
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SECURE PROVISIONING OF IOT DEVICES
BEZPEČNÉ ZPROVOZNĚNÍ IOT ZAŘÍZENÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. PETR RUSIŇÁK
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Master's Thesis Specification

Student: Rusiňák Petr, Bc.
Programme: Information Technology Field of study: Information Technology Security
Title: Secure Provisioning of IoT Devices
Category: Security
Assignment:

1. Study existing secure IoT provisioning solutions and protocols, supply a comparison of
various approaches.

2. Design own secure IoT provisioning system using ESP32 platform, based on the ESP-NOW
protocol (Espressif's proprietary connectionless WiFi protocol):
a) study the ESP-NOW protocol details,
b) suggest suitable way of authorising devices for subsequent WiFi network access
(certificates, whitelisting). For this very case it is legitimate to "sacrifice" one device for
providing specific provisioning service (ie the provisioning is not strictly general, which is also
given by use ESP-NOW),
c) mind possible future extensions (eg application firmware bootstrapping), make whole
system modular,
d) supply a proof-of-concept code before starting real implementation.

3. Implement the solution as designed in item 2.
4. Demonstrate a function of the system, evaluate your results and suggest possible

improvements/extensions.
Recommended literature:

ESP NOW (https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-
reference/network/esp_now.html)
ESP32 devboards tutorial (build/flash/monitor) - https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/get-started/index.html
IoT provisioning principles - https://www.electronicdesign.com/technologies/iot/article/21126
707/runtime-provisioning-of-security-credentials-for-iot-devices
Existing implementations of ESP32-based provisioning - https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-reference/provisioning/index.html

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malinka Kamil, Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: November 11, 2020

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23754/2020/xrusin03 Page 1/1

Abstract
With the increasing number of IoT devices sold each year, many large-scale applications
using IoT devices are emerging. This creates a demand for secure and easy-to-use device
provisioning protocols, as it is not feasible to spend a tremendous amount of time config-
uring the devices. The aim of this thesis is to create a secure provisioning protocol that
will configure the network credentials on an out-of-the-box IoT device automatically. The
implemented protocol uses a dedicated Configurator device that stores the network cre-
dentials of all compatible devices from a given administrative domain. The Configurator
device will provide the network credentials to unconfigured devices upon request, assuming
they are able to authenticate with the Configurator. The protocol uses public-key cryptog-
raphy to verify the identity of the devices during. This protocol was implemented using
ESP32 devices, and the connectionless ESP-NOW protocol is used to communicate with
the unconfigured devices.

Abstrakt
S ohledem na stále rostoucí počty prodaných IoT zařízeních se postupně začínají objevovat
projekty, ve kterých jsou IoT zařízení použity ve stovkách až tisících. Tyto projekty však
z časových důvodů neumožňují ruční konfiguraci každého zařízení zvlášť, čímž vzniká pop-
távka po protokolech, které dokáží rychle, ale přitom i bezpečně, nastavit nové IoT zařízení.
Cílem této práce je vytvořit protokol, který umožní automatický přenos přihlašovacích
údajů k Wi-Fi síti do nově zakoupeného IoT zařízení. Navržený protokol používá speciální
konfigurační zařízení, ve kterém budou uloženy přihlašovací údaje všech zařízeních kompat-
ibilních s tímto protokolem v rámci dané administrativní domény, a které bude poskytovat
tyto přihlašovací údaje nenakonfigurovaným IoT zařízením za předpokladu, že je možné
ověřit jejich identitu. K ověření identity nenakonfigurovaných zařízení je použita asymet-
rické kryptografie. Protokol byl implementován pomocí IoT zařízeních ESP32, přičemž ke
komunikaci mezi nenakonfigurovanými je využit nespojovaný komunikační protokol ESP-
NOW.

Keywords
IoT, provisioning, IoT device provisioning

Klíčová slova
IoT, provisioning, zprovoznění IoT zařízení

Reference
RUSIŇÁK, Petr. Secure Provisioning of IoT Devices. Brno, 2021. Master’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Mgr. Kamil Ma-
linka, Ph.D.

Rozšířený abstrakt
V dnešní době již IoT zařízení nejsou jen záležitostí nadšenců, ale nacházejí své využití
i v rámci masových průmyslových nasazení. Instalace stovek nebo tisíců nových IoT zařízení
však s sebou nese nová úskalí, na která nejsou současná IoT zařízení připravena.

V současnosti instalace nového IoT zařízení často probíhá tak, že nové IoT zařízení
při svém prvním spuštění vytvoří vlastní dočasnou Wi-Fi síť, ke které se musí uživatel
připojit z jiného zařízení (typicky počítače nebo mobilu). Po připojení k této síti dojde
k přesměrování na speciální stránku s formulářem, který žádá o vyplnění přístupových
údajů k Wi-Fi síti, ke které se bude IoT zařízení v budoucnu připojovat. Po odeslání tohoto
formuláře si IoT zařízení uvedené údaje uloží, ukončí vysílání vlastní Wi-Fi sítě a připojí se
k zadané síti. V kapitole 3 však jsou uvedeny i jiné existující přístupy k prvotní konfiguraci
zařízení, např. pomocí mobilní aplikace nebo agregačního zařízení, které se snaží sjednotit
co nejvíce protokolů používaných různými IoT zařízeními do jednoho rozhraní.

Dále je v kapitole 4 rozebrán nadcházejí standard Wi-Fi Easy Connect, jehož cílem je
vytvořit jednotný postup pro snadné přidávání nových zařízení (ať už klientů nebo přís-
tupových bodů) do existujících Wi-Fi sítí. Pro přidání nového zařízení do sítě jsou v rámci
tohoto standardu zapotřebí dvě zařízení: konfigurované zařízení a konfigurátor, kde konfig-
urátor je zřízení, které na vyžádání poskytne konfigurovanému zařízení přístupové údaje do
Wi-Fi sítě. Tento standard je však v současnosti ve fázi příprav, a proto není podporován
současnými Wi-Fi zařízeními. Uvedený standard je navíc příliš komplexní pro jeho přímé
využití v rámci této práce, neboť pokrývá velké množství případů užití, ale některé jím
definované koncepty zde budou převzaty.

Obdobně jako je tomu v případě nadcházejícího standardu Wi-Fi Easy Connect, tato
práce definuje konfigurační protokol pro nastavení nového zařízení. Tento protokol využívá
speciální konfigurační zařízení, ve kterém jsou uloženy přihlašovací údaje všech IoT zařízení,
které chtějí využívat tento protokol. Konfigurace nového IoT zařízení pak probíhá tak, že
toto nové zařízení při svém prvním spuštění automaticky vyhledá konfigurační zařízení a
požádá jej o poskytnutí přístupových údajů k Wi-Fi síti, které mu toto konfigurační zařízení
po předchozí autentizaci poskytne.

Vlastní konfigurační protokol se tak skládá z několika fází. Pro účely popisu tohoto
protokolu, nechť stanice je nenakonfigurované IoT zařízení, které využívá služeb konfigurá-
toru za účelem získání přístupových údajů k Wi-Fi síti a konfigurátor je zařízení, které na
vyžádání poskytuje stanicím jejich přístupové údaje k Wi-Fi síti.

Ještě před spuštěním tohoto konfiguračního protokolu je však nutné, aby obě zařízení
splňovala určité požadavky. Zaprvé, všechna zařízení (stanice i konfigurátor) musí mít
vygenerovaný pár soukromého a veřejného RSA klíče, který bude použit k ověření identity
daného zařízení. Dále je nutné, aby konfigurátor obsahoval seznam přihlašovacích údajů
k Wi-Fi síti všech stanic, přičemž každá stanice je identifikována SHA-256 otiskem jejího
veřejného klíče. A nakonec, je-li vyžadována oboustranná autentizace obou zařízení, je
zapotřebí stanici předem poskytnout veřejný klíč konfigurátoru.

Konfigurační protokol je pak zahájen ze strany stanice, která pravidelně vysílá všes-
měrové zprávy informující konfigurátor o její existenci. Tato zpráva mj. obsahuje SHA-
256 otisk veřejného klíče stanice, což umožňuje konfigurátor dopředu určit, zda má smysl
reagovat na danou zprávu (pokud konfigurátor daný otisk nezná, předpokládá, že je zprává
určena pro jiný konfigurátor v okolí a ignoruje). Tyto oznamovací zprávy stanice vysílá až
do okamžiku, kdy od konfigurátoru obdrží požadavek na zaslání svého veřejného klíče. Na
tuto zprávu stanice odpoví zasláním svého kompletního veřejného klíče. Po přijetí odpovědi

si konfigurátor ověří, že získaný klíč odpovídá jeho otisku, který znal předem. Pokud ano,
protokol postoupí do autentizační fáze.

Průběh autentizační fáze je závislý na tom, zda stanice vyžaduje oboustrannou auten-
tizaci, neboť identita stanice je ze strany konfigurátoru ověřována vždy, zatímco ověření
konfigurátoru ze strany stanice je v rámci tohoto protokolu volitelné. Vlastní průběh au-
tentizace je pak založen na principu výzva-odpověď, kdy jedno zařízení vygeneruje výzvu
zašifrovanou veřejným klíčem druhého zařízení, která je protistranou dešifrována a zaslána
zpět po zašifrování veřejným klíčem prvního zařízení. V případě neaktivní oboustranné
autentizace je tento postup zjednodušen na přímé odeslání přihlašovacích údajů k Wi-Fi
síti po zašifrování veřejným klíčem stanice.

Po dokončení autentizační fáze konfigurátor odešle stanici přístupové údaje k Wi-Fi
síti. Vzhledem k běžné délce přihlašovacích údajů k Wi-Fi síti protokol neustanovuje mezi
zařízeními sdílené tajemství pro symetrickou šifru, ale přihlašovací údaje jsou asymetricky
zašifrovány veřejným klíčem stanice. Stanice si následně tyto údaje uloží v perzistentní
paměti, aby nebylo nutné při dalším spuštění tohoto IoT zařízení nutné tyto údaje opět
získávat pomocí tohoto protokolu.

Pro implementaci stanice i konfigurátoru byly použity IoT zařízení ESP32-S2-Saola-1.
V rámci implementace protokolu bylo také nutné vyřešit fakt, že stanice s konfigurátorem
nemohou navzájem komunikovat prostřednictvím cílové Wi-Fi sítě, neboť stanice ještě nezná
její přístupové údaje. Toto bylo vyřešenou použitím nespojovaného protokolu ESP-NOW,
který umožňuje komunikaci mezi dvěma ESP32 zařízeními jen na základě MAC adres. In-
terně je tento protokol implementován výrobcem pomocí IEEE 802.11 Management rámců.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html

Secure Provisioning of IoT Devices

Declaration
I hereby declare that this Masters’s thesis was prepared as an original work by the author
under the supervision of Mr. Malinka. The supplementary information was provided by
Mr. Vychodil from Espressif Systems. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Petr Rusiňák
May 17, 2021

Acknowledgements
I would like to thank both Mr. Malinka and Mr. Vychodil for the consultations they
provided me during the course of the whole academic year, and the insights they gave me
into the inner working of IoT devices.

Contents

1 Introduction 3

2 Problem definition 4

3 Existing solutions 6
3.1 Methodology . 6
3.2 Network discovery protocols . 6
3.3 Gateway-oriented solutions . 7
3.4 Device Cloud Middleware . 8
3.5 Cloud-oriented solutions . 8
3.6 Implementation in ESP-32 . 9
3.7 Chapter summary . 9

4 Wi-Fi Easy Connect standard 12
4.1 Enrollee and Configurator roles . 12
4.2 Initiator and Responder roles . 13
4.3 Mutual authentication . 14
4.4 DPP prerequisites . 14
4.5 Provisioning Protocol . 14

4.5.1 Bootstrapping phase . 14
4.5.2 Authentication phase . 15
4.5.3 Configuration phase . 16
4.5.4 Access phase . 17

5 ESP-32 18
5.1 Basic features . 18
5.2 Development toolkit . 18
5.3 Build system . 19
5.4 Menuconfig . 20
5.5 ESP-NOW . 21
5.6 Cryptographic functions . 22
5.7 eFuse . 22
5.8 Flash encryption and secure boot . 23
5.9 Non-volatile storage . 24
5.10 FreeRTOS features . 25

5.10.1 Timers . 25
5.10.2 Tasks . 25
5.10.3 Queues . 26

1

6 Analysis 28

7 Design 29
7.1 Authentication of devices . 30
7.2 Enrollee’s prerequisites . 31
7.3 Configurator’s prerequisites . 32
7.4 Message fragmentation . 32
7.5 Messages . 33

7.5.1 Presence announcement . 34
7.5.2 Public key request . 34
7.5.3 Public key reply . 35
7.5.4 Authentication request . 35
7.5.5 Authentication reply . 36
7.5.6 Connection details message . 36

8 Implementation 38
8.1 Key generation and storage . 38
8.2 Network credentials storage . 39
8.3 Cryptography wrapper . 40
8.4 Network stack . 41

8.4.1 Wi-Fi initialization . 41
8.4.2 Task for processing ESP-NOW messages 41
8.4.3 Sending a message . 41
8.4.4 Receiving a message . 42

8.5 STA (Enrollee) operation . 43
8.5.1 The initial (null) state . 43
8.5.2 Broadcasting presence . 44
8.5.3 Wait for authentication request . 44
8.5.4 Wait for connection details . 44

8.6 Configurator operation . 44
8.6.1 Processing the Presence announcement message 45
8.6.2 Processing the Public key reply message 45
8.6.3 Processing the Authentication reply message 45

8.7 Program configuration and execution . 46

9 Evaluation 47
9.1 Fulfillment of requirements . 47
9.2 User experience . 48
9.3 Security considerations . 49

9.3.1 Attacks on the protocol when mutual authentication is enabled . . . 49
9.3.2 Attacks on the protocol when mutual authentication is disabled . . . 49
9.3.3 Attacks on application deployment 49
9.3.4 Attacks on the Enrollee device . 50
9.3.5 Attacks on the Configurator device 50

9.4 Possible extensions . 50

10 Conclusion 52

Bibliography 54

2

Chapter 1

Introduction

Over the past two years, the number of Internet of Things (IoT) devices sold annually has
increased from 3.9 million in 2018 to 4.8 million in 2019 and is expected to reach 5.8 million
in 2020 [21]. IoT devices are now not used by enthusiasts and home users only but they also
play a vital role in many large-scale business applications, as evidenced by many research
papers on the topic such as [25, 32].

However, utilizing IoT devices in large-scale environments brings new challenges when
deploying hundreds or thousands of new devices to an IoT network. New devices must be
provided with network credentials so they can connect to the target network, and their
application software often needs to be configured based on the use-case of each device.
In home environments, this usually means flashing each device with application-specific
firmware and configuring it manually. However, this approach deems unacceptable for
large-scale applications because a considerable amount of time must be spent configuring
each individual device. Some manufacturers provide tools that simplify this provisioning
process but as will be shown in Chapter 3, these tools are far from perfect.

The aim of this thesis is to design and implement a new zero-touch provisioning protocol
that will automatically provide a new IoT device with network credentials in a secure
manner when the new device is first booted up. The protocol uses an Enrollee-Configurator
scheme, where the new IoT device (Enrollee) communicates with a dedicated Configurator
device to obtain its network configuration details (the SSID name and network credentials).
In this implementation, ESP32-S2 microchips are used as both Enrollee and Configurator
devices. To overcome the issue that the Enrollee device has no Wi-Fi connectivity yet,
a connectionless protocol ESP-NOW is used to communicate between the devices.

The proposed provisioning protocol consists of three phases: first, the Enrollee locates
the Configurator using broadcast messages. Second, the Configurator verifies the Enrollee’s
identity using public-key cryptography (and optionally vice-versa). And third, the Config-
urator sends the Enrollee the network configuration details.

