐵𝑖

lower
− 𝑇lower

𝑡block

⌉︃
(3.5)

𝑇𝐵𝑖
lower

< 𝑇lower ≤ 𝑇𝐵𝑖
lower+1 (3.6)

The time difference between 𝑇lower and 𝑇event defines the size of the resulting set of block-
s/transactions (they payment window to be searched). Finally determining the number of
the lower bounding block, the program can start processing all the blocks in ⟨𝐵lower, 𝐵upper⟩.

3.6.2 Transaction Matching

This step actually tries correlating the known information about the purchased item and
the purchase itself with the available information of each transaction in the given set of
transactions/blocks. A heuristic function should be conceived to rate the transaction-
purchase similarity. The transactions can then be sorted based on the heuristic function’s
rating. One such function is defined in 3.7 (where 𝑣tx is the given transaction’s value and
𝑣purchase is the purchase’s value). It outputs value from ⟨0,∞), the higher this value is, the
less similar those two entries are.

𝜑(𝑣tx) = |𝑣tx − 𝑣purchase| (3.7)

38

More complex heuristic functions incorporating more parameters can be created — the
limiting factor is which information is available about the purchase and the transaction in
the blockchain. For example, the function defined in 3.8 (where 𝑣𝑖 is the value and 𝑇𝑖 the
creation timestamp of the transaction 𝑖) now returns a normalised value from ⟨0, 1⟩— 0
means the same, 1 means totally different — and also uses the time difference between the
transaction and the purchase event.

𝑣max = max {𝑣𝑖 | 𝑖 is a transaction from the set}
𝑡max = max {𝑇event − 𝑇𝑖 | 𝑖 is a transaction from the set}

𝜑(𝑣tx, 𝑇tx) = 0.5
|𝑣tx − 𝑣purchase|

𝑣max
+ 0.5

𝑇event − 𝑇tx
𝑡max

(3.8)

Now, the transactions from the provided set are sorted based on the results of the
selected heuristic function. Transactions with heuristic function’s value lower than a certain
threshold should be removed before continuing further. The transactions with the lowest
values of all the transactions tested are flagged and stored for further analysis. Not removing
the transactions with values over the threshold could now cause flagging transactions as
most relevant, with the heuristic value being extremely high and yet the lowest from the
provided set of transactions/blocks.

39

Chapter 4

Implementation

This chapter describes details of the actual implementation of the program designed in the
previous chapters. It outlines reasoning and decisions behind the selection of the imple-
mentation language, used libraries and other software.

First, Section 4.1 covers libraries and other software used in or by the application
implementation. Then, Section 4.2 provides a detailed implementation description and
available features of each application’s module. Followed by a brief database description
and examples of used database queries in Section 4.3. Finally, Section 4.4 describes the
implementation of the data analysis/blockchain correlation module.

4.1 Used Software and Libraries
This section presents the software (such as frameworks, libraries and separate programs)
used in the application’s implementation. It also shows why and how is the presented
software used.

Each of the following sections focuses on a separate module of the implemented work.
Section 4.1.1 focuses on the implementation of the main framework — the crawler and
scraper service plugins, API resource plugins, etc. Followed by Section 4.1.2 focusing on
software relevant to the database management system (DBMS). Finally, the Section 4.1.3
describes additional libraries and considerations in the implementation of cryptocurrency
blockchain correlator.

4.1.1 Program Core

The Python programming language, currently in version 3.9.5, has been selected to be the
implementation language of the final application. Python is an interpreted language that
offers high programming flexibility; these features allow straightforward implementation
of dynamic import of plugin modules — achieving the necessary solution modularity and
extensibility level. This programming language is being actively developed, has a huge com-
munity and virtually endless amount of libraries. All these attributes helped the decision
to go with Python.

aiohttp1 The aiohttp library plays a vital role in the implemented application. It is used
in various application modules:

1https://docs.aiohttp.org

40

https://docs.aiohttp.org

1. as a client in service plugins — providing the ability to make asynchronous
HTTP requests to the target web pages and external service APIs;

2. as an API server — allowing creation and complete management of local HTTP
server including features such as user session management, authentication/au-
thorisation middlewares, error handling, dynamic resource and endpoint routing
and much more;

3. and as an API resource plugin (view) controller.

Furthermore, there are several other libraries/extensions used together with aiohttp,
each providing some additional functionality:

• aiohttp-jwt2 is an extension implementing user session authentication and au-
thorisation using JSON Web Token (JWT), this feature allows important API
resources and endpoints to be protected by authentication and even scope-based
authorisation if desirable;

• aiohttp-socks3 implements easy to use connectors for socks-based proxies, such
a feature is critical, as it allows aiohttp client sessions to connect to remote
servers through Tor proxy — effectively allowing the connection to any Tor Hid-
den Service (HS);

• aiohttp-apispec4 includes many handy decorators for specifying various Ope-
nAPI attributes and provides a way to create an OpenAPI v25 resource descrip-
tion automatically, which can then be used to generate an API documentation
overview page for the user (and also allows in-browser usage of the API, fur-
thermore, the OpenAPI description can also be used by tools like Postman6 or
SwaggerHub7 to import relevant information automatically).

aioredis8 This library provides an implementation of asynchronous Redis client. The
application uses Redis in two significant contexts:

1. dedicated local cache provider;
2. inter-process communication mainly in the publisher-subscriber pattern.

beautifulsoup49 The Beautiful Soup library is together with html5lib10 used for pro-
cessing HTML source codes of downloaded web pages. The library provides many
high-level methods for lookup, extraction and modification of underlying page sources.

graypy11 Since the implemented application is using Graylog12 for log ingestion and sub-
sequent processing, it is necessary somehow to get the application logs to the Graylog
system. The graypy library implements a custom logging handler for the purposes

2https://github.com/hzlmn/aiohttp-jwt
3https://github.com/romis2012/aiohttp-socks
4https://aiohttp-apispec.readthedocs.io
5https://swagger.io/specification/v2
6https://www.postman.com
7https://app.swaggerhub.com/
8https://aioredis.readthedocs.io
9https://www.crummy.com/software/BeautifulSoup

10https://github.com/html5lib/html5lib-python
11https://github.com/severb/graypy
12https://graylog.org

41

https://github.com/hzlmn/aiohttp-jwt
https://github.com/romis2012/aiohttp-socks
https://aiohttp-apispec.readthedocs.io
https://swagger.io/specification/v2
https://www.postman.com
https://app.swaggerhub.com/
https://aioredis.readthedocs.io
https://www.crummy.com/software/BeautifulSoup
https://github.com/html5lib/html5lib-python
https://github.com/severb/graypy
https://graylog.org

of log message redirection and conversion to Graylog Extended Log Format (GELF).
That allows Graylog to receive not only the logging message in the form of string but
rather an already well-structured bundle of information. The information contains
fields such as file name, method name, line number and many others, which are not
present in the message string by default.

stem13 Stem is a controller library for the Tor proxy. It uses Tor control protocol to
allow programmatic management of Tor. That is particularly useful when getting
additional information about the active Tor circuit is necessary or when forcing the
proxy to create a new circuit for a given connection.

sqlalchemy14 This library is used to access and control the application database. It
provides comprehensive programming and query API making interactions with al-
most any DBMS straightforward. Furthermore, it implements the dynamic database
schema creation based on the created data model classes. On which the application
heavily relies.

and other A list of all other libraries that were used can be found in the Pipfile.lock
file located within the program’s source codes.

The application does actually not use and is not based on any of the scraping-focused
libraries mentioned in Section 3.2. There are a few reasons for that. The first one is that
none of the scraping-oriented libraries mentioned in the Design chapter offered the intended
level of implementation customisation and deployment. Also, due to the BAZAR Project15

proposal, there was a need for a prototype implementation to be quickly created. This
prototype was later used as a starting point for the new implementation; however, it was
not designed to use any of the presented scraping libraries.

4.1.2 Database

PostgreSQL16 has been selected to be the DBMS for the implemented application. It
is open-source, has a large community of users, extensive documentation, is time-tested,
reliable and relational. And as a bonus, it supports many advanced data types to be
stored in the database, such as arrays, composite types, geometry, UUIDs or XML and
JSON documents.

The existing PostgreSQL database has later been migrated to TimescaleDB17. Thanks
to the fact that TimescaleDB is built on PostgreSQL made the switch possible and pretty
straightforward. External tools can still use TimescaleDB as if it were just another Post-
greSQL database. After seeing and realising just how much data the database needs to con-
tain after some prolonged website monitoring, this decision has been made. TimescaleDB
allows the database to better scale with large numbers of entries in tables over time. It
also provides various additional time-oriented features, API functions and database-level
optimisations.

13https://stem.torproject.org
14https://www.sqlalchemy.org
15https://www.fit.vut.cz/research/project/1447, https://bazar.nesad.fit.vutbr.cz
16https://www.postgresql.org
17https://timescale.com

42

https://stem.torproject.org
https://www.sqlalchemy.org
https://www.fit.vut.cz/research/project/1447
https://bazar.nesad.fit.vutbr.cz
https://www.postgresql.org
https://timescale.com

4.1.3 Data Analyser / Blockchain Correlator

This part of the project is also implemented in Python (in the latest available stable version).
Using the same programming language allows the analyser to reuse some of the application
libraries and already implemented database models.

In addition to libraries reused from the core module, the analyser uses just one ex-
ternal service — Blockbook18. This software is an open-source cryptocurrency blockchain
explorer — it synchronises with selected cryptocurrencies and locally stores and indexes
their blockchains allowing fast lookup (of transactions, blocks, addresses) and exploration.
On top of that, Blockbook provides uniform HTTP REST API for all the beforementioned
blockchain operations. Multiple Blockbook instances can be started, each for a different
cryptocurrency, to allow transaction analysis of not just a single cryptocurrency blockchain.

No new libraries are being used exclusively by the analyser. Though, it reuses the
following libraries from the application’s core:

• sqlalchemy is used just as a database client to access data generated by running
scrapers and to persist its own findings into the database if appropriate;

• aiohttp is used to communicate with the Blockbook’s REST API;

• aioredis is now used just as a caching solution of data fetched from Blockbook.

4.2 Program Machinery
This section first presents each distinct module of the application, discuss their context
within the application and later describe them in detail. Furthermore, the detailed descrip-
tions contain technicalities and actual examples of plugins (or their parts) implemented
within the given modules and their feature contribution.

The application can be pretty clearly dissected into five logically separate but inter-
twined modules. The majority of the presented modules do not do much independently
and require plugin modules to be implemented; however, it was designed to do precisely
that. The five application’s modules are:

1. core — this module keeps all the application modules together and is responsible for
their management and coordination, is tasked with starting all relevant plugins, their
monitoring and providing centralised management interface;

2. database — implementations in this module programmatically define the schema of
the application database;

3. API — provides public access to internal controls and data of the running application
via HTTP through resource plugins implemented within this module;

4. services — this module contains implementations of the workers to be run by the
core to collect the data; those are the brains of the application;

5. utilities — customarily provides third-party service client wrappers, quickly reusable
methods or modules typically often used to simplify menial or frequent programming
tasks.

18https://github.com/trezor/blockbook

43

https://github.com/trezor/blockbook

Details about the application’s core are presented and further described in Section
4.2.1. Examples of implemented database model classes from various plugin bundles and
additional database module specifics are discussed in Section 4.2.2. The database section
is followed by Section 4.2.3, which presents the purpose of the implemented API, describes
which resource plugins are implemented and what do they provide. Section 4.2.4 offers
a detailed look into how service plugins work and then discusses implementing a generic
PGP scraper plugin and the workers for the Monopoly Market. Finally, Section 4.2.5
showcases some of the implemented utilities for both external services and internal purposes
only.

4.2.1 Core Functionality

The application’s core does not collect any data on its own. It only provides communication
interfaces, abstract class bases and many utilities ready to be used — a whole platform for
plugin modules to be run in. The core provides and is responsible for:

• locating and loading of plugins;

• setup and initialisation of services;

• centralised management API;

• service monitoring and reporting;

• shutting down and cleaning up.

Plugin Initialization

The core first imports all modules from a specific package, presuming those are the plugin
modules. Then, it lists classes contained by those modules and filters out invalid classes.
Finally, the resulting classes are instantiated and initialised depending on their type and
purpose.

Modules in the plugin.<plugin_id> package are automatically loaded by the core and
are expected to contain plugin classes in three distinct package namespaces: resources,
database and services. Listing 4.1 shows a code snippet allowing plugin modules (packs)
to be imported from packages with the same name possibly scattered anywhere on the
disk — the plugin sources do not have to be located in the application’s local plugin direc-
tory, which represents the Python plugin package. A successful module import requirement
is the presence of a corresponding directory path to the target plugin package directory/di-
rectories in the PYTHON_PATH environment variable.

1 from pkgutil import extend_path
2 __path__ = extend_path(locals().get("__path__"), __name__)

Listing 4.1: Package Extension Allowing Imports from Scattered Packages
This listing shows the contents of the plugin package’s __init__.py file. This code allows

Python to load modules that are not physically in the application’s plugin directory but still are
in a plugin package elsewhere in the disk. These modules are found by searching through

directories in the PYTHON_PATH environment variable.

The modules are searched for class definitions once imported. After locating classes
defined in the plugin packs, the collection is filtered only to contain desired classes. The

44

modules can, of course, define arbitrarily many classes; however, only classes matching
specific criterion are considered to be valid plugin implementations — one such criterion
can be to inherit from designated base classes. The whole process is shown in Listing
4.2, which in fact demonstrates the import of all API resource plugin classes and is taken
directly from the application source code.

1 # import plugin modules
2 resource_plugin_modules = list_modules(r"plugin.(\w+).resources.(\w+)")
3 # list classes in imported modules
4 resource_classes = list_classes(resource_plugin_modules)
5 # filter out non-resource classes
6 resource_classes = list(filter(
7 lambda resource_cls: ResourceBase in resource_cls.__bases__,
8 resource_classes
9))

10 # class instantiation follows...

Listing 4.2: API Resource Plugin Class Import
This listing shows a part of the application code responsible for loading API resource plugins from
modules matching appropriate regex. The list_modules and list_classes methods can be seen

in Listing D.1 and D.2 on page 88 and 89 respectively.

