
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

HOLOGRAPHIC INJECTION
HOLOGRAFICKÁ INJEKCE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. ROMAN DOBIÁŠ
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠ MILET
VEDOUCÍ PRÁCE

BRNO 2021

Abstract
The adaptation of upcoming autostereoscopic displays by regular users depends on avail-
ability of supported applications. To increase such set, this thesis describes compatibility
software which turns (semi)-automatically the output of regular OpenGL 3D applications to
display-native output of autostereoscopic displays, which take advantage of true 3D displays
capabilities. This is achieved using a conversion layer that intercepts subset of OpenGL
API call and translates such API calls to the different ones that produce multiview output
of the original application.

The thesis is mostly devoted to the process of incremental design of the conversion
layer to support different stages of OpenGL API. The description is focused on explaining
decisions and alternative possibilities of available API calls.

In the end, examples of converted applications are shown with identified problems,
analyzed performance, and suggestions for further development.

Abstrakt
Táto práca sa zaoberá návrhom a implementáciou nástroja, ktorý umožní používať kla-
sické 3D OpenGL aplikácie na tzv. autostereoskopických displayoch s plným využitím ich
hĺbkových možností a s minimálnym zásahom od užívateľa. Nástrojom je konverzná vrstva,
ktorá umožní transparentne beh OpenGL aplikácií s interným rozšírením o vykreslenie z
viacerých pohľadov vo formáte, vhodnom pre 3D display.

Motiváciou tejto diplomovej práce je potenciálne rozšírenie tzv. autostereskopických
displayov, ktoré je v súčasnosti závislé na cene a dostupnosti špecializovaných aplikácií pre
tieto displaye.

Text práce sa zaoberá dizajnom takejto vrstvy z pohľadu nutných API volaní, ktoré je
potrebné korektne prepísať, aby aplikácie, vytvorené pomocou jednotlivých verzii štandardu
OpenGL, pracovali správne, ako aj popisom problémov, ktoré vznikajú použitím rôznych
vykreslovacích techník, a ktoré sú motiváciou pre komplexnejšie chovanie nástroja.

Na záver práce sú ukážky konverzie programov, dopad na výkonnosť, ako aj identifikácia
nedostatkov konverznej vrstvy s návrhmi možných riešení pre ďalší vývoj.

Keywords
OpenGL, autostereoscopic displays, pipeline injection, single to multiview conversion, au-
tomated conversion, API call hooking, Looking Glass, projection extraction

Klíčová slova
OpenGL, autostereoskopické displaye, injekcia pipeliny, konverzia z jedného do mnohých
pohľadov, automatizovaná konverzia, odchytávanie API volaní, Looking Glass, extrakcia
projekcie

Reference
DOBIÁŠ, Roman. Holographic Injection. Brno, 2021. Master’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Tomáš Milet

Rozšířený abstrakt
Táto diplomová práca je zameraná na nový typ displayov, ktoré umožňujú vytvárať

hĺbkový vnem zobrazovaného obrazu bez nutnosti nosenia špecializovaných zariadení, akými
sú 3D okuliare. Tieto tzv. autostereoskopické displaye sa postupne začínajú objavovať na
trhu pre široké masy konzumentov. Keďže takéto zariadenia potrebujú odlišný formát
vstupných dát, aktuálne aplikácie nedokážu plnohodnotne využiť ich výhody zobrazova-
nia, a preto nie sú až tak atraktívne pre konečného spotrebiteľa. Existujúce aplikácie je,
prirodzene, možné upraviť manuálne tak, aby ich výstupný formát zodpovedal požiadavkám
displayov, avšak za cenu ľudského úsilia a iných nákladov. Motiváciou diplomovej práce je
hľadanie spôsobu, ako takýto prevod čo najviac automatizovať bez nutnosti zásahu do zdro-
jových kódov programu, teda vytvoriť metódu, ktorá by dokázala univerzálne transformovať
ľubovoľnú 3D OpenGL aplikáciu.

V úvodnej kapitole 2 práca poskytuje prehľad dnes známych a často používaných zo-
brazovacích technológií pre zobrazovanie 3D scén s dôrazom na hĺbkový vnem. Práca teda
spomína rozličné metódy v stereografii, teda v oblasti, ktorá je verejnosti populárna pre
anaglyfy (červeno-modré obrázky s prislúchajúcimi okuliarmi), či rozličné aktívne a pasívne
technológie 3D okuliarov, ktoré sú dnes masovo využívané v 3D kinách. Do tejto oblasti
patrí taktiež Virtuálna Realita (VR), ktorá aktuálne dominuje trhu vo forme špeciálnych
okuliarí so vstavanou zobrazovacou plochou (ang. Head-Mounted Display).

Cieľom tejto kapitoly je ďalej predstaviť autostereoskopické displaye, ich základne prin-
cípy funkčnosti a výhody a nevýhody v porovnaní s existujúcimi stereoskopickými technoló-
giami. Gro kapitoly tvoria takzvané light-field displaye, ktoré sú založené na definícii scény
pomocou množiny pohľadov, a následne formovaniu výstupného obrazu na základe inter-
polácie. Súčasťou kapitoly je aj formálna definícia light fieldov, ktorá poskytuje čitateľovi
lepšiu predstavu o formovaní, resp. syntéze obrazu, ktorý bude na koniec zobrazený na
displayi.

Taktiež je predstavený konceptu quiltu, obecného obrazového formátu tvoreného mriež-
kou pohľadov, ktorý predstavuje diskrétnu inštanciu light fieldu, a ktorý je následne možné
previesť do formátu, špecifického pre konkrétny display. Ultimátnym cieľom diplomovej
práce je teda zabezpečiť, aby existujúce aplikácie produkovali obraz vo forme quiltu.

Kapitola taktiež jemne načŕta alternatívy v podobe volumetrických displayov, ktoré ale
pracujú nad odlišnými vstupmi, ktoré nie sú jednoducho prevoditeľné z light fieldov.

V závere kapitoly sú prezentované aktuálne metódy, ktoré slúžia na obecný prevod
stereo obrazu na autostereoskopický formát (ang. stereo to multiview), alebo sa dotýkajú
oblasti konverzie 3D bežných aplikácii na stereoskopické displaye.

Kapitola 3 uvádza čitateľa do problematiky úpravy existujúcich programov bez zásahu
do zdrojových kódov. Táto obecná metóda funguje na princípe vkladania medzivrstiev
medzi samotnú aplikáciu a jej závislosti. Novo vložené medzivrstvy majú možnosť ”zavesiť
sa“ (ang. hooking) na komunikáciu medzi vrstvami a túto komunikáciu filtrovať či inak
ovplyvňovať. K aplikácii tohoto prístupu je možné buď využiť princípy závadzača programu
(ang. dynamic loader) alebo napadnúť proces originálnej aplikácie a prepisovať funkcie
pomocou zmeny inštrukcií (ang. code patching).

Kapitola 4 tvorí gro práce. Jej cieľom je popísať ako vnikajúca vrstva bude prevádzať
komunikáciu aplikácie rozhraním OpenGL tak, aby výsledný obraz aplikácie bol viacpo-
hľadový (ang. multiview). Práca začína popisom konverzie tzv. fixed-pipeline prístupu
vo vykreslovaní OpenGL, ktoré predstavuje jednoduchší prípad. Vďaka fixnosti a štan-
dardizácii je postačujú ku prevodu takýchto aplikácií priamo rozšíriť transformačnú maticu

pomocou k tomu určených API volaní, a zároveň odchytávať a agregovať vykreslovacie
príkazy pomocou mechanizmu tzv. display listov.

Rozšírenie programovateľnej pipeline-y OpenGL predstavuje komplexnejší problém z
dôvodu väčších možností, ktoré programátor aplikácie dostáva k predávaniu, spracovaniu a
uchovaniu dát. Práca definuje proces, počas ktorého sú extrahované parametre projekčnej
matice pôvodného shader programu za cieľom invertovať už transformovanú pozíciu vrcholu
späť do priestoru kamery. Následne je možné aplikovať relatívnu transformáciu a projekciu
pre daný pohľad quiltu. To je zabezpečené rozšírením (injekciou) kódu do existujúcich
shaderov aplikácie.

Z dôvodu podpory aplikácií, ktoré svoj výsledný obraz skladajú z viacerých vykreslo-
vacích prechodov do pomocných vykreslovacích objektov (ang. Frame Buffer Object), práca
skúma možnosti replikácie takýchto FBO v pozadí (ang. shadowing) pomocou mechaniz-
mov vrstvených FBO objektov (ang. Layered FBO) a možnosti vytvárať textúry, ktoré
vnútorne odkazujú na podčásť pamäte už existujúcej textúry (ang. Texture View). Cieľom
je zabezpečiť konzistentnosť vzorkovania dát z prechádzajúcich prechodov pri vykreslovaní,
kedy vstupnú textúru modelu tvorí objekt, ktorý vznikol vykreslením v predchádzajúcom
prechode. Bez ošetrenia tohoto prístupu by dochádzalo ku efektu zrkladenia (ang. mirror-
ing) vstupnej textúry.

