
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

APPLICATION FOR CONTROLLED ACCESS TO RE-
MOTE DOCUMENTS FOR MICROSOFT WINDOWS
APLIKACE PRO ŘÍZENÝ PŘÍSTUP KE VZDÁLENÝM DOKUMENTŮM PRO MICROSOFT WIN-

DOWS

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ADAM FERANEC
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Feranec Adam
Programme: Information Technology
Title: Application for Controlled Access to Remote Documents for Microsoft

Windows
Category: Operating Systems
Assignment:

1. Familiarize yourself with the requirements for secure access to documents in the Validated
Data Storage (VDU) project. Explore the possibilities of virtual file systems and integration of
applications into the desktop environment in the Microsoft Windows operating system.

2. Design a client application that will connect to the VDU repository and allow to access its
content locally with a given one-time access token provided by the VDU system. The content
will be accessed as a file in a virtual file-system and the client application will implement the
access and version control. Also design automated tests of the application.

3. After consulting with the supervisor, implement the proposed application, including the
automated tests.

4. Evaluate and discuss the results and publish the resulting software as open-source.
Recommended literature:

An internal documentation of the Validated Data Storage project.
VIRIUS, Miroslav. Programování v C++: od základů k profesionálnímu použití. Praha: Grada
Publishing, 2018. Myslíme v. ISBN 978-80-271-0502-1.
WinFsp: Windows File System Proxy. GitHub [online]. 2020 [seen 2020-10-26]. Available at
[https://github.com/billziss-gh/winfsp]
Dokany. GitHub [online]. 2020 [seen 2020-10-26]. Available at
[https://github.com/dokan-dev/dokany]
VFS for Git. GitHub [online]. 2020 [seen 2020-10-26]. Available at
[https://github.com/Microsoft/VFSForGit]

Requirements for the first semester:
Items 1, 2 and work started on item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rychlý Marek, RNDr., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: April 1, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/23591/2020/xferan00 Page 1/1

Abstract
This thesis aims to design, implement and test a client-side application for Microsoft Win-
dows to ensure controlled access to remote documents for the VDU project. The application
is programmed in the C++ language, using the object-oriented library MFC, the WinFsp
interface for virtual file system integration, and the Windows API. The application accesses
the server via REST API, and it is tested with a created simulated server and a custom
testing script, both programmed in the Python programming language.

Abstrakt
Cieľom tejto práce je navrhnúť, implementovať a otestovať klientskú aplikáciu pre Mi-
crosoft Windows, ktorá bude zabezpečovať prístup k vzdialeným dokumentom pre pro-
jekt VDU. Aplikácia je naprogramovaná v jazyku C++ s použitím objektovo orientovanej
knižnice MFC, rozhrania WinFsp pre integráciu virtuálneho súborového systému a rozhra-
nia Windows API. Aplikácia k serveru pristupuje cez REST API a je testovaná s využitím
vytvoreného simulovaného serveru a testovacieho skriptu, napísaných v programovacom
jazyku Python.

Keywords
Windows, application, client, C, C++, WinFsp, MFC, file system, remote access, integra-
tion, Windows API, Python.

Kľúčové slová
Windows, aplikácia, klient, C, C++, WinFsp, MFC, súborový systém, vzdialený prístup,
integration, Windows API, Python.

Reference
FERANEC, Adam. Application for Controlled Access to Remote Documents for Microsoft
Windows. Brno, 2021. Bachelor’s thesis. Brno University of Technology, Faculty of Infor-
mation Technology. Supervisor RNDr. Marek Rychlý, Ph.D.

Rozšírený abstrakt
Táto práca sa zaoberá návrhom a implementáciou aplikácie, ktorá sprístupňuje vzdialené
dokumenty na serveri Vzdialeného Dátového Úložiska (VDU). Súbory sú sprístupnené v in-
tegrovanom lokálnom prostredí operačného systému Windows. Aplikácia je schopná sa
pripojiť na daný server, prihlásiť sa so zadaným užívateľským menom, a umožniť prístup
k jednotlivým súborom na základe jednorázového reťazca, reprezentujúceho jeden vzdialený
súbor. Daný súbor je nasledovne prístupný vo virtuálnom disku, ktorý je obsahuje virtuálny
súborový systém. Tento virtuálny súborový systém na pozadí riadi prístup k súborom a je
obsluhovaný aplikáciu a využíva rozhranie tretej strany Windows File System Proxy. Ap-
likácia je naprogramovaná v programovacom jazyku C++ s prvkami jazyku C, ktoré je
využívané s rozhraním Windows API. Užívateľské prostredie dialógu zabezpečuje objek-
tovo orientovaná knižnica Microsoft Class Foundation library.

V prvej kapitole popisuje motiváciu pre vytvorenie aplikácie, jej základný princíp, a od-
kazuje na stránku, kde je aplikácia zverejnená ako voľný softvér.

Druhá kapitola reprezentuje teoretickú časť práce. Táto kapitola popisuje princíp
a spôsob vývoja aplikácií pre operačný systém Windows, uvádza do povedomia Windows
API, ktoré poskytuje rozhranie pre vývoj aplikácií pre systém Windows a vysvetľuje jeho
konštrukcie. Ďalej vysvetľuje do detailov princíp virtuálnych súborových systémov, ich
použitie a porovnáva tri rôzne možnosti softvéru na ich vývoj. Posledná sekcia popisuje
zvyšné technológie využité v práci.

Tretia kapitola vysvetľuje zadanie práce a analyzuje špecifikáciu aplikácie a serverového
rozhrania VDU API. Zadanie rozdelené do jednotlivých požiadavkov a špecifikácia je for-
malizovaná do podoby OpenAPI. Táto podoba umožňuje efektívnejší vývoj aplikácie pre
dané rozhranie typu REST, a pre vývoj simulovaného serveru obsluhujúceho toto rozhranie
v neskorších kapitolách.

Štvrtá kapitola predstavuje návrh aplikácie, ktorý sa uvažuje ako návrh vnútorných
komponentov, návrh užívateľského rozhrania, a návrh automatických testov aplikácie. Vnú-
torné komponenty predstavujú štruktúru tried, znázornenú na vloženom diagrame tried
a spôsob ukladania dát. Užívateľské rozhranie je uvedené ako návrh dialógového okna
spolu s návrhom spôsobov integrácie so systémom Windows a aplikáciami v systéme. Au-
tomatické testy sú navrhnuté spolu s testovacím módom a simulovaným VDU serverom.

Piata kapitola do detailov popisuje implementáciu a testovanie jednotlivých častí ap-
likácie, tak, ako boli navrhnuté v predošlej sekcií. Vysvetľuje rôzne problémy ktorým
proces implementácie čelil, a predstavuje ich konkrétne riešenie. Implementuje dialógové
užívateľské rozhranie, synchronizáciu vlákien, synchronizáciu medzi procesmi, pripojenie
k serveru HTTP a virtuálny súborový systém, ktorý integruje to prostredia Windows.
Ďalej implementuje simulovaný VDU server, vysvetľuje inštrukcie pre testovanie a imple-
mentuje testovací skript. V poslednej sekcií prevádza vykonanie automatických testov na
konkrétnom systéme a popisuje ich výsledky. Nasledovne uvádza tri rôzne verzie oper-
ačného systému Windows, ktoré sú podrobené testovaniu aplikácie. Toto testovanie je
vyhodnotené, a rozdiely medzi systémami sú vysvetlené.

Šiesta, posledná kapitola reprezentuje záver práce. V tomto závere sú zhrnuté a vy-
hodnotené dosiahnuté výsledky práce. Tieto výsledky predstavujú navrhnutú a imple-
mentovanú aplikáciu, automatické testy pre aplikáciu, vytvorený simulovaný VDU server,
vytvorený testovací skript a výsledky testovania. Aplikácia je ďalej zverejnená a odkaz na
zverejnený zdrojový kód je dostupný.

Application for Controlled Access to Remote Doc-
uments for Microsoft Windows

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of RNDr. Marek Rychlý Ph.D. I have listed all the literary sources,
publications, and other sources, which were used during the preparation of this thesis.

. .
Adam Feranec
May 10, 2021

Acknowledgements
I would like to thank my supervisor RNDr. Marek Rychlý, Ph.D. for valuable feedback,
numerous consultations, professional support, and patience. Equally, I would like to thank
my family and my girlfriend for their continuous support.

Contents

1 Introduction 2

2 Theory 3
2.1 Development for Microsoft Windows . 3
2.2 Virtual file systems . 10
2.3 Additional technologies . 16

3 Specification and analysis 18
3.1 Requirements . 18
3.2 Formalization . 20

4 Design 22
4.1 Internal components . 22
4.2 User interface . 26
4.3 Automated tests . 31

5 Implementation and testing 35
5.1 Internal components . 35
5.2 User interface . 44
5.3 Automated tests . 48
5.4 Testing the application . 50

6 Conclusion 53

Bibliography 54

A Contents of the included storage media 58

1

Chapter 1

Introduction

Nowadays, it is essential to have all important files, such as documents, photographs, pic-
tures, or just plain text notes, backed up safely using a cloud storage service. Files like
photos, unless edited, do not change over time. Documents, notes, and various other types
of files can have their contents modified. While backing up a modified document, the old,
backed-up version of the document is usually replaced by the new one. The effects of this
can potentially be devastating, especially if a new version of a file is corrupted, empty, or
misses something the previous version had – there is no way to get it back. At an enterprise
scale, a stored, backed-up file can be read and modified by multiple people. At this scale,
it becomes apparent that there is a need to find a way to keep track of who changed a file,
what the changes were, and the potential to restore older backups.

This thesis aims to create an application that would help with accessing and modifying
such files. The application is targeted towards computers that run Microsoft Windows1. It
integrates closely with the system’s environment to provide seamless access, reading, and
modifying remote files. These remote files are subject to the Validated Data Storage project
(VDU). The application communicates with the server of the VDU and does all overhead
in the background. It provides the remote files as if they were present on a local disk on
Windows, which the remote file repository being accessed via a very specifically designed
interface. The disk, integrated into the desktop environment of Windows, is virtual and
contains a custom virtual file system, which manages the files locally and remotely. The
application is available as open-source on GitHub2.

1https://www.microsoft.com/en-us/windows
2https://github.com/coolguy124/vduclient

2

https://www.microsoft.com/en-us/windows
https://github.com/coolguy124/vduclient

Chapter 2

Theory

This chapter serves as an introduction to the required technologies for this thesis. It intends
to explore the development of applications for Microsoft Windows, files, and various virtual
file systems, with the possibility of integration with the Windows environment and other
used technologies.

2.1 Development for Microsoft Windows
According to [44], Microsoft Windows is the most used desktop operating system, consis-
tently having more than a 70% market share among operating systems across many years.
Being in development for many years and thanks to its excellent backward compatibility,
Windows provides many ways to create user applications, allowing developers to select from
multiple programming languages. The choice of the C++ programming language, combined
with the usage of C, came from the thesis’s aim. It intends to create an application that
integrates with the Windows environment and creates a virtual file system. These func-
tionalities require close, direct interaction with the operating system. C and C++ are the
most practical languages for such tasks, as they operate on a low level.

This section introduces application development for Windows using the Windows API,
the Microsoft Foundation Class Library, and provides an overview of these technologies.

2.1.1 Development Environment

This subsection focuses on all preliminaries related to the development environment for
creating applications for the Windows operating system. It briefly introduces and describes
the required tools and software.

Microsoft Windows Software Development Kit

The Microsoft Windows Software Development Kit (Windows SDK) is a required software
for developing and building applications for Windows. The Windows SDK, according to
[20], contains all libraries, headers, and tools required to design, implement, run, debug,
and release Windows applications. Installing the Windows SDK allows the host computer
to execute applications, which use the debug versions of libraries for easier debugging, at
the cost of a larger size of the resulting executable.

3

Microsoft Visual Studio

The Visual Studio Integrated Development Environment (IDE), as described by [12], is
a program developed by Microsoft and is ideal for Windows desktop application devel-
opment. It includes a code editor with well-written IntelliSense, debugging tools, theme
customization, support for third-party add-ons, and even a graphical window editor. Vi-
sual Studio is available in three different editions: Community, Professional, Enterprise.
For students, Visual Studio 2019 Community is the best option because, according to [18],
it is free to use under Individual Licence, allowing any individual, such as a student, to work
and develop applications for Windows. In Visual Studio, projects which work together are
grouped under a Solution. Every project contained in such a solution can be built for dif-
ferent system versions, compiled with different compilers, and set up with different project
properties.

Microsoft Visual C++

The Microsoft Visual C++ Toolset (MSVC), also referred to as the build tools, is included
in Visual Studio and contains the MSVC compiler, linker, standard libraries, and headers
for Windows API development, as stated by [25]. It is the default compiler for compiling
Windows applications in Visual Studio, and allows compilation of application for multiple
architectures and versions of the system.

2.1.2 Windows API

The Windows API, also known as the Win32 API, is a massive, complex collection of head-
ers and libraries programmed in the C programming language, containing many different
functions, function prototypes, macros, and documentation. It allows applications to inte-
grate with the Windows desktop environment. This subsection aims to give a brief overview
of what is essential to know about the Windows API before creating an application from
the bottom up, assuming previous knowledge of the C programming language.

Processor modes

According to [45], in the Windows operating system, the processor can run code in two
modes:

• Kernel mode – The privileged mode

• User mode – The unprivileged mode
The processor can switch between these modes depending on what code is being executed.
Hardware drivers, file system drivers, and the operating system kernel all run in the kernel
mode. All components in the kernel-mode share the same address space, have privileged
access to the entire system, and even access each other’s data.

In user mode, every process started on Windows has its own virtual address space. The
virtual address space is private for that process, ensuring no other process can access it -
every application runs in isolation.

Coding conventions

As defined by [24], the Windows API defines the pointer data types in the form of “Pointer to
X”. The practice of this is often seen directly in code of Windows API function prototypes

4

as “P” or “LP” prefixes on data types. “P” stands for pointer. “LP” stands for long
pointer, a historical holdover, which for all intents and purposes, it can be considered just
a regular pointer. Using the standard star symbol is still a valid way to signify a pointer
type while programming Windows applications. Listing 2.1 shows three different ways to
declare a pointer variable.

1 //Each of these lines is an equal declaration of the same pointer
2 LPDWORD pdwCount;
3 PDWORD pdwCount;
4 DWORD* pdwCount;

Listing 2.1: An example of multiple ways of declaring a pointer to a double-word.

A Windows Word is a 16-bit unsigned short integer. Its data type is WORD and, for
historical reasons, will always be guaranteed to be 16 bits long. A Double-Word is twice
as long, 32-bit unsigned integer, DWORD. To support the 64-bit architecture, a Quad-Word,
QWORD is available. Additionally, Windows re-defines standard integers as their capitalized
versions, such as INT, the size of which is architecture-specific. For precise sizes of integers,
it is good practice to use a bit-specific version, such as INT32.

