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Abstract

This Master’s thesis deals with approximate implementations of arithmetic operations in
image filters. In particular, it uses approximation techniques to adjust the multiplication
operations in a non-trivial image filter. Several methods are employed, such as converting
the floating-point multiplication to fixed-point multiplication, applying evolutionary algo-
rithms, especially Cartesian genetic programming, to create new approximate multipliers
that have an acceptable level of error, and at the same time, reduced filtering complex-
ity. The result is a collection of approximate multipliers evolved with respect to the data
distribution retrieved from the image filter. Approximate image filters that use evolved
approximate multipliers are compared with the standard image filter on a set of images.

Abstrakt

Tato diplomova prace se zabyva aproximativni implementace aritmetickych operaci v obra-
zovych filtrech. Zejména tedy vyuzitim aproximativnich technik pro tpravu zpiisobu na-
sobeni v netrivialnim obrazovém filtru. K tomu je vyuzito nékolik technik, jako pouziti
prevodu nasobeni s pohyblivou fadovou ¢arkou na nasobeni s pevnou fadovou c¢arkou, ¢i
vyuziti evoluénich algoritmii zejména kartézkého genetického programovani pro vytvoreni
novych aproximovanych nasobicek, které vykazuji prijatelnou chybu, ale soucasné redukuji
vypocetni ndarocnost filtrace. Vysledkem jsou evoluéné navrzené aproximativni nasobicky
zohlednujici distribuci dat v obrazovém filtru a jejich nasazeni v obrazovém filtru a porovnani
puvodniho filtru s aproximovanym fitrem na sadé barevnych obrazk.
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Chapter 1

Introduction

In today’s world, inquiry for computational power and energy-efficient systems is rapidly
increasing. We all have mobile phones, laptops and other similar devices. On a bigger scale
we are building more data centers and computing systems in general. FEnergy efficiency
has become the major concern in the design of embedded systems. Energy consumed by
our systems is increasing exponentially [6]. That is why modern system design is taking
in account saving as much energy as possible. In this thesis we will discuss the methods
of approximate computing (AC) to reduce power consumption of computer systems. Ap-
proximate computing is an engineering paradigm in which power consumption is traded
for quality of the result. It is motivated by the fact that some applications are highly
error-resilient and can thus be safely approximated.

An open problem is how to obtain high-quality approximate implementations of hard-
ware and software. In recent years, evolutionary algorithms (EA) were presented as a
useful approach in this direction. In particular, Cartesian genetic programming provided
high quality approximated implementations of important circuit components [9]. This ap-
proach can be adopted in today’s key applications such as deep learning or image processing
because they are error resilient. Two types of approaches to approximate computing were
developed: the first method assumes nothing about the distribution of the input data while
the second method exploits particular data distributions to deliver even better results in
approximate implementations [10].

The objective of my Master thesis is to develop an EA based approximation which
exploits particular data distributions into an approximable image filter. The reason why
we used image filtering as a case study in this thesis is that image processing is one of the
best candidate fields in which approximate computing can be adopted. Images are very
error resilient subjects due to the limitation of human sight. Thus there is great opportunity
for this kind of approximations. In this thesis a non-trivial filter is the use case. When
filtering an image, the result has a great potential for introducing a bigger error because
the human eye and brain simply cannot distinguish the difference between the exact image
and approximated one.

The rest of the thesis is organized as follows. In the chapter 2 basic theoretical principles
of approximate computing are presented. Specifically we show how it can be done, why it is
so popular at this time and how some mathematics background is utilized in approximate
computing, mainly statistical analysis. Also as a part of the chapter 5, specific approaches
for image filter approximations are presented.

The chapter 3 is devoted to theoretical background of evolutionary algorithms. In
particular problem encoding, genetic operators and search algorithm are briefly introduced.



The special version of evolutionary algorithms, the so called Cartesian genetic programming
is discussed in chapter 4. This technique is later used for the approximation process. In
particular, for the design of complex approximate multipliers.

In chapter 6 the use case of this thesis, which is a non-local denoising filter is presented.
This chapter is a milestone between theoretical and practical part of this thesis because
in chapter 7 first basic technique for approximate computing is described, namely the
transformation of floating-point to fixed-point number representation for arithmetic circuits.

In chapters 7 there are presented results for using already known n-bit approximate mul-
tipliers borrowed from EvoApproxLib [11]. Chapters 8 and 9 describe modified evolutionary
techniques designed specifically for obtaining the best possible approximate multipliers for
the chosen use case of this study. Moreover, a new learning technique is proposed in these
chapters to construct a better evolutionary mutation operator leading to a faster evolution-
ary design process.

in Chapter 10, statistical information about the evolutionary design process is presented
and resulting multipliers are validated on various color images.



Chapter 2

Approximate computing

In the modern world the inquiry for improving our systems in terms of energy saving and
memory space has significantly risen. Usage of computing devices is growing exponentially
and it is more evident that it will overgrow our current resource limits (transistors in chips
etc.). For example, studies show, that information processed in next decade will grow 50
times more than today but the numbers of processors will increase only ten times [10].

Approximate computing may be a solution to this problem. The basic idea is that as
we can relax quality requirements in some applications we could be able, thanks to some
selective approximations or small changes to the specification, to make a huge difference in
energy usage. So in some applications, where we can afford to have a little bit bigger error,
we can trade-off this for higher efficiency in power usage. For example, performing k-means
clustering algorithm, up to 50x energy saving can be achieved by allowing a classification
accuracy loss of 5 percent [3].

We must say that AC could not be optimal every time in terms trading energy or
power for quality of result (QoR). It is a very difficult task to accomplish. In general,
it is important to choose right code/data segments for approximations. Simple uniform
approximations could end up in non-acceptable quality loss. It is possible that if some
heavy approximations are made, catastrophic errors may occur, such as segmentation faults
[10].

2.1 DMotivation for applying approximate computing

We shall now discuss some scenarios and opportunities where AC can be effective or even
unavoidable [10].

2.1.1 Natural need for approximations

In some cases, approximation is inevitably needed. It happens in such cases where the
input is noisy, small precision of input data is given, hardware is chosen badly or an error
occurs in hardware, surprising additional load, or hard real-time constraints. For exam-
ple, if we consider floating point operations where rounding is a frequent operation then
approximations are inevitably needed [10].



2.1.2 Approximation in the floating-point arithmetic

In today applications (e.g. in image processing), almost all calculations are being made
with practical zero or negligible error. And it has almost no effect on quality of the result
(QoR). Problem is human vision is perceptually limited. Experiments shown that 98% of
floating point operation and 91% of data accesses are approximable. Since logically lower
bits in arithmetic operations have much lower impact on QoR than values around the MSB
bits a approximation potential arises [10].

2.1.3 Optimisation of efficiency

In this report we will be looking into approximation of an image filter. Experiments shown
that peak signal-to-noise ratio (PSNR) greater or equal to 30dB, and error value less than
10% is acceptable. If we use this fact, we are theoretically able by using AC improve energy
efficiency, areas on the chip and performance significantly. As a example apart from image
processing if we look at a hardware modification, it shows that if we can correctly reduce
the refresh rate in DRAM, the precision of the functionality of these components remains
almost the same, but memory access and storage of data will require significantly less energy
[10].

2.1.4 Approximation in hardware and software

The goal when approximating a system is to find its sub-parts that are error-resilient and
suitable for approximation. A common approach is Random/guided modification to the
original implementation and statistical evaluation of the impact on the quality of result.
Usual subsystems used for approximation in HW and SW: !

Software Hardware
precision of number representation bit width reduction
data storage strategies intentional disconnecting of components
code simplification timing changes
relaxed synchronization power supply voltage changes
unfinished loops fault injection

Table 2.1: Example of approximable subsystems in software and hardware.

2.2  Quality metrics

If we want to effectively balance an outcome, in other words to have an optimal ratio between
error and power /area efficiency, we have to apply AC on different levels of the system -
application software, processor, accelerator, memory etc. We use metrics summarized in
table 2.2 as a common way for measuring the error which is introduced by AC. This metrics
can be classified as application-specific or general-purpose [10].

!Source: http://www.fit.vutbr.cz/~sekanina/publ/ahs18/ahs18_tut_approx_comp_1.pdf
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’ Quality metric(s) Corresponding applications/kernels

Monte Carlo, sparse matrix multiplication, Ja-
cobi, discrete Fourier transform, MapReduce
programs

MPEG, JPEG, rayshade, image resizer, image
smoothing, OpenGL games

Bodytrack (PARSEC), eon (SPEC2000), ray-
Pixel difference tracer (Splash2), particle lter (Rodinia), volume
rendering

Physics-based simulation (e.g., collision detec-
tion, constraint solving)

k-nearest neighbor, k-means clustering, gener-
alized learning vector quantization

Relative difference/ error from
standard output

PSNR and SSIM

Energy conservation across scenes

Classication/clustering accuracy

Correct/incorrect decisions nding Julia set fractals, jMonkeyEngine

Ratio of error of initial and nal | 3D variable coefcient Helmholtz equation, image
gues compression

Ranking accuracy Bing search, supervised semantic indexing

Table 2.2: Examples of quality metrics used in approximate computing and typical usage.

There are few other ways to measure the results of approximation and thus measure
an output error of a system. An Error Metric is used to measure the error of the output
of the exact system and the approximate. It can provide a way for users to quantitatively
compare the performance of competing systems or their representation. General-purpose
error metrics are [16]:

e Arithmetic error metrics

— Worst-case error, ews(f, f) = mazygepn[int(f(z)) — int(f(z))]
— Mean absolute eITor €mae = 3+ Y wpepn [int(f(2)) — int(f(x))]

— Relative worst-case error. epye(f, f) = MAaTyzecBn [int(f (Zfl)t)(x:)t)(f @)

e Generic error metrics

— Error probability (Error rate) eprop(f, f) = o ZVJSEB"[( (2)) # (f(z))] and
— Average Hamming distance epq(f, f) = Y veenn oo L) @ f(a).
where B is a set of available inputs, z is an input, f, f are functions that we want to

compare, and int() is a function that transforms the output to specific numeric represen-
tation.



Chapter 3

Evolutionary algorithms

From the history we know that it has always been big lust and challenge for computer
engineers to develop something that is created automatically by computer but showing
features of an innovation human design. As the discipline of Al evolved through years,
many computer scientists realized that the best way to move forward, is to look to the basis
of nature and learn from it. For example, neural networks are inspired by functioning of an
actual human brain, Ant Colony Optimization (ACO) [5] algorithms are copying behaviour
of an ant colony for solving hard optimization problems and evolutionary algorithms are
inspired in biological principles.

3.1 Principle of evolutionary algorithms

If we look at what types of problems are solved in the field of artificial intelligence we
could say that many of the tasks are solved by searching for a target solution in the space
of possible solutions. This space can have many features where usually the size is the
most important one. In computer science the crucial aspect is the search space size with
respect to the computing resources. For example, if we have a small search space and
relatively huge computing resources we can evaluate all possible solutions of the problem
and decide what the global optimum is. On the other hand, complex and extensive problems
are usually solved by heuristic and stochastic methods. One of these methods is now
called the evolutionary algorithm. First search algorithms inspired by biological evolution
were introduced in 1960’s and 1970’s under names evolutionary programming, evolutionary
strategies and Genetic algorithms. From the early nineties they were unified and called
evolutionary algorithm and used as a valuable tool for solving hard optimization problems
and thus finding ideal parameter settings in optimized systems. Lately they have been used
for automated design of various systems and the method is known as genetic programming.

