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Abstract
This work aims to design and implement a new service searching for binary file similarities
within known malware samples called YaraZilla. Studying file similarity has a growing po-
tential in malware analysis. The vast amount of new malware is a polymorphic variation of
existing malware created for deceiving anti-malware detections. The newly created service
is designed to operate by using various binary file similarity techniques on multiple levels
of binary code abstraction – instructions, basic blocks, functions. The service is designed
to process immense amounts of files supplied by Avast systems. The result of this work is
a service that presents malware analysts at Avast with a comprehensive report on malware
similarity. Apart from that, the result of service can be integrated into existing services
and provides a foundation for new tools.

Abstrakt
Cieľom tejto práce je navrhnúť a implementovať novú službu s názvom YaraZilla pre
hľadanie podobností binárnych súborov so známymi malvérovými vzorkami. Veľké množstvo
malvéru je iba variáciou existujúceho malvéru upraveného tak, aby unikol pozornosti anti-
malvérových systémov. Vďaka rozvíjajúcej sa štúdii podobnosti binárnych súborov sme
schopní vytvoriť nástroje, ktoré dokážu odhaliť podobnosť binárne líšiacich sa vzoriek, a
zaradiť malvér do rodiny, s ktorou zdieľa najviac podobnosti. Cieľom práce je práve poskyt-
núť takýto nástroj analytikom v Avaste. Služba, navrhnutá v tejto práci, hľadá podobnosť
binárnych súborov využitím rozličných metód na rôznych úrovniach abstrakcie binárnych
súborov – inštrukcie, základné bloky, funkcie. Navrhnutá služba je schopná spracovávať
obrovské množstvo súborov, ktoré poskytujú interné systémy spoločnosti Avast. Výsledkom
práce je nová služba, ktorá poskytuje malvérovým analytikom v Avaste obsiahle štatistiky
podobností, ktoré je možné využiť v existujúcich službách alebo ich využiť ako základ pre
nové nástroje.
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Rozšírený abstrakt
Škodlivý softvér (malvér) predstavuje významnú hrozbu pre všetky druhy počítačových
zariadení vo všetkých infraštruktúrach. Techniky používané na vytváranie škodlivého soft-
véru sa zdokonaľujú rovnako rýchlo ako metódy jeho detekcie. V uplynulých rokoch bola
významná časť nového malvéru iba upravená varianta už existujúceho malvéru navrhnutá
tak, aby unikla detekcii antimalvérovými produktmi. Takéto varianty malvéru sa líšia pre-
dovšetkým syntaktickou reprezentáciou, pričom poskytujú takmer rovnakú funkcionalitu.
Skupiny variant rovnakého malvéru sa nazývajú malvérovými rodinami. Ako poznamenali
autori článku [4], technológie na detekciu známeho malvéru sú v súčasnosti založené pre-
dovšetkým na syntaktických podpisoch (signatúrach). Takéto signatúry špecifikujú binárne
inštrukcie alebo dátové sekvencie, ktoré sú charakteristické pre konkrétnu vzorku malvéru.
Tvorcovia malvéru sa môžu vyhnúť detekcii tohto typu pomocou rôznych obfuskačných tech-
ník, ako sú napríklad techniky opísané v [29]. Takéto techniky sa používajú na vytvorenie
polymorfných verzií malvéru, ktoré je následne potrebné spracovať ešte raz. To v konečnom
dôsledku stojí ľudský čas výskumníkov. Jedným z riešení, ako zjednodušiť proces detekcie a
odhaliť polymorfné varianty rovnakého malvéru, je vytvoriť dôkladnejšiu analýzu založenú
na technikách podobnosti súborov.

Táto práca sa zaoberá vytváraním nástroju pre analýzu vstupných vzoriek na základe
ich podobnosti s existujúcimi rodinami malvéru. Takýto nástroj je prospešný pre analytikov
bezpečnostnej spoločnosti Avast. Konkrétne je cieľom práce zjednodušiť a zlepšiť prácu an-
alytikov vytvorením novej služby pre hľadanie podobnosti binárnych súborov. Práca sa
zaoberá vytváraním nástroja, ktorý je schopný podávať podrobné štatistiky o podobnosti
binárnych súborov s rodinami malvéru na rôznych úrovniach abstrakcií s ohľadom na škálo-
vateľnosť. Práca kladie dôraz na všeobecnosť a parametrizovateľnosť, tým poskytuje základ
pre nový súbor aplikácií vytváraných v spoločnosti Avast.

V prvej časti sa práca venuje ustanoveniu terminológie v problematike podobnosti
binárnych súborov. Zároveň sú ukázané rôzne techniky porovnávania binárnych súborov
používaných v praxi pre hľadanie podobnosti súborov.

Druhá časť tejto práce je venovaná návrhu novej služby pre hľadanie podobnosti binárnych
súborov, špecializovanej na vyhľadávanie podobností malvéru. Návrh takéhoto systému je
rozdelený do viacerých špecializovaných modulov integrujúcich špecializované moduly s
jasne definovanými zodpovednosťami. Známe škálovateľné mechanizmy hľadania súborov
sú integrované na rozpoznávanie podobností na rôznych úrovniach abstrakcie: binárnej, in-
štrukčnej a funkčnej úrovni. Mechanizmy ako odtlačky senzitívne na lokalitu a Jaccardova
podobnosť využívaná pre hľadanie podobných dokumentov. Dizajn sa zameriava najmä na
návrh mechanizmov, ktoré dokážu extrahovať esenciálne zložky malvérových rodín. Pre
tento účel sú opísané viaceré úrovne filtrácie a predspracovania, ktoré sú integrované do
inšpekčného procesu.

Tretia časť práce je venovaná návrhu mechanizmov na extrakciu a ukladanie veľkých
súborov dát, ktoré služba potrebuje na svoju prevádzku. Služba pracuje so súbormi úda-
jov zo vzoriek malvéru, ale aj bežných binárnych súborov. Služba je navrhnutá tak, aby
ponúkala používateľskú aj automatizovanú extrakciu. Na zabezpečenie filtrácie čistých
údajov je extrakčná služba navrhnutá tak, aby fungovala vo veľkom rozsahu s veľkým
množstvom binárnych údajov uložených v cache vo forme odtlačkov. Na extrakciu a cache
odtlačkov obrovského množstva čistých súborov sú navrhnuté nové mechanizmy na efek-
tívne ukladanie a cachovanie náhodných údajov. Formálne je definovaná nová štruktúra
nazvaná pod skratkou IRD, ktorá znižuje pamäťové nároky na ukladanie veľkého množstva
náhodných dát na polovicu.



Štvrtá časť je venovaná implementácii služby a opisu navrhnutého automatizovaného
procesu nasadenia. Účelom automatizovaného procesu je vytvoriť a zabezpečiť škálo-
vateľnosť nových cloudových systémov pre internú sieť spoločnosti Avast. Navrhnutý je
všeobecný postup nasadenia, pričom každý krok poskytuje automatizáciu iného procesu
implementácie, testovania a nasadenia. V závere kapitoly sa nachádza úvod do implemen-
tovanej služby a jej využitia.

Posledná časť tejto práce je vyhradená na testovanie a vyhodnotenie implementovanej
služby a nového databázového riešenia. Nová služba je podrobená hodnoteniu pomocou
rôznych prístupov. V prvom rade je funkčnosť služby overená na pripravenej sade príkladov
porovnaním výstupu s nástrojom Diaphora. Ako druhé, služba bola použitá na spracovanie
rozsiahlej zbierky malvérových súborov získaných z interných služieb Avastu a Malpedie.
Je ukázané, že nová služba je využiteľná navrhnutým spôsobom a parametrizáciou je možné
skvalitňovať výsledky inšpekcií. Okrem služby sa testuje a meria aj funkčnosť nového rieše-
nia na ukladanie veľkého množstva náhodných údajov. Je ukázané, že vytvorené databázové
riešenie je schopné spracovávať a poskytovať výsledky dostatočne rýchlo pre využitie v in-
ternej sieti Avastu.
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Chapter 1

Introduction

Malicious software (malware) poses a significant threat to all kinds of computer devices in
all infrastructures. The primary purpose of malware is to harm while not being detected.
Techniques used for creating malware are improving as fast as methods for its detection. In
the past years, a significant part of new malware has been an altered variant of pre-existing
malware designed to escape detection by anti-malware products [12]. Such malware variants
differ primarily in syntactic representation while providing almost the same functionality.
Such groups of malware variants are called malware families. As authors of paper Measuring
similarity of malware behavior [4] noted, technologies to detect known malware are nowa-
days primarily based on syntactic signatures. Such signatures specify binary instructions
or data sequences that are characteristic of a particular malware sample. Malware creators
can avoid static detections using various obfuscations techniques, as described in [29]. Such
techniques are used to create polymorphic versions of the same malware that need to be
re-processed once again, costing time of malware research. One solution to simplify the
detection process and expose polymorphic variants of the same malware is to create a more
thorough analysis based on file similarity.

This work aims to provide a tool to analyze input samples based on their similarity
with known malware families. Such a tool is beneficial for analysts at the security company
Avast. Specifically, the work aims to simplify and improve analysts’ work by introducing
a new file similarity service. The new service can provide detailed statistics on binary
file similarity with malware families on various levels of abstraction and is designed with
scalability in mind. The goal is to help malware analysts categorize, quickly identify, trace
the evolution in time, and uncover the possible severity of a malware sample. Apart from
that, the new service is general enough to provide a foundation for a new set of applications
created at Avast. One particular use case is an automated generation of statical signatures
for malware detection.

This work is divided into four parts. The first chapter provides an introduction to
the binary file similarity area. The chapter defines different types of binary code compar-
isons and describes techniques used in practice to support file similarity. The chapter also
introduces the file similarity as a service with references to the market’s existing solutions.

The second part of this work is dedicated to designing a new binary file similarity ser-
vice specialized in searching for malware similarities. The design is delegated into multiple
specialized inspection pipelines integrating specialized modules with well-defined responsi-
bilities. Well-known scalable file inspection mechanisms are integrated to recognize similar-
ities on various levels of abstractions: binary, instruction, and function level. The design is
especially keen on designing mechanisms that can extract the essence of malware families.
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For that multiple levels of filtration and pre-processing are described and integrated into
the inspection pipeline.

The third part of the work is dedicated to designing mechanisms for extraction and stor-
ing large datasets the service needs for operation. The service operates with datasets from
both malware and non-malware samples. Extraction processes are designed as pipelines
integrated into the service to provide extraction of datasets on a scale. The service is
designed to offer both user-wise and automated extraction. To provide filtration of clean
data, a new service is devised to operate on a large scale with many cached binary data in
the form of hashes. For the extraction and caching of enormous amounts of clean files, new
mechanisms for effective storing and caching random data are devised. A new structure
called Indexable random data structure is formally defined to cut the memory requirements
of storing a large amount of random data in half.

The fourth part is devoted to the service implementation and description of a devised
automated deployment process. The purpose of an automated process is to ensure the
scalability of the new cloud-based systems for Avast’s internal network. A general deploy-
ment pipeline is designed, with each step giving automation of a different implementation,
testing, and deployment process. In the end, the chapter provides an introduction to the
implemented service and its usage.

The last part of this work is reserved for testing and evaluating the implemented service
and the new database solution. The new service is put under evaluation with different
approaches. Firstly, the service’s functionality is validated on a prepared set of examples
by comparing its output to a binary diffing tool Diaphora. Secondly, the service is used to
process an extensive collection of malware files gathered from Avast internal services and
Malpedia, and the result is examined. Apart from the service, the new solution for storing
a large amount of random data is tested and measured in operation. Lastly, the conclusion
of implemented techniques is provided, and the following progress is opened for discussion.
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Chapter 2

Executable File Similarity

Comparing binary files such as executables is critical in scenarios where the application
source code is not available, for example, malware analysis. Identifying similarity in binary
code is, however, a challenging task as much of the program semantics are lost in the
compilation process (function and variable names, comments, data structure definitions,
etc.). Additionally, even when the program source code does not change, the binary code
may differ on recompilation. For example, different compiler versions may use various
optimizations. Furthermore, developers of malware may use obfuscation transformations
that can be applied on both the source code and the generated binary code, hiding the logic
of the original code. More about the code obfuscation in [29].

The purpose of this chapter is to provide a summarization of state-of-the-art methods
used for finding binary code similarities. Provided information were extracted from a file
similarity survey performed by Irfan Ul Haq and Juan Caballero in [15].

2.1 Binary Code Similarity
Approaches for finding binary file similarities are based on comparison of binary code. Such
a comparison may take various forms based on comparison type, granularity and cardinality.
This section establishes definition of different kind of comparison properties used later in
the text.

2.1.1 Comparison Type

Generally, we can distinguish between three types of comparisons: identity, equivalency,
and similarity. These three comparison classes are hierarchically organized as illustrated in
Figure 2.2. The comparison classes are then defined as following code relations.

• Identity. Two or more compared pieces of code are identical if they share the same
syntax. Binary code can be represented in different ways, such as a string of raw
bytes, a sequence of disassembled instructions, or a control-flow graph. Regardless
of the form, we can take two binary code pieces and determine whether they are
identical or not. This approach, however, fails to detect similarity in many cases.
For example, compiling the same file twice may produce two binary files that contain
different binary code parts. This happens because compilers pack different kinds of
metadata into the final executable such as the compilation date and time.
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• Equivalency. Two or more compared pieces of code are equivalent if they share
the same semantics, i.e., if they grant the same functionality. Clearly, two identical
pieces of binary code will have the same semantics, but different binary code pieces
may as well. For example, let us consider a trivial example in Figure 2.1. Without
optimizations, a compilation of these examples would most probably produce two
equivalent binary codes that are not identical. Similarly, a compilation of the same
source code for two different architectures with different instruction sets would create
equivalent executables with diametrally varying binary codes. In practice, determin-
ing binary code equivalence is a costly process. The problem of deciding whether
two programs are functionally equivalent is an undecidable problem that reduces to
solving the halting problem [17].

1 ...
2 i = 0;
3 printNumber(i);
4 exit(0);

1 ...
2 i = i-i;
3 printNumber(i);
4 exit(0);

Figure 2.1: Equivalent, non-identical C codes.