The thesis is structured as follows. First, Chapter 2 further defines the problem at hand.
Then, Chapter 3 overviews existing theoretical and practical solutions to the problem, and
Chapter 4 overviews an upcoming standard Wi-Fi Easy Connect, that can be leveraged
when implementing a new provisioning protocol. This is followed by Chapter 5, which
introduces the chosen ESP32 chip and its features. Chapter 6 analyses the state-of-the-art
explained in the previous chapters and describes the implications for our approach. After
that, Chapter 7 describes the design of the proposed provisioning protocol, and Chapter 8
highlights its implementation. In Chapter 9, the protocol will be evaluated from the ease-
to-use and the security points of view. Finally, Chapter 10 concludes the thesis.

3

Chapter 2

Problem definition

As will be explained in detail in Chapter 3, the current solutions to the provisioning of IoT
devices are somewhat cumbersome. In some cases, it is necessary to connect the IoT device
to a computer using a USB cable and flash its firmware manually before the device can
be used. Other unconfigured IoT devices will create a Wi-Fi Access Point, and the user is
expected to connect to this network from their computer or smartphone. Upon connecting,
the user is redirected to a landing page (such as the one shown in Figure 2.1a), where they
enter the network credentials that will be used by the IoT device to connect to an existing
Wi-Fi network.

(a) A landing page1 (b) A smartphone application

Figure 2.1: Examples of interfaces for setting up Wi-Fi credentials to IoT devices

The IoT device chosen for the implementation of this thesis is the ESP32-S2-Saola-1
developed by Espressif Systems. The reason for choosing this device is that the ESP32
devices are quite affordable, and the S2-Saola-1 variant offers all necessary features for this
task, especially a debugger interface, Wi-Fi module, and an accelerator for cryptographic
operations. It should be noted that the author of this theses has received two of these
devices from the aforementioned company free of charge.

The ESP32 devices currently offer a quite specific method for the provisioning of IoT
devices with network credentials. Instead of forcing the user to configure the connection

1Source of image: https://esphome.io/components/captive_portal.html

4

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html
https://esphome.io/components/captive_portal.html

details on each device individually, the user downloads a smartphone app2 shown in Fig-
ure 2.1b. In this app, the user enters the Wi-Fi credentials (the app uses the same SSID the
smartphone is currently connected to, thus only the pre-shared key must be entered), and
upon clicking a button, the app will broadcast these details to all nearby unconfigured ESP
devices. More details on this app will be given in Section 3.6. However, the main fallback
of this solution is that the app may broadcast the Wi-Fi credentials to an unauthorized
device. The app also does not allow sending a different set of credentials to each device.

Thus, there is a demand for a new approach. Chapter 4 will introduce an upcoming
standard Wi-Fi Easy Connect from the Wi-Fi Alliance that provides a new approach to
this issue, however, the standard is too complex because it solves a broader issue.

The existing approached will be further analysed in Chapter 6. However, there are
some requirements for the implementation of the provisioning protocol that can be defined
now:

• There should be a dedicated configurator device that will store all necessary network
credentials, and provide them to all legitimate IoT devices, rather than forcing the
user to configure the credential details on each device separately.

• As most IoT devices have little to no user interface, the implementation should not
require any unnecessary user action on the IoT device that is provisioned.

• The provisioning protocol should be secure. It must not be possible for an unau-
thorized IoT device to obtain the network credentials. Other security vulnerabilities
should be mitigated as well.

• The provisioning protocol must anticipate that the newly provisioned device has no
internet connectivity, as the device did not receive the network credentials yet. Thus,
an alternative way for the newly provisioned device and the configurator device to
communicate must be found.

• The IoT device should only engage in the provisioning protocol if it had not received
the network credentials yet.

2The app is available at https://apps.apple.com/us/app/espressif-esptouch/id1071176700 for iOs
or https://play.google.com/store/apps/details?id=com.khoazero123.iot_esptouch_demo for Android

5

https://apps.apple.com/us/app/espressif-esptouch/id1071176700
https://play.google.com/store/apps/details?id=com.khoazero123.iot_esptouch_demo

Chapter 3

Existing solutions

This chapter provides an overview of current approaches to the provisioning of IoT devices.
First, Section 3.1 describes the methodology used to identify relevant literature sources.
Then, Section 3.2 shows how some network discovery protocols can be leveraged to provide
devices with network configuration. Sections 3.3 and 3.4 show state-of-the-art approaches
to the provisioning of IoT devices, based on the gateway-oriented approach and the device
cloud middleware respectively. Next, Section 3.5 gives examples of how the provisioning is
done when installing a new virtual device in a cloud solution. Section 3.6 gives more details
on how the current provisioning process is implemented in ESP32. And finally, Section 3.7
summarizes all aforementioned approaches and states what problems need to be considered
when creating a new provisioning platform.

3.1 Methodology
In order to find all relevant approaches to IoT provisioning, this chapter will be based on
both peer-reviewed academic sources and web articles. When reviewing academic sources,
the ACM, IEEE Explore, and SpringerLink databases will be considered first. Every search
term will be always looked up in all three databases, and the most relevant results among
all databases will be used. If the number or quality of results is not sufficient, either other
literature databases will be searched using tools like Google Scholar, or the search term will
be modified.

Web articles will be used to gather information about commercial IoT solutions. This
will typically include websites of IoT device manufacturers and documentation of their
products, or third-party tutorials on IoT devices.

3.2 Network discovery protocols
In 2010, when IoT was just emerging, Patrick et al. suggested in their book Vision and
Challenges for Realising the Internet of Things [31] to use existing network discovery pro-
tocols to obtain network connection details if the IoT device does not have these details
hardcoded. They suggested using Bonjour, WS-Discovery, UPnP, or any similar protocol.

Bonjour is a zero-configuration protocol developed by Apple that allows automatic
addressing and naming of devices, and service discovery. This protocol was designed to
allow new devices, such as printers, to easily connect to a new network with zero interaction
from the user apart from plugging the Ethernet cable in and powering up the device.

6

After the device obtains its IP configuration, the protocol will announce this new device’s
presence to all computers in the local area network (LAN). Thus, the protocol omits the
need to configure the printer with IP configuration, and all workstations are not required to
manually add this new device in their operating system’s settings or to install the printer’s
drivers. [4]

The main disadvantage of this protocol is the way it handles addressing. If the new
device’s IP address is not issued using DHCP, the protocol expects that the device will use
a link-local address only, which may not provide full internet access. The protocol also does
not offer any convenient way to provide network credentials to the new device in case of
a Wi-Fi connection. [4]

For device naming and service discovery, the protocol sends DNS-format messages over
IP multicast. These messages are referred to as Multicast DNS (or mDNS) and they can
be used to resolve local hostnames to IP addresses as well as to find servers that provide
a particular service [4]. This protocol is supported by all major operating systems.

The UPnP protocol also expects devices to obtain their IP configuration through DHCP
or by using link-local addresses [6]. The WS-discovery protocol supports service discovery
only and assumes the devices are already provided with network configuration [29].

3.3 Gateway-oriented solutions
Many papers [5, 7, 23, 27, 28], especially those that focus on interconnecting IoT devices into
a cloud network, propose to use a gateway device to interact with a group of IoT devices.
The gateway device is responsible for aggregating multiple IoT devices in a single LAN
segment by periodically reading data from all IoT devices in its segment, post-processing
them, and sending the summarized data to a cloud computer. Thus, the configuration of
connection details to the cloud server is set on the gateway device only, rather than on all
IoT devices. In case the connection to the cloud server is disrupted, IoT devices will still
be able to communicate with each other as long as they are connected to the same gateway,
and the service provided by this IoT network might be accessible in a limited way. The
gateway device may offer additional features based on the specific implementation, such as
a management tool that allows the configuration of IoT devices that are connected to it.

One implementation of such gateway can be found in [23]. This gateway was designed
for home users and supports a wide range of protocols and device types, including UPnP
and ZigBee. The gateway acts as a proxy that allows unified access to all IoT devices in
the household regardless of the different protocols that are used by individual IoT devices.
To achieve this, the gateway has a specific implementation for each protocol and features
a modular system that allows adding support for new protocols if needed in the future.
However, when discovering new devices, the gateway uses the same type of discovery the
original IoT device has. If the IoT device requires manual configuration on its first startup,
the gateway will ask for the same configuration details, although the gateway provides its
own user interface for this purpose, which might be easier to use. [23]

A different implementation is shown in [7]. This implementation recognizes the issues
with managing many gateway devices in large-scale applications, such as managing smart-
city networks. The work focuses on creating a single API that encapsulates the APIs
provided by the gateways. The API leverages the concept of software-defined IoT units,
which uses late-bound runtime policies. Instead of flashing each end-device with firmware
specific to its runtime application, all devices are provided with a bootstrap container that is
the same for all devices with compatible hardware architecture. When the device boots, the

7

bootstrap container will bound the device with software components based on its runtime
application, and re-bound any software components on runtime if application requirements
change. If the IoT device does not have the current version of any software component, the
framework contains an API that allows the device to download the missing dependencies
from the gateway. However, this presumes that the gateways implement this API. [7]

3.4 Device Cloud Middleware
Another approach to overcome the gateway devices’ heterogeneity is to create a Device
Cloud Middleware, as presented in [24]. This approach uses a three-layer architecture, that
consists of the Physical Space, Runtime Space, and Social Space layers. All physical devices
are present in the Physical Space layer, including both IoT devices and aggregator devices.
The Runtime Space layer is responsible for data exchange between all interested parties.
Finally, the Social Space layer represents the end-users of the system. [24]

The Device Cloud Middleware is located between the Physical Space and the Runtime
Space and is responsible for transforming data from one format to another. The paper
proposes to use existing devices that support automatic IoT device integration. This refers
to devices that are used as gateway devices in the gateway-oriented approach, however,
rather than creating clusters of devices that share the same gateway, there should be no
fixed associations between devices in this approach. Instead, any gateway device can be
used for any communication, as long as the gateway is able to interact with all interested
parties. [24]

3.5 Cloud-oriented solutions
The problem of provisioning of new devices is also solved when creating new virtual devices
in the cloud, regardless of whether a virtual IoT device is created, or a full-stack machine
is installed. This section will first describe a solution used by a major Linux distribution,
and then a solution used by Amazon Web Services will be shown.

Ubuntu offers a cloud-init package that is pre-installed on live server images. A cloud
provider is able to send arbitrary user data to the operating system during machine startup.
The cloud-init package retries this data, parses them, and runs actions present in the
user configuration string. It is also possible to send a bash script through this user data,
which the package will execute, meaning that is possible to make any change of the system
through this configuration, albeit not in a zero-touch manner. [30]

Amazon Web Services (AWS) offer the Amazon Certificate Manager service that
can be used to provision a new IoT device. To provision a new device, the device must
first generate an asymmetric public and private key pair. Then, the device will generate
a certificate signing request (CSR), that consists of non-sensitive data only, such as device
and organization name, its location, and the signature of this CSR. This CSR is sent to
Amazon Certificate Manager, which must decide its eligibility using an out-of-band channel,
for example by comparing the device’s unique identifier (UUID) with a whitelist. If allowed,
the Manager will sign the certificate and send it to the device. The device will then be able
to use this certificate to connect to the network. [26]

8

3.6 Implementation in ESP-32
Following the rather theoretical approaches to IoT provisioning given in the preceding
sections, this section demonstrates concrete solutions used by the ESP32 microchip that is
used for the implementation of the new zero-touch provisioning protocol that is the subject
of this thesis. This device supports two provisioning protocols, Protocol Communication
(Protocomm) and SmartConfig.

The protocomm protocol provides an extensible API a developer can use to create their
own provisioning protocol by utilizing pre-defined features or by implementing use-case-
specific features themselves. The protocol consists of IoT-device-side code and smartphone
application, with both device-side code and phone application being open source in case
their default behavior needs to be modified. The two can communicate using Wi-Fi or
Bluetooth Low Energy (only the Wi-Fi approach will be considered from now on). [9]

In the Wi-Fi approach, the IoT device creates a temporary Wi-Fi Access Point (AP) that
the smartphone can connect to. This will establish a secure session between the IoT device
and the smartphone. Then, the smartphone app is used to provide the device with network
connection details, such as SSID, username, and password. These details are transmitted
using the protocomm protocol and saved into the device. This completes the provisioning
process. On subsequent boots, the device will use the saved network credentials to connect
to the Wi-Fi network. [9]

The SmartConfig protocol is a provisioning protocol developed by Texas Instruments.
Just like protocomm, the protocol uses a smartphone app to configure the device. Instead
of establishing a connection between the smartphone and the IoT device, the smartphone
app broadcasts the network connection details. The IoT device is able to receive these
details and use them to configure itself. Thus, this solution is easier to use because it
is not necessary to connect to the IoT device manually, but it is less secure because the
communication is prone to sniffing by an attacker. [8]

3.7 Chapter summary
An overview of approaches shown in the previous sections is shown in Table 3.1. The first
column Solution contains the name of the solution or another description that identifies it.
The column IP configuration identifies the main concept that the solution uses to provide an
unconfigured device with enough information that it can connect to the target network and
an obtain IP address. The Other features column lists other significant features the solution
provides to further the provisioning process, such as provisioning the device with runtime
application or having a management tool that simplifies the configuration of devices from
different manufacturers.

As can be seen in the IP configuration column, there are provisioning solutions ([29, 24])
that do not expect that the device might not know enough information to connect to
a network, but this may easily be the case if the device is supposed to connect to a secured
Wi-Fi network. This is because these solutions focus on other tasks, such as application
deployment ([24]) or service discovery ([29]). Other frameworks ([4, 6]) do anticipate this
issue, but they rely on standard network mechanisms like DHCP or link-local addressing
to solve it. This assumption is correct for wired connections, but it makes the process hard
to work with in the case of wireless networks.

Among solutions that can work well in wireless environments, some similarities in net-
work details provisioning can be observed. Most solutions ([23, 30, 9, 8]) use an external

9

Solution IP configuration Other features
Bonjour [4] link-local address service discovery over multicast
UPnP [6] link-local address device discovery
WS-discovery [29] none service discovery
Home gateway [23] additional GUI device management
Gateway with software-
defined IOT units [7]

via bootstrapping device management

Device Cloud Middleware [24] none device aggregation
Ubuntu [30] configuration file any configuration
AWS [26] certificates none
ESP protocomm [9] smartphone app can be implemented manually
ESP SmartConfig [8] smartphone app none

Table 3.1: Overview of existing IoT provisioning solutions

device that acts as a configurator. This configurator sends the network connection details
to the IoT device using a pre-determined, typically out-of-band, protocol. The configurator
can be implemented in many ways, including a desktop application ([23]), a smartphone
application ([9, 8]), and a configuration file that is sent by the cloud service provider to the
device ([30]). The bootstrapping solution ([7]) requires that the target the IoT device will
be connected to (either Wi-Fi AP or Gateway device) supports a specific bootstrapping
protocol that will be used to provide configuration details. Finally, the AWS solution ([26])
uses public-key cryptography to generate a certificate signing request to an external certifi-
cate manager. If the request is fulfilled, the IoT device will end up with a client certificate
that can be used to connect to the network.

Thus, an ideal scheme for provisioning of network details should follow the following
aspects:

• Security – the protocol needs to be secure. The network connection details must not
be transmitted in a way that would allow an attacker to learn network credentials.
An imposter device also must not be able to start the provisioning process and receive
working connection details from the device responsible for issuing these details. Also,
the case when a legitimate IoT device’s provisioning request would be handled by
an attacker-provided device, either to gain control over the IoT device or to perform
a man-in-the-middle attack, must be considered.