3.1.1 Optimization in context of evolutionary algorithm

In mathematics we can look upon an optimization as a task of searching for a global
maximum or minimum of a function.

fiA—R (3.1)

Where the min/max is denoted as z* € A | f(z*) < f(z),Vx € A, resp. z* € A |
f(x*) > f(z), Ve € A, and set A is the search space, = is a candidate solution and func-
tion f is the so-called fitness function in terms of evolutionary algorithms [5]. The set of



candidate solutions is called the population. It allows the EA to apply a parallel approach
for searching. Every new population is created via biology-inspired operations such as
cross-over and mutation. which are applied on candidate solutions.

Alg. in 1 shows pseudo-code of a typical EA. At the beginning an initial population is
created. Pseudo random number generator or some heuristics can be used for this purpose.
The initial population contains a fixed number of individuals. During the EA cycle, every
population P in a certain time is called the generation, and is evaluated via the quality
function. It is common that the fitness of an individual marks its biological fitness. Bigger
the quality, bigger the value. In every generation some individuals are chosen and set as
parents. This selection is based on individual’s fitness value. Higher the score of an indi-
vidual higher the chance to be selected as a parent. To create offspring, various operations
are applied. Usually mutation and cross-over are most common. Final step is the selec-
tion of the next members of new population. They are selected from both sets of parents
and offspring. There are many selection algorithms for example, roulette or tournament
algorithm.

t=20;

P(t) = createlnitialPop ;

evaluate(P) ;

while ending condition is met do

Q(t) = parentSelection(P(t));
N(t) = createNewIndividual(Q(t));

evaluate(N(t));
P(t+1) = createNewPopulation(N(t),P(t));
t++;

end

Algorithm 1: Pseudo code of evolutionary algorithm ¢

“Source: https://wis.fit.vutbr.cz/FIT/st/cfs.php?file=},2Fcourse’2FEV0-IT}2Flectures’2F04-
GenetickeAlg.pdf&cid=13232

3.2 Problem encoding

Problem encoding depends on a particular application. If the aim of EA is to optimize
some parameters then a candidate solution is encoded as a sequence, for example, as floats,
integers or binary numbers. If the aim is to evaluate programs such as in GP, then a
candidate solution is represented as a syntax tree or graph. The encoded solution is called
chromosome or genotype. While genetic operators work at the level of genotypes, the
fitness function is applied on the so-called phenotypes which are created by means of a
genotype-phenotype mapping from genotypes.

3.3 Mutation

Mutation is one of the most important operations in EA. It works with genes in the chro-
mosome or a phenotype. It randomly selects a gene and changes its value. Naturally it
depends on how the individuals are represented data-type wise. For example, in the binary
representation, mutation inverts bits, in the integer operation it chooses a replacement value
from a set of other integers etc. for example, like in the picture 3.3. We need to define


https://wis.fit.vutbr.cz/FIT/st/cfs.php?file=%2Fcourse%2FEVO-IT%2Flectures%2F04-GenetickeAlg.pdf&cid=13232
https://wis.fit.vutbr.cz/FIT/st/cfs.php?file=%2Fcourse%2FEVO-IT%2Flectures%2F04-GenetickeAlg.pdf&cid=13232

probability that determines how often this process is happening. In general, it is usually a
small value, 0,1% for example. '

[bo110110100 [1001000[1011]

crossover

[00170111017] [100100000100

mutation 4 *

[00170111010] [10010100100

Figure 3.1: Example of binary mutation and crosover. °

3.4 Crossover

Crossover along with mutation is a very important operation as well. As shown in Fig. 3.2
It works with two chromosomes. Basic idea is in swapping interval of some genes between
two chromosomes. There are several important types of crossover.

e single-point crossover,
e multi-point crossover,
e uniform crossover and,

e arithmetic crossover.

For example, we will now consider chromosomes in the binary interpretation and constant
length. The Single-point crossover works this way: We choose one index in binary vectors
and swap all bits after this index.

10011001 10011101
01101)101 01101001

Figure 3.2: single point crossover

Multi-point crossover works in a similar way, but we define two or more crossover points
and the bits between those points will be swapped. *

100j11]001 10001001
011]01]101 01111101

Figure 3.3: Multi-point crossover.

In Uniform crossover, for each position in the offspring is randomly decided if the gene
is taken from the first or the second chromosome.

1Source: https://wis.fit.vutbr.cz/FIT/st/cfs.php?file=},2Fcourse’2FEV0-IT}2Flectures’2F04-
GenetickeAlg.pdf&cid=13232

3Source: https://wis.fit.vutbr.cz/FIT/st/cfs.php?file=},2Fcourse’2FEV0-IT}2Flectures’2F04-
GenetickeAlg.pdf&cid=13232
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3.5 Selection mechanisms

The selection mechanisms choose individuals that will serve as parents in the next gener-
ation. It has to find balance between preferring individuals with a high fitness value and
securing the diversity of the population. Available approaches differ in the selection pres-
sure which has a big impact on EA convergence. The more selection pressure the faster
convergence. However, we don’t necessarily need too fast convergence because it could lead
to a local premature convergence to a local optimum. Major selection algorithms are as
follows:

e roulette-wheel,
e stochastic universal sampling,
e elite algorithm and

e tournament algorithm.

In the roulette-wheel selection, the probability of selecting k-th individual is s 1( f)( )
where f(k) is the fitness of k-th individual and n is the population size. this is usually
implemented as the roulette-wheel selection algorithm. We spin the wheel as many times
as many parents are needed to be selected.

In stochastic universal sampling We use the same approach as in the roulette-wheel
but the difference is that we only spin the wheel once, because it uses multiple pointers
determining new parents after each spin. These pointers are equally distributed around the

wheel shown in fig 3.4.

0.1 0.1

0.5 —_— ‘
0.4 0.4

[RW] [SUS]

Figure 3.4: Roulete-Wheel and stochastic universal sampling algorithm.

The principle of the elite algorithm is to sort the individuals according to their fitness
values. Only a certain number of best-scored individuals then is deterministically chosen.

Tournament relies on a certain (predetermined) number of individuals randomly selected
from the population. The best rated individual in this group (the tournament winner) is
selected as parent. This process is repeated until required /needed number of parents is
selected.

3.6 EA in practice

When designing an EA application there are many aspects that have influence on it’s be-
haviour and results of the evolution. They should be taken in consideration while developing
EA strategy, and these aspects are:

11



e encoding,

e genetic operators and search strategy,

e fitness function,

e population size,

e initialization,

e number of generations or the termination condition and

e probabilities.

If we want to achieve good results we have to design these parameters very carefully.
Other parameters are subject of experimentation.
Let:

e (G be number of generations,

e P population size,

e T, candidate solution evaluation time and
e T}, time to create a new population.

Then, the time of evolution is equal to G * (P * T, + T},) and the number of fitness
evaluations G * P is usually considered.

12



Chapter 4

Genetic programming

Before we can describe what a Cartesian genetic programming (CGP) is , we will briefly
introduce what the genetic programming (GP) is in general. Genetic programming is a
machine learning technique which can be used as a tool for evolving some sophisticated
system or developing better parameters for the system using evolutionary computation.
GP was introduced in the 1980’s and popularized by Jan Koza in the 1990’s. Koza’s GP
uses tree-based representation where the nodes of a tree are functions and leaves can be
substituted by constants and terminals. The root of a tree represents output of a program
and the set of functions and terminals together is called a primitive set [14]. GP was not
designed only for improving parameters of a programs but even for automatic generation
and composing of programs. It is true that GP itself is inspired by EA a lot, but it differs
in some main functionalities [14].

e Representation - in EA, individuals are usually represented as simple data structures,
as array of integers or boolean values etc., but in GP individuals are represented as
tree structures which replace dedicated programs.

e Operators - GP utilizes specialized genetic operators that operate directly on candi-
date programs.

e Fitness function - When calculating the fitness value for a candidate program is exe-
cuted for defined set of inputs and then fitness score is calculated. results.

One of the main applications of GP is symbolic regression. It is a problem for finding
a function that can approximate data with minimal error.

4.1 Cartesian genetic programming

Cartesian genetic programming (CGP) was firstly introduced in 1999 by Miller and Thom-
son paper [8]. In CGP the individual is not represented by a tree structure but as a directed
acyclic graph [14].

4.1.1 Method of CGP

In this section we will demonstrate the usage of CGP in evolutionary design of combinational
circuits. A candidate circuit is represented in a graph as an array of programmable nodes
where there are n. columns and n, rows. At the beginning of an evolution the number of

13



inputs n; and outputs n, is determined. Each node performs one of the functions acquired
from function set I'. Every element can have up to n, input arguments. Inputs of the
individual elements which is in ¢ — th column can be connected into circuit’s input or to the
output of another element that is situated in one of 1, ..., L of previous columns. Parameter
L is determining the scale of connectivity of the elements in the circuit. If its value is
equal to 1, we can only connect layers that are neighbours and the connectivity is minimal.
On the other hand if we choose this value equal to n. maximum connectivity is enabled.
The primary Inputs are not bound by this limitation and can be linked to elements in any
column. The candidate solution, in other words, the chromosome contains Aogp integer
values [14]:

Accp = nne(nn + 1) +no (4.1)

We encode a candidate solution in such a way that the inputs of program are given
integer indexes in range 0,...,n; — 1. The individual elements outputs are labeled in the
same way but we begin with an element in the top left corner with value n; then we continue
incrementing this value for elements down in this column and in all next columns until we
reach the output of the graph. The function representing an element will be labeled with
integer as well. For every function in set I' we will substitute its indexes for string value
(xor = 0,nor = 1,and = 2). If an element has 2 inputs, for example, its encoding contains
is 3 integers, as shown in Fig. 4.1. First element is representing function nor which is
labeled with 1. Hence the third value of its chain will be _, , 1. We can see that its inputs
are 1 and 2 so its encoding is (1,2,1). The Last two numbers of the chromosome define
which nodes lead their outputs to graph output [14].

1.2.1. 1,.2.2. 4.2.9. 3.4,.3; 0,1.2. 0.9.9, 1,0

Figure 4.1: Example of a candidate circuit with its chromosome representation. '

The chromosome has some important properties.

e For every chromosome in every iteration its length is constant. On the other hand
the size of the represented circuit (phenotype) can differ in each iteration.

e It is possible that some nodes do not have to be used in phenotype and some can be
used multiple times.
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e The same is valid for inputs of the elements.

e The Same is valid for the primary inputs.

While using a mutation in the chromosome it is possible to disconnect inputs of an
element and we can also disconnect the entire function of an element. Of course this is
happening randomly and we have to set the number of mutated genes. We have to ensure,
while applying mutation, that the randomly created integers are valid [14].