• Similarity. Two or more compared pieces of code are similar if they have similar
syntax, structure, or semantics. Syntactic similarity compares the code representation
and looks for approximate identity. Structural similarity compares graph representa-
tions of a binary code and looks for morphisms. It sits between syntactic and semantic
similarity. Semantic similarity compares the code functionality. A simple approach to
finding semantic similarity is to look for system calls and compare results. However,
this simple approach is not sufficient as two programs with similar system calls can
perform significantly different processing on their input. Section 2.3 further examines
similarity approaches.

Hierarchical organization illustrated in Figure 2.2 means that if two pieces of code are
identical, they are also equivalent and similar. On the other hand, if compared parts of
code are equivalent (or similar), they might not be identical.

Figure 2.2: Comparison types as sets.

2.1.2 Comparison Granularity

We can compare parts of binary code at different granularities. The commonly compared
fundamental binary code abstractions are: instructions, basic blocks, functions, and also
programs as a whole. Comparison at a higher level of abstraction (e.g., basic blocks) is often
performed by combining different types of comparisons at a finer level of granularity (e.g.,
instructions). For example, let us consider the situation illustrated in Figure 2.3. Firstly,
basic blocks are searched for equivalent and identical instructions. Results of instruction
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comparison are then used to deduce the equivalency of the basic blocks. As no information
about other basic blocks is provided, it can only be assumed that the given functions are
similar.

Figure 2.3: Example of file similarity examination.

Figure 2.3 also illustrates that applying a specific comparison at a lower abstraction
level restricts the type of comparison at a higher abstraction level. This is shown on basic
block comparison, where not all instructions in compared basic blocks are identical. Not
having all instructions identical implies that given basic blocks cannot be identical either.
Such a relationship between comparisons on different abstraction levels is illustrated in
Figure 2.4.

Figure 2.4: Similarity class implications based on lower abstraction level comparison type.

2.1.3 Comparison Cardinality

Based on number of inputs (pieces of code) and how they are compared we define following
three comparison cardinalities.
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1. One-to-one comparisons take two pieces of code (of certain granularity) and compare
one to another. The most common approach is to perform binary code diffing – a
process that consists of taking two consecutive, or close, versions of the same program
to identify what was added, removed, or modified in the subsequent version. The
binary code diffing has usually function level comparison granularity, and the process
tries to obtain mapping between a function in the original program and another in
the target program.

2. One-to-many approaches take a piece of code and compare it to a set of pieces of
different code versions. As a result, the approaches return a new set of similar pieces
of code. Comparison can be applied on a different level of granularity and even on
codes compiled for different architectures.

3. Many-to-many approaches do not distinguish between source and target pieces and
take a set of compared binary code pieces on input. All input pieces are considered
equal and compared against each other. The result is typically used for binary code
clustering.

2.2 Binary Code Similarity Applications
This section emphasizes the importance of binary code similarity by describing its vari-
ous applications in practice. As the popularity of binary code similarity increases, new
applications may be eventually identified.

• Bug search – Let us consider a scenario when a bug in a closed-source program
emerges. Due to code reuse, sections of buggy code might have been reused through
the repository in various places. It is critical to search for similar code in order
to identify all the possibly affected places. Bug search approaches perform one-to-
many similarity comparisons throughout the binary code in the repository. Such
comparisons are often performed at a function level granularity. More about bug
search applications of binary files similarity can be found in [22] and [21].

• Malware detection – A malware can be detected by taking an executable file and
comparing it to a set of previously detected malware samples. With high binary
code similarity the compared sample is likely a variant of the same malware family.
Malware detection is therefore performed by one-to-many similarity comparisons on
a executable-file-level granularity. More about exploiting malware detection based on
binary code similarities can be found in [25].

• Malware clustering – The many-to-many approach of executable file comparisons
create clusters of similar known malicious executables belonging to the same malware
family. Such family clusters contain executable files of the same malware in different
versions and modifications. More details about malware clustering is available in [16].

• Malware lineage – Lineage approaches construct a graph from a given set of exe-
cutables known to belong to the same malware. Nodes of the graph represent malware
versions, and edges capture the evolution of malware in time. Linage approaches are
particularly useful with malware as no official versioning is typically available. More
about malware linage and how is it used to detect new malware in [19].
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• Patch generation and analysis approaches are applied, for example, in distribu-
tions of updates of closed-source software. One-to-one identity comparations of two
consecutive versions are used to identify what was patched in a newer version of the
program. As a result of the comparison, small binary patches are created that are
used to effectively distribute software updates without the need to disclose patched
source code. On the other hand, this approach is also used from the malware creators
side to compare two consecutive versions of software in order to exploit vulnerabilities
of the older version. More about patch generation provide authors of [7].

• Porting information – Some reverse engineering frameworks use the information
porting approach. Malware analysis is an expensive task, but tools can reuse final
results with different malware variations once a researcher completes it. Tools often
perform one-to-one similarity comparisons to search for similar parts within analyzed
files in their database. When an already examined file is matched, pieces of analysis
information are ported to the input file. An example of porting information of profiled
data can be found in [28].

• Software theft detection – In practice, one-to-one similarity comparisons are also
used to detect unauthorized reuse of code, such as:

– a program uses binary parts of stolen source code,
– a program implements patented algorithm without license,
– a program violates license of reused parts (e.g., GPL) and so on.

Example of applying binary file similarity to reveal plagiarism is demonstrated in [20].

2.3 File Similarity Comparison Approaches
This section examines possible approaches used in practice to deal with certain aspects of file
similarity issues. Binary file similarity applications differ in methods used for computing
similarity, the architecture they support and the process they use to obtain comparable
pieces of code - the problem of normalization.

• Syntactic similarity approaches compare the representation of two or more binary
codes. The typical approach is to sequence consecutive bytes of instructions and
compare them between the files. The compared sequences of bytes may have variable
lengths but more common is to compare sequences with a fixed size. Fixed-sized
sequences of bytes are extracted by sliding a window sequentially over the bytes of
the input file, see Figure 2.5. The window size defines the number of bytes captured.
The window is slid over a byte stream based on the stride size. Suppose the stride
is smaller than the window size, then the consequently extracted sequence overlap.
Sequences extracted with a stride of size one and size of the window n are called
n-grams.
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Figure 2.5: Sequences capturing window.

• Semantic similarity captures similarity by comparing the behavioral effects of two
or more input files. A code’s behavior can be described by simulating it and analyzing
its effects on the simulation environment, e.g., register usage, memory manipulation.
Following three methods are commonly used to capture semantics: instruction clas-
sification, input-output pairs, and symbolic formulas.

1. Instruction classification methods divide instructions into a similarity vector.
Each vector member represents instruction type (e.g., arithmetic instructions,
logical instructions, memory load). The value represents the number of seen
instructions of a particular class. Similarity vector created for a basic block cap-
tures semantic effects of this basic block. The instruction classification method
is only a heuristics, and such a method cannot capture binary code equivalency.

2. Input-output pairs methods execute binary input files on the prepared set of
inputs and compare their outputs. Based on the number of matches and size of
the input set, these methods can provide the likelihood of equivalency.

3. Input binary code can be transformed into a symbolic formula form. Symbolic
formula form is a special form of code representation that captures control and
data flow of the program. Such a representation is more suitable for defining
formal algorithms to check for similarity or proving equivalence. Equivalence of
two pieces of code can be proved by theorem provers, such as STP [14].

• Structural similarity has elements of both syntactic and semantic analysis. The
structure of input binary code is captured in a graph. A graph structure can typically
capture a syntactic representation of the same code, and nodes can be annotated
with semantic information. The following three directed graph structures are used
for finding binary code similarities:

1. intra-procedural control flow graph (CFG),
2. inter-procedural control flow graph (ICFG),
3. callgraph (CG).
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Nodes in CFG and ICFG are basic blocks, and edges indicate control flow transition
(e.g., jump). The difference between ICFG and CFG is that basic blocks in a CFG
belong to a single function, while basic blocks in ICFG can belong to any program
function. On the other hand, nodes in CG are functions, and edges capture a caller-
callee relationship.

• Feature-Based Similarity - A standard method for finding binary code similarities
is to use machine learning. In such methods, compared pieces of binary code are
represented as a feature vector, and there is a model that determines whether two
or more feature vectors are similar. A feature vector can have syntactic, semantic,
or structural properties. Apart from that, a feature can be numeric or categorical.
Categorical features have discrete values, e.g., mnemonic of an instruction. Features
of a vector are chosen beforehand by an analytic in a feature selection process. Alter-
natively, features can be generated automatically in a learning process from training
data. The result of a generation process is a real-valued feature vector, called embed-
ding.

• Hashing - A hash function maps data of arbitrary size to a fixed-size value. A prop-
erly chosen hash function can reduce necessary computer resources for working with
binary data. Even though hashes are not specifically designed for binary code, there
are three classes of hashes suitable for operation on a raw-byte level:

1. cryptographic hashes,
2. locality-sensitive hashes,
3. executable file hashes.

Cryptographic hashes capture identical inputs and can be used for capturing similar-
ities on a higher level of abstractions (e.g., basic blocks, functions). Cryptographic
hashes are sensitive, and a slight change in input results in an immense change of
the hash value. On the contrary, locality-sensitive hashes produce for similar inputs
similar hash values. Executable file hashes take a whole executable file on input and
compute a hash based on parts of its data. Hashes of such type try to capture the
polymorphic structure of malware.

• Normalization
A disadvantage of syntactic approaches is that slight change in instruction syntax
triggers diverging comparison on higher abstraction levels. To solve this, approaches
using syntactic comparisons use a technique called normalization. Normalization is
a process of refining input binary code so that minor differences do not affect the
overall comparison result. The following three techniques are used for normalization
on instruction-level:

1. Operand removal - This technique ensures, that two instructions of the same
mnemonics are compared identical regardless of their operands type. The bi-
nary code on input is therefore processed before comparison in a way, that all
instruction operands are replaced by the same placeholder.

2. Operand normalization - Akin to the operand removal normalization, this
technique captures the similarity of instructions by altering their operands. The
difference is, however, that operand normalization preserves a type of instruction
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operands, such as information whether operand was a register, constant or a value
loaded from memory.

3. Mnemonic optimization - Sometimes, it is not feasible to differentiate between
the same instruction category (i.e., branch and jump instructions). For example,
two programs may have similar control flow structures but differ in computing
the final output value. Such similarity can be captured by joining all arithmetic
and logic instructions into the same category represented by one mnemonic.

Apart from syntactic approaches, normalization can be used on a semantic level as
well. Comparison algorithms can reorganize instruction sequences to increase syntac-
tic approach accuracy. Apart from that, pre-processing can remove excessive instruc-
tions such as instructions not affecting overall functionality. For example, compilers
generate instructions that do not affect the program state, such as no-op instructions,
to force memory alignment.

2.4 File Similarity as a Service
The previous section introduced a few examples of binary file similarity applications. The
main disadvantage of the introduced approaches is that the more accurate and thorough
the approach is, the more computational resources it requires. Therefore, the most accurate
tools are available only to users with satisfactory computer performance. One possible solu-
tion used in practice is to outsource computer performance to servers or clouds. Specifically,
with malware analysis applications, a few binary file similarity applications are available
for analytics or businesses. In the following text, the KTAE service [3] is provided as an
example; however, other proprietary services are also available, as [13], [26] and [1].

Kaspersky Threat Attribution Engine (KTAE)

An antivirus company Kaspersky created a file similarity service specialized for threat
attribution called KTAE [3]. KTAE is a proprietary service that is available only for
business usage. The service is capable of providing timely insight into the malware’s origin
and its possible authors. The tool is built on an extensive database created from years-
long research of malware of advanced persistent threats (APT). The service divides input
samples on n-grams called genotypes and looks for code similarity with previously analyzed
APT samples and related actors. As a result, the service computes the reputation of the
input sample and provides a detailed report on the malware history.

2.5 File Similarity Technologies at Avast
The purpose of this section is to summarize technologies used for comparison of malware
files and their use case at Avast. Currently, malware researchers at Avast are utilizing
binary file similarities in three major ways:

1. Malware detection – A primary technology used for a malware detections are YARA
rules (see Section 2.5.1). The approach utilizes syntactic comparisons of binary files
with a set of identified sequences and strings found in malware files by researchers.
To create the set an extensive work of malware researchers is required anytime a new
malware family emerges.
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2. Malware clustering – A malware clustering approach is used to group a similar mal-
ware samples. Tha approach is used to soften the burden of analysing every single
malware sample that emerges on market. The major service for malware clusterization
is a called Clusty (see Section 2.5.2) that utilizes syntactic and semantic comparison
of samples behvior.

3. Clean samples identification – Another possible utilization of binary files similarity
is to create a service that can match parts of binary file with a database of clean
samples. There are a few services at Avast that look for identical binary sequences in
inspected samples. Approaches used for this use case utilize either hashing, when the
binary file is divided into several parts, each hashed and stored for reference, or they
match large quantity of binary data stored in database, see Section 2.5.3.

2.5.1 YARA Rules

YARA rules represent mechanisms used to identify files by creating rules that look for
specific characteristics. The concept of YARA rules was originally developed by Victor
Alvarez and is mainly used in malware research and detection. The main idea of YARA
rules is to describe a pattern that identifies particular strains or entire families of malware.
More information about YARA rules can be found in [5]. Rules have a hierarchical structure
illustrated in Figure 2.6. Each rule has a name, and its body is divided into the following
sections.

1. The essential section of a YARA rule is the condition section. The section specifies
a Boolean condition to match the investigated file. Figure 2.6 shows a rule is required
to find three strings to match a file. The condition can also include other YARA
rules.

2. The string section is optional. The authors of rules specify strings or raw bytes in the
section that can be used in the condition section. Figure 2.6 shows a rule that defines
three string values in ASCII representation.

3. The metadata section presents a way to specify additional information such as the
author’s name or rule’s description. Having stored additional data is useful when sev-
eral YARA rules are applied on files to determine which rules and why they provided
a match.

Figure 2.6: A YARA Rule example.
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There are a few tools in Avast that can generate YARA rules automatically by finding
intersections of binary data. These approaches, however, require analyst’s time to analyze
the similarity of provided files beforehand.