Posledným konceptom práce je rozšírenie existujúcich shader programov o tzv. instan-
ciaciu Geometry Shaderov, ktorá komfortne umožňuje paralelne zapisovať do vrstiev FBO
počas jedného vykreslovacieho príkazu. To potenciálne pomáha znížiť réžiu, potrebnú pre
vykreslenie viacerých pohľadov pre každý vykreslovací príkaz originálnej aplikácie. Nasledu-
júca kapitola 5 sa venuje popisu implementácie z pohľadu navrhnutej architektúry. Popísaný
je finálny spôsob hookingu ako aj jednotlivé komponenty, ktoré zabezpečujú správu metain-
formácií, získaných z pozorovania OpenGL volaní, a ktoré umožňujú riadiť proces konverzie.

Obsahovo posledná kapitola 6 popisuje experimenty nad existujúcimi aplikáciami. Vzhľa-
dom na rozsah OpenGL priestoru API volaní a komplexnosť konverzie sú popísané prípady,
pre ktoré konverzia nefunguje alebo ju jednoducho nie je možné plne automatizovať. Kapi-
tola obsahuje analýzu dopadu na výkon vzhľadom na komplexnosť originálnych scén.

Výsledná práca je implementovaná pre operačný systém Linux, a bola vyskúšaná na
rozličných dostupných OpenGL programoch. Praktickým výstupom práce je teda proof-of-
concept implementácia, ktorej komercializácia, či prosté obecné nasadenie by vyžadovalo
mnoho človekohodín v oblasti robustného testovania a odľadenia aplikácie.

Implementácia dokáže niektoré vybrané aplikácie transformovať dokonalo, u niektorých
dochádza ku artefaktom v prípade vykreslovania objektov shaderom, ktorý nebolo možné
previesť, či samotné vykreslovanie zmizne z dôvodu nekozistentnosti transformačného re-
ťazca po úprave.

Implementovaná práca podporuje zásah uživateľa vložením konfigurácie pre konkrétne
shadery, ktorými je možné vynúťit výsledok transformácie, či skryť geometriu, vykreslovanú
týmto typom shaderu.

Táto diplomová práca bola prezentovaná vo forme článku s názvom Holographic Injection
- Let There Be True 3D na študentskej konferencii Excel@FIT VUT, ročník 2021, na ktorom
získala ocenenie odborným panelom, ako aj cenu partnera priemyslu (Edhouse).

Holographic Injection

Declaration
I hereby declare that this Diploma’s thesis was prepared as an original work by the author
under the supervision of Mr. Tomáš Milet. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Roman Dobiáš

May 17, 2021

Acknowledgements
I would like to express my gratefullness for a long-term collaboration with supervisor Tomáš
Milet, his devotion to his job as an advisor and to many interesting thoughts I had been
shown during our consultations.

While talking about this thesis, I must definitely give credits to all of these open-source
SW that I’ve been using. The thesis was written using VIM with multiple plugins (e.g.
VimTex for LaTeX). The figures were prepared using GIMP and Inkscape. Both are great
tools, except for Inskcape’s UI, which I find hard to manipulate with.

Next, I would like to express my acknowledgement to all tax-payers, who contributed
to my six-years-long study, with one year spending abroad. I promise I will try to make
this money pay back for society.

Speaking of society, I have to mention my two crazy housemates, Juraj and Michal,
who are keen players of Bulanci and Worms, and who managed to keep my mind busy with
cooking, drinking beer and inviting our friends for Friday’s night parties.

Last but not least, I can’t forget to say thanks to my supportive girlfriend, who accepts
my devotion to finish my thesis with all effort that is available.

Žite tak, aby po vašej smrti nezavládla
rovnaká radosť ako pri vašom narodení.

Stanislav Radič

...but in this world nothing can be said
to be certain, except death and taxes.

Benjamin Franklin

Contents

1 Introduction 3

2 Introduction to displaying methods 4
2.1 Overview of 3D displaying . 4
2.2 Autostereoscopic displays . 7
2.3 Conclusion of 3D displays . 10
2.4 From light fields to Native images of 3D displays 10
2.5 Converting 3D applications to multiview displays 13
2.6 Conclusion . 18

3 Theory of application hooking 19
3.1 Motivation for hooking . 19
3.2 Definition of hooking . 19
3.3 Hooking OpenGL’s API . 23
3.4 Conclusion . 25

4 Designing the conversion layer 26
4.1 Ultimate goal of conversion . 26
4.2 Modifying fixed-pipeline rendering . 27
4.3 Inspecting programmable pipeline . 30
4.4 Layered framebuffers . 39
4.5 Instanced Geometry Shader Rendering . 44
4.6 Conclusion . 47

5 Implementation 49
5.1 Overview of implementation . 49
5.2 Overview of platform-depedency . 54
5.3 Code quality . 55

6 Experiments 56
6.1 Test setup . 56
6.2 Measuring performance . 56
6.3 Limitations . 59

7 Conclusion 63

Bibliography 64

A Additional results of conversion 68

1

B HoloInjector’s Manual 70
B.1 Installation . 70
B.2 Acquiring parameters of display for Looking Glass 70
B.3 Using HoloInjector to obtain 3D image . 70

C For further developers 74
C.1 Testing the injector . 74
C.2 Tips for debugging . 75

D Content of enclosed CD 78

2

Chapter 1

Introduction

The world is always changing and new technologies are coming to the scene. In general, an
adaptation of a technology depends mostly on cost and usefulness.

In terms of Computer Graphics, Virtual Reality and Head-Mounted Displays have re-
cently started slowly taking a larger portion of market share [33]. However, the true revolu-
tion in 3D displaying is expected to come with so-called autostereoscopic displays: LCD-like
gadgets with the ability to give a user a different image, based on the angle of looking.

The catch is in the fact that autostereoscopic displays require a different representation
of an image than a regular 3D or VR application provides. Therefore, every existing 3D
application would have to be reprogrammed to support it in order to get the advantage
of such display. In combination with a higher price per unit, the adaptation of such dis-
plays might be at risk, just as 3D television has partially failed due to missing exclusive
content [25].

To help in solving this problem, this thesis is devoted to a (semi-)automated process,
which could turn 3D applications to an autostereoscopic-ready format without changing
any line in the application’s source code.

Although a more precise definition is incoming in the next chapters, for now, let us
assume that the idea of conversion to an autostereoscopic display is based on forcing the
application to render the content from many different, but close viewpoints.

In Chapter 2, a brief introduction into 3D displays and their properties is given. Next,
the definition, formation, and processing of the 3D image are explained. The proper defini-
tions of inputs for 3D displays are given, and the chapter also describes the steps required
by the conversion in more detail. The chapter ends with an overview of existing approaches
to the conversion of the representation of a regular flat display images to multi-view ones,
which are used by 3D displays.

In Chapter 3, the process of so-called hooking is explained. Hooking is a generic pro-
gramming method used for modifying the behavior of existing SW components by wrapping
the components. The technique will be necessary to implement the injector.

In Chapter 4, parts of OpenGL rendering pipeline are examined, and algorithms and
ideas are given how to properly support each part of the rendering so that the converted
application would render the expected, duplicated image.

In Chapter 5, the structure of the resulting code of this thesis is described.
In Chapter 6, the injector is applied to existing applications and the method’s flaws are

described and discussed. In addition, performance issues are discussed and suggestions are
given for tuning the performance.

Finally, the achievements and possible future challenges are discussed in Chapter 7.

3

Chapter 2

Introduction to displaying methods

The aim of this chapter is to give the reader an insight into the complex process of forming
and displaying images of 3D scenes. Such knowledge is necessary in order to understand the
necessity and motivation for creating a new conversion software, whose design is described
in the following chapters.

The chapter begins with a description of displays, with emphasis on true 3D displays.
Next, a formal definition of storing and manipulating 3D scenes is given in terms of light
field, and its use is explained.

Finally, we discuss software that can already be used to convert traditional flat 3D
applications to take advantage of 3D displays.

2.1 Overview of 3D displaying
Depth perception of 3D volume in viewers’ eyes is caused by depth cues [38]. The most
important one is binocular parallax, which corresponds to showing two different images of a
scene to viewer’s eyes, each corresponding to a shifted view of the 3D scene [32]. Additional
minor cues such as linear perspective, occlusion, or shadowing contribute to keep brain
focused on the illusion of perceived depth.

In further text, various types of displays are briefly introduced. The classification of
3D displays in this thesis is divided into two major groups, depending on how the image is
perceived by user - stereography and autostereoscopy.

At first, stereograhical displaying is introduced as it is contemporarily the most promi-
nent way of consumer 3D displaying. These methods require users to wear additional
gadgets such as glasses or Head-Mounted Displays and provide two views into a 3D scene
from two viewpoints simultaneously.