4.1.2 Search method

The search algorithm is ES(1 + ). Population consists of 1 + X offspring. We choose one
individual with the best fitness and create its A offspring. There is one important rule in
CGP. If there are more individuals with best fitness we always choose the one which hasn’t
been served as parent in previous generation. With this approach we increase divergence
in the population. Initial population is generated randomly or using some heuristics [14].
Result: p, fitness(p)
P = createTinitialRandomPop() ;
evaluate(P) ;
p = highest_ scored__individual(P) ;
while ending condition is met or out of loops do
a = highest-scored-individual(P) ;
if fintess(a) > fitness(p) then
| p=a;
end
P = create X offsprings of p using mutation ;
Evaluate(P) ;
end

Algorithm 2: CGP search method “

“Source: http://www.fit.vutbr.cz/~sekanina/publ/ahs18/ahs18_tut_approx_comp_1.pdf

4.2 Properties of CGP

When we discuss in this report that mutation is the only operation used in CGP it is clear
that it has a significant influence on the whole search process. With mutation, active nodes
can become inactive or active in the other state. Mutation can have zero impact on the
fitness value of an individual in the following cases:

e An individual becomes another individual in the population with the same fitness
because the mutation performed an operation on some active elements with no impact
on the fitness value.

e Phenotype stays unchanged because the mutation was applied to new active genes.

Mutations are usually classified as adaptive, harmful or neutral. If we have a sequence
of passive mutations followed by adaptive one, it may have a great positive influence on
the individual fitness. We are mentioning this example because we can emphasize that
mutation in this case substitutes another operation, crossover, which has the potential to
significantly change the phenotype [14].
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4.3 Optimization of CGP

It is crucial to optimize our implementation of CGP because within a range of experiments
millions of evaluations are done when searching for a target solution. Naturally we want
to make CGP evaluation as fast as possible, mainly the evaluation of candidate circuits.
Let us suppose 3 inputs, 6 nodes and 2 outputs realizing a function as shown in 4.1. We
want to find a correct circuit implementation with respect to a target truth table. Then we
simply simulate them forward way. We have to run the simulation with 2" test vectors to
cover all possible combinations. It means the execution time will grow exponentially with
the input vector size.

As the sequential circuit simulation is not scalable, we have to dive into parallel simu-
lation. Parallel simulation uses binary operations existing in programming languages like
in C. There exists instructions that can execute bit-wise operations in one processor clock
cycle. And it is multiple times faster than the sequential approach.

Because today we usually work with 64 bit processors we can simulate in one clock cycle
64 input vectors. In general, we can accelerate circuit simulation 2" /b times where b is
number of bits in bit-wise logic instructions [14].
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Chapter 5

Non-local means denoising filter

In image processing, we may obtain some side effects that are not wanted. These errors
(noise) may be caused, for example, by random movement of the photon captured by sensors
or amplified while digital processing of the image etc. Tools to handle these unwanted effects
are called filters and they are used mainly for suppressing high or low frequencies, smoothing
the image or detecting edges in the image [1].

5.1 Basic idea of non-local denoising

The basic idea of this type of filters is quite simple. Every pixel contains the rate of the
three observed RGB colors values. Basically we take pixels in the defined neighborhood
around this spot, calculate average values of these pixels and then replace the original value
with the new one. A new approach is called non-local denoising filter. The idea is that if
we can find elsewhere in the image pixels with a very similar neighbourhood we can denoise
this value with an average value of these pixels. The problem is that these pixels don’t
have to be anywhere near to themselves.We can point out examples of this situation like
when the picture has the same multiple objects in a row, periodic patterns or the elongated
edges. Therefore, it’s needed to scan a big percentage of the picture in order to find these
pixels [1]. Basic idea of a non local denoising is shown in Fig. 5.1, and the results of this
filter can be seen in Fig. 5.2. !

- operatia =y
= |
[NL] [L] Inp#*i;?ge Oulg?;;jn:-gn

Figure 5.1: Difference between Non-local filter (left image) and local filter (right image).

Lsource: http://what-when-how.com/introduction-to-video-and-image-processing/

neighborhood-processing-introduction-to-video-and-image-processing-part-1/
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Figure 5.2: Left image: original picture. Middle image: noised picture. Right image:
denoised picture [1].

5.2 Non-local means filter

The objective is to find pixels with similar neighborhood in a window with predefined size.
In other words it says we are looking for similarities in predefined space around a point and
not in the whole image. This approach can be formulated as:

NLu(p) = ﬁ / F(d(B(p), B(a)))ulg)dq, (5.1)

where d(B(p), B(q)) is a measurement unit describing Euclidean distance between two
badges represented by B centered in pixels p,q. f is a function that has decreasing be-
haviour. C(p) is the normalizing factor and the wu(q) is pixel color value. In this example,
it is shown that the filter works as non-weighted one. Which means that pixels are treated
with the same importance and according to that we can calculate denoiseing values for
all pixels in B(q).However we use an exact NL-filter in this report the employs weighted
average for denoising purposes as shown in Eq. 5.3 [1].

5.3 Pixelwise implementation

Consider that we have a color image i = (i,,1%4,1%,), where igx|k € R,G, B are RGB layers,
and pixels p, ¢ in this picture. Then we are trying to calculate new pixel value ;(p)

R 1
Ui(p) = @ quZ(W) uz-(p)w(p, Q) (5-2)
1
C(p) - qEBZ(p’T) 'LU(p’ q) (53)

where B(p,r) is a metric that indicates a limited window centered at pixel p with size
(2r +1) x (2r +1). The neighborhood is limited to size 21 x 21 or 35 x 35 depending on
value o which represents standard deviation and it is chosen as a parameter before filtering.
This search window is used for finding more pixels with similar neighborhood with size 3 x 3
respectively 5 x 5, see table 5.2. The filter uses weighted averaging for denosing purposes.
The calculation of weights is shown in Eq. 5.5 and it uses squared Euclidean distance of
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the (2f + 1)(2f + 1) color patches centered respectively at p and ¢ which is calculated as:

[1]

3
d*> = d*(B(p, f),B(q, f)) = 3(2f1+1)2 Z Z (ui(p + 5) — wilg + 5))° (5.4)

=1 jeB(0,f)

For calculating the weights, the filter uses exponential function that is captured in Eq. 5.5,
where o is standard deviation value of a noise, h is a parameter with value dependable on

a deviation.
m(mc(d2 —02,00)

w(p,q)=e w2 (5.5)

The weight function is set in order to average similar patches up to noise. That is,

patches with square distances smaller than 22 are set to 1, while larger distances decrease
rapidly accordingly to the exponential function.

5.4 Patchwise Implementation

In this section we are going to discuss how a patch is denoised. Image stays defined identi-
cally as in section 5.2. Denoising is performed according to Eq. 5.6 [10].

B=% Y w@uB@.0= Y wBQ (66
Q=Q(¢,f/)€B(p,r) Q=Q(¢,f)€B(p,r)

Where ¢, B(p,r),w(B(p, f), B(g, f)) and size (2r + 1) x (2r + 1) represents the same
variables as in Eq. 5.2. If we apply this on all patches we will get possible outcomes for
all pixels and these estimates will lead us to final computation of denoising a picture with
equation 5.7 where N denotes similar meaning as C' in Eq. 5.2 [1]

. 1 A
W= Y Q). (5.7)
Q=Q(q,f)le€B(q,f)

We can compare patchwise and pixelwise implementation. The patchwise implemen-
tation seems to have better gain in terms of PSNR (peak signal-to-noise ratio) between
original image and denoised image. However in terms of detail preservation the pixelwise
implementation seems to be a better approach [1].

5.5 Software implementation

The method described in [1] is accompanied by software implementation .

written in C and takes four arguments.

Program is

e o - standard deviation value for noising an input picture and setting up window sizes
by Tab. 5.1.

e path to an input image.

e path to a file where noised image will be stored.

Zhttps://www.ipol.im /pub/art/2011/bem,lm/
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e path to a file where denoised image will be stored.

AS it was described in section 5.1, the NL-means searches in a defined area for similar
patterns. The size of this area as well as the size of a neighbourhood (patch) of a pixel
depends on a o value. If the standard deviation value is high, it is needed to make a bigger
patch because we need to make the patch comparison robust enough. With that we need
to increase a search space as well to increase the noise removal capacity of the algorithm by
finding more similar pixels. The filtering parameter used in Eq. 5.5 is calculated as h = ko.
Also the size of patch is increasing, value of k is decreasing. Typical Values of parameters
and its combinations are shown in table 5.1 and 5.2

o ‘ patch ‘ pixel neighborhood ‘ h ‘
0<o <15 3x3 21 x 21 0.400
15 <0 <30 5x5 21 x 21 0.400
30 <o <45 Tx7 35 x 35 0.350
45 <o <75 9x9 35 x 35 0.350
75 <o <100 | 11 x 11 35 x 35 0.300

Table 5.1: Parameters for patchwise implementation processing grey image [1].

o ‘ patch ‘ pixel neighborhood ‘ h ‘
0<o<25 | 3x3 21 x 21 0.550
25 <o <bH5 | 5x5H 35 x 35 0.400
55 <o <100 | 7x7 35 x 35 0.350

Table 5.2: Parameters for patchwise implementation processing colored image [1].

5.6 Approximation computing in image processing

In paper [3] it was shown that 83% of computation kernels are suitable for approximation.
For example, one of the most contested parts were a dot product computations and dis-
tance computations. In many papers about image processing is notable that elementary
arithmetic circuits are a great target for approximation. There are two important types of
approximations presented in literature. Let us consider circuit-level approximations. These
approximations can be conducted as:

e Aproximation of smaller units in circuits like adders multipliers or comparators.

e Higher level of a component such as filters, DCT and FF'T created using these com-
ponent.

It seems that simple filters such as median filter can be approximated as whole system.
It can be decomposed into scheme only containing comparators and registers. In NL-means
filter it is rather more difficult problem [13].
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5.7 Approximation approaches

In this section we describe two approaches for approximation of an image filter circuit.
First approach is built on a principle of approximating implemented circuit, in which we
can remove some components and reconnect others in a different way. But we have to take
in consideration that approximate implementation should not affect the error significantly.

The second approach does not uses any existing implementation and tries to build a
circuit from scratch. For this purpose we have a set of suitable components (Comparators,
adders, etc.) and rules, how components can be connected in the target circuit.

Then we will calculate an error using some Error metrics, for example, mean absolute
error (MAE) between outputs of candidate filter f and golden filter g.

K
MAE = 23" 104(6) - 04(i)| (5.8)
i=1

where K is the number of pixels [13], Oy, resp. Og4 are output values of filters f, g.

5.8 Approximation of a NL-means filter

NL-means filter is impossible to approximate as whole unit.Hence our objective is to find
a component or operation in the NL-means filter that could be suitable for approximation.
We decided to approximate the multiplication operation as it is used very often in this filter.
As NL-means filter could be applied in embedded systems, we will perform approximation at
the circuit level. Table 5.3 shows percentage representation of numeric operations performed
in the NL-means filter filtering a picture with resolution 930 x 632 pixels and noising
parameter o = 50. These numbers were obtained by using a filter implementation from [1].
The multiplication operation represents nearly half of all computations. This is the reason
why the focus of the thesis will be approximate implementation.

Arguably of course for every image and sigma value the percentage is different but
experiments shown that only very small images with low sigma settings achieve percentage
of multiplication 33%. Which is still big amount.

type percentige | count
multiplications | 48.84% 207262430568
additions 25.59% 108623850310
subtractions 25.22% 107047289676
division 0.35% 1487417008

Table 5.3: Percentage share of numeric operations when filtering a 930 x 632 pixels picture
and o = 50.