2.5.2 Clusty

Clusty is an internal Avast service for automatic analysis and clustering of newly incoming
samples. At Avast, researchers receive between 300 000 — 1 000 000 new samples each day.
Some of these samples are malicious, while others are safe. Manually analyzing the samples,
one by one, would be tedious and would require the conjoint work of many analysts. Even
then, analysts processing samples one by one would find themselves discovering similar
samples over and over again. The work of Clusty is to make classification work for analysts
simpler by automating the process of grouping similar samples together.

On input, Clusty takes a feed of input samples and from each sample extracts spe-
cific properties. These properties are then used to place input samples into a best-suited
cluster. Clusty supports various file types (e.g., PE, ELF, Mach-O, APK, archives, Office
documents) and looks for a wide range of properties (e.g., static properties, dynamic be-
havior). Apart from its analysis, Clusty also uses YARA rules and antivirus detections to
detect the class of input samples. Clusty also provides analysts with the option to analyze
clusters and vote on them, thus classifying files in clusters manually.

Created clusters are typically input for detection generators, which can utilize the fact
that a cluster is composed of many samples. Such generators can create YARA rules or
antivirus detections. In practice, clustering results in better detection definitions that cover
many samples at once.

2.5.3 Avast Cleanset

Services at Avast providing cleanset detection can be grouped into the two categories:

1. Hashing – Services utilize hashing to capture similarity of input files. To do that, they
build an extensive database of hashes created from clean files. Hashes are extracted
from the input file by dividing it into several parts of predefined size. As a file is
divided into a fixed number of parts, one hash typically represents multiple functions.
This approach is built to quickly provide results and minimize the number of false
positives (the file is clean).

2. Elaborate bytes matching – Services at Avast may query selected bytes in the extensive
database of clean byte sequences. The database was created by parsing a vast amount
of clean files. Even though the approach is much slower than hashing, it provides
better results on finer granularity.

2.5.4 Summarization

Currently, the tools for finding malware similarity used at Avast are either dependent on
malware researchers’ extensive work or use a limited amount of data from files, like its
type and various metadata. Also, automated tools operate only on supported architecture
and file format files, typically only PE files of x86 architecture. There is no advanced
way a researcher can search for the specific similarity of an analyzed sample with already
analyzed files. The purpose of this work is to create such a tool that would enable a malware
researcher to trace parts of binary code with already analyzed malware families and to
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provide a foundation for the creation of new tools that can build on binary file similarity
information.
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Chapter 3

YaraZilla File Similarity Service

Chapter 2 introduced mechanisms for file similarity applications. In the following text,
the terminology is used to specify requirements and design a new file similarity service for
malware analysis – YaraZilla service. Figure 3.1 shows a top-level design of the file similarity
service. The service provides an extensive report on binary file similarity with samples of
real-world malware families. It provides a graphical user interface and guarantees sufficient
computational resources for its users. The service operates in three phases.

1. A user uploads an executable file and specifies comparison granularity.

2. The service processes the uploaded file and searches for similarity matches with al-
ready processed executables.

3. As the result, the service returns analysis report specifying a list of similar malware
families.

Furthermore, the report analysis is general enough to be used as input of additional tools
and frameworks. One possible application for such a file similarity report is an input for
an automated YARA rules generator.

Figure 3.1: YaraZilla malware similarity service.
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3.1 Comparison Mechanisms
The created service is expected to compare binary files on three levels of abstractions –
binary code sequences level, basic-block level, and function level. Users of the service
provide granularity comparison specifications during the file upload phase. The service
is designed to have a modular structure illustrated in Figure 3.2 to offer various levels
of comparison on demand. Each consequent module is an individual unit, and its analysis
works with the output of the previous module. This is because comparisons on a higher level
of abstraction are generally more resource-demanding and not always needed by malware
analysts at Avast. The optimal approach is to create a service that provides the needed
results in an optimal response time and provides more contextual results on demand.

Figure 3.2: Each YaraZilla module is responsible for a different comparison granularity.

3.1.1 Sequence Module

The sequence module takes a binary file sample and provides cheap syntactic identity
comparisons on the binary level. The module works by comparing 16-byte n-grams called
sequences. As specified in Section 2.3, n-grams are extracted from the input file by moving
a 16-byte window with a stride one on the input binary. A 16-byte size of an n-gram was
chosen so that the module can be independent of a specific instruction set architecture
(ISA). The 16-byte size is sufficient enough to cover instruction sizes of all major ISAs on
the market – both x86 and x86-641, but also ARM and ARM642. The module is designed
to operate as a pipeline shown in Figure 3.3.

1https://wiki.osdev.org/X86-64_Instruction_Encoding
2https://en.wikichip.org/wiki/arm/a64
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Figure 3.3: Sequence module pipeline.

1. Input file goes through pre-processing. Large chunks of binary data may be dis-
carded during this step, for example, statically linked code included by compilers
(Section 3.2.1).

2. Not discarded binary data is processed, and n-grams (sequences) are extracted by
moving an extraction window of size 16 and stride of size 1.

3. Extracted sequences are passed to the filtration process that uses different techniques
to reduce input set of sequences. Figure 3.4 illustrates filtration in the following steps.

(a) Sequences with low informational value (entropy) are discarded, see Section 3.2.2.
(b) Sequences that are stored in the clean database are filtered, see Section 3.2.3.
(c) User-specified filtration techniques are used to further reduce the input set size,

see Section 3.2.4.

Figure 3.4: Sequence filtration.

4. The reference storage is queried for the presence of non-filtered sequences. Any se-
quence not present in the query result is discarded.

5. Remaining sequences are formatted into structured data containing information about
the family of each sequence extracted from the reference storage.

The module performs comparisons with pre-processed malware sequences stored in ref-
erence storage. This means that a sufficient number (and type) of sequences must be stored
in the reference storage alongside their relationship with malware families and specific files.

3.1.2 Basic Block Module

The basic block module takes a binary file on input and performs syntactic similarity
comparisons on the basic block level. Unlike the sequence module, the basic block module
is architecture dependent. The semantics of binary data is extracted by using reverse
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engineering frameworks working with specific ISA (Section 3.3). The basic block module is
designed to work as a pipeline shown in Figure 3.5.

Figure 3.5: Basic block module pipeline.

1. Information about basic blocks is extracted from the input binary. The module uses
a general semantic extractor, described in Section 3.3. This step aims to extract all
the possible information about basic blocks, like their virtual and physical address
and specific bytes.

2. Pre-processing identifies chunks of binary data, for example, statically linked code
included by compilers (Section 3.2.1). Each basic block laying inside of an identified
chunk of binary data is discarded.

3. Basic blocks are filtered in two steps as shown in Figure 3.6. Firsty, bytes of basic
blocks are checked for presence in the cleanset database (see Section 3.2.3). After
that, user-specified filtration steps are deployed to further reduce input basic block
set (see Section 3.2.4).

Figure 3.6: Basic blocks filtration.

4. In the similarity hashing step, the basic blocks on input are converted into hashes for
similarity matching. To search for similarities and not identities, the normalization
technique is used on disassembled binary data as shown in Figure 3.7. Normalization
is responsible for discarding or altering basic blocks’ instructions; see more details in
Section 3.4. The result of the normalization module is a similarity hash for each basic
block.
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Figure 3.7: Similairty hashing.

5. Similarity hashes are used to query similar basic blocks stored in the reference storage.
Original basic blocks, basic blocks queried from the database, and their families form
a structured result. For each family, a similarity ratio based on the number of basic
blocks matched is included in the result. Apart from that, matches of the sequence
module are used to highlight bytes in the context of basic blocks.

3.1.3 Function Module

The module searches for structural similarity on a function level by comparing intra-
procedural control flow graphs of functions (CFG), described in Section 2.3. The prob-
lem of finding graph isomorphism is NP complete [10]; therefore, the module searches for
approximate structural similarities using a suitable representation of CFGs, described in
Section 3.5. The module itself operates in steps shown in Figure 3.8.

Figure 3.8: Function module pipeline.

1. The module takes an executable file on input and extracts semantic information re-
garding functions alongside their CFG and bytes using semantic extractor described
in Section 3.3.

2. The pre-processing is used to discard specific functions, for example, ones that were
detected to be statically linked (Section 3.2.1).

3. Similarly to the basic block module, two-step filtration is used to reduce the extracted
set of functions, Figure 3.9.
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Figure 3.9: Function filtration.

4. The feature extraction step uses the basic block module to extract similarity hashes of
basic blocks for each input function. The hashes of basic blocks of a function represent
their value in the function’s CFG. The CFG is then converted into a feature vector
in a process described in Section 3.5.

5. Extracted feature vectors are used to search for those functions that share similar
feature vector in the reference storage. The distance of vectors represents their sim-
ilarity. More details in Section 3.5. For each function on query a function with the
highest similarity is returned with information about its family.

6. Original functions, functions queried from the database, and their families form
a structured result. Apart from that, the result includes a computed similarity the ra-
tio for each family, comparing the number of hit functions and families’ total number
of functions.

3.2 Filtration Mechanisms
Filtration mechanisms are designed to reduce memory requirements of reference storage,
reduce query size and minimize probability of storing data for a family that is not unique
for that family. The service is designed to employ four types of filtration mechanisms:

1. Semantic pre-processing of binary file in specific file formats,
2. entropy filtration to discard random data,
3. filtration by cleanset database designed in this work, and
4. filtration by existing Avast services in form of pluggable filters that can be integrated

into the service infrastructure to filter binary data.

3.2.1 Semantic Pre-processing

The purpose of semantic pre-processing step is to remove standard library functions linked
to the binary file by a compiler. To search for clean chunks a technology that was created
by hex-rays called F.L.I.R.T.3 is utilized. The technology defines a recognition algorithm
that removes specific data from a binary file. The information required by the recognition
algorithm is kept in a signature file where each function is represented by a pattern. More
information about how flirt works can be found at hex-rays website4. To discard a statically
linked code a signature file is needed. One option is to include signature files with a service,
for example from a publicly available database5. The solution chosen was to provide users

3https://www.hex-rays.com/products/ida/tech/flirt/
4https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
5https://github.com/Maktm/FLIRTDB
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with option to specify their own signatures to give them more control of what is discarded
during this step.

3.2.2 Entropy Filtration

The sequence module utilizes Shannon’s entropy to measure the informational value of each
sequence to reduce the number of analyzed data. Shannon’s entropy quantifies the amount
of information in data, thus providing the foundation for a theory around the notion of
information. [27]. In the concept of storing and analyzing binary data, Shannon’s entropy
specifies storage in the number of bits required to represent each value of binary data.
The general approach is to look at the binary data as an array of bytes. Then, Shannon’s
entropy is computed as:

𝐸𝑆ℎ = −
𝑁∑︁
𝑖=1

𝑓𝑖 · 𝑙𝑜𝑔2(𝑓𝑖)

Where 𝑁 is the number of bytes in input data, and 𝑓𝑖 is the frequency of each byte in
the input data. The closer the value of 𝐸𝑆ℎ approaches to its theoretical maximum, the
higher the informational value of input data. In the context of 16-bytes sequences (𝑁 = 16)
the maximum theoretical value of 𝐸𝑆ℎ is when each byte of a sequence is unique; thus, each
appears with 𝑓𝑖 = 1/16:

𝐸𝑀𝑎𝑥
𝑆ℎ = −16 ·

(︂
1

16
· 𝑙𝑜𝑔2

(︂
1

16

)︂)︂
= 4

The entropy filtration is wrapped in the module that is shown in Figure 3.10. The
module takes a set of sequences and configuration on input. The configuration is presented
by user and provides option to specify interval of desired Shannon’s entropy. On output,
filter returns reduced set of sequences with informational value in selected interval.

Figure 3.10: Entropy filtration module.

3.2.3 Cleanset Filtration

Similarly to semantics pre-processing, a cleanset filtration is an approach designed to elim-
inate large portions of input data very fast. Apart from the pre-processing, the approach is
not limited to statically linked functions. The filter takes a set of binary data on input as
shown in Figure 3.11. The filter is independent of a specific input structure, which can be
sequences, basic block, or functions as Figure 3.12 shows. This decision makes it possible
to reuse the module throughout designed pipelines in Section 3.1. The bytes on input are
hashed, and their hashes are used to query cached data in a cleanset database. If a hash is
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present in the database, the filter discards it from the output. The functionality and im-
plementation of the cleanset database are described in Section 4.4. As a result, the module
returns a reduced set of input data.

Figure 3.11: Cleanset filtration module.

Figure 3.12: Cleanset filration is independent of what bytes represent.

3.2.4 Pluggable Filters

Avast has in its infrastructure services that may be used to query clean files. The current
options are, however, limited as discussed in Section 2.5.3. Currently, available solutions
tend to work on very high granularity or are noticeably slow. Nonetheless, the YaraZilla
service should be capable of communicating with existing or new services easily. The
purpose of pluggable filters is to define an interface for plugins to abstract a specific filtration
service. Such plugins will be used in a pipeline as shown in Figure 3.13. On input, the
pipeline receives a set of binary data. Based on the user-specified configuration, specific
filtration plugins will be selected to reduce the input set size. Users may also specify to
cache output of these services in the cleanset database designed in Section 4.4.
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Figure 3.13: Pluggable filtration modules.

3.3 Semantics Extraction
The basic block and function modules require for their functionality the following informa-
tion from the input binary file:

• Architecture of the input file and wordsize,
• size, physical and virtual addresses of functions,
• size, physical and virtual addresses of a basic blocks,
• intra-procedural control flow graph (CGF) of functions.

This can be achieved by using a third party reverse engineering frameworks like IDA6,
or Rizin7. Both IDA and Rizin support large collection of architectures and can extract
required information from input binary files. The semantics extraction module is designed
to be black-box as shown in Figure 3.3. The module defines interface and structures needed
to be filled by specific implementation and returns them on output.

Figure 3.14: Semanitcs extraction module.
6https://www.hex-rays.com/
7https://rizin.re/
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Disassembling

Disassembling is a process of taking binary data and elevating them into the language
of symbolic instructions (assembly). The disassembling is generally not time-critical as
it is done by mapping object data to text representation. The disassembly is needed in
the normalization to recognize operands of instruction so that they can be altered, see
Section 3.4.

3.4 Normalization Module
The basic block module utilizes a normalization process to map similar basic blocks into
the exact representation. Specifically for the basic block module, the result representation
is a hash so that it can be used to query data in the reference storage. The module
that implements the normalization process is shown in Section 3.15. It takes a set of
disassembled blocks and transforms them into hashes with the procedure described below.
However, the normalization is architecture dependent. Each supported architecture must
specify normalization steps, like how to replace registers in instructions.