Additionally, Windows API uses the Hungarian Notation1, which adds semantic infor-
mation to variable names in the form of prefixes. The information is supposed to let the
programmer know the variable’s intended use, data type, scope, and others, by just know-
ing its name without cross-referencing it. This practice can be noticed with Double-Word
variables having a “dw” prefix and handles having an “h” prefix. Listing 2.2 shows an
example of declaring variables using this notation.

1 PDWORD pdwCount; //Pointer to a double-word variable
2 LPWSTR lpszName; //Pointer to a zero-terminated string
3 LPVOID lpBuffer; //Pointer to a buffer
4 LPDWORD lpcbInfo; //Pointer to a count of bytes
5 HMODULE hModule; //A handle to a module

Listing 2.2: An example of declaring variables using the Hungarian notation.

Object handles

According to [35], Windows does not support direct access to system resources like files,
threads, windows, or graphic images like icons. These system resources are called objects
and are unrelated to the C++ object-oriented implementation of objects. For an application
to access an object, it needs to obtain an object handle.

A handle is an opaque data type used to access a system resource via the related
Windows API functions, which require an object’s handle to identify the accessed object.
The value has no real meaning outside of the operating system. One can imagine it as
an entry of an internal object table of the operating system. An application can obtain a
handle through various Windows API functions, depending on the object the application
is trying to access. All handles are kept and managed internally. Depending on the object,
a single object can have either multiple handles or be limited to a single handle at a time
with exclusive access, as described by [34].

1https://web.mst.edu/~cpp/common/hungarian.html

5

https://web.mst.edu/~cpp/common/hungarian.html

Registry

The Windows registry is a hierarchical database containing data critical for the correct
function of the operating system’s services and applications that run on it. The registry
data structure, as described by [28], is essentially in a tree format, where the nodes are
called keys. A key can contain other keys - subkeys and entires of data..

A registry entry has a name, type, and a value. The value data types are standard
Windows types, such as a double-word or a zero-terminated string. There are several
predefined keys, and according to [29], each one serves a different purpose for the operating
system, for services, and applications. The predefined keys are always open and are noted
by the HKEY_ prefix. Figure 2.1 displays a view of the contents of the Windows registry
using the Registry Editor.

Figure 2.1: Browsing the Windows registry using the Registry Editor.

The predefined keys which are important for Windows applications are the following:

• HKEY_CLASSES_ROOT – Definitions of document types and classes; shell information

• HKEY_CURRENT_USER – Preferences of the current Windows user

• HKEY_LOCAL_MACHINE – System configuration data

• HKEY_USERS – Default user and current user configuration

• HKEY_CURRENT_CONFIG – Differences between the current and standard configuration of
the system

6

Windows

A window in terms of Windows API, described by [23] is a programming construct which:

• Occupies some portion of the screen

• Can change its visibility at any given moment

• Knows how to draw itself

• Responds to events from the user or the operating system

By this definition, a window in Windows programming might not always refer to the appli-
cation window. A button, text field, check box, or even a combo box is a window in itself.
The difference is that the application window also referred to as the main window, is not
part of any other window of the application. The main window also often has a title bar,
minimize button, maximize button, and other standard user interface elements.

According to [23], a window can have relationships relative to other windows. If another
window creates a new window, the relationship between them is an owner/owned relation-
ship. If a window resides in another window, it is called a child window. The relationship
between them is parent/child. Listing 2.2 displays an example of both relationships.

Owner / Owned

Parent / Child

Figure 2.2: Example of owner/owned and parent/child relationships between windows,
using Windows Notepad.

Character set

Functions, which manipulate characters, are in general, implemented in the following ver-
sions:

• ANSI2 version – signified with the suffix “A”, i.e., InternetOpenA

• Unicode3 version – signified with the suffix “W”, i.e., InternetOpenW

• Generic version – adaptive with no suffix, i.e., InternetOpen.
2American National Standards Institute codes https://www.ansi.org/
3https://unicode.org/

7

https://www.ansi.org/
https://unicode.org/

The generic version is not implemented per se, rather defined as a macro, referring either to
the ANSI or Unicode version, depending on the current character set. Some newer functions
do not support ANSI and only have the Unicode version available, as stated by [1].

Thread synchronization

There are many ways to synchronize threads in Windows. These include, but are not
limited to, Events, Semaphores, Mutexes, Interlocked API, and Slim reader/writer locks
(SRW locks), as listed by [31], which are used in this thesis.

An SRW lock is a simplified version of a semaphore, which is, according to [30], described
as a synchronization object that is useful in controlling a shared resource between multiple
threads. A semaphore has a set number of threads that are allowed to access the resource
simultaneously. When a thread is done using the resource, another thread is allowed to use
it. As specified by [26], an SRW lock takes the thread’s intent with the shared resource into
account and is optimized for speed and performance. If a thread wants to read a resource,
it can acquire the resource’s lock in a shared mode. If a thread wants to write to a resource,
it can acquire the resource’s lock in the exclusive mode. If a resource lock is not acquired,
it can be acquired in either mode.

The exclusive mode works just like a semaphore with a single allowed thread. The access
is always exclusive as no other threads can simultaneously access the resource, even if some
threads only want to read the resource. The shared mode allows for read-only access to the
resource by multiple threads if the lock is not acquired in the exclusive mode.

Neither mode has a priority of acquiring the lock, there is no order or a queue of access,
so if two threads want to acquire an SRW lock, it is not predictable which thread will
acquire the lock in different modes. The lock is the size of a pointer, which means faster
access but a rather limited amount of information stored about the state of the lock. While
being simple, it is sufficient to solve many thread synchronization problems, such as “The
Readers-Writers Problem”4.

Interprocess communication

There are multiple different methods of performing interprocess communication in Win-
dows, such as named pipes, Windows sockets, mailslots, and others. This thesis makes
explicit use of mailslots.

According to [32], a mailslot is a temporary pseudo-file, only present in the system’s
memory. A mailslot can be created by a single process, which becomes the mailslot server,
and only that process can read from the mailslot. Other processes can become mailslot
clients by opening and writing into the mailslot file. This creates a dynamic where the
process can check whether it is a server or a client by simply attempting to create a mailslot
and possibly having a different behavior depending on the result. Mailslot clients can write
messages into the mailslot, which can be received by the mailslot server, enabling the
interprocess communication in the form of many-to-one.

2.1.3 Microsoft Foundation Class Library

The Microsoft Foundation Class Library (MFC) is an object-oriented C++ library, which
abstracts and wraps the non-object-oriented Windows API. It helps design and create user

4https://www.u-aizu.ac.jp/~yliu/teaching/os/lec07.html

8

https://www.u-aizu.ac.jp/~yliu/teaching/os/lec07.html

interfaces for both simple and complex applications. It supports creating dialog boxes,
windows, network services, implementing network communication, threading, and more, as
described by [47].

Abstractions

Listing 2.3 shows a comparison of showing the main window using the methods of both
APIs, with the MFC object abstracting the window handle away in favor of using a window
C++ object. Calling the ShowWindow5 function directly from a window object is a lot more
straightforward and convenient than handles. Internally, MFC still uses the Windows API.
Suppose there is a need for a Windows API object handle of an MFC object. In that
case, there are supportive functions such as GetSafeHwnd6, which return the internal object
handle.

1 //Windows API - Using C
2 HWND hMainWnd = CreateWindowW(...);
3 ShowWindow(hMainWnd, SW_SHOWNORMAL);
4

5 //MFC - Using C++
6 AfxGetMainWnd()->ShowWindow(SW_SHOWNORMAL);

Listing 2.3: A comparsion of showing a window using Windows API and MFC

Strings

The usage of strings ties closely to the character set. As described by [46], a developer
can take advantage of the portable run-time functions and prototypes to make the Unicode
character set when possible and otherwise fall back to ANSI.

Portable run-time prototypes, functions and macros provide the developer with a way
to work with strings and adapt to the preferred character set automatically. Those are
recognizable by the “_T”, “_TEXT”, or “_tcs” prefixes. For example, the _tcs family of
functions substitutes one-to-one with wcs and str family of functions. MFC provides string
classes CString7 and CStringA, which allow to create dynamic string objects. Listing 2.4
presents and example a comparison of C-style static strings and MFC string objects.

1 //C-style static strings
2 char* szTestC = "C/ANSI static string";
3 WCHAR* szTestW = L"Wide/Unicode string";
4 TCHAR* szTest = _T("Portable string");
5

6 //C++ string objects using MFC, initialized statically
7 //The object’s string value can be modified
8 CStringA strTestA = "C/ANSI string";
9 CStringW strTestW = L"Wide/Unicode string";

10 CString strTest = _T("Portable string");

Listing 2.4: An example of defining static strings when developing with Windows API and
dynamic strings with MFC string classes.

5https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
6https://docs.microsoft.com/en-us/cpp/mfc/reference/cwnd-class?#getsafehwnd
7https://docs.microsoft.com/en-us/cpp/atl-mfc-shared/using-cstring

9

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
https://docs.microsoft.com/en-us/cpp/mfc/reference/cwnd-class?#getsafehwnd
https://docs.microsoft.com/en-us/cpp/atl-mfc-shared/using-cstring

2.2 Virtual file systems
This section introduces virtual file systems in Windows. It serves as an overview of avail-
able virtual file system technologies that would allow for direct integration with the Win-
dows desktop environment. The following subsections contain an introduction to files, file
systems, virtual file systems, and an overview of available third-party virtual file system
software.

2.2.1 Introduction to file systems

This subsection focuses on providing details about files and file systems. It covers what
a file is, how it corresponds to a file system, and how these constructs tie to virtual file
systems and the Windows operating system.

File

According to [10], in Windows, a file is a unit of data. It is stored on a storage device, such
as a hard drive, and consists of one or multiple streams of bytes, which hold related data,
and a set of attributes that describe the file and its data. A file system manages it, and
any application that wants to access, read, write, or execute a file or its attributes has to
interact with its respectable file system to do so. A file must follow the file systems’ rules,
i.e., a file must have a unique name in its directory in NTFS8.

Files in Windows are never accessed directly. Instead, applications can access it via
a file handle. When a file is opened, a handle is associated with it until the requesting
process terminates or the handle is closed. As specified by [40], each handle is unique to
the process that opens a file, and depending on which type of access to the file is requested,
if one process holds a handle to a file, a second process trying to open a handle to the same
file might fail.

File system

A file system is a program that describes how files are stored on a storage device. It
allows applications running on the system to access, read, and store files. All file systems
supported by Windows, as described by [16], have the following storage components:

• Volumes

• Directories

• Files

As defined by [42], a volume is the highest level of its organization, where the file system
resides. It has at least one partition – a physical disk’s logical division. A volume can be
referred to as a drive or a disk if it is recognizable and accessible by its assigned drive
letter. A drive letter is a single capitalized letter of the alphabet ranging from A to Z,
meaning that Windows only supports a maximum of 26 volumes with drive letters at the
same time. For simplicity, the process of assigning a volume to a drive letter while making
it accessible in the system will be referred to as mounting the volume since the system can
mount volumes to directories as well.

8New Technology File System

10

As specified by [41], a directory is a hierarchical collection of files, which can itself be
organized into a directory, and has no limitations on the number or capacity of files that
it contains. Limitations of directories are defined by the file system itself and the capacity
of the storage device. A file, as specified previously, is the related data, and it can be
organized into a directory or reside directly in the root of a volume.

Windows file systems

File systems in Windows, as described by [8], are implemented as file system drivers that
work above the storage system. Such a file system driver has to be certified. The standard
supported file systems are, most importantly, NTFS, ExFAT, UDF, and FAT32, with NTFS
being the default option used for the main local drive of the system.

Creating a new file system

On Linux9, it is possible to create a file system for which, according to [13], the data is
provided by a normal user-mode process or an application. This type of file system is
referred to as a file system in userspace10 (FUSE), and it does not exist on Windows.
Creating a custom file system driver is not the point of this thesis. For this reason, and
due to my supervisor’s recommendations of technologies, the following subsection considers
third-party virtual file system software options as the possibilities.

2.2.2 Virtual file system

A virtual file system is an abstraction of a regular file system, and as noted by [38], any
information and data can be organized and presented as a file system. It does not require
a storage device to reside on, as it can use one of the existing ones and reside or extend
upon it. A virtual file system’s power comes from integrating closely with the operating
system - hooking into the system’s internal file operating functions and handling them in
its own way. That way, it can enforce any arbitrary rules on volume, directory, and file
management.

Virtual file system software

The virtual file system software allows a developer of a user-mode application to create
a virtual file system and integrate it with the desktop environment of Windows. This thesis
uses third-party virtual file system software to create a virtual file system without creating
a kernel-mode driver. The software typically includes its custom-created kernel-mode file
system driver, which is expected to be working correctly, being well tested and certified.
The driver typically communicates with a user-mode library, which provides a virtual file
system API. This is the API an application can use to create a custom virtual file system.
As [37] describes, there are two ways in which a modern virtual file system software usually
provides a virtual file system API in the user mode:

• Native API

• FUSE Compatible API
9https://www.linux.org/

10https://www.kernel.org/doc/html/latest/filesystems/fuse.html

11

https://www.linux.org/
https://www.kernel.org/doc/html/latest/filesystems/fuse.html

A native API ties closely to the target operating system and focuses on working with the
intended system as seamlessly as possible.

• Positives:

– Good optimization
– Programming constructs are similar to the constructs of the target system
– All features of the targeted system are available

• Negatives:

– No cross-platform compatibility
– Lower-level API requires deeper knowledge of the target system

A FUSE compatible API allows for cross-platform compatibility with file systems in
the user space created for Linux, with little to no changes to their implementation. For
Windows, the implementation of file systems is vastly different from Linux. Using a FUSE
compatible API comes with compromises since some features are only present in Windows,
i.e., volume labels, as described by [37].

• Positives:

– Cross-platform compatibility
– Easier development with a higher-level abstraction of an API
– FUSE is well documented

• Negatives

– Lack of Windows-specific features
– Restricted by POSIX11 standards

For this thesis, it is much preferable to choose a virtual file system software that includes
a native API, as cross-platform compatibility is not a requirement. This would also mean
using Windows-specific file system-related features and would be a step towards a better
user experience.

2.2.3 Third-party virtual file system software

This subsection provides an overview of the recommended and considered third-party virtual
file system software for this thesis.

Dokany

Dokany was created by Hiroki Asakawa, and as described by [6], it is one of the oldest yet
still fully functional pieces of virtual file system software for Windows. It was created in
2007, and while undergoing a switch of its developers, it is still being developed today.