The next important question which needs to be answered is which multiplications of
the original source code [1] will be approximated. The answer is that we will approximate
all the multiplication necessary to meet the filter operation. In the implementation of the
filter [1] there are lot’s of auxiliary multiplications which do not directly contribute to the
filter calculations. They include, for example, i/o png images handling, settings of some
constants, prepossessing of a picture. The following list summarizes the places where the
approximate multiplication will be introduced. Please note that each RGB channels is
handled separately.
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e From Eq. 5.6 Patchwise implementation u;(Q) - w(B, Q).
e From Eq. 5.5 d?, not including the o2 and h? because they are a constant value.

e From Eq. 5.4 (ui(p + j) — ui(q + 7))?, not the 3(2f + 1)? because it is an integer
multiplication.

e From Eq. 5.2 Pixelwise implementation u;(p) - w(p, q).

So basically approximate multiplication is implemented at all places in all math formulas
in which a floating point multiplication is used, including calculations on the power of
two. Keep in mind that table 5.3 was created in such way that we considered only the
multiplications conducted at the preselected places of the source code.

Of course the software implementation of this filter is not the only thing of interest.
Also a possible hardware implementation and its approximation is the goal of this thesis.
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Chapter 6

Floating point to fix point
arithmetic

The image filter described in section 5 uses IEEE 754 representation of floating point data
type for its computations. In the standard, floating point data type is represented in 32
bits and it is composed of three separate components. If we look at this representation
in a specific way, floating point number can be viewed as a mantissa x base®*P°"*™  This
structure can be more described in bot-wise preview where:

e The sign bit determines if the Mantissa is positive or negative number (1 bit width).

e The bias is basically a number, that is added to the exponent. The reason why we use
bias is that we need to represent both positive and negative numbers (8 bits wide).

e The mantissa is always a number 1..xz..x in normalized form, i.e. therefore there is no
need to represent the leading 1. (23 bits).

The fixed point number representation is an attractive alternative to floating point
emulations. According to [15] an 8-bit fixed-point integer multiply consumes 15.5% less
energy (12.4x less area) than 32-bit fixed point multiply, and 18.5% less energy (27.5x less
area) than a 32-bit floating point multiply. C language does not support arbitrary fixed
point data types. Therefore, it is a programmer task to effectively represent non-standard
integer data types and convert them to a float and vice versa. Even a bigger problem is
to apply some arithmetic operations like multiplication or division while using this type
of representation. Specific approach for the conversion is to use bit-wise operations and
store fixed point representation of a floating point number into integer variable. The list of
problems in general with this approach is following [4]:

o When multiplying, it is highly likely that the result has to be stored in more bits than
the two operands are.

e The precision can be lost, the proportion of the loss depends on circumstances.

e [t is unclear to determine optional properties for shifting operations due to compro-
mise trade off between quality and functionality with respect to an application.
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S IWL FWL = WL-1-IWL

Figure 6.1: Example of a signed fixed point number bit-wise representation. WL=32,
IWL=4, FWL=27.

6.1 Fixed point representation

If we take an integer value and multiply it with power of two and on exponent, we can look
at it as fixed point representation of floating point number. In the simplest way, we can say
that we pick an index position of a bit in this bit sequence and put a decimal point right
after the index value. The right part represents fractional bits and the left part represents
whole (integer) part of a value. Of course we have to reserve the Most significant bit (MSB)
to store the information about the number sign. In general, a number represented in the
fixed point arithmetic has these attributes (layout) [4]:

e Word length (WL) represents bit length of a whole integer.
e Integer word length (IWL) stands for a bit length of an integer part.

e Fractional word length (FWL) is length of fractional part.

The layout has a big impact on ranges in which we can store floating point values. For
example, if we look at Fig. 6.1 we see that the integer part has only 4 bits, meanwhile
fractional part has 27 bits. This means that the number range we can store in the integer
part is < —15,15 >. But this applies only on integer part. In fractional part we have much
bigger range that we can store. Number that is visualized in fig 6.1 is 14.631578947368421
. The accuracy of fractional part equal to 13 decimal digits.

It is vital to realize that FWL can be computed as follows FWL = WL —-IWL—1 [4].

6.2 Fixed point arithmetic operations

In this section we are focusing on how fixed point arithmetic operations can be performed.
What we need to take into consideration is mainly size of both operands with the respect
to the format of the result.

Addition and comparison are easy to implement and nothing is really changed apart
from classic floating point arithmetic. The only difference is result size, which is determined
this way [4]:

IW L, = max{IW Lq, WL} (6.1)

Where a, b are two integer numbers and IW L, resp. IW L is bit-length of number «a
resp. b. Note that equations in Eq. 6.1, 6.2 and 6.3 shows only result number bit-width
not the actual arithmetic results. For example, if we had number a, with bit-width equal
to 10 and number b, with bit-width equal to 5 and used equation 6.1, then the result would
have bit-width equal to 10. Division is little bit trickier because we can still use a common
integer divider, but the size of the result is
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IWL, = WL —1+IWL,—IWL, (6.2)

Multiplication is quite difficult as well as division to perform and there are few ap-
proaches that will be mentioned. The problem is that the size of the result has to be stored
mostly in 2 - WL bits and thus: [4]

IWL, =IWLg+IWL,+1 (6.3)

So it follows that in the most processors or multipliers, The product is stored into WL
bits and upper bits of a result are cut off (an overflow happens). This is happening because
in most high-level languages the compiler maps a result of two source operands into the
same data type. Of course this causes poorly calculated results.

In this chapter we address three solutions to how to deal with this problem. These
approaches are considered well functioning, but they differ in advantages and disadvantages.

1. Make the upper word of the result accessible, meaning casting operands to 2W L bit
width.

2. Using shifting operations to scale operands to the power of 2. The result will fit in
W L bit width.

3. Use the macro for obtaining on the upper part as multiplication implementation.

As we can see, the first option’s advantage is that the result will have great accuracy and
it is probably the most precise option among these three. But the problem is that embedded
systems are, in most cases not built this way. Imagine a 32 bit architecture. Casting 32
bit integers onto 64 bit integers is in many cases forbidden or impossible because 32 bit
systems are not build to deal with 64 bits integers. Even if it is allowed, it is much slower.
Imagine making multiplication on 64 bits and afterwards regulating the result with 64-bit
shifting operation, which you have to do, as well [4].

The second option provides us option trading off speed for accuracy. This method
uses shift operations. Before multiplying we shift both operands to the right. Then we
multiply and the result will be again shifted to the right. It has a condition. The number
of shifts has to be equal to % But changing the size of the shift operation is giving us
a chance to trade off range for precision. For example, imagine 32 bit fixed point numbers
with IWL = FWL = 16 and two numbers 7.287,3.0. Next we apply two different shift

operations, compare the result of these two multiplications of numbers x and y. '

(float)7.287 * (float)3.0 = (float)21,861 (6.4)
(((x >> 8) * (y >> 8)) >>0) = 21,83203125 (6.5)
(((x >>4) * (y >>4)) >> 8) = 21.83349609 (6.6)

Why are these results different? If we shift operands by 4 bits like in equation 6.6, we
will lose 2 bits in fractional part in comparison with the example in Eq. 6.5. On the other
hand, if we use Eq. 6.5 we will not gain two more bits for the integer part, as it is in Eq.
6.6. That is why Eq. 6.5 is little bit more precise.

!'Example and principles take over from video: https://www.youtube.com/watch?v=S12qx1DwjVk&list=
LL&index=17&t=1129s
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But if we change numbers to let us say 128.0 and 3.0, a problem occurs. If we use Eq.
6.5 with numbers 128 and 3 the result will be -128 which is clearly not correct. It is because
we don’t have the range in the integer part. But if we use Eq.6.4, the result will be 384,
which is correct, and then the range is clearly sufficient enough.

The problem with this approach is that it is highly not accurate. And it is working only
on the limited range as well.

6.3 Experiments with bit-width and fixed point representa-
tion

The goal of following experiments will be to investigate to what extend the precision of
arithmetic operations influences the quality of the NL-means filter. In embedded systems,
the use of the fixed point arithmetic instead of the floating point arithmetic one is often
requested to reduce resources. The main focus will be on reducing bit width for multipli-
cation.

Figure 6.2: Original. Figure 6.3: Noised with o = 50.

Figure 6.4: Denoised picture by original
implementation of the filter from chapter
5.
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In figure 6.2 we can see a reference image for our experiments >. Fig. 6.2 shows a
corrupted image with o noise parameter equal to 50 and in Fig 6.2 is the result of denoising
using NL-means filter. First matter before we try to manipulate with implementation of
multiplication operation, is that we have to find the range of numbers that are entering a
multiplier. If we can determine values that are statistically important for calculations in a
filter, we would be able to aim for much better solution of approximation than trying some
random solutions.

Fig. 6.6 shows histogram of operands entering multiplication operations in the NL-
means filter which was applied on the image shown in Fig. 6.2. Note that the filter works
with floating point representation of numbers. The reason why the histogram shows only
integer number representation, is that in this application there are too many multiplication
operations to perform, thus it wouldn’t be possible to visualize every floating point number
in a single graph. Hence the solution is to normalize the histogram into integer values.
This means that a specific integer value represents all floating point numbers with the same
integer part and independent of its fractional part.

Furthermore it shows us the the majority of operands entering multipliers is within the
range (—200, 300). Most of them are more or less between (—1,1). But of course this is not
everything. The entire range of values was < —540,560 >. The question is which numbers
are statistically important for calculations. This question will be answered further in this
section.

Count of numbers in interval

- 1 o
-400 -300 -200 -100 0 100 200 300 400

Value of Intervals

Figure 6.5: Histogram of operands entering multiplication operations in the NL-means filter
which was applied on the image shown in Fig. 6.2. For simplicity float values are rounded
to integer values so one integer value is representing count of all floating numbers in its
range (in billions).

2Source of the image https://fangohr.github.io/computing/imagemagick.html
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Figure 6.6: Zoom of the histogram from 6.6 to provide detailed view.

6.4 Casting operands to double bit width

Next set of pictures in figs 6.7, 6.7,6.9 and tables in 6.1, 6.2 and 6.3 will show the results
of the experiments. We will be looking at visual differences of the filtered images and
the corresponding quality metrics. First we will be comparing the fixed point conversion
technique with casting operands to 2W L size. Of course two options (16 and 32 bits) are
considered. The question is why not use less bits and the answer is that the experiments
shown that 10 bits are the minimum we have to use for integral part. If the range is lower,
then the quality of a picture is not acceptable. See the resulting images filtered on 32
bit architecture in figure 6.7 and 6.7. This is why we cannot, for example, use the 8 bit
arithmetic.

4 1t
Q> & o &
e & p\lo®
-]
Figure 6.7: bit-length = 32, integer part Figure 6.8: bit-length = 32, integer part
= 10 bits, fractional part = 22 bits. = 9 bits, fractional part = 23 bits.