• Zero configuration – ideally, the protocol should not require any interaction from
the user. When user interaction is required, interoperability issues will arise, because
every device manufacturer implements its own user-interfaces tools and protocols,
often with different setup tools for different product lines of devices, and thus mass-
configuration of many devices becomes cumbersome. If devices require zero interac-
tion from the user, the issue that each device uses a different provisioning protocol
becomes irrelevant. However, this is not possible for security reasons, because the
scheme needs to known which IoT devices are allowed to join the network. But it is
still encouraged to decrease the user interaction as much as possible. For example,
an IoT device that has no graphical interface can avoid user interaction altogether,
and the authorization-related configuration can be done on an external configurator
device, such computer or smartphone.

10

• Interoperability – as some degree of user configuration must be preserved, the
protocol should adhere to existing standards, when requesting user interaction, to
ensure a single tool can be used to configure all devices. After initialization, the user
application should also provide data in a standardized way, although this is out of
the scope of this thesis.

When considering other features, many solutions ([23, 7, 30, 9]) either natively support
or can be extended to support the deployment of application software. This can be done by
creating a bootstrapping API that can bound artifacts at runtime ([7]), or by creating a tool
that runs device-specific commands to update the application software (e.g. by flashing)
remotely ([23, 30, 9]). However, as many standalone tools for application deployment exist,
it may not be necessary to integrate application deployment into the provisioning protocol.
Instead, the device could perform an over-the-air (OTA) update on its first boot after
the provisioning of network credentials is completed, assuming the device’s manufacturer
provides an API for OTA updates.

11

Chapter 4

Wi-Fi Easy Connect standard

Alongside the existing approaches to provisioning described in the previous chapter, there
is currently a new Wi-Fi Easy Connect standard in development. As the name of the
standard suggests, it aims to make it easier to connect new devices to a Wi-Fi network.
As of now, the standard is in a draft stage and subject to change, thus no commercially
available solutions are implemented so far. However, many concepts introduced by this
standard can be used when designing a new provisioning protocol, and thus this chapter
aims to summarize key concepts of the upcoming standard.

First, Section 4.1 explains the overall concept of the approach used in this standard,
and the Enrollee and the Configurator roles of individual devices in the architecture. Next,
Section 4.2 explains the roles of Initiator and Responder, and how they differ from the En-
rollee with Configurator. After that, Section 4.3 describes the difference between imprinting
and mutual authentication, and Section 4.4 shows the preconditions that must be satisfied
before the device provisioning protocol (or DPP, in short) can be started. And finally, the
device provisioning protocol and its phases will be described in Section 4.5.

4.1 Enrollee and Configurator roles
As shown in Figure 4.1, the standard defines two roles of devices: Enrollee and Configurator.
Note that both the workstation (or STA) and the access point (AP) it wants to connect
to are considered to be Enrollees.

Enrollee
(access point)

Enrollee
(workstation)

Configurator
(smartphone)

Figure 4.1: Device roles in Wi-Fi Easy Connect architecture

12

In the initial state, no links between any devices are formed, i.e. the workstation does
not know how to connect to the access point, and the Configurator has no information about
any of the Enrollees. During the device provisioning process (DPP), the Configurator will
interact with all Enrollees as represented by the dashed lines in Figure 4.1. The goal of the
DPP is to provision all devices with network credentials. In the scenario shown in Figure 4.1,
the STA should be able to connect to the AP once DPP is completed.

From the user’s perspective, the DPP in this scenario consists of using the smartphone
(Configurator) to scan two QR codes – one that is displayed on the screen of the STA
after clicking a ”join a new network“ button in the STA’s network settings, and one that
is printed on a label on the AP. Both QR codes can be scanned in any order. Once both
codes are scanned, the STA connects to the AP automatically, and the configuration is
completed.

A Configurator device is responsible for the registration of new devices into the net-
work. A network compatible with this standard needs to have at least one configurator
device, but the standard allows for multiple configurators in one network. It is advised
that a device with a graphical interface is used as the Configurator, as the Configurator
may provide features such as setting the access level of individual Enrollees, or revoking
an Enrollee’s access to the network if needed. Due to the frequent need to scan QR codes
of the Enrollees (although not mandatory), using a smartphone as the Configurator may
be a feasible choice. [33]

An Enrollee, on the other hand, is a device that wants to take part in the network.
It can either be an endpoint device, such as a computer, that wants to connect to a new
network or a network device such as an access point. The provisioning protocol is not
designed to connect endpoint devices only, but it can be used to install a new access point
in the network as well. The protocol does not differentiate between endpoint devices and
access points for the most part. When the two need to be handled specifically, endpoint
devices are referred to as STA Enrollee and access points are referred to as AP in the
standard. [33]

4.2 Initiator and Responder roles
While Figure 4.1 in the previous section shows that the DPP is started by the Configura-
tor, this is not required by the standard. Depending on the use case, either Enrollee or
Configurator may start the DPP. To identify what device started the DPP, the protocol
defines the Initiator and the Responder roles.

When a provisioning process is started, one of the communicating devices plays the
role of the Initiator and the other one plays the role of the Responder, i.e. either the
Configurator plays the role of Initiator and the Enrollee plays the role of Responder or
vice versa. The roles are determined by the device that stars the Authentication phase
of the provisioning protocol, as this device always becomes the Initiator. Note that the
Authentication phase is the second phase of the provisioning protocol, not the first, as will
be shown in Section 4.5. [33]

13

4.3 Mutual authentication
The DPP supports mutual authentication, which may be either enabled or disabled based
on the security requirements of the given scenario. If mutual authentication is enabled, both
the Initiator’s and the Responder’s identity must be verified for the DPP to proceed. [33]

If the mutual authentication is disabled, only the Responder’s identity is verified by the
Initiator, while the Responder takes an imprinting approach towards the Initiator. This
means the Responder implicitly trusts the first Initiator it encounters. Once the DPP is
completed, the Responder should accept further provisioning requests only from the first
Initiator it encountered, with a possibility to reset this association by the user. [33]

For example, consider a scenario where a configurator is setting up a Wi-Fi connection
on a computer using the DPP. The Configurator takes the role of Initiator, and the com-
puter (Enrollee) takes the role of Responder. If mutual authentication is disabled, only the
computer’s identity will be verified by the configurator. As will be shown in Section 4.4,
this requires that the computer’s public key is transmitted to the configurator using an
out-of-band channel, for example by scanning a QR code that is displayed on the computer
by the configurator. If mutual authentication is enabled, the computer will also need to
verify the configurator’s identity. Once again, this requires that the configurator’s public
key is transmitted to the computer using an out-of-band channel, for example by user input.

4.4 DPP prerequisites
Before the DPP can be initialized, the following preconditions must be satisfied. First, all
devices (both Enrollees and Configurators) must contain a unique pair of the public and
the private key that can be used for asymmetric cryptography generated by the elliptic
curve cryptography (ECC) algorithm.

Second, the Initiator must obtain the Responder’s public key, for example by scanning
it from a QR code. For security reasons, the key must be obtained using an out-of-band
channel. If mutual authentication is enabled, the Responder needs to know the Initiator’s
public key beforehand too. [33]

4.5 Provisioning Protocol
The Device Provisioning Protocol (DPP) is a protocol introduced by the Wi-Fi Easy
Connect standard, that allows connecting new devices to a network with minimal interaction
from the user with regards to the security of all concerned devices. DPP consists of four
phases, Bootstrapping phase, Authentication phase, Configuration phase, and Access phase.
These phases are executed sequentially and are explained in the subsections below. [33]

An example of an exchange of messages between the Initiator and the Responder during
the DPP is shown in Figure 4.2. This example assumes no messages are lost in transit and
all authentication attempts are successful. Because of the complexity of the messages, the
diagram does not show data fields of individual messages. Notable fields will be described
in the subsections below.

4.5.1 Bootstrapping phase

During the bootstrapping phase, one of the devices (Enrollee or Configurator) may pe-
riodically broadcast DPP presence announcement messages. By sending these messages,

14

loop
presence_announcement [broadcast]

:Initiator :Responder

:AP

Bootstrapping phase

Authentication phase

Configuration phase

Access phase

authentication_request

authentication_response

configuration_request

wifi_connect

internet traffic

authentication_confirm

configuration_response

configuration_result

Figure 4.2: Example of the flow of messages during the device provisioning process

the device announces that is ready to engage in the DPP, and that it expects the other
device to initialize the Authentication phase (and thus the announcing device will play the
role of Responder). If the device wants to play the Initiator role, it may proceed to the
Authentication phase without sending DPP presence announcements. The Responder may
choose not to send the presence announcement messages and only wait for an authentica-
tion request message from the Initiator, and thus the Bootstrapping phase may be skipped
altogether. [33]

4.5.2 Authentication phase

The authentication phase (shown in Figure 4.3) is responsible for the establishment of
trust between the Initiator and the Responder. To achieve this, the Initiator’s and the
Responder’s identity is verified using public-key cryptography. First, the Initiator sends
a DPP Authentication Request message that includes its public bootstrapping key to
ensure the Responder can identify the Initiator and a randomly generated number that is
used only once (this number is referred to as a nonce). The nonce is encrypted using the
Responder’s public bootstrapping key, which was set prior to the DPP using an out-of-band
channel (see Section 4.4).

The Responder receives this message, decapsulates it, and decrypts the nonce using
the private key. If mutual authentication is enabled, the Responder looks up the received
public key in the list of public keys the Responder is configured to trust. If no match
is found, the Responder will abort the DPP. If mutual authentication is disabled, the
Responder will implicitly trust the public key received in the DPP Authentication Request
message, assuming the DPP was never completed on the device (otherwise it will only
trust the imprinted key from the previous instance of the DPP). Then, the Responder will

15

:Initiator :Responder

authentication_request

authentication_response

authentication_confirm

Figure 4.3: Messages transmitted during the Authentication phase

send a DPP Authentication Response containing a status code identifying whether the
verification was successful and – if the verification was successful – the received nonce from
Initiator as well a second nonce generated by the Responder, with both nonces encrypted
by the Initiator’s public bootstrapping key.

Using the nonces that both the Initiator and the Responder possess now and both
bootstrapping keys, both devices are able to use the elliptic curve Diffie-Hellman algorithm
to calculate a shared key that will be used to encrypt subsequent messages using the AES
algorithm. Because the Diffie-Hellman algorithm is used, the shared key will be known
only to the two devices. If the calculation is successful (this assumes the Initiator received
back the same nonce it had sent to the Responder in the DPP Authentication Request),
the Initiator sends a DPP Authentication Confirm message indicating the process was
successful. This message contains data encrypted by the shared key. [33]

4.5.3 Configuration phase

In the configuration phase (shown in Figure 4.4), the connection details are generated
by the Configurator and provided to the Enrollee. Unlike the previous two phases, the
Configuration phase uses the Enrollee and the Configurator roles instead of the Initiator and
the Responder. The configuration phase consists of three messages, the DPP Configuration
Request, the DPP Configuration Response, and the DPP Configuration Result. The content
of all three messages is encrypted using the shared key generated in the Authentication
phase.

:Initiator :Responder

configuration_request

configuration_response

configuration_result

Figure 4.4: Messages transmitted during the Configuration phase

The DPP Configuration Request is sent by the Enrollee to the Configurator. The
request contains configuration attributes that specify the kind of configuration details re-
quired and a new nonce that will be repeated in the following DPP Configuration messages
to verify their integrity.

16

The DPP Configuration Response contains the configuration details assigned by
the Configurator device, the nonce from the previous DPP Configuration Request message,
and a success indicator value. The success indicator value is transmitted unencrypted, so
the Enrollee may receive the error code if a wrong key was used to encrypt the message.

The structure of configuration details in the DPP Configuration Response message
varies based on whether the Enrollee is a station or an access point. STA configuration
contains the SSID name of the network to connect to, connectivity policy settings, and a
special Connector object that can be validated by an AP or a WPA2-Personal passphrase or
similar method1 for legacy devices. AP configuration contains the SSID name, the specific
content of some fields that should be transmitted by the AP, the operating channel or band
information, and the Connector object or legacy credential details.

The configuration session is ended by the DPP Configuration Result message, which
is sent by the Enrollee. This message informs the Configuration whether the Enrollee was
able to receive and apply the configuration details. The message consists of a status code
and the nonce from previous messages, with both values encrypted using the shared key. [33]

4.5.4 Access phase

The access phase (shown in Figure 4.5) is not a part of the provisioning process, as it needs
to be executed every time the station connects to a Wi-Fi network. While the phase is
illustrated as a single ”wifi connect“ message in Figure 4.2, it actually consists of several
802.11 messages and corresponds to the standard process when a wireless device connects
to a Wi-Fi network.

:Initiator :AP

wifi_connect

internet traffic

Figure 4.5: Messages transmitted during the Access phase

Unless the STA uses a legacy authentication method to connect to a Wi-Fi network, Peer
Discovery Request and Peer Discovery Response frames are used to verify that both STA
and AP received their Connector object from the same Configurator, or by two different
Configurators that trust each other. This allows for the AP to be configured after some
of the stations were already provisioned. However, as very few access points support this
protocol at the moment, it will not be considered in this thesis. Once the devices are
verified, standard IEEE 802.11 procedures will be followed to connect to the AP. [33]

1The DPP accepts the following legacy authentication procedures: WPA2-Enterprise, WPA2-Personal,
WPA3-Enterprise, and WPA3-Personal with either X.509 certificate, PSK, PSK Passphrase, or SAE pass-
word credentials. [33]

17

Chapter 5

ESP-32

This chapter introduces the ESP32-S2-Saola-1 device that was chosen for the implemen-
tation of the proposed zero-touch provisioning protocol and its features.

This chapter first overviews the device as a whole in Section 5.1. Then, sections 5.2 and
5.3 introduce the development toolkit and build system used to develop apps for the device.
Section 5.4 presents the toolkit’s menuconfig tool that can be used to provide the application
with user-configurable options that are passed into the application code at compile time.
Next, Section 5.5 overviews the ESP-NOW protocol that provides connectionless device-to-
device communication. This is followed by Section 5.6 that introduces the cryptographic
library used in the implementation. After this, Section 5.7 presents the eFuse memory
that can be used to store encryption keys and Section 5.8 introduces the flash encryption
and secure boot features. Then, Section 5.9 introduces the non-volatile storage that can
store data between the device’s power cycles. And finally, Section 5.10 introduces selected
features provided by the ESP32’s underlying FreeRTOS operating system, namely timers,
tasks, and queues.

5.1 Basic features
The ESP32-S2 microchip (shown in Figure 5.1) is a low-power Systems-On-Chip (SoC)
microchip that features a single-core 32-bit microprocessor that can run at frequencies up
to 240 MHz. The chip can store data in 128 kB ROM, 320 MB RAM, and up to 4 MB flash
memory. The chip provides similar interfaces as any common microchip device, including
Wi-Fi, GPIO, UART, SPI, and I2C. The chip also contains security acceleration modules
that enable secure storage of private and public key pair, secure boot, flash encryption,
random number generator, and acceleration for some cryptographic operations. [13]

The S2-Saola-1 variant of the ESP32 also includes a development board. The board
features a USB-to-UART bridge, allowing easy development of the device through the USB
port of a development computer. The board also contains a boot button, a reset button,
a programable RGB LED, a voltage indicator LED, and input/output pins. [14]

5.2 Development toolkit
The manufacturer provides a development toolkit that supports an automatic build and
deployment of applications. To develop an app, one needs a computer running Windows,
Linux, or Mac OS with Python installed, the ESP32 device itself, and a micro-USB to

18

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html

Figure 5.1: The ESP32-S2-Saola-1 microchip

USB cable to connect them. Then, the development toolkit must be downloaded from the
manufacturer’s website and installed according to the instructions (both available at [17]).
The installation of the toolkit is straightforward, as it only requires running the provided
batch or shell file (depending on the computer’s operating system). [17]

The ESP32 microchip is programmed using applications written either in C or C++ that
are executed by a real-time FreeRTOS operating system. Next to the standard C/C++
library functions, the development toolkit provides an API with functions that provide
access to the chip’s hardware modules, as well as high-level functions that provide commonly
used software functionality. [17]

A typical development process is as follows: first, a boilerplate project is created using
the toolkit or by copying an existing project. Then, the source code can be modified as
desired. Before execution, the chip with the development board is connected to a computer
using USB, and the correct USB port is selected in the toolkit if more than one development
board is connected. The project is then configured, build, and flashed to the device using
appropriate toolkit commands as shown in Section 5.3. Finally, a monitor that displays the
standard output of the device can be opened. [17]

5.3 Build system
The development toolkit provides commands to build, flash, and monitor the application.
To use this toolkit, it must be first initialized using the get_idf command. This command
initializes the required environment variables and once run, the development toolkit can be
used until the terminal window is closed. In a new shell (in a new terminal window), the
get_idf command needs to be executed again. As the command takes several seconds to
execute, it is not advisable to run it automatically when a new shell is created, for example
in the .bashrc file.