• Provided APIs: Native, FUSE wrapper

• Supported languages: C (default), Java, Delphi, DotNet, Ruby
11Portable Operating System Interface

12

• Supported architectures: 32-bit, 64-bit

• Supported desktop operating systems: Windows 7 SP1 / 8 / 8.1 / 10

• Open-source: Yes

• Can integrate with Windows: Yes

Dokany is a well-supported, stable piece of software, nearly an ideal choice for projects that
pay excessive attention to software stability and compatibility. It provides tools for creating
a virtual file system in various, even higher-level programming languages, rather than just
low-level C, as described by [3].

Virtual File System for Git

Virtual File System for Git (VFSforGit) was created by Microsoft. As described by [7],
it is a software developed by Microsoft to enable Git12 at an enterprise scale. VFSForGit
virtualizes a Git repository into a virtual file system. This causes files to be present in
such a file system visually and only be downloaded on demand. The user can download the
contents of the files on request via an application’s user interface.

• Provided APIs: Native GVFS Protocol13

• Supported languages: None – uses Git commands

• Supported architectures: 64-bit

• Supported desktop operating systems: Windows 10, version 1607 or newer

• Open-source: Yes

• Can integrate with Windows: Yes

VFSForGit is a virtual file system software aimed towards usage with Git repositories,
especially at larger scales. It does not provide many languages or options for architectures
and only supports newer versions of Windows 10. With those restrictions in mind, it is
still being supported and is a helpful tool for accessing Git repositories in the Windows
environment, as specified by [19].

Windows File System Proxy

Windows File System Proxy (WinFsp) was created by Bill Zissimopoulos. As described by
[5], it is a performant and stable piece of software, which allows to implement a virtual file
system using either of its supported virtual file system API layers. The focus of WinFsp
is on high performance and compatibility with NTFS, the default file system of modern
Windows. This allows for smooth integration with the Windows environment and virtual
file systems, which use or extend NTFS.

• Provided APIs: Native, multiple FUSE compatibility layers

• Supported languages: C, C++, DotNet
12https://git-scm.com/
13https://github.com/microsoft/VFSForGit/blob/master/Protocol.md

13

https://git-scm.com/
https://github.com/microsoft/VFSForGit/blob/master/Protocol.md

• Supported architectures: 32-bit, 64-bit

• Supported desktop operating systems: Windows 7 and above

• Open-source: Yes

• Can integrate with Windows: Yes

WinFsp is a great option for any virtual file system implementation that intends only to be
running on Windows. Whether it is one of the older versions of the operating system, or
the newer one, WinFsp provides continuous support and compatibility with those systems
while keeping the officially supported languages of its API layers both lower and higher
level, thanks to the inclusion of C++ and DotNet language support. It is a great choice
for any project starting from scratch.

2.2.4 Conclusion and comparsion

The third-party virtual file system software of choice for the VDU Client application is Win-
Fsp. This subsection compares the previously presented options of software for integration
with Windows and virtual file system development. It provides the reasoning behind the
conclusion of which one is the best for the purpose of this thesis.

VFSforGit

VFSforGit, while being a stable option supported by Microsoft, can not be used because
of its limitations on the compatibility with older operating systems and their architectures.
Additionally, it would not be useful for integrating with the Windows environment or
for creating a virtual file system because it focuses only on Git repositories, which are
incompatible with the VDU project.

Dokany

Dokany is an excellent and stable option. It is well supported and tested over the many
years of its existence. It provides multiple API compatibility layers, including both native
and FUSE compatible APIs, which could be helpful in virtual file system development.
However, it does not provide an API that could allow the development of a virtual file
system and integration into the Windows desktop environment using C++.

WinFsp

WinFsp provides a native API, which is even available for C++, allows for cleaner and easier
to understand code, and offers much better performance and optimization than Dokany.
This is proven by various file system operation tests that compare versions of WinFsp
with Dokany and NTFS. The performance comparison charts of these tests are displayed
in Figure 2.3 and 2.4. According to these charts, it is safe to state that WinFsp does
outperform Dokany. I opted to use WinFsp, allowing me to integrate the application and
create a custom virtual file system for the application with the best performance available.

14

Figure 2.3: Performance comparsion of file tests of WinFsp, Dokany and NTFS. Source:[48]

Figure 2.4: Performance comparsion of read/write tests of WinFsp, Dokany and NTFS.
Source:[48]

15

2.3 Additional technologies
This section provides an overview of additional technologies for this thesis. Those technolo-
gies will be used in the following chapters to analyze, design, and implement the application.

2.3.1 Hypertext Transfer Protocol

As described by [21], the Hypertext Transfer Protocol is a stateless communication protocol
used for fetching resources. A resource can be anything that can be named, ranging from
images, documents to generic files. HTTP is designed as a client-server type of protocol,
in which a client and a server exchange information using HTTP messages. An HTTP
message can be one of two types:

• HTTP Request – From client to server

• HTTP Response – From server to client

HTTP request

An HTTP request consists of the following elements:

1. Method – Defines the requested operation with the resource

2. Path – Location of the resource

3. Protocol version – Version of HTTP

4. Request headers – Additional information about the resource

5. Content – Contains the content of the resource sent to the server

HTTP response

An HTTP response consists of the following elements:

1. Protocol version – Version of HTTP

2. Status code – Defines the requested operation with the resource

3. Status message – Location of the resource

4. Protocol version – Version of HTTP

5. Response headers – Additional information about the resource

6. Content – Contains the content of the resource sent to the client

2.3.2 Representational State Transfer

According to [4], The Representational State Transfer represents an architectural style
of developing RESTful web services, which allows the developer to take advantage of an
existing protocol. In the case of web services, this protocol is HTTP. REST conforms at
the very least to the most basic REST constraints, as defined by its creator Roy Thomas
Fielding:

16

• Client-Server – Separates the client’s side and the server’s side

• Stateless – Each request must contain all necessary information necessary to under-
stand the request

• Cache – Requests must be labeled as cacheable or non-cacheable. Improves network
efficiency if it is available

2.3.3 OpenAPI

The OpenAPI Specification is a description format for REST APIs. This format is handy
for creating more formal descriptions of the entire API, which can be described with a single
file written in the OpenAPI format, supporting file formats of either YAML14 or JSON15.
According to [43], the OpenAPI format is capable of describing:

• Available endpoints and operations of each endpoint

• Operation parameters and input/output for each operation

• Authentication methods

• Contact information, terms of use, other information

As Listing 2.5 shows, the OpenAPI format is easily readable and understandable for
both machines and humans. Additionally, many third or first-party services provide a way
to visualize the API in a graphical, user-friendly format, i.e., the Swagger Editor16. An
example of a rendered graphical representation of the VDU server’s REST API is displayed
in Figure 3.1.

1 #A simple documentation of a /ping endpoint
2 openapi: 3.0.0
3 info:
4 version: ’1.0’
5 title: An amazing API
6 description: Formal description
7 servers: #Server URL for testing
8 - url: ’https://localhost:4443’
9 paths: #Endpoint descriptions

10 /ping: #Endpoint path
11 get: #Method
12 parameters: [] #Call parameters
13 description: To test a connection.
14 responses: #Possible responses
15 ’204’:
16 description: Ping success!

Listing 2.5: An example of an OpenAPI specification, displayed as the content of a file in
the YAML format.

14A recursive acronym for “YAML Ain’t Markup Language”
15JavaScript Object Notation
16https://editor.swagger.io/

17

https://editor.swagger.io/

Chapter 3

Specification and analysis

This chapter will cover the first step of creating an application – the analysis of the provided
specification and formalization of the provided documentation of the VDU server, with an
overview of the required technologies.

3.1 Requirements
This thesis aims to design, implement, and test a client-side application for Windows op-
erating system, which integrates with the Windows desktop environment. This application
should connect to the VDU server and secure access to remote files present on the server
as the user is accessing them. Multiple sources provided the specification:

• Thesis specification – Provided the exact steps this thesis should be taking

• Internal VDU API documentation – A description of the VDU server’s API

• Consultations with supervisor – Provided more details, helping to narrow down design
choices and to test ideas

The internal VDU API documentation was provided as a document with a detailed de-
scription of every available endpoint of the API with additional information about how an
application is supposed to connect to the server.

3.1.1 Endpoints

This subsection lists all available VDU API endpoints and provides an overview of their
usages. Some endpoints require authentication of the user for successful access.

Ping

Used to test a connection to the server.

• GET /ping – Test connection to the server

Authentication

Used for authentication purposes.

• POST /auth/key – Authenticates a user by name or email. The client secret can be
included in the content if necessary. Returns API key if it succeeds.

18

• GET /auth/key – Returns a new API key with a new expiration time, refreshes session

• DELETE /auth/key – Invalidates API key

File system

Used for remote file management. Where the file-access-token is a variable representing
a file token obtained from the VDU web interface.

• GET /file/{file-access-token} – Returns file contents, additional file information is in
the response headers

• POST /file/{file-access-token} – Uploads file contents, additional file information has
to be in the request headers

• DELETE /file/{file-access-token} – Invalidates a file token, does not delete the file
from the server

Access

The client and server must use a secure TLS1 channel to access the VDU API, while the
server must have a valid server-side TLS certificate. This implies the usage of HTTPS2

protocol to access the API. The client-side certificate is optional and allows the user to
omit the client secret from the authentication endpoint.

The authentication is done using a key obtained from the POST /auth/key endpoint.
Each key has its expiration date, which a client must respect, and the key has to be refreshed
using the GET /auth/key endpoint if it is about to expire. The client can prematurely
invalidate the key with the DELETE /auth/key endpoint.

File tokens, seen as the path parameter {file-access-token} in the /file/ endpoint, are
generated from the proprietary VDU web user interface. Each token represents one file, has
an expiration date, and can be prematurely invalidated using the DELETE /file/ endpoint.
This file can be modified using the POST /file/ endpoint, which includes modifying its
content and file name. A file can be read-only, meaning that the server will deny any
modification request.

Version control

The VDU server handles the file version control system. The client application does not
manage or control the version of a file. This version is noted as an ETag header, which can
be any string. The server can change this header upon successful file upload on the server’s
side, which could lead to invalidation of the user’s file token directly after the upload. The
client has to adapt to the server-side version, which it receives via a response from the
/file/ endpoint, and must not propose its own.

Communication

The communication between the client and the server uses the Hypertext Transfer Protocol,
which goes over a secure TLS/HTTPS channel. The client initiates the communication with
a request message to the target endpoint of the action that it is trying to perform. The

1Transport Layer Security
2Hypertext Transfer Protocol Secure

19

server accepts this message, validates the authentication data for the required endpoints,
and responds to the message with a response message to the client. An example of this
communication is shown in Figure 3.1 and 3.2, where the client requests a file with the
token a from the /file/ endpoint using the GET method. The server accepts this request,
implying that the authentication data in the client’s request header is correct and responds
with a response message containing all information about the requested file, including its
name, length, type, content, etc.

1 GET https://127.0.0.1:4443/file/a HTTP/1.1
2 X-Api-Key: c57v7n34evuqjlyfmmo0miw3kkr5y4d8ndl58hy1sx6i7go2gpdi9ge17hlu1y1q
3 User-Agent: VDUClient 1.0, Windows
4 Host: 127.0.0.1:4443
5 Cache-Control: no-cache

Listing 3.1: An example of the contents of an HTTP request sent from a VDU client to a
VDU server.

1 HTTP/1.0 200 OK
2 Allow: GET POST
3 Content-Location: plain.txt
4 Content-Length: 60
5 Content-MD5: 16EU4Wni3wdB4d7x370Ung==
6 Content-Type: text/plain
7 Date: Thu, 29 Apr 2021 19:29:00 GMT
8 Last-Modified: Thu, 29 Apr 2021 19:28:12 GMT
9 Expires: Thu, 29 Apr 2021 19:31:00 GMT

10 ETag: 4
11

12 This is the file contents, this is a simple plain text file.

Listing 3.2: An example of the contents of an HTTP response sent from a VDU server to
a VDU client.

3.2 Formalization
Considering the provided documentation, formalization means creating an OpenAPI speci-
fication based on the documentation’s plain text version. A formalized specification allows
for better readability, understanding, development, and testing on the developer’s side.

3.2.1 OpenAPI specification

Formalizing the provided documentation consists of reading and understanding all API
endpoints, their access, usage restrictions, and manually creating an entry for each endpoint
in a file of the OpenAPI format. Each entry has its own list of status codes, headers,
and content, which the endpoint could potentially return. For the VDU server’s API
documentation, I used the Swagger Editor, which allowed me to document it as a REST
API more comfortably. An advantage of the online editor is that it can render the OpenAPI
specification file in the HTML3 5 format, making the API easy to read and understand.

3Hyper-Text Markup Language

20

Conclusion

The result was a file of the OpenAPI format openapi.yaml, which contains the formal
descriptions of the VDU API endpoints. I discussed this information further with my
supervisor, which allowed me to understand better how the API works and how it should
interact. Figure 3.1 displays the summary of a rendered version of the formalized VDU
server’s API.

Figure 3.1: VDU REST OpenAPI 3.0 summary, rendered using the Swagger Editor, au-
thentication requirement is signified by the lock icon.

21

Chapter 4

Design

This chapter aims to design the application based on knowledge from the specification and
analysis of the requirements. The design of the application consists of designing the internal
components and the user interface.

4.1 Internal components
Choosing the right design for the application’s internal components is the key to creat-
ing a performant, reliable, and scalable program. Knowing that the application is to be
implemented in C++, I designed the class structure.

4.1.1 Class structure

The concrete class structure and design’s inspiration was the Single Responsibility Principle
(SRP). As the creator of the principle, Robert C. Martin states in [14], SRP is a design
principle for designing object-oriented classes or modules. The key inspiration of SRP for
the class design was that a single class should only have a single reason to change. This
approach allows each class to be developed independently from others and has led me to
design the following classes as the application’s internal structure.

Main class

The main class of the application, VDUClient, contains all important data about the applica-
tion’s state and provides functions to check them – IsTestMode(), IsInsecure(). Addition-
ally, it contains functions that provide access to internally created objects – GetSession(),
GetFileSystemService(). It instantiates other parts of the application, like the dialog win-
dow, the file system service, and static worker threads.

Dialog class

The CVDUClientDlg class is responsible for the dialog window, and every user interface
element related to it. It provides methods to guide the user interface, such as updating the
visual status text via UpdateStatus(), triggering notifications via the TrayNotify() function,
or spawning a non-blocking message box via the MessageBoxNB() function. Internally, it
contains the dialog input data – m_server, m_username, etc.

22

Connection class

The connection handling class, CVDUConnection, serves as a wrapper for communication
with the server. When instantiated, it contains the details about a connection in its internal
variables – m_serverURL, m_parameter, m_callback, etc. It can be instantiated by any other
object. The expected behavior is for the connection object to be handled by the static
procedure ThreadProc, in a worker thread.