Loading all the API (or any other) plugins by every launched service may be unnec-
essary or even undesirable in some cases. All API plugins specify the __service_type__
property to designate which services are to import and use them — this allows plugins to be
specialised and tailored to suit the needs of specific types of services. The available values
are defined by the ServiceType(Enum) class and offer the following options:

• ANY is a pseudo type; it matches any service type; however, it cannot be used as a valid
type value when instantiating the service classes;

• NON_MANAGER is another pseudotype, which matches all types other than MANAGER,
which are currently either CRAWLER or SCRAPER;

• MANAGER is currently used exclusively by the main application process;

• CRAWLER used by crawler services (typically subclasses of CrawlerServiceBase);

• SCRAPER used by scraper services (typically subclasses of ScraperServiceBase).

After importing, listing and validating all the plugin classes, they can be provided with
appropriate data and instantiated. This step differs based on the module target of the
plugin (whether it is a resource, a database or a service implementation). The difference
can be clearly seen between the Listing 4.2 and Listing 4.3. The former has first to import
and select appropriate classes and after that initialise and use them appropriately. On the
other hand, the latter imports database plugin classes (models), and since the sqlalchemy
automatically manages the database models, it is enough to import them — the library
itself will take care of the rest.

Examples of plugin imports were shown for two out of three, the resources and
database, pluggable modules. Importing plugins from the third module (service) is more
elaborate for various reason:

1. service instance configuration must be loaded from the database;

45

1 # import plugin modules
2 database_plugin_modules = list_modules(r"plugin.(\w+).database.(\w+)")
3 # list classes in imported modules
4 database_classes = list_classes(database_plugin_modules)

Listing 4.3: Database Plugin Class Import
This listing shows a part of the application code responsible for loading data model plugin classes
from modules matching appropriate regex. The list_modules and list_classes methods can be

seen in Listing D.1 and D.2 on page 88 and 89 respectively.

2. services are launched in separate processes and may be launched numerous times (the
service plugins are not restricted to a single running instance);

3. after launch, services again import and set up relevant plugins from the database
and resources modules;

Any service plugin is expected to be a subclass of the ServiceBase abstract base class
and is required to specify its type via the __service_type__ property using values of the
previously mentioned ServiceType(Enum) class — in the case of plugin services that can
currently only be either CRAWLER or SCRAPER. This class property allows the service to filter
out undesirable plugins or configuration. The values are already correctly pre-set in the
CrawlerServiceBase and ScraperServiceBase abstract base classes, which themselves
are subclasses of the ServiceBase class.

API Features

The application uses the previously mentioned aiohttp-apispec library for aiohttp to
create OpenAPI endpoint descriptions. Then, the library leverages the Swagger UI19 to
generate a user-friendly and intelligible API documentation overview page. An example
of such a documentation page can be seen in Figure D.12, an initial page view in Figure
D.12(a) and operation detail in Figure D.12(b), on page 102.

Resources and endpoints which allow remote modification of configuration, database
access or some potentially destructive operations (like system restart or shutdown) need
to be secured and not publicly accessible. The aiohttp-jwt library, which has already
been mentioned before, leverages JSON Web Token (JWT), an RFC7519 [18] standard, to
achieve this with aiohttp resource controllers quickly. The application implements both
user session authentication and scope-based resource operation authorisation on selected
endpoints. Authorisation scopes have been designed in a cascading fashion, as can be seen
in Table 4.1. That allows clear and understandable granting of permissions to any required
user.

On the other hand, when any resources need to be public and apply no access restrictions
on their users, they can be excerpted from the need for both user authentication and
authorisation. That can be done on either per-endpoint, per-resource or even URL prefix
basis.

A single JWT consists of three separate Base64-encoded [19] parts (a comprehensive
and precise description is available at jwt.io20):

19https://swagger.io/tools/swagger-ui
20https://jwt.io/introduction

46

https://swagger.io/tools/swagger-ui
https://jwt.io/introduction

Table 4.1: Cascading Authorisation Scopes

System Module Operation

read

default/services/service:read
default/services/service/list
default/services/service/detail

default/services/url:read
default/services/url/list
default/services/url/detail

... ...

write

default/services/service:write
default/services/service/create
default/services/service/update
default/services/service/delete

default/services/url:write
default/services/url/create
default/services/url/update
default/services/url/delete

... ...

This table lists authorisation scopes in various levels. The scopes are described as cascading
because the scopes that are more general also include more specific scopes in the same category.

The most general and permissive scopes are in the system level on the left-hand side of the table.
These scopes cover all the more specific scopes in the same category to the right. The most

specific and restrictive scopes are in the operation level on the right. These scopes grant access
only to a single specific API operation.

1. a header containing general information about the generated token — type of the
token and which algorithm has been used to generate its signature;

2. a payload, carrying token-specific information such as issuer, expiration time, user
identifier and granted authorisation scopes;

3. a signature ensuring integrity and validity of the token as a whole.

1 {
2 "name": "dolejska",
3 "scopes": ["read", "write"],
4 "iss": "TorScraper"
5 }

(a) Admin Account

1 {
2 "name": "graylog",
3 "scopes": ["darkmarket_basics/products:read"],
4 "iss": "TorScraper"
5 }

(b) Graylog Monitor Account

Listing 4.4: Examples of JWT Payloads with Authorisation Scopes
This listing shows the Base64-decoded contents of a JWT’s payload part. This part contains
information about the user, issuer and the granted authorisation scopes. All the contained

information is publicly readable by anyone; however, the contents cannot be modified due to the
token’s signature. The left listing (a) shows a payload with authorisation scopes of an

administrative account with everything permitted. The listing on the right (b) shows a payload of
a Graylog dedicated account restricted only to a two individual operations.

Listing 4.4 shows Base64-decoded payloads of two JWT granted to two distinct API
users. The Listing 4.4(a) shows a payload of token granted to a configured user with
complete administrative access. The bearer of the token with such payload is granted with
both read and write access to all API resources due to the cascading scope design shown
in Table 4.1. Another payload, shown in Listing 4.4(b), is taken from a token granted to

47

the Graylog monitoring system and it only grants read access to the products module of
the darkmarket_basics plugin pack.

The API user accounts and their privileges (authorisation scopes) are defined in a cor-
responding configuration file. The necessity for the existence of such account may primarily
arise from used plugin modules. These may communicate with external services or provide
some sensitive data for other applications. The processes may also communicate between
each other using the implemented API operations. The perfect example is the used Graylog
account which communicates with the API to fetch details of specific vendors and prod-
ucts based on provided identifiers in order to decorate tables with additional information
relevant to the received events.

4.2.2 Database Plugins

The whole database schema is created from database model classes, using the principles
of object-relation mapping (ORM), by sqlalchemy at the run-time of the application.
Using the ORM to keep database schema within the application code significantly simplifies
both development and deployment while also allowing the schema to be programmatically
extensible just by loading additional plugin modules. It permits changes to be made simply
and makes the design future-proof.

The plugin can be entirely independent of the application core and any other plugins by
allowing any plugin bundle to extend the database and create its own tables. Nevertheless,
still allowing dependencies where and when it makes sense to the plugin. This way, the
database plugins can always have their own persistent storage in the database or extend
database model definitions (and effectively the resulting database schema) of other plugins
(including the default plugin pack). Thanks to the sqlalchemy’s object relational mapper21,
the implemented model classes also allow straightforward database querying. This approach
allows the code to isolate itself from knowing what kind of DBMS is being used by the
application. An example of non-trivial database query creation via model class can be seen
in Listing 4.5.

1 def load_sale_stats(self) -> list[ProductStats]:
2 query = self.db.query(ProductStats) \
3 # filter out insignificant stat records (WHERE)
4 .filter(ProductStats.sales_delta > 0) \
5 # select only latest entries (WHERE)
6 .filter(ProductStats.created_at < datetime.now()) \
7 .filter(ProductStats.created_at > datetime.now() - timedelta(days=14)) \
8 # join referenced tables (JOIN)
9 .join(ProductStats.product, aliased=True) \

10 .join(Product.vendor, aliased=True) \
11 # add condition on column from joined table (...ON)
12 .where(Vendor.name == "NextGeneration") \
13 # sort results by specific column (ORDER BY)
14 .order_by(ProductStats.created_at.desc())
15
16 return query.all()

Listing 4.5: ORM-built Database Query Example
This listing shows an example of ORM-built database query. The resulting SQL is built by the

sqlalchemy library using special operations on the implemented data model classes while ensuring
correct syntax based on the DBMS used.

21https://docs.sqlalchemy.org/en/14/orm/index.html

48

https://docs.sqlalchemy.org/en/14/orm/index.html

The sections to follow present and describe some of the implemented plugin packs.
Model classes defined in these packs are all dynamically loaded at run-time and together
make up the final schema of the database. The database schema in its entirety can be seen
in Figure D.6 on page 96.

Default Plugin Pack

Models shown in this section are always part of the application database as the default
plugin bundle includes them, and that bundle is shipped with the application. The collection
contains the following database model classes (relationships between those models can be
seen in Figure 4.1):

• Service — contains information about services to be started by the core module,
service configuration entries and some additional data;

• ServiceUrl — stores distinct URL hosts, together with relevant metadata such as
creation time or activity flag, detected during long-term website monitoring;

• HTTPResponse — allows HTTP responses from remote web servers to be reliably per-
sisted in the database in an appropriately structured format;

• HTTPResponseCookie — is bound to a specific HTTPResponse record and stores any
cookies provided by the server in that particular response;

• HTTPResponseHeader — is the same as HTTPResponseCookie, except it stores HTTP
headers rather than cookies.

Darkmarket Plugin Pack

This plugin pack creates a generic database schema designed to fit virtually any marketplace
to track advertised products and vendors. The partial database schema generated when
using this plugin can be seen in Figure 4.2. It includes the following model classes:

• Product — stores the most important information about products located on given
marketplaces such as its name, Vendor reference, ProductCategory reference or URL
path;

• ProductMeta — this model represents any other (not contained directly in Product
model) metadata entry of a particular Product;

• ProductCategory — represents the structure of product categories on websites (the
model is currently bound to a Service record; however, Service does not necessarily
mean a single specific marketplace website — this is a feature);

• ProductVariant — contains information about variants of the product, e.g., if the
product is offered in three amounts (1 g, 10 g, 50 g) and 2 shipping methods (Un-
tracked, Tracked), then a concrete Product will have 6 ProductVariant records;

• ProductVariantPrice — keeps the information about the price of a specific product
variant entry (ProductVariant) over time, reflects the fluctuation of Bitcoin (or any
other cryptocurrency) value to fiat currencies;

49

uuidid

service__items

uuidid

service__urls

uuidid

http_response_archive__items

uuidresponse_id

varchar(60)name

http_response_archive__cookies
uuidresponse_id

varchar(60)name

http_response_archive__headers

response_id:id response_id:id

service_url_id:id

service_id:id

Figure 4.1: Default Database Schema
This figure shows a database schema (only the key columns are shown) generated from models
implemented in the default plugin pack. This schema is always a part of the database as it is

a part of the application — other plugins can rely on these tables always being in the database.
Hence, it is typically used and extended by data model classes from other plugin packs.

• ProductStats — keeps the information about changing data and metadata of a spe-
cific Product over time (such as purchases, stock, update time, etc.);

• Vendor — represents a Service-unique user account (along with some basic informa-
tion like the account username or its URL path).

PGP Plugin Pack

This plugin pack includes database models for storing PGP keys. It also integrates with the
previously mentioned models from the darkmarket plugin pack, allowing PGP key entries
to be bound to existing marketplace vendor accounts. That allows the system to store even
more valuable information, keeping track of PGP key usage on the monitored marketplaces
and possibly other websites. Furthermore, if the vendor chooses to use the same PGP key
on a different marketplace, its unique fingerprint will allow the separate account records
at different websites to be linked via the PGP key relationship. The pack contains the
following database model classes (the partial database schema is the showed in Figure 4.3):

• PGPKey — represents a single unique PGP key entry; it allows the whole key to be
stored in the database along with a link to a Service it was first discovered at and
other helpful metadata;

• PGPKeyMeta — contains additional information extracted directly from the key itself
(using some external library to do so), such as creation date and time, name and email

50

uuidid

service__items

uuidid

product__items

uuidproduct_id

timestamp with time zonecreated_at

varchar(60)name

product__meta

uuidid

vendor__items

uuidproduct_id

timestamp with time zonecreated_at

product__stats

uuidvariant_id

timestamp with time zonecreated_at

product__variant__prices

uuidid

product__categories

uuidid

product__variant__items

parent_id:id category_id:id

variant_id:id

product_id:idproduct_id:id

service_id:id

vendor_id:id

service_id:id

product_id:id

Figure 4.2: Partial Database Schema with Darkmarket Plugin Pack
This figure shows a partial database schema (only the key columns are shown) generated from

models implemented in the darkmarket plugin pack. These are marketplace product and vendor
related tables containing relevant data. It can be seen that both product__categories and

vendor__items tables have foreign keys referencing the service__items table implemented by
the default plugin pack.

(though both arbitrarily defined by the user), to allow filtering and lookup based on
available key’s metadata;

• VendorKey — allows a relationship between the PGPKey and Vendor records to be
established and looked up later.

TwoCaptcha and ManualCaptcha Plugin Pack

Model classes in these two plugin bundles are different from any of the previously described
database models. That is due to the fact they use in-memory SQLite22 database. The
database records generated by these plugins are not too valuable, and rather than periodi-
cally truncating these tables, it is easier to keep the records in memory.