When we have a 16 bit architecture for fixed point representation another question
arises. What is the ideal distribution of bit width ranges between IWL and FWL. For
example, if we use 10 bits for the integer part, only 5 bits remains for its fractional part,
which could be insufficient. Of course the more bits we use for fractional part the more
precise the result will be. Pictures in figures 6.9 show denoised results with a different
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number of fractional bits. In variant a) only three fractional bits are used. Anyhow it can
bee seen that there is too much noise still present and the picture is not really anymore close
to the original image. On the other hand, when 6 fractional bits are used shown in d), the
result is much better but there is still a visible difference in some parts of the image. Finally,
in the picture e), we can see the same result as with 32 architecture which is that alreadz
mentioned minimum of 10 bits is required int the usage in integer part. This leaves us in
the conclusion that in 16 bit architecture the best choice is to use IW L = 10, FWL = 6.

a) fractional part = 3 bits, b) fractional part = 4 bits, ¢) fractional part = 5 bits,
integer part = 13 bits. integer part = 12 bits. integer part = 11 bits.

d) fractional part = 6 bits, e) fractional part = 7 bits,
integer part = 10 bits. integer part = 9 bits.

Figure 6.9: Results of using 16-bit arithmetic with different FWL and IWL settings.

Table 6.1 shows the results of quality metrics calculated from pictures in Fig. 6.9.
Pictures from fig 6.9 were compared with original reference image 6.2. For the quality
evaluation the Peak signal to noise ratio (PSNR) and Root-mean-square deviation (RMSE)
metrics were chosen. Both these metrics use mean square error calculations. PSNR works
in a logarithmic scale because many images(signals) have a wide dynamic spectrum, but
not in this particular example. Higher the PSNR number is, the better quality. On the
other hand RMSE shows us the square root of the differences between original values and
denoised values or, in other words, the quadratic mean of these differences. the Lower the
value is, the better the result.

FWL |3 4 5 6 7
PSNR | 16.08 | 17.95 | 18.87 | 20.57 | 1.05
RMSE | 40.05 | 32.30 | 29.05 | 23.87 | 226.04

Table 6.1: Selected metrics used for comparison between pictures in fig 6.9 and the original
denoised image WL = 16.
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Original denoised
PSNR 27.06
RMSE 11.32

Table 6.2: Results of comparison between template image and original denoised image using
floating point representation.

Of course these all calculations were performed on a half precision than in the original
application. For illustration how the fixed point implementation is worse or better than the
standard floating point arithmetic, we will show results performed on 32 bit architecture.
The reason is that it is, important to check how big difference in quality is between these
approaches, so in the end we can evaluate every aspect of the method.

u *

. WMagi
'quﬂ °gc# *

t_§‘ 9'.17:'

a) fractional part = 4 bits, b) fractional part = 16 bits, c¢) fractional part = 22 bits,
integer part = 28 bits. integer part = 16 bits. integer part = 10 bits.

Figure 6.10: Results of using 32-bit arithmetic with different FWL and ITWL settings.

FWL |4 16 22
PSNR | 17.98 | 26.65 | 27.22
RMSE | 32.16 | 11.86 | 11.11

Table 6.3: Selected metrics used for comparison between pictures in fig 6.9 and original
denoised image.

In Fig. 6.10 b and Fig. 6.9 a WL = 16 and FW value is set to 4. Visually, if we
compare them, they look very similar and even if we look at the tables 6.1, 6.3 the numbers
are almost identical. This is a clear evidence that it doesn’t matter if we set the IWL value
to 10 or 28. It points out that the only logical outcome is to only use values 10 or maybe
11 bits for the integer. The histogram in figure 6.6 only supports this claim.

Now if we look at figure 6.10 image b) and ¢) and corresponding values in table 6.3,
the same occurence can be seen. These images look really alike, even if the FWL values
are widely different. From these findings we could determine or predict what is the optimal
FWL value. In graph 6.11, PSNR and RMSE values are ploted with respect to FWL.
From this graph we can understand the impact of choosing any FWL value on the cost of
cost /precision trade off. Specifically it shows that values 13 and above provide only minimal
additional quality.
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Figure 6.11: Results of using 32-bit arithmetic with different FWL and ITWL settings.

6.5 Shifting operations in fixed-point arithmetic

In the previous section we described one of the safer, precise but costly way to perform
conversion from floating point to fixed point. Now we will compare it with a less precise but
less costly approach. As described in section 6.2 shifting operands operation does not need
more bits to perform the conversion. It works with the original bit width of the operands.
Of course this comes with the cost of less precision and directing the ratio between shifting
result/operands. Because of this lost precision, we will show some result not only for 16
and 32 bit width but even for 64bit architecture as for better visual demonstration.

a) fractional part = 8 bits,  b) fractional part = 8 bits, b) fractional part = 8 bits,

i 1 = 24 bi i 1 = 24 bi
" t.egra part bltsf » t'egra part bltsf integral part = 24 bits, with
shifting operands by 2 bits  shifting operands by 4 bits casting operands
and result by 4 bits. and result by 0 bits. & op ’

Figure 6.12: Results of using 32-bit arithmetic with different shifting settings.

As we can see in images 6.12 and in table 6.4 the best result is obtained by using the
casting operands approach. As expected, both attempts to use shifting operations reports
significantly higher error, and low image quality. If we compare different shifting strategies,
shifting a result rather than not shifting the result seems like a better option. It is because
if more we shift the bit representation of a value to the right, the more information we will
loose. This is why image in Fig. 6.12 a) is slightly better than 6.12 b). Of course changing
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the operand shift value, has an effect on how the result shifting value will look like. It works
both ways proportionally.

Conversion type

shift (op by 4, res by 0)

shift (op by 2, res by 4)

Casting operands

PSNR

17.94

20.22

22.12

RMSE

32.32

24.87

19.98

Table 6.4: The image quality obtained after applying different conversion approaches ’op’
= (operand), 'res’ = (result). WL = 32.

b) fractional part = 16 bits,
integral part = 48 bits,
shifting operands by 8 bits
and result by 0 bits.

a) fractional part = 16 bits,
integral part = 48 bits,
shifting operands by 4 bits
and result by 8 bits.

b) fractional part = 16 bits,
integral part = 16 bits, with
casting operands.

Figure 6.13: Results of using 64-bit arithmetic with different shifting settings.

Using even 32bit architecture with this approach showed that the results are quite
inadequate. We could look upon a higher bit width and see if it makes a viable difference.
The results for 64 bit architecture are shown in Fig. 6.13. As with 32 bit width, the visual
and metric results in table 6.5 are not significantly better with respect to using 64 bits.
But we need to take into consideration, that we just doubled bit width with premise to
get better results and still, it is worse than using the casting operands technique with only
32bits

Conversion type

shift (op by 8, res by 0)

shift (op by 4, res by 8)

Casting operands

PSNR

22.46

25.10

26.47

RMSE

19.21

14.18

12.11

Table 6.5: The image quality obtained after applying different conversion approaches ’op’
= (operand), 'res’ = (result). WL = 64.

Finally Fig. 6.14 show results when using only 16 bit architecture. But this approach
does not clearly lead to satisfactory image quality.
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a) fractional part = 4 bits, b) fractional part = 4 bits,
integral part = 12 bits, integral part = 12 bits,
shifting operands by 2 bits shifting operands by 1 bit
and result by 0 bits. and result by 2 bits.

Figure 6.14: Results of using 16-bit arithmetic with different shifting settings.
Furthermore we can conclude that the shifting approach in this particular use case is

not preferable. All fixed point conversions , due to its better parameters, in this image
filtering task will be performed by the casting operands method.
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Chapter 7

EvoApproxLib

In section 6.2 we described some basic bit width reduction techniques and how approxima-
tion of a circuit might be done. Of course these approaches are not particularly effective
nor enhanced. But it showed us a way which we should look for. In this chapter we will be
focusing on EvoApproxLib. This library contains many types of approximated adders and
multipliers. As our task is to simplify the multiplication operations in the NL-means filter,
the use of approximate multipliers from EvoApproxLib is a straightforward approach.

7.1 What is EvoApproxLib

The EvoApproxLib itself contains about 471 non-dominated 8-bit multipliers created from
6 convectional one. Also it has variations for signed and unsigned multipliers in 9 x 9,11 x
11,12 x 12,16 x 16 input bits. All these approximate circuit are available in C code, verilog,
python and matlab. All multipliers are benchmarked and evaluated according to several
error metrics. Also every circuit has information about its area and power consumption.

Because we will design approximate multipliers in chapter 8, it is important to mention
that approximate multipliers from EvoApproxLib were created by a multi-objective CGP
method. For representation a directed acyclic graphs were used. Via this approach it was
possible to aim for minimization of a delay, power consumption and its error. Principles
of CGP are described in chapter 4.1. For approximation of the multipliers they used this
CGP parameters [11].

e populationsize = 500, gen = 100000.
e n.=1000,n, = 1.
e mutation rate 5%.

Moreover EvoApproxLib contains also 28 exact multipliers. All error metrics that are
subjected to the circuits are MSE (Mean square error), EP (Error probability), WCE
(worst case error), MAE (Meean absolute error), MRE (Mean relative error).

7.2 Experiments with 16 bit approximate multiplier

The main reason why we discussed the fixed point arithmetic in section 6.3 is that EvoAp-
proxLib circuits accept integer numbers as input. Hence the implementation of these ap-
proximated circuits works at bit level (using logical and shifting operations). in order to
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safely simulate the behaviour of approximate multiplication in the NL-means filter, the ap-
proach is to convert floating point to fixed point arithmetic, feed approximated multiplier
with this input and convert the fixed point result back into floating point data type which
is used in the remaining part of the source code.

It was also matter of discussion what is the most efficient configuration (WL, IWL and
FWL) for this particular problem. It was proposed that the best approach is setting TWL
to 10 and FWL to 6 in 16 bit architecture. All calculations further in this section will be
performed with this settings.

Circuit name | MAFE WCE MRE EP power | area
mull6s_ HEB 0.00 % 0.00 % 0.00 % | 0.00 % | 2.400 2614.0
mullés. HDG | 0.00032 % | 0.0015 % | 0.034 % | 75.00 % | 2.130 2576.5
mull6s_ HFZ 0.002 % 0011 % |022% |98.43 % | 1.483 1935.9
mull6s_ GTF 0.013 % 0.0053 % | 0.12 %7 | 87.50 % | 1.961 2495.7
mullés. GAT | 0.012 % 0.048% | 1.06 % | 98.44 % | 1.396 1932.6

Table 7.1: Error metrics results for different types of approximated multipliers [11].

Table 7.1 shows the parameters of 4 different approximated multipliers with respect to
error metrics, area and power consumption.

Circuit name | PSNR | RMSFE
mull6és HEB 20.12 25.14
mull6és HDG 19.03 28.51
mull6s HFZ 16.44 38.41
mull6s G7F 16.54 37.96
mull6s GAT 9.48 85.62

Table 7.2: Table showing PSNR and RMSE values for signed 16 bit approximated multi-
pliers [11].

Fig. 7.1 provides us with the pictures to compare. They give us best information about
qualities of the filtering. Visually, results can be sorted into two classes because clearly
images in pictures c-e have a lot of visible noise. Applying multiplier mull6s GAT devalued
the image a lot. On the other hand pictures a-b are much better in this regard. There is
a minimal difference between these two images produced by approximated multipliers and
non-approximated ones. These visual outcomes are supported by quality measures in table
7.2, where we can see relatively large differences between PSNR and RMSE.
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mullés HDG.
b,

c) mull6és GT7F. d) mull6s_ HFZ. e) mullés GAT.

