
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

RUNNING MOTION ANALYSIS
SYSTÉM PRO ANALÝZU POHYBŮ PŘI BĚHU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR RADOSLAV ELIÁŠ
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠ GOLDMANN,
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Bachelor's Thesis Specification
Student: Eliáš Radoslav
Programme: Information Technology
Title: Running Motion Analysis
Category: Artificial Intelligence
Assignment:

1. Get acquainted with existing tools for running motion analysis. More importantly, focus on
solutions that use cameras.

2. Study available methods and algorithms of computer vision for human movement analysis.
Mainly get familiar with algorithms for skeleton detection.

3. Design a system with two cameras for capture human movement. The first camera should be
record the person from the back and the second camera from the side.

4. Implement an application that should be capable merge data from both cameras and extract
trajectories of movements of leg joints (knee and ankle).

5. Test the solution on your videos. Discuss the possibilities of using the system.
Recommended literature:

MORAIS, Romero, et al. Learning regularity in skeleton trajectories for anomaly detection in
videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019. p. 11996-12004.
PIPKIN, Andrew, et al. Reliability of a qualitative video analysis for running. journal of
orthopaedic & sports physical therapy, 2016, 46.7: 556-561.

Requirements for the first semester:
Items 1 a 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Goldmann Tomáš, Ing.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: April 9, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/23845/2020/xelias18 Page 1/1

Abstract
The goal of this thesis is to analyze body movement in running gait. The system works
with recordings from two cameras, one from the side and one from the back. The problem
is solved using a pose estimation algorithm based on the convolutional method. Multiple
estimators are compared in this thesis. The Ąnal system uses the OpenPose framework
and provides a library with calculations for many metrics used to evaluate the running
gait. Results are then visualised in a multiplatform desktop application. Experiments were
conducted on a private dataset of running recordings.

Abstrakt
Cieľom tejto práce je analyzovať pohyb a držanie tela pri behu. Systém pracuje so záz-
namom z dvoch kamier, zboku a zozadu. Využíva nástroj na detekciu postoja ľudského
tela založenú na konvolučnej metóde. Práca porovnáva niekoľko detektorov. Výsledný sys-
tém používa detektor OpenPose a implementuje knižnicu s výpočtami pre rôzne metriky
používane na ohodnotenie formy behu. Výsledky sú zobrazené v multiplatformnej aplikácii.
Ohodnotená bola niekoľkými experimentmi na osobnej dátovej sade videí behu.

Keywords
artiĄcial intelligence, neural networks, computer vision, skeleton detection, pose estima-
tion, running form, running, running gait, AI, movement detection, body position, camera,
biomechanics, Python, kinematics, video

Klíčová slova
umelá inteligencia, neurónové siete, počítačové videnie, detekcia skeletu, detekcia postoja,
bežecká forma, beh, držanie tela, detekcia pohybu, pozícia tela, kamera, biomechanika,
Python, kinematika, video

Reference
ELIÁŠ, Radoslav. Running Motion Analysis. Brno, 2021. Bachelor’s thesis. Brno Univer-
sity of Technology, Faculty of Information Technology. Supervisor Ing. Tomáš Goldmann,

Rozšířený abstrakt
Cieľom tejto práce bolo navrhnúť systém na analýzu pohybu pri behu za pomoci existu-
júceho algoritmu na detekciu pózy osoby. Ten mal pracovať so záznamom z dvoch kamier.
Jedna zaznamenáva bežca zboku a druhá zozadu. Uživateľ by si mal vedieť v aplikácii
zobraziť trajektóriu niektorých kĺbov dôležitých pre beh a ohodnotiť jeho techniku. Aby
bol systém ľahko rozšíriteľný medzi širokú verejnosť, nemal by využívať žiadnu špeciálnu
techniku alebo mať veľké požiadavky na technickú zručnosť uživateľa.

Najprv bolo potrebné naštudovať základy biomechaniky a jej využitie v športe. Zhrnuté
boli aj princípy analýzy bežeckej formy v klinickom prostredí, ktorú bežne vykonáva fyzioter-
apeut alebo vyučený tréner. Ďalej nasledovala kapitola vysvetľujúca neurónové siete, ich
prvotný vznik a vývoj. Tá zahŕňa aj ich využitie pri detekcii objektov a odhadovaní pózy
človeka. Niekoľko algoritmov zaoberajúcich sa týmto problémom je taktiež vysvetlených a
porovnaných.

Zvolený algoritmus pre výslednú aplikáciu bol OpenPose, vďaka jeho detekcii nadštan-
dardných bodov v rámci chodidla ako pozícia palca alebo päty. Systém bol navrhnutý
a rozdelený do modulov pripomínajúc architektúru Model-View-Controller. To umožňuje
prípadnú zmenu na iný typ graĄckého rozhrania v budúcnosti, ako napríklad webovú ap-
likáciu.

Nutné bolo naštudovať fungovanie algoritmu OpenPose, a ako ho zahrnúť do zvyšku
aplikácie. Bola vytvorená dvojica modulov, ktoré ho volajú s vloženým videom, následne
čítajú jeho výstup a transformujú do podoby vhodnej na použitie v kontexte tejto práce.
Kľúčový bol modul, ktorý detektuje v rámci behu fázu, kedy bežec stojí na jednej nohe. Na
tej záleží veľmi veľa metrík používaných na ohodnotenie techniky behu. Tie sú zahrnuté
v jednej knižnici, ktorá je hlavný výstup tejto práce. Pracuje s 2D systémom súradníc
získaným z detektoru pózy a je ľahko rozšíriteľná v budúcnosti. Navyše bol navrhnutý
modul, ktorý má za úlohu synchronizovať záznamy z dvoch kamier, ak zaznamenávajú
bežca v rovnaký moment.

Na záver boli navrhnuté experimenty, ktoré mali zhodnotiť úspešnosť a presnosť jed-
notlivých funkcionalít. Detektor fázy postoja sa ukázal ako vyhovujúci, kedy zachytáva
spoľahlivo každú jednu fázu na videu, no niekedy nie úplne všetky jej snímky. Vytvorené
výpočty pre metriky fungujú ako je zamýšľané, avšak dokážu ich ovplyvniť neočakávaný
uhol kamery alebo nepresnosť vychádzajúca z chýb pri detekcii pózy. Synchronizácia kamier
funguje no s občasnými chybami. Súvisí to hlavne s meniacou sa polohou kamier a uhla
medzi nimi. Analýza formy behu však nevyžaduje synchronizáciu, takže tento fakt neov-
plyvní výslednú hodnotu aplikácie.

Running Motion Analysis

Declaration
Hereby I declare that this bachelor’s thesis was created solely by me, under the supervision
of Mr. Ing. Tomáš Goldmann. Every source and publication used in this thesis is properly
cited and included in the list of references.

. .
Radoslav Eliáš

May 10, 2021

Acknowledgements
I would like to thank my supervisor Mr. Ing. Tomáš Goldmann for his personal approach
and willingness to help with any problems during the work on this thesis. In addition, a
big thank you to every person that helped with this project in any way. By either their
expertise, providing data for the experiments, or moral support.

Contents

1 Introduction 2

2 Human biomechanics and running analysis 3
2.1 Biomechanics . 3
2.2 Biomechanics in sports . 5
2.3 Running analysis . 6
2.4 Running gait cycle . 8

3 Human pose detection from video 11
3.1 Neural Networks . 11
3.2 Human pose estimation and tracking . 15
3.3 Existing solutions . 22

4 System proposition and implementation details 24
4.1 Choosing an algorithm . 24
4.2 Video recording requirements . 26
4.3 Mockup . 26
4.4 System modules . 27

5 Experiments and testing 36
5.1 Estimator accuracy test with body stickers 36
5.2 Stance detector tests . 37
5.3 Synchronization tests . 40
5.4 Running motion analysis . 42
5.5 Verdict . 48

6 Conclusion 49

Bibliography 50

A Contents of the included storage media 53

B Manual 54
B.1 Installation . 54
B.2 Usage . 54

1

Chapter 1

Introduction

Sports and exercise are an essential part of staying healthy and keeping our bodies working
properly. According to the World Health Organization, one in four people is physically
inactive, causing disease and shortening life expectancy up to 10 years [29].

Introducing people to exercise is now more important than ever. Walking and running
could be considered as some of the simplest, yet most efficient activities available for begin-
ners. Most people already have all they need to start running, but with the vast availability
of this sport comes the problem of proper technique and safety. Bad form can inĆict un-
necessary knee pain and many more injuries, caused by too much pressure being applied to
joints, ligaments, and tendons.

While medicine and mainly physiotherapists can Ąx these issues, the average beginner
runner usually does not bother seeking professional help until it is too late and some damage
has already been done. The goal of this paper is to automatize this process by analyzing
video recordings and make it accessible to anyone. With smartphone cameras improving
every year, a system like this will enable any person to record themselves and adjust their
running form, which will eventually lead to injury prevention.

Chapter 2 focuses on biomechanics as a study and further dives into running, gait, and
body position. It talks about the essential parts of a good running posture and how they
help prevent injuries and other health problems. The next Chapter 3 presents the basics
of neural networks, standard methods of computer vision, and how they are used to detect
and track human poses from a video. Afterwards, the main focus is joint extraction and
position comparison with other body parts. Propositions for the Ąnal system are discussed
in Chapter 4, along with the implementation details for the individual parts. Experiments
done on the resulting product are explained in Chapter 5.

Personally, this topic is very important to me as a passionate runner, which is why I want
to help other people discover the beauty of my sport by minimizing the risks involved.

2

Chapter 2

Human biomechanics and running

analysis

2.1 Biomechanics

Biomechanics is the study of the structure, function, and motion of the mechanical aspects
of biological systems [2]. It basically means that this Ąeld studies how all animals and
humans move, how their bodies function, and why we are able to just stand up from our
desks and walk to the nearest coffee shop. The ability to do that is called the locomotive
function. This chapter will focus speciĄcally on human biomechanics. We, as a species,
have a big range of movements and postures that we are able to perform. All these functions
are part of human biomechanics.

The main real-world application of this study is physiotherapy, which aims to improve
physical performance and prevent or recover from movement-related injuries.