Both these bundles only contain a single database model class for keeping any re-
quired plugin-specific information, such as CAPTCHA challenge location, provided so-
lution, source of the challenge, various time-related fields and possibly more. No database

22https://www.sqlite.org

51

https://www.sqlite.org

varchar(40)pgp_key_id

varchar(60)name

pgp__meta

uuidid

vendor__items

uuidvendor_id

varchar(40)pgp_id

vendor__keys

varchar(40)id

pgp__items

uuidid

service__items

pgp_key_id:id

service_id:idservice_id:id

pgp_id:id vendor_id:id

Figure 4.3: Partial Database Schema with PGP Plugin Pack
This figure shows a partial database schema (only the key columns are shown) generated from
models implemented in the PGP plugin pack. The pack includes tables to store PGP keys and

metadata in and a binding table between pgp__items and vendor__items tables. It can be seen
that pgp__items table has a foreign key referencing the service__items table implemented by
the default plugin pack and the vendor__keys binding table has a foreign key referencing the

vendor__items table implemented by the Darkmarket plugin pack.

schema is included in this case as these models are entirely independent of any existing
database tables, and their data is considerably ephemeral.

4.2.3 API Plugins

The implemented program has its own application programming interface (API), which is
fully extensible by any number of plugin modules. That allows making available some of the
program’s internal controls and publishing its current internal data. Furthermore, having
publicly available API allows real-time monitoring, additional on the fly configuration, a
unified communication interface for any external applications or services and possibly much
more.

Default Plugin Pack

The default API resources implement a whole range of features. They provide:

• an overview landing endpoint with general information about the running applica-
tion instance, such as program version, currently loaded plugins, uptime, application’s
health and more;

• a Create, Read, Update, and Delete (CRUD) focused endpoints for model
classes contained in this pack, having CRUD endpoints available allows usage of
modern front-end solutions able to leverage such a feature;

• an authentication endpoint can generate an appropriate JSON Web Token (JWT)
that can later be used for endpoint access (providing authentication and authorisation
capabilities) where applicable.

52

Since the plugins in the default pack use quite a few API resources, endpoints and
operations, its documentation visualisation is not shown here and can be seen in Figure
D.2 on page 92.

Darkmarket Plugin Pack

Plugins in this pack currently provide only read access to some selected model classes from
this bundle. A full-scale CRUD resource implementation was unnecessary; however, it can
be easily added later.

The read-only access is implemented for Product and ProductCategory database mod-
els. These endpoints are primarily used by Graylog monitoring software, allowing UID-
based entry lookup. The implemented API resources and operations are shown in Figure
4.4.

Figure 4.4: Operations from Darkmarket API Resource Plugins
This figure shows the two API operations implemented by the Darkmarket plugin pack. Both of

these operations are used for database record lookup.

ManualCaptcha Plugin Pack

ManualCaptcha plugin was the initial CAPTCHA solving mechanism used by the program.
As the name suggests, it was, and still is, in no way automated. The functionality imple-
mented in this plugin is not complicated; however, it still provides a fantastic feature, handy
when, for example, debugging the program. How does it work exactly:

1. download the page with the CAPTCHA prompt, along with all linked external
resources (e.g. stylesheets, scripts, images) and save all of it locally on disk, while
keeping the same directory structure;

2. modify the downloaded page to ensure all linked resources are referenced to by
relative paths (this step will make sure no requests will be made to .onion domains
by a user without Tor proxy);

3. serve the web page and relevant locally stored resources to the user using the
program’s HTTP server (there is no need for Tor proxy to be used at all);

4. wait for the user to solve the challenge and use the generated data (form’s action
path and POST-ed data) to solve the completely identical CAPTCHA on the remote
server.

CAPTCHA challenge entries to be solved can be listed using one of the API operations,
all of which can be seen in Figure 4.5. Access to the web page with the challenge is also
done using the appropriate API endpoints.

53

Figure 4.5: Operations from ManualCaptcha API Resource Plugins
This figure shows operations implemented by the ManualCaptcha plugin pack. That includes one

operation to list existing database entries and two public operations providing access to the
relevant web page files and accepting any forms submitted from the displayed page respectively.

TwoCaptcha Plugin Pack

Plugins from this pack implement all the necessary methods for the automation of CAPTCHA
challenge solving using the external 2Captcha23 service. Using external service to solve any
encountered CAPTCHA prompts allows the whole process to be completely automated and
constantly working without supervision. The approach is as follows:

1. extract the challenge prompt from the original website;

2. select appropriate task type24 (e.g. text, reCAPTCHA v2/v3, click, rotate, key,
hCaptcha, etc.) and provide it with the extracted data in the required format;

3. wait for an API callback informing the program that a solution has been generated
by the external service and is available;

4. forward the solution to the remote server to solve the completely identical challenge
and receive a new valid user session.

Any created entries can once again be listed using the corresponding API endpoints, as
shown in Figure 4.6.

4.2.4 Service Plugins

Services are the heart of the application and are designed to be the workers in the context of
the implemented program. They deliver the actual functionality, leveraging tools provided
by the application core and other available plugins for selected websites or even as generic
crawlers/scrapers with no particular website focus. Furthermore, the services can be split
into four categories, based on their role in the system communication (through the channels
designated by the service’s implementation):

1. publishers — services in this category are actively participating in the communica-
tion; they are sending (publishing) messages to (possibly many) participants, the
contents may be created by the services themselves or just acquired from a different
source and forwarded;

2. subscribers — this category represents communication-wise passive services that act
just as listeners ingesting messages from potentially various sources;

23https://2captcha.com
24https://2captcha.com/2captcha-api#solving_captchas

54

https://2captcha.com
https://2captcha.com/2captcha-api#solving_captchas

Figure 4.6: Operations from TwoCaptcha API Resource Plugins
This figure shows a more complex API resource implementation provided by the TwoCaptcha

plugin pack. That includes endpoints for listing existing database records, allowing their creation,
accessing relevant CAPTCHA files, receiving callbacks from remote services and solution success

reporting.

3. hybrids — contained in this category are services which act as both active and pas-
sive cells in the communication, they can make some data post-processing, filtering,
duplication, reduction, normalisation, etc.;

4. and “bystanders” — services that are not participating in the communication in any
way are considered to be a part of this category.

As of now, the program supports two types of services (though, the type on its own is
primarily used to only filter plugins to be loaded by the application when initialising the
service process):

1. crawlers (typically categorised as publishers) — these services should be accessing
the remote web server, acquiring relevant data and publishing those data through
corresponding message topics;

2. and scrapers (customarily implemented as subscribers, however, could be hybrid as
well) — often at the end of the chain, scrapers receive and process data from scrapers,
finally transforming the data and storing them (most probably) into a database.

The main process, the manager, launches individual service instances. It first loads
all available service configurations from the database and then tries locating plugins and
modules referenced from the loaded database. After the services are launched, the main
process continues running and monitoring its child (service) processes. When the time of
shutdown comes, it informs all the child processes about the imminent shutdown. If they
do not shut down on their own in time, the manager forcefully terminates them and tries
to clean up.

Monopoly Market Plugin Pack

This plugin pack focuses on the Monopoly Market’s25 website. Its task is to continuously
monitor the target website and acquire all kinds of data available on given pages. The

25http://monopolyberbucxu.onion

55

pack contains two services (workers) implementing all the functionality for the website’s
monitoring: crawler and scraper.

CrawlerService Crawler’s goal is a periodic mapping of the website. Its structure is
already known so that the appropriate links and data can be extracted; however,
new product listings may be created or removed at any time. A class diagram of the
CrawlerService can be seen in Figure 4.7.

abc.ABCMeta

scraper.services.crawler_service_base.CrawlerServiceBase

scraper.services.service_base.ServiceBase

object

scraper.utils.mixins.persistable_state_mixin.PersistableStateMixin

scraper.utils.mixins.http_client_mixin.HttpClientMixin

plugin.monopoly_market.services.monopoly_market.CrawlerService

isinstanceof

isinstanceof

Figure 4.7: Class Diagram of Monopoly Market’s Crawler Service
This figure shows a class diagram of the implemented Monopoly Market crawler service. It can be

seen that the service class derives from both the CrawlerServiceBase class, as it should to be
a valid service, and the PersistableStateMixin class. That allows a state of the service to be

easily saved and restored.

The service first goes through the product category structure to map out all the
existing categories and products they contain. Links to these products are cached
and will be periodically visited (downloaded by the crawler server). Categories are
crawled again after the specified time window (in case new product listings were
created); until then, the application only monitors the product listing pages. Every
page that is downloaded by the crawler is published under the appropriate Redis key.
Other services may subscribe to various page topics they are interested in and receive
periodical updates of corresponding pages from the crawler over time. What do they
do with the published data is not a concern to this service.
However, before the crawler can do any of that, it first needs to establish an initial
connection to the remote server and possibly solve any CAPTCHA challenge served
by the website to create a valid user session. A sequential diagram of such initial
connection can be seen in Figure D.1 on page 91. The algorithm first connects to the
website and tries to fetch the landing page. Once discovering that the website has
actually served a CAPTCHA stoppage instead, it initiates the solving of the page’
CAPTCHA. After receiving a solution from an external service, the server sends it to
the remote server, acquiring a valid user session and continuing to the actual landing
page of the site.
The primary purpose is to encapsulate and centralise access to the given web server
in this service. That allows the application to control when and how often it sends
appropriate HTTP requests (in the context of being a “polite” client), solve any
encountered CAPTCHA challenges at a single place, etc. Centralised web server
access is beneficial when having many scrapers (even very heterogeneous from different

56

plugin packs), which is expected in this plugin-driven design pattern because it allows
the system not to waste costly HTTP requests unnecessary. The page is downloaded
once and then distributed to any and all interested parties.

ScraperService The goal of a scraper service is the extraction of data from some provided
source. A class diagram of the implemented ScraperService can be seen in Figure
4.8.

abc.ABCMeta

scraper.utils.mixins.http_client_mixin.HttpClientMixin scraper.services.service_base.ServiceBase

scraper.services.scraper_service_base.ScraperServiceBase

plugin.monopoly_market.services.monopoly_market.ScraperService

object

isinstanceof

isinstanceof

Figure 4.8: Class Diagram of Monopoly Market’s Scraper Service
This figure shows a class diagram of the implemented Monopoly Market scraper service. It can be
seen that the service class correctly derives from the ScraperServiceBase class, as it should to be

a valid service.

This service leverages the fact that the crawler publishes all the downloaded pages
through Redis under previously known keys. It plainly connects to the same Redis
server as the crawler service did and subscribes to pages it is interested in (currently
mainly the product listings). The targeted pages are received from Redis shortly after
those pages are centrally downloaded and published by the crawler.
After receiving the data, the scraper can start with the extraction. It validates the
structure, looks for appropriate elements or patterns and extracts valuable data. After
the extraction is done, it creates appropriate database object instances and pushes
them into the database. Incomplete and simplified extraction of the data from the
product listing page can be seen in Figure D.4 on page 90. The whole process repeats
each time a new page source code is published through Redis under the appropriate
key.

As can be seen in Figures 4.7 and 4.8, the presented service classes extend from the
HttpClientMixin and PersistableStateMixin classes. These mixin classes are a part of
the application’s core and provide some additional functionality. Please refer to the Core
Utilities section on page 59 for more detailed information about core mixins.

PGP Plugin Pack

The PGP plugin pack implements a generic scraper interface. The idea is to create a scraper,
which will not care about where the web page is from or what exact structure the web page
has. It is possible to create a scraper that can be fully generic and work with any website,
thanks to the specific format of the PGP keys.

57

The implemented scraper is based purely on regex. It aims to locate any ASCII-
armoured public PGP keys, which typically contain particular constant sets of characters:

• they start with -----BEGIN PGP PUBLIC KEY BLOCK-----,

• then contain numerous lines encoding the actual key and other metadata,

• finally ending with -----END PGP PUBLIC KEY BLOCK-----.

Using this knowledge about the format of public PGP keys, a regular expression describing
such a string can be created: /-{5}BEGIN PGP PUBLIC KEY BLOCK-{5}.+?-{5}END PGP
PUBLIC KEY BLOCK-{5}/gs. The g flag means that the search should be global and the s
flag, also called DOTALL, makes the regex interpreter use the dot (.) character to match
anything instead of any character excluding line breaks (which is its default meaning).

abc.ABCMeta

scraper.utils.mixins.http_client_mixin.HttpClientMixin scraper.services.service_base.ServiceBase

plugin.generic_pgp.services.generic_pgp_scraper.GenericPGPScraperService

scraper.services.scraper_service_base.ScraperServiceBase

object

isinstanceof

isinstanceof

Figure 4.9: Class Diagram of Generic PGP Scraper Service
This figure shows a class diagram of the implemented PGP scraper service. It can be seen that the

service class correctly derives from the ScraperServiceBase class, as it should to be a valid
service.

Furthermore, this particular plugin pack does not come with any crawler implementa-
tions as it aims to be “compatible” with any website. Crawlers for specific websites are to
be implemented by the user. The design once again follows an approach that was already
presented in the previous Monopoly Market Plugin Pack section — the scraper subscribes
to a particular topic and waits for any pages to be published there. Once it receives the
data, it will try to find any PGP keys there, extract them, generate corresponding metadata
and persist the findings in the database.

4.2.5 Utilities and Utility Plugins

This section showcases some of the implemented core utilities and utility plugins (such as
API wrappers or clients of external services, commonly used methods and other helper
implementations). Unlike plugins in the services, resources or database modules, the
plugins in this (utils) module are not dynamically loaded, filtered or pre-processed by the
application’s core in any way. In fact, the utils Python module (directory) that is used
to contain the aforementioned utilities can have just any other name (which is not possible
for the other, automatically imported modules). When a certain part of code needs access
to a utility implemented by some plugin pack, it will plainly use the import statement as
if it were just any other library.

58

Core Utilities

Utilities under this section are a part of the application’s core. Thus, they are always
available to any of the plugins. Among the most valuable utilities are various mixin classes.
These classes implement some feature and can be mixed into any number of other classes
to make their methods and properties available in the other classes as well.

HttpClientMixin This class implements methods easing off management of local instances
of aiohttp client sessions. These need to be first instantiated with various parameters,
customising their behaviour. The instances must also be cleaned up — the connections
should be closed by the program before exiting. Doing all of that can get tedious and
hard to keep track of, especially when using multiple client sessions.
This mixin class aims to simplify all these necessary tasks with HTTP client sessions
and group them into one place that can be reused in code with ease.