Session class

The session class, CVDUSession, contains data about the current user and the state of au-
thorization with the server. All internal data is expected to be accessed exclusively by
first acquiring the SRW lock m_lock and then reading or modifying the session data. The
class most importantly provides the current authorization token via GetAuthToken() and
its expiration time via GetAuthTokenExpires(). It also provides functions to perform user
actions directly – Login(), Logout(), AccessFile(). Additionally, the class contains static
functions for all types of API callbacks.

File class

The CVDUFile represents a file downloaded from the VDU server, with all received metadata.
The data itself is not contained in this class. It provides comparison operators with other
VDU files and a static InvalidFile instance, representing a file that does not exist.

File system class

The CVDUFileSystem class implements the concrete functions of a virtual file system, which
will be called by the operating system when an operation with files is required. These
include functions such as Open(), Create(), Close(), etc. It also contains the path to the
internal work directory, where VDU files are located.

File system service class

The file system service class, CVDUFileSystemService, instantiates the file system and pro-
vides an interface to interact with it. Internally, it keeps track of VDU files in the vector
m_files, which is assured to be accessed exclusively by the SRW lock m_filesLock and
stores the current drive letter used by the virtual drive in m_driveLetter. It provides func-
tions to interact with the files and the file system – GetVDUFileByName(), CreateVDUFile(),
UpdateFileInternal(), etc. Figure 4.1 shows the class diagram of the application using the
Unified Modeling Language (UML). This class diagram was created using Visual Paradigm1.

1https://www.visual-paradigm.com/

23

https://www.visual-paradigm.com/

GET_PING
GET_AUTH_KEY
POST_AUTH_KEY
DELETE_AUTH_KEY
GET_FILE
POST_FILE
DELETE_FILE

<<enumeration>>
VDUAPIType

<<Typedef>>
VDU_CONNECTION_CALLBACK

-m_session : CVDUSession*
-m_srefThread : CWinThread*
-m_svcThread : CWinThread*
-m_svc : CVDUFileSystemService*
-m_testMode : boolean
-m_insecure : boolean

+VDUClient()
+~VDUClient()
+GetSession()
+GetSessionRefreshingThread()
+GetFileSystemServiceThread()
+IsTestMode()
+IsInsecure()
+GetFileSystemService()
+HandleCommands()
+InitInstance()
+ExitInstance()
+ThreadProcFilesystemService()
+ThreadProcLoginRefresh()
+ThreadProcMailslot()

VDUClient

+m_lock : SRWLOCK
-m_serverURL : CString
-m_user : CString
-m_authToken : CString
-m_authTokenExpires : CTime

+CVDUSession()
+~CVDUSession()
+Reset()
+GetServerURL()
+GetUser()
+GetAuthToken()
+GetAuthTokenExpires()
+SetUser()
+SetAuthData()
+IsLoggedIn()
+Login()
+Logout()
+AccessFile()
+CallbackPing()
+CallbackLogin()
+CallbackLoginRefresh()
+CallbackLogout()
+CallbackDownloadFile()
+CallbackUploadFile()
+CallbackInvalidateFileToken()

CVDUSession

-m_fs : CVDUFileSystem
-m_host : FileSystemHost
-m_driveLetter : TCHAR[128]
-m_workDirPath : CString
-m_filesLock : SRWLOCK
-m_files : vector<CVDUFile>

#OnStart()
#OnStop()
+CVDUFileSystemService()
+GetHost()
+GetDrivePath()
+GetWorkDirPath()
+GetVDUFileByName()
+GetVDUFileByToken()
+GetVDUFileCount()
+DeleteFileInternal()
+UpdateFileInternal()
+CalcFileMD5Base64()
+Remount()
+CreateVDUFile()
+UpdateVDUFile()
+DeleteVDUFile()

CVDUFileSystemService

-_Path : PWSTR

+CVDUFileSystem()
+~CVDUFileSystem()
+SetPath()
#GetFileInfoInternal()
#Init()
#GetVolumeInfo()
#GetSecurityByName()
#Create()
#Open()
#Overwrite()
#Cleanup()
#Close()
#Read()
#Write()
#Flush()
#GetFileInfo()
#SetBasicInfo()
#SetFileSize()
#CanDelete()
#Rename()
#GetSecurity()
#SetSecurity()
#ReadDirectory()
#ReadDirectoryEntry()

CVDUFileSystem

+m_token : CString
+m_canRead : boolean
+m_canWrite : boolean
+m_length : UINT32
+m_encoding : CString
+m_name : CString
+m_type : CString
+m_lastModified : SYSTEMTIME
+m_expires : SYSTEMTIME
+m_md5base64 : CString
+m_etag : CString
+InvalidFile : CVDUFile

+CVDUFile()
+CVDUFile()
+~CVDUFile()
+=()
+==()
+!=()
+IsValid()

CVDUFile

#m_type : VDUAPIType
#m_serverURL : CString
#m_parameter : CString
#m_requestHeaders : CString
#m_contentFile : CString
#m_callback : VDU_CONNECTION_CALLBACK
+LastError : TCHAR [0x400]

+CVDUConnection()
+Process()
+ThreadProc()

CVDUConnection

#m_server : CString
#m_username : CString
#m_statusText : CString
#m_certPath : CString
#m_hIcon : HICON
#m_trayMenu : CMenu*
#m_trayData : NOTIFYICONDATA

+CVDUClientDlg()
+TrayNotify()
+SetTrayTip()
+GetProgressBar()
+TryPing()
+IsLoginUsingCertificate()
+UpdateStatus()
+MessageBoxNB()
+OnTrayExitCommand()
+OnEnChangeServerAddress()
+OnBnClickedButtonLogin()
+OnEnChangeUsername()
+OnBnClickedCheckCertificate()
+OnCbnSelchangeComboDriveletter()
+OnBnClickedPing()
+OnBnClickedButtonCertselect()
+OnBnClickedAccessFile()
+OnEnSetfocusFileToken()
#DoDataExchange()
#OnInitDialog()
#OnCommand()
#OnCancel()
#OnOK()
#PostNcDestroy()
#OnSysCommand()
#OnPaint()
#OnQueryEndSession()
#OnQueryDragIcon()
#OnClose()
#OnTrayEvent()
#OnAutorunToggleCommand()
#OnOpenDriveCommand()
#OnAutologinToggleCommand()

CVDUClientDlg

-m_session

-m_svc

-m_files

-m_fs

#m_type

+InvalidFile

#m_callback

Visual Paradigm Standard(Admin(Brno University of Technology))

Figure 4.1: UML class diagram of the VDU Client application.

24

4.1.2 Data storage

There are many methods to store data for an application. For the VDU Client, there are
two types of data, which need to be stored:

• Files – The actual downloaded files from the VDU server, stored in the host file system

• Settings – The configuration of the application; the persistent state of the application,
stored in the Windows registry

Motivation

Creating a virtual file system gives the freedom to portray any data as files. This has led
me to attempt to store the files using just the system’s Random-Access Memory (RAM)
provided to the application. While the speed and accessibility of RAM make this idea seem
plausible, in practice, it did not work well for the following reasons:

• Space limitations – Large files might not have enough space

• Inactive RAM usage – Files not actively in use might prevent other applications from
using that space

• No file recovery – If the system crashes, there is no way to recover unsaved work

Files

For files, it is highly advantageous to store them in the host file system over all other
options available. The VDU Client stores the downloaded files in a temporary folder on
the main drive, using the host file system. This folder exists per user, meaning each local
user of Windows has their temporary folder tied to their Windows account. This prevents
unintended file sharing if multiple users are using the application on the same system. This
folder is emptied each time the application starts and has a randomly generated name upon
each creation. All unsaved files will stay in this folder if the system crashes, available for
potential data recovery.

Settings

The application’s configuration does not require much space, and as such, the idea of
using a custom database or storing it as a file on the host file system is not optimal. The
application’s configuration settings can be simplified into a simple pair of a key and a value.
In this pair, the key is a unique identifier of data type string, and value can be any supported
data type on the system. The Windows registry allows applications to store information
in this exact format, making it an ideal choice of data storage for the persistent state of
the application. Table 4.1 lists out the concrete settings stored inside the registry by the
application. These values are stored under the HKEY_CURRENT_USER key. This guarantees
that different Windows users on the same machine will have their own configurations of the
application.

25

Name Data type Description
AutoLogin Double-Word AutoLogin feature state
ClientCertPath String Path to client secret file
LastServerAddress String Last entered server address
LastUserName String Last entered user name
PreferredDriveLetter String Selected preferred drive letter
UseCertToLogin Double-Word Whether or not to use client secret
WorkDir String Current directory used to store VDU files

Table 4.1: The concrete settings stored by the application in the Windows registry.

4.2 User interface
The user interface includes every visual element of the application and all other elements
a user can interact with while using the application. Based on the VDU API documentation
and the analysis of requirements, I listed all essential actions and ways users could interact
with the VDU Client. These key functionalities can be referred to as user actions or use
cases. Figure 4.2 displays all use cases of the user interface. The following subsections
explain how the application’s user interface was thought out, designed, and the reasoning
behind those decisions.

User

Log in Log out
<<extend>>

Access file

<<extend>>

Invalidate file token
<<extend>>Test connection to

server

Change drive letter

Read & Modify
accessed files

VDU Client

Windows environment

Figure 4.2: The use case diagram of the application’s user interface from the viewpoint of
a userm, with its relations to the Windows environment.

4.2.1 Integration into the Windows environment

Not all user actions have to be included in the application’s user interface. For example, the
user can read and modify files via some other application present on the system, unrelated

26

to the VDU Client application. Additionally, the Windows environment provides many
instances of useful functions, which can improve the quality of the user experience.

Windows File Explorer

The Windows File Explorer (Explorer) is a built-in tool for browsing files in Windows. It
has its own user interface that can display files provided by a file system - such as a virtual
file system of the VDU client, as displayed in Figure 4.3.

Figure 4.3: The VDU Virtual Disk as shown in the Windows File Explorer, with the virtual
drive letter being “V” and a custom icon.

Using the Explorer to provide the functionality of actions related to file access is an
intuitive way of integrating with the Windows desktop environment. By opening the virtual
disk, a user can view the accessed VDU files. Figure 4.4 shows an example for browsing
VDU files using the Explorer.

Figure 4.4: Browsing files in the VDU Virtual Disk using the Windows File Explorer.

The VDU API provides an endpoint for file token invalidation, which has led me to make
a design choice to use the delete feature of the file system as a trigger for invalidation. The
point is re-purposing the file deletion feature to invalidate the file’s token and only delete
the local file if the server allows so. Thanks to this approach, the number of actions that
the VDU Client application has to contain in its own user interface is reduced further. In
conclusion, by using built-in features of existing applications in the Windows environment,
specifically the Explorer, I was able to simplify the VDU client’s user interface while keeping
its core functionality unchanged.

Single instance

To make the user experience better, the application will only run under a single instance.
Any additional instances of the application will exit immediately, leaving only one process
of the application running in the system – the main process. Any additional instances will,
before exiting, pass their command lines to the main process to improve the application’s
usability. This design choice gives the freedom to control the running application via the
command line.

27

Protocol association

For easier access to VDU files, the application creates a new URL2 protocol. Other applica-
tions, such as an internet browser, can command the running application to access a file by
the token provided in the URL path. The protocol has the URL format of vdu://{token},
where the token represents the file access token of the file, which the application should ac-
cess. This allows many applications, and most importantly, websites, to include hyperlinks
that use the VDU URL protocol to access files, as displayed in Listing 4.5.

Figure 4.5: An example of a VDU URL protocol hyperlink, displayed on a website using
an internet browser, which can be clicked to access a file with the token “f”

4.2.2 Dialog design

After narrowing down all user actions, as shown in the previous subsection, the next step
is to design the actual VDU client interface. Considering the small amount of functionality
required, I decided to design a simple Extended Dialog Window (dialog). Figure 4.6 displays
the dialog interface, which is separated into three sections:

• Connection – Client-Server functionality

• File System – Local virtual file system functionality

• Status – Information about the state of the application
The idea behind the division was to improve visual clarity while keeping the interface
compact and easy to navigate.

Connection section

This section contains information about the server address, user name, and if required,
a path to a client certificate (client secret) to include along with the login information.
Connection to the server can be tested using the Ping button. The Login button allows the
user to authenticate himself to the server and changes to a Logout button upon successfully
logging in. Logging in enables all authentication restricted functionality in the following
sections and the entire application.

File system section

The Access file button attempts to download and launch a file from the VDU server, given
a token from the input field. The user is also given an option to choose a preferred drive
letter for the virtual drive, which the VDU virtual file system will control.

Status section

Containing only a progress bar and a status text, this section informs the user about the
application’s state. This information includes download progress - visible on the progress
bar, connection status, number of accessed files, and the currently logged-in user.

2Uniform Resource Locator

28

Figure 4.6: The user interface of the VDU Client application, as shown when the application
is launched under Windows 10.

4.2.3 Dialog tray

When the application is running, implicitly, so is the dialog window. This is true even if
a user is not using the dialog window actively. In a simple use case scenario, the dialog
window is only required to log in and access a file. Afterward, it theoretically does not have
to be cluttering so much space on the screen and the taskbar.

This inspired me to design a beneficial addition to the dialog – a tray icon. This icon
resides in the tray area of the Windows user interface. Upon closing or minimizing the
dialog, the application stays running in the background, signified by the icon. The user can
restore the dialog window by simply clicking on the VDU Client icon, provided by Icons83,
displayed in Figure 4.7, in the tray area.

Figure 4.7: Cloud Storage Icon, used as the main icon for VDU client application.
Source:[9].

3https://icons8.com/

29

https://icons8.com/

Furthermore, removing the ability to close and exit the application from the dialog
window has moved this responsibility to the tray icon. I designed a simple tray menu to
fix this problem, depicted in Figure 4.8, which becomes active after right-clicking the icon.
The Exit option in this menu, shown in the listing, is how the user is supposed to quit using
the application.

Figure 4.8: Tray menu of the VDU Client application, as displayed upon right clicking the
tray icon.

Windows allows applications that put icons in the tray area to display a small text
message while hovering the icon – a tray tip. I utilized this tray tip to display a compact
text version of the data from the status section of the dialog, as displayed in Figure 4.9.

Figure 4.9: Example of a tray tip, shown above the icon when hovered, displaying the
current state of the application.

4.2.4 Responsiveness and notifications

A good application needs to be responsive and notify the user about important events. Ev-
ery action directly taken by the user should have a visual response. Given the specifications,
the application communicates with a server over a network connection. Whether the server
resides in a local network or on the internet, it is safe to assume that the application will
not finish an action instantaneously. This means a responsive application needs to notify
the user via the user interface using two types of responses:

• Instant – Direct visual response to an action, proving to the user that the application
is working on the user’s request

• Delayed – A second, more detailed response, once enough information is gathered
from the server

The application must keep being responsive while handling all actions. For the dialog
window, an instant response consists of enabling or disabling the related child windows.
For example, an instant response to clicking the Ping button, as displayed on the user
interface in Figure 4.6, would disable the button, making it non-clickable. This button
would be then enabled once again along with the follow-up – delayed response. The delayed
response consists of either creating a message box or displaying a Windows notification.