Terminology

Parts of this section are paraphrased from [17].
Human biomechanics studies forces affecting human muscles and bones and how the

body tissues respond to these forces. They can be divided into 2 different groups, internal
and external. External forces are caused by an outside environment, for example, the
ground pushing on a foot as a person takes a step. Most of them are contact forces, which
means that the object applying the force is in contact with or touching the human body.
Internal forces are generated by the body itself, therefore the name. This paper will mostly
work with external ones.

Furthermore, biomechanics are split into static and dynamic concepts. Considering the
topic being running motion, we will talk about the dynamics. They study the conditions
under which an object moves.
There are 2 types of dynamic concepts:

• Kinematics

• Kinetics

SimpliĄed kinematics study and describe the motion of an object without referencing the
forces causing the said motion, e.g., a football rolling from place A to place B. In contrast,
kinetics take those forces into consideration, e.g., a player kicking the football causing that
movement.

3

Kinematics

There are Ąve variables studied in kinematics [1]:

• Type

• Location

• Direction

• Magnitude

• Rate

Information in this section is taken from [11].
Type of motion can either be linear, which means all body parts are moving in the

same direction along a straight line, or angular. Angular motion is in other words, rotation
around axis.

Location of a joint is usually deĄned in a system of anatomical planes and axes. There
are three planes of motion. Sagittal, transverse (sometimes referred to as horizontal), and
frontal. Shown in Figure 2.1.

Figure 2.1: Three planes of motion [9]

Direction of motion is also described by the three basic planes of motion. Flexion and
extension are the two opposing directions in the sagittal plane. Flexion motion decreases
the angle between two body parts while extension increases them. When a motion reaches
an extreme on one side of the range, it is often referred to as hyper. In the frontal plane,
the main movement is called abduction, which goes further away from the midline of the
plane. Its opposite is adduction, in other words, moving back towards the midline. The
most common motions in the transverse plane are internal and external rotations.

For linear motions, magnitude represents the distance between two spots that the
object traveled. Magnitude of angular motion is measured in radians or degrees.

Rate of motion is in other words, the speed or velocity of the studied object. Sometimes
acceleration is also one of the variables looked at.

4

Kinetics

As stated before, kinetics studies the forces that cause the motion of an object. Force can
be described as an act of one object on another and can be either internal or external. To
determine how will the object or a human body, in this case, react, all existing forces must
be taken into consideration or the result will not be precise.

Well known Newton’s laws also describe the kinetics of an object. Law of inertia or in
other words Newton’s Ąrst law states that the higher the mass, the stronger the force needed
to transpose an object from a standstill to a moving motion. Newton’s second law shows
that a number of forces will affect an object to increase or decrease its velocity depending
on the direction of the forces. The third law states that for every action there is an equal
reaction. A simple example in running is that a runner will run faster on a concrete road
than on sand with the same effort because the concrete will create a bigger reaction or
ŞpushbackŞ [17].

Application

Biomechanics essentially study the movement technique, which is most often applied in
sports. The goal is usually either one of two things. Either to prevent injuries or at least
reduce the risk of them or to improve performance by adjusting or removing unnecessary
movements. There are a few different areas where biomechanics are applied [13]:

• The identiĄcation of optimal technique for enhancing performance

• The assessment of muscular recruitment in order to prevent overloading

• The analysis of body loading to determine the safest method of performing exercise

• The analysis of sports equipment e.g., shoes, bicycles, rackets.

2.2 Biomechanics in sports

Center of Gravity

Center of gravity or COG for short, is an imaginary point around which body weight is
evenly distributed [11]. This concept is important to understand stability, balance, and
their effects in sports with rapid body movement. The Base of support is an area beneath
an object which includes every contact point of the said object and a surface. COG changes
often and when the line of gravity falls outside the base of the support, adjustment is needed
to stay balanced.

Balance

Balance is the ability of a person to control his or her stability. SimpliĄed, it means keeping
the body under control and moving only where the person wants to.

Static Balance

We talk about static balance when the body is stationary. It is the ability to maintain a
Ąxed posture while at standstill.

5

Figure 2.2: Center of Gravity [28]
Figure 2.3: Base of Support
[17]

Dynamic Balance

Dynamic balance is much more demanding and problematic. Developing babies learn this
later than static balance. It consists of keeping the center of mass over the base of the
support at all times while constantly changing the body position and with it, the center of
gravity. Athletes like gymnasts need to perfect this skill to perform in their Ąeld.

Momentum

Momentum is the product of an object’s velocity and mass and is closely linked to kinemat-
ics. In short, it is the amount of motion. Momentum can be transferred between objects
[11]. There are 2 types of momentum.

Linear Momentum

As the name suggests, the linear momentum is in a straight line like running, walking, or
cycling in one direction.

Angular Momentum

Angular or in other words, the rotational momentum is created by the said rotations of
objects. A good example of this is tennis and how good players often do not hit the ball
perpendicular to a racket but with a slight angle which creates more power.

2.3 Running analysis

Running, while similar to walking, has a few key differences crucial to understanding proper
technique and injury prevention. Each person has different Ćexibility, strength, and body
composition. When determining a proper running posture, it is important to take all these
variables into a consideration. Fatigue plays a big role too because it is harder to focus on

6

body position when muscles are getting tired. Here are a few of the most common problem
areas contributing to the incorrect running technique [14].

Feet

Feet are the only contact point with the ground while running. That means they take the
biggest abuse and are very prone to damage and injuries. When running, a person should
hit the Ćoor with the ball of the foot. The two most common problems are striking with
toes or with the heel. These may not be harmful after one or two runs, but in the long
term can cause a lot of pain. A less common but still existing type of bad foot placement
is hitting the ground at an angle - both the left and right sides of the foot should hit the
surface at the same time. Another incorrect gait type is when the front of a foot points
slightly either outwards or inwards. It should always follow the direction of the movement
of a person in a straight line.

Legs and Knees

Effects of legs and knees are closely related to the foot position discussed earlier. When
running, it is important to move the legs in a straight line, the same as with feet. Every
stride should be done with the shin being perpendicular to the surface, or at least as
close to perpendicular as possible. Inconsistence in this particular position causes the
aforementioned heel or toe striking. When the angle of the shin is too big, the heel drops
Ąrst and hits the ground before the rest of the foot. Otherwise, if the angle is too small,
the toes might get damaged by the repeated load.

Torso

Torso makes up the biggest mass of the human body, so using it properly can greatly increase
one’s performance. The Center of gravity is also situated here while running, meaning that
even a slight movement will cause big changes in effectiveness. Again, common problems
are leaning too far forward or too far backward. Even though the torso should be fairly
straight, a slight lean forward will drive the body in that direction. However, when it is
overdone, the hips have a limited range of motion, and the bigger the lean forwards, the
more of that range we lose. On the opposite end, when leaning backward, the body needs
more power to actually move in the wanted direction. Still, the torso should not be totally
static while running, but should slightly rotate with every stride.

Shoulders and Arms

The upper body is usually not the part people think about when talking about running,
but a simple test of sprinting with straight arms attached to one’s torso shows how much
speed actually comes from this part of the body. Similarly to the torso, shoulders and arms
should move with every stride but in a sort of ŞXŞ pattern. Meaning that with the left
foot forward, the right shoulder and arm should come forward, and the other way around.
Shoulders should be relaxed as not to waste energy but slightly pulled back, almost as
squeezing a pencil between the shoulder blades. Arms should be close to the torso, bent at
a 90-degree angle at the elbow. Moving them slightly up and down with every stride helps
with driving the body forward, almost as pushing itself in the direction it is headed.

7

Head

The head is the brain of the body, clearly. We naturally move in the direction our eyes are
looking. That is why looking at our feet may cause the torso to lean forward, the shoulders
hunch over, and so on. Focused gaze makes or breaks proper posture while running. Ears
should be aligned with the shoulders.

2.4 Running gait cycle

The running gait cycle can be described as a series of movements that combined, create one
repetition of a running motion. It starts with one foot hitting the ground, goes through
launching forward from that position and striking with the other foot, and Ąnishes where it
started, hitting the surface with the Ąrst foot. This is called one gait cycle and repeating it
creates the running motion. There are three key positions in the gait cycle: Initial contact,
mid stance, and mid Ćight. Check Figure 2.4 for visual representation.

Form analysis in clinical environment

Analyzing running form and posture most commonly occurs in a physical therapist’s clinic.
There are two different approaches to this.

The Ąrst is when the runner is jogging on a treadmill and the physical therapist observes
in real-time. The advantage of this type of analysis is the immediate actions that can be
taken. Small adjustments in the technique can be observed in the same session, thus the
ability to experiment with different problem Ąxes, etc.

The other approach is when the running is recorded with a camera and the video is then
analyzed. This approach also creates advantages, for example, the possibility of multiple
therapists assessing the running technique, without the need of them being at one place
at the same time. The video can be sent by the patient even without visiting the clinic,
although more common is recording the video there. The main reason for this is the
importance of a precise camera set up to ensure good visibility of the body parts of interest
[23]. Running recording is usually performed on a treadmill, in order to eliminate surface
inconsistencies like potholes and such. Two cameras are used, more commonly, one from
the side and one from either the front or back of the runner. Each view shows different
aspects of running posture, which is the reason one would be incomplete without the other.
For example, the frontal view will not show anything about torso lean or knee Ćexion angle
[18]. Higher framerates are desirable in cameras when recording running because they
enable slowing down the video and examining it frame by frame.

In 2016, a study [23] was made by the University of California in San Francisco with an
objective to create a framework for systematic video-based running analysis. Testing and
analysis were performed on athletes with conĄrmed running-related injuries.

The runners were recorded while running on a treadmill after a warmup with two cam-
eras. One from the side and one from the posterior view. Colorful markers were applied
to some parts of their clothing to catch movements that would otherwise be hidden by the
wardrobe.

Variables of interest like angles or distance between body parts were then identiĄed
visually on a slow-motion video. Each position of the running gait cycle is used for different

8

Figure 2.4: Running gait cycle [7]

kinematic variables and correct identiĄcation of these moments is crucial for an accurate
evaluation of the running gait.