LoggableTableMixin This mixin class is to be used by database models. In conjunction
with custom logging adapters implemented in the core, this mixin allows simplified
logging of database objects (including the selected class properties as separate fields
in GELF).
The mixin implements the extraction of class fields into a dictionary which it at-
taches to the log messages. The graypy is then able to use this dictionary to create
corresponding logging fields using GELF. Furthermore, it uses three class fields to
determine which class fields to extract and how to format them, where:

• __loggable_prefix__ specifies a string which is to be prepended to the name
of each included class field,

• __loggable_include__ selects which fields are to be included during extraction
(if left empty, the application uses all the fields it can find),

• __loggable_exclude__ contains fields that are not to be included in the output
dictionary (in case both include and exclude lists are provided, exclude is still
subtracted from the include list).

PersistableStateMixin When a state of some class (either whole or just some of its
selected fields) needs to be persisted for some reason, it can be done by using this mixin
class. It implements methods taking care of the whole process from field extraction,
to data encoding/decoding, to storing to/loading from disk. Loading and storing
state of given class instance is then as simple as self.load_state(), self.save_state()
respectively.

Next, there are various custom logging adapters aiming to simplify the process of logging
more complex objects or including additional metadata in the messages implemented in the
core, such as:

• IncludeLoggableAdapter, which allows additional fields to be included in the logged
messages;

• FlaggableAdapter allowing various predefined flags to be assigned to logging mes-
sages when necessary;

• or PreformatterAdapter allowing custom formatting and its arguments to be speci-
fied in a more detailed way.

59

Finally, the core also contains other secondary utilities, such as custom error classes, var-
ious predefined constructs for API resource documentation or, which will not be described
here, in detail.

TwoCaptcha Plugin Pack

This pack contains a really straightforward implementation of an HTTP client wrapper for
the 2Captcha’s API26. No official library for Python existed at the time this wrapper has
been implemented; however, that is no longer true27.

Except for the API client, this bundle of plugins contains one more handy feature —
point clustering tool. The targeted marketplace (Monopoly Market) uses a click-based
CAPTCHA where the solution (coordinates) is provided by clicking on the described object
in an image (a single broken circle in the case of Monopoly Market). However, there might
be problems when receiving solutions from the 2Captcha service (receiving none, wrong,
or multiple solutions is pretty standard in case of click CAPTCHAs at 2Captcha). Figures
4.10(a) and 4.10(b) show two real-life example cases (data extracted from internal logs).
Which solution is correct and should be sent to the website when the service provides more
than a single one?

0 25 50 75 100 125 150 175 200
x

0

25

50

y

(a) Case Example 1

0 25 50 75 100 125 150 175 200
x

0

25

50

y

(b) Case Example 2

Figure 4.10: Multiple Coordinate CAPTCHA Solutions
This figure shows two examples of CAPTCHA challenge prompts and the corresponding solutions
(blue dots) provided by 2Captcha. The correct solution to this challenge is any coordinate within
the circle with broken border line. In the case of (a) it is the second one from the left; for (b) it is

the second one from the right.

Sending one of the received solutions at random is not a great idea. The probability
of success is 40% in the case of Figure 4.10(a) and just 25% in the case of Figure 4.10(b).
Furthermore, the program only has a single shot at this and has already paid the external
service for the provided solutions. It would be for the best to make the most from what
the program already has.

By clustering the points, the program can significantly improve its chance of success
if there is actually a correct solution among the wrong ones. The points with a distance
under some predefined threshold to each other are paired together. However, the required
solution must still be just a single pair of coordinates and selecting one of the points in the
cluster could still be a bad idea (the approach would work for Figure 4.10(a) but would
only have a 50% chance for Figure 4.10(b)). For this purpose, the centre of the created
cluster is designated to be the solution to be used. A “correct” cluster for the program is
the one with the most points. The generated solutions can be seen in Figure 4.11(a) and
4.11(b), where each point colour represents a cluster, and a red x mark depicts the resulting
solutions (centres of the clusters).

26https://2captcha.com/2captcha-api
27https://github.com/2captcha/2captcha-python

60

https://2captcha.com/2captcha-api
https://github.com/2captcha/2captcha-python

0 25 50 75 100 125 150 175 200
x

0

25

50

y

(a) Case Example 1

0 25 50 75 100 125 150 175 200
x

0

25

50

y

(b) Case Example 2

Figure 4.11: Multiple Coordinate CAPTCHA Solutions with Clustering
This figure shows two examples of CAPTCHA challenge prompts and the corresponding solutions
(colourful dots) provided by 2Captcha after being clustered by the implemented algorithm. Each
point colour represents a distinct cluster, and a red x mark depicts centres of the corresponding

clusters.

Both of the examples are indeed tricky to solve, even for a human observer. Also, these
views are, in fact, enlarged for the purposes of document presentation. The real CAPTCHA
prompt is only 50px tall and 200px wide. That means that solutions provided by a third
party can always contain (multiple) errors. The clustering approach will not help when
there is no correct solution or when there are many incorrect solutions closer together;
however, it significantly improves solution success chances in numerous situations.

4.3 Database
The database schema is built up by sqlalchemy using implemented model classes from
individual database plugins. Since the PostgreSQL (TimescaleDB) itself does not play
a critical role in the implemented solution (the implementation could be very well using
a different DBMS), no new details will be revealed in this section. The DBMS is, strictly
speaking, used as delivered in the Docker container, without any configuration or extension
modifications.

The final schema of the database, including all the table fields, their data types and
table relationships, can be seen in Figure D.6 on page 96. Section 4.3.1 shows and describes
some of the exciting database queries used in various situations.

4.3.1 Query Examples

This section showcases some of the database queries that were used either in application
monitoring dashboards or during aggregation of the acquired data. The SQL queries follow
the syntax of PostgreSQL’s Procedural Language (PL/pgSQL). Some of them even use
TimescaleDB-specific features, such as the TIME_BUCKET function, and can only be run on
a TimescaleDB instance.

Monitoring

Queries discussed in this section are helpful when monitoring (primarily real-time) activity
of the application. All of the featured queries are actively used in the Grafana system to
display system metrics in real-time.

The first query shown in Listing 4.6 is pretty straightforward. However, it provides
critical information about the current “performance” of the application. The query selects
a count of recent entries from the product__stats table (which contains one entry per

61

page-scrape) and then groups the result by 1-minute long time buckets. The displayed data
can be seen in Figure 5.2 on page 69.

1 SELECT TIME_BUCKET('1m', created_at) AS timeframe,
2 COUNT(product_id) AS count
3 FROM product__stats ps
4 WHERE created_at BETWEEN NOW() - INTERVAL '1h' AND NOW()
5 GROUP BY 1
6 ORDER BY 1;

Listing 4.6: Counts of Scraping Entries over Time
This listing shows a query that counts entries of product__stats, that were created each minute
over the last hour. The obtained data can be used in various bar and line charts (such as Figure

5.2 on page 69), histograms, or even in plain text thanks to the grouping and sorting;

This second query, shown in Listing 4.7, is significantly more complex. It might also
not provide as critical information as the previous query; however, the information is useful
when debugging the program and seeing issues with redirects — it shows when a product
listing has been taken down (possibly removed). However, this query is Monopoly Market-
specific, as the behaviour of the remote server is instead showing a 404 Not Found error
message when trying to access a removed product listing; the server redirects the client to
the marketplace’s landing page.

The query leverages the fact that all HTTP responses from the server are persisted in
the database along with all cookies, HTTP headers and other metadata. It selects the URL
path of the source page and the timestamp of the first occurrence of an HTTP Location
header (meaning redirection) while requiring that the source URL is a listing page and the
target is the landing page. After having this information, it again groups the count of the
entries found into time buckets of 1 hour. As listing removals are not that frequent, the
resulting visualisation is not that interesting.

1 SELECT TIME_BUCKET('1h', created_at) AS timeframe,
2 COUNT(url_path) AS count
3 FROM (
4 SELECT i.url_path,
5 MIN(i.created_at) AS created_at
6 FROM http_response_archive__headers h
7 INNER JOIN http_response_archive__items i ON h.response_id = i.id
8 WHERE h.name = 'Location' -- HTTP location header means redirect
9 AND h.value LIKE '%.onion/' -- Redirect leads to landing page

10 AND i.url_path LIKE '%/listing/%' -- Redirected from listing page
11 GROUP BY 1
12) tmp
13 WHERE created_at BETWEEN NOW() - INTERVAL '6h' AND NOW()
14 GROUP BY 1;

Listing 4.7: Counts of Product Listing Removals over Time
This listing shows a query that counts listings that were removed from the marketplace each hour

based on archived HTTP responses over the last six hours. The obtained data can be used in
various bar and line charts or histograms.

62

Aggregation

Queries in this section offer a view of the collected data from a different perspective and,
hopefully, provide insight into what is happening and what the collected data actually
means. Data analysis is an absolutely essential step after acquiring enough data. The
presented examples should provide an insight into what can be achieved with well-designed
queries.

The first query in Listing 4.8 is, yet again, comparatively uncomplicated and under-
standable. It lists names of all detected products, along with their corresponding categories
(direct category of the listing and its parent category), all sorted by the number of sales.
The query selects corresponding columns from the table containing scrape entries and from
other joined tables and groups the result by product records. Some of the results acquired
by this query can be seen in Table 5.1 on page 71.

1 SELECT pi.name AS product_name,
2 category2.name AS category,
3 category1.name AS subcategory,
4 SUM(sales_delta) AS sales
5 FROM product__stats ps
6 INNER JOIN product__items pi ON pi.id = ps.product_id
7 INNER JOIN product__categories category1 ON category1.id = pi.category_id
8 INNER JOIN product__categories category2 ON category2.id = category1.parent_id
9 GROUP BY pi.id, category1.id, category2.id

10 ORDER BY SUM(sales_delta) DESC;

Listing 4.8: The Most Purchased Products with Categories
This listing shows a query that lists all products with their categories and total number of sales.

The obtained data are to be mainly used in tables (such as Table 5.1 on page 71).

The second featured query in Listing 4.9 counts the number of products by their country
of origin. Though pretty straightforward, it provides an immensely substantial view of
the collected data because it shows which countries are the most involved on the given
marketplace. The query only joins tables containing relevant metadata and groups the
result by their value.

1 SELECT pm.value AS country,
2 MIN(pm.created_at) AS timeframe,
3 COUNT(DISTINCT pi.id) AS value
4 FROM product__items pi
5 INNER JOIN product__meta pm ON pi.id = pm.product_id AND pm.name = 'origin'
6 GROUP BY 1;

Listing 4.9: Countries of Origin with the Most Products
This listing shows a query that counts existing products by their country of origin. The obtained

data can be used in various bar charts or even world maps (such as Figure D.9 on page 99).

4.4 Data Analyser
The data analyser/blockchain correlator is a separate application using data acquired by
the implemented crawler and scraper services. It predominantly uses any information about
detected product purchases first to establish a potential payment window and then try to
correlate relevant blockchain transactions. The analyser partially depends on the scraping

63

application, but only in reusing its plugins — especially the data model classes from database
plugin packs.

Fast, easy and uniform access to the blockchain of various cryptocurrencies is provided
by Blockbook28. This application uses REST API to communicate with a remote Blockbook
instance (or multiple instances when correlating with multiple cryptocurrencies) to fetch
any required information about blocks, transactions or addresses within the blockchain.
A custom API client has been created using aiohttp (to make asynchronous HTTP requests
and manage connection sessions) and aioredis (to cache received data when appropriate).

The analyser’s algorithm is as follows:

1. establish payment window for any product in the database;
The analyser uses deltas in sales of products to determine when a purchase of the
corresponding product has been finalised. Logically, the transaction must have al-
ready been in the cryptocurrency blockchain in order for the marketplace to confirm
the purchase and increase the product’s purchase count. Based on that, the pay-
ment window is established — it ends at the time when the scraper has detected a
purchase. The beginning of the window is determined by plainly subtracting a pre-
defined time constant from the ending timestamp based on the configuration of the
analyser module. This step further consists of:

i fetch product delta from the database;
ii fetch variants and prices of the corresponding product based on the attribute

delta record.

2. load potentially relevant transactions from the blockchain of selected cryptocur-
rency/cryptocurrencies;
The analyser now has to select corresponding cryptocurrency blockchain blocks to
access relevant transactions based on the established payment window. Given the
current time, the current state of the blockchain and bounding timestamps of the
payment window, it approximates UIDs of boundary blocks. After making sure that
correct blocks were selected, all the transactions from relevant blocks are downloaded
from Blockbook or loaded from the local Redis cache.

i locate boundary block UIDs for given payment window (implemented as
described in Section 3.6.1);

ii download blocks in between the boundary blocks (inclusively);
iii download all relevant transaction in the blocks from the previous step.

3. correlate transactions against selected strategy;
Everything has been pretty uniform, unchanging and without the need for customi-
sation. In this step, a custom correlation method can be plugged in and used at
any time — the only expectation is subclassing from TransactionStrategyBase to
ensure a matching interface with the analyser. Having all the potentially relevant
transactions at hand, the analyser will now launch the selected strategy against all of
them.

28https://github.com/trezor/blockbook

64

https://github.com/trezor/blockbook

4. save the results in an appropriate format with necessary information.
The final step is storing the results in an understandable and usable way. Any number
of custom information can be added by the correlation strategy, which means that the
exact form of the output also depends on the used strategy. Currently, the analyser
stores information in the comma-separated values (CSV) format.

Furthermore, the data analysis/blockchain correlation is in no way dependent on real-
time data from scraper services. This process can be done at any given time, even retro-
spectively. This means that newly created correlation strategies can be used on older data
just as quickly as on the newer, which also applies to older strategies.

The following sections will focus on various implementation details. Section 4.4.1 focuses
on determining the prices of product’s variants over time. Followed by a detailed description
of implemented correlation strategies in Section 4.4.2.

4.4.1 Price and Variant Mapping

The process of price mapping for each product variant is essential to be even able to
get correct results by the analyser. Even though the analyser knows the prices of all
the order variants (combinations of available product sizes and delivery/transportation
options), the price of cryptocurrencies typically rapidly fluctuates. The order’s final price
is highly dependent on the time of its creation by the buyer. The analyser has no way of
knowing when an order has been created, the amount ordered or what type of shipping was
selected. Precisely because of that fact, the algorithm must calculate and check the prices
of all the product variants based on the actual value of the corresponding cryptocurrency
over a relevant timeframe.