30

Message box

A message box is a simple window, often created as an owned window relative to the main
dialog window. It is used as either an instant or a delayed response to necessary actions
caused directly by the user, i.e., trying to test a connection to an invalid server will result
in a message box being shown, as depicted in Figure 4.10.

Figure 4.10: An example message box dialog, as displayed after the application fails to
connect to a server.

Windows notification

For less critical and rather informative actions, a Windows notification shows up as a
response. As displayed in Figure 4.11, such notification appears, for example, after a suc-
cessful download of a newly accessed file, along with an automatic startup of the assigned
application to the file type. It lets the user know it was the VDU Client application that
caused a different application to open.

Figure 4.11: An example of Windows notification, as displayed in the bottom right corner
of the screen after successfully obtaining access to a file.

4.3 Automated tests
By default, the application can only be controlled by the user using the user interface of
the dialog window. This makes it difficult to test the application automatically, as issuing
commands to the user interface is not practical. A much better solution for this problem
is to create a special mode in which the application can be launched - the test mode.
Furthermore, this section designs a simulated VDU server, since the automated tests of the
application should ideally be performed without the presence of a production VDU server
and a testing script to launch and contain the automated tests.

31

4.3.1 Test mode

The application can be launched into the test mode with the -testmode launch option.
While the test mode is enabled, the dialog window of the application is not created, and
the application starts executing test instructions in the background.

Instructions

A test instruction is an additional, repeatable launch option, which simulates a user action
with the application. Each instruction represents a single unit of functionality that can be
tested. The list of available test instructions is the following:

• -server [address] – Set the server address

• -user [name] – Login as user ’name’

• -logout - Invalidate authentication token

• -accessfile [token] – Access a file by token

• -accessnetfile [url] - Access a file by token inside the VDU URL protocol

• -deletefile [token] – Invalidate a file by token

• -rename [token] [name] – Rename an accessed file, recognized by a token, to a new
filename

• -write [token] [text] – Write a Unicode string at the beginning of the accessed file,
recognized by a token, and upload it to the server

• -read [token] [cmpText] – Read a Unicode string of the length of the input text from
the beginning of the accessed file recognized by token, and compare it to the input
text

Instructions do not modify the persistent state of the application outside of the test mode.
All user settings will remain intact after using the application in test mode. Additionally,
all instructions can be issued even without the test mode being enabled.

Creating a test

The test instructions have to be input as the application’s launch options in the command
line to create a test. Logically combining instructions allows anyone to create an unlimited
number of different specific tests, which assert a certain functionality.

1 VDUClient.exe -insecure -testmode -server localhost:4443 -user John -accessfile
abc123 -write abc123 Apple -read abc123 Apple -deletefile abc123 -logout

Listing 4.1: An example of a simple file modification test for the VDU Client application
in the form of a command line, created by combining test instructions and other launch
options.

An example of a test for the application, shown in Listing 4.1, is a simple file modification
test. This test first sets the application into the testing mode with certificate verification
disabled. Next, the execution of the input instructions would be the following:

32

1. Set the server address to localhost with port 4443.

2. Login as user John.

3. Access a file by token abc123.

4. Write the text Apple into a file, recognized by token abc123. If the content has
changed, confirm that the file was uploaded successfully.

5. Compare whether the text at the beginning of a file, recognized by token abc123, is
equal to Apple.

6. Invalidate the current user’s authorization token.

7. Exit successfully.

If the application exits with a code signifying a success, the test was successful, and the
application can perform a simple file modification. Otherwise, the test has failed. Addi-
tionally, tests can be created to deliberately confirm that the application fails at executing
specific instructions, such as writing to nonexisting files.

4.3.2 Simulated server

Due to the network connectivity requirements of the client-server type of applications, it is
not easy to provably test the functionality and properties of the client without the presence
of the server. Additionally, the risk of flooding the production server due to automated
testing might lower the quality of service for real users. This is the motivation behind
creating a simulated VDU server, which would only be present locally and respond to the
client’s requests. This approach comes with several advantages over the production server:

• Independence – Even if the VDU server stops working, testing can continue

• Interface stability – A sudden change in the interface of the VDU server will not affect
the application

• Flexibility – Application can be modified and properly tested over time to comply
with any changes on the server

• Transfer speed – Transferring of files is limited by the speed of the local network

Structure

Considering the simplistic nature of the server’s requirements, I designed the simulated
server as a simple script using Python4. The server consists of a single file, which starts an
HTTPS server, accepts connections over a secure channel with all endpoints available to
respond to requests upon execution.

Simulating endpoints

The specification of the VDU server API provides an overview of the design of all available
endpoints. The simulated server attempts to replicate the expected functionality of those
endpoints to represent a production server to a reasonable extent, the validity of which can
be confirmed by automated tests, along with the application’s validity.

4https://www.python.org/

33

https://www.python.org/

4.3.3 Testing script

In addition to the simulated server, and as a requirement of the specification, I designed
a Python testing script. This script consists of a single file, test.py, which uses both the
application executable and the simulated server script. Upon execution, the script will
perform all included tests and show the results of each test.

Designed tests

Table 4.2 lists the tests designed for the testing script. These tests assure the correct
functioning of the application features, designed in the previous sections, which real users
in real scenarios will use. A misfunction of such features critically impacts the application’s
usability. For this purpose, I designed this set to cover the features with added redundancy
between some tests to gain additional assurance.

Test name Description Expected code
server_bad Invalid server input EXIT_FAILURE
login_ok Valid user login EXIT_SUCCESS
login_bad Invalid user login EXIT_FAILURE
logout_ok Valid user logout EXIT_SUCCESS
logout_bad Logout before login EXIT_FAILURE
nologin Empty login input EXIT_FAILURE
del_ne Delete nonexisting file EXIT_FAILURE
file Access an existing file EXIT_SUCCESS
nofile Access a nonexisting file EXIT_FAILURE
thetwotime Access and delete two files EXIT_SUCCESS
tworeqs Access an file two times EXIT_FAILURE
allfiles Access all predefined files EXIT_SUCCESS
rename_bf Rename a file, back and forth EXIT_SUCCESS
rename_ne Rename a nonexisting file EXIT_FAILURE
write_ok Write to an accessed file EXIT_SUCCESS
write_ne Write to a nonexisting file EXIT_FAILURE
write_multi Write to a file multiple times EXIT_SUCCESS
read_ok Read correct text from a file EXIT_SUCCESS
read_bad Read incorrect text from a file EXIT_FAILURE
read_two Combine writing and reading EXIT_SUCCESS

Table 4.2: The designed set of tests, with their respectable descriptions and expected exit
codes, included as a part of the automated testing script.

34

Chapter 5

Implementation and testing

TThis chapter covers the exact internal implementation of both the internal elements and
the user interface of the VDU Client. After consulting with my supervisor, the application
was implemented using Visual Studio Community 20191. The automated tests, designed
in the previous chapter, are implemented in this chapter using Visual Studio Code2. After
implementation, the automated tests are performed on a set of testing operating systems
to prove the correct functionality of the application. Listings in the following sections make
implicit use of the following macros:

• WND – The main window object (CVDUClientDlg)

• APP – The application object (VDUClient)

5.1 Internal components
The back-end implementation of the application’s internal components corresponds to the
class structure designed in Chapter 4. This section covers the details of important parts of
the implementation related to the application’s functionality.

5.1.1 Connections and session

The VDU connection is an extended wrapper of a regular HTTP connection to a VDU
server, which handles the overhead required to easily communicate with a VDU server
using HTTP messages by sending a request and receiving a response. The VDU session
is an abstraction of communication between the VDU Client application and the VDU
server related to the current user. The session data most importantly consists of the user’s
authorization token and its expiration date.

Wrapping connections

Due to the stateless nature of HTTP, the client must send each request separately from
one another. Implementing requests as inline code creates too much redundant code if the
application needs to handle the received response.

My goal for creating a connection wrapper was to shift the generic and redundant HTTP
connection-related overhead into a single CVDUConnection class. Additionally, I recognized

1https://visualstudio.microsoft.com/vs/
2https://code.visualstudio.com/

35

https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/

only a few variables that can change from one connection to another and made the class
usable for communicating with every VDU API endpoint. Thanks to this approach, a re-
quest to the VDU server can be simplified into creating a connection object, as shown in
Listing 5.1.

1 CVDUConnection conLogin(
2 _T("127.0.0.1:4443"), //Server address
3 VDUAPIType::POST_AUTH_KEY, //VDU API endpoint
4 CVDUSession::CallbackLogin, //Callback function
5 _T("From: John\r\n"), //Request headers
6 _T(""), //Path parameter
7 _T("C:\Client.crt")); //Path to content file

Listing 5.1: Example of instantiating a VDU connection wrapper class.

Refreshing authorization token

The VDU API states that an authorization token has an expiration time, after which the
token is no longer valid. It is not mentioned what the expiration period is. It could
potentially be constant, or it could be relative – it depends on the server.

I solved this issue by creating a permanent worker thread on the application’s startup,
which checks for the expiration time every second, and sends a request to refresh the session
once the expiration period delta gets low enough. Instead of calculating the exact time a
thread should sleep, the reasoning behind the one-second interval is that there is no standard
way to wake a thread up from sleep earlier if the user does an unexpected action, such as
suddenly logging out.

Threading connections

The application has, by default, only a single thread available, the thread which handles
the user interface - the main thread. Processing connections on this thread would block the
user interface from responding when waiting for the server’s response.

I solved this problem by processing connections in separate worker threads. Whenever
the application needs to send a request to the server, it instantiates a new CVDUConnection
object. It passes it as a parameter to a new thread – a connection thread. A connection
thread starts its execution at the beginning of a static function, representing the thread
procedure, CVDUConnection::ThreadProc(), which processes the connection by calling the
Process() method and deletes the object from memory afterward. Creating a thread using
AfxBeginThread3, as shown in Listing 5.2, is a non-blocking operation, ensuring that the
main thread’s execution flow will not be disrupted by issuing requests to the server.

1 LPVOID pCon = (LPVOID) new CVDUConnection(GetServerURL(),
VDUAPIType::POST_AUTH_KEY, CVDUSession::CallbackLogin, headers, _T(""),
certPath);

2

3 AfxBeginThread(CVDUConnection::ThreadProc, pCon);

Listing 5.2: Creating a new thread to process a connection which sends a login request to
the server.

3https://docs.microsoft.com/en-us/cpp/mfc/reference/application-information-and-
management?#afxbeginthread

36

https://docs.microsoft.com/en-us/cpp/mfc/reference/application-information-and-management?#afxbeginthread
https://docs.microsoft.com/en-us/cpp/mfc/reference/application-information-and-management?#afxbeginthread

Thread synchronization

In a scenario where one or more worker threads are processing connections simultaneously,
all threads of the program are subject to a data race. The data race occurs due to the
shared access of the session data and is capable of causing seemingly unreasonable errors,
i.e., updating the authorization token right after a worker thread reads it from memory,
resulting in the worker thread using an invalid authorization token for its operation.

To solve this issue, I modified essential parts of the code into critical sections using
an SRW lock. When a thread enters a critical section, no other worker thread can read
or write into the session data without acquiring the lock in the exclusive access mode, as
indicated in Listing 5.3. The main thread is excluded from this restriction, as it must not
be blocked, and the worst-case scenario is only potentially outdated visual information.

1 CVDUSession* pSession = APP->GetSession();
2

3 //Blocking if already acquired, until released
4 AcquireSRWLockExclusive(&pSession->m_lock);
5 //Entered a critical section
6

7 //Code which uses the session data exclusively
8 CString token = pSession->GetAuthToken();
9 ...

10

11 //Leaving critical section
12 ReleaseSRWLockExclusive(&pSession->m_lock);

Listing 5.3: Example of a critical section implementation using an SRW lock.

Callback functions

To handle the example login request results demonstrated in Listing 5.2, the caller can
specify a callback function. Every callback function has the following guarantees:

• Executed asynchronously – Executes in a worker thread

• The parameter is the response – The HTTP response can be NULL on failure

• Exclusive access to session data – To prevent data racing

• The return value is thread exit code – For synchronous operations

A callback function must follow the prototype, declared in Listing 5.4. The parameter is
the received response from the server in the form of a CHttpFile object. The return value,
as specified above, will be used as a return code for the running thread. This assures that
another synchronization object can check the results of this callback operation after the
running thread terminates.

1 typedef INT (*VDU_CONNECTION_CALLBACK)(CHttpFile* httpResponse);

Listing 5.4: The prototype of a VDU callback function.

37

5.1.2 Virtual file system

The VDU virtual file system is originally based on the passthrough-cpp4 example file system
made by Bill Zissimopoulos. The original example file system, available at [5], implemented
the functionality of accessing a given directory path via the virtual drive directly, a pass-
through file system. This was a perfect fit for this application, considering the VDU Client
file storage design uses a folder in a very similar sense. Basing the VDU virtual file system
on that system allowed me to spend more time perfecting the final system, as the example
system covered a good chunk of the unrelated implementation overhead.

The virtual file system is implemented in the CVDUFileSystem class. The implementation
consists of overriding virtual functions of the base Fsp::FileSystemBase class. The list of
implemented virtual functions, along with a simple description according to [39], is the
following:

• GetVolumeInfo – Volume information

• GetSecurityByName – File metadata and security descriptors

• Create – Creating a file

• Open – Opening a file

• Overwrite – Overwriting an existing file

• Cleanup – Situational file operations

• Close – Closing a file handle

• Read – Read bytes from file

• Wite – Write bytes to file

• Flush – Flush on disk

• GetFileInfo – Query file metadata

• SetBasicInfo – Set file attributes, file times

• SetFileSize – Change file size

• CanDelete – Whether or not can file be deleted

• Rename – Renaming a file

• GetSecurity – File’s security descriptor

• SetSecurity – File’s security descriptor

• ReadDirectory – Reading directory data

• ReadDirectoryEntry – Listing through directory contents
4https://github.com/billziss-gh/winfsp/blob/master/tst/passthrough-cpp/

38

https://github.com/billziss-gh/winfsp/blob/master/tst/passthrough-cpp/

The VDU file system service manages this file system. The service is implemented in the
CVDUFileSystemService class and holds all information about VDU files, file system status,
the virtual file system drive, etc. Most importantly, it implements the functionality of
transferring files between the client and the server and provides it to other parts of the
application, including the file system itself. An instance of this service runs in a permanent
thread, created on the application’s startup.