Side view

From the side view, these variables were studied:

• Foot strike pattern 2.7

• Foot inclination angle at initial contact

• Tibia angle at loading response

• Knee Ćexion during stance

• Trunk lean

• Overstriding

• Cadence

Proper technique in most of these was discussed in Section 2.3. Overstriding is the
result of combining multiple of these variables causing footstrikes far away from the base of
support. The correct cadence is still unclear to scientists, but the estimations are around
180 steps per minute. Lower cadence can lead to overstriding and health problems that
come with it.

Posterior view

• Heel eversion

• Heel whips

• Knee window 2.6

9

• Pelvic drop 2.5

The posterior view mainly focuses on heel positioning and movement with a few other
variables. The Knee window is the space between knees. Ideally, the window should be
as small as possible while the knees never touch. Pelvic drop is identiĄed in the stance
phase by the markers applied to the runner’s body. It is the position difference between
the marker on the stance leg and the marker on the swing leg demonstrated in 2.5. An
excessive pelvic drop may lead to injury.

Figure 2.5: [A] Normal pelvic posi-
tion, [B] excessive pelvic drop [23]

Figure 2.6: [A] Normal knee window, [B]
ŞclosedŞ knee window [23]

Figure 2.7: [A] Forefoot strike, [B] midfoot strike, [C] rear foot strike [23]

10

Chapter 3

Human pose detection from video

The scientiĄc Ąeld of Computer vision deals with the problem of detecting objects from
a static image or a video recording. Computer vision is a subset of a much larger Ąeld, the
Artificial intelligence . The goal is to understand and analyze digital images from the
real world in order to create numerical data that make sense to computer processors. The
automatization of the complex abilities that the human visual system has opens up many
possibilities. Common problems solved using computer vision are scene reconstruction,
video tracking, object recognition, image restoration, motion estimation, and others [30].
Neural networks or NNs for short are the standard systems used in artiĄcial intelligence.

3.1 Neural Networks

They are massive, parallel computing systems consisting of a large number of intertwined
simple processes. The name and the inspiration behind these are the biological neural
networks that make up the animal brain. Neural networks have the ability to learn, which
makes them an ideal tool for analyzing unknown inputs. Information in this section is taken
from [12].

Biological neuron

A neuron, in the biological context, is a cell with the ability to process information. A single
neuron consists of multiple parts, each with its signature role and function. These are shown
in Figure 3.1:

Neuron accepts a signal from other neurons, processes data from the input, and creates
a new modiĄed signal which is then forwarded to other neurons.

The nucleus works as a storage for information about the neuron’s traits. Dendrites are
receivers for all incoming signals and the axon is a transmitter for the Ąnal signal generated
by the cell’s body. Axon at the end branches into multiple strands. The place of contact
between one neuron’s dendrite and another neuron’s axon strand is called a synapse.

Chemicals called neurotransmitters are released when an input reaches a synapse. These
can adjust the effectiveness of a neuron, enabling humans to learn and remember history.

Every neuron is connected with about 103 − 104 other neurons. The frequency of
communication between units is only a few hundred Hertz, meaning it is much slower than
a modern computer processor. And yet, the human brain performs complex tasks like face
recognition in just a few milliseconds. In conclusion, the brain runs a parallel program
about 100 steps long.

11

Figure 3.1: Biological neuron [12]

Computational model

The Ąrst computation model of a neuron was created by two scientists called McCulloch
and Pitts. This model computed the weighted sum of multiple inputs and compared it to
a threshold value. The output was either 1 or 0, depending on the comparison with the
threshold. This model has a few limitations and differences with the biological neuron. For
example, using threshold values instead of graded responses and the lack of asynchronous
updates of the neuron [12]. It was later generalized into a model called perceptron, as
shown in Figure 3.2.

Figure 3.2: Perceptron - computation model of a neuron [22]

Correlations between the two models are:

• Synapses = weighted sums

• Dendrites = input wires

• Axons = output wires

• Cell body = activation function

The mathematical model [12] of a neuron is as follows.

y = f(b+
n
∑︁

i=1

wixi)

12

Where b is the bias, n is the number of inputs, and w are the weights of the corre-
sponding inputs, and f is the activation function.

Activation function

Step function or activation function determines the output of a single neuron. These can
be split into two categories, linear and nonlinear. The activation function maps the output
value in some speciĄed range, depending on the type of the function. Most commonly used
step functions are listed in Figure 3.3.

Figure 3.3: Commonly used activation functions [21]

Weight initialization

Weight initialization is the process of determining weight values and biases before the
training phase of the network. Correct initialization has a big effect on how fast the network
can learn. Bad starting weights can lead to never reaching the required accuracy of the
neural network [31].

With zero knowledge of the Ąnal system, there are two possible techniques of initial-
ization. Either setting all biases and weights to zeroes or random numbers. With zero
initialization, the biases have no effect on the outcome. Zero value weights, on the other
hand, will cause symmetric relations among units and therefore the weights will be exactly
the same in all other iterations.

Random initialization solves this problem, which is why it is used more commonly.
However, with it comes the issue often referred to as the vanishing gradient. When the

13

starting weights are initialized at very high values, the activation function maps them near
the value 1. This causes the weights to change very slowly and ultimately the learning
takes a lot of time. Equally, the same phenomenon happens with weights initialized with
low values mapping them close to 0 [31].

To avoid this issue, the initialization technique needs to be compatible with the activa-
tion function of the neural network. There are two commonly used methods nowadays, he
technique and Xavier initialization.

He method is used with the ReLu and leaky ReLu activation functions. First, random

numbers are generated for each weight and then every value is multiplied by
√︁

2

nin
, where

nin is the number of input signals.
Xavier technique is a modiĄcation of the previous initialization. The procedure is the

same, but with the multiplication value being either
√︁

1

nin
or

√︁

1

nin+nout
, where nout is

the number of output signals.

Neural Network Learning

Information in this section is paraphrased from [12]. The learning process of a neural
network can be described as a process of updating the architecture of a network to perform
a speciĄc task efficiently and precisely. The weights of the inputs are changed iteratively
according to the data fed to the network. The ability to learn is the key feature of how we
are able to simulate the human brain.

Unsupervised training

The simplest way of training a network is called unsupervised. The data are fed into the
network without any hints about which input pattern is correct. A network trained this
way will split the data set into groups with similar characteristics. The number of output
chunks can be set before the training.

Supervised training

In supervised training, every input pattern carries information whether it is correct or not.
The network calculates the output for a pattern and compares it with the expected result.
How much these two differ dictates the error of the network. The weights of the network
are then altered according to the error to match the correct output as closely as possible.
This process is repeated until the error value is lower than the predeĄned deviation. This
is also often referred to as learning with a teacher.

Convolutional neural networks

A convolutional neural network or CNN is an algorithm used to analyze images, assign
weights and biases to any objects in the image, and distinguish among them. These networks
consist of multiple interconnected layers. Usually one input layer, one output layer, and
a few hidden layers in between. Thanks to their architecture, the accuracy is not affected
by position, rotation, and other transformations of the objects. This algorithm is again
inspired by the human brain and its visual cortex [20].

14

Convolution layer

The function of this layer is to detect local features in an image using a Ąlter also called
kernel [32]. The dimensions of the Ąnal feature are determined by three parameters:

• Stride tells us how much the kernel moves with every step of the method. For a
stride equal to one, the Ąlter moves by one pixel, and so forth.

• Padding is sometimes added to the original image to gain more information about
the edges of the input image. Thanks to the additional borders added by padding,
the edge pixels will be used more times in the convolution process.

• Depth equals the number of kernels we apply in this layer. For example, in generic
RGB images, each pixel has three values corresponding to each color proĄle, so we
might use a different Ąlter for each.

Figure 3.4: Demonstration of a convolution layer [32]

Pooling layer

This layer is often used before the convolution layer. Its purpose is to lower the dimensions
of the input data. This is done to decrease the computational requirements of the Ąnal
network. Multiple pixels are converted into one according to the rules of pooling. Two
common types are max-pooling and average pooling. In max-pooling, only the highest
value is kept. Average-pooling calculates the average value of input Ąelds creating the Ąnal
value [20].

Fully connected layer

A layer of this type has each input node connected to each output node. It means they
are costly in terms of computational power needed, but also very precise. Fully connected
layers are often used in the last layer of CNN and used for object classiĄcation.

3.2 Human pose estimation and tracking

Human pose estimation is a rapidly evolving Ąeld and a focus of interest of many researchers.
It is characterized as the problem of identifying human joints like elbows, knees, etc. Usu-

15

ally, in the context of stale images, it’s called pose estimation and we talk about pose
tracking if it’s in a video recording. 2D pose estimation results in (x,y) coordinates for
each joint, while 3D estimation also approximates the z coordinate. Example of 2D pose
estimation is shown in Figure 3.5. The challenges of this task are poor image or video qual-
ity, bad camera angle resulting in low visibility of some joints, and baggy clothing hiding
the true body pose [4].

Figure 3.5: Visualisation of 2D human pose estimation algorithm [4]

Nowadays, the most recent human pose estimation algorithms use convolutional neural
networks as their core building block [4]. A notable framework that revolutionalized this
Ąeld was DeepPose [26] by Google, which was the Ąrst major paper that applied deep neural
network learning to pose estimation.

DeepPose

The DeepPose model solves the problem with a cascade of regressors which transform the
input image into a normalized pose vector [26]. It means that after the Ąrst joint estimation
from the original image, the same algorithm is applied to the much smaller area around
the estimated position in the Ąrst iteration. This model works with a Ąxed input size of
220×220. The main disadvantage of this approach is the substantial computational power
required for each iteration of the cascade.

By the authors’ testing and evaluation, after a single regressor, the joint location esti-
mation is much worse than any of the state-of-the-art approaches available at that time.
However, after two or three cascading stages, the accuracy is better than theirs.

Method classiĄcation for multi-object human pose tracking

Top-down approach

The top-down approach in human pose tracking is performed in two steps. First, a detection
module identiĄes human objects, and then, a pose estimation algorithm is applied to locate
joints and other keypoints [15]. The advantage of this method is that the problem is divided

16

into separated, smaller, and easier tasks. Additionally, many detection modules usable in
this scenario already exist.