Figure 3.15: Normalization module.

There are different approaches available to normalize basic blocks (described in Sec-
tion 2.3). The method used in this work is to normalize each instruction of the basic block
separately. Then, assemble bytes of a new basic block from these newly created instructions.
These new bytes are then hashed to satisfy the requirements of the basic block module. To
demonstrate the process of normalization, let us consider the example in Figure 3.16.
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Figure 3.16: Normalization process for x86 architecture.

Basic blocks in Figure 3.16 contain instructions of architecture x86-64. The highlighted
parts of basic input blocks are parts where the two basic blocks differ. Both basic blocks
in the example are semantically the same. The only difference is in operands they use and
one additional nop instruction. To remove these differences and create the same similarity
hash, both of the basic blocks are normalized in the following steps, specific for the x86
architecture.

1. Each GPR register is mapped to RAX, EAX, AX or AL based on the size of the register.
2. Each floating point register is mapped to ST0.
3. Each vector register {X,Y,Z}MM is mapped to {X,Y,Z}MM0.
4. Memory references are replaced by reference to the address [0x0] with respect to the

loaded/stored size.
5. Immediate values are replaced by value 0x0.
6. NOP instructions are ignored.
7. Instructions that cannot be transformed because of their semantics are either left

alone, or must contain special handler method. In the example is instruction shl
that requires the second operand to be register CL).
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3.5 Approximation of Structural Similarity
Several approaches can be applied when approximating the structural similarity of con-
trol flow graphs. Authors of [9] showed that with a good string representation of CFG,
well-known string distancing methods could be employed to search for structure similarity.
Authors of [10] took that further and used string representation of CFG to create a feature
vector to search for similarities on a scale. This work uses a similar method for scaling struc-
tural similarity, employing a technique used in document searching. Specifically, method is
using MinHash signatures [8] that represent a form of locality-sensitive hashes.

3.5.1 MinHashes and Jaccard Similarity

By comparing values of MinHashes it can be approximated Jaccard similarity of sets they
were generated from. The Jaccard similarity is a metric used commonly to compare sets of
given values. Let 𝐴 and 𝐵 be sets. Jaccard similarity 𝑆𝐽 of 𝐴 and 𝐵 is computed as:

𝑆𝐽 =
|𝐴 ∩𝐵|
|𝐴 ∪𝐵|

3.5.2 Comparable Representation for CFG

Control flow graph 𝐺𝐹 of a function 𝐹 is a pair 𝐺𝐹 = (𝑁,𝐸) where 𝑁 is a set of basic block
values, and 𝐸 is a set of edges between these basic blocks. As we are trying to capture the
similarity of control flow graphs, it is essential to ensure that we can compare basic blocks.
To compare basic blocks, we assign them a value created by the normalization process
described in Section 3.15. To demonstrate process of CFG conversion, let us consider
example in Figure 3.17.

By looking at 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 and 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 in Figure 3.17, we can say that these functions
are similar. Function 2 added one basic block and switched results of conditional jump.
To quantify their similarity we first create suitable string representation of their CFG. The
control flow graph of each function in the example is extracted in the following way. For
each basic block 𝑛 ∈ 𝑁 of a function 𝐹 :

1. append “> 𝑛” to the result CFG string, and
2. for each value (𝑛, 𝑝) ∈ 𝐸 append “#𝑝” to the result CFG string, so that for each value

(𝑛, 𝑟), (𝑛, 𝑞) ∈ 𝐸 is true that if 𝑟 < 𝑞 then “#𝑟” is appended before “#𝑞”.

The result string can be used with any string distance method to approximate their
similarity. With YaraZilla, this work employs a technique that was shown to be scalable.
Therefore, an option of how to employ the Jaccard similarity on the control flow graph
strings will be further examined in the following section.

3.5.3 Extracting MinHashes from CFG String

The technique used in document matching, but also described in control flow graph match-
ing by authors of [10], is splitting string representation into set of n-grams. Then, the
n-grams can be converted to MinHashes as described in [8]. The n-gram can be extracted
by sliding a window of pre-defined size on the characters of string, however, the approach
used in this work is to extract it from objects represented in the string. In terms of CFG
string defined in Section 3.5.2, the objects captured in the string may be of three types.
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Figure 3.17: Conversion of similar control flow graphs to comparable string representation.

1. Basic block identifier 𝑛 ∈ 𝑁 – a hash of the basic block in the string.
2. Start of basic block character > – a sign that the following basic block is in the CFG

and that it starts a connection edge to another basic blocks.
3. Jump on a basic block character # – a sign that the following basic block terminates

connection from a basic block.

By defining size of the n-gram, we decide how much of the call graph structure we want
to match. For example.

1. n-grams of size one do not capture structure, only the objects in the call graph.
2. n-grams of size two capture relations of four types.

(a) Start of a specified basic block (> 𝑛).
(b) The basic block jumps on another basic block (𝑛#).
(c) The basic blocks is followed by start of another basic block (𝑛 >).
(d) The basic block is jumped on (#𝑛).

3. n-grams of size more than three capture more context of the structure and therefore
are more strict.
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3.6 YaraZilla Architecture Design
Section 3.1 provides designs of mechanisms and modules for the YaraZilla file similarity
functionality. This section places the functionality into a perspective of a new scalable
service architecture. The result architecture is illustrated in Figure 3.18 and functionality
of each node of the architecture is broken down in the following text.

Figure 3.18: YaraZilla Architecture.

3.6.1 YaraZilla Frontend

The frontend of the YaraZilla service provides a user-friendly gateway for accessing file
similarity functionality. Users of YaraZilla service can interact with the frontend in form
of web application to find similar families of provided sample or extract malware datasets.
On its own the frontend does not implement any functionality and uses web interface to
access computational resources of YaraZilla API.
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3.6.2 YaraZilla backend

The YaraZilla backend consists of two parts. The first part that implements designed file
similarity functionality is called the YaraZilla library. The library provides an interface
for modules of fast comparison mechanisms designed in Section 3.1, but also modules of
extraction mechanisms designed in Section 4.3. Internally, the library uses the Avast internal
network to communicate with other services, for example, to filter clean sections of provided
samples (see Section 3.2).

The second part of the backend is REST API, wrapping the library functionality and
making it available for other tools in Avast infrastructure. For this work, the REST API
exposes functionality for shallow YaraZilla frontend; however, the REST API is expected
to be integrated into other tools, like automated Yara rule generator.

3.6.3 Filtration Service

The filtration service is a new service for Avast infrastructure that can be used as separate
service out of YaraZilla file similarity service. The service consists of the three parts.

1. WhiteseqsDB is a implementation of the database for large storage and quick query
of bytes of clean samples. The database is designed in this work, see Section 4.4.

2. RDI Library provides interface for the WhiteseqsDB and exposes it in API calls.
3. REST API wraps RDI Library in web interface to expose the WhiteseqsDB to the

internal Avast network.

3.6.4 Malware Database

The malware database module is a cache-based database that provides reference storage
that upholds structured data about malware families, files in these families, and additional
info used in each YaraZilla service module. The reference storage provides fast queries and
is capable of automated backups. This work expects that currently available databases on
the market can meet expectations for the designed reference storage.
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Chapter 4

Dataset Extraction and
Management

The quality of the YaraZilla similarity service designed in Chapter 3 highly depends on
the dataset it works with. This work aims to provide a service that can be improved on
the go. For that, good dataset extraction and storage options are required. Apart from
that, mechanisms for users to modify and enhance existing datasets are also needed. This
chapter provides the design of dataset extraction processes in the form of extraction service
and database storage needed to uphold extracted datasets.

4.1 Malware Dataset Extraction Service
One particular interaction that malware analysts require from the service is to be able to
enhance the existing dataset. For a good service deployable for Malware analysts, it is
essential to minimize the complexity of user interactions. For that, the database extraction
process is designed to be provided as a service as well. As Figure 4.1 shows, the YaraZilla
extraction service will, on input, take a set of binary files. On output, the service will
let a selection process decide what information is useful and, therefore, what should be
stored in the malware reference storage. The extraction process works on multiple levels of
abstractions: sequences, basic blocks, and functions level.

Figure 4.1: YaraZilla extraction service.
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4.2 Selection Process
The selection process shown in Figure 4.1 is either a malware analyst or automated script.
A malware analysis can interact with extracted data in the user interface. The service, how-
ever, must be general enough so that choosing optimal parameters can be later automated
by a script or another service.

4.3 Dataset Extraction Modules
For comparison functionality, each module from Section 3.1 must be provided with struc-
tured data of malware families. To not limit users of YaraZilla with pre-defined dataset,
each module offers a complementary extraction pipeline. Extraction pipelines are modified
versions of inspection pipelines that can be used to create a dataset for each inspection
module. Processes of extraction and storing dataset as well as ways to engage users are
discussed in the following sections.

4.3.1 Sequences Extraction

Sequence extraction process reuses parts of Sequence module (Section 3.3) and is designed
as pipeline in Figure 4.2. Its input is a set of binary files and the name of the malware
family they are part of. As a result, the process extracts and stores selected sequences into
the reference storage.

Figure 4.2: Dataset extraction for Sequence Module.

1. Each file on input goes through pre-processing as described in Section 3.2.1. This
step may reduce large chunks of binary data containing functions statically linked.

2. Sequence extraction process is run in parallel on each input file and provides a set of
sequences (n-grams) for each file.

3. Set of sequences are joined together and for each sequence is tracked what files it was
seen in.

4. Selection process chooses sequences based on different parameters. The selection
process can be automated or implemented in the user interface. More about selection
process in Section 4.2.

5. Selected sequences are passed to the filtration step that is identical to the one de-
scribed in Section 3.1.1.
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6. Sequences that were not filtered are stored into the reference storage with reference
to files they appeared in and family they represent.

4.3.2 Basic Blocks Extraction

The basic blocks extraction process reuses parts of designed Basic block module (Section 3.5)
and is designed as pipeline in Figure 4.3. The pipeline’s input is a set of binary files and
the name of the malware family they are part of. As a result, extracts and stores selected
basic blocks into the reference storage.

Figure 4.3: Dataset extraction for Basic block module.

1. Semantic extraction step extracts for each file information about their basic blocks.
This step utilizes module described in Section 3.3.

2. Each input file goes through pre-processing (see Section 3.2.1) and basic blocks located
in discarded chunks of binary data are removed.

3. Altered filtration step is deployed in parallel. This step aims to quickly identify clean
basic blocks to lighten the normalization process. This step is not configurable and
uses only fast filtering methods, like cleanset filtration 3.2.3.

4. Similarity hashing is used in parallel on input sets of basic blocks. The similarity
hashing is described in Section 3.4.

5. Set of normalized basic blocks are joined together and for each basic block is tracked
what files it was seen in.

6. Selection process chooses sequences based on different parameters. The selection
process can be automated or implemented in the user interface. More about selection
process in Section 4.2.

7. Selected basic blocks are passed to the filtration step that is identical to the one
described in Section 3.1.2.

8. Basic blocks that were not filtered are stored into the reference storage with the
following information:

• Association to malware family,
• similarity hash for queries,
• origin file of the basic block,
• physical address in the origin file,
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• virtual address in the origin file, and
• original bytes.

4.3.3 Functions Extraction

The functions extraction process reuses parts of designed Functions module (Section 3.8)
and is designed as pipeline in Figure 4.4. The pipeline’s input is a set of binary files and
the name of the malware family they are part of. As a result, extracts and stores selected
functions into the reference storage.

Figure 4.4: Dataset extraction for Function Module.

1. Semantic extraction step extracts for each file information regarding functions along-
side their CFG and bytes. This step utilizes module described in Section 3.3.

2. Each input file goes through pre-processing (see Section 3.2.1) and basic functions in
discarded chunks of binary data are removed.

3. Altered filtration step is deployed in parallel. This step aims to quickly identify clean
functions to lighten the normalization process. This step is not configurable and uses
only fast filtering methods, like cleanset filtration (Section 3.2.3).

4. The feature extraction step is run in parallel to extract feature vectors of functions in
input sets. Similarly to Fuctcion module pipeline described in Section 3.1.3, the fea-
ture extraction step uses Basic block module to extract similarity hashes of functions’
basic blocks.

5. Sets of functions are joined together and for each functions is tracked in what files
were found similar functions (similarity that satisfies user-defined threshold).

6. Selection process chooses functions based on different parameters. The selection pro-
cess can be automated or implemented in the user interface. More about selection
process in Section 4.2.

7. Selected functions are passed to the filtration step that is identical to the one described
in Section 3.1.2.
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8. Functions that were not filtered are stored into the reference storage with the following
information:

• Association to malware family,
• feature vector,
• control flow of the function,
• origin file of the function,
• physical address in the origin file,
• virtual address in the origin file, and
• original bytes.

4.4 Database for Cleanset
A cleanset database aims to provide reference storage for already seen bytes of clean files.
The designed database must be considered efficient for filtration service to provide stable
and usable filtration capabilities. From the perspective of this work only a presence of bytes
in the database is interesting, not bytes themself. Storage is considered efficient enough for
storing cleanest data if it satisfies the following list of requirements.

• The storage can persistently and reliably hold a vast amount of stored data. The
design of cleanset database expects holding at least ten billions different values.

• The storage is capable of quickly providing a large number of values on a query.
• Data are stored compactly to minimize memory resources demand.
• The order of stored data is irrelevant and can be neglected.

After the research, it was concluded that there is no current implementation that can
provide all of the qualities required for the cleanset database.

4.4.1 Efficient Storage and Query

One requirements of the cleanset database is to store a large quantity of binary data. The
one possible solution that was chosen for the cleanset database is to reduce the storage
requirements by using an efficient hash function and therefore not storing the binary data
directly. An efficient hash function is capable of uniformly transforming sequences of bytes
into hash values of chosen size. For cleanset database it is essential to produce hash values
fast enough, not affecting the service functionality. There are two problems of storing large
amount of hashes.

1. Hash values are uniformly distributed over output space and are therefore random.
No compression algorithm can further reduce the size of random data [24]. For this
work, an efficient specialized storage that meets specified requirements was proposed
and is further described in Section 4.5.