1. the program first fetches existing product variants with their prices in a fiat
currency;
These records are provided by the scraper services numerous times during an hour
and are as important as detecting when a sale has been made for this process.

2. then, the program lists all registered cryptocurrency prices over the given pe-
riod;
The cryptocurrency prices are provided by the scrapers as well. Important to note
is that the marketplace itself provides its own exchange rate for the cryptocurren-
cies they support. Based on data from the Monopoly Market, this information gets
updated once in 5 minutes on average.

3. finally, it creates a list of timestamp and cryptocurrency price tuples for each
variant of the product.
The analyser first calculates the exchange rate between the source fiat currency (the
advertised price of any given product variant) and the destination cryptocurrency. For
each registered cryptocurrency price and product variant, a converted cryptocurrency
value is calculated.

The list of product prices has been created, and the correlation could now start. How-
ever, there are a few necessary improvements and optimisations to be made first:

1. consecutive prices that are the same can be reduced into a single entry;

65

2. prices “from the future” should be ignored when iterating over the blockchain
blocks;
Using price points detected before the block was published into the blockchain is
only logical. The use of prices “from the future” could potentially provide incorrect
correlation results.

3. only unique price points can be used when iterating over the transactions in
a single block.
Trying to correlate duplicate price points will also result in duplicate correlation
results. That is not wholly wrong, but it is indeed unnecessary.

4.4.2 Correlation Strategies

A correlation strategy is a subclass of TransactionStrategyBase in the context of the
implementation. It implements its abstract method(s) and generates a list of transactions
matched by the strategy. The strategy typically has a threshold function, which rules out
completely unrelated transactions, and a heuristic function, which outputs some arbitrary
value(s). The resulting transactions can then be objectively sorted based on the output of
the heuristic function.

Having more than a single strategy and the ability to switch between them at will can be
helpful in several ways. Newly designed strategies can be applied to old data to determine
how they behave compared to existing strategies. A set of strategies can be applied to the
same data to compare their outputs and so on. Currently implemented strategies are:

TotalOutputMatching This strategy correlates the total output of the transactions with
the prices of product variants.

SingleOutputMatching This second strategy, on the other hand, focuses on the correlation
of each single transaction output.

Some results and a commentary on the evaluation of the implemented strategies can be
seen in Section 5.3.4 on page 77.

66

Chapter 5

Deployment and Testing

This final chapter describes how was the implemented toolset used and what was achieved.
For each part of the resulting application, it presents and discusses measured real-world
deployment statistics and collected data.

The introduction into the environment of deployment and overview of its purpose can be
found in Section 5.1. Section 5.2 then describes how was the application monitored during
the deployment and which systems were used to do that. Finally, Section 5.3 covers the
achieved results and presents several aggregated data views underlining the implementation
successes.

5.1 Task Specifications
The application has been tasked with monitoring the Monopoly Market1 website. Other
cryptomarkets were not tracked; however, the system is ready to handle monitoring of
other websites — new service plugins have to be implemented specifically designed for the
targeted websites. The Monopoly Market has been specifically selected for various of its
features:

• is completely account-less;

• the payments are fully wallet-less (which is critical);

• displays lots of metadata of the products and vendors;

• uses acceptable CAPTCHA challenges;

• was new, modern and starting to be popular.

The application has been deployed on a virtual private server (VPS) at the Faculty.
Since the solution was designed to be fully containerised, the deployment management was
pretty straightforward. Running the scraping application was, customarily, just a question
of starting all the appropriate Docker2 containers with proper configuration. Updating
the deployed application is also quite plain — typically consisting of pulling new code from
GitHub3, building new application image, potentially pulling updated images of other con-
tainers and restarting everything.).

1http://monopolyberbucxu.onion
2https://www.docker.com
3https://github.com

67

https://www.docker.com
https://github.com

5.2 System Monitoring
The monitoring has been done using three distinct applications, each one with its advan-
tages and drawbacks. Server resources were monitored using the Netdata4 system. The
application itself, as mentioned several times throughout the implementation chapter, was
monitored by the Graylog5 and Grafana6 systems. Furthermore, the Grafana system is used
to visualise both application monitoring metrics and aggregated results (in comparison to
Graylog, which is only used for application monitoring).

The Graylog system monitors running application by provided logging messages. It
is completely independent of the application’s database or any other system component,
thus only works with what is provided in the received messages. The more information the
messages contain, the more information can be monitored, aggregated and worked with by
Graylog. Monitoring of this type is instrumental as it shows what was actually happening
directly in the application at any given point in time (including real-time reporting) — given
that the logging messages are frequent and detailed enough, of course.

One of such important statistics is shown in Figure 5.1. The graph displays the number
of HTTP request timeouts registered by the application while scraping. Any significant
deviations can point to problems with connectivity through the Tor network — that can be
seen to have happened from 3:00 AM to approximately 4:30 AM.

Figure 5.1: Detected HTTP Request Timeout Count Graph from Graylog
This figure shows a bar chart from the Graylog monitoring system. The chart displays the number

of registered HTTP client request timeouts over time. The data are acquired directly from the
application via logging messages. Abnormalities in this visualisation can indicate issues with

connectivity through the Tor network. One such problematic period can be seen on the left, from
3:00 to approximately 4:30 AM.

Complete monitoring dashboard views from the Graylog system can be seen in Figure
D.10 and D.11 on pages 100 and 101, respectively. The former displays the main monitoring
dashboard with various important performance metrics of the application. The latter shows
an overview of recent access to the application’s API.

While Graylog creates metrics based on information directly from the application itself,
Grafana, on the other hand, relies on data from the application’s database. Hence, Grafana
is completely independent of the application and only relies on the database and its table
schema. Using the database as the only data source significantly limits Grafana on which
information it has access to since detailed real-time logging is not persisted in the database.

4https://www.netdata.cloud
5https://graylog.org
6https://grafana.com

68

https://www.netdata.cloud
https://graylog.org
https://grafana.com

For that reason alone, the Grafana system should be primarily used to visualise aggregated
data rather than monitoring application metrics.

A graph displaying detected sales (green left Y-axis) and the number of newly created
scrape stats (blue right Y-axis) can be seen in Figure 5.2. This graph, in particular, can
be used to validate that information reported by Graylog are, in fact, correct and the
corresponding number of records is actually being created in the database. It can be seen
that these two systems — Graylog and Grafana complement each other as neither of them
can access data from the other, yet the data should match as they represent the same
information.

Figure 5.2: Detected Purchase and New Scrape Counts Graph from Grafana
This figure displays a bar chart from the Grafana system. The left, green, Y-axis shows the

number of detected sales at the given moment. Right right, blue, Y-axis shows a count of scrape
records created at that time. Displayed data are loaded from the application’s database. Any

abnormalities in the chart may indicate issues with the application. One such problematic period
can be seen on the left, from 3:00 to approximately 4:30 AM.

Examples of created monitoring and reporting dashboards from the Grafana system can
be found in appendices. These dashboards were used daily to monitor the application. The
view in Figure D.7 on page 97 shows the main performance monitoring dashboard reporting
detected sales and current speed of scraping (this has been typically used to verify data from
Graylog). The Figure D.8 on page 98 contains a long-term reporting dashboard for sales
from Monopoly Market. It displays where the most recent purchases will be shipped from,
a count of detected purchases based on time of day, and several tables containing the most
successful vendors and the most purchased products and categories. The last dashboard
example in Figure D.9 on page 99 compares origin countries of all detected products with
recently detected purchases.

Monitoring just the application is not enough. The Netdata system was used to monitor
the resource usage of the server itself. It offers highly detailed reporting for virtually any
system aspect imaginable — CPU, memory and disk usage, network statistics, resource
usage monitoring of individual services, running applications and Docker containers. The
ability to monitor the resource usage of separate Docker containers was vital in the case of
fully containerised application deployment.

The Figure 5.3 shows per core CPU usage of the scraping application specifically. It is
safe to say that the application is not heavily CPU-dependent since it uses an equivalent
of 20% of a single core on average. The graph also doesn’t display any unexpected usage
spikes, which means that the application behaves consistently over time. The values mea-
sured between 3:00 AM to 4:30 AM show lower CPU usage — at that time, the application
experienced issues with connectivity through Tor proxy. The measured data are consistent
with what is being reported by both Graylog (request timeouts in Figure 5.1) and Grafana
(count of newly created scrape stats in Figure 5.2) systems.

69

Figure 5.3: Application Container’s CPU Usage Graph from Netdata
This figure shows a CPU usage chart from the Netdata monitoring system. Each colour represents

the usage level of individual cores. The displayed usage data are measured specifically for the
application container; load generated by the host system or other processes/containers is not
included. Any abnormalities in the chart may indicate issues with the application. One such

problematic period can be seen on the left, from 3:00 to approximately 4:30 AM.

Partial dashboard views from Netdata can be seen in appendices. Figure D.3 on page
93 contains an overview of the application container’s resource usage showing CPU and
memory usage. Another overview, this time of the application’s database container, can be
seen in Figure D.4 on page 94. The last dashboard view, shown in Figure D.5 on page 95,
contains an overview of the whole VPS.

As demonstrated above, using multiple monitoring systems with different data sources
can be extremely helpful when trying to figure out what is currently (or was) really happen-
ing with the application. That is because a single monitor may not be “telling” the whole
truth.

5.3 Results
This section presents some of the actual results and statistics directly from the application
or relevant monitoring dashboards. Some performance statistics and information about the
program itself are presented in Section 5.3.1. This is followed by Section 5.3.2 showcasing
some of the most important and interesting data acquired from monitoring the Monopoly
Market. Section 5.3.3 then discusses various database-related statistics from the deploy-
ment. Finally, Section 5.3.4 describes results achieved with cryptocurrency blockchain
correlation.

5.3.1 Program Statistics

The first complete — the application actually had all or at least most of the required fea-
tures — long-term deployment happened on 1 March 2021. The longest uninterrupted crash-
less run was from 29 March 2021 to 15 April 2021 (the application finally crashed after
approximately 403 hours).

At first, there were primarily issues with web page rescheduling in unexpected situations;
however, they were typically “forgetting” to reschedule page visits rather than making the
program completely crash. The main crash related issue was when the application tried
to recover after a prolonged series of HTTP request timeouts or unexpected CAPTCHA
redirects.

The scrapers were set up always to have 12 asynchronous HTTP requests active (mean-
ing that 12 requests were initially sent and new requests were sent to top-up to 12 active

70

when corresponding responses arrived back) with 60-second timeouts. Such configuration
resulted in the performance of 53.49 scrapes per minute on average and a maximum of 66
when peaking while having an average HTTP request timeout rate below 1% (around 1 – 3
requests per ten minutes).

5.3.2 Marketplace Statistics

Probably the most interesting result section of them all — the marketplace statistics. This
section aims to present some of the most important discoveries about the monitored dark
marketplace — the Monopoly Market. However, even more information, statistics and
knowledge can most certainly be uncovered by further analysing the acquired data.

The graphs and views are based on aggregated data only from Monopoly Market between
1 March 2021 and 10 May 2021, where not indicated otherwise. Over that given time frame:

• 914 distinct products in 39 separate categories have been located;

• more than 15,600 individual product purchases have been detected;

• 91 public PGP keys belonging to 88 different vendors have been collected.

Table 5.1 displays 10 most purchased products on the whole marketplace. Particularly
interesting is the “Peruvian FISHSCALE COCAINE,” which has been purchased almost
three times more often than the second most-purchased product on the marketplace.

Table 5.1: Top 10 Products by Purchases

Advertised Product Name Class Purchases
Peruvian FISHSCALE COCAINE Stimulants 1,393
Diazepam 10mg Tabs Kern Pharma 30tabs/box Benzos 552
Amnesia Haze Amsterdarm Quality Cannabis 437
Speed POWDER Stimulants 431
rambo famous Ketamine SHARDS Dissociatives 334
SUPER STAR DAWG - PROMO OFFER #NOV10 Cannabis 256
100ug LSD tabs - GammaGoblin Parvati Tears Psychedelics 247
XANAX Alprazolam Kern Pharma 2mg Benzos 241
grainy white ket (really strong) Dissociatives 238
AMNEZIA HAZE Smallbuds/Leftoffs FREE UK NDD Cannabis 194
Modafinil 200mg Prescription 187

This table contains ten individual products with the highest number of purchases across the
marketplace. The displayed names are the original product names directly from the website.

Product’s class is a top-level category to which was the listing placed.

Even though the drug classes seem pretty balanced in the Table 5.1, however, the
total amount of cannabis purchases dominates the marketplace, as shown in Figure 5.4.
This figure displays the ratios between total summaries of product purchases in individual
product categories (drug classes).

The most successful marketplace vendors can be seen in Table 5.2, along with the num-
ber of advertised products and total sales from all offered products. The first one of which,
NextGeneration, with a whopping 3 times more sales than the runner-up, is actually the

71

Cannabis 31.1%
Stimulants 25.1%
Psychedelics 14.8%
Benzos 11.1%
Dissociatives 6.2%
Ecstasy 5.8%
Prescription 2.7%
Opioids 2.4%
Steroids 0.7%

Figure 5.4: Drug Class Total Purchase Amount
This figure displays the measured purchase ratios between individual drug classes on the
marketplace. The class is a top-level category to which was the product listing placed.

vendor who sells 6 out of 10 top purchased products on the whole website, while all the top
4 purchased products are being offered under their account.

Table 5.2: Top 10 Vendors by Total Sales

Vendor Name Products Sales
NextGeneration 9 3,579
topnotchbud 33 1,089
HeinekenExpress 15 1,055
rambouk2uk 13 992
SpiceSpiceBaby 70 664
DrParagon 8 617
StrainPirateCA 88 547
UKWHITE 5 436
CobraVerde 4 425
MadeInFrance 85 403

This table lists ten vendors with the highest number of product sales on the marketplace.
Moreover, the “Products” column shows a number of products that are listed/offered by the

vendor.