Bottom-up approach

Bottom-up, on the other hand, detects all human joints and key points in the frame using
a pose estimator. After that, the joints are assembled into individual people according to
some data association technique [15]. This approach has an excellent computational cost
but sometimes lacks accuracy, depending on the quality of the human assembly technique.

Object tracking

In the past, object detection was accomplished by regressing the input image into bounding
box coordinates, an example of this method is shown in Figure 3.6. The object, in our
case the human, is then expected inside the bounding box in the next frame. In human
pose estimation, this is usually done by regressing the image into heatmaps, where each
channel represents a human joint [15]. The heatmap approximates the joint location in
each pixel. These heatmaps can then be used to create bounding boxes for each tracked
human. Heatmap technique is demonstrated in Figure 3.7.

Figure 3.6: Example of object tracking by the bounding box approach [6]

Figure 3.7: Example of the heatmap application for joint estimation [4]

Common pose estimation metrics

Information in this section was taken from [4]. There are a few metrics commonly used to
evaluate the performance of human pose estimation frameworks. They are used to compare
the models to choose the best one for our application.

17

Percentage of correct parts (PCP)

This metric measures the detection rate of arms and legs. Distance between the limb joint
estimated location and its actual location is calculated. If this distance is smaller than
half of the length of the limb, the limb is considered detected. This is often denoted as
PCP@0.5.

Percentage of detected joints (PDJ)

The same distance between the estimated joint position and the actual position is measured
as before. The joint is referred to as detected if the value is within a certain fraction
of the torso diameter [27]. Torso diameter is sometimes switched to the bounding box
diagonal, illustrated in Figure 3.8. This is done in order to eliminate problems with people
turned sideways which appear to have zero torso diameter between shoulders [24]. The
mathematical calculation is as follows [24].

PDJ =

∑︀

n

i=1
bool(di < 0.05 ∗ diagonal)

n

Where

• n - the number of keypoints in the image

• di - the euclidian distance between the true location and estimated location

• bool(condition) - a function that returns one or zero based on the condition

Figure 3.8: Illustration of bounding box diagonal approach to PDJ [24]

Object keypoint similarity (OKS)

Object keypoint similarity is calculated by this equation [24]:

OKS = exp(−
d2
i

2s2k2
i

)

18

Where

• di - the euclidian distance between true location and estimated location

• s - scale or the square root of the object segment area

• k - per-keypoint coefficient that controls the fall off

Not all keypoints or joints in this case have the same size, that is, what the scale and
keypoint coefficient are for. For example, the knee location and ear location are not equal.
The distance is normalized by these two variables, they determine the importance of each
keypoint [24]. Constants for human joints calculated by [8] are listed and visualised in
Figure 3.9.

Figure 3.9: Keypoint constants for OKS metric [8]

OKS indicates how close the estimated position is to the true one. It is a number between
0 and 1. The bigger, the better. All research papers use this metric with an addition of
a threshold either 0.5 or 0.75 [24]. If OKS is greater than the threshold, the keypoint is
considered detected. Commonly shown metric is mAP or mean Average Precision. It is
the mean value of all OKS values.

Pose tracking benchmark

In 2017, a benchmark with a corresponding dataset for pose tracking was created by sci-
entists at Cornell University [3]. This benchmark was published by a community-driven
webpage called ŞPapers with CodeŞ [16]. Many state-of-the-art up and coming frameworks
for pose detection were submitted for testing. The results were then sorted by two vari-
ables: MOTA or Multiple objects tracking accuracy and mAP or mean average precision.
Frameworks with the highest MOTA are illustrated in Figure 3.10.

For running motion analysis, MOTA is not as important because there is usually only
one moving object in a running video.

LightTrack

LightTrack is a generic framework for 3D human pose tracking created by researchers at
the University of Pittsburgh [15]. It was Ąrst introduced in 2017 and is being kept updated
to this date. This framework utilizes the top-down approach explained in Section 3.2

19

Figure 3.10: Graph showing MOTA performance of frameworks on the PoseTrack2017
benchmark [16]

to stay very light-weight and still keep competitive performance with other state-of-the-
art solutions. LightTrack is capable of both offline and online tracking with comparable
accuracy. There are two main modules incorporated into this tool. A single-person
pose tracking module and a visual object tracking one, which combined perform the
pose tracking. Overview of this pipeline is presented in Figure 3.11. The authors of this
framework aimed to create a generic enough codebase to enable the replaceability of both
the human pose estimator and re-identiĄcation (Re-ID) modules. They also introduced
the Ąrst of a kind Re-ID module based on a Siamese Graph Convolutional Network. This
module, contrary to others, uses a spatial graph representation of a human skeleton to
reidentify lost objects in a video. This approach is computationally inexpensive and robust
to sudden camera shifts like those in a football live broadcast. A commonly used bounding
box solution for object tracking is also presented here. This area is enlarged by 20% on
each side and used to localize the tracked object in the next frame.

Figure 3.11: Visualisation of the lighttrack framework pipeline [15]

OpenPose

The goal of this open-source pose estimator was to help the research community by providing
an easy-to-use tool [5]. It supports multiple hardware conĄgurations, different OS platforms,
and many types of input/output options.

20

In addition to the generally used estimator model with 18 keypoints shown in Figure
3.5, OpenPose also implements face, foot, and hand detectors. The default model used in
this algorithm consists of standard body keypoints plus foot variables, like heel and toe
positions. Together, it creates 25-point format, demonstrated in Figure 3.12.

Figure 3.12: ŞBody 25Ş model developed by OpenPose team [5]

OpenPose utilizes the bottom-up approach to pose estimation with the theory of Part
Affinity Fields . PAFs are 2D vectors that interpret the location and orientation of limbs.
The whole body estimation is then put together from individual PAFs. This pipeline is
shown in Figure 3.13.

Figure 3.13: Visualisation of the OpenPose pipeline [5]

What makes this framework so approachable is the diversity of available input methods.
OpenPose works with single images, videos, live webcam stream, and even IP camera
streaming. This means that the user does not have to implement his own pipeline for every
use-case he encounters. Different modes are convenient to use with the ability to toggle
them through command-line Ćags.

Similarly, multiple output methods are available, with the option to display them im-
mediately or to save them to disk. The user can choose between the rendered video with
the estimated pose, individual images corresponding to frames from the video, a heatmap
output, or the most important one for researchers - JSON Ąle structure.

21

STAF

This pose estimation approach[19] aimed at the efficiency of the algorithm. It is able to
run on a single GPU at 30 frames per second while maintaining comparable accuracy and
being runtime invariant. STAF is another bottom-up algorithm and was built around the
PoseTrack dataset[3] introduced in 2017, with the addition of older datasets like COCO[8].

The main contribution of this paper is the introduction of Spatio-Temporal Affinity
Fields, hence the name. Demonstration can be seen in Figure 3.14. These are used to
track sudden movements of keypoints frame by frame. Their biggest advantage is the
redundancy in the case of absence of motion. They prevent incorrect tracking when the
location of the person does not change. Additionally, it utilizes previous frames in videos
recurrently and uses the data available to minimize duplicitous calculations. This further
reduces the computational needs and increases efficiency.

Figure 3.14: Multi person pose tracking achieved by spatio-temporal affinity Ąelds. Blue
lines represent the STAFs [19]

STAF uses a body model with 21 keypoints, which combines body parts from the COCO
and MPII datasets. Besides standard limbs and torso, tt includes locations for the ears,
nose, and eyes, as well as the head and neck.

This approach is deployable on embedded systems thanks to its great efficiency, however,
it lacks a re-identiĄcation module at the moment of publishing this paper. Many previous
works used the Part Affinity Fields, which are just a speciĄc case of the newly introduced
and superior STAFs. This wrapper could be ported to other algorithms in the future as
well.

3.3 Existing solutions

Running gait analysis solutions that utilize pose estimation algorithms already exist.
For example, this study [25] by the Asics corporation created a mobile application that

provides analysis based on video recording. This system calculates six metrics used to
evaluate the running form. These are:

22

• Speed

• Step frequency

• Step length

• Vertical oscillation

• Trunk angle

• Arm swing angle

• Leg swing angle

A screenshot of the Ąnal application is shown in Figure 3.15.

Figure 3.15: Example screenshot of the application [25]

While most of these are relevant in the context of running, they do not speciĄcally
evaluate the correctness of the technique besides trunk angle and vertical oscillation. Addi-
tionally, this application uses a treadmill and the majority of beginner runners do not have
access to a machine like that.

23

Chapter 4

System proposition and

implementation details

I aimed to create a generic enough application that would be freely available to anyone
interested. It means that the system must work without any special hardware or software
dependencies. Most people own a smartphone with a camera and a desktop computer,
usually with Windows OS. Anything more would come with the cost of accessibility. Cross-
platform code is not necessary, but welcome.

Most running gait analyses use two cameras, which is a bit of a complication. I have
decided to attempt creating an application that would be able to work both with one camera
only, but also two. This could be a nice compromise between ease of use and the additional
functionality that comes with the second camera. The system will use primarily one camera
capturing from the side of the runner and an optional one capturing from the side as used
in [23], discussed in Section 2.3.

If those cameras capture the same portion of a run at the same time, the recording should
be synchronized, which will provide additional information about the pose of the runner. It
is important to keep the system fully functional without the need for synchronization and
recording two views at the same time.

The Ąnal product should be a desktop application, where the user can upload a video
of himself running, and his form will be analyzed. Problematic areas of his gait should be
determined, visualized, and explained to him.

Languages and tools

Python was chosen as the programming language for implementation, thanks to it be-
ing multiparadigm and having many libraries for working with large and complex data
structures, advanced mathematical calculations, and even creating multiple types of user
interfaces. All used additional packages were installed with python’s package manager pip,
and stored in a virtual environment1.