Read-only files

VDU files can have a property, which disallows them to be uploaded to the server, and
thus, any modification – they are read-only. While a file in Windows can have a read-only
attribute set, many programs simply clear the attribute or ignore it completely. Modifying
read-only files, whether by mistake or intention, could lead to confusion and waste of
bandwidth via requests, which the server will deny.

My approach to this issue is to disallow programs from acquiring a file’s handle if the
handle would have access to write to the file. The process of acquiring a handle to an
existing file is handled in the Open() function of the file system implementation and in
the Create() function to prevent modifying the file by replacing it. Listing 5.5 shows the
implementation of the access right check for the first function.

1 NTSTATUS CVDUFileSystem::Open(PWSTR FileName, UINT32 CreateOptions, UINT32
GrantedAccess, PVOID* PFileNode, PVOID* PFileDesc, OpenFileInfo* OpenFileInfo)

2 {
3 ...
4 //Find requested file via the service
5 CVDUFile vdufile =

APP->GetFileSystemService()->GetVDUFileByName(PathFindFileName(FileName));
6 ...
7 //If the file is a valid VDU file
8 if (vdufile.IsValid())
9 {

10 //If the file is read-only, check write rights
11 if (!vdufile.m_canWrite &&
12 (GrantedAccess & GENERIC_WRITE ||
13 GrantedAccess & FILE_APPEND_DATA ||
14 GrantedAccess & FILE_WRITE_DATA))
15 {
16 //Return a descriptive status, do not open a handle
17 return STATUS_MARKED_TO_DISALLOW_WRITES;
18 }
19 }
20 ...
21 }

Listing 5.5: The implementation of the read-only check for files, to disallow opening a handle
with write access to a VDU file, if it is read-only.

Custom drive icon and label

For better visual clarity and easy recognition of the difference between a physical drive
and a virtual one, created by the application, I implemented a simple solution, which, upon
mounting a virtual drive to a drive letter, sets the icon to match the VDU Client main icon,

39

displayed in Figure 4.7, and include a descriptive drive label to match. To change a drive
icon, all it takes is to create a registry key as a subkey to the Explorer key, which Windows
File Explorer uses for its various settings. The created key’s name has to be equal to the
drive’s letter. Inside this key, the DefaultIcon subkey’s default value specifies the custom
icon, and the DefaultLabel subkey’s default value specifies the custom label. This is true
for all Windows versions. The problem is, where is the Explorer key located. According
to [33], for Windows versions other than Windows 2000, which is this application’s case,
the key is located under the HKEY_LOCAL_MACHINE key. This would change the drive icon for
every Windows user and requires administrator permissions to change.

To avoid this, the key used in the Windows 2000 option’s case can be used and, with a
modification, is working as intended. According to [27], the HKEY_CLASSES_ROOT key will be
replaced with the HKEY_CURRENT_USER\Software\Classes key if the intent is to write only to
the current Windows user’s settings. That is exactly the application’s intent, as it requires
no additional rights. An example of an implementation using a modified registry path to
enable a custom icon is shown in Listing 5.6.

1 NTSTATUS CVDUFileSystemService::Remount(CString DriveLetter)
2 {
3 ...
4 CRegKey key;
5 if (key.Create(HKEY_CURRENT_USER,

_T("SOFTWARE\\Classes\\Applications\\Explorer.exe\\Drives\\") +
CString(m_driveLetter[0]) + _T("\\DefaultIcon")) == ERROR_SUCCESS)

6 {
7 //Acquire the executable path containing the icon
8 CString moduleFilePath;
9 AfxGetModuleFileName(NULL, moduleFilePath);

10 //Select the first icon, set it to the default value
11 key.SetStringValue(NULL, _T("\"") + moduleFilePath + _T("\",0"));
12 key.Close();
13 }
14 ...
15 }

Listing 5.6: Implementation of applying a custom drive icon to a drive, noted by its drive
letter, when re-mounting the virtual file system.

File integrity

Accessing a remote file via its file token triggers a download of the file from the VDU server
to the local machine. The application loads all response headers and starts downloading
the file. The file is first downloaded into the current Windows user’s temporary directory
with a temporary name prefixed with the letters “vdu”. After the download is finished, the
application should verify the file’s integrity to confirm it has been downloaded from the
VDU server successfully, without modification.

This is achieved by creating an MD5 hash of the file’s contents and encoding the raw
16 bytes of hash data into the Base64 format. This format corresponds to the format used
in the Content-MD5 header of the server’s response. If both hashes match, the file integrity
has been proved, and the file is registered internally. It is moved into the applications work
directory, available to be accessed by the user through the virtual file system. The function
that creates the MD5 hash of a file is implemented according to [11] using the cryptographic

40

functions, using the Windows API’s CryptoAPI, which allow performing the computation
of hashes at the application’s runtime.

Invalidating file tokens

Invalidating a file token when the user no longer needs a file to be accessible was designed to
be done by repurposing the delete feature of Windows File Explorer. However, the virtual
file system provides no virtual function, called when a file is being deleted.

After testing, I found out that the delete feature of Windows File Explorer is actually
implemented as simply opening the file with a specific parameter. To repurpose the delete
function, I intercept the Open() virtual function of the virtual file system. If the file is about
to be deletet, for the parameter CreateOptions, either of the following statements must be
true:

• The FILE_DELETE_ON_CLOSE flag is set

• Only the following flags are set:

– FILE_FLAG_POSIX_SEMANTICS

– FILE_FLAG_OPEN_REPARSE_POINT

– FILE_NON_DIRECTORY_FILE

By checking for these conditions, intercepting and handling the deletion, I implemented the
file token invalidation feature.

Detecting file changes

A VDU file can be changed in many ways via many different applications. Each application
could use a slightly different method to modify the files. This makes it difficult to find
a reliable way to detect the exact moment when a file has changed without repeatedly
testing the file for changes on a timer – a very ineffective approach. It takes more processing
power, the more files are present in the virtual file system.

Detecting changes in a file is simple – create a new MD5 hash of the file and compare
it to the one acquired from the VDU server. The problem is timing. The best time to
detect a file change is instantly, and the best place for that is directly in the file system
implementation. An application can change a file in three basic ways:

• Renaming – Changing the file’s name and or extension

• Replacing – Drag and drop; overwriting the file with another file

• Direct modification – Opened and modified by some other application

Renaming is easy to detect. If a file is about to be renamed, the virtual function
Rename() of the virtual file system gets called. Inside this function, I intercept the call and
handle the detection.

Replacing happens, for example, with drag-and-drop operations. The exact process of
this varies from application to application that handles it. Usually, an application that
replaces files creates a temporary file, writes new contents into that temporary file, and
renames the temporary file to the original file name. It makes use of the renaming func-
tionality. To differentiate user-triggered renaming and renaming caused by some applica-
tion’s overhead, I use the ReplaceIfExists parameter of the Rename() virtual function of

41

the virtual file system. This parameter is False for renaming due to overhead and True
for user-triggered renaming. While the overhead renaming on its own could be used as a
detection vector for file changes, I use a more efficient approach.

Detecting direct modification of a file stems from an object, which is being used while
modifying a file – a handle. No application wants to keep a handle to a file for too long,
as it would potentially prevent other applications from accessing this file. That is why
intercepting the end of the modification process when an application is closing a handle
to a file is the best spot for detection. The virtual function Close() provides the handle,
which is about to be closed via the FileDesc0 parameter. To determine whether this file
is one of the VDU files, the GetFinalPathNameByHandle5 function provides the file name of
the file this handle belongs to. The application can compare it against the internal vector
of VDU files. However, this approach detects every handle that belongs to a VDU file. If
an application intends only to read and opens a read-only handle to a file and then closes
it, it essentially creates a false positive, as handles without explicit writing rights can not
modify a file.

The file system needs to figure out whether a handle has write access to the file it
belongs to solve this. The internal Windows API function NtQueryObject() allows querying
the GrantedAccess of a handle object, as specified by [17]. Unlike other Windows API
functions, it is only accessible via a dynamic link. The implementation of acquiring the link
to NtQueryObject() and using it to identify handles with write access is shown in Listing
5.7. Thanks to this approach, the identifying process is more effective, as only handles with
write access are considered for a file modification check.

Uploading files

Normally, local VDU files must be manually uploaded to the VDU server every time a sig-
nificant change is made to justify this effort. This makes it very difficult and annoying for
the user to keep up with the changes and do repetitive tasks.

To automate this process, the application will only upload the local VDU files present
in the virtual file system to the server if a change to the file’s contents is detected. If
a change is detected, the file system service will upload the file in the background without
the need for interaction of the user. An upload request can potentially result in the file
token being invalidated by the server. The application responds by removing the file locally
and notifying the user about this occurrence.

Version control

Each VDU file that is accessed has its version controlled by the VDU server. The version
string is accessible in the response header as the ETag header. The exact content of the
version string is not specified.

Due to this fact, I implemented the application’s version control as simply following the
orders of the server, given that the client application has no control over the file version
– it can only respect it. When a file is modified, the file is uploaded to the VDU server.
If the server accepts the updated file, it will return a new version in the ETag header of
the response. This is updated internally so that any further changes will be done with
respect to the current version of the file. Contrary to how the thesis specification purports

5https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-
getfinalpathnamebyhandlew

42

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfinalpathnamebyhandlew
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfinalpathnamebyhandlew

the application version control, the application can at its best follow the server’s decisions
about the version of a file.

1 VOID CVDUFileSystem::Close(PVOID FileNode, PVOID FileDesc0)
2 {
3 ...
4 VdufsFileDesc* FileDesc = (VdufsFileDesc*)FileDesc0;
5

6 //Prototype from documentation
7 typedef NTSTATUS (NTAPI* NtQueryObjectFn)(HANDLE Handle,

OBJECT_INFORMATION_CLASS ObjectInformationClass, PVOID ObjectInformation,
ULONG ObjectInformationLength, PULONG ReturnLength);

8

9 //Get the function dynamically from ntdll
10 static NtQueryObjectFn NtQueryObject = NULL;
11 if (!NtQueryObject)
12 {
13 if (HMODULE ntdll = LoadLibrary(_T("ntdll.dll")))
14 NtQueryObject = (NtQueryObjectFn) GetProcAddress(ntdll,

"NtQueryObject");
15 }
16

17 //Assume the handle has writing rights
18 BOOL handleHasWriteRights = TRUE;
19 PUBLIC_OBJECT_BASIC_INFORMATION pobi;
20

21 //Query the handle object’s basic information
22 if (NtQueryObject != NULL && NT_SUCCESS(
23 NtQueryObject(FileDesc->Handle, ObjectBasicInformation, &pobi,

sizeof(pobi), 0)))
24 {
25 ACCESS_MASK GrantedAccess = pobi.GrantedAccess;
26

27 //Queried successfully, assume no write rights
28 handleHasWriteRights = FALSE;
29

30 //Check handle’s access for write flags
31 if (GrantedAccess & GENERIC_WRITE ||
32 GrantedAccess & FILE_APPEND_DATA ||
33 GrantedAccess & FILE_WRITE_DATA)
34 {
35 handleHasWriteRights = TRUE;
36 }
37 }
38 ...
39 }

Listing 5.7: Implementation of accessing the NtQueryObject function of ntdll.dll and using
it to identify wheter a handle, that is about to be closed, has access to writing to the file it
belongs to.

43

5.2 User interface
The front end of the application is the user interface, as it was designed in Chapter 4, and
it is divided into the application’s dialog window and the Windows environment part. The
implementation of the application’s interface is explained in the following subsections.

5.2.1 Dialog window

The dialog window was implemented using MFC in Visual Studio, which allows creating
dialog interfaces in a schematic-like format, as displayed in Figure 5.1. Each designed
window serves as a template for programmatically created windows of the same type and
has a unique name. When creating a window, the developer can specify a template to guide
the design of this window. As shown in Listing 5.8, the Create() function of CDialogEx is
using the designed window template specified as the first parameter.

Figure 5.1: The VDU Client dialog window user interface; created in the Visual Studio
Dialog Editor.

1 CVDUClientDlg* pDlg = new CVDUClientDlg();
2 pDlg->Create(IDD_VDUCLIENT_DIALOG, AfxGetMainWnd());

Listing 5.8: Creating the extended dialog window of VDU Client

44

Event handlers

In Windows, whenever a window is interacted with, it receives a message, which can be
handled and responded to. MFC provides a way to implement a function called when
a specific message is received - an event handler. For each child window of the dialog,
including itself, I implement one or more event handlers to assure functionality of the
interface. An example of an event handler and its mapping to a message and implementation
is displayed in Listing 5.9.

1 //Message mapping for dialog
2 BEGIN_MESSAGE_MAP(CVDUClientDlg, CDialogEx)
3 ON_BN_CLICKED(IDC_BUTTON_PING, &CVDUClientDlg::OnBnClickedPing)
4 END_MESSAGE_MAP()
5

6 //The message handler function
7 void CVDUClientDlg::OnBnClickedPing()
8 {
9 TryPing();

10 }

Listing 5.9: Example of implemented and mapped click event handler

Tray

The core of interacting with the Windows tray area and creating a tray icon is the Win-
dows API function Shell_NotifyIcon6. The information about the tray icon is stored in
m_trayData inside CVDUClientDlg. This data is modified and passed to the function whenever
an operation with the tray icon is required.

To make it seem like the window gets hidden to the tray, I override the system command
SC_CLOSE7 to minimize and hide the main window, as shown in Listing 5.10.

1 //Overriding the OnSysCommand virtual function
2 void CVDUClientDlg::OnSysCommand(UINT nID, LPARAM lParam)
3 {
4 if ((nID & 0xFFF0) == SC_CLOSE)
5 {
6 //Hide to tray
7 ShowWindow(SW_MINIMIZE);
8 ShowWindow(SW_HIDE);
9 return;

10 }
11

12 //Call parent’s default implementation
13 CDialogEx::OnSysCommand(nID, lParam);
14 }

Listing 5.10: Overriding system close command to hide the dialog window

6https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-
shell_notifyiconw

7https://docs.microsoft.com/en-us/windows/win32/menurc/wm-syscommand

45

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shell_notifyiconw
https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shell_notifyiconw
https://docs.microsoft.com/en-us/windows/win32/menurc/wm-syscommand

Message box

When a message box is active, its presence blocks the thread which creates it. This ties
closely to the thread synchronization mentioned in the previous section and could lead to
synchronization delays. It could even cause a deadlock if a thread does not release the
synchronization lock.

To prevent this while still using message boxes, each message box is created in a separate
new worker thread. The calling thread creates a structure consisting of the parameters of
the message box and passes it to the new thread. This approach avoids any potential delays
in thread synchronization.

5.2.2 Windows environment

This subsection covers features that tie closely to the interface of the Windows environment.
The specification does not explicitly require their presence. Instead, they serve as quality
of life improvements of the user experience.