The Figure 5.5 closely relates to the data listed in Table 5.2. The marketplace’s website
displays a leaderboard of the most successful vendors. The most successful of which is
rewarded with a lower commission rate on all purchases of their products; however, that
is beside the point. Its presence is crucial and provides vital information based on offi-
cial marketplace data — who are the three vendors with the highest number of sales, in
corresponding order. That information can be used to validate data collected by the im-
plemented application. After looking at Table 5.2 and Figure 5.5, it is safe to say that the
collected data are indeed correct and reflect what is truly happening on the
targeted marketplace.

72

Figure 5.5: Official Leaderboard Displayed at Monopoly Market
This figure displays a screenshot of vendor leaderboards taken directly from the marketplace’s

website. It provides an important piece of information based on the official data of the
marketplace.

The products offered by NextGeneration vendor, their lowest available variant price
(in USD) and the corresponding number of product sales are displayed in Table 5.3. The
same table also contains a calculated revenue column (min_price × sales, in USD) with
the lowest possible revenue gained from sales of the corresponding product. According to
the calculations, it is estimated that the vendor has made at least 129, 738 USD over the
monitored time frame (about 70 days) on this cryptomarket alone (since this is not the
only marketplace the vendor is active at).

Table 5.3: Absolutely Minimal Revenue Estimate of NextGeneration Vendor

Product Name Price Sales Revenue
Peruvian FISHSCALE COCAINE 49.73 1,393 69,273.88
Diazepam 10mg Tabs Kern Pharma 30tabs/box 32.00 552 17,664.00
Amnesia Haze Amsterdarm Quality 37.00 437 16,169.00
Speed POWDER 19.44 431 8,378.64
AMNEZIA HAZE Smallbuds/Leftoffs FREE UK NDD 42.00 194 8,148.00
XANAX Alprazolam Kern Pharma 2mg 20.00 241 4,820.00
Modafinil 200mg 15.55 187 2,907.85
Dutch Import MDMA 27.23 59 1,606.57
VIAGRA (SILDAMAX) 10 X 100MG 9.07 85 770.95

129,738.90

This table lists all nine products offered by the NextGeneration vendor along with their
corresponding lowest possible prices (in USD) and sales made. The “Revenue” column then
calculates (min_price × sales) an estimate of revenue (in USD) generated by the relevant

product (if all the sales were of the cheapest variant).

Now, looking further to what more can be said about the detected purchases, the Figure
5.6 shows a histogram of detected product purchases at given time intervals in a day (the
timestamps were measured in the UTC timezone). The figure shows that purchases during
early-morning hours (3:00 – 7:00 AM) are much less frequent than the rest of the day. This
information can shed some light on where the majority of customers could be from as it is

73

presumed that most people will place orders during the day — in their place of residence —
rather than late during the night.

 0:00 4:00 8:00 12:00 16:00 20:00 24:00
Time of Day (UTC)

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f S
al

es

Figure 5.6: Product Purchases by Time of Day
This histogram displays the number of sales registered during the corresponding time of day. The

data for this figure was selected from an exactly 14-day period from 30 March 2021 to 12 April
2021 inclusive. The lowest activity can be seen around 3:00 to 7:00 AM, UTC. The highest

amount of detected purchases can be seen around 1:00 PM, UTC.

Lastly, Figure 5.7 shows a cumulative summary of detected sales and sales detected by
the application per day. The displayed graph shows a relatively stable trend in daily orders
on the monitored cryptomarket — except the four huge spikes in detected sales, which depict
crashes of the scrapers. The undetected sales accumulated on the marketplace. Since it
usually took few hours to fix and restart the application, all those undetected purchases
were detected immediately after the downtime.

5.3.3 Database Statistics

This section focuses on metrics of the application database — numbers of rows, disk sizes
and rates of change. Database size report as of 9 May 2021 can be seen in Table 5.4. This
table shows the number of rows in the corresponding database tables, the size of their data
alone, their database indices and their total size on disk.

It can be seen that the http_response_archive__headers database table takes up the
most space. That is due to the large number of rows and the rapid rate at which new rows are
being created, as can be later seen in Table 5.5. This table contains headers of all the HTTP
responses received from the remote web server; hence, it is bound to contain large amounts
of duplicate information. That applies for both the http_response_archive__cookies
and http_response_archive__items too. While these tables do not contain any critical
data, it is still good to keep any available information whenever possible.

Tables containing more important data, such as product__stats, product__meta and
product__variant__prices, can also be seen taking up a lot of space. These tables will,
for sure, contain a lot of duplicate information as well as the previous table — mainly in
the case of product parameters which do not change much over time. However, having

74

2021-03-01
2021-03-13

2021-03-23
2021-04-04

2021-04-14
2021-04-25

2021-05-07

Date

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

To
ta

l D
et

ec
te

d
Sa

le
s

Cumulative Sales

0

100

200

300

400

500

600

700

800

De
te

ct
ed

 S
al

es
 p

er
 D

ay

Sales per Day

Figure 5.7: Cumulative Summary and Trend of Detected Sales Over Time
This figure displays a cumulative summary of sales detected by the application over time (blue

series). It also displays the daily trend of the product purchases (orange series). The four spikes
signify four corresponding downtimes of the application, during which was the scraping process

inactive.

proof that the parameter did, in fact, not change during the given period of time is, most
probably, worth keeping.

The rates of change (the rate at which new entries are created in the corresponding
database tables) can be seen in Table 5.5. The rates, shown in the table, should be exact
(as they can be related to a programmed module extracting an exact number of parameters)
when not indicated otherwise.

The resulting database size can surely be reduced by enabling compression in the DBMS
configuration or removing duplicate records where applicable and desirable. The rates could
be reduced by filtering out some of the records to be created in the database to prevent
unnecessary data storage usage.

75

Table 5.4: Database Table Statistics

Table Name Rows Table Index Total
http_response_archive__headers 47,088,552 3.6 GiB 2.8 GiB 6.5 GiB
product__variant__prices 36,009,064 2.6 GiB 3.5 GiB 6.1 GiB
product__meta 22,886,094 1.5 GiB 2.9 GiB 4.5 GiB
http_response_archive__cookies 3,922,800 958.1 MiB 242.5 MiB 1.2 GiB
product__stats 4,281,475 313 MiB 434.3 MiB 747.5 MiB
http_response_archive__items 3,922 677 340.9 MiB 149.8 MiB 490.7 MiB
product__variant__items 9,332 1.1 MiB 624 KiB 1.7 MiB
pgp__items 91 104 KiB 16 KiB 512 KiB
product__items 914 160 KiB 112 KiB 280 KiB
pgp__meta 770 144 KiB 104 KiB 256 KiB
vendor__items 88 48 KiB 16 KiB 72 KiB
product__categories 48 48 KiB 16 KiB 72 KiB
service__urls 3 40 KiB 16 KiB 64 KiB
vendor__keys 91 48 KiB 16 KiB 64 KiB
service__items 1 40 KiB 16 KiB 64 KiB

9.3 GiB 10.1 GiB 19.4 GiB

This table lists the sizes of corresponding tables in the application database. No records were
deleted during the monitored period, and data compression is in the default setting. The table

shows the number of rows present in the application, the size of the contained data, the size of the
database index and the total size of the table on disk.

Table 5.5: Database Table Rates of Change

Table Name Rate of Change
Rate Determined By

http_response_archive__headers7 12 × http_response_archive__items
product__variant__prices7 10 × product__stats
product__meta 7 × product__stats
http_response_archive__cookies 1 × http_response_archive__items
product__stats7 53 / minute
http_response_archive__items7 53 / minute
product__variant__items7 10 × product__items
product__items7 4 / day
pgp__meta 10 × pgp__items
vendor__keys 1 × pgp__items
pgp__items 1 × vendor__items
vendor__items7 1 / month
product__categories N/A Website Structure Change
service__urls N/A Website URL Rotation
service__items N/A Static Configuration

This table displays rates of change (the rate at which new entries are created) of the corresponding
database tables. Some of the metrics are exact since the application only extracts a fixed number

of records, while some are calculated based on data from the database.

76

5.3.4 Transaction Correlation Statistics

This section presents some example correlation results. As pointed out in Section 4.4, the
correlation can be run against data regardless of their creation time.

Table 5.6 displays a portion of generated correlation result. This correlation has to
be run specifically against the NextGeneration vendor mentioned in the previous section
numerous times and their product “Peruvian FISHSCALE COCAINE.” A single output
correlation strategy plainly described in Section 4.4.2 has been used to generate these
results — the strategy matches transactions that occur during the product payment time
frame. The amount of one of their outputs is very close to the expected product variant
price. The table shows the name of the product’s variant, its price in USD, a corresponding
price in BTC at the relevant time, the difference in expected and the actual price, the
matched transaction UID and finally, an address of the output with a matching value.

Table 5.6: Results Matched by the Single Output Correlation Strategy

Product Variant Name USD BTC Price Difference
Matched Transaction UID
Matched Output Address
2 Grams via Free UK NDD 171 0.002904974 -0.0000000042
2fb03c7ebb1a65b764cb4fdbf3b2d6874258068f7ca9388a11dc77d8695b73ce
bc1qrdmuyzzflx7t5lxwqzeq4xa9z9q6p69uwpl2ay
1 Grams via EU STANDARD AIRMAIL 89.5 0,00152044 0,0000000003
8036b750465e2b2dcdd531d2b19cbfe68827d0eeb29269084f296c2d86a7cad1
1HDWAto9mD4vwZkxE7RZ4nxvgYcA5vJQpG
0.5 Grams via Free UK NDD 49.73 0.000844821 -0,00000000087
64e4493b9ac1d44e3ca1f52bb9f5abef23825264dcd53eba0ebaf87f7740a371
bc1qehatyjwyv8x4da2xwughhtfv3dcn4xdxxr6pnh
3.5 Grams via FREE UK NDD 297 0,005045482 -0,0000000015
1414d83ffcf58f0052f5844f533643e8748178032b0ee2cfff510353f5f0bbb6
bc1qmw68uc973ygmeeukjjwg3c8vaawqdnchkdnzqk

This figure displays some of the correlated transactions along with addresses of their matched
outputs. The correlation is based on the time of their creation and the values of their respective
outputs. Furthermore, it also displays information about the product variant (its name, price in
USD and a corresponding price in BTC at that time) that has matched the transaction’s output.

It is important to note that regardless of the (in)correctness or (in)accuracy of the
designed correlation strategies, there was no way to validate their results at that time.
Due to the nature of the monitored goods, a controlled purchase was not possible, not
even in cooperation with local law enforcement agencies. However, by creating a series of
bogus orders of various products offered by NextGeneration, it has been confirmed that
the marketplace is always generating addresses in the Bech328 format (the address always
starts with bc1) for each new order. That is the only information known for sure. It can
be used to improve correlation against this particular vendor further as it is pretty safe to
assume they are only using addresses in the Bech32 format. The Table 5.7 contains details
of the orders created at the Monopoly Marketplace and the generated addresses to send
the payment to.

7Rate is based on an average measured from relevant database records

77

Table 5.7: Order Details with Addresses Belonging to NextGeneration

Listing URL Path Order UID
Generated Address

/listing/379
779f87c6d05de3417c122dad35971f9c
bc1qg0rsfufdxsd63lrcg6quggtp98hn0wdttrgt4y

/listing/379
4c566d843cad2ff348af807a3add4657
bc1qtz788tnc3jnx27hl3e46elhwv3ld9q4u6ncxvp

/listing/382
fe54e4dbcb707e45d6d77489ef2b8971
bc1q6d6y9ekvzv6g9gslxmd4klts6vpsu44d39xzzm

/listing/385
5fee299e336805cb3105765fe99e3c9c
bc1qlfkpcawucm6ag9l2z4dexuuyp2sm6a4nwtj4aq

This table lists addresses known to belong to NextGeneration. The marketplace has generated
these entries for bogus product orders that were never funded. The important observation is the
generation of only a single type of address in the Bech328 format (the address starts with bc1).

Looking back at Table 5.6, it can be said, with a high level of certainty, that the transac-
tion corresponding to the matched output address of 1HDWAto9mD4vwZkxE7RZ4nxvgYcA5vJQpG
is not a correct match. With that said, there are still three other matched blockchain trans-
actions with an address of the correct type. These addresses should be further monitored
to see what is going to happen with the deposited funds.

8https://en.bitcoin.it/wiki/Bech32

78

https://en.bitcoin.it/wiki/Bech32

Chapter 6

Conclusion

In the beginning, this work focuses on in-depth analysis of various marketplace websites
on the dark web (a.k.a. dark markets, cryptomarkets) and web services deployed as a Tor
Hidden Service (HS) in general, all of which is described in Chapter 2. Based on the deliv-
ered analysis, a highly modular and extensible web scraping framework has been designed,
implemented and deployed (as shown in Chapter 3, 4 and 5, respectively). The imple-
mented application is ready to be further extended by supplementary modules focusing on
additional dark marketplaces or other websites.

The acquired results, as presented in Section 5.3, offer a real insight into the operation
of one selected marketplace, the Monopoly Market1. After locating 914 specific products
in 39 separate categories (individual drugs) and detecting more than 15,600 individual
product purchases, on that single marketplace alone, over approximately 70 days, there is
a significant amount of data to analyse. The subsequent analysis has:

• uncovered the composition of the detected purchases on the supported marketplaces;

• described trends in individual product purchases, drug classes and vendors;

• allowed rough estimation of the generated vendor and marketplace revenue;

• provided globally traceable data and metadata about vendors and their products;

• and can potentially do even more.

The cryptocurrency correlation analysis can provide more insight into the detected
product purchases. It shows promise with potentially partially correct results. However, at
the time of writing this, the correlation methods could not be verified or further validated
except for what has been presented in Section 5.3.4. That is primarily due to the illegal
nature of the monitored activity.

Furthermore, since this work is an integral part of the BAZAR Project2 and various
law enforcement agencies have already shown an interest in the project and the data it can
provide, publishing of this thesis will be delayed for three years. That has been decided
mainly to keep the designed and implemented forensic methods secret for as long as possible.
The implemented software will be managed and extended based on feedback from several
concerned European law enforcement agencies.