Figure 7.1: Results of applying different types of approximated 16-bit multipliers to NL-
means filter implementation.

The question is what would be the best choice for using each type of approximated

multiplier in this specific application. Of course the goal is to balance quality of filtering
with the implementation cost on a chip.
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Chapter 8

Approximation of a multiplier

The ultimate goal of this thesis is to design and implement a method to automatically
perform approximations of selected arithmetic operations in the chosen image filter. In
particular, we will deal with the design and evaluation of an approximate multiplier for
the NL-means image filter. The more specific objective here is to find a balance between
the quality of filtering and the potential implementation cost (area, power consumption) of
the approximate multiplier used in our target image filter. In other words, ideal result is
to find as biggest reductions as possible, but the difference between original filtration and
approximated filtration should not be almost noticeable by independent an viewer.

So far in this thesis we discussed a few options how to approximate arithmetic opera-
tions. To summarize our objective:

e We will need floating point to fixed point conversion because the original implemen-
tation is coded in floating point and the target multiplier has to be signed and work
in the fixed point arithmetic.

e As EvoApproxLib does not currently contain a suitable approximate multiplier, we
have to develop a new one.

8.1 Specification of the approximation

In order to create an approximate multiplier, one usually start with an exact implementa-
tion and performs the so-called functional approximation. This can be done manually or
algorithmically. We will follow the second approach and use CGP to create approximate
multipliers.

Approximating a multiplier is a multi-objective optimization problem where the error
and non-functional circuit parameters are conflicting design objectives [2]. We have totally
three attributes to look upon, Area on a chip, power consumption of a circuit and Error
measured by suitable metrics. From these three, it is the best practise to choose one,
which will have the most significant impact and the approximation will be built around
this parameter. For example, we can divide this multi-objective problem into more single-
objective optimization. Let us say we choose the area of a chip as main objective. Then
we can approximate a circuit until this criteria is met (e.g 80% size of original circuit).
After reaching this constraint (e.g., the circuit size is not below 80%) we can start new
approximation trying to lower the error as much as possible. Of course this approach and

38



prioritization is only a expiric and we cant predict which setting will bring out the best
results, thus finding a way through this division will be part of experiments on this thesis.

Another question arises how to evaluate the partial results or even the finale result
of approximation. A crucial question is then how the error of a given approximation is
derived [2]. Best fitting error metric for this particular use case has to be chosen and also
experiments with various metrics will be carried out. But probably only two choices are
viable in this type of approximation.

e worst case absolute error. In systems that are time based or are dependable, this type
of error is very important. Even in image processing in some cases worst case error
could have a big impact on resulting quality of filtering.

e mean absolute error on the other hand is a common choice in these applications as it
naturally reflects the approximation objective in terms of error.

8.2 Determining bit width for a new multiplier

In the beginning of this approximation we need to decide about key parameters of the
approximate multiplier. First matter to sort out is finding the ideal bit width of multipliers
used in this application. For answering this problem we might be able to use information
specifically from section 6.4 and graph 6.11.

From the experiments we know that for integer part we need at least 10 bits. It also
determined that using more than 10 or 11 bits for IWL is not beneficial because it has no
impact on quality of a result. With this knowledge we are safe to set value IWI to 10 bits.

Now we need to determine the value of fractional word length. From the graph 6.11 the
best compromise is using 9 bits for fractional part.

Finally we can now set the ideal bit width of new approximate multiplier. 1 signed bit,
10 integer part bits and 9 fractional part bits, in total 20 bits multiplier. In comparison
with the original implementation we already save 12 bits even before approximation.

8.3 Approximation method

The approximation starts with a fully functional multiplier and parameters. There are two
approaches how to evaluate the quality of a candidate approximate multiplier. The first one
uses statistical information about what values are floating into multiplication operations,
e.g histogram 6.6. From this histogram we can create a discrete distribution from which
we will randomly generate pseudo-random set of input numbers to evaluate each candidate
solution. Each candidate filter will be evaluated using MAE against an exact multiplier
and considering the generated input vectors.

The second approach, a candidate multiplier is directly used in the image filter and
the image filter is employed to filter a training noised image. The fitness score is then
established as RMSE or PSNR with respect to a perfect image.

Both these approaches has pros and cons. More comparison information between these
two procedures are in subsection 8.3.2.

8.3.1 Conversion of the circuit to CGP chromosome
An exact 20 bit multiplier was modelled using the * operator in Verilog and synthesized

into a netlist. The multiplier was encoded in Verilog file and the functional blocks were
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represented as 2 input gate. As described in section 4.1, CGP uses a chromosome for its
structural representation which is an array of integers. In CGP, any combinational circuit
can be represented as an 1D structure as a list of used gates. Hence, we set:

e M (number of rows) = 1, N (number of columns) = number of gates. In this particular
case, Verilog file of the multiplier contains 118

wire [39:0] _xzcv_,
and 98
wire Xzcv_,

of these type of gates. This means that the total number of gates will be N =
(40 x 118) 4+ 98, N = 4, 818 gates/functional blocks.

e As the result of this structuring the L-back parameter had to be set to its maximum
value.

8.3.2 Error computation based on simulation

After obtaining a CGP chromosome representing a candidate multiplier its error has to be
computed. The easiest solution is simulate the bit flow through CGP function. However
this approach is not scalable and practically does not work for 12 and more bits [12].

Due to that, the error is commonly estimated using a subset of input vectors only, e.g.
108 inputs were used to evaluate 16-bit adders in [7]. In this thesis we will use knowledge
of inputs histogram representation to create a better statistical tool for input vector set
generation. Of course, for obtaining possibly better results we could evaluate not the
candidate multiplier, but the filter in which the multiplier is employed. This option will
not be examined for one good reason. One walk through of the filter implementation consist
of tens of millions multiplications even on the smallest images. using the exact simulation
with this approach is too much time consuming and it would take days to even simulate
few runs of the filter.

8.4 Error metrics definition

As described in section 8.1 possibly the best metrics that can be used in this particular
example are worst case average error (WCAE) and mean absolute error (MAE).

As said before approximation starts with exact 20-bit multiplier. We will call this
circuit G, a golden circuit. Furthermore examined circuit which is an approximated version
of golden circuit will by called C, a candidate circuit. These circuit candidates calculate
two functions f. resp. f,, where:

fg, fe :{0,1}" — {0,1}™ (8.1)

We can now slightly modify metrics described in chapter 2.2 in order to reflect the fact
that the error will be evaluated using a set S of vectors sampled from the normal random
distribution with parameters of this distribution, so it would be as close as possible to the
operands values from the histogram 6.6.

maxges|int(fy(x)) — int(fe(2))|
1

WCAE(G, C, S) = (8.2)
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2 ses [mt(fg(x)) — int(fe(2))]
5]

where int(x) is representing a integer value of bit vector x [2].

MAE(G, C, S) = (8.3)

8.5 Design of the approximation process

The proposed CGP-based approximation is presented in this section. Chromosome is di-
vided into three main parts: input (as representing two 20 bit input numbers), circuit
content (2247 gates), output (40 bit output number). The circuit is also divided into
nodes, each of them is composed by three values. Two denotes its input and the third a
function. All types of logical gates used in the implementation can be seen in table 8.1.

Gate | IDENTITY | AND | OR | XOR | INV | NAND | NOR | XNOR
Size | 0 234 |234]469 | 148 | 1.87 2.34 | 4.69

Table 8.1: Types of logical gates and their relative size in hardware implementation accord-
ing to [12].

CGP starts with one parent chromosome, representing an exact 20 bit signed multi-
plier. By applying the mutation operator we discover new chromosomes and create new
generations. We will investigate two options for mutation operator in this thesis:

e (lassic random mutation.
e Probability map mutation proposed in chapter 9

Every chromosome is tested minimally on two parameters combining (area, power) X
(MAE,PSNR, RMSE). This pair is then used in the fitness function. Evolution continues
until a termination criteria is met. in our case it is normally set on the maximum number
of generations.

Optimization problem is: Based on initial circuit G and a threshold 7 it is our tar-
get to find approximated circuit C), which has a minimal size and satisfies a formula
MAE(G,C,S) < T.

Accordingly to this problem we can set up our exact fitness function used in this imple-
mentation:

(8.4)

£0) = {size(C’) if MAE(G,C,S) < T

00 otherwise

The circuit simulation is the most time consuming part of this approximation process.
It is only logical to run it as frequently as possible. Thus algorithm is designed to test an
approximated circuit on its size first and only new smaller models are passed for the error
evaluation. this way we dont waste computation time on circuits that do not meet our
requirements. Full flow diagram can be seen in figure 8.1.
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-------- Golden circuit Gm (static) —__

v Mitter
Threshold — 1
Initial Circuit Gi

l

Generate Yes
approximate

circuit C E < Threshold

No No No

Time exceeded ? > Replace Gi by C

Yes R End approximation process

Figure 8.1: Flow diagram of the whole approximation process.

The approximation process is based on CGP and its (A + 1) search strategy as seen in
Alg. 3.
Result: Approximated 20 bit signed Multiplier
G = Golden__circuit;
Best_ circuit = Golden__circuit;
C = Golden__circuit;
Gen__arr[number_of offsprings] = Mutation(G);
while Time limit exceeded do
forall C' = Gen__arrfi/ do
if Size(C) <= Size(G) then
if errihreshold > MAE(C,G,S) then
| Best_circuit = Cj
end
end
end
G = Best__circuit;
Gen__arr[number_ of offsprings] = Mutation(G);

end

Algorithm 3: algorithm showing CGP evolution process.

8.6 Using parallel simulation for better performance.

As said before, experiment showed, that exact simulation is viable only for a set of in-
put vectors with size up to approx 2'2. Hence this approach is intractable for our 20-bit
multiplier.

There is a way how to accelerate this method with the so called parallel simulation.
We simply do not compute with bits but with bit-wise arithmetic. We use the fact that,
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for example, in the C language there are bit-wise logic operators. Then it depends on a
particular processor architecture to what extend we can speed up the process.

16 x

x1 =1010101010101010_

\0110011001100110
|

) 16 X
x2 = 1100110011001100 .

y=1111011001100110
r=1111011001100101
fitness = 14/16

X3 =1111000011110000 :\\

1/
x4 = 1111111100000000 ——  1111000000000000
l6x

Figure 8.2: Example of parallel simulation of a random circuit.

For example, in figure 8.2, we have a circuit containing 4 inputs, 3 logical gates, 1 output
and realizing a function y = h(x1, 22,23, x4). Next we assume that the goal of evolution is
to find a target vector r representation for all possible inputs. In naive simulation we would
apply 2% input vectors one by one to the circuit. But if we can store in this example 16 bit
vector to the integer type variable in C language, we can feed the circuit with not bits, but
whole vectors and apply logical operation on integer numbers representing 16 inputs. So in
only one simulation run we can gain result vector which we compare with desired outcome
and compute fitness function. Of course nowadays current processors supports 64 bit or
even more complex operations. This means that we can speed the simulation time up to
64 times. In general k times on k bit processor. The parallel simulation was applied to
evaluate candidate 20 bit multipliers using a test set S sampled from the adjusted normal
probability distribution.
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Chapter 9

Acceleration of CGP with a new
mutation operator

Mutation is a vital operation in the whole evolutionary process. It can influence both
exploration and exploitation of a state space. Its settings significantly influences the quality
of evolution. There are two basic approaches to mutation operator used in CGP.

e First, we set a target probability value x. Then on every gene of the chromosome we
decide with probability z if the individual will be mutated.

e Second, We set a constant value x. Then we will randomly choose = genes that will
undergo the mutation.