As an alternative, the second large group of displays named autostereocopic attempts to
solve many of the problems by taking a different approach to give a viewer a perception of
the changing image when the viewer changes his position, without the necessity to wear any
additional gadgets such as Head-Mounted Hardware, allowing multiple viewers to perceive
the image.

2.1.1 Stereography

Traditionally, the easiest way of causing depth perception is achieved using stereography,
thus showing two different images to a viewer. This concept forms a broad area of methods

4

Figure 2.1: An anaglyph of Dino (left) and a Head-Mounted display. Courtesy of Neil
Fraser [6] and Hewlett Packard, respectively.

and technologies, which mostly differ in the way how distinctive images are formed in a
user’s retina and the resulting visual quality.

Historically, the first 3D imaging came in the late 19th century with stereocopy. Stereo-
scopes are plain mechanical devices in which the underlying stereo photography is obstructed
such that each eye sees its corresponding part. The construction of such a device permits
only a single user to perceive the image simultaneously.

Another technology, anaglyphs, produces the depth effect by overlaying two images with
different colors, which are perceived with specialized color-separating glasses. Typically,
red&cyan is used for expressing the left and right image, although any complementary pair
of colors could be used. The disadvantage of color-separating glasses is a strongly visible
ghosting effect, caused by improper separation of colors due to limited display and glasses
color response, and a loss of visual quality due to encoding both images as grayscale using
shades of two distinctive colors [26]. The advantages include the ability for multiple viewers
to perceive the image simultaneously, and the low price of glasses. In addition, anaglyphs
can be displayed using common displaying hardware such as CRT, LCD, or plain print,
thus making them affordable and widespread.

So far, the presented techniques of displaying do not require any active display such
as LCD. The next two technologies utilize 3D glasses while relying on specialized displays.
The first displays images in a time multiplex, thus by interlacing frames on screen for the
left and right eye in time, frame by frame [44, pg. 543]. This requires so-called active
3D glasses, which are synchronized with display. They contain a shutter for each of the
eyes, which is controlled using the signals provided by the display. They also rely on the
persistence of vision, an ability of eye, stemming from the limited frequency of the eye as a
sensor. Thanks to the property, only a single eye receives the updated image at the same
time while the other eye keeps the image from the previous update. Therefore, only a single
physical screen is thus required.

The second, Polarizing displays produce images that are separated for each of the eyes
using polarization filters in 3D glasses, based on the different light polarization of source
images. This is achieved by spatially interlacing pixels with different polarizations. The
glasses then block the incoming light of the other view, leaving only the correct view to
pass to the correct eye [44, pg. 542]. This method employs passive 3D glasses, which in
comparison to active glasses have plain construction, and thus, are less expensive.

5

Starting the 21th century, Head-Mounted Displays are becoming the most prominent
technology of stereography due to their high quality image and immsersing experience.
They are constructed so that either each eye has its own display, or portion of a a single
display [32]. The price of this technology varies from a few dollars per paper-made frame of
lenses [2], which turns a regular smartphone to stereoscopic device, to specialized embedded
devices for hundreds of dollars such as Oculus Rift [7], which includes sensors for head
position tracking and interactive controllers.

The disadvantages of the aforementioned stereoscopic technologies include problems
with keeping sharp images with changing the position of the viewer, causing fatigue and
headaches, caused by confusing brain’s model of orientation [37], restricting the usable
images only for a single user, or requiring additional wearable hardware, used by viewer.

Virtual Reality (VR) and Augmented Reality (AR)

Virtual reality terms an immersive experience for a user of Head-Mounted Displays, in which
he perceives the vision of a virtual world as if he was moving and interacting physically in
such the world [40]. This is achieved using Head-Mounted Displays, used for providing depth
perception, and additional gadgets such as head-trackers, which detect the immediate pose
of the user’s head. In addition, a VR setup can be extended with controllers or glowes,
which track the user’s interaction with elements of a virtual scene. The rotation of the
head together with user’s interactions are provided to the underlying rendering system,
which then produces an accurate image of the updated world, making the experience more
immersive in comparison to the use of traditional stereo displays.

Figure 2.2: An example of VR setup (right). User’s vision is completely controlled by dis-
playing stereo image using Head-Mounted Display. To further enhance the experience of
immersion, the user can interact via controllers. Pokemon Go (left) is an example of suc-
cessful AR application. The game provides an overlay of the real world with virtual enemies,
placed at real-world coordinates. Courtesy of [7] and pokemongolive.com, respectively.

Augmented reality denotes enhanced vision in which a user perceives real-world with
additional information in real-time. The term is not limited to any physical display, but
rather refers to the ability to extend the reality. For instance, a soldier wearing AR glasses
could perceive real-time information about the target’s status, displayed as a text overlay
next to the target’s body [19].

Both VR and AR are illustrated in Figure 2.2.

6

pokemongolive.com

2.2 Autostereoscopic displays
In contrast to the aforementioned stereoscopic methods, autostereoscopic displays do not
require the viewer to wear or use any additional gadgets, and directly separate images into
viewer’s eyes [30, p. 16].

Although different designs exist, in this thesis we were interested in single-screen displays
with a specific element, producing separated images depending on the angle of view.

The simplest design of such a display provides two views using a parallax barrier to
display two views by splitting the pixels of the screen into two bitmaps. Parallax barrier
is a physical mask, which obstructs pixels of the other view, so the actual view seen by a
viewer depends on the angle under the display is viewed. This is illustrated in Figure 2.3.
Such barrier has the disadvantage of decreasing image brightness and introducing diffraction
artifacts due to the wave properties of light.

In practice, different approaches are used in hardware to tackle these problems, such as
micro lenses, holographical elements, or micropolarizers [30].

Figure 2.3: Visualization of stereo vision using parallax barrier (left) and lenticular lens
(right). The portion of image, perceived at given position of viewer, depends on viewer’s
angle. Courtesy of C.M.G. Lee[18].

2.2.1 Single-screen autostereoscopic displays

Figure 2.4: Slanted
lens spread pixels of
horizontal views into
vertical direction of
LCD. Courtesy of [44].

Multiview displays are autostereoscopic displays, allowing multiple
viewers to obtain depth perception simultaneously. An illustration
of such a display is shown in Figure 2.5.

A common implementation of such a display provides multiple
views of the scene in a horizontal direction and a lenticular lens
as a form of parallax generator. Dividing the screen into inter-
laced horizontal views, however, decreases the spatial resolution in
the horizontal direction. To keep the same image aspect ratio, a
screen with narrower pixels would have to be produced to tackle
this problem. Instead, so-called slanted lenticular lens are used
to distribute contribution of horizontal views to the vertical axis.
The lens may are then placed in diagonal direction (slanted) as
shown in Figure 2.4.

7

Figure 2.5: A physical overview of patented holographic display [43]. Light coming from
light source (110) is reflected into different angles when passing to parallax generator (130).
Light source is typically a regular LCD with preprocessed input image in specialized so-
called native display format.

Figure 2.6: A picture of commercial 3D display by Looking Glass Inc. High-index prism
together with guiding cues are clearly visible in front of screen’s LCD. Courtesy of [29].

8

2.2.2 Holographic Display by Looking glass Inc.

This section is focused on a particular patented 3D display [43], produced by Looking
Glass Inc. company, but the principles discussed in this text apply to any device that
allows to show multiple views of scenes. An example of a display produced by the company
is shown in Figure 2.6.

A generic setup of the display is shown in Figure 2.5. In general, such an autostereoscopic
display may consist of the following parts:

1. A light source is typically a flat LCD, showing a preprocessed grid of the scene’s views
in so-called native display format.

2. Parallax generator allows the redirection of incoming light from the specific position
of underlying bitmap display to the viewer.

3. High-Index Prism is employed to enhance off-axis separation. Refraction of the prism
causes the virtual image to lie closer to viewers then the light source, enhancing the
illusion of volume.

2.2.3 Volumetric displays

Volumetric displays are autostereoscopic displays that attempts to provide 360 degree vision
of the projected 3D world. Typically, the illusion of 3D is achieved by projecting points
onto a projection plane using laser. As the plane moves, the brightness of the laser differs
as differentent points are projected, corresponding to the 3D point for a given position
of plane. Depedining on the design, the plane either rotates or moves vertically. These
principles are depicted in Figure 2.7.

Figure 2.7: Principles of volumetric display (left) - points are projected by optics on planar
screen which rotates with high rotates per minute, causing perception of static points.
Courtesy of [28]. On right, a display with vertically-moving projection plane and static
projector is used. Note visible layers-like artifact along statue’s vertical axis due to discrete
amount of unique points planes. Courtesy of [13].

Contemporary volumetric displays face challenges in introducing occlusions, thus pre-
venting users to see through surface of a solid 3D object, view-dependent light reflection

9

of the object’s surface, and processing of large volumetric data, which defines the resulting
3D model.