4.1 Choosing an algorithm

Choosing the correct pose estimator is critical for the accuracy of the proposed system.
Luckily, for running gait analysis, real-time estimation and multiperson tracking are not

1https://docs.python-guide.org/dev/virtualenvs/

24

https://docs.python-guide.org/dev/virtualenvs/

necessary, both of which are still problematic in many cases. State-of-the-art algorithms
nowadays have pretty similar mean precision for single-person pose estimation. Compu-
tational needs and efficiency are not a big deal either, because the algorithm will be used
only once for each video and the outputs saved for further processing. Instead, I focused
on accessibility and ease of use.

From the aforementioned algorithms and frameworks, OpenPose 3.2 stands out thanks
to its additional foot keypoints, which could be important in running gait analysis because of
the importance of foot position in this movement. It is also aimed at open-source developers,
with a focus on portability and ease of integration into larger ecosystems. Furthermore,
it provides multiple output options. Data in easily parsed formats like JSON or XML are
desired, as they can minimalize the amount of work required to connect the framework
with the rest of the application. Image 4.1 and video formats are common amongst pose
estimators, but still very much welcome. These can be later used in a graphical interface
to visualize the work done by the algorithm.

Figure 4.1: Image output example from OpenPose framework, using the ŞBody25Ş model
with additional foot and face key-points 3.12.

OpenPose generates a single JSON Ąle for each frame of the input video. It has
a Şpose_keypoint_2dŞ variable for each person detected in the frame, consisting of 75
Ćoating-point values. These represent 3-tuples of [x, y, confidence], one for each key-
point. Their order is speciĄed in the author’s documentation2.

‘‘pose_keypoints_2d‘‘:[972.219,259.666,0.86884,

1101.44,347.985,0.826575,

1148.71,383.095,0.700951,

1113.37,542.192,0.250592,

1018.99,624.604,0.442225,

1048.69,312.554,0.823203,...]

2https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/

02_output.md#keypoints-in-cpython

25

https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#keypoints-in-cpython
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#keypoints-in-cpython

4.2 Video recording requirements

Even though the goal is to create a generic solution with no special requirements for the
input video, some boundaries must be set. The camera recording from the side should be
perpendicular to the direction the runner is going. The vertical position of the camera is
not important, it can be placed directly on the ground, as long as the runner can be seen
whole from head to toe. The recording device needs to be horizontally aligned with the
ground, as that is the only way to determine the surface location. There should not be
any movement of the camera, it should be static to eliminate undetectable changes in the
coordinates system, which needs to be constant for the values to be comparable with each
other.

The same rules apply for the posterior camera, with the exception that this one needs
to be parallel to the runner’s course or ideally lie exactly on the route.

There are no limitations in terms of resolution or framerate of the recording, but the
landscape mode is better suited for this application. Standard 30 frames per second are
Ąne, but the higher the rate, the better the analysis in the end.

Automatic view synchronization requires stricter rules to succeed. As demonstrated in
Figure 4.2 the posterior camera should be just on the edge of the Ąeld of view of the main
camera or slightly beyond. The Ąrst few frames are used for this purpose. These recom-
mendations should create an optimal environment for correct gait analysis, even without
the synchronization option.

Figure 4.2: Expected positions of cameras for optimal recording and synchronization chance.

4.3 Mockup

No requirements for the user interface were speciĄed, so I focused on simplicity and ease of
use. The app is aimed mostly at newcomers and not as many long-term users, as running
gait analysis should not be an everyday process. A mockup sketch of how the interface
could look in the end is shown in Figure 4.3.

It is crucial to allow seeing both views at the same time, as the synchronization function
would not make sense without it. The user should be able to scroll through video frames one
by one by himself, to see his form. After selecting a metric in the bottom-left corner menu,
radio boxes appear, each representing one frame with an incorrect technique. After clicking
one of them, the corresponding view should jump to the said frame, so it can be inspected

26

visually. The text box in the bottom-right corner will hold a few sentences explaining what
the selected metric means and how it affects running.

Figure 4.3: Mockup of graphical interface layout for the Ąnal application

4.4 System modules

Before the start of the implementation, I drafted a rough idea of how the application would
be split into modules. As can be seen in Figure 4.4, the architecture should be similar to
Model-View-Controller3 design. This allows modiĄcations to either part without affecting
others too much. No communication should exist between the pose estimator, GUI, and
back-end logic. Their connection should be handled exclusively by the controller module.

If desired, the used pose estimator could also be changed to another one. The only
needed changes would be to the JSON loader module because other frameworks generate
different formats.

Another possible future upgrade could also be changing to a different type of graphical
interface, or even having multiple ones at the same time. It would enable users to choose
their preferred form of the application. For example, switching between a web interface or
a mobile phone standalone app. The neural network of the pose estimator is much more
computationally heavy and takes a lot of runtime. Therefore, the option to upload not only
the video to be estimated but also the saved output from the previous gait analysis would
save a lot of time.

3https://en.wikipedia.org/wiki/Model-view-controller

27

https://en.wikipedia.org/wiki/Model-view-controller

Graphical Interface

Controller

Video

Pose
Estimator

Back-end
logic

Saved output
from estimator

Json loader

Metrics library

Stance detector

Figure 4.4: Architecture of proposed app modules and their connections

JSON loader

This module’s input is a directory path with Ąles containing JSON output from OpenPose
estimator, explained in Section 4.1. Every Ąle is parsed, cropped, and transformed into a
more desirable format. A single frame array of keypoint 3-tuples is changed into a dictionary,
where the key is a string with the name of the keypoint for better code readability and the
value is a Keypoint class instance, which holds the tuple values as individual properties.
These dictionaries are then merged into a list for easier passing amongst methods and
simpler iterating through the whole structure. Empty frames with no person detected are
Ąltered out at this point. A simpliĄed version of the Ąnal data format is shown below.

data = [frame_1, frame_2, ..., frame_n]

frame = {

"RKnee": [x,y,conf]

"LWrist": [x,y,conf]

...

"Neck": [x,y,conf]

}

Pose estimator communication

OpenPose communication is implemented in the estimator.py Ąle. The estimator’s ex-
pected disk location is the root directory of this project. The path with video to-be-
estimated is passed to the method. Its validity should be checked beforehand. OpenPose
enables specifying input and output paths as command-line arguments. The estimator is
called using the Subprocess4 module of python’s standard library. As the app is aimed at
Windows users, the OS’s Powershell5 is utilized. Directory with output Ąles is always saved
to outputs/ folder located in the root directory. Its structure is demonstrated below.

4https://docs.python.org/3/library/subprocess.html
5https://docs.microsoft.com/en-us/powershell/

28

https://docs.python.org/3/library/subprocess.html
https://docs.microsoft.com/en-us/powershell/

input name/

video

json files/

images/

trajectories/

Stance detector

This module is designed to detect side-view frames with the runner currently in a stance
phase of the running gait. Stance happens when one foot is in full contact with the ground.
For visual representation, check Figure 2.4.

Data structure created in JSON loader module discussed earlier serves as an input for
the detector. Determining the presence of a stance uses two variables. The Ąrst one is the
horizontal position of the foot. Contact with the ground cannot be established just from the
pose estimator data, as the Ćoor location is uncertain thanks to the changing nature of the
camera position for each video. This is also the reason the cameras need to be horizontally
aligned for the algorithm to work properly. Flat foot with small epsilon usually happens
twice during running gait. Mid stance phase and during Ćight or ŞswingŞ phase. Detected
frames from a sample video with just this variable are shown in Figure 4.5.

The second variable is used to Ąlter out frames during Ćight and it is the rear leg tibia
angle. As portraited in the Ągure, the rear leg is extended at the knee during Ćight, but in
the stance phase it is bent to an approximately 90-degree angle. This value changes with
each runner, so an epsilon equal to 25 is speciĄed. The combination of these two variables
generates frames with just stance, often a few in each phase. Module outputs a list of
individual frame dictionaries.

The stance detector provides an additional option to merge frames into chunks. It adds
another layer to the output structure, where concurrent frames are put into a standalone
chunk, representing one stance phase. A list of these chunks is then returned.

Figure 4.5: Three frames with horizontal foot detected. The second one is mid-Ćight and
needs to be Ąltered out.

29

Metrics library

The library consists of multiple methods, each calculating single metric values for the whole
data set. They all have the same signature, the parameters are data and boolean whether
to return all values or just the irregular ones that need further attention. Data are in the
standard structure created in the JSON loader module and used in the whole application.
The majority of the metrics use data from the side-view camera, but some require the
posterior recording. A list of dictionaries is always returned, where the key is the frame ID
and the value is the metric calculated in the said frame.

Most metrics are determined by angles between speciĄc keypoints, so assisting functions
for angle calculations are implemented in utils.py source Ąle (adopted from [10]). Method
for determination of the runner’s direction is also stored here.

Torso lean

Let us take a closer look at a few of those metric methods. The Ąrst one is torso_lean().
As the name suggests, this method calculates the angle of the runner’s torso. According
to the gait analysis study mentioned earlier 2.3, the ideal torso lean for optimal running
efficiency is about 8° but it may differ depending on the person’s body structure. Boundaries
for ŞgoodŞ lean are therefore set from 2° to 10°, as at least a small forward lean is always
desired. An additional value of 40° is used as a Ąlter for pose estimator glitches to eliminate
variables that should not exist because that amount of lean is almost impossible.

The angle of lean is calculated for each frame and if it does not land in the expected
range, the frame is added to the dictionary returned from the function. Two keypoints in
the dataset from the pose estimator are used to compute this value, speciĄcally Neck and
MidHip, portrayed in Figure 4.6.

Pelvic drop

Pelvic drop is a metric that uses the posterior recording of a runner. It looks at the
corresponding positions of pelvic bones on the horizontal axis. The pose estimator does not
provide coordinates for these, but the closest relative keypoints are the hips. The horizontal
angle between the left and the right hip is calculated for each frame and if the value is higher
than the expected maximum, the frame is added to the dictionary and returned at the end,
the same as in the torso lean function. This boundary is set to 6°. Hip key points are
demonstrated in Figure 4.7.

Tibia angle at loading response

Loading response is a moment at the beginning of the stance phase, when the weight of a
person shifts forward onto a single leg. It can be observed by the shoe deforming under the
runner. The tibia bone should be perpendicular to the ground or slightly bent, therefore
90°is the maximal regular value. Bigger angles might indicate overstriding and excessive
stress on the knees.