Browsing and opening files

After successfully accessing a VDU file by its token, the file is created locally and available
on the virtual file system’s virtual drive. It might not be clear how to access this place or
run the newly accessed file simply for some users.

After a file is accessed, the application automatically starts the program associated
with this file’s type. This is done by using the ShellExecute8 function to open the file at
its location. I also used this function to open the Windows File Explorer at the path of the
virtual drive, which is accessible through the tray popup menu entry – Browse files. The
usage of ShellExecute in the implementation of these features is shown in Listing 5.11.

1 //Browse files inside the virtual drive path
2 ShellExecute(WND->GetSafeHwnd(), _T("explore"),

APP->GetFileSystemService()->GetDrivePath(), NULL, NULL, SW_SHOWNORMAL);
3

4 //Open VDU file ‘plain.txt‘ with the assigned program
5 ShellExecute(WND->GetSafeHwnd(), _T("open"),

APP->GetFileSystemService()->GetDrivePath() + _T("plain.txt"), NULL, NULL,
SW_SHOWNORMAL);

Listing 5.11: Examples of using ShellExecute to open and browse files

Running on startup

To make Windows automatically run programs after the current Windows user logs in,
as [36] describes, the path to the application executable is set as a string value inside
CurrentVersion\Run subkey of the HKEY_CURRENT_USER key. With this registry value set
up, the application will be launched each time the Windows user logs in. However, the user
might want this feature enabled at all times.

To solve this issue, I wanted to replicate how the Windows Task Manager disabled
and enabled the startup applications and use this feature in the application. As there is no
official documentation for the Task Manager, I took inspiration from the notes of René Nyf-
fenegger, available at [22], where he describes the registry subkey StartupApproved\Run.

8https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutew

46

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutew

The values in this subkey describe whether an application is enabled or disabled from start-
ing up – it overrides the settings of the default startup registry path. However, the notes
contain incomplete information about the startup entry structure.

According to my testing, from the first 4 bytes of the binary value, only the first bit is
used to determine whether the entry is disabled. The second bit always gets set when the
Startup tab of the Task Manager is first displayed. This bit does not get set again until the
Task Manager is restarted – it could have been an oversight, as it does not serve a purpose
related to application startup.

I created a simple structure, as shown in Listing 5.12. which represents the 12 bytes
saved in the registry. The VDU Client reads and writes this structure to the registry.

1 typedef struct StartupApprovedEntry_t
2 {
3 enum FlagBits
4 {
5 DISABLED = (1 << 0), //The application will not start
6 TASKMGR_VIEWED = (1 << 1), //The entry was viewed in the Task Manager
7 };
8

9 DWORD flags; //Contains flag bits
10 FILETIME disabledTime; //Time when the entry was disabled
11 } StartupApprovedEntry;

Listing 5.12: The internally implemented structure of an entry of a startup-approved
application of modern Windows.

Single instance

By default, upon starting another instance of the application, it will create a new dialog
window and attempt to create the virtual file system drive. This could lead to issues, as
the previously created instance has already created the drive, or confusion related to the
number of dialog windows and tray icons.

To achieve this, I used a mailslot. The first, main instance of the application creates
a mailslot with a predefined name and keeps its handle until it exits. If another instance of
the application attempts to create the same mailslot, the creation will fail – the application
process can recognize whether it is the main process or not.

The main application process will create a worker thread to make better use of the
mailslot, which continuously attempts to read new messages from the mailslot. Every read
message will be passed synchronously to the VDUClient::HandleCommands() function, which
parses and handles and executes the command line. To achieve this, the application process,
which is not the main one, opens the mailslot and writes its own command line as a message
before exiting. This allows for many processes of the application to control a single instance
instead of instantiating themselves.

Protocol association

According to [15], to associate the application with the VDU URL protocol, the application
should register this protocol as one of the root classes. To register the protocol only for the
current Windows user, the registry key used is under the HKEY_CURRENT_USER key, instead
of the HKEY_CLASSES_ROOT key, as mentioned in previous sections. When the protocol is

47

triggered, a new instance of the application is launched with the command to access the
requested file by the token in the URL path.

The implementation of this ties to the single instance feature of the application. The
newly created instance, triggered by launching the VDU URL protocol, will write the
-accessnetfile command with its parameter being the file token, into the mailslot. This
will cause the main process to read the new message and execute the command, leading to
seamless access to the requested file via the currently running application.

5.3 Automated tests
This section intends to implement the automated tests designed in the previous chapter.
All automated tests are implemented using the Python programming language with a single
script. The tests are run on the application in the test mode, which causes the application
to validate the results of each instruction and exit with the respective exit code. All tests
assume the persistent state of the simulated VDU server.

5.3.1 Test mode

The test mode of the application is implemented as a simple variable, indirectly checked in
different parts of the application. In the test mode, the application executes the instructions
in its own command line. While it does create a mailslot to prevent creating more instances
of the application, it does not read from it to prevent it from tampering with the currently
running test.

Executing instructions

Instructions of the application are contained in the application’s command line. The func-
tion VDUClient::HandleCommands() parses and executes every instruction that is matched
with the instruction set and ignores others. While the application runs in the test mode,
the instructions are always executed synchronously in the main thread. This is possible
thanks to the dialog window not being active, and it is different from the regular mode,
where the instructions are still run synchronously but in a worker thread.

Error handling

If an instruction communicates with the server during its execution, it awaits the response
from the server in the same thread – it is blocking. After evaluating the response, the
application immediately exits with the respective exit code if the action was not successful.
Otherwise, the application exits after the last instruction is executed with the exit code
EXIT_SUCCESS.

5.3.2 Simulated server

The simulated VDU server is implemented as a single Python script. This script creates
an HTTP server, to which it assigns a custom VDUHTTPRequestHandler object, which is an
instance of the extended version of BaseHTTPRequestHandler9 class. This class implements
all endpoints of the VDU server API. The server is bound to listen on all interfaces and
uses the port 4443 by default.

9https://docs.python.org/3/library/http.server.html

48

https://docs.python.org/3/library/http.server.html

Support for HTTPS

The support for the HTTPS protocol was added according to [2] by generating a server
certificate using OpenSSL10. This certificate is then used to wrap the HTTP server’s socket,
creating an HTTP server with HTTPS support. The certificate is not a valid certificate
signed by an authority and should only be used for testing.

Predefined data

The server includes predefined simulated data for testing. This data includes a few example
users and examples of always active file tokens for accessible VDU files. This helps create
a good environment for testing, as tests can be created to assume the persistent state of
the simulated server, where known users and file tokens are available.

Endpoint simulation

The simulated server attempts to replicate the functionality of the endpoints of the pro-
duction server using the programming constructs of Python and its default libraries. Au-
thentication related endpoints are simulated using a dictionary to manage the generated
authentication tokens. The file-related endpoints use the operating system library11 to gain
information about the VDU files, such as their size, access rights, file name, etc.

The point is not to accurately simulate how a production server would handle the request
internally but rather simulate accurate responses to client requests. For this reason, some
endpoints have simplified internal functionality. For example, the simulated DELETE /file/
endpoint does not actually invalidate file tokens on success, since they are persistent for
testing.

Version control

All predefined files have a certain starting version as an integer. This version is incremented
each time a file is successfully uploaded to the server. This creates a simulation of how
a simple version control system would work – the previous versions are not backed up
anywhere, while they probably would be on a real production server.

Failures

The specification of the VDU API includes, for some endpoints, status codes for internal
failures such as read timeouts. To simulate internal read timeouts, I added a probability
of failure setting, which affects file-related endpoints. This setting should remain “0” while
using the server to perform tests.

5.3.3 Testing script

The automated testing script is implemented as a single Python script. It contains the
definitions of automated tests to be run on the application. They predefined directly in the
code, inside a dictionary. The dictionary can be extended by creating new tests, which will
be run along with the predefined ones. Every test in the dictionary of tests is implemented

10https://www.openssl.org/
11https://docs.python.org/3/library/os.html

49

https://www.openssl.org/
https://docs.python.org/3/library/os.html

as an array, containing the test’s name, a string of test instructions, and the expected exit
code.

Performing tests

The tests are performed using the subprocess12 Python library. This library allows the
script to create a new process based on the input command line. To run a single test, the
script performs the following steps:

1. Start the simulated VDU server

2. Start the VDU Client in the test mode with test instructions

3. Wait for the VDU Client to terminate

4. Terminate the simulated VDU server

5. Compare the exit code of the VDU Client to the expected code

These steps are done for every test in the dictionary of tests. Afterward, the script prints
the testing results to the standard output to notify about the results.

5.4 Testing the application
The automated tests for the application can be performed by executing the testing script.
The results of these tests will then signify whether the application succeeds in conforming
to the specified requirements, whether the application functions correctly, and whether the
simulated server’s behavior matches the expected behavior of the production server.

5.4.1 Performing tests

The testing script comes with a set of predefined tests, implemented in the previous sec-
tions. I created those tests to prove the correct functionality of all important parts of the
application, focusing on user experience and specification requirements.

Testing script output

Listing 5.13 displays the text output of the testing script performed on a machine running
the Windows 10 operating system. The output of the testing script shows that all tests
have been performed successfully, and as such, the tested functionality is working correctly,
and the application was tested successfully.

5.4.2 Compatibility testing

While not explicitly required by the specification, I created the application with the possibil-
ity of supporting a range of operating systems in mind, which could dramatically improve
its robustness and usability. This section discusses how the testing was performed, key
differences between how the application runs on these systems, and the summary of test-
ing results. The testing was done on three versions of the Windows operating system –
Windows 10, Windows 8.1, and Windows 7.

12https://docs.python.org/3/library/subprocess.html

50

https://docs.python.org/3/library/subprocess.html

1 [02:01:52] [Test] OK [server_bad] 1
2 [02:01:53] [Test] OK [login_ok] 0
3 [02:01:53] [Test] OK [login_bad] 1
4 [02:01:54] [Test] OK [logout_ok] 0
5 [02:01:54] [Test] OK [logout_bad] 1
6 [02:01:55] [Test] OK [nologin] 1
7 [02:01:56] [Test] OK [del_ne] 1
8 [02:01:57] [Test] OK [file] 0
9 [02:01:57] [Test] OK [nofile] 1

10 [02:01:59] [Test] OK [thetwotime] 0
11 [02:02:00] [Test] OK [tworeqs] 1
12 [02:02:01] [Test] OK [allfiles] 0
13 [02:02:02] [Test] OK [rename_bf] 0
14 [02:02:03] [Test] OK [rename_ne] 1
15 [02:02:04] [Test] OK [write_ok] 0
16 [02:02:05] [Test] OK [write_ne] 1
17 [02:02:05] [Test] OK [write_multi] 0
18 [02:02:06] [Test] OK [read_ok] 0
19 [02:02:07] [Test] OK [read_bad] 1
20 [02:02:08] [Test] OK [read_two] 0
21 [02:02:08] ====================
22 [02:02:08] [Test] Passed 20/20 tests

Listing 5.13: Output of the testing script, after successfully performing all 20 predefined
tests.

Windows 10

Windows 10 is the target operating system of the application. All features were designed
and implemented with this version as the reference point. All tests can be performed suc-
cessfully on this system. Additionally, all features of the application are working correctly
as intended.

Windows 8.1

For the Windows 8 operating system, the application is fully compatible. There are no large
differences in application functionality, with the only smaller difference being the change of
notification style from the box style to a popup bubble, as shown in Figure 5.2.

Figure 5.2: An example of the popup bubble layout of a notification of the application,
shown in Windows 8.1.

Windows 7

The oldest tested operating system, Windows 7, while working mostly like the previously
mentioned operating systems, does not support the selective automatic startup option of

51

the application. This is due to the lack of implementation of startup-approved application
entries, which are not being considered. The application defaults to not force itself to
be run on startup on this system. Additionally, it uses the same popup bubble style of
notifications, similar to Windows 8.1, instead of the box style.

Testing results

Table 5.1 shows the results of the testing script on each operating system. According to
the results, all key functionalities outlined by the specification and test design are working
correctly. While the user experience with each system is slightly different, mainly due to
the graphical layout differences, the application has been tested successfully and is provably
usable and compatible.

Test name Windows 10 Windows 8.1 Windows 7
server_bad OK OK OK
login_ok OK OK OK
login_bad OK OK OK
logout_ok OK OK OK
logout_bad OK OK OK
nologin OK OK OK
del_ne OK OK OK
file OK OK OK
nofile OK OK OK
thetwotime OK OK OK
tworeqs OK OK OK
allfiles OK OK OK
rename_bf OK OK OK
rename_ne OK OK OK
write_ok OK OK OK
write_ne OK OK OK
write_multi OK OK OK
read_ok OK OK OK
read_bad OK OK OK
read_two OK OK OK

Table 5.1: The final results of the testing using the testing script. All tests have been
performed successfully on all three operating systems.

52

Chapter 6

Conclusion

This thesis aimed to create a client-side application for Microsoft Windows, which would
provide access to remote files on the VDU server, based on the specification and require-
ments at which it succeeded. It introduced the development of applications for Microsoft
Windows and overviewed important technologies, libraries, and software to achieve this
goal. It presented and explained files, file systems, and virtual file systems. It listed and
reviewed multiple options of the third-party file system software, from which it picked the
best one and built the application upon. The requirements were analyzed, formalized, and
the application, with both its internal components and user interface, was designed in de-
tail. The application testing mode was introduced, the automated tests were designed as
a script, and a simulated VDU server to test them on was designed. The application, the
simulated server, and automated tests were then implemented, with the steps and thoughts
behind each implementation being explained in detail successfully. The application was
then subjected to testing, at which it succeeded with all created automated tests. The
compatibility support with multiple operating systems was tested and compared to assure
that the application is versatile and stable on these systems.

As required by the specification, the resulting software is published as open-source on
GitHub1, available to be extended upon and developed further. In the future, it could be
improved by adding more application settings for the user to customize, extending the user
interface to include themes and options based on user feedback, or by storing and displaying
statistics about the user’s work with each accessed file.

1https://github.com/coolguy124/vduclient

53

https://github.com/coolguy124/vduclient

Bibliography

[1] Bridge, K., Sharkey, K. and Satran, M. Unicode in the Windows API - Win32
apps | Microsoft Docs [online]. 2018 [cit. 2021-03-11]. Available at: https:
//docs.microsoft.com/en-us/windows/win32/intl/unicode-in-the-windows-api.

[2] Dergachev, A. Simple-https-server.py [online]. 2021 [cit. 2021-04-27]. Available at:
https://gist.github.com/dergachev/7028596.

[3] Dokan - User mode file system library for windows with FUSE Wrapper [online].
Dokany, 2021 [cit. 2021-03-31]. Available at: https://dokan-dev.github.io/.