These displays are typically employed in medical imaging, mechanical computer-aided
design, and military visualization [28].

2.3 Conclusion of 3D displays
In conclusion, all types of presented 3D displays, except for volumetric displays, require
images of a scene at input and thus, all of these displays could be used with a system,
generating 2 and more views of 3D scenes.

Volumetric displays require a different volumetric representation of 3D scene. Whereas
a photography shows a projection of the 3D scene on a plane, the volumetric representation
defines presence of volume at different points of space. Typically, this leads to a 3D grid
discretisation, in which a finitely large subspace of space (called cell) is represented by a
single value.

Although various reconstruction methods for extracting 3D models exist and are later
mentioned in Section 2.5.2, converting the projection of 3D scenes to volumetric represen-
tation is in general not possible due to missing information about the space outside the
view frustum.

2.4 From light fields to Native images of 3D displays
Up to now, the hardware principles of 3D displays were discussed, giving an insight of
how different pictures of the scene are separated on a single planar display. This section
discusses the formation of these pictures.

2.4.1 Light fields

Definition 2.4.1. Light field is a function defining the incoming radiance to a given 3D
point from a given solid angle. Such a definition is equal to so-called 5D plenoptic function.
[34]

Figure 2.8: Spherical
light field camera rig.
Courtesy of [23].

Light fields provide a formal definition of what we see when we
take a picture using a camera at a given place in the real world.
Provided our camera was ideal (so-called pinhole camera), each
pixel would represent the incoming radiance, measured by the
camera’s sensor. Moreover, each of the camera’s pixel uniquely
determines angle under the light strikes the sensor. Therefore, a
single digital photo represents a discretized subset of the light field
at given position. Conversely, if a light field is known for a given
space, it is possible to reconstruct any view inside the space in the
form of photography.

Although a light field is in theory a continuous function, light
fields are typically recorded for discrete positions (so-called view-
points) and a discrete number of samples per angle, termed as
angular resolution.

One way of capturing the light field is using a so-called Light-
Field Camera, which contains a microlens layer at a certain posi-

10

tion in front of the sensor. The resulting image of scene then forms a grid, where each cell
corresponds to a different view position, and each subpixel within cell represents a different
angle of view. Such a camera, however, requires expensive sensors with high resolution to
obtain reasonable angular resolution per view. In addition, as the microlens are tightly
positioned in a plane, the camera offers short baselines between each view, thus suiting
more for macrophotography than for depicting the light field of distant and large objects.

In practice, dense camera arrays are used to capture the light field at different view
positions simultaneously. Depending on the application, so-called camera rigs are either
planar setups of multiple cameras, fixed at well-defined positions, or spherical structures.
Such spherical rigs resemble the setups of 360 angle degree cameras, but in comparison,
light field rigs are focused on recording from multiple positions. An example is shown in
Figure 2.8.

When acquired, the light field can be used for many applications such as synthesizing
new views of local scene views with six degrees of freedom (6DoF) using light field rendering
methods [23], to produce refocused images and videos with arbitrary focus, defined in
postproduction, or to reconstruct a 3D depth map from views [46].

Light slabs

In order to the simplify calculations, the light fields are simplified as 4D functions under
the assumption of light passing through an unobstructed space. This yields so-called light
slab, a representation of the 4D light field using points lying on two places - camera and
focal plane, respectively. An example of a light slab is shown in Figure 2.9.

u

v

s

t

L(u,v,s,t)

Camera plane

Focal plane

Field of view

(st)

(uv)

Figure 2.9: Light slab is defined by rays, intersecting two planes, thus yielding 4D function.
Left image shows top projection of construction of a slab using multiple views and sheared
projection. Courtesy of [34]

The image perceived by the viewer of an autostereoscopic display can also be expressed
with a light slabs representation. The viewer is moving his head along the camera plane
while watching LCD screen (the focal plane). Because the physical LCD has finite pixels,
the number of views which can be uniquely represented, is limited, too. Finite amount of
views thus results in a finite amount of discrete positions on the camera plane, under which
unique views are perceived at screen. Physical laws, guiding the refraction of light in the
lenticual lens, achieve interpolation of source image at positions in between.

Quilt

In practice, light slabs are stored in so-called quilt. Quilt is an image format, which defines
how the views of a scene are stored inside a single texture. Typically, a quilt is a grid of

11

views taken at known view positions [8]. An example of a quilt is shown in Figure 2.12.
The projection of each view is set so that each view has the same image plane. This is
achieved using the sheared projection. The view frustum of such projection is also depicted
in Figure 2.9.

Quilts can be produced by either resampling light fields, which were previously created
by light field cameras, or directly by synthesizing (rendering) 3D scenes. The process of
synthesis is shown in Figure 2.10.

Projection matrix

view 1

Projection matrix

view 2

Projection matrix

view n
Render 3D Scene

Compositing DisplayRender 3D Scene

Render 3D Scene

Figure 2.10: In order to display content at 3D display, scene has to rendered from multiple
views using different camera transformation matrix, and subsequently composed into output
image. Courtesy of [41].

Parameters for creating a Quilt

The quilt format determines how views are placed in memory, but doesnt give any recipe
for the precise settings of transformation of each view.

There are two resulting parameters that have to be defined for each camera view: camera
offset and shear ratio. The offset determines how far is the camera placed with respect to
the original camera. Shear ratio defines the shear coefficient of the projection matrix which
is used to shift the image plane for each camera. In practice, these parameters are only
needed for the maximal views, and the rest of the cameras can use parameters, obtained
using linear interpolation.

The transformation of each camera depends on the parameters, which stems from the
physical restrictions of the display. The most notable parameters are the (vertical) Field of
View, camera size, and offset angle.

Field of view defines the angle under which the viewer perceives both the top and bottom
sides of display. This depends on the distance of the viewer and the size of camera/display.
Offset angle determines the angle under which the leftmost camera views the center of
display with respect to axis of display. These parameters are shown in Figure 2.11.

2.4.2 Native image of Looking Glass’s LCD

As already mentioned in Section 2.2.2, a typical single-screen autostereoscopic display has
a regular flat LCD inside, controlled using common data interfaces such as VGA or HDMI.

12

(a)

(b)

(c)

Figure 2.11: Depictions of Looking Glass display setup. (a) shows that apart from tradi-
tional near and far clip planes, frustum also contains focal plain, for which zero parallax
applies. (b) illustrates maximum suggested angle of frustum cone, under which the user
should view the display (c) concludes the parameters. Courtesy of Looking Glass Factory[1]

However, because LGD contains an optical system on top of LCD, which selects which
pixels are visible for a given view using the lenticular lens, it is necessary to preprocess the
quilts into a spatially-interlaced multiple view format, in which the image is divided into
groups of pixels, corresponding to the respective lens. In general, displays differ in their
parameters, so such mapping depends on multiple display-depending parameters, including
pitch (angle of the slanted lenticular lens), scaling (physical size of lens compared to size of
pixel). An example of a remapped quilt is shown in Figure 2.12.

To convert a quilt to a native image, developers can either manually transform the
quilt, or a specialized Software Development Kit (SDK) may be provided by the display’s
producer. For instance, Looking Glass Inc. is providing HoloPlay Core SDK [3], which can
be integrated by developers and provides the process of identifying the display’s parameters,
and shaders from transforming quilt to native image.

2.5 Converting 3D applications to multiview displays
In general, there are two solutions for converting 3D applications to utilize real 3D displays:

• Reprogramming the Application
A typical 3D application is running inside so-called rendering engine, which provides
abstract structures and workflow for creators and artists to create virtual worlds with
limited knowledge of Computer Graphics programming.
Such engines usually decompose a 3D world into elements such as scenes and objects.
Scene is made of visual objects and the view is generated using a specialized type of
object that represents a camera.

13

Figure 2.12: An example of transforming views from game The Witcher into Looking Glass
display’s native LCD output. Note strong diagonal pattern on left, corresponding to slanted
lens. Courtesy of Graph@FIT VUT.

In such a case, it is sufficient to reprogram the part of the rendering engine, which
renders the scene to an image of scene to repeat this process multiple times with
either different cameras or while alternating camera transformations.
The former solution is typically employed when a broad family of applications is
powered by same rendering engine. For instance, many of games produced by Valve
are running on their Source Engine.

• Using additional Conversion Layer
Instead of modifying the application, a generic conversion layer could be placed be-
tween the application and the underlying hardware. The idea is based on the fact
that a typical 3D application is providing a local 3D surface of displayed objects to
the graphics card, and the final projection and rasterization of the model occurs in
hardware.
The conversion may happen either by re-estimating the surface of the projected scene
with notion of depth, or by translating the transformation commands so that the
scene would be drawn multiple times with different transformations on behalf of the
application.

2.5.1 Existing applications for converting legacy 3D applications

The following section discusses existing software related to enhancing legacy 3D applications
to support 3D displaying hardware such as VR head-sets.