Knee flexion during stance phase

During the whole stance phase, a runner’s knee should bend to at least a 40°angle. Lower
values suggest limited Ćexion and mobility. This metric is especially affected by the stance

30

Figure 4.6: Neck and MidHip key-points ren-
dered on sample frame. The angle between
them and the x-axis represents the lean of the
runner’s torso.

Figure 4.7: LHip and RHip key-
points used for pelvic drop analysis
from a posterior recording.

detector accuracy because missed frames could lead to incorrectly assigning the highest
angle.

Trajectory plotting

The assignment speciĄes that there should be an option to plot trajectories for some joints
that are important to running. This is done using the matplotlib6 library in Python used
to plot graphs and charts. Trajectory from the coordinates of a single keypoint is drawn as
a line graph on a canvas that is then saved to a directory next to the output images, JSON
Ąles, and so forth.

Controller

Implemented in controller.py Ąle, the controller serves as the middleman between the
graphical interface and the logic of the program. After the user uploads his video or
saved data structure for the analysis and calls for it to be processed, the controller’s
backend_setup() method is invoked on the input path. How the logic of the method
Ćows is demonstrated in Figure 4.8.

6https://matplotlib.org/

31

https://matplotlib.org/

Yes No
Is it a video?

Load images, JSONs
and video

Return path to
directory with output

Call pose estimator

Has all the
required files?

No

Yes

Return NoneCreate FolderClass
instance and return it

Setup data structure
from path

Figure 4.8: Flow chart for controller module.

Class folderStruct has multiple properties that hold:

• Path to video with the estimated pose

• Path to directory of images with the estimated pose

• Key-point data structure introduced in Section 4.4

• Path to directory with generated key-point trajectories (optional)

Its instance is used to pass all this data throughout the whole program.
The controller also implements a method that connects the automatic synchronization

module with the interface. IDs of frames where the synchronization happens are returned
in a dictionary, which the GUI uses to lock the views.

The last functionality stored here is the setup for the metric highlighting in the images
in the graphical interface. When the user chooses a speciĄc frame of a single metric,
it is highlighted in the image to demonstrate visually its meaning. This method needs
to determine which view to use, which frame, and which keypoints should be highlighted.
Their exact coordinates depend on the resolution of the image because they are all converted
into the same height and width. A list of Keypoint class objects is returned and later used
to highlight the corresponding part of the frame.

View synchronization module

Automatic synchronization of the side and posterior view is highly experimental function-
ality and its precision depends on many factors. The main challenge here is the fact that
the cameras do not have a constant position. Starting them at the same time would not
work because they are at least a few meters from one another and a single person should
be able to work with the system individually. Furthermore, every second of a video may
take up to a few minutes to process by the pose estimator.

32

In professional Ąlmmaking, multiple cameras are usually synchronized by sound. That
is not applicable in this case, as the distance between the cameras might be too far.

The only option is to Ąnd matching poses from both views and align the corresponding
frames. This raises the requirements for the camera position because the only output from
it is a coordinate system that changes with every tilt of the device. A 90-degree angle
between them is optimal, as is stated in Section 4.2.

The proposed synchronization pose is demonstrated in Figure 4.9. It is a point that can
be identiĄed from both views. When the runner is hitting the ground with one foot, the
other leg rises upwards, making the angle of the knee of that leg smaller with each frame.
The moment where it stops lowering is the frame of the synchronization.

From the posterior view, this point can be identiĄed by the vertical position of the back
foot ankle, compared to that same leg knee. While approaching this point, the runner’s
ankle rises on the y axis. When it stops, the synchronization point is found.

However, a single error by the estimator will break this method and there is no way to
detect it happening. That is why there should be an additional option of manual synchro-
nization by the user.

Figure 4.9: Synchronization point of both views.

Graphical user interface

The UI was created using the widely popular PyQt7 cross-platform toolkit for graphi-
cal desktop interfaces. The Ąnal layout slightly differs from the initial mockup, as some
functionality was added and some widgets redistributed for better usability. Python’s
qdarkstyle package is used to give the interface a simple and uniĄed look. The default
state after the start of the application can be seen in Figure 4.10. All icons used in the
interface are freely available at 8 and 9.

Firstly, the user needs to upload a video for either the side view or both of them. The
two left-side buttons are Ąle/folder pickers for a video or a directory with saved output from
a previous analysis, respectively. After uploading, the process button calls the controller
module to load all necessary data. If the estimator has to be called for a new video, this
takes up to a few minutes.

7https://wiki.python.org/moin/PyQt
8https://loading.io/
9https://www.nicepng.com/

33

https://wiki.python.org/moin/PyQt
https://loading.io/
https://www.nicepng.com/

Figure 4.10: The graphical interface of the Ąnal application after the initial boot-up.

Once the loading is done, the user can freely scroll through the frames of each video
or press the third button underneath the frame that plays the whole video in slow motion.
There are two synchronization options, which are only available if both views are active.
The automatic sync uses the synchronization module that tries to determine a point where
the frames align. If the button is checked, scrolling through one view also scrolls the other
one to keep the views correctly aligned. This functionality is experimental and its success
depends on the estimated video quality and the camera position. In the event of failure,
there is an option to synchronize the views manually by scrolling both views to an alignment
point and locking them with the Manual sync checkbox.

The joint trajectories created by the trajectory.py module can be visualized by choos-
ing one from the combo box in the bottom-middle portion of the layout. They are drawn
on top of the side view frame with a transparent background, as demonstrated in Figure
4.11.

Choosing a metric from the selection displays radio boxes with frames where the runner
exhibits irregular values for the said metric 4.12. A closer description in a few sentences is
written in the text box in the bottom right corner. It explains the meaning of the metric,
its possible causes as well as its implications. For metrics calculated from the back view, if
it is not available, a note is written to the user explaining he needs to upload a posterior
video to enable these.

After selecting a single radio box, the corresponding view is moved to that frame. The
parts of the body responsible for the current metric are highlighted in the picture (4.13)
and the exact angle is written in the text box right beneath the description. This way the
user sees everything needed for the analysis at the same time.

34

Figure 4.11: The trajectory of the left knee drawn on a sample frame.

Figure 4.12: Metric selection and corresponding frames.

Figure 4.13: Examples of metric highlighting - knee Ćexion in the Ąrst Ągure and feet strikes
in the second.

35

Chapter 5

Experiments and testing

The main goal of this paper was to create the back-end logic responsible for gait analysis.
The user interface is a side product, therefore tests and experiments are aimed at this part
of the system.

All videos used to develop and test the application were recorded using one of two mobile
phones. The Ąrst one is an older Xiaomi Redmi Note 41 and the second one Xiaomi MI 9
SE2. Both are mid-range in terms of price, with a pretty generic camera that is not special
in any way. Full HD resolution was used in most cases, with some exceptions that utilized
a wide lens with a resolution of 3840x2160. Generally speaking, the rules introduced in
Subsection 4.2 were abided and the side view camera was approximately two meters away
from the runner to capture the whole body but in as much detail as possible.

5.1 Estimator accuracy test with body stickers

The paper of the chosen pose estimator OpenPose provides statistics stating that the mean
average precision of keypoint estimation is very close to other bottom-up approaches. Nev-
ertheless, this experiment was designed to evaluate the accuracy of a speciĄc use case that
is running gait.

Pink stickers were applied to the runner’s body, speciĄcally on his knee, ankle, and
elbow. Three frames were picked randomly from this jogging sequence and their positions
were extracted using a common photo editor. After applying the pose estimator algorithm,
the coordinates of the speciĄed joints were loaded from the JSON Ąle of the corresponding
frame. Comparison of the original image and the image with the rendered estimated pose
can be seen in Figure 5.1.

Coordinates of the actual joints and their estimated counterparts were compared and the
results are demonstrated in Figure 5.2. Measured accuracy turned out to be acceptable, as
the failure rate of 0.5% should be neglectable. This will not affect the metric computations
signiĄcantly.

1https://www.mi.com/in/note4/
2https://www.mi.com/global/mi-9-se

36

https://www.mi.com/in/note4/
https://www.mi.com/global/mi-9-se

Figure 5.1: Three pairs of images like this were used to determine the accuracy of the
estimator.

Figure 5.2: Results of the accuracy tests, for the pose estimator. In a standard full HD
(1920x1080) recording all the tested joints were estimated with a miss rate of 0-10 pixels,
which is less than 0.5%.

5.2 Stance detector tests

Many gait analysis metrics depend on the stance detector module. Its precision could be
the deciding factor when evaluating the usability of the system.

Points of interest of this experiment are:

• Missed stance phases

• Incorrectly identiĄed phases

• Number of phases per video

37

• Frames per single phase

Dataset for this experiment was constructed from 10 videos of the author running. All
of them were recorded in 30 frames per second and full HD resolution except for two, which
were upgraded to 4k resolution. Some runs tried to imitate casual jogging pace and form,
while others were purposefully wrong or different to try and catch edge cases of possible
body position. For example, sprints with a long stride and body leaned forward or runs
with kicking knees high into the air.

One special video was created with the intention to break the stance detector, thanks
to the knowledge of its implementation details. The runner moved with a very little bend
in the knees, essentially just jumping from one fully extended leg to the other.

Number of stance phases

The Ąrst experiment was aimed to determine how many stance phases are detected in one
video. Because all data have similar proportions, this number should Ćuctuate around a
single value. The results are shown in Figure 5.3.

Figure 5.3: Number of stances detected per single video.

For most recordings, four stances were detected ± one stance. These small differences
are often caused by the speed of the runner and can be neglected. However, videos with
indices one and three stand out.

The third one with no stances detected was, as expected, the special recording with no
knee bend. It proves that the feature can be broken with the knowledge of implementation
details, but it should not be an issue, as no person runs like this naturally, and it would
not make any sense to try improving his form regardless.

The next irregularity is a video with eight stances detected. We need to take a closer
look at them to determine what happened. Their IDs are listed below.