2. Storing large amount of hashed data increases probability of hash collisions. A very
small number of collisions can be accepted if the probability of a byte sequence on
query colliding with the stored sequence is small. More detail on collisions in Sec-
tion 4.4.2

36



4.4.2 Collisions of Hashes

A hashing is used for fast querying a large set of data commonly in practice. The hashing,
however, has limits, and the main one is in the probability of two hashes colliding. A hash
collision is a case when two different input values are transformed into the same hash. The
probability of this happening varies depending on the type of hashing mechanism chosen.
For the storage of cleanset data, we expect a hash function that uniformly distributes hashes
across the output space. In this case, the probability of collision depends on the size of
generated hashes. An example of hash collision probability based on the number of hashes
of a particular size is in Table 4.1 taken from [23]. When choosing a hash size for the
cleanset database, we must consider collisions on three levels.

1. The probability of two hashes colliding on the input sample must be negligible. One
of the use cases of the cleanset database is to query a large quantity of 16-byte se-
quences. For example, a one-megabyte input file contains around 16 million sequences.
Table 4.1 shows, that for such cases 32-bit hash would not be optimal as the collisions
would be prevalent.

2. The probability of a hash collision during the dataset creation is small. The large
dataset is expected to contain a large amount of data. The collisions in the dataset
should be minimal; however, some are acceptable. The dataset is generated from
clean samples, and collisions will only reduce the number of data stored.

3. The probability of hash collision in the data query should be minimal. When we are
trying to compute the probability of collision on the data query, we ask about the
likelihood of the collision affecting the queried data. To answer the question, we can
use the following conditional probability:

𝑃 (𝑄|𝑄 ∪𝑁) =
𝑃 (𝑄 ∩ (𝑄 ∪𝑁))

𝑃 (𝑄 ∪𝑁)
=

𝑃 (𝑄)

𝑃 (𝑄) + 𝑃 (𝑁)
(4.1)

Where 𝑄 represent event of a hash colliding in the input data. The 𝑁 represents
event of hash colliding in the reference data. The 𝑄 ∪ 𝑁 represents event of a hash
collision happening in either input data or reference data.

32-bit
Hashes

64-bit
Hashes

160-bit
Hashes

Collision
Probability

77163 5.06·109 1.42·1024 1 in 2
30084 1.97·109 5.55·1023 1 in 10
9292 609·106 1.71·1023 1 in 100
2932 192·106 5.41·1023 1 in 103

927 60.7·106 1.71·1022 1 in 104

294 19.2·106 5.41·1022 1 in 105

93 6.07·106 1.71·1021 1 in 106

30 1.92·106 5.41·1021 1 in 107

10 607401 1.71·1020 1 in 108

Table 4.1: Probability of a two hashes colliding based on the dataset size.
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4.5 Efficient Random Data Storage
This section describes a design of efficient storage capable of storing uniformly distributed
numbers. Based on the use case of the YaraZilla filtration service, stored numbers have an
8-byte size. However, the latter created data storage is invariant of specific data size. The
designed storage is based on the fact that stored data order is irrelevant, and the maximum
number of stored data is known beforehand. Thanks to the data order irrelevancy, we can
sort data on input and reduce the search and insertion algorithm’s time complexity.

Let a 𝑃 be a set of integers and let 𝑁 = |𝑃 |. Each element 𝑝 ∈ 𝑃 can be represented
in a binary representation of 𝐵 bits size, denoted #2(𝑝) = 𝐵. This means that it takes
𝑁 · 𝐵/8 bytes to store the set 𝑃 sequentially on a disk. For example, it would take 80GB
of storage to store a set of ten billion 8-byte integers. To reduce the amount of memory
needed, we can sort the integers and remove such parts of their binary representation that
can be computed dynamically on demand. The following text proposes a data structure
that uses such a principle to effectively store an integer set and allows effective manipulation
with the data in terms of time complexity.

4.5.1 Indexable Random Data Structure IRD

Indexable Random Data Structure (IRD) is a proposed data structure to store uniformly
distributed data efficiently. To provide calculations of required storage and computations
of time complexity, it is required to define IRD structure formally. An IRD structure is
illustrated in Figure 4.5 and we define it as a 5-tuple 𝑅 = (𝐼,𝐷,𝐵𝐴, 𝐵𝐷, 𝐵𝐼), where

• 𝐼 = (𝐼1, . . . , 𝐼𝑁 ) is called a index tuple, where 𝑁 = 2𝐵𝐴 ∧ ∀𝑖 ∈ {1, . . . , 𝑁} : 𝐼𝑖 ∈ N
• 𝐷 = 𝐷1 ⊕ · · · ⊕𝐷𝑁 is called a data tuple, where 𝑁 = 2𝐵𝐴 . The operator ⊕ denotes

tuple concatenation. ∀𝑖 ∈ {1, . . . , 𝑁} : 𝐷𝑖 = (𝐷𝑖
1, . . . , 𝐷

𝑖
𝐼𝑖
), meaning the size of 𝐷𝑖 is

represented by 𝐼𝑖 in the index tuple.
• 𝐵𝐴 is a bit size of the index tuple address. The number 𝑁 of elements of the index

tuple is always 𝑁 = 2𝐵𝐴 .
• 𝐵𝐷 is a bit size of stored data in the data tuple. ∀𝑖, 𝑗 : #2(𝐷

𝑖
𝑗) = 𝐵𝐷.

• 𝐵𝐼 is a bit size of elements of the index tuple. ∀𝑖 : #2(𝐼𝑖) = 𝐵𝐼 .
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Figure 4.5: IRD Data Structure.

We can intuitively look at IRD as a structure that divides values into the two parts and
store them separately. The first part of data is stored in a consecutive chunk of memory
labelled the data tuple. The other part is, however, stored in the location of data in the data
tuple. The location of data, therefore, is an essential part of the storage. The reduction of
storage size comes from the removal of the part stored in location and by grouping data with
the same value of the removed part. A Figure 4.6 provides an example of IRD structure
𝑅 = ((1, 0, 1, 1), (1, 0, 3), 2, 2, 1).

Figure 4.6: Example of storing data into IRD.

In the provided example in Figure 4.6, three values are stored into the IRD data struc-
ture: 1, 8, and 15, each represented in a 4-bit representation. Firstly, each stored value is
divided into index and data parts. The index part references an index tuple element and
increments it by one to indicate the size of stored data. In this example, each stored value
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references a different element of the index tuple. Value 1 of the element 00 of the index
tuple means that the data tuple stores at the beginning a group of one element with the
upper two bits set to zero. We can note that in the example, we are storing three values,
each having 4-bits initially. Sequential storage of these values would require 12 bits. By
storing input data in the IRD structure, we reduce the size from 12 bits to 10 bits (4 bits in
the index tuple and 6 bits in the data tuple). Having a formal definition of IRD structure
𝑅 = (𝐼,𝐷,𝐵𝐴, 𝐵𝐷, 𝐵𝐼), we express the size in bits required to store 𝑅 as:

𝑆𝑅 = 2𝐵𝐴𝐵𝑖 +𝐵𝐷𝑁 (4.2)

where 𝑁 is the number of stored data. For example, to store 10 billion 64-bit integers in
a structure 𝑅 = (𝐼,𝐷, 32, 32, 8), it takes 44𝐺𝐵 of data storage. On the contrary, it takes
80GB of storage to store these data sequentially. It is possible to remove part of the stored
data and safely count sizes of groups in the data structure (with a counter of limited size)
because we know the distribution of stored data. Based on the uniform distribution of data
we assume, that each group of stored data has roughly the same size, computed as:

𝑆𝐷
𝑎𝑣𝑔 =

𝑁

2𝐵𝐴
(4.3)

Based on the average size of a group 𝑆𝐷
𝑎𝑣𝑔 and the maximal value of a group counter 2𝐵𝐼 ,

we compute the maximal possible size of stored data in 𝐼𝑅𝐷 as:

𝑆𝐷
𝑎𝑣𝑔 ≤ 2𝐵𝐼 (4.4)
𝑁

2𝐵𝐴
≤ 2𝐵𝐼 (4.5)

𝑁 ≤ 2(𝐵𝐼+𝐵𝐴) (4.6)

Based on the relationship 4.6 we compute the minimal size of 𝐵𝐼 and 𝐵𝐴 as:

𝐵𝐼 +𝐵𝐴 ≥ 𝑙𝑜𝑔2(𝑁) (4.7)

There are situations where sequential storage of random data would use memory re-
sources more efficiently. Following relations are used to compute the minimum size of input
data required for a IRD to be more memory efficient than the sequential storage:

𝑆𝑠𝑒𝑞 ≥ 𝑆𝑅 (4.8)
𝐵0𝑁 ≥ 2𝐵𝐴𝐵𝑖 + (𝐵0 −𝐵𝐴)𝑁 (4.9)
𝐵0𝑁 ≥ 2𝐵𝐴𝐵𝑖 +𝐵0𝑁 −𝐵𝐴𝑁 (4.10)
𝐵𝐴𝑁 ≥ 2𝐵𝐴𝐵𝐼 (4.11)

𝑁 ≥ 2𝐵𝐴𝐵𝐼

𝐵𝐴
(4.12)

For example, having a IRD 𝑅 = (𝐼,𝐷, 32, 32, 8) we can compute, that the minimal number
of stored data for IRD to be more efficient than a sequential storage is around 1 billion
numbers.
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4.5.2 Memory Manageable IRD

The deficiency of an IRD is that it stores large chunks of data, either in the index or data
tuple. Implementation of such structure in a computer is not feasible as it would require,
for example, a static array of 232 elements for an IRD with 𝐵𝐴 = 32. Apart from that,
the last group’s indexation would require to sum all elements of the index structure. Such
an operation would cost a lot of CPU time. The solution that is proposed for this work is
to create another layer of abstraction over IRD as shown in Figure 4.7. Instead of storing
continuous index data, we divide the index tuple into chunks and organize them into a
hierarchical structure. Algorithm 1 defines insertion of new element in the hierarchical
IRD, while Algorithm 2 defines search of an element in the structure.

Figure 4.7: A IRD divided into smaller chunks to optimize efficiency.
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Algorithm 1: Data Insertion Algorithm.
Input : IRD Structure 𝑆, number 𝑁 to be inserted into 𝐽 .
Output: 𝑇𝑟𝑢𝑒 on successful insert. 𝐹𝑎𝑙𝑠𝑒 otherwise.

1 begin
2 Divide 𝑁 into index and data part: (𝑁𝐼 , 𝑁𝐷)← 𝑁 .
3 Compute a memory chunk index 𝑐←𝑀(𝑁𝐼 , 𝐶𝑆).
4 Use 𝑐 to reference a storage structure 𝐽𝑐 = (𝐼,𝐷).
5 Compute a size sector index 𝑖← 𝑆(𝑁𝐼 , 𝐶𝑆).
6 If 𝐼𝑖 + 1 = 2𝐵𝐼 return 𝐹𝑎𝑙𝑠𝑒.
7 Compute index 𝑗 to data structure 𝐷 : 𝑗 ←

∑︀
𝑥<𝑖 𝐼𝑥.

8 Insert 𝑁𝐷 on index 𝑗 and update 𝐷:
𝐷 ← (𝐷0, . . . , 𝐷𝑗−1, 𝑁𝐷, 𝐷𝑗 , . . . , 𝐷𝐿), 𝐿 =

∑︀
𝑥∈𝐼 𝑥.

9 Update 𝐼𝑖 ← 𝐼𝑖 + 1.
10 Return 𝑇𝑟𝑢𝑒.
11 end

Algorithm 2: Data Search Algorithm.
Input : IRD Structure 𝑆, number 𝑁 to be found into 𝐽 .
Output: 𝑇𝑟𝑢𝑒 if found. 𝐹𝑎𝑙𝑠𝑒 otherwise.

1 begin
2 Divide 𝑁 into index and data part: (𝑁𝐼 , 𝑁𝐷)← 𝑁 .
3 Compute a memory chunk index 𝑐←𝑀(𝑁𝐼 , 𝐶𝑆).
4 Use 𝑐 to reference a storage structure 𝐽𝑐 = (𝐼,𝐷).
5 Compute a size sector index 𝑖← 𝑆(𝑁𝐼 , 𝐶𝑆).
6 If 𝐼𝑖 = 0 return 𝐹𝑎𝑙𝑠𝑒.
7 Compute index 𝑗 to data structure 𝐷 : 𝑗 ←

∑︀
𝑥<𝑖 𝐼𝑥.

8 𝑖← 0
9 while 𝑖 < 𝐼𝑖 do

10 If 𝐷𝑖1 = 𝑁𝐷 return 𝑇𝑟𝑢𝑒.
11 𝑖← 𝑖+ 1

12 end
13 Return 𝐹𝑎𝑙𝑠𝑒.
14 end
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Chapter 5

Scalable Service Implementation

One of the goals of this work is to implement a scalable service. Good traits of a scalable
service are that the service is available during high demands but also can be scaled down
when need [2]. Apart from that, this work aims to create scalability that can be maintained
with growing complexity. To ensure these goals and provide performance, availability,
and resilience of designed service, its implementation was inspired by DevOps practices
commonly used by growing enterprises as Avast. Automation is the backbone of successful
DevOps strategies [2]. Authors of [18] argue that correctly employed DevOps strategies
can also help to automate continuous delivery of new software versions while guaranteeing
their correctness and reliability.

This chapter is divided into three parts. Section 5.1 describes the implementation of
each YaraZilla service using containerization. Section 5.2 introduces automation and how
it is employed throughout the development, testing, and deployment steps. The last part
of this chapter summarizes implemented service, its usability, and extensibility.

5.1 YaraZilla in Microservices
Research of authors of [18] showed, that highly coupled monolithic architectures are obsta-
cles to effective continuous delivery. As a solution, they suggest that complex dependency
management of software components should be imposed to the deployment pipeline. An
essential principle for successfully adopting and implementing deployment pipeline is an
architecture composed of small and independently deployable units called microservices.
Microservices design also provide two architectural attributes that are essential for contin-
uous delivery: testability and deployability.

The design of YaraZilla services discussed in Section 3.6 has taken microservices ap-
proach to account and each service can be deployed independently. Each service is deployed
using containerization technique provided by Docker1, see Section 5.2.1. Containerization
ensures that build of each service is automated and services can be run in any environemnt.