ReShade’s Depth3D extension

ReShade is an open-source framework, allowing users to introduce post-processing related
shaders into an arbitrary application. As the application is renderer-agnostic, it introduces
its own shader language and transcompiles user’s programs into the native language of the
underlying renderer.

Primarily, the framework is used for enhancing the visual quality of legacy 3D appli-
cations by adding post-processing effects such as SSAO, bloom, etc. This is achieved by
appending additional draw stages at the end of the application’s original pipeline. These

14

stages can then access the application’s resources such as the backbuffer with the scene’s
color and depth information.

Figure 2.13: Binocular stereo view, produced using Depth3D and FallOut4. Presumably
original image of scene (left) and reconstructed view of right eye (right). Visible artifacts
(red box) are present, even for small camera’s disparities.

Thanks to its flexibility, several VR-allowing shaders have been written, notably so-
called Depth3D [22]. Such shaders usually make use of depth buffer and parallax mapping
techniques in the horizontal direction. This allows to obtain pseudo-3D reconstruction with
the possibility of filling holes. The aforementioned technique is illustrated in Figure 2.14.

As the implementation of the aforementioned shaders is usually available together with
source codes publicly, it should be possible to adapt such piece of software for the needs
of holographic display by adding extra views rendered the same way, but with different
disparities. On the other hand, VR rendering takes advantage of the short disparity between
human eyes.

ReShade is also used by another commercial product Trinus [11], which also employs
post-processing to convert the video to side-by-side VR output.

vorpX

VorpX [14] is a non-free software for enhancing 3D computer games with the ability to
produce output, suitable for VR.

As VorpX is commercially sold, limited information is revealed to users regarding the
technique of conversion. The official website mentions terms such as Geometry Stereo 3D
together with stating that the scene is rendered twice. Additionally, it also provides Depth
Buffer Stereo 3D, suggesting that a post-processing method is being used for reconstructing
geometry from depth buffer.

Due to missing source codes and limited functionality to two views, the outputs of this
software can not be used for holographic display.

As the official website provides a curated list of supported games [10], this suggests
that Geometry Stereo 3D mode does not work automatically, but instead requires manual
tweaking.

Conclusion of existing SW

Most of the existing applications employ reconstruction approaches to display two views
of the scene. Such an approach can satisfy needs of VR, but would cause massive vi-

15

(u,v)

N

T, B

h

(u’,v’)

constant height surface
e.g. rendered plane (quad)

smooth surface (height map)

Figure 2.14: Parallax mapping is rendering method, typically used for compute displace-
ment and normals of simplified surfaces, which were precomputed from smoother repre-
sentation of geometry. for a given height map, the intersection of camera ray and surface
is calculated. The variants of this method use different number of steps and approaches
to find the intersection, and e.g. steep paralax mapping use fixed count of iterations (e.g.
64) to sample the height map. In case of stereo conversion, this method is applied as a
post-processing pass, which takes scene’s depth buffer as a height map, and shifts the UV
coordinates of scene’s colour texture by tracing the height map. This approach is approx-
imative and leads to defects at edges of objects due to depth map discontinuity. Courtesy
of [39].

sual artifacts when pushing the disparity to longer distances, due to missing information.
Whereas typical human has 50-60mm long baseline [38] between eyes, users of autostereo-
scopic displays may watch the display from a distance comparable to LCD, resulting in a
large horizontal baseline.

In addition, the reconstruction method used, resembling steep parallax mapping, is
bounded by the number of iterations, and the distance of projection of a single point into
two cameras depends both on depth and disparity, resulting in an increased number of steps
required for the algorithm to find the correct position.

2.5.2 Alternative methods for conversion to autostereoscopic displays

In the following section, a closer look is taken at alternative methods, which are used in
similar fields, but may not be fit to converting applications as they are.

Stereo to Multiview Conversion

Alternatively, numerous methods exist in the field of conversion from stereo to multiview
conversion such as [31]. These methods estimate the depth map from two views using
disparity and subsequently reproject or warp the input images based on reconstructed 3D
surface.

The state-of-the-art method [31] in this field is able to do novel image interpolation,
extrapolation beyond original views, inter-view aliasing and other complex operations. It
achieves almost perfect results for stereomovies. The principle of the paper is explain using
Figure 2.15.

The only lack of this method is the solving of obstructions, e.g. if a closer object
obstructs object behind. In this situation, information about the space behind the obstacle

16

is missing, and none of the approximate methods will ever be able to correctly predict what
lays behind.

8 Views8 x Pyramid2 x PyramidPyramid Decomposition Wavelet Re-projection Pyramid Reconstruction

Disparity Estimation and Refinement
(ARM processors)

Stereoscopic Frame

Each Row

Frame Copy

Figure 2.15: A pipeline of the state-of-the-art stereo-to-multiview conversion method. For
two input images, the image is decomposed to wavelets, which are correlated, and this
way, disparity for each wavelet pair is obtain. By reprojecting shifted wavelets for each
pixel according to disparity, novel views are obtained. Use of wavelet suggests interpolation
based on local information of each pixel of input images. However, such information can
not be used for extrapolating heavily-obstructed scenes satisfyingly. Courtesy of [31].

Structure from Motion and SLAM

In addition to the solutions that synthesize new views from RGBD images as introduced
above, there is a category of methods dedicated to the conversion of series of single-view
images (such as photos).

Structure from motion (SfM) reconstructs 3D models by estimating the position of
each pixels in 3D space using epipolar geometry and (possible) known location of cameras
with respect to each other using epipolar geometry. Traditionally, variations of this method
are used for reconstruction of 3D models of the real world structures such as sculptures or
buildings to acquire digital models, for instance, for computer games [21]. The use of SfM
is illustrated in Figure 2.16.

A superset of this method is Simultaneous Localization and Mapping, which in
addition also determines position of an camera on-line. This is achieved by matching points
of subsequent views, and computing relative changes of the camera transformation or by
integrating camera movements from IMU.

Figure 2.16: Structure from Motion attempts to identify unique positions of views, and
then utilize this piece of information to reproject pixels, resulting into a point-cloud repre-
sentation of model. Courtesy of [21].

Implementations of both methods use commonly point clouds for representation of re-
constructed 3D points and various techniques for fusing reconstructed points of multiple

17

views. Resulting point clouds can than be converted to any suitable representation for
rendering.

The major disadvantages of these methods include performance requirements, making
them until recently the offline-based methods. In addition, the fusion of geometry works
under assumption of static geometry and consistency of topology. The fusion of models
breaks if the geometry of environment change over time. Multiple methods, attempting to
solve this, exists, but mostly focus on deformation in time rather than on complete change
of geometry in terms of entering or leaving objects.

In conclusion, both methods could be used to convert output of typical single-view 3D
applications into multi view format needed by autostereoscopic display by estimating 3D
scene in the form of a point cloud, tracking position of the camera in the reconstructed
scene, and reprojecting the point cloud for all views of quilt in each frame.

However, mixing the output of the methods with the application’s HUD would be com-
plex to handle in general. In addition, the reconstructed scene can only be rendered with the
full quality after it was reconstructed, thus after enough views of the scene were collected,
resulting to holes in the geometry during the initial phase of algorithm.

2.6 Conclusion
In this chapter, different technologies of 3D displaying were presented. Notably, Light-
field displays were introduced together with the correspoding native image format and the
process of forming 3D image for a 3D display.

Additionally, the existing methods for converting regular single view applications were
discussed with advantages and disadvantages.

As there is not any software for rendering ground truth output without artifacts, the
process of designing such software is discussed in the next chapters.

18

Chapter 3

Theory of application hooking

In the previous chapter, several existing software applications were introduced, which can
manipulate the execution flow of existing programs and thus achieve the desired outputs.
This chapter analysis how similar programs can be created and what are the options for
monitoring, altering or stopping the functions of existing programs.

3.1 Motivation for hooking
Usually, when trying to adapt an existing software solution to different conditions, source
code changes are required. However, lots of legacy applications either hide their source
code due to licensing and monetization, or the code has already been lost since the release.
In addition, introducing new features at the source code level into most of the software can
not be generalized and would require manual changes.

Luckily, most of the software is not reinventing the wheel and instead, they rely on
existing components. For instance, in terms of computer graphics, most of the graphical
applications use standardized libraries to form the image of a desired scene.

Thus, instead of changing the source code of the application, we could intercept commu-
nication between the application and the underlying libraries. Such a process is discussed
in this chapter.

3.2 Definition of hooking
In the literature, hooking is defined as ”the interception of specific functions or system calls
to monitor and/or alter the execution of the specified call.“ [36]

As an example, consider Figure 3.1 which depicts a scenario in which an application
uses one of functions of Application Programming Interface (API), provided by the example
library. Originally, such an API call (named handler) would be served by the library and
the process control would immediately return to the application, called caller in terms of
hooking.

Instead, the call to API’s function (target) is redirected to another handler called detour,
which can in turn change the parameters, change its own internal state, discard the API
call or anything else.