Once the toolkit is initialized, the user needs to navigate to the project’s directory
in the terminal (using the command cd) and set up the target environment device to
esp32s2 (if an ESP32-S2 device is used) using the command in Listing 1. This command
only needs to be executed once per project’s lifetime. [17]

idf.py set-target esp32s2

Listing 1: Command to set the target device to ESP32-S2

19

idf.py build # build project
idf.py -p /dev/ttyUSB0 flash # flash project to device /dev/ttyUSB0
idf.py -p /dev/ttyUSB0 monitor # monitor device /dev/ttyUSB0

Listing 2: Commands to build, flash, and monitor the project

The commands listed in Listing 2 can be used to build the project, flash it to the ESP32
device, and monitor the output of the device respectively. In order to flash the device and
to monitor it, the port to which the device is connected must be provided. The port used
in this example is /dev/ttyUSB0. After executing the last command, use the keyboard
shortcut ctrl +] to exit the device monitor. Alternatively, the command in Listing 3 can
be used to perform all three actions (build, flash, and monitor) at once. [17]

idf.py -p /dev/ttyUSB0 flash monitor

Listing 3: A single command to build, flash, and monitor the project

Finally, either of the commands shown in Listing 4 can be used to delete the files that
were generated when the project was built. The first command deletes the output from
the C-compiler only, forcing a full rebuild the next time the project is built. The second
commands delete all auto-generated files, including those generated by CMake. [17]

idf.py clean # deletes the C-compiler generated files
idf.py fullclean # deletes all auto-generated files

Listing 4: Commands to delete the build output files

5.4 Menuconfig
Many computer applications use some kind of text file to configure their behavior in
a specific installation. For ESP32 applications, the development toolkit features a menu-
config tool that provides pre-defined configurable variables into the application code at
build time. To use this feature, all configurable variables need to be defined first in the
Kconfig.projbuild file. An example of such definition for one variable is shown in List-
ing 5. [19]

config IOT_PROV_CHANNEL
int "Wi-Fi channel"
default 1
range 0 14
help

The Wi-Fi channel to send and receive ESP-NOW messages

Listing 5: A definition of a configurable variable to choose the Wi-Fi channel. The variable
can be set to an integer ranging from 0 to 14, with the default value of 1.

20

Once this file is created, the application’s user can use the idf.py menuconfig com-
mand to set the variables’ values for the specific installation. This command provides an
easy-to-use command-line interface to set the value of each variable, as displayed in Fig-
ure 5.2. [19]

Figure 5.2: Menuconfig interface

From the developer’s perspective, all values defined using the menuconfig tool are
automatically accessible via constants in the application code. For example, the value
from Listing 5 can be accessed anywhere in the application code by reading the constant
CONFIG_IOT_PROV_CHANNEL. [19]

5.5 ESP-NOW
ESP-NOW is a proprietary protocol that allows connectionless communication between
ESP32 devices, meaning the devices do not need to be connected to an Access Point in
order to communicate with each other [11]. Because of this, the ESP-NOW protocol will
be used in the proposed protocol during the provisioning of devices.

To offer the ability to communicate without being connected to an AP, the ESP-NOW
protocol leverages the IEEE 802.11 Management Frames. These frames are sent by network
devices on various occasions, often to devices that are not connected to any network. A well-
known example of a Management frame is the Beacon frame, which is periodically sent by
most Access Points to announce their SSID to devices that want to connect to their network.
The ESP-NOW protocol uses a different Management frame – an Action frame – because
its content may be filled with any vendor-specific data and it can be sent and received by
unconnected devices. [22]

Thus, the ESP-NOW messages are implemented as vendor-specific data in the Man-
agement Action Frame. Alongside the vendor-specific data field, the Action Frame also
contains fields for the source and destination MAC addresses, which will be used to iden-
tify the source and destination device, thus the MAC addresses do not have to be present
in the vendor-specific data field. The vendor-specific data field of an ESP-NOW message
consists of the length of the data sent over ESP-NOW, various identifiers1 indicating this
is a vendor-specific element containing an ESP-NOW message in the current version of the
protocol, and the application-layer data. [11]

The application-layer data may contain arbitrary binary data, however, the ESP-NOW
protocol limits the maximal length of the application-layer data to 250 bytes [11]. As will be
shown in Section 7.4, this will have to be circumvented by a custom intermediate protocol
providing message fragmentation, because there will be a need to send messages longer than
250 bytes over the ESP-NOW protocol.

1Namely, the fields and their values are: Element ID (221: vendor-specific element), Organization Iden-
tifier (0x18fe34: Espressif), Type (4: ESP-NOW), and Version (might vary)

21

The ESP-NOW protocol supports sending both unicast and broadcast messages. For
unicast messages, the destination is identified by the target’s MAC address. [11]

The protocol also supports message encryption using a 128-bit AES shared key. A mes-
sage will be correctly sent and received only if both the sender and receiver are configured
with the same shared key. However, this key must be pre-shared between the devices using
an out-of-band channel, because the protocol does not offer any pre-build way to negoti-
ate the shared key using the ESP-NOW protocol, such as the Diffie-Hellman algorithm.
Because of this, the protocol’s encryption feature will be disabled in this thesis and all
messages will be encrypted in the application layer as needed. [11]

5.6 Cryptographic functions
The ESP32 device features a hardware module for the acceleration of cryptography-related
tasks. In particular, this includes the AES Accelerator, the SHA Accelerator, the RSA
Accelerator, the Random Number Generator, the Digital Signature, and the HMAC Ac-
celerator modules [15]. These modules can be handled manually by performing read/write
operations to the correct registers at a specified order and timing, but the development
toolkit also includes an ESP-specific implementation of the mbedtls2 library [12]. This li-
brary implements all common cryptographic operations, such as the parsing of keys in the
PEM format, random number generation, data encryption and decryption, hashing, and
more. The library uses the hardware acceleration modules internally as needed.

5.7 eFuse
To prevent the private keys for asymmetrical cryptography and the shared encryption keys
for symmetrical cryptography from being leaked from the device, the ESP32 features an
eFuse storage. The eFuse storage consists of 11 independent blocks indexed from 0 to
10. Each block is one-time programmable per the microchip’s lifetime, meaning that once
a value is written to an eFuse block, it can never be modified or erased. Some blocks
(block 0 and block 1) are divided into several parameters, where each parameter can be
programmed individually. [15]

When an eFuse block is programmed, the following parameters need to be provided:

• the block number to be programmed (0 through 10),

• the name of the parameter to be programmed, if only one parameter is programmed
rather than the full block (applies only to blocks 0 and 1),

• the value to be stored (256 bits of data if the full block is programmed),

• the read protection bit, indicating whether the stored value should be accessible
using software (either true or false; applies only to blocks 4 through 10), and

• the key purpose, storing the purpose of the saved key (applies only to blocks 4
through 9) [15].

The values of the read protection bits and key purposes are stored in the eFuse block 0,
thus those values cannot be modified once written as well. Each of the 11 eFuse blocks is

2https://tls.mbed.org/

22

https://tls.mbed.org/

intended for a different use, thus certain data may be stored only in selected eFuse blocks.
Table 5.1 shows what type of data can be stored in individual eFuse blocks. [15]

Block number Usage
0 – 2 System data

3 Arbitrary user data
4 – 9 Encryption keys or user data

10 System data

Table 5.1: Parameters to store in individual eFuses blocks [15]

As the eFuse can prevent some values from being software accessible, it is recommended
to use this module to store device-specific secret keys. If a value is set as software inac-
cessible, it can still be accessed by other hardware modules, such as the Digital Signature
module. For encryption keys (in blocks 4 through 9) the key purpose value further limits
which hardware modules are permitted to read the key. However, some modules such as
the AES Accelerator do not seem to support the usage of keys stored in an eFuse at the
moment. [15]

As one eFuse block is capable of storing up to 256 bits of data, it is not possible to store
a private RSA key (which is usually 2048 or 4096 bits long) into an eFuse. To protect such
keys, the following strategy is used: first, the private key is encrypted using a randomly
generated AES key. Then, the AES key is saved in the software-inaccessible eFuse and the
encrypted RSA key is stored in unprotected flash storage. To sign or decrypt messages
using this private key, a dedicated hardware module that is permitted to read the AES key
from the eFuse is used, while the encrypted private key is provided to the module by the
application software along with the data to be signed or decrypted. [15]

5.8 Flash encryption and secure boot
The ESP32 microchip also offers features to prevent unauthorized access to data stored in
flash memory. This flash memory stores the compiled program code, but it may be also
used by the application to store user data, as will be shown in Section 5.9. The protection
features covered in this section are flash encryption and secure boot. Both features prevent
unauthorized operation with flash memory if an attacker gains physical access to the device.

The flash encryption prevents the attacker from reading the data stored in the internal
flash memory if they gain physical access to the device. As the flash memory is connected
to the chip’s CPU using the SPI (Serial Peripheral Interface), it may be possible for an
attacker with physical access to the device to read out the content of the flash memory,
thus gaining access to the assembled application code and all data the application stores
in the flash memory. By encrypting the data, the attacker will not be able to interpret the
data collected from the flash memory. The flash encryption will also prevent the attacker
from intentionally changing the data (to a known value), but it will not stop the attacker
from changing the data to random values, because an attacker is able to write to the flash
memory but they have no control about how the data will change during decryption. The
encryption key is generated automatically when the flash encryption is enabled and stored
in a software-inaccessible eFuse. [16]

The secure boot prevents an attacker from unauthorized modifications of the appli-
cation code, for example by flashing a completely new application to the device. This is

23

achieved by signing the application using a private RSA key before flashing and forcing
the IoT device to execute only applications that were signed by a particular key. The key
need for the signature verification is stored in an eFuse when secure boot is enabled, and
therefore cannot be changed once set. [20]

The steps needed to enable flash encryption are given in [16], while the steps to enable
secure boot are given in [20].

5.9 Non-volatile storage
As was indicated in the previous section, the ESP32 uses a flash memory to store application
and user data. Depending on the variant of the chip, the size of this memory ranges from
2 MB to 4 MB [13]. It is possible to store user data in this memory, which is useful because
data in this memory are not erased when the device is disconnected from the power supply.
This section shows two possible approaches to storing user data in flash memory.

The static file approach can be used when the application needs to refer to a file that
is available at the time of compilation and the file is not changed by the application. In
this approach, the file is first registered in main/CMakeLists.txt using the EMBED_FILES
as shown in Listing 6. [10]

idf_component_register(
SRCS "my_app.c"
INCLUDE_DIRS ""
EMBED_TXTFILES "public_key.pem"

)

Listing 6: Example of a registration of a static file in CMaleLists

In the application code, the file can be accessed as a constant external variable as shown
in Listing 7. The file_start variable is a pointer to the beginning of the file, and the
file_end is a pointer to the end of the file. [10]

extern const uint8_t file_start[] asm("_binary_public_key_pem_start");
extern const uint8_t file_end[] asm("_binary_public_key_pem_end");

Listing 7: Accessing a static file in the application code

The second approach is to use the Non-volatile storage (NVS) library. This library
allows read and write access to a designed part of the flash memory, where each value
stored in the NVS is identified by a developer-chosen identifier, thus the NVS acts as key-
value storage. [18]

The storage first needs to be initialized using the nvs_flash_init and nvs_open
functions. Then it is possible to read and write string values in the storage using the
nvs_get_str and nvs_set_str functions. The NVS library also offers functions to store
data types other than string, such as nvs_get_u8, nvs_get_u16, and more. [18]

24

5.10 FreeRTOS features
The ESP32 microchip is powered by a port of the FreeRTOS3 operating system. Because of
this, the developer is free to use the API provided by this system. This section focuses on
crucial features provided by the FreeRTOS that are used in almost every ESP32 application.

5.10.1 Timers

The most basic FreeRTOS feature covered in this thesis is the timer. A timer is used to
schedule an action that should be executed after a given period of time. The action can be
either executed once or periodically until canceled. [1]

To use the timer, it must be first initialized using the xTimerCreate function. This
function initializes the timer but it does not start it yet. During the initialization, the timer’s
period and the callback function are set, as well as the flag whether the timer should be fired
once or periodically. The xTimerStart, xTimerStop, xTimerReset, and xTimerDelete
functions can then be used to start, stop, reset, and delete the timer respectively. The
application is free to execute other code while the timer is running. An interrupt will be
issued when the timer expires. [1]

It is possible to use the timer to check for the counterpart’s inactivity, for example, to
reset the provisioning process if no message is received from the other device for a given
period of time. This is done by starting a timer when a request is sent from the device.
When the reply arrives, the timer is stopped (if no more messages are expected) or reset
(if additional messages are expected from the counterpart), as illustrated by the Inactivity
timer 1 in Figure 5.3. If the timer’s callback function is triggered, it means the counterpart
is inactive as shown by the Inactivity timer 2 in Figure 5.3.

Time [s]1 2 3 4 5 6 7 8 9 10

Inactivity timer 1

Sent new request, reply expeceted within 3s
start a new inactivity timer

Received reply and sent new request
reset the inactivity timer

Inactivity timer 1

Received reply, no more requests
stop the inactivity timer

Inactivity timer 2

Sent another request, reply expeceted within 3s
start a new inactivity timer

0

No reply received
the inactivity timer was

triggered

Figure 5.3: An example of using timers to track requests that did not receive a reply

5.10.2 Tasks

The FreeRTOS tasks are similar to threads in common programming languages. However,
as the ESP32 chip used in this thesis has only one core, it will not be capable of running

3https://www.freertos.org/

25

https://www.freertos.org/

multiple tasks simultaneously. The main advantage of using tasks on single-core processors
is that it is possible to set a different priority for each task, thus allowing one task to
interrupt a task with lower priority. [2]

A typical example of task usage is to create a high-priority task for storing incoming
packets from the network interface into a buffer. This task is idle most of the time, but
when the network interface receives a packet, it is essential to store the incoming packet as
soon as possible, so the network interface is ready to receive more packets. This is possible
because the operating system will switch to this task when a packet is received because
of the task’s high priority, while the operating system will execute other tasks when the
high-priority task is idle. [2]

A task is implemented by a function that never returns as shown in Listing 8. It is
possible to pass a user-defined pointer into this function using the pvParameters parame-
ter. [2]

void myTaskFunction(void *pvParameters) {
while (true) {

// Task code
}

}

Listing 8: Implementation of a task

The FreeRTOS API includes the xTaskCreate and vTaskDelete functions to create
and delete tasks. When creating a task, a pointer to the task’s entry function and the value
to pass into pvParameters must be given, as well as the the task’s priority and the size
of the stack used by the task. It is possible for a task to call vTaskDelete on itself if it
wants to be deleted. There will be an error that leads to a device reboot if the task’s entry
function returns and the task is not deleted. [2]

5.10.3 Queues

A queue is a data structure that allows to store a collection of elements that can be accessed
using the FIFO (first-in-first-out) paradigm. In FreeRTOS applications, queues are typically
used to pass data into a task or out of it, because a single queue can be shared across multiple
tasks. Typically, a queue is shared across two tasks, where one task writes data into the
queue and the other one reads data out of it. [3]

The xQueueCreate function is used to initialize a queue. During initialization, the size
of one element and the maximal capacity of the queue must be specified. The queue will
not reallocate if it is full, and thus the operation to add an element to it might fail if the
queue is full. [3]

The xQueueSend and xQueueReceive functions are used to add an element to a queue
and to receive an element from the queue respectively. The xQueueReceive function will
automatically remove the element that was received from the queue. Alternatively, the
xQueuePeek function can be used to read the element from the front of the queue without
removing it. All three functions may block the thread that has called them if the queue
is empty (for xQueueReceive and xQueuePeek) or full (for xQueueSend). Because of this,
all three functions contain an xTicksToWait parameter that sets the maximum amount of

26

time4 the function is willing the wait. If the value is set to 0, the function will never block
the task. The function will return an error code if the value could not be received or written
within the interval. [3]

The vQueueDelete function deletes the queue. [3]

4The time is specified in the number of CPU ticks, but the portTICK_RATE_MS constant that contains
the interval of CPU ticks in milliseconds may be used to convert from microseconds to CPU ticks

27

Chapter 6

Analysis

As shown in Chapter 3, the current solutions for network provisioning used in current IoT
devices are hard to use – especially when setting up a large number of IoT devices – and
often are not very secure. This could be – and in the future will be – overcome by switching
to the Wi-Fi Easy Connect standard as shown in Chapter 4, however, this standard is in
the draft stage and no devices sold today support it yet.