[[40], [42, 43, 44], [52], [59], [61, 62, 63], [71], [78], [81]]

38

The problem lies in the functionality of merging stance phase frames into a chunk
representing one phase. It happens only when frames are concurrent, therefore if a single
frame is not recognized as a stance, it splits one phase into two.

Next, the number of frames per single chunk was calculated. This might indicate the
trend of either missing stance phases or incorrectly detecting additional frames. All record-
ings had to be done in 30 frames per second because higher framerates would lead to more
frames per stance. As demonstrated in Figure 5.4, more than 40% of stance phases were
detected as just a single frame. This could mean that redundant frames were also identiĄed
or that the splitting discussed earlier is happening often.

Figure 5.4: Number of frames per stance phase in 30fps videos.

To determine the cause, we should look at the distance between stances. Constant dis-
tances indicate correct detection, as the speed of the runner should not change dramatically
during the small timeframe of the recording. The distance in frames is plotted in Figure
5.5.

The most frequent distances are in the range of 9 to 11. These will be taken as the
baseline and other values observed one by one.

From the whole dataset, only two videos produced distances out of this scope. The Ąrst
missed a single frame inbetween two others creating two stances from one. The other is a
problematic video with highly irregular running form. It generated all other inconsistencies
in phase distances. Pushing the knees as high as possible caused the runner to be in a pose
similar to the stance phase while in the air, as can be seen in Figure 5.6.

A stance phase with three concurrently identiĄed frames is demonstrated in Figure 5.7.

39

Figure 5.5: Distance between stances in frames.

Figure 5.6: Irregular running form causing stance pose while in the air.

5.3 Synchronization tests

To test the dependability of the synchronization module, two videos were imported into the
system and attempted to synchronize. These were then visually observed to determine if
it succeeded. In case of failure, the number of frames needed to forward one recording to
achieve proper synchronization can be used to evaluate the accuracy of this module.

The determining factor turned out to be the accuracy of the pose estimator. When the
runner starts appearing in the frame of the posterior view, the neural network has trouble
assigning the correct joints to the detected keypoints. This occurrence can be seen in Figure
5.8, where three concurrent frames are all detected very differently. A possible cause of this

40

Figure 5.7: Three frames detected as a single stance phase of running gait.

phenomenon could be the Bottom-up approach of the OpenPose algorithm, which tries to
put together a human body from incomplete parts. A top-down framework might work
better in this case, although it is just a theory and not a proven fact.

Figure 5.8: Irregular joint detection of a partial human body.

Let us take a closer look at some examples. Multiple sample pairs of videos were chosen
from the author’s dataset to evaluate this functionality.

In this particular one 5.9, the synchronization seems to work Ćawlessly, as the runner
is in the same pose in both frames.

Although, as can be seen in the posterior view frame, the foot keypoints estimation is
inaccurate. This proved to be a reoccurring trend in many tests. While it still worked
out in this case, the ankle coordinates are used for detecting the synchronization point, as
explained in Subsection 4.4. Therefore it might affect this module in a bad way.

Another successful synchronization happened on the two videos shown in Figure 5.10.
The offset number of frames was determined to be equal to nine. The Ąrst two frames are
the found synchronization point. The foot detection error discussed earlier is also present
in the last pair of frames. It did not break the synchronization process, as it happened only
afterward.

41

Figure 5.9: Automatic synchronization module success.

However, the feature was not always accurate. In some experiments, it was a few frames
off. For example, in the recording shown in Figure 5.11, the posterior view is three frames
behind. This is exactly where the manual synchronization by the user comes in handy. All
he needs to do is turn off the automatic synchronization, scroll the back view until they
align, and turn on the manual synchronization.

5.4 Running motion analysis

The Ąnal experiment was conducted to evaluate the usefulness and possible applications
of the developed system. Multiple videos from the aforementioned dataset were imported
into the app and the runner’s gait was assessed. A script in tester.py Ąle was created
to simplify the examination of the metrics values. It takes a directory with the JSON Ąles
from the pose estimator, loads, and evaluates them. All irregular angles are printed with
their corresponding frame IDs. A simpliĄed example can be seen in the listing below.

Stances:

[[26], [35, 36, 37, 38], [46, 47], [56, 57, 58]]

Torso lean:

{ 26: 13.302402825731718,

38: 10.639906441994995}

Knee flexion:

{26: 17.490705289901, 47: 39.9847683951395, 58: 36.891791005889246}

Feet strike:

{34: 29.289844779065902}

An irregularity for every single metric was observed throughout the dataset at least
a few times. With the knowledge of the metrics and their expected values, each of them
was replicable purposefully. For example, torso lean exceeding the range of normal values,
which is demonstrated in Figure 5.12. Another caught improper technique variables are
shown in Figure 5.13.

42

Figure 5.10: Successful synchronization shown in multiple moments from the recording.

The next goal was to examine runners with their generic gait and observe what the
system suggests. To eliminate mistakes done in the Ąne-tuning process on the recordings
of the author, videos from different runners were used at this point.

The Ąrst one is a seasoned long-distance runner going at his jogging pace. He exhibited
no issues regarding extended tibia, foot strikes, or hip extension. With knee Ćexion, center
of mass displacement, and elbow angle, only minor mistakes were detected. However, the
main problem of this person is the lack of torso lean. Too upright posture was calculated
during every stance phase. The exact values are shown in Listing 5.4. This could be caused
by the nature of long-distance running and the goal to save energy. Although, he would
still beneĄt from a slight tilt of his torso.

When the same runner was asked to sprint, his form changed vaguely. The trend of
upright torso did not change. However, his tibia was slightly more extended, and the
knees were a little less Ćexed during the stance phase. This happens due to the fact that
sprinting is focused solely on speed, which sometimes comes at a cost of proper technique.

43

Figure 5.11: Automatic synchronization module miss. The posterior view is three frames
behind the side view.

Figure 5.12: One degree lean of runner’s torso below the minimal value of two on the Ąrst
Ągure and 20 degrees on the second above the maximal value of 10.

When jogging at a slower pace, the person has more time to focus on the correct form and
movements. A single frame of this runner’s gait is shown in Figure 5.14.

Stances:

[[28], [39, 40], [50, 51, 52], [61, 62, 63]]

Torso lean:

{ 28: -2.6765684808791974,

40: 0.853022029446521,

51: 1.6722523145649575,

61: 0.023518305481360358}

44

Figure 5.13: The Ągure is showing a runner with a tibia angle at loading response equal to
93.07°, which is slightly too high and might cause excessive strain to joints, and the knee
Ćexed at 31.61°, exhibiting limited mobility.

Figure 5.14: One frame during the stance phase. The runner exhibits correct elbow posture,
but limited torso lean and overly extended tibia resulting in overstriding.

The second runner is fairly new to the sport and runs at a slower pace. Similarly, the
main issue found in his technique is an upright posture with torso angles going as low as
-2°. He also exhibited limited knee Ćexion a few times. Most other variables were in the
norm, especially the elbow angle with not a single detected frame which is atypical amongst
the performed tests. One frame from this runner’s gait analysis is shown in Figure 5.15.

The third person is a highly experienced runner. He ran at full speed in the recording.
The results of the analysis are shown in Listing 5.4. Even while sprinting, he managed to

45

Figure 5.15: One frame during the stance phase. The runner has limited knee Ćexion at
this moment, which might indicate excessive strain to the knees during running.

maintain proper form in most metrics. Except for overstriding, that caused the extended
tibia angle at the loading response and limited knee Ćexion during stance. Other com-
ponents of his technique were good. However, this video was recorded in poor lighting
conditions, which negatively affected the accuracy of the pose estimator. For example, a
frame shown in Figure 5.16 that should be identiĄed as a part of the stance phase is missed,
because the rear leg is not detected correctly.

Torso lean:

{}

Knee flexion:

{19: 13.348295403596154, 25: 5.469132932884008, 33: 29.91226481475718}

Tibia angle:

{19: 95.07247563105722, 25: 104.33262490998818, 32: 99.47947726224794}

Feet strike:

{}

Center of mass displacement:

{}

Elbow angle:

{}

Hip extension:

{}

46

Figure 5.16: Poor lighting conditions caused the pose estimator to incorrectly connect both
legs into one. It happens multiple times in this video sequence.

Posterior view

From the posterior view, the pelvic drop metric values stayed in the correct zone during
most of the tests with a generic running form. However, when the runner purposefully
leaned his body from side to side, the incorrect position was detected. An example is
demonstrated in Figure 5.17.

Figure 5.17: Pelvic drop equal to 7° that is over the expected values detected from the
posterior view.

47

5.5 Verdict

The library of metrics calculations works as intended. Some minor inconsistencies come
from the changing nature of the camera position and settings. It is also easily expandable
in the future. An additional brief text evaluation of the form could be added in the future,
so the user does not have to interpret the individual values on his own.

Metrics from the posterior view proved to be much harder to implement. This is caused
by the static camera position and the fact that the person moves away very fast and there
is little room to catch the exact body position in a good resolution. That can be solved by
running on a treadmill, but that would eliminate the goal of the paper to make the system
available for a novice runner without special equipment. The other option is to move the
camera dynamically, which would require another person and destroy any chance of the
automatic synchronization process.

48

Chapter 6

Conclusion

The goal was to design a system that could be used to analyze running motion from two
cameras. Firstly, the topic of human biomechanics and their application in running gait
analysis in a clinical environment was discussed. Basics of neural networks and human pose
estimation were studied afterward. Multiple algorithms tackling this area were explored and
compared.

The Ąnal system was designed and implemented using the OpenPose framework. A li-
brary of methods calculating metrics used to evaluate the running form was created, which
uses the output generated by the estimator. Multiplatform desktop application encapsu-
lates this main logic in a nice and simple graphical user interface. Multiple experiments
were conducted on a private dataset of videos with runners recorded on just mobile phones.
The application is generic enough, so the user does not have to have any special equipment
and can use it alone.

In the future, the metrics library can be easily expanded or altered. The design of the
system enables the ability to change the graphical interface if desired. Alternative web or
Android/IOS interfaces would give the user the choice of a preferred platform. The posterior
view proved to be challenging for both the pose estimator and the metrics calculation as a
static camera captures only a small part of the run accurately. The stance detector module
could also be improved to determine every frame of the stance phase, not just a subset of
them. The process of view synchronization is also problematic, but this functionality is not
necessary for the rest of the application.