In software engineering, hooking techniques are commonly used by software that extend
other software capabilities, such as various visual overlays (for instance, Steam Overlay [9]),
but also by malware and malicious codes such as keyloggers [45], which try to take control

19

App Library

request

Process request,
prepare response

response

App Hook Library

request

preprocessing

request

response

post-processing

response

Figure 3.1: A comparison of two scenarios. In the first one, API call is directly sent to
library and so is the response. The second scenario shows how the propagation of message
is changed when the API call is hooked.

of hosting machine by replacing system’s functionality. On the other hand, hooking can
also be used in white-hat applications such as antimalvers and antispies, and in system
tracing utilities such as strace [27] or valgrind.

The following section will focus only on the two most commonly used hooking ap-
proaches - static and dynamic hooking.

3.2.1 Static hooking - preloading a shared library

Static hooking alters the flow of execution during loading of the application, leading to
a permanent change of flow during the whole run of the program, and is almost solely
achieved by exploiting the dynamic loader.

Dynamic loader [17] is a part of the operating system, whose purpose is to allow loading
parts of code on demand. Instead of putting implementations of all functions inside an
executable, applications can be linked to dynamic libraries, which promise that will provide
the functionality referred by the application, in terms of functions. When application is
compiled, the required functions are declared to be imported and linkage is declared to be
resolved during load-time.

A shared library is a collection of hidden and visible methods. Visible methods are said
to be exported. When dynamic loader loads a shared library into process, the application
can query addresses of exported functions and use such addresses to call the functions. In
case of Linux, querying is achieved by using dlopen/dlsym.

During the load-time of executables, the system dynamic loader tries to link the refer-
ences to unknown (external) functions, required by executable. This is achieved by sequen-
tial loading of the shared libraries, specified in the executable’s file, and looking for missing
symbols.

Static hooking relies on the specific behavior of the dynamic loader which can be enforced
by specifying an environmental variable LD_PRELOAD. When this variable is set, the dynamic
loader loads at first the libraries specified in the variable, and then the rest of dependencies
as usual [17]. Hooking is achieved by defining an exported function in preloaded library
with the same name as the target function.

20

As an example, suppose that we would like to trace the usage of malloc in application.
We could create a library that would export its own malloc handler. By pre-loading such
library, application’s calls to malloc would be trapped by the handler.

In addition to hooking, it is also desired to be able to delegate the call to the original
function as well. This can be achieved by using a special flag RTLD_NEXT when calling
dlsym, which forces the loader to search for the symbol in the modules, loaded after the
caller’s module [16].

Symbol look-up chaining

This results in a possibility of chaining symbol look-up. Chaining is a method in which
multiple shared libraries are preloaded, all declaring the same export function, when each
of the function definition delagates the call to the library, preloaded after the current library.

For instance, consider again an application, which use malloc, the allocation tracer
utility and a simple utility that wraps the allocation by allocating a huge buffer using
original malloc, and assigns a subset of this buffer to calls. Each of two utilities thus
defines and exports their own malloc, and uses chaining to find the next handler. When
the application is started with both libraries defined in LD_PRELOAD, the resulting system
depends on the order of library names in the variable. In first scenario, the tracer will catch
the original calls to malloc. This is illustrated in Figure 3.2. In the second one, the tracer
only sees the optimized memory-pool allocations of huge memory chunks, produced by the
utility.

App malloc

libusage

malloc

libpool

malloc

libc

Figure 3.2: An example of Symbol look-up chaining. When the process is started with
multiple dynamic libraries, which export the same method, the result of symbol resolution
depends on the order of library listing. For instance, consider two libraries, both exporting
malloc. The original application will receive the address, defined by the one, which comes
first the list. The first library could be a wrapper (e.g. profiler) and it would also want to
use the original malloc. In case of two libraries, call to dlsym with RTDL_NEXT flag will
chain the address of the next library. Finally, the chain ends with the address of the last
(and thus original) library, which is libc.

3.2.2 Dynamic hooking - Runtime code patching

Contrary to static hooking, dynamic hooking occurs during the program’s run-time and can
be used generally to hook any program’s functions, not just the exported ones.

21

The generic idea is that the beginning of the target function, so-called prolog, can be
replaced (patched) with instructions that call the hook’s callback handler. However, as the
original function is now permanently redirected to the callback, the handler can not simply
call it in order to delegate the default call as it would lead to infinite recursion.

This can be solved by temporarily restoring the original instructions when calling orig-
inal function from handler. On the other hand, this solution will cause problems if the
hooked method is called by multiple threads simultaneously as code patching is not an
atomic operation. Even if the code was replaced atomically, there isn’t any mechanism to
prevent the other threads ending up in the original function instead of being handled by
the hook’s handler.

glClear:
jump to trampoline
copy X to Y
call Y
copy resul to B
return
...

glClear trampoline:
call glClear
jump to end

libGL.so hook.so
Figure 3.3: Runtime code patching works by replacing first instructions of original function
with jump to specialized area (so-called trampoline), that redirects call to hooker-specified
handler.

Alternatively, another approach is to create a new code area called trampoline, which
contains the original instructions that were previously replaced by the jumping sequence [24].
The hook can then call the original function by calling the address of trampoline, which
ultimately jumps into the original function’s code area right after the patched sequence.

Compared to static hooking, dynamic hooking is more complex to handle. In order to
use it, the following problems need to be tackled:

• platform-dependency
The instruction set used by CPU differs per CPU’s architecture, requiring a different
patch to be generated for each of platform. This problem can be eased by using
specialized libraries which provide hook utilities for given instruction set such as
subhook1.

• memory protection
Most of the operating systems protect the program’s code areas, making them read-
only. Luckily, the most common platforms such as x86 allow changing of user-space
protection without necessity of elevated administrator rights.
However, as code patching is commonly used by malware, operating systems may
detect and prevent such behavior. For instance, Linux kernels are commonly deployed

1https://github.com/Zeex/subhook

22

with an extension called SELinux [42], which detects program’s execution on heap,
which happens when trampoline is called. The only feasible option to prevent such
interference is allow such policy by turning on allow_execheap flag.

• lazy evaluation of dynamic loader
Typically, dynamic loaders load the imported functions in lazy-evaluation manner,
termed as lazy binding [20]. After load-time, the address of imported function points
to a sequence of instructions, which triggers import table look-up when called for the
first time, and only then the final address of function is stored.
Hooking such a lazy sequence prior to the first call would result into overwriting the
look-up mechanism and ultimately leading to crash.

3.3 Hooking OpenGL’s API
After giving an introduction to different approaches for hooking, this section gives more
specific information on OpenGL API and its implementation.

3.3.1 Overview of OpenGL’s API

The implementation of OpenGL is GPU vendor-specific and consists of a set of shared
libraries. In the following list, the most relevant libraries are mentioned:

• libGL.so - contains glABC functions

• libGLX.so - contains glXABC functions - frame swapping, keyboard input messages

The library libGL contains all regular functions with prefix gl. As OpenGL does
not manage its own context, functions for swapping front/back buffers are not available
in libGL. Context-management is platform-specific. For instance, on Linux distributions,
OpenGL is usually available as an extension of X11 graphical server called GLX, which has
its own functions exported in libGLX.so.

Acquiring the API method address

OpenGL API is version-dependent in such a way that newer versions are supersets of
older ones. Due to that, applications are never statically linked to libGL, but instead the
availability of API functions is checked in run-time.

This is achieved either by using platform-dependent method such as dlsym (Unix)
or getProcAddress (Windows). By calling such a function, the caller retrieves either
the user-space address of function, or a null pointer. In addition, a special function
glXGetProcAddress is provided to allow getting methods of both libraries [4].

In practice, the applications are advised to use function loader libraries such as GLEW,
GLAD or libepoxy. However, these libraries use the aforementioned functions internally.

Generic algorithm of using OpenGL API in applications

Concluding from the facts given above, a typical OpenGL uses the following algorithm:

1. The application’s execute file is loaded into memory.

23

2. Dynamic loader makes OpenGL’s libGL and libGLX available.

3. Application use dlopen and dlsym to find glXGetProcAddress.

4. Application calls glXGetProcAddress with the names of all functions that is inter-
ested in to obtain the addresses.

5. Application calls OpenGL API method by calling the obtained address.

3.3.2 Attacking the loading chain

As applications use dynamic loader to load OpenGL functionality from libGL, there are
a few different approaches how to take control of API.

Replacing libgl with proxy shared library

This approach follows the idea of defining each exported symbol in a proxy library that was
exported in the original libGL, and then, when such a handler is called, use internally the
mechanism of the dynamic loader to load the original library, and reroute the call to the
original function. An example is illustrated in Figure 3.4.

The major disadvantage lies in the necessity to define every function of OpenGL API
in order to make sure that any application will find all of its required API methods. As
OpenGL API contains circa 3000 distinctive API methods 2, such a proxy library can take
up several megabytes, causing slower load-time, and possibly performance decrease due to
another level of indirection.