The upcoming standard aims to support all network provisioning needs of all devices in
the future, as suggested by the various configuration options the standard provides, some
of which were shown in Chapter 4. For example, depending on the capabilities of devices in
a given scenario, either the Enrollee or the Configurator may start the provisioning process.
For example, if a smart water heater is about to join a Wi-Fi network, the DPP would be
most likely started the Configurator by scanning a barcode on the water heater, as most
water heaters have no user interface. On the other hand, if a guest in a hotel would like
to connect to the hotel’s Wi-Fi network, the DPP would be started by an Enrollee, as the
guest would scan the QR code received from the hotel staff on their own STA device that
is about to join the network.

Another example of the complexity of the upcoming standard is the fact that one net-
work can be configured using multiple Configurator devices. Thus, a feature for delegation
of capabilities from one Configurator to another that was not described in the previous
chapter must be defined. Also, the protocol supports all Wi-Fi authentication protocols
ranging from WPA-Personal with Pre-Shared keys to WPA2-Enterprise with client X.509
certificates, including a new protocol using a Connector object introduced by this standard.

Thus, rather than implementing the new Wi-Fi Easy Connect standard in full, this thesis
aims to design and implement a new lightweight provisioning protocol that demonstrates the
capabilities of the concepts introduced in this upcoming standard for network provisioning
of IoT devices. The proposed protocol will use the same four phases as the Wi-Fi Easy
Connect standard (Bootstrapping, Authentication, Configuration, and Access), but the
messages sent in individual phases will be modified to reduce the complexity of the protocol,
with regards to the desired use case of provisioning IoT devices (for example, the proposed
protocol will not be able to provision an access points).

The proposed protocol should follow the findings in Section 3.7, namely, it should be
secure, require minimal user-interaction, and consider interoperability with different proto-
cols.

28

Chapter 7

Design

This section explains the design of the implemented provisioning protocol. As defined
in Chapter 2 and observed in many current implementations in sections 3.3, 3.4, 3.5, and
3.6, as well as in the upcoming Wi-Fi Easy Connect standard (in Section 4.1), the protocol
will use two devices for the provisioning process – an Enrollee, and a Configurator.

The Enrollee is the new unconfigured device that lacks the network credentials needed
to connect to an existing Wi-Fi network. The Configurator, on the other hand, is a device
that stores the network credentials of all IoT devices and provides them to Enrollees upon
request. For simplicity, this device will be also instrumented by an ESP32 microchip. Thus,
there will be 𝑁 +1 devices necessary to provision 𝑁 Enrollees (one extra ESP32 microchip
is needed to act as the Configurator).

Figure 7.1 highlights the steps that need to occur during the provisioning process (a dia-
gram showing all messages that are transmitted between the Enrollee and the Configurator
will be shown later in Section 7.5). All messages will be transmitted using the connection-
less protocol ESP-NOW introduced in Section 5.5, as the Enrollee has no other means of
internet connectivity yet.

:Enrollee :Configurator

I am looking for a Configurator, my ID is abcdef (broadcast message)

My MAC adress is AA:BB:CC:DD:EE:FF

Verify each other's identity

Your credentials are: SSID=test, username=user, password=1234 (encrypted message)

Figure 7.1: Overview of messages sent during the provisioning process

First, the Enrollee needs to locate the Configurator by sending a broadcast message.
This message includes an Enrollee’s identifier, which is represented by a hash of the En-
rollee’s public key that will be generated in Section 7.2. If a Configurator receives this
message, it will attempt to look up the received identifier in a list of known identifiers. The
presence of the Enrollee’s identifier in a list maintained by the Configurator is not sufficient

29

to authenticate the Enrollee, but if the Configurator does not find the Enrollee’s identifier,
the Configurator will not engage in the provisioning protocol any further. This way, the
Enrollee will not be burdened to negotiate with Configurators that do not trust the Enrollee
if the Enrollee is within the reach of multiple Configurators.

Second, the devices need to verify each other’s identity. The provisioning protocol
supports two operating modes of authentication – either mutual or non-mutual. In both
modes, the Configurator will verify Enrollee’s identity. In the mutual mode, the Enrollee will
also verify the Configurator’s identity to prevent the Enrollee from receiving credentials from
an imposter Configurator. The mutual mode, however, requires additional configuration
steps, thus making it less user-friendly.

And third, after the devices’ identities are verified, the Configurator will send the net-
work credentials to the Enrollee. To prevent an attacker from sniffing the credentials while
they are sent to the Enrollee, the credentials will be encrypted by a private key only known
to the Enrollee.

The rest of the chapter is structured as follows. First, Section 7.1 gives details on the
authentication mechanism used in the provisioning protocol. Then, sections 7.2 and 7.3 list
the prerequisites that the Enrollee and Configurator must satisfy before the provisioning
protocol can be started. This is followed by Section 7.4, which introduces an intermediate
fragmentation protocol that is used to transfer messages that are too long to be transmitted
over ESP-NOW. And finally, Section 7.5 introduces the structure of all messages that are
used by the provisioning protocol.

The proposed protocol will be later evaluated from a user experience point of view
in Section 9.2 and from a security point of view in Section 9.3.

7.1 Authentication of devices
The provisioning protocol uses public-key cryptography to build trust between devices.
Each device (both Enrollees and Configurators) contains a unique pair of private and public
RSA key, that needs to be generated before the provisioning protocol is initiated. The
private keys will never leave the devices that they were generated for. The public keys may
be transmitted to other devices as needed.

Regardless of whether the mutual authentication is enabled, the Configurator needs to
contain public keys of all Enrollees that are allowed to use the services of the Configurator.
However, as the storage abilities of IoT devices are limited, the Configurator will only store
SHA-256 hashes of the Enrollees’ public keys. When the provisioning process is started,
the Configurator will request the full public key from the Enrollee. The authenticity of the
received public key will be verified by a recalculation of its hash on the Configurator’s side.

If the mutual authentication is enabled, the Enrollee will also need to contain the public
key of the Configurator. Because the Enrollee only needs to know the public key of one
Configurator, the full public key will be stored in the Enrollee rather than its hash. This
will reduce the amount of data transmitted between devices during the provisioning process.

The procedure taken to authenticate the devices depends on whether the mutual authen-
tication is enabled. If it is enabled, the challenge-response algorithm shown in Figure 7.2
is used to verify the parties. The pk_en and pk_conf labels in Figure 7.2 indicate that
the part of the message in the preceding square brackets (between [and]) was encrypted
using the Enrollee’s (in case of pk_en) or Configurator’s (in case of pk_conf) public key.

The algorithm starts by generating a random number nonce1 on Configurator. The
generated number must be large enough to ensure that the same number will never be

30

:Enrollee :Configurator

auth_request([nonce1]pk_en)

auth_reply([nonce1, nonce2]pk_conf)

connection_details([nonce2, data]pk_en)

Figure 7.2: The authentication procedure used if the mutual authentication is enabled

generated again in the device’s lifetime, otherwise, it would be possible to perform a replay
attack. The generated number is then encrypted using the Enrollee’s public key and sent
to the Enrollee using the auth_request message.

The Enrollee decrypts the number nonce1, and generates its own random number
nonce2. After that, the Enrollee constructs the auth_reply message that contains both
nonces encrypted by the Configurator’s public key. Because both devices knew each other’s
public keys beforehand and only the rightful devices possess the corresponding private
keys, the Configurator can be certain the auth_reply message was sent by the Enrollee
if the received nonce1 matches the original, as only the Enrollee was able to decrypt the
auth_request message.

As the identity of the Enrollee is verified now, the Configurator is free to send the
connection_details message to the Enrollee. This message contains the Enrollee’s net-
work credentials as well as the nonce2 that was sent by the Enrollee in the auth_reply,
with both values encrypted by the Enrollee’s public key. The Enrollee is then able to verify
the received nonce2, and if does not match the original value, it can simply ignore the
message.

Note: because all encrypted messages transferred in this protocol are relatively small
(less than 1 kilobyte), the messages are encrypted using RSA rather than negotiating
a shared AES key, which is faster for encrypting a large amount of data.

If the mutual authentication is disabled, the Enrollee will not verify the identity of the
Configurator. Because of this, the auth_request and auth_reply messages will not be
transmitted, and the Configurator will send the connection_details message containing
the Wi-Fi credentials to the Enrollee, which will be encrypted by the Enrollee’s public
key. Because the Configurator knows the Enrollee’s public key beforehand and only the
Enrollee holds the corresponding private key, no other device than the Enrollee will be able
to decrypt the message.

7.2 Enrollee’s prerequisites
As was mentioned in the previous section, the Enrollee needs to generate a unique pair
of RSA keys before the device can engage in the provisioning protocol. If the mutual
authentication is disabled, no other configuration needs to be done on the Enrollee. If
the mutual authentication is enabled, the Configurator’s public key must be stored in the
Enrollee device too. Note that in the mutual authentication mode, the Enrollee can only
be configured to trust one Configurator.

31

7.3 Configurator’s prerequisites
The Configurator device also needs to have generated a unique pair of RSA keys, just like
the Enrollee devices. Next to this, the Configurator also needs to be configured with a list
of the connection details that should be provided to Enrollees. This list contains one entry
per authorized Enrollee, where each entry contains the following values:

• SHA-256 hash of the Enrollee’s public key,

• SSID of the network the Enrollee should connect to,

• the network’s username (empty if the network uses a PSK authentication only), and

• the network’s password.

Instructions on how to store this data in the ESP32 device are given in Section 8.7.

7.4 Message fragmentation
The ESP-NOW protocol is capable of transmitting messages that are up to 250 bytes long.
However, as the Configurator only stores hashes of the Enrollees’ public keys to save space,
the Enrollee needs to be able to send the full public key to the Configurator upon request.
As RSA keys are typically 2048 bits (256 bytes) or 4096 bits (512 bytes) longs (with the
effective size even larger because of the PEM encoding), it is crucial to be able to transmit
messages longer than 250 bytes.

This is achieved by supporting message fragmentation on the application level. The pro-
visioning protocol recognizes both non-fragmented and fragmented (multipart) messages.
If a message is short enough (250 bytes or less) to be sent without fragmentation, it will be
sent as-is to reduce overhead.

If a message is longer than 250 bytes, it will be split into several 245-bytes-long fragments
(the last fragment may be shorter so the lengths of all fragments added together match the
length of the original message). Then, each fragment is encapsulated into the structure
shown in Table 7.1 and sent over ESP-NOW.

Type Field Offset Size Description

uint8 magic 0 B 1 B A magic number to identify a multipart
message (always 0x11)

uint8 msg_id 1 B 1 B A message ID. This ID is shared by all
fragments of the same original message.

uint16 msg_size 2 B 2 B The size of the full message in bytes

uint8 part_num 4 B 1 B A number of the fragment within the mes-
sage

uint8[] data 5 B ≤ 245 B Fragment data

Table 7.1: The structure of a fragment of a message

The magic number is used to identify a multipart message (all non-fragmented mes-
sages are guaranteed not to start with this number). The message ID is used to identify
the original message the fragment belongs to if multiple multipart messages are in transit
(the message is identified on the receiver by the message ID and the sender’s MAC address).

32

The message size contains the size of the original message (before fragmentation). This
number can be used to calculate the number of parts and the size of each fragment because
all-but-last fragments are guaranteed to contain 245 bytes of the original message. The
part number identifies the order of fragments if the messages are delivered out-of-order
(the number of the first fragment within a message is 0). And finally, the data field contains
the fragment’s application data.

The protocol does not acknowledge the reception of individual fragments to the sender,
as this is done by the ESP-NOW protocol internally. The maximum size of the original
message that this protocol is capable of fragmenting is 64 kB. This limitation is caused by
the size of the msg_size field, however, the implementation of this protocol will decrease
this limit further.

7.5 Messages
This section defines all messages that are sent over ESP-NOW in this provided protocol.
A sequence diagram illustrating the flow of these messages is shown in Figure 7.3.

loop
presence_announcement(pubkey_hash, mutual_auth, configurator_pubkey_hash) [broadcast]

:Enrollee :Configurator

authentication_request([nonce_1]pk_en)

authentication_reply([nonce_1, nonce_2]pk_conf)

configuration_details([nonce_2, details_len, details]pk_en)

pubkey_request()

pubkey_reply(pubkey_len, pubkey)

Figure 7.3: A sequence diagram of messages transmitted during the provisioning protocol
with mutual authentication enabled

The provisioning protocol is started by the Enrollee, which periodically broadcasts the
Presence announcement message until it receives a Public key request from a Configurator.
The Enrollee replies to this request using the Public key reply, which contains the Enrollee’s
public key. If mutual authentication is enabled, both devices will exchange the Authentica-
tion request and Authentication reply messages to verify each other’s identity. And finally,
the configuration details are sent in the encrypted Connection details message.

To disambiguate between various types of messages, all messages share the following
structure: the first 10 bytes of every message are reserved for the message type field, which

33

contains a pre-defined value for each type of message, e.g. presence for the presence
announcement message. The value contains printable ASCII characters only, and the re-
maining bytes are set to zero (0x00) if the value is shorter than 10 characters. The message
type is not encrypted during transfer. The following bytes of the message are defined by
the specific type of message.

7.5.1 Presence announcement

The structure of the Presence announcement message is shown in Table 7.2. This message
is periodically broadcasted by the Enrollee until a Configurator device is found.

Type Field Offset Size Description
uint8[] msg_type 0 B 10 B Type of message (always presence)

uint8[] sta_pk_hash 10 B 32 B SHA-256 hash of the Enrollee’s public
key

bool mutual_auth 42 B 1 B Whether the station requires the mutual
authentication (true or false)

uint8[] conf_pk_hash 43 B 0/32 B SHA-256 hash of the Configurator’s pub-
lic key (present if mutual_auth is true)

Table 7.2: Structure of the Presence announcement message

The sta_pk_hash field contains an SHA-256 hash of the sending station’s public key.
This is followed by the mutual_auth flag that indicates whether the station requires mutual
authentication. The value of this flag should be set to zero if the mutual authentication is
disabled or to any non-zero value if the mutual authentication is enabled. If the mutual
authentication is enabled, the presence announcement shall also contain the conf_pk_hash
field that contains an SHA-256 hash of the Configuration’s public key. This will allow any
other Configurators in the area to ignore this message.