5.1.1 YaraZilla Backend

The backend service of YaraZilla is implemented as a three level stack shown in Figure 5.1.
The figure shows each level of YaraZilla backend together with its dependencies and tech-
nologies used. The backend is built and deployed as a container using Docker.

1https://www.docker.com/
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Figure 5.1: Backend technology stack.

1. YaraZilla Library implements comparison and extraction mechanisms described in
Chapter 3. The critical core of the library is written in C++ to ensure speed of the
implementation. This core functions are exposed to Python implementation by using
PyBind112. The Python implementation connects and extends core functions and
exposes them to REST API. The following major third-party tools are utilized by
YaraZilla library.

(a) Capstone3 is a lightweight multi-platform, multi-architecture disassembly frame-
work used in Disassembling module, see Section 3.3.

(b) Keystone4 is a lightweight multi-platform, multi-architecture assembler frame-
work used in Normalization module, see Section 3.4.

(c) Rizin5 is an open source reverse engineering framework utilized during semantics
extraction, see Section 3.3.

(d) Datasketch6 is a package providing probabilistic data structures that can quickly
process and search very large amount of data. The package is used for structural
approximation, see Section 3.5.

(e) Redis Plus Plus7 is a C++ client library for Redis that is used by MalwareDB
service, see Section 5.1.4.

2. REST API layer is implemented in Python and exposes YaraZilla Library. The
implementation and framework is described in Section 5.1.5.

3. Web Server and WSGI layer is responsible for service availability and load balancing.
More about this layer in Section 5.1.6.

2https://pybind11.readthedocs.io
3https://www.capstone-engine.org
4https://www.keystone-engine.org
5https://www.rizin.re
6https://www.ekzhu.com/datasketch
7https://www.github.com/sewenew/redis-plus-plus
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5.1.2 YaraZilla Frontend

The frontend service of YaraZilla is responsible for user interface and user experience. The
service exposes the backend functionality to YaraZilla users in the form of a web application.
The service is implemented as a two-layer stack shown in Figure 5.2.

Figure 5.2: Frontend technology stack.

1. Web App implements web user interface. The web application is implemented in
JavaScript using the following three major frameworks:

(a) React8 is a JavaScript library for building user interfaces. React is responsible
with managing state of UI components and rendering that state to the DOM9.

(b) Bootstrap10 is a popular CSS Framework for developing responsive websites. It
is distributed with a large collection of pre-defined UI components that can be
used in JavaScript web applications.

(c) Styled components11 is a popular JavaScript library for managing CSS styles
and writing styled UI components in the JavaScript code.

2. Web Server and WSGI layer is responsible for the web service availability and load
balancing. More about this layer in Section 5.1.6.

5.1.3 WhiteseqsDB Service

WhiteseqsDB is implemented as a three-layer stack shown in Figure 5.3. The service stack
shares a similar structure with the backend service as both services share similar traits –
emphasizing speed, reliability, and availability. That is why the core of the WhiteseqsDB is
implemented in C++, while manipulation methods and API are implemented in Python.

8https://reactjs.org
9https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

10https://getbootstrap.com
11https://styled-components.com
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Figure 5.3: WhiteseqsDB technology stack.

1. WhiteseqsDB library implements IRD algorithm designed in Section 4.5.1. As speed is
crucial, the algorithm is implemented in C++ and Pybind11 is used to expose library
functions to Python.

2. REST API layer is implemented in Python. The implementation and framework is
described in Section 5.1.5.

3. Web Server and WSGI layer is responsible for service availability and load balancing.
More about this layer in Section 5.1.6.

5.1.4 MalwareDB Service

MalwareDB is a service wrapping Redis12 database to store data used in YaraZilla backend.
Redis is an open-source project that is widely used as an in-memory data structure store,
database, cache, and message broker. The advantages of using Redis for storing malware
data by YaraZilla are following.

• Redis is an in-memory data storage that can be used as a cache with optional persis-
tence options.

• As data are stored in-memory, Redis is capable of achieving very high throughtput13.
• Redis provides options to ensure high-availability and monitoring that is desired for

ensuring reliability of YaraZilla service.

MalwareDB specifies configuration files of Redis Sentinel14 to ensure high-availability.
Redis Sentinel provides a master-slave architecture shown in Figure 5.4. Each node in the
figure contains one sentinel and either master or a replica, running as services on different
ports. Each node can be deployed to a server in a different location. The master and
replicas can be used to query data; however, writing new data can be done only on the
master. Each write operation on the master node propagates changes to replicas. It is

12https://redis.io/
13https://redis.io/topics/benchmarks
14https://redis.io/topics/sentinel
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ensured that there is always only one master that is elected by sentinel nodes in case of
a failure on the master node. More in-depth description and configuration of Redis, Redis
Sentinel and other options like Redis Cluster provide authors of [11].

Figure 5.4: Redis Sentinel when failure occures.

5.1.5 REST API

Both YaraZilla backend and WhiteseqsDB services implement core features in C++ and
expose them as a library for Python. The reason behind this is that Python provides a
vast amount of mature frameworks for building well-documented and testable REST APIs.
One such framework is FastAPI15 that was chosen for YaraZilla services. The FastAPI has
many features that are desirable when building scalable and reliable service, some of which
are in the following list.

• FastAPI utilizes asynchronous communication with emphasis on speed.
• FastAPI builds on top of data validation framework Pydantic16 that enforces type

hinting system.
• Endpoints are documented in the code. FastAPI automatically generates and hosts

up-to-date documentation from the code when deploying service.
• The framework is based on the open standards for APIs: OpenAPI17 and JSON

Schema18.

5.1.6 Web Server and WSGI

The purpose of web server is to be a gateway for requests from the internet. Its job is
to handle requests very quickly and based on the configuration pass only relevant requests
to next layer. One such a application is nginx19 that can handle slow clients, forwarding
requests and terminating SSL.

The Web Server Gateway Interface (WSGI) is a specification describing how a web server
communicates with web applications. YaraZilla uses Gunicorn20 WSGI HTTP server that
communicates with FastAPI. The purpose of Guniorn is to provide multi-processing and
multi-threading when serving multiple clients. Gunicorn translates requests from Nginx
into a format which FastAPI understands, and makes sure that its code is executed on
demand.

15https://fastapi.tiangolo.com/
16https://pydantic-docs.helpmanual.io/
17https://swagger.io/specification/
18https://json-schema.org/
19https://nginx.org/
20https://gunicorn.org/
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5.2 Automated Deployment Pipeline
A deployment pipeline is an automated process that takes source code and makes it readily
available to users. The pipeline created for the YaraZilla service is shown in Figure 5.5.
The first and the most critical part of the pipeline is the well-documented and versioned
source code. The whole pipeline relies on the concept called infrastructure as a code. Each
part of the pipeline is configured and versioned in the source code, making it easy to revert
or modify any infrastructure changes based on the production feedback. The following
sections provide more information about each step of the created pipeline.

Figure 5.5: Deployment pipeline.

5.2.1 Automating Build

Each microservice defined in Section 5.1 uses Docker to create an image that can be deployed
as a Docker container on the desired system. Docker containers resemble virtual machines.
The main difference is that Docker containers are more lightweight [6] in terms of memory
usage and boot-up time, which results in high portability and scalability.

YaraZilla microservices implement a Dockerfile configuration file that specifies how to
build a deployable image. The configuration is versioned in the source code of each ser-
vice. Apart from the process of building, Dockerfile specifies how to run the service in the
deployed Docker container as well.

5.2.2 Automating Testing

Each YaraZilla service provides three sets of test suites: integration, unit and regression
testing suite.

1. Unit tests ensure verification of designed functionality of each sub-module.
2. Regression tests ensure that on same inputs designed pipelines produce the same

output.
3. Integration tests ensure that services can communicate with each other to fulfil desired

tasks and changes to APIs are propagated throughout the infrastructure.

Integration tests verify connectivity and network communication and therefore, each
microservice must be online before running test suites. Manually setting up each service is
a tedious task and, if done incorrectly, can be time-consuming. Employing an automation
process, therefore, minimizes possible mistakes and saves time. The automation process
implemented in the YaraZilla structure sets up services with respect to their dependencies
as shown in Figure 5.6.
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Figure 5.6: Dependency graph of YaraZilla microservices.

The automated testing utilizes Docker Compose21. The tool sets up a testing network
of microservices by reading a specification in YAML file versioned in the source code repos-
itory. Apart from microservices YAML file contains information about testing containers
that trigger integration and unit tests. This automation process is wrapped in a shell script
to provide single-step triggering for development and continuous integration purposes. Fig-
ure 5.7 shows running tests using single script.

Figure 5.7: Automated testing as a single script call.

5.2.3 Continuous Integration

Continuous integration connects automated build and testing to verify new changes to
a codebase. Having such a process in the deployment pipeline ensures that any software
version committed to the repository is a verified, production-ready candidate. One of the
most popular tools for continuous integration is Teamcity22. YaraZilla uses Teamcity and
integrates it into the Github23 – a popular source code hosting service. When a new commit
is pushed to master, Teamcity runs automated build and testing to ensure its validity. Each
checked commit shows the result of testing as seen in Figure 5.8.

21https://docs.docker.com/compose/
22https://www.jetbrains.com/teamcity/
23https://github.com/
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Figure 5.8: Each commit to master should be production ready.

Apart from that, every time a user opens a pull request Teamcity automatically checks
if it is possible to merge it to master. Figure 5.9 shows UI of mergeable and UI of a non-
mergeable pull request on YaraZilla Github. The Teamcity also provide option to specify
configuration as a code written in Kotlin DSL24. The option is used in YaraZilla and all of
Teamcity configuration is tracked in the YaraZilla repository.

Figure 5.9: Mergeable vs. non-mergeable pull request.
24https://www.jetbrains.com/help/teamcity/kotlin-dsl.html

50

https://www.jetbrains.com/help/teamcity/kotlin-dsl.html


5.2.4 Continuous Deployment

Avast has built a network around Kubernetes25 for automation of deploying services to
a cloud. Kubernetes is an open-source system providing a scalable solution for the deploy-
ment of containerized services. This work takes advantage of Avast’s Kubernetes network
to ensure enough computational resources for the service when by malware analysts. Re-
leases of both YaraZilla backend and frontend are deployed on a cloud using Kubernetes.
To deploy YaraZilla services to Kubernetes it is needed to:

1. build Docker image of each service, and
2. push each built image to internal Docker image collection.

After that, each service can be deployed using kubectl26. The build of Docker images is
automated (Section 5.2.1) and other steps can be automated as well. The automation of
deployment ensures that after successful continuous integration, any changes committed to
the repository can be deployed to production with ease by anyone. For that, the deploy-
ment was integrated to Teamcity to provide a one-click release of services to production.
Figure 5.10 shows the implementation of the deployment automation in Teamcity.

Figure 5.10: One-click deployment of YaraZilla backend and frontend in Teamcity.

Kubernetes is not, however, reliable to store any data persistently. Therefore both
Malware and Cleanset databases need to be deployed on a reliable server. The Malware
database uses Redis Sentinel (Section 5.1.4), for which Avast has available dedicated servers,
pre-configured and ready to use. The WhiteseqsDB, however, is implemented and deployed
in the YaraZilla pipeline directly. Automated deployment minimizes the number of steps
needed to deploy the database on the desired server by pushing the built image to internal
image collection. After that, the database can be deployed on the selected server using the
single command as shown in Figure 5.11.

Figure 5.11: Running WhitseqsDB in a single command.

5.2.5 Monitoring and High Availability

The goal of monitoring is to ensure high service availability, reliability, and security. One
of the crucial parts of monitoring is logging. Each YaraZilla service running in the cloud
collects events of connections in logs that can be inspected in case of a service error. An
example of examining logs of YaraZilla service using kubectl is in Figure 5.12.

25https://kubernetes.io/
26https://kubernetes.io/docs/reference/kubectl/overview/
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Figure 5.12: Using kubectl to inspect logs on the YaraZilla production deploy.

Another important feature is recovery on crash. Services deployed to Kubernetes net-
work are managed by Kubernetes that ensures this feature. MalwareDB uses Redis Sentinel
that also handles recovery on crash with a process discussed in Section 5.1.4. WhiteseqsDB
is, however, a service implemented in the YaraZilla pipeline and cannot be managed by
Kubernetes. The high-availability of the service is managed in three ways:

1. The service configuration in Dockerfile specifies to always restart the service if not
active.

2. The service is configured to run automatically on server start-up.
3. The service implements a notification system.

The notification system was employed to ensure that service is always online, and prob-
lems are resolved in minimal needed time. When service has problems or crashes, admin-
istrators of the server and people specified in the configuration file are notified by e-mail.
The example of service shut-down notification is in Section 5.13.

Figure 5.13: Shut-down notification of WhiteseqsDB.

5.3 User Interface
The service is available for analysts to use as a web application on Avast’s internal network.
The initial screen in Figure 5.14 shows the main layout of the created web application.
Two main components of web interface are analysis and overview interface. The overview
section shows statistics on stored data. The analysis section is integrates the core of the
service and is further divided into two sub-sections. The inspection section of the analysis
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lets analysts upload and examine unknown samples. The extraction section provides tools
for the extraction of malware datasets.

Figure 5.14: Initial screen of the YaraZilla web interface.
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Chapter 6

Testing and Evaluation

The YaraZilla service was implemented as specified in Chapter 5. The service was set
up with an initial dataset and is currently available for malware researchers to use and
improve. Firstly, this chapter describes testing of the new service. However, the central
part of this chapter is dedicated to evaluating implemented comparison mechanisms, storage
implementation, and the integrated dataset.

6.1 YaraZilla Functionality Testing
Section 5.2.2 mentioned that each created service of YaraZilla was provided with three sets
of testing suites: unit, integration, and regression testing suite. As each service is written
using various programming languages, different testing frameworks were integrated into the
YaraZilla infrastructure. The C++ code in YaraZilla and Whiteseqs libraries is tested using
GoogleTest framework1. The suite is mainly used for unit testing and verification of each
library function on a prepared set of inputs and outputs.

The Python code in YaraZilla API and Whitseqs API is tested using PyTest2. The
framework is used for each level of testing.

1. The complementary functionality to YaraZilla nad Whiteseqs library in Python code
is tested by a set of unit tests with prepared inputs and outputs.

2. The communication of APIs with databases, filtration services, and with each other
is tested using test client provided by FastAPI3.