Of course these approaches are suitable when the output of CGP is not weighted. It
means, in case of a binary output, that every bit has the same impact on the quality of a
result (e.g. parity circuits, decoders). On the other hand, with multipliers and arithmetic
circuits in general, the bit position matters. There is a big different, if you have correct bit
value in LSB (least significant bit) or in MSB (most significant bit).

e Error in LSB gives us Error equal to —1,1 in terms of integer data types.

e Error in MSB rockets the error value to possible 2”1 values for a bit vector with size
n depending on the number data type representation.

Applying the standard mutation operators to a weighted output in this particular use-
case seemed to be very inefficient. First There is a big chance that it could lead evolution to
the wrong direction in many cases. There would be many candidates with huge fluctuations
in terms of quality of the output. Second the exploration effect would be much bigger than
exploitation and in this case it is most likely unwanted. Third, there is uncertainty that it
would lead evolution to viable result and it would consume too much process time. This led
to a creation of a new concept of a mutation operator which we will call The probabilistic
map heuristic (PMM).

9.1 Principles of the probabilistic map heuristic

In this thesis we propose a new principle called probabilistic map. This method should
solve or improve some evolutionary shortcomings in some specific tasks by changing the
mutation strategy.
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The whole idea behind directing the evolutionary process is, as said in section above,
that every bit in multiplication output has different weight. If our goal is to decrease the
size or power consumption by introducing a specific error to a multiplier, we want the error
to be as small as possible. In order to achieve that logically, we do not really care about
error margins in bit positions near The LSB bit. On the other hand we do really care about
good precision in bits positions around The MSB bit.

From CGP structure we know that to obtain the value of a certain bit position on
the output we need to follow a path of calculation through function blocks. These block
calculations have a direct impact on the result value. Every output bit has its own path
and the general idea is to assign specific probabilistic value of mutation for every function
block. Function blocks that are on a path to the LSB bit, will have a bigger probability of
a mutation and function blocks to MSB will have a very small chance to mutate.

The basic idea is to lover the multiplier attributes like the size or power consumption in
function block on the paths, that does not have much influence or the overall quality of a
result. To achieve this, we use a principle of a very well known learning heuristic in neural
networks - Back-propagation.

9.1.1 Basic Principle of Back-propagation

This method is the most frequently used learning approach for neural network, but we use
its basic ideas for setting up an algorithm that creates a probabilistic map. The algorithm of
back propagation starts when the neural network finishes its forward calculations and gives
us the results. The error is then computed according to a loss function. Back propagation
takes this rate of error a propagate it back through a neural network. Every error value is
propagated back through a path, that had a direct impact on the scale of an error. With
this information neurons along a certain path adjust their weights values according to a
error magnitude so it can produce better result for next learning epoch.

Propagation itself is calculated with partial derivations as seen in Fig. 9.1. We basically
want to calculate difference Aw;. For finding out the partial derivation we need to use the
chain rule shown again in Fig. 9.1:

Etotal o Eiotar  dout; din;

= . . . 9.1
ow; dout; din;  dw; (9-1)

If we substitute the general chain rule by values in Fig. 9.1 we get specific partial
derivation:

wanted
— ——— - (out; - (1 — out;)) - out; 9.2
P (outs - (1= outs) - ou, 92)
And this way neural network uses error margins to learn. In creating a probabilistic
map we use a little bit different type of back propagation. We will not calculate exact error
and then propagate it back. But we will use the fact that we can distinguish importance of
each bit position in the output vector. Based on that we propagate back the information

of how much has a given path influences the total error.
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W ] / \ E = -(wanted * Inf{out;) + (1-wanted)*In{1-out;})

tZJ-utj ﬂ Guti. »
Wi

Figure 9.1: Neuron in the last layer in a neural network [2].

9.2 Algorithm for creating the probabilistic map

In this particular use case, the CGP has outputs vector containing 40 bits. In addition
we have 40 paths to calculate for back propagation algorithm. But first we need to decide
probability values for each output bit path. In testing cases, probability pg = 0.001 was set
to a path to the LSB bit and probability psg = 0.0000001 was set to a path to the MSB bit.
Bits between are set linearly with respect of bit position in the range (0.001,0.0000001).
For each CGP function block, this probability is calculated according to a block position
on the path. If a function block is on multiple paths, The highest probability out of all
relevant probabilities is stored.

Of course this decision is questionable. Why would higher probability value had a bigger
priority. Logically it is not ideal because we rather do not want to change more significant
bit values so smaller priority should have a higher priority. And it is true. But in this use
case we have a specific type of CGP. Specific in the way that we use CGP with rows count
set to 1 and the number of columns is 2247. This particular CGP chromosome is only one
dimensional sequence of functional block. As a consequence, paths of a LSB bits are much
shorter than a paths to the MSB. More precisely the path to the LSB bit usually contains
about 2 or 3 functional blocks but MSB bit path contains 1500+ functional blocks. As
a result of this settings if we choose the second variant almost all functional blocks will
have probability of mutation 0.0000001, and that is not good. If we choose first variant of
preference the probability values spread evenly and it has the keen effect. But if a CGP
has more than 1 row, second variant could be more preferable.

after evaluating the probabilities along with the paths all used function blocks have a
probability number for mutation. Of course one can mutate input of a function block or its
function as well. The probability map is calculated for every chromosome before mutation
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in every population. The initial probabilistic values for bit position and its path does not
change during the evolution.
Result: Probability__map
Prob__array = Manually enter probabilities for every bit position in the output;
forall Bits in the output in position i starting from LSB do
Next_ gate_block_arr = chromosome(i);
for (k = cgp_columns; k >= cgp_input_sizex2; k — —) do
if k is in Next_gate_block__arr then
inputl,input2 = get_ inputs_ from_ current_ gate(k);
Next_ gate_block arr += (inputl,input2);
if Probability_map[k] is not set then
| Probability _map[k] = Prob_ arrayli];

end
Next_ gate_block_arr -= k;
end
end
clear Next_ gate block arr;
end

Algorithm 4: The probability map for mutation.
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Chapter 10

Results of the approximation

In this chapter the results of the approximation process described in section 8. Since the
goal is to find best trade-off between error and implementation cost, we will be comparing
multiple approximated multipliers under different error metrics values as the main approx-
imation objective. The second objective is to evaluate the proposed mutation operator
based on the probabilistic map.

10.1 Approximation and program arguments

At first, it is important to go through both program and approximation process arguments.
The settings of the arguments have a tremendous impact on the quality of a evolution. The
program is written in C/C++.

num_ of colums: As it was mentioned in 8 The CGP created from Verilog file of the
exact 20-bit multiplier have a specific format. It has only one row and basically the
number of functional block is equal to the number of columns. In this specific example
in every simulation we use value 2247 as number of columns. The exact program is
programmed generally so it can handle reasonable CGP setup.

num_ of rows: is set by default to one.

component__input and component_ output: this arguments describes the number of
primarz inputs and outputs. Specifically we approximated 20 bit multiplier, thus
logically input is every time of size 40 and the output is 40.

block_input: this parameter determines the number of block inputs. We are only
using binary and unary logical operators. since the majority of operation used are
binary this value is set to 2.

block count: The number of functions in the set of CGP. see Table 8.1 for the used
setup.

Now the arguments that have influence on evolution.

population_ count: in general this value specifies an end condition of a approximation
process. In this thesis we use combination of two ending conditions. The first is
number of maximum generations allowed. The second is time condition. The reason
behind this combination is the experiments showed it would be probably best practise
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since both program process time and number of generations have great influence on
quality a the results.

The number of generations. In the beginning of the approximation almost all indi-
viduals. satisfies the area or power constraint and, hence all of them are evaluated in
terms of error. Based on preliminary experiments, default number of generations is
1500.

The l-back parameter sets the connectivity in a cgp. In this case we do not have
really choice of setting it to other values than maximum one (total connectivity). This
ensures that the arbitrary combinational circuit can be created on a given number of
gates.

Threshold parameter contains a error metric value. Specifically we use MAE as ap-
proximation objective. The MAE metric is not relative, thus it is not represented in
percentage but in this case integer value. Since we are transforming floating numbers
before multiplication to fixed point arithmetic, we are working in integer values level.
So far only the floating point number histogram of the image filter was shown in Fig.
6.6. But if we look at the integer representation of the histogram we get a slightly
different result. the range of integer numbers is < —595398, 595398 > and it has the
same shape as normal distribution. The experiments performed in this thesis uses the
threshold values 500, 1000 or 10000. So this is relatively small error in comparison
with the actual 20 bit multiplication range.

The last parameter is the mutation probability. First we will discuss the common
mutation of CGP. As said before in this chapter two concepts of mutation will be
compared. One thing they have in common is how the settings affects the whole
evolution. Experiments showed that in the mutation chance is too high, for example,
it is set to 0,1 or 0,01, then the approximation always leads to unsatisfactory results.
Mainly because it converges too quickly. if one introduce to a chromosome too many
changes at once, it increases the chances of making bad mutations in single generation.
Then it is too easy for evolution process step out from right direction. And as it was
described in chapter 9 if an error occurs in bits around LSB it has much smaller
impact then error near MSB bits.

On the other hand if you choose a very small chance for mutation, it will take a
large amount of time to even converge somewhere. And it would take forever for
the program to come to a good solution in reasonable time.Base on our preliminary
experiments, best value for compromise between convergence and program duration
was mutation probability set to 0,0001 in common mutation operator.

To avoid this compromise and get hopefully better results the concept of probability
map was proposed in chapter 9. Probability of mutation on the LSB path is set to
0,001 and probability on the MSB path is set to 0,000000000001. Probabilities of
the remaining paths (and so functional blocks) depends on the bit position pos and
equal to 10~ 1% % 0.001.
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10.2 Results for 20-bit multiplier using the probability map
mutation

Using a Salomon supercomputer in Ostrava gave me a tool to run 24 instances of the approx-
imation program. We used the following CGP parameters: col = 2247, rows = 1,¢c_in =
40,c_out = 40,pop_size = 50,block_1 = 2,1_back = 2287, funcl_b = 8,threshold =
500, maz_time = 48hours,max_gen = 1500. The set of number S contains 128000
pseudo-random generated numbers for every candidate multiplier.

MAE best candidate generation
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Figure 10.1: Number of generations needed to find an approximate multiplier with MAFE
= 500. (Constructed from 24 independent runs with the probabilistic map mutation, max.
1500 generations.)

The boxplot in 10.1 shows the number of generations needed to find a n approximate
multiplier with MAE = 500 Constructed from 24 independent runs. The exact statistical
numbers can be found in table 10.1.

best worst average
6739um? | 6942um? | 6825.25um?

Table 10.1: Average, best and worst area value obtained by Prob Map mutation.