The length of this message must be either 43 bytes if mutual_auth is zero or 75 bytes if
mutual_auth is non-zero. Note that the values of the fields in this message do not change
over the Enrollee’s lifetime, so the Enrollee can prepare this message once and rebroadcast
it as many times as needed.

7.5.2 Public key request

When a Configurator receives a presence announcement message from an Enrollee, and the
configurator is willing to engage in the provisioning protocol with this Enrollee, a Public
key request message will be sent to the Enrollee. As can be seen in Table 7.3, this message
does not carry any other data than the message type.

Type Field Offset Size Description
uint8[] msg_type 0 B 10 B Type of message (always pubkey_r)

Table 7.3: Structure of the Public key request message

However, because of the nature of the ESP-NOW protocol, the Enrollee will learn
the Configurator’s MAC address from the headers of the ESP-NOW protocol. The same
approach is used by the Configurator to learn the Enrollee’s MAC address from the received

34

presence announcement message, thus both devices are able to exchange unicast ESP-NOW
messages from now on.

The Configurator will not respond to a Presence announcement message if any of the
following conditions are satisfied:

• The Configurator’s list of authorized enrollees does not contain the hash of the En-
rollee’s public key that was received in sta_pk_hash.

• The conf_pk_hash field is present and its value does not match hash of the Configu-
rator’s public key.

• The value of mutual_auth is zero and the Configurator is configured to require mutual
authentication from all Enrollees.

• The message is malformed.

7.5.3 Public key reply

The Public key reply is sent by the Enrollee as a response to the Public key request message.
The structure of this message is shown in Table 7.4.

Type Field Offset Size Description
uint8[] msg_type 0 B 10 B Type of message (always pubkey)
uint16 pubkey_len 10 B 2 B Length of the public key (in bytes)
uint8[] pubkey 12 B any The Enrollee’s public key in PEM format

Table 7.4: Structure of the Public key reply message

The message contains the length of Enrollee’s public RSA key and the public key itself.
Because of the length of the RSA keys, this message is likely to be fragmented during
transit, but this is opaque for the provisioning protocol.

The Configurator must verify that the public key received in this message matches the
SHA-256 hash of this key that was received in the Presence announcement when it receives
the Public key reply message.

7.5.4 Authentication request

If the mutual authentication is enabled, the Configurator will respond to the Public key
reply message by an Authentication request message. The structure of this message is
shown in Table 7.5.

Type Field Offset Size Description
uint8[] msg_type 0 B 10 B Type of message (always auth_r)
uint8[] nonce_1 10 B 32 B Random number used once

Table 7.5: Structure of the Authentication request message

This message contains a number that is used only once (nonce) which cannot be guessed
by an attacker. To make sure an attacker cannot predict this number, a hardware random
number generator is used to generate it. The number is 32 bytes (256 bits) long, which
is the same as the length of the SHA-256 hash used to identify the Enrollee’s public key,

35

thus the likelihood of this number being repeated during the device’s lifetime is the same
as finding an SHA-256 hash collision, assuming the random number generation module is
reliable. The number is small enough that it does not need to be separated into multiple
blocks in order to be encrypted by the RSA algorithm, thus the usage of a 256-bit number
does not create any unnecessary overhead.

This message is encrypted by the Enrollee’s public key before it is sent (note that the
msg_type is not encrypted for debugging reasons, thus only the nonce will be encrypted).

7.5.5 Authentication reply

The Authentication reply message is sent by the Enrollee as a response to the Authentication
request message. The structure of this message is shown in Table 7.6.

Type Field Offset Size Description
uint8[] msg_type 0 B 10 B Type of message (always auth)
uint8[] nonce_1 10 B 32 B The nonce from the Authentication request
uint8[] nonce_2 42 B 32 B Enrollee-generated number used once

Table 7.6: Structure of the Authentication reply message

In this message, the Enrollee repeats the nonce generated by the Configurator in the
Authentication request to prove the Enrollee was able to decrypt it. Next, the Enrollee
generates a second nonce that will act as a challenge for the Configurator. Both nonces will
be encrypted by the Configurator’s public key and the message is sent to the Configurator.

7.5.6 Connection details message

The last message that is sent in this provisioning protocol is the Connection details message,
which is sent by the Configurator to the Enrollee. It is either sent as a response to the
Authentication reply message if the mutual authentication is enabled or as a response to
the Public key reply message if the mutual authentication is disabled. The structure of the
message is the same in both cases, and it is shown in Table 7.7.

Type Field Offset Size Description
uint8[] msg_type 0 B 10 B Type of message (always conn)
uint8[] nonce_2 10 B 32 B The nonce from the Authentication reply

uint16
connection_
details_len

42 B 2 B Length of the connection details (in bytes)

uint8[]
connection_

details
44 B any NULL-terminated connection details string

Table 7.7: Structure of the Connection details message

The field nonce_2 repeats the nonce that the Configuration received from the Enrollee
in the Authentication reply message to prove to the Enrollee that the Configurator was able
to decrypt the Authentication reply message. If the mutual authentication is disabled, this
value is filled will with NULL (0x00) bytes.

The connection_details_len field stores the length of the connection details string
in bytes (including the trailing NULL byte). The connection_details string contains

36

the SSID name of the network and the Wi-Fi credentials in the following semicolon-
separated format: ssid;username;password. If a network uses a pre-shared-key (PSK)
authentication, which uses passwords only (rather than the combination of a username and
password), the username is left empty, i.e. the connection string would be formatted as
ssid;;shared_key.

The content of this message (except the msg_type) is encrypted using the Enrollee’s
public key to ensure no other device is able to decrypt the message.

37

Chapter 8

Implementation

This chapter overviews substantial details of the implementation. As both the Enrollee’s
and the Configurator’s code share many modules in common, the code for both devices
is implemented in a single project. A compile-time option is used to select whether the
application should act as an Enrollee or a Configurator.

First, Section 8.1 describes how the RSA keys are generated and stored in the IoT
devices. This is followed by Section 8.2, which provides details on how the Enrollees’ Wi-Fi
credentials are stored in the Configurator device. Then, sections 8.3 and 8.4 show how the
wrapper modules for cryptography-related and network-related tasks were implemented.
After this, sections 8.5 and 8.6 describe the modules that implement the Enrollee’s and the
Configurator’s operation code. And finally, Section 8.7 describes how the application can
be configured and executed from the user’s perspective.

8.1 Key generation and storage
To soften the burden of having to generate a pair of RSA keys on the IoT device, extract
the public key out of the device, and copy it to another IoT device (from an Enrollee to
a Configurator or vice versa), this implementation generates the RSA keys outside the IoT
device on a computer. On Linux, the keys may be generated using the openssl program
as shown in Listing 9. On other platforms, similar tools to generate an RSA keypair may
be used. The generated key should be at least 2048 bits long. The ESP32’s cryptographic
module supports up to 4096-bit keys.

Generate a 2048-bit private key to private_key.pem
openssl genrsa -out private_key.pem 2048

Extract the public key from private_key.pem and save it to public_key.pem
openssl rsa -in private_key.pem -pubout -out public_key.pem

Listing 9: Commands to generate an RSA keypair

Once the keys are generated, each pair of keys needs to be copied to the target IoT
device. This is done using the Static file approach shown in Section 5.9, which will make
both keys accessible as external variables in the application code. As the keys will become
a part of the application code, they will be encrypted automatically if the flash encryption
is enabled.

38

To make sure the application can locate all key files, they must be stored inside a data
directory (which will be introduced in Section 8.7) and named sta_priv.pem, sta_pub.pem,
conf_priv.pem, and conf_priv.pem. The files starting with sta_ will be copied to the
Enrollee, and the files starting with conf_ will be copied to the Configurator. The files
containing pub in their name shall contain the public keys, and the files containing priv in
their name shall contain the private keys.

The last key file that is present in this directory is the sta_required_conf.pem. This
file will be copied to the Enrollee and it is used to configure the mutual authentication.
If the mutual authentication should be enabled, this file should contain the public key of
the Configurator that will be required by the Enrollee during the provisioning process. If
mutual authentication should be disabled, this file should be empty.

8.2 Network credentials storage
Just like in the previous section, this section will use the Static file approach to provide
the Configurator with a list of accepted Enrollees and theirs network credentials. To save
space on the Configurator device, each Enrollee will be represented by an SHA-256 hash of
its public key. The SHA-256 hashes will be stored in the Configurator device in a binary
format, as will be shown later.

To make the configuration user-friendly, the configuration is defined using a text file,
which will be converted into a binary format once the text file is completed. An example of
this text file is shown in Listing 10. It is recommended to name this file allowed_stas.txt
and save it in the same data directory as in the previous section.

59fb5e8fe8282eeeec86112 my_ssid;user1;password1
59aa5e00e83327066c86111 my_ssid;user2;password2
b1a4c42ef19374c36cebbad other_ssid;user3;password3

Listing 10: A configuration file used to set the list of accepted Enrollees and their network
credentials (the SHA-256 hashes were shortened for simplicity)

The format of this file is simple – each of the lines represents a single station (En-
rollee). Each Enrollee’s entry contains an SHA-256 hash of the Enrollee’s public key and
its connection string. Both values must be separated by at least one space. The connection
string contains the SSID name, username, and password needed to connect to the network.
Semicolons (;) are used to separate the components of the connection string. It is expected
that the SSID and username do not contain semicolons. In the password, semicolons may
be used without escaping.

Once the configuration file is prepared, a bash script can be used to convert the file
into binary format. If the recommended filename and location were used for the text file,
the script can be executed without any parameters (./convert_allowed.sh), which will
create a binary file allowed_stas.bin with the same data. This file is then copied to the
Configurator with the application automatically. Just like in the previous section, this file
will be encrypted if the flash encryption is enabled.

The format of the binary data for one Enrollee is shown in Table 8.1. For multiple
Enrollees, the binary representations of individual Enrollees are concatenated without any
separators.

39

Type Field Offset Size Description
uint8[] pubkey_hash 0 B 32 B Hash of the public key (in binary form)
uint16 conn_str_len 32 B 1 B Length of the connection string (in bytes)
uint8[] conn_str 33 B any The connection string, NULL-terminated

Table 8.1: Structure of the Public key reply message

The reason for including the length of the connection string in the structure when the
connection string is NULL-terminated is to speed up the lookup of a given entry based on
the value of pubkey_hash. The algorithm to find an entry in this list is implemented by
iterating over the list sequentially, comparing the value of pubkey_hash with the target
hash, and skipping the connection string based on the length stored in conn_str_len if the
hashes did not match.

8.3 Cryptography wrapper
This section introduces the cryptography wrapper module implemented in files crypt.c
and crypt.h. The purpose of this module is to provide an easy-to-use interface to com-
monly cryptographic operations in this project. The module is implemented by calling the
appropriate functions of the mbedtls library that was introduced in Section 5.6.

The cryptographic module is initialized by calling the crypt_init_rand_generator
function, which initializes the random number generator, which is needed to encrypt or
decrypt messages. The initialized generator is stored internally in the cryptography wrapper
and applied when needed.

To decrypt messages, the wrapper also needs to be initialized with the private key
using the crypt_init_private_key function. This approach was chosen because a single
IoT device uses only one private key to decrypt all incoming messages, thus it would be
superfluous to require the private key every time a message is decrypted. For encryption
of messages, though, the public key needs to passed every time a message is encrypted,
because the public key depends on the receiver of the message, and thus changes over
time. The functions designated for messages encryption and decryption are crypt_encrypt
and crypt_decrypt. Apart from the public key (for encryption only), the message to be
encrypted or decrypted, and an output buffer must be passed to these functions.

Next to the encryption functions, the wrapper also provides a function crypt_random to
generate random numbers. This function only requires an output buffer and the expected
length of the generated number in bytes.

The last responsibility of the cryptographic wrapper is to provide functions for the calcu-
lation of SHA-256 hashes. The wrapper provides two functions for this purpose, crypt_hash
and crypt_get_pubkey_hash. Both functions require the message to be hashed, its length,
and a 256-bit output buffer. The former function will take the input buffer as-is, calculate
its SHA-256 hash, and store the result into the output buffer. The crypt_get_pubkey_hash
function is designed to calculate a hash of a public key. The application stores public keys
in a format that is compatible with the mbedtls library, which is the public key in a PEM
format followed by a NULL byte. However, to get the same results of the public keys’ hashes
as from any commonly used utility (e.g. the command sha256sum *.pem on Linux), the last
NULL byte must not be used in the hash calculation. Thus, the crypt_get_pubkey_hash
function calculates the hash of the input buffer excluding its last byte.

40

8.4 Network stack
This section explains the challenges that had to be addressed when sending messages over
the ESP-NOW protocol that was introduced in Section 5.5. This section will be divided into
several subsections based on the individual challenges. All functions relevant to sending
ESP-NOW messages are implemented in files wifi.c and wifi.h.

8.4.1 Wi-Fi initialization

It is necessary to initialize the Wi-Fi module before it can be used to transmit ESP-NOW
messages (it is not needed to connect to an Access Point, the initialization of the Wi-Fi
module on the chip is sufficient). This is an easy task to do, as the manufacturer provides
an example application1 demonstrating a basic communication over ESP-NOW.

However, a bug was found in this example, because the example does not set the channel
of the Wi-Fi interface. As the ESP32 chip uses an auto-channel selection to find a non-busy
channel, it may be possible for different devices to select different channels. If the devices
do not use the same channel, the ESP-NOW messages will not reach the destination. This
was fixed by setting the Wi-Fi channel on all devices manually and this bug was reported
to the manufacturer.

8.4.2 Task for processing ESP-NOW messages

The ESP32’s Wi-Fi interface uses callback functions to inform the application that a new
packet was received or transmission of an outgoing packet was finished. These callback
functions are, however, called from a high-priority Wi-Fi task and it is strongly discouraged
to perform any lengthy operation from this task, so the Wi-FI interface is ready to transmit
more packets.

Because of this, a task with a lower priority for message processing must be created.
This low-priority task is named wifi_task. This task stores all requests to process incoming
and outgoing messages in a s_wifi_queue queue. The role of this task will be shown in
the following sections 8.4.3 and 8.4.4.

8.4.3 Sending a message

The wifi.h file provides an interface for sending unencrypted or encrypted unicast messages
and unencrypted broadcast messages. This interface is called by a file that implements
the Enrollee’s or the Configurator’s operation (sta.c or configurator.c). An example
sequence diagram of the calls necessary to send a unicast unencrypted message is shown
in Figure 8.1.

The ESP-NOW protocol requires that the Wi-Fi interface keeps track of its peers.
This is achieved by the functions add_peer(mac) and add_peer_broadcast() that call the
corresponding system function. The interface also provides the functions del_peer(mac)
and del_peer_broadcast() to delete a previously added peer.

To send a message, either of the functions send_unicast, send_unicast_encrypted,
or send_multicast needs to be called. All functions require the data to be sent and
their length, the unicast functions also require the destination MAC address, and the en-
crypted unicast function also requires the public key to encrypt the message. All three

1https://github.com/espressif/esp-idf/blob/master/examples/wifi/espnow/

41

https://github.com/espressif/esp-idf/blob/master/examples/wifi/espnow/

alt

sta.c or conf.c wifi.c

add_to_queue(s_wifi_queue, ...)

add_peer(mac_addr)

[if this is the first message sent to this peer]

send_unicast(mac_addr, data, len)

Figure 8.1: Function calls needed to send an unencrypted unicast message

functions will add an entry requesting the message to be sent to the s_wifi_queue (the
send_unicast_encrypted function will encrypt the message first).