This method may be commonly employed by API tracers such as apitrace3, which must
detect all calls to OpenGL function in either case.

App b/../libGLa/../libGL.so
glBegin()
glDrawArrays()
glClear()

glBegin()
glDrawArrays()
glClear()

Wrapper OpenGL Implementation

Loaded as executable's depedency Loaded internally via dlload() and exact path

Figure 3.4: Libraries can be wrapped by implementing new library, which defines the same
symbol exports and use dynamic loader to delegate calls to the original implementation
internally. The new library is then placed in search path, defined by LD_LIBRARY_PATH,
and internally loads and use the original library to delegate default calls.

Replacing glXGetProcAddress with the proxy method

This method requires defining the symbol glXGetProcAddress in hook’s library and preload-
ing the library.

As many applications use glXGetProcAddress to query available addresses, the function
could be replaced with a proxy handler that would redirect the functions that we are
interested in into our code.

2Roughly estimated using gl.h and glext.h
3https://github.com/apitrace/apitrace

24

Contrary to the previous method, it is possible to redirect only the necessary meth-
ods needed by hook, instead of redirecting and handling complete API.

The major drawback of this approach is that the function may not be statically linked,
and an application can use a combination of dlopen/dlsym instead, which bypasses our
handler.

Replacing dlopen/dlsym with the proxy methods

The most generic approach is to take control over the dynamic loader. By hooking dlopen/dl-
sym, it is possible to redirect the address of glXGetProcAddress to custom handler, which
returns the address of callbacks instead of the real OpenGL API mehods. In addition,
many other useful functions from both libGL or libGLX can be simply hooked, which may
be queried directly using platform-specific loader.

This method, however, does not handle statically linked symbols (symbols, which are
declared to be unkwnown at the time of linkage), and may thus be combined with exporting
functions in the hook’s shared library.

3.4 Conclusion
This chapter has described two most common approaches to hooking existing applications
without knowledge of their source code as well as the details of OpenGL hooking.

The approaches differs in flexibility (static vs dynamic), amount of code needed for
minimal product (proxy library vs library injection).

In practice, the method which replaces dlopen/dlsym is prefered as it allows to hook or
redefine functions of multiple libraries that is not possible when replacing a library file.

25

Chapter 4

Designing the conversion layer

This chapter analyses the parts of OpenGL API and pipeline, which are used for rendering,
and suggestions are given for altering the existing pipeline to such one, which preserves the
intention of the creators of the original application, yet provides a multiview output.

4.1 Ultimate goal of conversion
The ultimate goal of the convertor is to provide a generic conversion of any OpenGL 3D
application. In reality, the state space of all possible OpenGL applications is large, and
thus, creating an application, which would correctly handle all possible combinations is
hard, if not impossible.

Instead, the development of the layer was planned in an incremental fashion. Due
to historical reasons, OpenGL evolved through multiple stages of API calls, each of them
extending the previous ones. Therefore, by incrementally supporting higher stages of API,
a larger subset of applications will be supported.

In addition to API evolution, applications themselves may use different displaying meth-
ods, which need to be correctly handled by the convertor.

This chapter therefore summarizes the different approaches targeted by the resulting
application.

The ultimate goal of the convertor should be to display the output of an underlying
single-view application in multiview fashion. The role and position of such a convertor is
illustrated in Figure 4.1.

Figure 4.1: In the picture, the role of the conversion layer can be perceived. It is a wrapper
over exposed OpenGL API, which internally translates API calls to different API calls.

26

From the visual point of view, a generic usage of OpenGL for rendering can be decom-
posed into frames, and each frame is made of draw calls. Each draw call can draw to a
different output buffer, called Frame Buffer Object (FBO). The default FBO is back-buffer.

The fundamental idea of this thesis is that a description of the scene to be rendered
is provided by an application to a graphics card in such a form which preserves the depth
of the scene.

For example, when the application dispatches a draw call of a model of bunny, the
model is typically present in a form of 3D mesh at GPU side, and only then, the GPU
pipeline transforms the 3D model to a 2D projection. Thus, by hooking and altering the
transformation provided by the application in draw calls, the models can be rendered from
slightly different views, corresponding to the views of quilt.

Duplicating the draw calls

In order to duplicate views, draw calls have to be recorded and dispatched repeatedly with
corresponding settings for each virtual view. Draw calls in a single frame could be recorded
all at once, and subsequently dispatched multiple times.

However, such an approach would require a complex state-command tracking of OpenGL
API, and could potentially break whenever the application changes OpenGL’s object life-
time during the frame. For instance, when unloading a part of 3D scene, the application
could delete shaders in the middle of frame.

In addition, some draw calls are products of parameters, calculated in real-time, and
such recording would duplicate potentially hardware-demanding calculations (typically im-
plemented via Compute Shaders).

Instead, the convertor intercepts and duplicates each draw call separately, wrapping
the resulting calls with the required state change calls. This introduces additional overhead,
but simplifies the implementation. The duplication of draw calls is illustrated in Figure 4.2.

Draw call

Backbuffer

Draw call

Draw call Draw call

Draw call Draw call

Frame start

Conversion to

native format

Layer 1

Layer N

Figure 4.2: Generic approach to extending: during each frame, application’s draw calls are
intercepted, and internally duplicated for each corresponding virtual view. In this picture,
we can see two draw calls being dispatched three times to render 3 views.

4.2 Modifying fixed-pipeline rendering
So-called fixed-pipeline rendering is the first and the most elementary part of OpenGL
pipeline. Although most of the provided API calls by this stage are being already either
obsolete or deprecated due to a change of rendering paradigm, the stage is widely used by
legacy applications.

In general, fixed-pipeline applications rely on setting the desired state of the state
machine prior to each draw call. This includes material parameters, but more importantly,
the transformation of a mesh onto screen.

27

The transformation consists of separately stored matrices, which are then internally
multiplied during the draw call, resulting in a typical ModelViewProjection matrix. In
addition, each part of transformation has its own matrix stack, allowing applications to
work more comfortably with object hierarchies. By pushing a matrix to the stack, the
current matrix at the top is multiplied with the pushed one, which is useful for applications
which store the scene in so-called scene graph, in which objects can be relative to the other
ones.

The type of matrix being manipulated is then referred as mode. For instance, a pro-
jection mode manipulates the projection matrix stack, and model-view mode manipulates
model-view matrix.

Technically, applications set the state by choosing the matrix mode via glMatrixMode
call, and then either by overwriting or pushing matrix at the top of the stack using
glLoadMatrix and glPushMatrix, respectively. Such state change is then done each time
a new mesh is drawn (model-view mode) or each time a camera is switched (the projection
mode). If the scene only contains a single camera view and camera parameters such as
field of view does not change over time, projection matrix may be set only once per whole
application life time.

4.2.1 Inserting projection into transformation stack

As already mentioned, the transformation matrix, used to process vertices of geometry, is
made of submatrices as noted in Equation 4.1.

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛×𝑀𝑜𝑑𝑒𝑙𝑉 𝑖𝑒𝑤

𝑉𝑐𝑎𝑚𝑒𝑟𝑎𝑠𝑝𝑎𝑐𝑒 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛× 𝑉𝑚𝑒𝑠ℎ

(4.1)

As glMultiplyMatrix multiplies the matrix at the top of the stack from the left, the
typical application starts the frame with world-to-cameraspace transformation at the top
of model-view stack. The projection matrix stack is then solely used for projection.

Provided that the application is following the pipeline mentioned above, the projection
stack always contains a matrix in the form of perspective or orthogonal projection. As we
expect a single-view application at the input of the convertor, we can safely assume that
the projection matrix is also symmetrical, which greatly simplifies the form of matrix.

In order to draw the mesh from the perspective of the other view, two steps are necessary:
horizontal translation and optical axis shift (shear).

The translation is implemented by inserting a translation matrix with a translation along
X between the projection and model-view matrices. In terms of fixed-pipeline, this is equal
to multiplying the model-view matrix from right. However, as multiplication is limited to

28

MVP =

x xxMVP =
Perspective
projection

Inverse camera
transformation

Car Wheel Rendering of rim, relative to the wheelRimx

x xxPerspective
projection

Inverse camera
transformation

Car Wheel Rendering a wheel, relative to car

Original application

Converted

MVP =

x xxMVP =
Perspective
projection

Inverse camera
transformation

Car Wheel Rendering of rim, relative to the wheelRimxx

x

Projection stack Transformation stack

x xxPerspective
projection

Inverse camera
transformation

Car Wheel Rendering a wheel, relative to carTranslate
camera i

Translate
camera i

Projection stack Transformation stack

Figure 4.3: In fixed-pipeline OpenGL, applications set the transformation matrix of a draw
call using built-in stacks: the transformation (model-view) stack and the projection stack.
In order to convert the draw call, a translation matrix is needed to be inserted between the
projection and camera translation to translate resulting vertex from the original camera to
one of quilt’s cameras. As supported operations only provide pushing to the stack from
right, the projection matrix can be multiplied with the translation by pusing the translation
matrix to the projection stack.

multiplying from the left, the projection matrix is multiplied from the left instead, resulting
in the same expression. This is illustrated in Figure 4.3.