3. In YaraZilla library, the regression testing uses a set of previously analyzed binary
files and verify that extraction and inspection work the same way.

The JavaScript code in YaraZilla frontend is tested using Jest4 framework. The frame-
work is used for unit testing to ensure that implemented components are rendered in the
intended way and show user data properly.

1https://github.com/google/googletest/
2https://docs.pytest.org/
3https://fastapi.tiangolo.com/tutorial/testing/
4https://jestjs.io/
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6.2 Functionality Evaluation
In this section the comparison modules are evaluated to show that the new YaraZilla service
is capable of finding similarities in binary files if they are present. Firstly, the service is
examined on constructred patch example to show, that service is capable of finding modified
basic blocks and functions. Secondly, two subsequent versions of the same software are
compared with output of Diaphora5 to show, that results are comparable with an existing
diffing tool. Lastly, the service is provided with binaries of two different programs and
result is examined.

In the following examples, the non-malware files are used for evaluation of the service
results. Even though the service is designed mainly for malware analysis, inspection of any
binary file is possible. The service implements filtration module to remove clean parts of
binary, however, these modules can be turned off.

6.2.1 Constructed Patching Example

In the first example, two binary files were created on a Linux system for x64 architecture.
The first binary file represents a vulnerable program that calls an insecure function to
get user input and has a logic error in the condition evaluation. See the source code in
Appendix A.1. The second program was created as a patch for the program, replacing the
function call with a secure call and fixing the condition; see Appendix A.2.

Examination Options

Two methods can be employed to find similarities between input files using the YaraZilla
service. The first method is to use the extraction part of the service and feed it all of the
files. This would extract all sequences, basic blocks, and functions from the files, compare
them and return them as a potential dataset for a malware family. This option is quick,
but the result is much harder to use to examine patches as all functions would be grouped
in the single view and there is no disassembly diffing option included. The second approach
chosen for this example is to feed the original file to the YaraZilla service. Then, create
a “malware family” from the file, extracting all its sequences, basic blocks and functions
and store it to reference storage. The data in the database can be then compared to any
binary file by using the YaraZilla inspection service.

Inspection Results

Table 6.1 shows the result of the inspection of the patched file. The YaraZilla service found
the patched file similar to the vulnerable file on all three levels of abstractions. The higher
the abstraction, the more similar they were found to be.

1. On the sequence level, the changes in source code translate to different binary data
in the result binary file. That is why the sequence module found a lot of different
sequences in the patched file.

2. In general, the basic block module searches for basic blocks with the same flow of
instructions. The lines changed in the patched version resulted in adding or removing
instructions in one basic block. The reason for why just one of the basic blocks were

5http://diaphora.re/
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affected is that the changes were performed in one branch. The one changed basic
block was not matched on the result.

3. On the function level, all functions have stayed the same just structure of one has
been modified. Therefore, all functions were matched on the result.

Matched Total Similarity
Sequences 438 645 68%
Basic Blocks 21 22 95%
Functions 6 6 100%

Table 6.1: A similarity result returned by YaraZilla.

The function result can be further examined to find a modified basic block in a function
and see what instructions have been changed. Figure 6.1 shows that YaraZilla offers an
option to filter only similar functions. Using the option filters out the other five matched
identical functions. That leaves only one similar function, that is, the one that was patched.
The YaraZilla inspection can show comparison of disassembly of the two functions. See the
result disassembly comparison in Figure A.3.

Figure 6.1: Filtration option in the YaraZilla function inspection result.

The result in Figure A.3 shows that in the patched version, there is a call of a new
function with a different number of arguments. Apart from that, the change of the condition
in the source code resulted in a change of instruction jne to instruction je in the binary file.
The computed similarity (showed in the top-right corner) is 59% meaning that the structure
of the functions is 41% different. In the future, we may want to boost the similarity result
in such examples as this is a confident result. The possibilities for this are discussed in
Section 6.4.
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6.2.2 Examination of Subsequent Software Versions

In this example, the YaraZilla function module is compared to a widely used tool for binary
file comparison called Diaphora. The purpose of the comparison is to take two subsequent
versions of the same software and see if YaraZilla can find matches between these files.
Then, compare the quality of matches to Diaphora. For this example, two close versions of
Avast antivirus were chosen – Avast version 19.5 and 19.9.

For YaraZilla, the matching was performed the same way as described in Section 6.2.1.
The Diaphora requires users to export a function database for both binary files and then
compares the databases with a Python script. The result of function matching is in Ta-
ble 6.2.

Identified
Functions

Reference
Functions Matched Identical Similar Similarity

YaraZilla 106 103 102 100 2 99%
Diaphora 720 702 672 639 33 96%

Table 6.2: Comparison of results of function structural matching with Diaphora

The first noticeable thing in Table 6.2 is that the results of Diaphora and YaraZilla were
highly divergent in the number of identified functions. After investigation of the output of
Diaphora, it was found out that Diaphora includes statically linked functions in the result.
Apart from that, Diaphora is built on top of IDA, and the current implementation of
YaraZilla works with Rizin. The IDA seems to divide some functions into multiple smaller
units, and therefore Diaphora may contain a large dataset even without statically linked
functions.

Evaluation of Found Similarities

Firstly, the functions with identical structures identified by YaraZilla were compared to
the result of Diaphora. Both Diaphora and YaraZilla did not diverge in results. Each of
the YaraZilla identified functions was found in the Diaphora result. Secondly, there were
two pairs of functions identified by YaraZilla to have only a similar structure. Each of the
functions was found in Diaphora, as Figure 6.2 shows.
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Figure 6.2: Similar functions from YaraZilla in Diaphora result.

The first function with 45% similarity showed in Figure 6.2 contains the core of changes
in the two binary file versions. The function contains a new condition with an added jump
to a new basic block. Apart from that, the function seems to modify function calls. The
structural similarity can be considered to be 55% different; however, the confidence of the
match should be higher. The possibility to improve confidence is discussed in Section 6.4.
For the second match, one basic block was modified in the new version of the function.
Other parts of the function stayed similar.

To complete the evaluation, the one function that did not match by Yarazilla was found
and compared to the Diaphroa result. Diaphora matched the function with 75% confidence.
The match was, however, based on constants present in the function. The function has
a highly modified structure, with six basic blocks removed and many others differing. Such
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a finding would be possible only by also matching with a different feature vector, discussed
in Section 6.4.

6.2.3 Examination of Distinct Binary Files

This section is an addition to the example in Section 6.2.2. In this example, the binary file
of Avast 19.5 is compared to a binary file that should be distinct. As a distinct binary file
a Notepad++6 executable was chosen in version 7.9.5. The result of both YaraZilla and
Diaphora are in Table 6.3. The Notepad++ binary file was much larger, containing a lot
of functions. The file is distributed as a standalone binary and includes a lot of statically
linked functions. The YaraZilla removed a lot of statically linked functions. The Diaphora,
however, had possibly all of them in the result. From the similarity perspective, the results
of YaraZilla and Diaphora are close to each other. The similarity was computed as a ratio
of matched and reference functions.

Identified
Functions

Reference
Functions Matched Identical Similar Similarity

YaraZilla 2880 103 25 23 2 24%
Diaphora 5835 702 151 26 125 21%

Table 6.3: Comparison of matches in distinct binary files.

Firstly, most of the functions with the identical structure matched by YaraZilla were
found in the result of Diaphora. However, the functions not found in Diaphora were not
even present in the not-matched functions section. The reason is unclear, as these functions
were present in IDA for view.

Secondly, similar functions were examined. These are functions that differ in structure
in some way. There were two functions matched by YaraZilla to be similar as Figure 6.3
shows. The first with 35% structural similarity was not, however, matched by Diaphora.
After examination, it seems that it is indeed a false positive. Even though the structural
similarity is low, YaraZilla might implement mechanisms in the future to minimize such
cases. For example, adequately chosen similarity cut-off in results can be easily integrated.
Another solution is to deploy other strategies for post-matching examination to decrease
confidence (see section 6.4).

6https://notepad-plus-plus.org/
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Figure 6.3: Not all similar functions matched in YaraZilla were matched in Diaphora.

6.3 Using YaraZilla on Large Number of Samples
The initially deployed service available for malware analysis at Avast was pre-filled with
various malware families from multiple sources. The dataset integrated into the service
was processed partly manually and partly by a script. This section examines the initially
integrated dataset and describes how the dataset was extracted. In the end, the results of
the service with the dataset are evaluated.

The reference storage of the YaraZilla service was filled with samples from two primary
sources. The first source of the datasets was provided by Avast and consists of malware
families previously examined by malware analysts. The second source was a publicly avail-
able malware database hosted at Malpedia7. Table 6.4 shows a comparison of the number
of families in these two datasets.

Total
Families

x86
Families

1 Sample
Families

All Files
Packed

Included
Families Unprocessed

Avast Zoo 1458 1283 362 19 302 600
Malpedia 1906 1454 896 72 434 0

Table 6.4: Comparison of malware datasets.

Families from Malpedia were processed all, while families from Avast were included to
complement the ones from Malpedia. The purpose is that in the first step, samples were

7https://malpedia.caad.fkie.fraunhofer.de/
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processed all by hand to filter, clean, and select only relevant data from malware families.
More about how the samples were processed in Section 6.3.1. The processed families were,
however, saved for later automated processing by a script; see Section 6.3.3.

6.3.1 Dataset Processing

The datasets from Malpedia and Avast were both processed manually, firstly to extract
common sequences of malware families. Then, the extracted dataset was used to process
families on higher level of abstraction – basic blocks and functions level. To be included in
the database, the family was required to satisfy following criteria:

1. The family contains samples of x86 architecture. In the initial version of the YaraZilla
service, the preference is to tune the matching for x86 architecture, as most malware
is written for the architecture.

2. The samples of the family are unpacked. The packed samples are most of the time
packed with a non-standard packer per sample. The packed samples share little to no
sequences, and there is no guarantee that the sequences might be meaningful in the
result. The retdec-fileinfo8 tool was used to check if samples are packed. Even though
the tool cannot guarantee that a sample is unpacked, it can reliably tell if a sample
is packed.

3. The family contains at least two samples. Extraction from only one sample results
in a vast amount of sequences most of the time. In the extracted sequences are,
however, ones that are not unique for the malware family and lead to an increase in
false positives in the result.

During extraction, it was found out that some families need to be manually split into
multiple versions. In some cases, families like Hermes in Figure 6.4 contained samples from
various dates. However, there were no sequences on the intersection between the dates.
In the example of Hermes in Figure 6.4, it was also needed to split samples from a single
date into two parts. There were two clusters of samples with a large number of common
sequences. However, the two clusters shared only three sequences in between the clusters,
as shown in Figure 6.5. On the contrary, this approach may provide more insight into
specific version similarity during unknown samples inspection.

Figure 6.4: Example of malware family split into multiple versions.
8https://retdec.com/
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Figure 6.5: Families sharing sequences with hermes.2018-06-minors.

After the sequence extraction and the service’s initial deployment to the malware an-
alysts, the service was extended to support basic blocks and functions comparisons. The
extracted dataset from sequence processing was used again to extract basic blocks and func-
tions for the same families. As malware families were pre-processed, a script for extraction
was created and used for this purpose. The extraction and parameters of the script are
described in Section 6.3.3. The evaluation of the extraction is described in Section 6.3.4.

6.3.2 Sequences Extraction

The datasets of sequences of malware families were created in such a way to include just
enough sequences that should be unique for the family. This criterium is vague as there
is no one solution for all families. For each family, the number of sequences in the result
dataset varies. Multiple variables influence the number of sequences for family. For example,
the number of samples, their size, and difference in time of creation/identification of the
samples. Also, filtration might have left some families with many sequences while reducing
the number significantly in others. Even though YaraZilla was designed to minimize the
number of clean sequences, it cannot be generally guaranteed. Each sequence was run
through a filtration process with a cleanset database and Avast cleanset services during
extraction. Results of filtration services were cached for reproduction purposes.

Section 3.1.1 describes that the sequence module uses an entropy selection process. The
lower bound of entropy was set in half with the premise that if it yields too many false
positives in result, the YaraZilla provides an option to set more strict entropy interval on
inspection. Apart from that, more sequences in the database can be removed in post-
processing. The evaluation of extraction results is provided in Section 6.3.4.

6.3.3 Script Extraction

An automated script that works with the pre-processed database was created to extract
function and basic blocks from input datasets. The script uses YaraZilla REST API to
extract data of the specified input samples. After YaraZilla extracts functions and basic
blocks from input samples, the script selects individual functions and basic blocks based
on input parameters. As a result, the script returns the selected functions and basic blocks
to YaraZilla to store them in the reference storage for the specified family. The extraction
script has the three following parameters that alter how many basic blocks and functions
are extracted from the input samples.

1. Appearance ratio. The appearance ratio means how many files the basic block must
have been seen to be counted to result.

2. Maximal allowed size. The parameter tries to reduce the appearance of standard
compiler-generated constructs. An example of such constructs is in Appendix B.1.

3. Structure similarity. This parameter applies only to function selection. Each function
was extracted from at least one sample. The extraction process of YaraZilla for each
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function computes which files contain structurally similar function and then computes
average similarity for each function.

The script is on the start provided with a maximal and minimal allowed boundary for
each parameter. For each parameter, the script starts on the maximal boundary. Then, it
iteratively decreases each element’s value until a specified minimum amount of functions and
basic blocks is selected. Suppose the conditions provided to the script cannot be satisfied.
In that case, the script logs the input family and selects it for manual re-processing.

6.3.4 Examining Relationships

The initially created dataset was examined for interesting cases such as shared sequences,
basic blocks, and functions between stored families. The purpose of the examination was
to review the parameters used for extraction and gather a broader sense of how to improve
the extraction process to include just unique data for each family. From the perspective of
sequences, 283 families share sequences with at least one other family. There were obvious
cases when the family was extracted from Malpedia and then from Avast Zoo with a different
name.