The wifi_task task will retrieve this request from the queue, and verify the length of
the outgoing message. If the message is shorter than 250 bytes, the message will be sent
using the system esp_now_send function. If the message is longer than 250 bytes, it will be
fragmented using the approach defined in Section 7.4, and the fragments will be sent using
the system esp_now_send function. Note that the fragmentation is not implemented for
broadcast messages, because all broadcast messages sent by this protocol are guaranteed
to be shorter than 250 bytes.

8.4.4 Receiving a message

The reception of messages is a bit more complex the sending of them because fragmented
messages must be reassembled and it is necessary to work with callback functions. This
section describes the actions that are taken from the moment an incoming message is
registered by the network interface. Before this occurs, the operation code must register
a callback function using the set_incoming_message_callback function from wifi.h.

Inside a high-priority system task

The wifi.c file registers its internal function as a callback from the network interface to
receive all incoming ESP-NOW messages. As this callback is called from a high-priority
system task that is not intended for time-consuming operations, this function will only
create an entry about the incoming messages and adds it to the s_wifi_queue.

Inside the low-priority wifi_task task

The entry about the incoming message will be read from the s_wifi_queue by the user-
defined low-priority wifi_task task. This task will use the first by of the message to
identify whether this message is a part of a fragmented (multipart) message. If it is not,
the message will be passed to the operation code. Otherwise, the wifi.c module will
look up its internal list s_incoming_multipart_msgs for any previously received parts of
this multipart message. If all parts of the multipart message are received, the assembled
multipart message will be passed to the operation code and removed from the internal list of

42

incoming multipart messages. The operation code will not be able to recognize whether the
received message was fragmented (except by comparing the length of the received message).
If no new parts of the fragmented message are not received for one second, the internal entry
about the incoming message will be deleted.

Inside the Enrollee’s or Configurator’s operation code

When the received message is passed into the Enrollee’s or Configurator’s operation code,
the operation code will determine the type of the message based on its first 10 bytes and
validate the length of the message based on the message’s type. For some types of messages,
the code may also call the function decrypt_received_message(msg) in wifi.h, which
will decrypt the message in place. Then, the operation code will typically call a message-
type-specific function to process the message.

8.5 STA (Enrollee) operation
This section explains the operations taken by the Enrollee-specific code. This code is
implemented in the sta.c and sta.h files. The overall operation of this code is represented
by the finite state machine (FSM) shown in Figure 8.2. The following sections will describe
the actions taken in each state of the FSM.

Broadcasting presence
Start provisioning

Null Wait for authentication
request

Wait for connection
details

Processed public key request
[mutual authentication

enabled]

Processed public key request
[mutual authentication disabled]

Processed
authentication
request

Provisioning complete

Timeout

Timeout

Figure 8.2: Enrollee’s finite state machine

8.5.1 The initial (null) state

The initial (or null) state indicates that the provisioning process is not currently running,
either because it was not initialized yet or it was already completed. In this state, the
program will check in the non-volatile storage whether the provisioning process was already
completed (this does not apply if the station is configured to rerun the provisioning process).
If it was not, all necessary modules (namely the cryptography and network modules) will
be initialized, the presence announcement message will be prepared, and the provisioning
process will be started, changing the current state to Broadcasting presence.

43

8.5.2 Broadcasting presence

In the broadcasting presence state, the application will start a timer that will periodically
broadcast the presence announcement message every 3 seconds, until the timer is stopped
because the Public key request message from the Configurator was received.

When the Public key request is received, the station will reply with a Public key reply
message that contains the public key of this station, and change its state to Wait for
authentication request if the mutual authentication is enabled or to Wait for connection
details otherwise.

The station will remember Configurator’s MAC address in s_configurator_mac when
it leaves the broadcasting presence state and ignore messages from other devices unless the
status returns to the broadcasting presence state. The station will return to the broadcasting
presence state if no message is received from the Configurator for 2 seconds.

8.5.3 Wait for authentication request

The station will reach the Wait for authentication request state if the mutual authentication
is enabled and the station has processed the Public key request message. In this state, the
station will wait for the Authentication request message from the Configurator (for up to
2 seconds).

If the authentication request is received, the station will decrypt the message, and reply
with an encrypted Authentication reply message. This will reset the inactivity timer and
change the station’s state to Wait for connection details.

8.5.4 Wait for connection details

In this state, the station waits for the Connection details message. When it is received, the
station will validate the correctness of the received nonce if the mutual authentication was
enabled. The message will be ignored unless the received nonce matches the nonce sent in
the Authentication reply message in the previous state.

Regardless of whether the mutual authentication was enabled, the station will validate
the format of the received connection string, and the SSID, username, and password will
be extracted from it. All of these values will be stored in the non-volatile storage, thus
completing the provisioning process.

8.6 Configurator operation
The Configurator device never performs any actions on its own (apart from deleting inactive
entries), because it only responds to request from Enrollees. However, as the provisioning
protocol is stateful, the Configurator device must be able to track the current state of
provisioning for each Enrollee. This is done by the s_provisioned_stas list which contains
the status of the provisioning protocol for each Enrollee that has sent any message in the
last five seconds. The structure of the entry for one Enrollee is shown in Table 8.2. All
entries will be removed if the counterpart device is not active for 5 seconds. Note that some
fields of the structure will not be filled in the early stages of provisioning.

The following sections will describe how the individual messages that can be received
from Enrollees are handled on Configurator.

44

Type Field Description
uint8[] mac_addr Enrollee’s MAC address

TimerHandle_t timer Timer to check for the Enrollee’s inactivity
enum state State of the provisioning process (one of: WAIT_

FOR_PUBKEY, WAIT_FOR_AUTH_REPLY, or DONE)
uint8[] pubkey_hash SHA-256 hash of the Enrollee’s public key
mbedtls_

pk_context
pubkey Enrollee’s public key

bool
mutual_auth-
entication

Whether mutual authentication is enabled

uint8[] nonce_1
The nonce sent in the Authentication Request mes-
sage

Table 8.2: Structure of the entry to store the state of the provisioning protocol for one
Enrollee

8.6.1 Processing the Presence announcement message

When a Presence announcement message is received, the Configurator will first check
that it does not have an entry that contains the provisioning status of this device in the
s_provisioned_stas list. If it does, it means the provisioning protocol is already running
and the message will be ignored. Then, the device will check that all preconditions needed
to start the provisioning protocol as defined in Subsection 7.5.2 are satisfied.

If the provisioning protocol may be started, the Configurator will initialize a new entry
that will store the status of provisioning of this device. In this entry, the state will be set
to WAIT_FOR_PUBKEY, the inactivity timer will be initialized, and the MAC address, hash
of the public key, and the mutual authentication flag will be filled.

Finally, the device will respond with the Public key request message.

8.6.2 Processing the Public key reply message

When a Public key reply message is received, the Configurator will first check that the
status entry for this Enrollee exists and its state is set to WAIT_FOR_PUBKEY. If it is, it will
reset the inactivity timer and verify the received public key matches the hash that was sent
in the Presence announcement message.

If the verification is successful, the Configurator will store the public key and change
the state to WAIT_FOR_AUTH_REPLY if the mutual authentication is enabled or to DONE if it
is disabled.

If the mutual authentication is enabled, the Configurator will generate a nonce that
must be repeated by the Enrollee and send the Authentication request message. Otherwise,
the device will send the Configuration details message. In both cases, the message will be
encrypted by the Enrollee’s public key.

8.6.3 Processing the Authentication reply message

When an Authentication reply message is received, the Configurator will first check that
the status entry for this Enrollee exists and its state is set to WAIT_FOR_AUTH_REPLY. If it
is, it will reset the inactivity timer and verify the received nonce matches the nonce that
was sent in the Authentication request message.

45

If the verification is successful the Configurator will generate and send the Configuration
details message and set the state to DONE. Note the destruction of the status entry will be
done by the inactivity timer when it expires, so the Configuration details message may be
retransmitted within this interval if needed.

8.7 Program configuration and execution
This section explains the steps needed to configure and build this application. First, the
ESP32 development toolkit must be downloaded, installed, and initialized using the instruc-
tions in Section 5.2 and the target device must be set using the command shown in Listing 1
in Section 5.3.

Then, the RSA keys should be generated using the generate_keys.sh script found in
the project’s data directory, which is located in project-dir/main/data/. The generated
keys will be saved in the same directory. The generated files do not need to be moved or
renamed, as they will be compiled with the project.

In the same dir, the sta_required_conf.pem and allowed_stas.bin files should be
also updated. The sta_required_conf.pem file configures the mutual authentication on
the Enrollee. If the file is not empty, the Enrollee will only accept credentials from a
Configurator with a given public key. To enable mutual authentication, the content of
conf_pub.pem should be copied into this file. Otherwise, the sta_required_conf.pem file
should be empty.

The allowed_stas.bin file can be updated by modifying the allowed_stas.txt file
and running the convert_allowed.sh script without parameters. Details on the format
used by the allowed_stas.txt were given in Section 8.2.

Next, the idf.py menuconfig command can be executed in the project’s root folder
(project-dir/) to configure the project. The relevant options are located in the IoT
provisioning configuration section of the configuration menu. The following values can
be configured using this tool:

• Role of device – sets whether a Station (Enrollee) or a Configurator device will be
compiled

• Wi-Fi Channel – the Wi-Fi channel to use. All devices must use the same channel.

• Force mutual authentication – if enabled, the Configurator will only accept En-
rollees with mutual authentication enabled. This value has no effect on Enrollees.

• Force reconfiguration – if enabled, the Enrollees will redo the provisioning process
even if it is already configured. This value has no effect on Configurators.

Finally, it is recommended to enable the flash encryption and the secure boot on the
Configurator device to prevent the network credentials from being leaked from the device
if an attacker would gain physical access to the Configurator.

Once the project is configured, it may be built and flashed into the device using the com-
mand idf.py -p /dev/ttyUSB0 flash monitor, where /dev/ttyUSB0 is the USB port
the ESP32 device is connected to. See Section 5.3 for more information on building and
flashing projects.

46

Chapter 9

Evaluation

This section evaluates the project’s design and implementation. First, Section 9.1 reviews
how the requirements from the Problem definition in Chapter 2 were addressed. Then,
Section 9.2 discusses the user experience of the implemented solution, and Section 9.3 re-
views the security aspects of the implementation. And finally, Section 9.4 discusses possible
extensions of the implementation.

9.1 Fulfillment of requirements
This section lists the requirements for the implementation of the provisioning protocol
that were defined at the end of Chapter 2, and reviews how each of the requirements was
addressed.

• There should be a dedicated configurator device that will store all necessary network
credentials, and provide them to all legitimate IoT devices, rather than forcing the
user to configure the credential details on each device separately.
This is indeed the key aspect of the implemented provisioning protocol, as a dedicated
Configurator device is used to provision all Enrollees.

• As most IoT devices have little to no user interface, the implementation should not
require any unnecessary user action on the IoT device that is provisioned.
The provision protocol in question had to make the decision between security and
usability. While it would be trivial to create a provisioning protocol that does not
require any interaction with the IoT device apart from connecting it to the power
supply – all that the Configurator would have to do is to broadcast the network
credentials in plaintext – such a solution would not be secure. There must a mean for
the Configurator to determine whether it is communicating with a legitimate Enrollee.
To do this, each Enrollee needs to possess some kind of unique identifier that will
allow the Configurator to identify the Enrollees. There will be more discussion on the
usability of the solution given in Section 9.2.

• The provisioning protocol should be secure. It must not be possible for an unauthorized
IoT device to obtain the network credentials. Other security vulnerabilities should be
mitigated as well.
It is not possible for an unauthorized IoT device to obtain the network credentials,
because the protocol always sends the network credentials encrypted using the En-

47

rollee’s public key which has been known the Configurator beforehand. More details
on the security of the protocol will be discussed in Section 9.3.

• The provisioning protocol must anticipate that the newly provisioned device has no
internet connectivity, as the device did not receive the network credentials yet. Thus,
an alternative way for the newly provisioned device and the configurator device to
communicate must be found.
This is solved by using the ESP-NOW protocol, which is connectionless.

• The IoT device should only engage in the provisioning protocol if it had not received
the network credentials yet.
The Enrollee stores the received network credentials in non-volatile storage and does
not repeat the provisioning process if previous credentials are saved. It is possible to
override this behavior though.

9.2 User experience
While the provisioning protocol works without any user interaction at all, there are some
prerequisites that must be satisfied that reduce the user experience. This section will first
cover the prerequisites that must be satisfied on the Configurator device, and then the
Enrollee’s prerequisites will be covered.

On the Configurator device, it is first necessary to generate a pair of RSA keys that
will be used if mutual authentication is required. This key-pair must be generated even if
there is no intent to use the mutual authentication yet because the mutual authentication
might be required by some Enrollee in the future. However, the generation of these keys is
simple, as it requires running one bash script and the keypair only needs to be copied to
one device.

The second object that needs to be configured on the Configurator device is a list of
the Enrollees and their network credentials. The difficulty of the generation of this list
depends on how the user currently stores the devices’ network credentials. As the list is
maintained in a form of a text file, it may be possible for the user to create a script that
will auto-generate the content of this file from their source of credentials.

The configuration needed on the Enrollee device depends on whether the mutual
authentication is enabled. In both cases, the Enrollee needs to generate a pair of RSA keys
that will be used in the provisioning protocol. This key-pair may, however, be generated
by the device manufacturer or other third party, and the user may receive a list of the
public keys (or their SHA-256 hashes) of all devices. If mutual authentication is enabled,
the Enrollees also must be provided with the Configurator’s public key.

Table 9.1 displays the amount of time needed for the Enrollee device to reach indi-
vidual stages of the provisioning protocol, either with the mutual authentication enabled
(in column 2) or disabled (in column 3). In both cases, the device needed approximately
690 milliseconds to boot and initialize the Wi-Fi interface. Then, it took 30 ms to send
the Presence announcement message, process it on the Configurator device, and send the
public key request. After this, the needed 660 ms to send the Authentication request and
another approximately 600 ms to send the Connection details message. This delay occurs
because the IoT device needs to process lengthy public-key cryptography operations.

After this, other scenarios were tested as well, such as the case when the Enrollee device
already had received the network credentials on the previous boot or when the Enrollee’s

48

Step With mutual
authentication

Without mutual
authentication

Device boot 437 ms 417 ms
Wi-Fi initialization 687 ms 687 ms
Received public key request 717 ms 717 ms
Received authentication request 1 377 ms -
Device is fully provisioned 1 907 ms 1 387 ms

Table 9.1: Overall time reach individual steps of the provisioning protocol, either with or
without mutual authentication enabled

public key did not match the Configurator’s settings or vice versa, and more. The devices
behaved in all tests as expected.

9.3 Security considerations
This section overviews the attacks possible on this implementation. The first two subsec-
tions will consider the possible attacks on the protocol itself depending on whether the
mutual authentication is enabled. Then, Subsection 9.3.3 will consider the vulnerabilities
when the private keys and network credentials are copied to the IoT device. And finally,
subsections 9.3.4 and 9.3.5 describe the threats when an attacker gains physical access to
the device.

9.3.1 Attacks on the protocol when mutual authentication is enabled

When mutual authentication is enabled, the protocol is resistant to impersonation and man-
in-the-middle attacks, because both devices known each other’s public keys beforehand, and
public-key cryptography is used to encrypt sensitive data.

9.3.2 Attacks on the protocol when mutual authentication is disabled

When the mutual authentication is disabled, the Enrollee is not able to verify that it has
received the connection details from a genuine Configurator. Depending on the scenario,
though, this may be easily recognizable as the Enrollee will not connect to the target network
and perform the required task. The connection details are still protected from disclosure
because the details are encrypted using the Enrollee’s public key and the Configurator knew
the SHA-256 hash of this key beforehand, thus it is not possible to trick the Configurator
to encrypt the data by an attacker-chosen public key.