1http://monopolyberbucxu.onion
2https://www.fit.vut.cz/research/project/1447, https://bazar.nesad.fit.vutbr.cz

79

https://www.fit.vut.cz/research/project/1447
https://bazar.nesad.fit.vutbr.cz

The next logical step in the development is implementing more plugin modules targeting
additional cryptomarkets/websites on the dark web and polishing some rough edges. That
will allow gathering even more relevant information. The data from all the marketplaces
can be compared and cross-correlated once they become available, giving additional insight
into what is really happening on the dark web.

I am personally satisfied with the results that I have achieved and I am now able to
present. I believe that I did what I could to create a piece of software that, even though
it is just as impalpable as the criminality it targets, can result in some tangible real-world
results and thanks to which I can present interesting forensic data concerning the illegal
activity in the dark corners of the today’s Internet. I especially am grateful that I was able
to work with Ing. Vladimír Veselý, Ph.D., on such an exciting and potentially far-reaching
and impactful topic as is this one.

80

Bibliography

[1] Biryukov, A., Pustogarov, I. and Weinmann, R. Trawling for Tor Hidden
Services: Detection, Measurement, Deanonymization. In: 2013 IEEE Symposium on
Security and Privacy. May 2013, p. 80–94. DOI: 10.1109/SP.2013.15. ISSN
1081-6011.

[2] Broséus, J., Rhumorbarbe, D., Mireault, C., Ouellette, V., Crispino, F.
et al. Studying illicit drug trafficking on Darknet markets: structure and organisation
from a Canadian perspective. Forensic science international. Elsevier. 2016, vol. 264,
p. 7–14.

[3] Buxton, J. and Bingham, T. The rise and challenge of dark net drug markets.
Policy brief. Global Drug Policy Observatory Swansea. 2015, vol. 7, p. 1–24.

[4] Castillo, C. Effective web crawling. In: Acm New York, NY, USA. Acm sigir
forum. 2005, vol. 39, no. 1, p. 55–56.

[5] Chaabane, A., Manils, P. and Kaafar, M. A. Digging into Anonymous Traffic: A
Deep Analysis of the Tor Anonymizing Network. In: 2010 Fourth International
Conference on Network and System Security. Sep. 2010, p. 167–174. DOI:
10.1109/NSS.2010.47.

[6] Cuzzocrea, A., Martinelli, F., Mercaldo, F. and Vercelli, G. Tor traffic
analysis and detection via machine learning techniques. In: 2017 IEEE International
Conference on Big Data (Big Data). 2017, p. 4474–4480. DOI:
10.1109/BigData.2017.8258487.

[7] Diffie, W. and Hellman, M. E. Privacy and authentication: An introduction to
cryptography. Proceedings of the IEEE. IEEE. 1979, vol. 67, no. 3, p. 397–427.

[8] Evers, B., Hols, J., Kula, E., Schouten, J., Den Toom, M. et al. Thirteen
Years of Tor Attacks. 2016.

[9] Fidas, C. A., Voyiatzis, A. G. and Avouris, N. M. On the necessity of
user-friendly CAPTCHA. In: Proceedings of the SIGCHI conference on human
factors in computing systems. 2011, p. 2623–2626.

[10] Finney, H., Donnerhacke, L., Callas, J., Thayer, R. L. and Shaw, D.
OpenPGP Message Format [RFC 4880]. RFC Editor, Nov. 2007. DOI:
10.17487/RFC4880. Available at: https://rfc-editor.org/rfc/rfc4880.txt.

[11] Gafni, R. and Nagar, I. CAPTCHA–Security affecting user experience. Issues in
Informing Science and Information Technology. 2016, vol. 13, p. 063–077.

81

https://rfc-editor.org/rfc/rfc4880.txt

[12] Garfinkel, S. PGP: pretty good privacy. O’Reilly Media, Inc., 1995.

[13] Goldschlag, D., Reed, M. and Syverson, P. Onion routing. Communications of
the ACM. ACM New York, NY, USA. 1999, vol. 42, no. 2, p. 39–41.

[14] Harviainen, J. T., Haasio, A. and Hämäläinen, L. Drug traders on a local dark
web marketplace. In: Proceedings of the 23rd International Conference on Academic
Mindtrek. 2020, p. 20–26.

[15] Isaak, J. and Hanna, M. J. User Data Privacy: Facebook, Cambridge Analytica,
and Privacy Protection. Computer. 2018, vol. 51, no. 8, p. 56–59. DOI:
10.1109/MC.2018.3191268.

[16] Jansen, R., Juarez, M., Galvez, R., Elahi, T. and Diaz, C. Inside Job: Applying
Traffic Analysis to Measure Tor from Within. In: NDSS. 2018.

[17] Jardine, E., Lindner, A. M. and Owenson, G. The potential harms of the Tor
anonymity network cluster disproportionately in free countries. Proceedings of the
National Academy of Sciences. National Academy of Sciences. 2020, vol. 117, no. 50,
p. 31716–31721. DOI: 10.1073/pnas.2011893117. ISSN 0027-8424. Available at:
https://www.pnas.org/content/117/50/31716.

[18] Jones, M., Bradley, J. and Sakimura, N. JSON Web Token (JWT) [RFC 7519].
RFC Editor, May 2015. DOI: 10.17487/RFC7519. Available at:
https://rfc-editor.org/rfc/rfc7519.txt.

[19] Josefsson, S. The Base16, Base32, and Base64 Data Encodings [RFC 4648]. RFC
Editor, Oct. 2006. DOI: 10.17487/RFC4648. Available at:
https://rfc-editor.org/rfc/rfc4648.txt.

[20] Karunanayake, I., Ahmed, N., Malaney, R., Islam, R. and Jha, S. Anonymity
with Tor: A Survey on Tor Attacks. 2020.

[21] Lee, D. and Park, N. Blockchain based privacy preserving multimedia intelligent
video surveillance using secure Merkle tree. Multimedia Tools and Applications.
Springer. 2020, p. 1–18.

[22] McCoy, D., Bauer, K., Grunwald, D., Kohno, T. and Sicker, D. Shining light
in dark places: Understanding the Tor network. In: Springer. International
symposium on privacy enhancing technologies symposium. 2008, p. 63–76.

[23] Minárik, T. and Osula, A.-M. Tor does not stink: Use and abuse of the Tor
anonymity network from the perspective of law. Computer Law & Security Review.
2016, vol. 32, no. 1, p. 111–127. DOI: https://doi.org/10.1016/j.clsr.2015.12.002.
ISSN 0267-3649. Available at:
https://www.sciencedirect.com/science/article/pii/S0267364915001673.

[24] Mowery, K., Bogenreif, D., Yilek, S. and Shacham, H. Fingerprinting
information in JavaScript implementations. Proceedings of W2SP. 2011, vol. 2,
no. 11.

82

https://www.pnas.org/content/117/50/31716
https://rfc-editor.org/rfc/rfc7519.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://www.sciencedirect.com/science/article/pii/S0267364915001673

[25] Mulazzani, M., Reschl, P., Huber, M., Leithner, M., Schrittwieser, S. et al.
Fast and reliable browser identification with javascript engine fingerprinting. In:
Citeseer. Web 2.0 Workshop on Security and Privacy (W2SP). 2013, vol. 5.

[26] Murdoch, S. J. and Danezis, G. Low-cost traffic analysis of Tor. In: 2005 IEEE
Symposium on Security and Privacy (S P’05). 2005, p. 183–195. DOI:
10.1109/SP.2005.12.

[27] Narayanan, A., Bonneau, J., Felten, E., Miller, A. and Goldfeder, S.
Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton
University Press, 2016.

[28] Pant, G., Srinivasan, P. and Menczer, F. Crawling the web. In: Web dynamics.
Springer, 2004, p. 153–177.

[29] Raghavan, S. and Garcia Molina, H. Crawling the Hidden Web. In: 27th
International Conference on Very Large Data Bases (VLDB 2001). 2001. Available
at: http://ilpubs.stanford.edu:8090/725/.

[30] Reed, M., Syverson, P. and Goldschlag, D. Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communications. May 1998, vol. 16,
no. 4, p. 482–494. DOI: 10.1109/49.668972. ISSN 1558-0008.

[31] Tor Project, Inc. Tor Rendezvous Specification - Version 3. July 2020. Accessed
October 25, 2020. Available at:
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt.

[32] Underwood, S. Blockchain beyond bitcoin. Communications of the ACM. ACM
New York, NY, USA. 2016, vol. 59, no. 11, p. 15–17.

[33] Yan, J. and El Ahmad, A. S. Usability of CAPTCHAs or usability issues in
CAPTCHA design. In: Proceedings of the 4th symposium on Usable privacy and
security. 2008, p. 44–52.

[34] Zimmermann, P. PGP–Pretty Good Privacy. Public Key Encryption for the Masses,
User’s Guide. 1997, vol. 1.

83

http://ilpubs.stanford.edu:8090/725/
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt

Appendix A

Contents of the Included SD Card

/docs Contains all relevant documentation files (sources, figures, PDFs).

/figures Contains hand-made figures and all the source files for generated figures.
/latex All the thesis document LATEX source files.
/xdolej08-darkmarket_forensics.pdf The document containing this thesis.
/xdolej08-darkmarket_forensics-print.pdf The document containing this thesis

in two-page print version.

/results Contains all relevant data acquired by the application.

/data Contains exportable application data.
/database-13052021_2218 Application database dump from 13 May 2021.
/grafana_dashboards Contains used dashboard models from Grafana system.

/rip Contains static versions of websites ripped from the dark web.
/monopoly.tar.gz Static local ripped version of Monopoly Marketplace.

/sources Contains all relevant application implementation source files.

/analyser All the source files of data analyser/cryptocurrency blockchain correlator.
/application All the source files of the application’s core.
/plugins All the source files of plugins implemented to extend the application.
/vm Contains a virtual machine with pre-prepared application deployment setup.

84

Appendix B

Acronyms

API application programming interface
ASCII American Standard Code for Information Interchange

BFS breadth-first search
BLOB Binary Large Object

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans
Apart
CMS Content Management System
CPU Central Processing Unit
CRUD Create, Read, Update, and Delete
CSS Cascading Style Sheets
CSV comma-separated values

DBMS database management system
DDoS distributed denial of service

FTP File Transfer Protocol

GELF Graylog Extended Log Format

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

JSON JavaScript Object Notation
JWT JSON Web Token

ORM object-relation mapping

PDF Portable Document Format
PGP Pretty Good Privacy
PL/pgSQL PostgreSQL’s Procedural Language

regex regular expression
REST Representational State Transfer

85

RPC Remote Procedure Call

SPA single page application
SQL Structured Query Language
SSL Secure Sockets Layer

The Dark Web
OMG Onion Mirror Guidelines

Tor Proxy Tor-relevant acronyms
HS Tor Hidden Service
IP Introduction Point
RP Rendezvous Point

UID unique identifier
UNIX Uniplexed Information and Computing System
URL Uniform Resource Locator
UTC Coordinated Universal Time
UUID universally unique identifier

VPS virtual private server

XML Extensible Markup Language

86

Appendix C

Tables

Table C.1: Tor Network Traffic Sample from 2008, adapted from [22]

Protocol Connections Traffic Destinations
HTTP 12,160,437 (92.45%) 411 GB (57.97%) 173,701 (43.01%)

SSL 534,666 (4.06%) 11 GB (1.55%) 7,247 (1.91%)
BitTorrent 438,395 (3.33%) 285 GB (40.20%) 194,675 (51.58%)

Instant Messaging 10,506 (0.08%) 735 MB (0.10%) 880 (0.23%)
E-Mail 7,611 (0.06%) 291 MB (0.04%) 389 (0.10%)

FTP 1,338 (0.01%) 792 MB (0.11%) 395 (0.10%)
Telnet 1,045 (0.01%) 110 MB (0.02%) 162 (0.04%)

Total 13,154,115 709 GB 377,449

Table C.2: Tor Network Traffic Sample from 2010, adapted from [5]

Protocol Flows Traffic
HTTP 4,735,000 (68.57%) 136 GB (36.44%)

Other Well-known Protocols 1,173,000 (16.99%) 22.6 GB (6.04%)
Unknown 410,000 (5.94%) 95 GB (25.47%)

BitTorrent 320,500 (4.64%) 93 GB (24.92%)
SSL 126,000 (1.83%) 20 GB (5.37%)

Instant Messaging 119,000 (1.72%) 972 MB (0.26%)
Other P2P/file sharing 15,000 (0.22%) 4.4 GB (1.17%)

Insecure (FTP, Telnet,) 6,000 (0.09%) 1.2 GB (0.32%)
Total 6,905,000 373.6 GB

87

Appendix D

Other Application Resources

1 def list_modules(module_pattern: str, parent_module: ModuleType = None) -> list[ModuleType]:
2 """ Lists all modules matching the provided regex name pattern. """
3 if parent_module is None:
4 # no parent module is yet known - determine root module
5 parent_module_name, module_pattern = module_pattern.split(".", maxsplit=1)
6 if not module_pattern.endswith("."):
7 # ensures that last iteration knows when to end recursion
8 module_pattern += "."
9

10 # import root module by first name in the provided name pattern
11 parent_module = import_module(parent_module_name)
12
13 modules = []
14 submodule_name_pattern, submodule_pattern = module_pattern.split(".", maxsplit=1)
15 # process each submodule of current parent module
16 for _, submodule_name, _ in pkgutil.iter_modules(getattr(parent_module, "__path__", [])):
17 if re.match(submodule_name_pattern, submodule_name) is None:
18 # skip submodule if its name does not match provided name pattern
19 continue
20
21 # import submodule by its actual name
22 submodule = import_module(f"{parent_module.__name__}.{submodule_name}")
23 if submodule_pattern:
24 # continue recursively if there are more names in the pattern
25 modules.extend(list_modules(submodule_pattern, submodule))
26 continue
27
28 # there are no mod names in the name pattern, this submodule has matched
29 modules.append(submodule)
30
31 # return recursively collected modules matching the provided name pattern
32 return modules

Listing D.1: Algorithm for a Recursive Python Module Lookup and Import
This listing contains an algorithm for dynamic module import. The module is only imported based

on the name (in the dot notation package.module1.module2) provided to this function.