[4] Fielding, R. T. Fielding Dissertation: CHAPTER 5: Representational State
Transfer (REST) [online]. 2000 [cit. 2021-03-26]. Available at:
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[5] Billziss-gh/winfsp: Windows File System Proxy - FUSE for Windows [online].
GitHub, 2021 [cit. 2021-04-20]. Available at: https://github.com/billziss-gh/winfsp.

[6] Dokan-dev/dokany: User mode file system library for windows with FUSE Wrapper
[online]. GitHub, 2021 [cit. 2021-03-20]. Available at:
https://github.com/dokan-dev/dokany.

[7] Microsoft/VFSForGit: Virtual File System for Git: Enable Git at Enterprise Scale
[online]. GitHub, 2021 [cit. 2021-03-20]. Available at:
https://github.com/Microsoft/VFSForGit.

[8] Hollasch, L. W., Coulter, D., Kim, A. et al. File systems driver design guide -
Windows drivers | Microsoft Docs [online]. 2020 [cit. 2021-03-09]. Available at:
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/.

[9] Cloud Storage Icon – Free Download, PNG and Vector [online]. Icons8, 2021 [cit.
2021-04-20]. Available at: https://icons8.com/icon/r8kHwiV6nVEd/cloud-storage.

[10] Jacobs, M., Sharkey, K., Coulter, D. et al. Files and Clusters - Win32 apps |
Microsoft Docs [online]. 2018 [cit. 2021-03-10]. Available at:
https://docs.microsoft.com/en-us/windows/win32/fileio/files-and-clusters.

[11] lastnameholiu, Sharkey, K., Coulter, D. et al. Example C Program: Creating
an MD5 Hash from File Content - Win32 apps | Microsoft Docs [online]. 2018 [cit.
2021-04-25]. Available at: https://docs.microsoft.com/en-us/windows/win32/
seccrypto/example-c-program--creating-an-md-5-hash-from-file-content.

54

https://docs.microsoft.com/en-us/windows/win32/intl/unicode-in-the-windows-api
https://docs.microsoft.com/en-us/windows/win32/intl/unicode-in-the-windows-api
https://gist.github.com/dergachev/7028596
https://dokan-dev.github.io/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://github.com/billziss-gh/winfsp
https://github.com/dokan-dev/dokany
https://github.com/Microsoft/VFSForGit
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/
https://icons8.com/icon/r8kHwiV6nVEd/cloud-storage
https://docs.microsoft.com/en-us/windows/win32/fileio/files-and-clusters
https://docs.microsoft.com/en-us/windows/win32/seccrypto/example-c-program--creating-an-md-5-hash-from-file-content
https://docs.microsoft.com/en-us/windows/win32/seccrypto/example-c-program--creating-an-md-5-hash-from-file-content

[12] Lee, T. G., Hogenson, G., Parente, J. et al. Overview of Visual Studio |
Microsoft Docs [online]. 2019 [cit. 2021-04-09]. Available at:
https://docs.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide.

[13] FUSE — The Linux Kernel documentation [online]. Linux Kernel Organization, 2021
[cit. 2021-03-09]. Available at:
https://www.kernel.org/doc/html/latest/filesystems/fuse.html.

[14] Martin, R. C. Clean Code: A Handbook of Agile Software Craftsmanship. 1st ed.
Upper Saddle River, NJ: Prentice Hall, 2009. 138-140 p. ISBN 0-13-235088-2.

[15] Registering an Application to a URI Scheme (Windows) | Microsoft Docs [online].
Microsoft, 2016 [cit. 2021-05-04]. Available at:
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/
ie-developer/platform-apis/aa767914(v=vs.85).

[16] Local File Systems (Windows) | Microsoft Docs [online]. Microsoft, 2018 [cit.
2021-03-10]. Available at: https://docs.microsoft.com/en-us/previous-versions/
windows/desktop/legacy/aa364407(v=vs.85).

[17] NtQueryObject function (winternl.h) - Win32 apps | Microsoft Docs [online].
Microsoft, 2018 [cit. 2021-04-19]. Available at: https://docs.microsoft.com/en-us/
windows/win32/api/winternl/nf-winternl-ntqueryobject.

[18] MICROSOFT SOFTWARE LICENSE TERMS [online]. Microsoft, 2019 [cit.
2021-03-10]. Available at:
https://visualstudio.microsoft.com/license-terms/mlt031819/.

[19] VFS for Git: Git at Enterprise Scale [online]. Microsoft, 2021 [cit. 2021-03-31].
Available at: https://vfsforgit.org/.

[20] Windows 10 SDK - Windows app development [online]. Microsoft, 2021 [cit.
2021-03-09]. Available at:
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/.

[21] An overview of HTTP - HTTP | MDN [online]. Mozilla, 2021 [cit. 2021-03-26].
Available at: https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview.

[22] Nyffenegger, R. Registry: HKEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Explorer\StartupApproved\Run [online]. 2021 [cit.
2021-04-20]. Available at:
https://renenyffenegger.ch/notes/Windows/registry/tree/HKEY_CURRENT_USER/
Software/Microsoft/Windows/CurrentVersion/Explorer/StartupApproved/Run/index.

[23] Radich, Q., Coulter, D., Jacobs, M. and Satran, M. What Is a Window -
Win32 apps | Microsoft Docs [online]. 2018 [cit. 2021-03-15]. Available at:
https://docs.microsoft.com/en-us/windows/win32/learnwin32/what-is-a-window-.

[24] Radich, Q., Coulter, D., Jacobs, M. and Satran, M. Windows Coding
Conventions - Win32 apps | Microsoft Docs [online]. 2018 [cit. 2021-03-11]. Available
at: https:
//docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-conventions.

55

https://docs.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa767914(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa767914(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/aa364407(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/aa364407(v=vs.85)
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryobject
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryobject
https://visualstudio.microsoft.com/license-terms/mlt031819/
https://vfsforgit.org/
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://renenyffenegger.ch/notes/Windows/registry/tree/HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/Explorer/StartupApproved/Run/index
https://renenyffenegger.ch/notes/Windows/registry/tree/HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/Explorer/StartupApproved/Run/index
https://docs.microsoft.com/en-us/windows/win32/learnwin32/what-is-a-window-
https://docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-conventions
https://docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-conventions

[25] Robertson, C., Schonning, N., Tahan, M. A. et al. C/C++ projects and build
systems in Visual Studio [online]. 2019 [cit. 2021-03-09]. Available at:
https://docs.microsoft.com/en-us/cpp/build/projects-and-build-systems-cpp.

[26] Schofield, M., Hillberg, M., Guzak, C. et al. Slim Reader/Writer (SRW) Locks -
Win32 apps | Microsoft Docs [online]. 2018 [cit. 2021-03-18]. Available at: https:
//docs.microsoft.com/en-us/windows/win32/sync/slim-reader-writer--srw--locks.

[27] Schofield, M., Sharkey, K. and Coulter, D. HKEY_CLASSES_ROOT Key -
Win32 apps | Microsoft Docs [online]. 2018 [cit. 2021-04-19]. Available at:
https://docs.microsoft.com/en-us/windows/win32/sysinfo/hkey-classes-root-key.

[28] Schofield, M., Sharkey, K. and Coulter, D. Structure of the Registry - Win32
apps | Microsoft Docs [online]. 2018 [cit. 2021-03-16]. Available at: https:
//docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry.

[29] Schofield, M., Sharkey, K., Coulter, D. et al. Predefined Keys - Win32 apps |
Microsoft Docs [online]. 2018 [cit. 2021-04-22]. Available at:
https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys.

[30] Schofield, M., Sharkey, K., Coulter, D. et al. Semaphore Objects - Win32 apps
| Microsoft Docs [online]. 2018 [cit. 2021-03-18]. Available at:
https://docs.microsoft.com/en-us/windows/win32/sync/semaphore-objects.

[31] Schofield, M., Sharkey, K., Coulter, D. et al. Synchronization Functions -
Win32 apps | Microsoft Docs [online]. 2018 [cit. 2021-03-18]. Available at:
https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-functions.

[32] Schofield, M., Sharkey, K., Coulter, D. et al. About Mailslots - Win32 apps |
Microsoft Docs [online]. 2021 [cit. 2021-04-29]. Available at:
https://docs.microsoft.com/en-us/windows/win32/ipc/about-mailslots.

[33] Schofield, M., Sharkey, K. and Satran, M. Assign a Custom Icon and Label to a
Drive Letter - Win32 apps | Microsoft Docs [online]. 2018 [cit. 2021-04-19]. Available
at: https://docs.microsoft.com/en-us/windows/win32/shell/how-to-assign-a-
custom-icon-and-label-to-a-drive-letter.

[34] Schofield, M., Sharkey, K. and Satran, M. Handle Limitations - Win32 apps |
Microsoft Docs [online]. 2018 [cit. 2021-03-11]. Available at:
https://docs.microsoft.com/en-us/windows/win32/sysinfo/handle-limitations.

[35] Schofield, M., Sharkey, K. and Satran, M. Handles and Objects - Win32 apps |
Microsoft Docs [online]. 2018 [cit. 2021-03-10]. Available at:
https://docs.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects.

[36] Schofield, M., Sharkey, K. and Satran, M. Run and RunOnce Registry Keys -
Win32 apps | Microsoft Docs [online]. 2018 [cit. 2021-04-20]. Available at: https://
docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys.

[37] Native API vs FUSE · WinFsp [online]. secfs, 2021 [cit. 2021-04-20]. Available at:
http://www.secfs.net/winfsp/doc/Native-API-vs-FUSE/.

56

https://docs.microsoft.com/en-us/cpp/build/projects-and-build-systems-cpp
https://docs.microsoft.com/en-us/windows/win32/sync/slim-reader-writer--srw--locks
https://docs.microsoft.com/en-us/windows/win32/sync/slim-reader-writer--srw--locks
https://docs.microsoft.com/en-us/windows/win32/sysinfo/hkey-classes-root-key
https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry
https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry
https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys
https://docs.microsoft.com/en-us/windows/win32/sync/semaphore-objects
https://docs.microsoft.com/en-us/windows/win32/sync/synchronization-functions
https://docs.microsoft.com/en-us/windows/win32/ipc/about-mailslots
https://docs.microsoft.com/en-us/windows/win32/shell/how-to-assign-a-custom-icon-and-label-to-a-drive-letter
https://docs.microsoft.com/en-us/windows/win32/shell/how-to-assign-a-custom-icon-and-label-to-a-drive-letter
https://docs.microsoft.com/en-us/windows/win32/sysinfo/handle-limitations
https://docs.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys
https://docs.microsoft.com/en-us/windows/win32/setupapi/run-and-runonce-registry-keys
http://www.secfs.net/winfsp/doc/Native-API-vs-FUSE/

[38] WinFsp [online]. secfs, 2021 [cit. 2021-04-20]. Available at:
http://www.secfs.net/winfsp/.

[39] WinFsp Tutorial · WinFsp [online]. secfs, 2021 [cit. 2021-04-20]. Available at:
http://www.secfs.net/winfsp/doc/WinFsp-Tutorial/.

[40] Sharkey, K., Coulter, D., Jacobs, M. et al. File Handles - Win32 apps |
Microsoft Docs [online]. 2018 [cit. 2021-03-10]. Available at:
https://docs.microsoft.com/en-us/windows/win32/fileio/file-handles.

[41] Sharkey, K., Satran, M. et al. Directory Management - Win32 apps | Microsoft
Docs [online]. 2018 [cit. 2021-03-20]. Available at:
https://docs.microsoft.com/en-us/windows/win32/fileio/directory-management.

[42] Sharkey, K., Satran, M. et al. Volume Management - Win32 apps | Microsoft
Docs [online]. 2018 [cit. 2021-03-20]. Available at:
https://docs.microsoft.com/en-us/windows/win32/fileio/volume-management.

[43] About Swagger Specification | Documentation | Swagger [online]. SmartBear Software,
2021 [cit. 2021-03-26]. Available at: https://swagger.io/docs/specification/about/.

[44] Desktop Operating System Market Share Worldwide | StatCounter Global Stats
[online]. Statcounter GlobalStats, 2021 [cit. 2021-05-09]. Available at:
https://gs.statcounter.com/os-market-share/desktop/worldwide.

[45] Viviano, A. and Bazan, N. User mode and kernel mode - Windows drivers |
Microsoft Docs [online]. 2017 [cit. 2021-04-22]. Available at:
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-
mode-and-kernel-mode.

[46] Whitney, T., Sharkey, K., Coulter, D. et al. Unicode Programming Summary |
Microsoft Docs [online]. 2016 [cit. 2021-03-12]. Available at:
https://docs.microsoft.com/en-us/cpp/text/unicode-programming-summary.

[47] Whitney, T., Sharkey, K., Schonning, N. et al. MFC Desktop Applications
[online]. 2021 [cit. 2021-03-09]. Available at:
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications.

[48] Zissimopoulos, B. Winfsp/WinFsp-Performance-Testing.asciidoc at master ·
billziss-gh/winfsp [online]. 2016 [cit. 2021-05-08]. Available at: https://github.com/
billziss-gh/winfsp/blob/master/doc/WinFsp-Performance-Testing.asciidoc.

57

http://www.secfs.net/winfsp/
http://www.secfs.net/winfsp/doc/WinFsp-Tutorial/
https://docs.microsoft.com/en-us/windows/win32/fileio/file-handles
https://docs.microsoft.com/en-us/windows/win32/fileio/directory-management
https://docs.microsoft.com/en-us/windows/win32/fileio/volume-management
https://swagger.io/docs/specification/about/
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/cpp/text/unicode-programming-summary
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications
https://github.com/billziss-gh/winfsp/blob/master/doc/WinFsp-Performance-Testing.asciidoc
https://github.com/billziss-gh/winfsp/blob/master/doc/WinFsp-Performance-Testing.asciidoc

Appendix A

Contents of the included storage
media

root
Install........................Libraries and installators of the required software
Thesis .. Thesis source code
Source...Application files

Release
x64

”VDUClient.exe” The 32-bit executable
Win32

”VDUClient.exe” The 64-bit executable
TestFiles...Predefined files for testing
VDUClient...Application source code
”openapi.yaml”.......................................OpenAPI specification
”server_.pem”.........................Certificate file for the simulated server
”VDUClient.sln”...............................Solution file for Visual Studio
”test.py”...Testing script
”vdusrv.py”..Simulated server script
”README.md” ... Instruction manual

”xferan00-vdu-windows.pdf” ... Thesis

58

	Introduction
	Theory
	Development for Microsoft Windows
	Virtual file systems
	Additional technologies

	Specification and analysis
	Requirements
	Formalization

	Design
	Internal components
	User interface
	Automated tests

	Implementation and testing
	Internal components
	User interface
	Automated tests
	Testing the application

	Conclusion
	Bibliography
	Contents of the included storage media