10.2.1 Examining the evolution process

Fig. 10.2 shows the average area reached in the the course of evolution calculated from all
24 CGP runs. From that graph we can deduce some information how probabilistic map
influences the evolution.

First obvious thing is that the result is converging slowly but steadily. This is a good
result because we do not want to end up quick in local optimum. It also means that settings
of the program are balanced and it has good impact on the quality of a result.

Also it tells us that maybe if we let the process evolve longer we could get a little bit
better results.
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Also in graph 10.3 we can see progress of the run with best found result. It only confirms
all findings from the previous plot. Another interesting observation is that the progress is
not linear as it would seem in the average graph. It can be seen that in first 400 generations
we can see the best performance in sense of progress.
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Figure 10.2: The average best size of the approximate multipliers during the evolution
(probabilistic map mutation).
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Figure 10.3: The area of the best approximate multiplier during the evolution (probabilistic
map mutation).



24 runs of evolution with Prob Map
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Figure 10.4: Boxplot showing candidates and their size in different generations. (proba-
bilistic map mutation).

We can also compare evolution process between two different MAE threshold settings.
in graph 10.5 We can see that evolution progress of both approaches is more or less similar.
The speed of the convergence is comparable. Of course two similar settings will never
have identical progress. The experiments shown that time complexity for calculating the
probability map is negligibly small in caparison with other parts of implementation e.g.
vector based simulation and so on.
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Figure 10.5: Average best size of a candidates in certain generation of the evolution (prob-
abilistic map mutation).
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10.3 Results for 20-bit multiplier using classic mutation

In this section, the common mutation of CGP will be compared with the Probabilistic
map. Mutation rate was set to value 0.00001 so that chance for mutation is rather small.
But additional experiment confirmed that this is the best settings we tested fo common
mutation. If the mutation value is higher, e.g. 0.001, majority of runs ended up with
the evolution in the very early stages. It means that most of the candidates among first
generations were mutated so badly that they didn’t satisfied the MAE threshold even they
had almost the same size as unapproximated multiplier. If the mutation number is too
small chromosomes were staggering on the same size for hundreds of generations.

Average size of candidates in certain generation
6990
6980 \
6970

6960

@ 6950

1z

S

6940
6930
6920
6910

0 500 1000 1500 2000

Generation

Figure 10.6: Average size of the best approximate multiplier during evolution (common
mutation).
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24 runs of evolution with random mutation
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Figure 10.7: Boxplot showing candidates and their size in different generations (common
mutation).

Fig. 10.6 shows the average size of approximate multipliers when common mutation is
used. If we compare this plot with plot representing probabilistic map 10.2 the convergence
is much smaller and even the results are much worse. This only confirms the assumption
that probabilistic map would contribute to the faster convergence.
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Figure 10.8: The area of the best approximate multiplier during the evolution (common
mutation).

If we compare the results of best candidates, we can see that the candidate which was
evolved using the probabilistic map, converges much quicker an also in much smaller steps.
This also confirms our assumption about the probability map based mutation. It is logical
if we let bits around LSB mutate more quickly than those around the MSB, better solutions
are then obtained.
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If we compare value from tables 10.2 and 10.1 we will see that there is a difference
between two best found chromosomes about 222 um? which is a lot, The best chromosome
obtained using the common mutation achieved MAE value of 470 and Probabilistic map
chromosome of 375. The random mutation chromosome was found in generation number
1869 and Probabilistic map chromosome in 1057. In conclusion, the approximate multiplier
obtained using the probabilistic map based mutation is more compact, produces smaller
error and was found in fewer generations.

mutation best worst average
common 6961um? | 6984um? | 6971.18um?>
probability map | 6739um? | 6942um? | 6825.25um?

Table 10.2: The average, best and worst area of approximate multipliers obtained by using
both mutation approaches comparison.

To point out the conclusions drafted in previous paragraph, we can look at plots 10.9
and 10.10. First graph is showing boxplot with MAE values found by all CGP runs. It can
be seen that both approaches provide similar results in terms of MAE, but the probability
map based mutation leads to more stable results.

Boxplot - MAE in type of mutation
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Figure 10.9: Comparison of MAE values obtained using the proposed mutation operators.
In that case of the size of approximate circuits, PMM clearly leads to better results.

As it can be seen even the best approximated multiplier using common mutation is bigger
than the worst candidate from probabilistic map.
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ProbMap vs Random mutation size of candidates
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Figure 10.10: Comparison of sizes of approximate multipliers obtained using the proposed
mutation operators.

On the other hand there are some issues that need to be addressed. Due to the enormous
time complexity of the algorithm it was impractical to test the evolution on more than
2000 generations. For this number it took the program more or less 24 hours to finish (on
used CPUs) even with many optimization techniques such as parallel simulation and using
optimization compiling C++ flags and so on.

From the behaviour we can see that the random mutation is progressing slowly but
surely. Nearly 3/4 of evolution runs with random mutation didn’t end their search before
the generation 2000 and would continue to find possibly better solutions. In the case of
Probabilistic map it was around 1/4 of the candidates.

10.4 Applying approximated multipliers with image filter to
image dataset

In this section some of the best chromosomes found by evolution will be chosen and used
in the image filter on various images to see results. Of course the resulting multipliers will
be tested on the same image as every other technique described in this thesis for the best
comparison effect. We will report the PSNR and RMSE.

If we look at the set of pictures 10.11 we can see how the chosen unapproximated and
approximated multipliers used in the non local denoising image filter affects the image
quality. Two of the multipliers are unapproximated. The first mull6s. HEB is a 16 bit
multiplier is shown fo comparison with the 20 bit multipliers and the mul20s_ HEB is the
20 bit unaproximated signed multiplier. Then we have mul20s_P500 which is the best
approximate multiplier obtained by probabilistic map with MAE threshold under or equal
500. The same goes for mul20s_ P1000 which is also generated with probabilistic map-based
CGP but with MAE threshold under or equal 1000. The last one is the only representative
of random mutation approach with MAE threshold also under or equal 1000.
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Figure 10.11: Results of applying different types of approximated multipliers to image filter
implementation.

On the first sight there is not much visual difference. And with that we saved 284pm?
size on the chip area. On the hand the 4 bit difference between 16 bit and 20 bit architecture
is more noticeable mainly on the details.

Table 10.3 is visualizing some statistical data, particularly the error metrics values and
sizes of the multipliers. We have to emphasize is that MAE values are not corresponding
with PSNR and RMSE numbers. The reason is the way how evolution and fitness function
is constructed. Every candidate circuit was tested on exactly 64 thousands input vectors
that were sampled from the histogram of operands entering the multiplication in the filter.
But the filter contains many other operands that were not modelled in fitness function.
Therefore the reason why those two numbers are not matching is simplification of fitness
function.

Basically MAE value here represents how the candidate circuit performed in the evo-
lution process. The PSNR and RMSE values shows how it performed in the actual target
task, the image filter.

name MAE | PSNR | RMSE | Size
mul20s HEB 0 23.75 16.57 6988um2
mull6és HEB 0 20.12 | 25.14 2614um2
mul20s_ P500 375 23.31 17.42 6739m?
2
2

mul20s_P1000 | 565 23.16 | 17.72 | 6704um
mul20s_S1000 | 470 23.35 | 17.34 | 6961um

Table 10.3: Error metrics values and sizes for approximate and the exact 20 bit and 16
multipliers.
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In Fig. 10.12 and 10.13 we plot the circuit size against the filtering quality. These plots
are very similar as MAE and PSNR are highly correlated.
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Figure 10.12: The multiplier size and PSNR of corresponding filter on the training image.
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Figure 10.13: The multiplier size and RMSE of corresponding filter on the training image.

10.4.1 Resource Savings

In order to estimate how much resources can be saved by the proposed approximate multi-
pliers, we compared the power consumption and area of a conventional 32 bit FP multiplier
and signed 20 bit FX multiplier with our solution. Based on the data provided by Dr.
Mrazek, the 32 bit FP multiplier requires approx. 1.48x more area and 1.77x more power
consumption than the 20 bit FX multiplier. Our evolved 20 bit approximate multiplier saves
4.06% area compared to the 20 bit standard multiplier. In total, the proposed approximate
solution can save 35.28% area with respect to the original 32 bit FP multiplier.

58



10.5 Real life image denoised by approximated 20-bit multi-
plier

Noised image with noise parameter o = 50

Denoised image with mul20s_ p500 multiplier
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Chapter 11

Conclusion

This thesis had one main goal and it was to develop an EA based approximation method
which exploits particular data distributions in order to approximate an image filter. This
goal was divided into smaller parts. First, a suitable image filter had to be chosen as a
use case for this thesis. Non-local denoising filter was chosen. After this decision next
task was to obtain the operand data distribution of this filter and determine the arithmetic
operation which is the best candidate for approximation in the filter. After evaluating that
multiplication is the best choice and obtaining a data input histogram the main part of this
thesis was to find the best way of the approximation.

We started with reducing the bit width of selected arithmetic operations. We evaluated
two basic approaches to converse the floating-point number to the fixed-point representation
and then experimented with different bit width settings in this type of number representa-
tion. After these experiments we evaluated various approximate multipliers. As a source
for these multipliers EvoApproxLib was chosen. Then we experimented with the various
16 bit signed approximate and exact multipliers.

The experiments revealed that 16 bits are not sufficient enough for our case study. As
a next step for achieving this thesis goal we decided to create new approximate 20 bit
multipliers. Using data distributions and other information obtained from the experiments
we modified the evolution process with respect to the chosen NL-means filter. For achieving
this task a new mutation operation principle called the probabilistic map was proposed.

We evolved various 20 bit approximate multipliers using the standard CGP and the
CGP utilizing the proposed mutation operator. Evolved multipliers were evaluated on the
implementation of the NL-means filter. Finally, we compared the quality of filtering of the
original and approximate image filter on a set of images.

Results of this thesis shown that approximate computing can be applied in non-trivial
image filter. We managed to replace costly 32 bit floating point multiplier with 20 bit
approximated fixed point multiplier and still the error and the visual degradations are
negligible in terms of human vision perception. We estimated that the proposed solution
shows 35.27% reduction in power consumption of the key multiplication operations in the
NL-means filter.

A possible future work could be devoted to a deeper statistical evaluation of the proposed
mutation operator, the use of evolved multipliers in other applications and a hardware
implementation of the whole filter on a chip.
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Appendix A

Appendix

A.1 CD content

e Tech report (tech_report.pdf)
e file with source codes (source_ files.zip)

e README - user manual for software content
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A.2 Additional real life images denoised by approximated
20-bit multiplier

Figure A.1: Noised image with noise parameter ¢ = 50

Figure A.2: Denoised image with mul20s_ p500 multiplier
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Figure A.4: Denoised image with mul20s_ p500 multiplier
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Figure A.6: Denoised image with mul20s_ p500 multiplier
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Figure A.7: Noised image with noise parameter o = 50

Figure A.8: Denoised image with mul20s_ p500 multiplier
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Sources for the images:
https://digital-photography-school.com/tips-for-photographing-football-soccer/
https://besthqwallpapers.com/animals/husky-family-pets-puppies-cute-animals-

64517
https://www.wallpapertip.com/wpic/oxbxoi_romantic-background-images—hd/
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