49

Bibliography

[1] Alderink, G. Joint Structure and Function: A Comprehensive Analysis. Physical
Therapy. 4th ed. april 2006, vol. 86, no. 4, p. 598Ű599. DOI: 10.1093/ptj/86.4.598a.
ISSN 0031-9023. Available at: https://doi.org/10.1093/ptj/86.4.598a.

[2] Alexander, R. M. Mechanics of animal movement. 2005 [cit. 2020-12-02]. Available
at: https://doi.org/10.1016/j.cub.2005.08.016.

[3] Andriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A. et al.
PoseTrack: A Benchmark for Human Pose Estimation and Tracking. 2018.

[4] Babu, S. C. A 2019 guide to Human Pose Estimation with Deep Learning [online].
2019 [cit. 2021-02-28]. Available at:
https://nanonets.com/blog/human-pose-estimation-2d-guide/.

[5] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S. and Sheikh, Y. A. OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. 2019.

[6] Cao, Z., Simon, T., Wei, S.-E. and Sheikh, Y. Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields. 2017.

[7] Clinic, M. S. . A. H. Identify the cause and risk of running injuries: 3D running
biomechanics [online]. 2020 [cit. 2020-12-25]. Available at:
https://www.msahc.com.au/news/february-22nd-2018-identify-the-cause-and-risk-

of-running-injuries-3d-running-bi.

[8] CoCo. Common objects in context [online]. 2021 [cit. 2021-03-01]. Available at:
https://cocodataset.org/#home.

[9] CrossFit. Planes of Motion: Body [online]. 2019 [cit. 2020-12-02]. Available at:
https://www.crossfit.com/essentials/planes-of-the-body.

[10] Eric. Python code to calculate angle between three point using their 3D coordinates.
2016 [cit. 2021-05-05]. Available at: https://stackoverflow.com/a/35178910.

[11] Hall, S. Basic Biomechanics. 7th ed. McGraw-Hill Education, 2014. ISBN
978-0073522760.

[12] Jain, A. K., Jianchang Mao and Mohiuddin, K. M. ArtiĄcial neural networks: a
tutorial. Computer. 1996, vol. 29, no. 3, p. 31Ű44. DOI: 10.1109/2.485891.

[13] Knudson, D. D. Fundamentals of Biomechanics. 2nd ed. Springer, 2007. ISBN
978-1-4419-6497-7.

50

https://doi.org/10.1093/ptj/86.4.598a
https://doi.org/10.1016/j.cub.2005.08.016
https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://www.msahc.com.au/news/february-22nd-2018-identify-the-cause-and-risk-of-running-injuries-3d-running-bi
https://www.msahc.com.au/news/february-22nd-2018-identify-the-cause-and-risk-of-running-injuries-3d-running-bi
https://cocodataset.org/#home
https://www.crossfit.com/essentials/planes-of-the-body
https://stackoverflow.com/a/35178910

[14] Mateo, A. Expert Tips for Achieving Proper Running Form from Head to Toe
[online]. 2020 [cit. 2020-12-23]. Available at:
https://www.runnersworld.com/beginner/a20811257/proper-running-form-0/.

[15] Ning, G. and Huang, H. LightTrack: A Generic Framework for Online Top-Down
Human Pose Tracking. 2020.

[16] PapersWithCode. Papers with Code [online]. 2021 [cit. 2021-01-12]. Available at:
https://paperswithcode.com/.

[17] Physiopedia. Introduction to Human Biomechanics 1 [online]. 2020 [cit. 2020-12-02].
Available at: https://www.physio-pedia.com/index.php?title=

Introduction_to_Human_Biomechanics_1&oldid=253499.

[18] Pipkin, A., Kotecki, K., Hetzel, S. and PhD, B. H. Reliability of a Qualitative
Video Analysis for Running. Journal of Orthopaedic & Sports Physical Therapy.
2016, vol. 46, no. 7, p. 556 Ű 561. Available at:
https://www.jospt.org/doi/10.2519/jospt.2016.6280.

[19] Raaj, Y., Idrees, H., Hidalgo, G. and Sheikh, Y. Efficient Online Multi-Person
2D Pose Tracking with Recurrent Spatio-Temporal Affinity Fields. 2019.

[20] Saha, S. A comprehensive guide to convolutional neural networks [online]. 2018 [cit.
2021-02-11]. Available at: https://towardsdatascience.com/a-comprehensive-guide-

to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[21] Sharma, S. Activation Functions in Neural Networks [online]. 2017 [cit. 2021-01-10].
Available at: https:

//towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6.

[22] Sharma, S. What the Hell is Perceptron [online]. 2017 [cit. 2021-01-10]. Available at:
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53.

[23] Souza, R. B. An Evidence-Based Videotaped Running Biomechanics Analysis.
Physical Medicine and Rehabilitation Clinics of North America. 2016, vol. 27, p. 217
Ű 236. DOI: https://doi.org/10.1016/j.pmr.2015.08.006. ISSN 1047-9651. Running
Injuries. Available at:
http://www.sciencedirect.com/science/article/pii/S1047965115000704.

[24] Stasiuk, A. Pose Estimation. Metrics. 2020. Available at:
https://alexander-stasiuk.medium.com/pose-estimation-metrics-844c07ba0a78.

[25] Takeichi, K., Ichikawa, M., Shinayama, R. and Tagawa, T. A Mobile
Application for Running Form Analysis Based On Pose Estimation Technique.
In: 2018 IEEE International Conference on Multimedia Expo Workshops (ICMEW).
2018, p. 1Ű4. DOI: 10.1109/ICMEW.2018.8551559.

[26] Toshev, A. and Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural
Networks. None. June 2014, p. 1653Ű1660. DOI: 10.1109/CVPR.2014.214. ISSN
1063-6919.

51

https://www.runnersworld.com/beginner/a20811257/proper-running-form-0/
https://paperswithcode.com/
https://www.physio-pedia.com/index.php?title=Introduction_to_Human_Biomechanics_1&oldid=253499
https://www.physio-pedia.com/index.php?title=Introduction_to_Human_Biomechanics_1&oldid=253499
https://www.jospt.org/doi/10.2519/jospt.2016.6280
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
http://www.sciencedirect.com/science/article/pii/S1047965115000704
https://alexander-stasiuk.medium.com/pose-estimation-metrics-844c07ba0a78

[27] Tsang, S.-H. Review: DeepPose — Cascade of CNN (Human Pose Estimation).
2019. Available at: https://towardsdatascience.com/review-deeppose-cascade-of-

cnn-human-pose-estimation-cf3170103e36.

[28] West, A. Yoga & Balance: Center of Gravity [online]. 2017 [cit. 2020-12-23].
Available at: https://annwestyoga.com/yoga-balance-center-of-gravity/.

[29] WHO. World Health Organization - Physical activity [online]. 2018 [cit. 2020-11-04].
Available at:
https://www.who.int/news-room/fact-sheets/detail/physical-activity.

[30] Wikipedia. Computer Vision [online]. 2021 [cit. 2020-12-28]. Available at:
https://en.wikipedia.org/wiki/Computer_vision.

[31] Yadav, S. Weight Initialization Techniques in Neural Networks [online]. 2018 [cit.
2021-01-10]. Available at: https://towardsdatascience.com/weight-initialization-

techniques-in-neural-networks-26c649eb3b78.

[32] Yin, L. A Summary of Neural Network Layers [online]. 2018 [cit. 2021-02-11].
Available at: https://medium.com/machine-learning-for-li/different-

convolutional-layers-43dc146f4d0e.

52

https://towardsdatascience.com/review-deeppose-cascade-of-cnn-human-pose-estimation-cf3170103e36
https://towardsdatascience.com/review-deeppose-cascade-of-cnn-human-pose-estimation-cf3170103e36
https://annwestyoga.com/yoga-balance-center-of-gravity/
https://www.who.int/news-room/fact-sheets/detail/physical-activity
https://en.wikipedia.org/wiki/Computer_vision
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e

Appendix A

Contents of the included storage

media

The included storage media holds these Ąles:

• src/: Directory with all source Ąles

• thesis.pdf : Thesis paper for this project

• examples/: Directory with example data for the application

• requirements.txt: List of Python packages required

• setup.ps1: Powershell script for the pose estimator setup

• env/: Python virtual environment with packages required by the app

53

Appendix B

Manual

The project can also be downloaded from the public Github page1.

B.1 Installation

All you need to do is download the OpenPose estimator with its models - ./setup.ps1.
Optionally, without the env directory present you need to have Python32 with pip3

installed. Then, the next steps are required:

1. Be in the root project directory

2. python3 -m venv env/ - create virtual environment

3. env/Scripts/Activate.ps1 - enable it

4. python -m pip install -r requirements.txt - install required packages

This setup process is created for the Windows OS. Additional options for Linux and
macOS should be added in the future.

B.2 Usage

The virtual environment needs to be enabled, if it is not already - ./env/Scripts/Activate.ps1.
Then the application can be run from the root directory by - python src/run.py. An ex-
ample video and already rendered output from the pose estimator can be found in the
examples/. These can be used to demonstrate the functionality of the application.

1https://github.com/Radluy/Running-Gait-Analysis
2https://www.python.org/download/releases/3.0/
3https://pypi.org/project/pip/

54

https://github.com/Radluy/Running-Gait-Analysis
https://www.python.org/download/releases/3.0/
https://pypi.org/project/pip/

	Introduction
	Human biomechanics and running analysis
	Biomechanics
	Biomechanics in sports
	Running analysis
	Running gait cycle

	Human pose detection from video
	Neural Networks
	Human pose estimation and tracking
	Existing solutions

	System proposition and implementation details
	Choosing an algorithm
	Video recording requirements
	Mockup
	System modules

	Experiments and testing
	Estimator accuracy test with body stickers
	Stance detector tests
	Synchronization tests
	Running motion analysis
	Verdict

	Conclusion
	Bibliography
	Contents of the included storage media
	Manual
	Installation
	Usage