In other cases, the relationship is not that clear. Their similarity might cause the
relationships between families, but it also might be caused by shared undetected statically
linked functions. As an example, Figure C.1 shows similar malware families to Matrix
banker based on the number of shared basic blocks. The example is a particular case
when most shared basic blocks are not unique for the family. The shared basic blocks were
examined case by case. It was found that it is a single basic block for all families that
share one basic block with Matrix banker. The basic block is shown in comparison with the
Mespioza family in Figure C.2. The basic block varied only in slight variation of parameters
of a few of its instructions. The basic block is part of a larger function that is also shared
between the families shown in Figure C.3. The function is an undetected statically linked
function that could have been removed with a larger set of pre-processing signatures. Such
a function and its basic blocks can be further removed from the dataset in three ways, by:

1. user interaction in the frontend and let user specify uninteresting relationship,
2. updating pre-processing signature files used to remove statically linked functions and

preventing the function from returning to the dataset later, or
3. selecting the function to be clean and storing it in the cleanset database for future

filtration.

6.4 YaraZilla Limitations and Discussion
The current version of YaraZilla provided a good introduction to a new file similarity service.
Even though not all data included in the dataset is unique for each family, the service is
designed and works in such way that misleading or non-interesting results can be minimized
on the user level. On option provided for users is option to use various parameters when
inspecting new unknow samples. Another that was discussed is to improve processing and
filtration part of the service for example by extending pre-processing capabilities. Apart
from that, the dataset can be improved by extending the dataset of cleanset database also
provided by this work.
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Apart from similarity service, YaraZilla has been proven to work as a binary diffing
tool on a scale too. The function extraction and inspection functionality can be used to
find changes in the code on larger scale in one-to-many comparison way. Currently, the
matching mechanism of function extraction relies solely on Jaccard similarity, however, this
can be extended in another comparison layer. A fast matching will be the core of function
module and upon match another layer of comparison will be deployed to boost confidence
of matches.

Another possible way to extend the service is further automating dataset extraction. For
example, by integrating machine learning mechanisms to automate the process of selection
interesting sequences, basic blocks and functions to integrate into the reference storage.

6.5 Cleanset Database
This work provided a new IRD structure for storing and fastly querying a large amount of
uniformly distributed data. The design of the structure in Section 4.5 was general, and one
of the outputs of this work is implemented, tested, and deployed variant of the IRD. The
implementation is currently deployed and available for traffic on Avast’s internal network.
As of May 2021, the deployed service in Avast’s network stores two billion unique hashes
representing bytes of clean samples. The dataset was partly generated by processing a large
number of binary data and partly by caching results of internal services for querying clean
files.

6.5.1 IRD Parameters

Section 4.5 defines the IRD structure as a 5-tuple 𝑅 = (𝐼,𝐷,𝐵𝐴, 𝐵𝐷, 𝐵𝐼). The 𝐼 and 𝐷
are tuples that represent stored data. 𝐵𝐴, 𝐵𝐷 and 𝐵𝐼 are parameters constraining the
𝐼 and 𝐷 tuples. Based on the hash collision analysis in Section 4.4.2 and convenience of
implementation on architecture x64, the following parameters were chosen to store hashes:

1. Address size of the index tuple 𝐵𝐴 = 32𝑏,
2. size of elements stored in data tuple 𝐵𝐷 = 32𝑏, and
3. size of elements stored in address tuple 𝐵𝐼 = 8𝑏.

We can compute the theoretical maximum and minimal number of stored hashes based
on analysis of IRD parameters in Section 4.5.1. The computation of effectiveness with
comparison to sequential storage is from the following equation:

𝑁 ≥ 2𝐵𝐴𝐵𝑖

𝐵𝐴

𝑁 ≥ 1.0737 · 109

Theoretical maximal number of stored data deduced from the type of data distribution is:

𝑁 ≤ 2𝐵𝐼+𝐵𝐴

𝑁 ≤ 1.0995 · 1012
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6.5.2 Scaling and Resources

Another parameter that was specified as an addition to formal 𝐼𝑅𝐷 is a chunk size specified
in Section 4.5.2. The chunk size parameter affects the complexity of the structure in the
memory and the time complexity of the query. The time required to compute an address
of an element in the structure rises with a larger chunk size. On the contrary, the structure
is more memory efficient with larger chunk size. For demonstration of this principle, the
Figure 6.6 shows how the size of the chunks of the implemented solution affects the size
of the structure in memory. The figure shows multiple graphs, each for a different number
of stored hashes. The vertical axis summarizes the memory usage of each solution. The
𝑆𝑒𝑞 represents sequential storage, 𝐼𝑅𝐷 theoretical implementation, and numerical values
denote chosen chunk size. The input values were randomly generated for purpose of the
example. The memory load was measured with pmap9.

Figure 6.6: Effect of chunk size on memory requirements.

Table 6.5 shows how larger chunk size (𝐶𝑆) affects the time to query data of specified
size (𝑄). The query data were randomly generated and monitored storage was the deployed
database with real-world data. As the measurement was performed on the deployed storage,
a REST API was used to query the result. The time for communication and data processing
is therefore included in the measurement as well. The experiment was conducted on the
same machine as the service is deployed to minimize communication delay.

9https://linux.die.net/man/1/pmap
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Q \CS 128 256 512 1024 2048 4096 8192 16384 32768 65536
50000 0.06 0.06 0.07 0.07 0.07 0.10 0.10 0.13 0.22 0.34
100000 0.09 0.10 0.11 0.13 0.14 0.16 0.21 0.28 0.34 0.59
200000 0.18 0.19 0.21 0.25 0.25 0.30 0.45 0.57 0.82 1.37
400000 0.36 0.37 0.44 0.48 0.59 0.59 0.86 1.07 1.53 2.42
800000 0.70 0.73 0.86 0.94 0.98 1.43 1.52 2.28 3.39 5.62
1600000 1.43 1.48 1.71 1.75 2.31 2.36 2.93 4.03 5.61 10.66
3200000 2.93 2.94 3.33 3.76 4.06 4.79 6.33 7.89 11.48 21.25
6400000 5.99 5.95 6.54 7.27 8.26 9.90 12.18 16.07 24.25 43.85

Table 6.5: Effect of the chunk size parameter on the time to execute query in seconds.

6.5.3 Improvements and Future work

Even though the current implementation is fast, it can be improved. Currently, the com-
putation is done only sequentially. In the future, multiple processors can be integrated into
the algorithm to compute prefix sums more quickly and speed up the query. The prefix
sums can also be pre-computed and stored in the index, providing constant-time complexity
on the query. However, this will mean that the time complexity will transfer to insert and
remove operations.

The implemented service provided a solid foundation for future improvements. It was
shown that the database could hold a large number of hashes and scales. Even though the
current implementation can store a large number of data, it might cache a much larger
amount of hashes in the future. To do that, IRD was designed with variable parameters
that can be altered for the use case. For YaraZilla, the parameters were chosen to fit x64
architecture and provide fast queries even with sequential implementation. The IRD is not
limited to be in-memory structure and can be used with loading and storing data on disk.
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Chapter 7

Conclusion

This work studied the binary file similarity area and its usage to deal with malware in
practice. A review of commonly used Avast tools was provided, and a use case for a new
file similarity service was formed. The established file similarity terminology was used to
devise mechanisms for comparing binary files on multiple abstraction levels, focusing on
a malware analysis use case. Then, the outlined mechanisms provided a foundation for
designing a binary file similarity service. The service operation was divided into inspection
and extraction sub-services.

From the inspection perspective, well-known mechanisms for comparison were used.
The mechanisms were modified to provide usability on large-scale querying. The inspection
was designed to perform identity searches of binary data at the lowest level of abstraction.
The normalization process was analyzed and integrated to extract similarity hashes usable
for large queries on the instruction and basic-block level. On the function level, the service
was designed to approximate structural similarity on a scale, using a well-known mechanism
from document similarity searching.

The extraction part of the service was designed as a complement to the inspection. The
design devised mechanisms that are extensible and parametrizable. Filtration mechanisms
were formed to extract only the essence of binary files needed for the reference dataset. One
particular mechanism created by this work is a new method of filtration of clean binary
data. The new mechanism is utilizing hashing and a specialized database for storing a
vast amount of hashed data. For the new database, a new data structure for efficiently
storing uniformly distributed values was proposed to deal with a random nature of hashes
– Indexable Random Data Structure (IRD). A formal model of IRD was created and used
to prove the memory limitations of this structure. Then, the IRD structure was altered for
computer usage, and data manipulation algorithms were constructed.

During implementation, multiple issues were addressed to automate the process of build,
testing, and deployment to create a service that can be scaled on increasing demand. After
the implementation, the service was put under testing on various levels. On the first level,
the service usability was validated by showing it can be used for examination similar binary
files. The result was compared to Diaphora. It was shown that the service is capable
of comparable results. Then, the service was filled with vast datasets from Avast and
Malpedia, and results were evaluated. Even though not all data were showed to be unique
in the dataset for each family, the service was shown to minimize unwanted results by a
user-level parametrization.

Both the file similarity and filtration services were deployed and are available on the
internal company network at Avast. Designed file mechanisms devised in this work are
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available for malware researchers, and their demands are iteratively improving the file
similarity service.
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Appendix A

Constructed Patches Example

1 #include <stdio.h>
2 #include <string.h>
3

4 int main(void) {
5 char buff[14];
6 printf("Enter password: ");
7 gets(buff);
8

9 if (!strcmp(buff, "popocatepetl"))
10 printf("Try again!\n");
11 else
12 printf("You're in.\n");
13

14 return 0;
15 }

Figure A.1: Original vulnerable code.

1 #include <stdio.h>
2 #include <string.h>
3

4 int main(void) {
5 char buff[14];
6 printf("Enter password: ");
7 // Fixed: gets is not secure!
8 fgets(buff, 14, stdin);
9

10 // Fixed: Error in condition!
11 if (strcmp(buff, "popocatepetl"))
12 printf("Try again!\n");
13 else
14 printf("You're in.\n");
15

16 return 0;
17 }

Figure A.2: Patched version of the vulnerable code.
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Figure A.3: The patched function found by YaraZilla.
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Appendix B

Extraction Constraints

Figure B.1: Setting the size of basic blocks low yields many common constructions.
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Appendix C

Evaluation of Dataset

1 "win.matrix_banker": {
2 "total": 332
3 "win.balkan_door": 6, "win.stop": 5,
4 "win.breach_rat": 4, "win.funny_dream": 2,
5 "win.skipper": 2, "win.milum": 2,
6 "win.tonedeaf": 2, "win.thanatos": 2,
7 "win.mokes": 2, "win.hotcroissant": 1,
8 "win.bolek": 1, "win.kwampirs": 1,
9 "win.xxmm": 1, "win.adhubllka": 1,

10 "win.ismagent": 1, "win.retefe": 1,
11 "win.unidentified_060": 1, "win.pupy": 1,
12 "win.taintedscribe": 1, "win.coredn": 1,
13 "win.wastedlocker": 1, "win.dented": 1,
14 "win.sedreco": 1, "win.gootkit": 1,
15 "win.wndtest": 1, "win.zeus_openssl": 1,
16 "win.torrentlocker": 1, "win.gophe": 1,
17 "win.ketrican": 1, "win.badnews": 1,
18 "win.ddkeylogger": 1, "win.kagent": 1,
19 "win.helminth": 1, "win.mariposa": 1,
20 "win.dadstache": 1, "win.flawedammyy": 1,
21 "win.teslacrypt": 1, "win.raccoon": 1,
22 "win.flusihoc": 1, "win.rhino": 1,
23 "win.adkoob": 1, "win.phandoor": 1,
24 "win.babar": 1, "win.ryuk_stealer": 1,
25 "win.blindingcan": 1, "win.dadjoke": 1,
26 "win.ketrum": 1, "win.purplewave": 1,
27 "win.plugx": 1, "win.vidar": 1,
28 "win.dtrack": 1, "win.keyboy": 1,
29 "win.mespinoza": 1, "win.electricfish": 1
30 }

Figure C.1: Database dump for Matrix Banker similar families.
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Figure C.2: The basic block Matrix Banker shares with Mespioza and other families.
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Figure C.3: The one shared basic block of Matrix Banker in context of commonly shared
function.
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Appendix D

Included Content

The medium included with this work contains the following content:

• text of the work in PDF format – dp-xkubov06.pdf,

• directory tex with LATEXfiles,

• directory yarazilla containing all the implemented source codes,

• file README.md.

78


	Introduction
	Executable File Similarity
	Binary Code Similarity
	Comparison Type
	Comparison Granularity
	Comparison Cardinality

	Binary Code Similarity Applications
	File Similarity Comparison Approaches
	File Similarity as a Service
	File Similarity Technologies at Avast
	YARA Rules
	Clusty
	Avast Cleanset
	Summarization


	YaraZilla File Similarity Service
	Comparison Mechanisms
	Sequence Module
	Basic Block Module
	Function Module

	Filtration Mechanisms
	Semantic Pre-processing
	Entropy Filtration
	Cleanset Filtration
	Pluggable Filters

	Semantics Extraction
	Normalization Module
	Approximation of Structural Similarity
	MinHashes and Jaccard Similarity
	Comparable Representation for CFG
	Extracting MinHashes from CFG String

	YaraZilla Architecture Design
	YaraZilla Frontend
	YaraZilla backend
	Filtration Service
	Malware Database


	Dataset Extraction and Management
	Malware Dataset Extraction Service
	Selection Process
	Dataset Extraction Modules
	Sequences Extraction
	Basic Blocks Extraction
	Functions Extraction

	Database for Cleanset
	Efficient Storage and Query
	Collisions of Hashes

	Efficient Random Data Storage
	Indexable Random Data Structure IRD
	Memory Manageable IRD


	Scalable Service Implementation
	YaraZilla in Microservices
	YaraZilla Backend
	YaraZilla Frontend
	WhiteseqsDB Service
	MalwareDB Service
	REST API
	Web Server and WSGI

	Automated Deployment Pipeline
	Automating Build
	Automating Testing
	Continuous Integration
	Continuous Deployment
	Monitoring and High Availability

	User Interface

	Testing and Evaluation
	YaraZilla Functionality Testing
	Functionality Evaluation
	Constructed Patching Example
	Examination of Subsequent Software Versions
	Examination of Distinct Binary Files

	Using YaraZilla on Large Number of Samples
	Dataset Processing
	Sequences Extraction
	Script Extraction
	Examining Relationships

	YaraZilla Limitations and Discussion
	Cleanset Database
	IRD Parameters
	Scaling and Resources
	Improvements and Future work


	Conclusion
	Bibliography
	Constructed Patches Example
	Extraction Constraints
	Evaluation of Dataset
	Included Content