9.3.3 Attacks on application deployment

Extra caution needs to be taken on the storage of private keys and network credentials
before these details are copied into the IoT device. As both the private keys and network
credentials are stored in unencrypted text files, it is necessary to delete these files once the
devices are configured. It is also necessary to delete all build files using idf.py fullclean,
as the configuration files are copied to the build/ folder during the compilation.

49

9.3.4 Attacks on the Enrollee device

The implemented application does not encrypt the private key or network credentials on
the ESP32 device by default to ensure any user application that will be executed when
the provisioning process is complete can read the received network credentials. The target
application should encrypt the network credentials and either encrypt or delete the private
provisioning key when its first run. It is also possible to enable the flash encryption and
secure boot on the device to make sure the private key is encrypted before the device is
provisioned, but this may pose consequences for the target application.

9.3.5 Attacks on the Configurator device

On the Configurator device, it is strongly recommended to enable the flash encryption and
secure boot to make sure the network credentials of all devices cannot be obtained by reading
the content of the flash storage if an intruder gains physical access to the Configurator. If
the flash encryption is enabled, all data in the flash storage including the private keys and
network credentials are encrypted using the AES cypher. The encryption key is stored in
the eFuse and cannot be read by software.

The application code can, however, access the unencrypted network credentials and the
private keys. The access to the network credentials cannot be avoided, as the provisioning
protocol needs to be able to read those credentials and send them to another (Enrollee)
device. The private key could be better protected by making it inaccessible to the appli-
cation code, however, the private key is of little value if an attacker is able to manipulate
the application code because that would also give them the ability to read the network
credentials.

The secure boot option ensures that the attacker is not able to reflash the device with
their own malicious application. However, as a reflash of the device deletes the old content
of the flash storage, the attacker should not be able to retrieve the network credentials by
flashing the device with an application that reads all bytes from the flash storage. However,
the manufacturer recommends turning both flash encryption and secure boot options on
simultaneously.

9.4 Possible extensions
The implemented provisioning protocol is capable of providing the network credentials to
unconfigured IoT devices. With this implementation in place, the protocol can be further
expanded in many ways, as will be shown in this section.

One example of such an extension is to create a user application that would speed up
the configuration of the Configurator. If new IoT devices would be manufactured with pre-
generated provisioning keys, each IoT could contain a sticker with a QR code that holds
the SHA-256 hash of this device’s public key. The user application could then scan this
QR code and automatically configure the Configurator to trust the Enrollee for a specified
amount of time.

The provisioning protocol can currently configure the Enrollee with network credentials
that are based on a combination of a username and a password, such as the credentials for
Open Authentication, WPA2-PSK, and some WPA2-Enterprise authentication protocols.
The provisioning protocol could support other Wi-Fi authentication protocols in the future,
such as the ones that use client certificates.

50

The implementation could also change the application’s runtime settings based on the
specific use-case of each device. Currently, the user application that is executed when
the device is provisioned with network credentials must be stored in the Enrollee. As an
alternative, the implementation could completely overwrite the application code of an IoT
device based on the device’s use-case using an over-the-air update – this way, the application
code would not have to be pre-installed in the device.

51

Chapter 10

Conclusion

The aim of this thesis was to review current approaches used to provision new IoT devices
with network credentials and to design and implement a new provisioning protocol that
will securely provision IoT devices with minimal overhead, especially with regards to the
amount of user interaction necessary to provision a new device.

The review of the existing provisioning solutions has shown that current IoT devices
often create an Access Point on their first boot to which to user needs to connect from
another device and fill in the network credentials in an IoT device-generated web form.
Other provisioning options include the use of a dedicated Gateway device that implements
as many IoT devices’ APIs as possible and provides a single configuration interface; or a
smartphone that broadcasts the network credentials to all nearby devices with no regard
to security.

The thesis then introduced the upcoming Wi-Fi Easy Connect standard that aims to
provide a solution for this problem, but this standard is too complex and not adopted by
current devices.

Thus, a simpler provisioning protocol was designed in this thesis. The protocol recog-
nizes two types of devices, an Enrollee and a Configurator. A network must contain at
least one Enrollee and exactly one Configurator. The Configurator device is responsible
for the storage of the Enrollees’ network credentials and it will provide these details to the
Enrollees upon request. An Enrollee is an unconfigured device that uses the services of the
Configurator to obtain the network credentials.

As the Enrollee device has no internet connectivity at the moment, a connectionless
ESP-NOW protocol was used to communicate during the provisioning protocol.

The protocol uses public-key cryptography to ensure only the authorized Enrollees are
able to retrieve the Wi-Fi credentials from the Configurator. Each device is identified by
a unique pair of RSA keys, and the Configurator device keeps a whitelist of permitted
Enrollees’ public keys. The protocol offers optional mutual authentication, in which the
Enrollee device will also verify the Configurator’s identity.

The implemented provisioning protocol provides resistance against the network creden-
tials disclosure, as the credentials are transmitted encrypted by a key the is only known
to the Enrollee. However, special attention must be given to the storage of the credentials
on the IoT device. It is possible to encrypt the credentials on the Configurator device by
enabling flash encryption and secure boot. The same option is available on the Enrollee,
however, the implementations for the user application must be considered first before en-
abling this option.

52

The implementation is open for further extension. For example, it is possible to extend
the Enrollee code to perform an OTA update to download a use-case specific application
code once the device is provisioned with network credentials. Or, a graphical interface could
be created to smooth the process of the configuration of the Configurator device.

53

Bibliography

[1] Amazon Web Services, Inc.. Software Timers. 2020. Accessed 01.05.2021.
Available at: https://www.freertos.org/RTOS-software-timer.html.

[2] Amazon Web Services, Inc.. Tasks. 2020. Accessed 01.05.2021. Available at:
https://www.freertos.org/implementing-a-FreeRTOS-task.html.

[3] Amazon Web Services, Inc.. XQueueCreate. 2020. Accessed 01.05.2021. Available
at: https://www.freertos.org/a00116.html.

[4] Apple Inc.. Bonjour. 2013. Accessed 19.12.2020. Available at:
https://developer.apple.com/bonjour/.

[5] Bellavista, P. and Zanni, A. Feasibility of Fog Computing Deployment Based on
Docker Containerization over RaspberryPi. In: Proceedings of the 18th International
Conference on Distributed Computing and Networking. Association for Computing
Machinery, 2017. ICDCN ’17. DOI: 10.1145/3007748.3007777. ISBN 9781450348393.

[6] Corporation, M. UPnP Device Architecture V1.0 Annex A – IP Version 6
Support. 2002. Accessed 20.12.2020. Available at:
http://upnp.org/specs/arch/UPnP-arch-AnnexAIPv6-v1.pdf.

[7] Dustdar, S., Nastić, S. and Šćekić, O. Provisioning Smart City Infrastructure.
In: Smart Cities: The Internet of Things, People and Systems. Springer International
Publishing, 2017, p. 27–46. DOI: 10.1007/978-3-319-60030-7_3. ISBN
978-3-319-60030-7.

[8] Espressif Systems. SmartConfig. 2016. Accessed 04.01.2021. Available at:
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/
network/esp_smartconfig.html.

[9] Espressif Systems. Unified Provisioning. 2016. Accessed 04.01.2021. Available at:
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/
provisioning/provisioning.html.

[10] Espressif Systems. Embedding Binary Data. 2020. Accessed 05.05.2021. Available
at: https://docs.espressif.com/projects/esp-idf/en/v4.1/api-guides/build-
system.html#embedding-binary-data.

[11] Espressif Systems. ESP-NOW. 2020. Accessed 07.01.2021. Available at:
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/
network/esp_now.html.

54

https://www.freertos.org/RTOS-software-timer.html
https://www.freertos.org/implementing-a-FreeRTOS-task.html
https://www.freertos.org/a00116.html
https://developer.apple.com/bonjour/
http://upnp.org/specs/arch/UPnP-arch-AnnexAIPv6-v1.pdf
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/network/esp_smartconfig.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/network/esp_smartconfig.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/provisioning/provisioning.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/provisioning/provisioning.html
https://docs.espressif.com/projects/esp-idf/en/v4.1/api-guides/build-system.html#embedding-binary-data
https://docs.espressif.com/projects/esp-idf/en/v4.1/api-guides/build-system.html#embedding-binary-data
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/network/esp_now.html

[12] Espressif Systems. ESP-TLS. 2020. Accessed 10.04.2021. Available at:
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/
protocols/esp_tls.html.

[13] Espressif Systems. ESP32-S2 Family Datasheet. 2020. Accessed 06.01.2021.
Available at: https://www.espressif.com/sites/default/files/documentation/esp32-
s2_datasheet_en.pdf.

[14] Espressif Systems. ESP32-S2-Saola-1. 2020. Accessed 06.01.2021. Available at:
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32s2/hw-reference/
esp32s2/user-guide-saola-1-v1.2.html.

[15] Espressif Systems. ESP32-S2 Technical Reference Manual. 2020. Accessed
06.02.2021. Available at: https://www.espressif.com/sites/default/files/
documentation/esp32-s2_technical_reference_manual_en.pdf.

[16] Espressif Systems. Flash Encryption. 2020. Accessed 12.04.2021. Available at:
https:
//docs.espressif.com/projects/esp-idf/en/v4.1/security/flash-encryption.html.

[17] Espressif Systems. Get Started. 2020. Accessed 07.01.2021. Available at: https:
//docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32s2/get-started/index.html.

[18] Espressif Systems. Non-volatile storage library. 2020. Accessed 05.05.2021.
Available at: https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-
reference/storage/nvs_flash.html.

[19] Espressif Systems. Project Configuration. 2020. Accessed 09.03.2021. Available at:
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/
kconfig.html.

[20] Espressif Systems. Secure Boot V2. 2020. Accessed 15.04.2021. Available at: https:
//docs.espressif.com/projects/esp-idf/en/v4.1/security/secure-boot-v2.html.

[21] Goasduff, L. Gartner Says 5.8 Billion Enterprise and Automotive IoT Endpoints
Will Be in Use in 2020. 2019. Accessed 10.12.2020. Available at:
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-
8-billion-enterprise-and-automotive-io.

[22] IEEE Standards Association. IEEE Standard for Information
technology–Telecommunications and information exchange between systems Local
and metropolitan area networks–Specific requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std
802.11-2012 (Revision of IEEE Std 802.11-2007). 2012, p. 1–2793. DOI:
10.1109/IEEESTD.2012.6178212.

[23] Kim, J. E., Boulos, G., Yackovich, J., Barth, T., Beckel, C. et al. Seamless
Integration of Heterogeneous Devices and Access Control in Smart Homes. In: 2012
Eighth International Conference on Intelligent Environments. 2012, p. 206–213. DOI:
10.1109/IE.2012.57.

55

https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/protocols/esp_tls.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/protocols/esp_tls.html
https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html
https://www.espressif.com/sites/default/files/documentation/esp32-s2_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s2_technical_reference_manual_en.pdf
https://docs.espressif.com/projects/esp-idf/en/v4.1/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/v4.1/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32s2/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32s2/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/kconfig.html
https://docs.espressif.com/projects/esp-idf/en/v4.2.1/esp32/api-reference/kconfig.html
https://docs.espressif.com/projects/esp-idf/en/v4.1/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/v4.1/security/secure-boot-v2.html
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io

[24] Kliem, A. and Renner, T. Towards On-Demand Resource Provisioning for IoT
Environments. In: Nguyen, N. T., Trawiński, B. and Kosala, R., ed. Intelligent
Information and Database Systems. Springer International Publishing, 2015,
p. 484–493. ISBN 978-3-319-15705-4.

[25] Kwon, D., Hodkiewicz, M. R., Fan, J., Shibutani, T. and Pecht, M. G.
IoT-Based Prognostics and Systems Health Management for Industrial Applications.
IEEE Access. 2016, vol. 4, p. 3659–3670. DOI: 10.1109/ACCESS.2016.2587754.

[26] Lethaby, N. Run-Time Provisioning of Security Credentials for IoT Devices. 2020.
Accessed 10.10.2020. Available at:
https://www.electronicdesign.com/technologies/iot/article/21126707/runtime-
provisioning-of-security-credentials-for-iot-devices.

[27] Mohamed, S., Forshaw, M. and Thomas, N. Automatic Generation of Distributed
Run-Time Infrastructure for Internet of Things. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). 2017, p. 100–107. DOI:
10.1109/ICSAW.2017.51.

[28] Nastic, S., Truong, H.-L. and Dustdar, S. Sdg-pro: a programming framework
for software-defined iot cloud gateways. Journal of Internet Services and
Applications. Springer. 2015, vol. 6, no. 1, p. 21.

[29] Nixon, T. and al., A. R. at. Web Services Dynamic Discovery (WS-Discovery).
2009. Accessed 20.12.2020. Available at: https:
//docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html.

[30] Rushton, M. CloudInit. 2019. Accessed 03.01.2021. Available at:
https://help.ubuntu.com/community/CloudInit/.

[31] Sundmaeker, H., Guillemin, P., Friess, P. and Woelfflé, S. Vision and
challenges for realising the Internet of Things. In:. Cluster of European Research
Projects on the Internet of Things, 2010, chap. Strategic Research Agenda, p. 39 – 82.

[32] Suppatvech, C., Godsell, J. and Day, S. The roles of internet of things
technology in enabling servitized business models: A systematic literature review.
Industrial Marketing Management. 2019, vol. 82, p. 70 – 86. DOI:
https://doi.org/10.1016/j.indmarman.2019.02.016. ISSN 0019-8501.

[33] Wi-Fi Alliance. Wi-Fi Easy Connect. 2020. Accessed 08.01.2021. Available at:
https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect.

56

https://www.electronicdesign.com/technologies/iot/article/21126707/runtime-provisioning-of-security-credentials-for-iot-devices
https://www.electronicdesign.com/technologies/iot/article/21126707/runtime-provisioning-of-security-credentials-for-iot-devices
https://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
https://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
https://help.ubuntu.com/community/CloudInit/
https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect

	Introduction
	Problem definition
	Existing solutions
	Methodology
	Network discovery protocols
	Gateway-oriented solutions
	Device Cloud Middleware
	Cloud-oriented solutions
	Implementation in ESP-32
	Chapter summary

	Wi-Fi Easy Connect standard
	Enrollee and Configurator roles
	Initiator and Responder roles
	Mutual authentication
	DPP prerequisites
	Provisioning Protocol
	Bootstrapping phase
	Authentication phase
	Configuration phase
	Access phase

	ESP-32
	Basic features
	Development toolkit
	Build system
	Menuconfig
	ESP-NOW
	Cryptographic functions
	eFuse
	Flash encryption and secure boot
	Non-volatile storage
	FreeRTOS features
	Timers
	Tasks
	Queues

	Analysis
	Design
	Authentication of devices
	Enrollee's prerequisites
	Configurator's prerequisites
	Message fragmentation
	Messages
	Presence announcement
	Public key request
	Public key reply
	Authentication request
	Authentication reply
	Connection details message

	Implementation
	Key generation and storage
	Network credentials storage
	Cryptography wrapper
	Network stack
	Wi-Fi initialization
	Task for processing ESP-NOW messages
	Sending a message
	Receiving a message

	STA (Enrollee) operation
	The initial (null) state
	Broadcasting presence
	Wait for authentication request
	Wait for connection details

	Configurator operation
	Processing the Presence announcement message
	Processing the Public key reply message
	Processing the Authentication reply message

	Program configuration and execution

	Evaluation
	Fulfillment of requirements
	User experience
	Security considerations
	Attacks on the protocol when mutual authentication is enabled
	Attacks on the protocol when mutual authentication is disabled
	Attacks on application deployment
	Attacks on the Enrollee device
	Attacks on the Configurator device

	Possible extensions

	Conclusion
	Bibliography