88

1 def list_classes(modules: Union[ModuleType, list[ModuleType]],
2 only_own_classes: bool = True,
3) -> list[Type]:
4 """ Lists and filters all classes from the provided modules. """
5 if not isinstance(modules, Iterable):
6 modules = [modules]
7
8 classes = []
9 for module in modules:

10 module_classes: list[tuple[str, Type]] = list(inspect.getmembers(module,
11 inspect.isclass))
12 for _, cls in module_classes:
13 if only_own_classes and not cls.__module__.startswith(module.__name__):
14 continue
15
16 classes.append(cls)
17
18 return classes

Listing D.2: Algorithm for Listing and Filtering Classes in a Python Module
This listing contains an algorithm responsible for searching and filtering of classes in Python

modules.

1 SELECT pi.name AS product_name,
2 pi.url_path AS product_url,
3 MIN(pvp.usd) AS min_price,
4 SUM(sales_delta) AS sales,
5 MIN(pvp.usd) * SUM(sales_delta) AS min_revenue
6 FROM product__stats ps
7 INNER JOIN product__items pi ON pi.id = ps.product_id
8 INNER JOIN (
9 SELECT pvi.product_id,

10 MIN(pv.usd) AS usd
11 FROM product__variant__prices pv
12 INNER JOIN product__variant__items pvi ON pv.variant_id = pvi.id
13 WHERE pv.usd > 0
14 GROUP BY pvi.product_id
15) pvp on pi.id = pvp.product_id
16 WHERE ps.created_at > '2021-03-01 12:00'
17 AND pi.vendor_id = '23ec30b5-f899-577b-b34b-cda72c9cf925'
18 GROUP BY pi.id
19 ORDER BY SUM(sales_delta) DESC;

Listing D.3: Database Query for Minimal Vendor Revenue Estimation
This listing contains an SQL query used to estimate minimal possible revenue from product sales

of a particular vendor.

89

1 # parse initial information
2 page_breadcrumb: Tag = page.parser.find(attrs={"class": "breadcrumb"})
3
4 # load/create product category chain
5 category: Union[ProductCategory, None] = None
6 category_links: list[Tag] = page_breadcrumb.find_all(
7 "a", attrs={"class": "navcolor"}, text=re.compile(r"^((?!Market).)+$"))
8
9 for link in category_links:

10 url_path = URL(link["href"]).path
11 category = self.get_or_create_category(url_path, link.text.strip(), parent=category)
12
13 page_product_info: Tag = page_breadcrumb.find_next_sibling(attrs={"class": ["card", "cardlisting"]})
14 product_name = page_product_info.find("h5").text.encode("ascii", "ignore").decode("ascii").strip()
15
16 # load/create vendor database instance
17 vendor_link = page_product_info.find("a", attrs={"href": re.compile(r"^.*/vendor/.+$")})
18 vendor_url_path = URL(vendor_link["href"]).path
19 vendor = self.get_or_create_vendor(vendor_url_path, vendor_link.text.strip())
20
21 # load/create vendor's PGP database instance
22 pgp_label: Tag = page.parser.find("label", text="PGP")
23 pgp_tab: Tag = pgp_label.find_next_sibling(attrs={"class": "tab"})
24 pgp_area: Tag = pgp_tab.find("textarea", attrs={"class": "pgpbox"})
25 if pgp_area:
26 pgp = self.get_or_create_pgp(pgp_area.string.strip())
27 if pgp not in vendor.keys:
28 vendor.keys.append(pgp)
29
30 # load/create product database instance
31 product = self.get_or_create_product(page.url.path, product_name, category, vendor)
32
33 # create new product stats
34 product_info = dict(self.get_product_info(page_product_info))
35 meta_entries = []
36 for meta_key, meta_value in product_info.items():
37 meta_key = meta_key.lower().replace(" ", "_")
38 # [preprocessing ommitted]
39 meta = ProductMeta(product_id=product.id, name=meta_key, value=meta_value)
40 meta_entries.append(meta)
41
42 self._db.add_all(meta_entries)
43
44 product_stats_data = {
45 "product_id": product.id,
46 "sales": int(product_info["Sales"]), "sales_delta": 0,
47 "stock": Price.fromstring(product_info["Stock"]).amount_float, "stock_delta": 0.0,
48 }
49 if (last_stat := self.get_last_stat(product)) is not None:
50 product_stats_data["sales_delta"] = product_stats_data["sales"] - last_stat.sales
51 product_stats_data["stock_delta"] = product_stats_data["stock"] - last_stat.stock
52
53 stats = ProductStats(**product_stats_data)
54 self._db.add(stats)

Listing D.4: Partial Algorithm for Monopoly’s Product Listing Data Extraction
This listing contains a part of the algorithm responsible for most of the data extraction for the

Monopoly Market’s product listing page. Several less important parts of the code were removed or
made significantly shorter.

90

CrawlerService TwoCaptchaClient 2Captcha API Monopoly Market

run()

load_initial()

GET /

302 Found
Location: /stop

GET /stop

200 OK
{page}

solve_captcha(page)

Extracts captcha

solve(captcha)

POST /task {captcha}

200 OK
{123}

POST /callback
{123, solution}

GET /task/123

200 OK
{solution}

{solution}

POST /stop {solution}

302 Found
Location: /

GET /

200 OK
{page}

Crawling page Starts

Figure D.1: Sequential Diagram of a Initial Request from Monopoly’s Crawler
This figure uses sequential diagram to display the initial behaviour of the Monopoly Market’s

crawler service.

91

Figure D.2: Overview of API Endpoints Provided by the Default Plugin Pack
This figure shows all API resources, endpoints and operations implemented in the default plugin

pack.

92

Figure D.3: Partial Application Container Overview from a Netdata Dashboard
This figure shows a screenshot from a Netdata dashboard displaying a fragment of various

application container metrics.

93

Figure D.4: Partial Database Container Overview from a Netdata Dashboard
This figure shows a screenshot from a Netdata dashboard displaying a fragment of various

database container metrics.

94

Figure D.5: Partial System Overview from a Netdata Dashboard
This figure shows a screenshot from a Netdata dashboard displaying a fragment of system metrics.

95

uuidid

varchar(40)plugin_id

varchar(40)module_id

varchar(60)name

jsonadditional

service__items

uuidid

uuidvendor_id

uuidcategory_id

varchar(60)url_path

varchar(255)name

jsonadditional

product__items

uuidproduct_id

timestamp with time zonecreated_at

varchar(60)name

textvalue

product__meta

uuidvendor_id

varchar(40)pgp_id

timestamp with time zonecreated_at

vendor__keys

varchar(40)id

timestamp with time zonecreated_at

textkey

jsonadditional

pgp__itemsuuidid

uuidservice_id

timestamp with time zonecreated_at

timestamp with time zoneupdated_at

varchar(100)base_url

booleanis_active

jsonadditional

service__urls

uuidid

uuidservice_id

varchar(60)url_path

varchar(60)name

jsonadditional

timestamp with time zonecreated_at

vendor__items

uuidresponse_id

varchar(60)name

textvalue

http_response_archive__headers

uuidid

uuidservice_url_id

timestamp with time zonecreated_at

varchar(80)url_path

jsonadditional

http_response_archive__items

uuidproduct_id

timestamp with time zonecreated_at

integersales

integersales_delta

realstock

realstock_delta

jsonadditional

product__stats

varchar(40)pgp_key_id

varchar(60)name

textvalue

pgp__meta

uuidresponse_id

varchar(60)name

textvalue

http_response_archive__cookies
uuidid

uuidproduct_id

varchar(255)name

jsonadditional

product__variant__items
uuidvariant_id

timestamp with time zonecreated_at

realstock

realusd

realeur

realbtc

realxmr

jsonadditional

product__variant__prices

uuidid

uuidparent_id

uuidservice_id

varchar(60)url_path

varchar(60)name

jsonadditional

product__categories

category_id:id

product_id:id
product_id:id

variant_id:id

pgp_key_id:id

parent_id:id

response_id:id

service_id:id

response_id:id

service_id:id

vendor_id:id
pgp_id:id vendor_id:id

service_id:id

product_id:id

service_url_id:id

Figure D.6: Complete Application Database Schema
This figure shows a complete database table schema generated by the sqlalchemy library with all described plugins being loaded.

96

Figure D.7: Application Performance Metrics Overview from a Grafana Dashboard
This figure shows a screenshot from a performance monitoring Grafana dashboard. It displays the number of detected sales over the last hour, the number of processed

scrapes over the last one and ten minutes, the number of detected listing removals over time, the number of detected sales together with the number of processed
scrapes over a longer period.

97

Figure D.8: Long-term Sales Overview from a Grafana Dashboard
This figure shows a screenshot from an aggregation Grafana dashboard. It displays the count of recently purchased products by their countries of origin, the number of
detected sales by time of day, number of detected sales over a longer period and tables with the most purchased products, the most successful vendors and categories

with the most total products purchased.

98

Figure D.9: Comparison of Products per Country of Origin from a Grafana Dashboard
This figure shows a screenshot from an aggregation Grafana dashboard. It visually compares the total number of products from corresponding countries of origin with

the count of recently purchased products by their countries of origin.

99

Figure D.10: Application Performance Metrics Overview from a Graylog Dashboard
This figure shows a screenshot from a performance monitoring Graylog dashboard. It displays the number of HTTP request timeouts, the number of detected sales
over the last hour, the number of processed scrapes over the last one and ten minutes, counts of messages per logging facility over time and finally a stream of the

actual messages.

100

Figure D.11: API Access Statistics from a Graylog Dashboard
This figure shows a screenshot from an API monitoring Graylog dashboard. It displays the number of requests made over time, the composition of the requested

resources and the composition of HTTP clients.

101

(a) Page Overview (b) Operation Detail

Figure D.12: Swagger UI Generated from Application’s OpenAPI Description
This figure contains two screenshots from the Swagger UI web application generating a user interface for the API. There is an overview of various available API

resources and endpoints with brief descriptions on the left (a). And on the right (b), a detail of a single endpoint operation is shown.

102

Appendix E

Market Screenshots and Photos

103

Figure E.1: White House Market - No JavaScript Page
This figure shows a full-screen modal warning requiring users to manually and
completely disable JavaScript in their browser before being able to browse any

further.

Figure E.2: Invictus Market - JavaScript Warning Message
A message warning user about enabled JavaScript is shown at the top of this
figure along with a recommendation to completely disable JavaScript for their

own protection.

104

Figure E.3: White House Market - Entry CAPTCHA
An example of a custom “select images with something in it” CAPTCHA prompt

from White House Market is shown in this figure.

Figure E.4: Invictus Market - Entry CAPTCHA
Another pretty standard “retype text from this image” CAPTCHA prompt from
Invictus Market is shown in this figure. Though this verification page is actually

provided by a third party — Imperiya.

105

Figure E.5: Monopoly Market - PGP Order Requirements
This figure shows a product order form from Monopoly Market with a required
field for the customer’s public PGP key. The key is then provided to the vendor

to allow encrypted communication between the parties if necessary.

Figure E.6: The Majestic Garden - PGP Registration Requirements
This figure shows terms and conditions of the Majestic Garden marketplace
stating that a public PGP key is a required part of any user account at that

marketplace website.

106

Figure E.7: Dark0de Market - Landing Page
The Dark0de market’s landing page is shown in this figure. Logging into an

existing user account or registration of a new account is required before being
able to access any contents of the marketplace.

Figure E.8: Cannazon - Login Page
The Cannazon market’s login page is shown in this figure. In this case, logging in

is only required when making an order at the market. The login form is also
CAPTCHA protected as can be seen in the figure.

107

Figure E.9: Monopoly Market - Tutorials List Page
Overview of a number of tutorial articles from Monopoly Market is shown in this
figure. The articles explain how to safely acquire and use cryptocurrencies, how

to use PGP cryptography on various platforms and more.

/

Figure E.10: Monopoly Market - Tutorial Article Page
A detail of one of the tutorial articles from Monopoly Market is shown in this

figure. As can be seen, the article is well structured and filled with explanatory
screenshots.

108

Figure E.11: Product Listing Example - Cannabis Infused Gum

/

Figure E.12: Product Listing Example - Cannabis Candy

109

Figure E.13: Product Listing Example - Cannabis Buds

/

Figure E.14: Product Listing Example - Mushrooms

110

Figure E.15: Product Listing Example - Cocaine

/

Figure E.16: Product Listing Example - Methylphenidate

111

	Introduction
	Chapter Contents

	Theory
	Tor Network (Dark Web)
	How Does It Work
	Misuse of the Network
	Attacks and Monitoring

	Dark Marketplaces
	Business Model
	Marketplace as a Service
	Website Standards
	Available Listing Information

	Cryptography
	PGP

	Cryptocurrencies
	Blockchain

	Automated Website Processing
	Crawling
	Scraping
	Human Verification

	Design
	Accessing the Service
	Accessing the Network
	Looking Up Concrete Services
	Human Verification

	Automated Crawling
	Different Page Types
	Processing Pages

	Automated Scraping
	Required Data
	Locating Data and Meta-data
	Processing Pages

	Persistence and Archiving
	Storage Structure

	Analysis
	Numeric Deltas

	Cryptocurrency Blockchain Analysis
	Relevant Blocks and Transactions
	Transaction Matching

	Implementation
	Used Software and Libraries
	Program Core
	Database
	Data Analyser/Blockchain Correlator

	Program Machinery
	Core Functionality
	Database Plugins
	API Plugins
	Service Plugins
	Utilities and Utility Plugins

	Database
	Query Examples

	Data Analyser
	Price and Variant Mapping
	Correlation Strategies

	Deployment and Testing
	Task Specifications
	System Monitoring
	Results
	Program Statistics
	Marketplace Statistics
	Database Statistics
	Transaction Correlation Statistics

	Conclusion
	Bibliography
	Contents of the Included SD Card
	Acronyms
	Tables
	Other Application Resources
	Market Screenshots and Photos