Algorithm 1: Intercepted fixed-pipeline draw call
Result: Draw the mesh into multiple views of quilt while implementing

intercepted draw call’s body
oldProj := get current projection at the top of stack ;
glMatrixMode(GL_PROJECTION);
for view in quilt do

glViewport(view’s rectangle);
newProj := oldProj;
newProj[2][0] := shear;
Xtranslation:= calculate translation along X matrix for a given view;
newProj := newProj * Xtranslation;
glLoadMatrix(newProj);
drawCall();

end
glLoadMatrix(oldProj);
glViewport(original);
The shift of the optical center is achieved by modifying the projection matrix. In case of

perspective projection, the matrix is altered to shift the optical axis of the axis of the original
camera. The shift is calculated using Equation 4.2. Off-axis distance determines how far is
the camera offset from the original view. Shift multiplier and centerOfField are user-defined
variables, determining how far on X axis the camera should be offset and how far is the
center point of all views in front of the original camera, respectively. The position of center
point is relative to near-plane (𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓𝐹𝑖𝑒𝑙𝑑 = 0) and far-plane (𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓𝐹𝑖𝑒𝑙𝑑 = 1)
distance.

29

𝑇𝑜𝑡𝑎𝑙𝑆ℎ𝑖𝑓𝑡 = 𝑜𝑓𝑓𝐴𝑥𝑖𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 * 𝑠ℎ𝑖𝑓𝑡𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 * (1.0− 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓𝐹𝑖𝑒𝑙𝑑) (4.2)

In the case of orthogonal projection, the shift is not set. Technically, the orthogonal
projection matrices can be distinguished from each other by looking at the diagonal of the
matrix.

Final approach to duplicate fixed-pipeline draw calls

In conclusion, the convertor can investigate the state of OpenGL’s matrix stack either by
tracking glMatrixMode, glLoadMatrix/glMultiplyMatrix, or by querying the value of
the current matrix on the top of each corresponding stack.

Subsequently, on each draw call, the draw call is replicated by changing the transforma-
tion for each corresponding virtual view by forming a new projection matrix, which results
from multiplying the original projection from the left by translation, and the adding shift
term to the original projection. This process is expressed by Algorithm 1.

When rendering the view, glViewport is used to split the viewport into a grid of views,
corresponding to quilt. However, in the final design of convertor, this is not used, and the
rendering of fixed-pipeline is unified with programmable pipeline by rendering to Layered
Frame Buffer Objects, which will be defined later in Section 4.4.

4.2.2 Replicating geometry using glCallList

As already mentioned, a typical fixed-pipeline application uploads the geometry by succes-
sive sequential API calls, vertex by vertex. In theory, in order to replicate such mesh, one
would have to record the sequence of geometry uploads, and replicate the sequence each
time a different view is rendered.

Fortunately, such mechanism is already implemented in OpenGL under the name
glCallList. A call list (also referred as display list) [12, p. 307] is a recorded sequence
of OpenGL API calls, supporting a subset of OpenGL API, mostly including geometry,
transformation and shading API calls.

The mechanism is used by the convertor for each mesh. When a glBegin is called
by the application, the convertor inserts call to glNewList, which forces OpenGL to start
recording. All successive calls are then recorded internally by OpenGL. The convertor waits
until glEnd is called, and inserts glEndList, which finishes the recording of list.

Subsequently, the convertor can use the list to duplicate draw call. In general, a call
list can contain multiple draw calls and transformation changes. However, as the convertor
creates a list for each pair of glBegin/glEnd, the transformation is not changed in-between,
and thus, the convertor can change the transformation prior to applying a call list without
the risk of interfering with recorded API calls. This is illustrated in Figure 4.4.

In conclusion, the convertor records a list for each draw pair, which is not propagated
to underlying OpenGL driver, and subsequently, dispatches multiple list calls, each time
with a different transformation and different viewport.

4.3 Inspecting programmable pipeline
The second broad subset of OpenGL applications are applications, that use so-called pro-
grammable pipeline. Such a pipeline resembles the fixed one with usage of fixed-functionality

30

glBegin

B E

glVertex/glColor

glEnd

DrawCall 1

glBegin

B E

glVertex/glColor

glEnd

DrawCall 2

glBegin

B E

glVertex/glColor

glEnd

DrawCall 3

B E

Record draw call 1

(output buffer not affected)

Transform

Object 2

Transform

Object 1
Transform

Object 3

Transform

Object 1
glNewList glEndLlist

Object 1

view 1
glCallList

OpenGL

API Calls:

Object 1

view N
glCallList…

Draw to view 1 Draw to viewN

Rendering draw call 1 into multiple frames of quit

OpenGL

API Calls:

Injected application

Original application

Figure 4.4: Illustration of recording and dispatching a call list. Each draw call is detected
and wrapped into glNewList/glEndlist pair, recording a new call list. Subsequently, call
list with draw call is dispatched for each virtual view with set transformation.

elements such as rasterizer or texture sampler to obtain and process data. However, certain
parts of pipeline, which were previously fixed-functioned and only controlled by parameter-
ization, are now programmable using user-provided programs, called shaders. The process
of transition to the programmable pipeline started with the introduction of Vertex and
Fragment shaders.

Vertex shader is a program, which receives vertex data as it is stored into a buffer by
the application. The primary function of the shader is to compute the resulting coordinates
of a vertex in clip-space coordinates. In addition, VS can optionally precompute and pass
information such as normals, texturing metadata etc. into further parts of pipeline.

Fragment shader operates over the cells of virtual grid, spreading the screen - fragments.
By collecting and joining fragments, resulting pixel color is determined. Fragment shader
thus receives the optional parts of stages before and computes the resulting RGBA color.
This allows programmers to implement various effects and drawing methods independently
from the supported hardware. In the simplest scenario, the resulting color is stored in
attached FBO (commonly back-buffer). In practice, FS may write into several output
buffers using layered rendering, which is discussed later in this chapter.

With FS and VS available, programmers define their own transformations and algo-
rithms using a specialized shader programming language GLSL, which is a procedural, C-like
programming language with built-in types and functions for vector mathematics, texture
sampling etc.

Shaders are compiled independently, but they must be linked together to form a pipeline
afterwards. Such a collection of linked shaders form so-called Program. A typical workflow
for programmers is to create a single program for each material/rendering style.

31

Shaders can communicate using In/Out variables, which provide a way to send data
down the pipeline to the next stage. In order to parameterize shaders, Shader Uniforms
are available as a form of global variables to pass data from CPU to shader program.

Goal of programmable pipeline conversion

In general, to convert a draw call which utilizes programmable pipeline the part of pipeline,
which computes resulting position of vertices in the original’s camera clip space, must be
encapsuled and extended so that the draw call would transform the vertex to clip space of
chosen camera of quilt. This is illustrated in Figure 4.5.

MVP
uniform

Output vertex in
view i clip space

Input Vertex
Vertex Shader

(application-specific)
Fragment Shader

(application-specific)
Rasterizer

Original shader program

model-space clip-space
Primitive assembly

primitive fragment

Input Vertex
Vertex Shader

(application-specific)
Fragment Shader

(application-specific)
Rasterizer

Converted shader program

model-space clip-space
Primitive assembly

primitive fragment

MVP
uniform

relative transformation of camera i
uniform

quilt's parameters
uniform

Figure 4.5: In programmable OpenGL rendering, the application affects the transformation
pipeline (simplified for the purpose of explanation) by providing a program for transform-
ing vertices (Vertex Shader) and for computing the resulting color of pixel (Fragment
Shader). The idea of conversion is thus to encapsulate the vertex shader with additional
steps to transform the rendered geometry to specific quilt’s view 𝑖 while keeping the rest of
pipeline intact.

4.3.1 Modifying program creation process

Shaders and programs are treated as OpenGL objects. Both of them have to be created
prior to using them. A typical generate/delete paradigm is used for them.

As already mentioned, applications compile each shader independently, and then link
shaders. These actions are done by glCompileShader and glLinkProgram, respectively.
However, before the program can be linked, it has to know which shaders are used for
its creation. This is achieved by attaching a compiled shader to the program by calling
glAttachShader.

In general, there are two ways how to change the program. The program can be changed
during creation by catching call to glLinkProgram, reattaching custom shaders and linked.

Alternatively, according to the manual pages, programs are allowed to be relinked.
However, in general this brings several drawbacks such as:

• All values of uniforms are lost and must be reuploaded
It is possible to query all existing uniforms for a given program using OpenGL API,
and backup uniform values.

32

• Positions/indices may change for uniforms
If the application caches uniform locations, it is impossible to overcome this problem.
In addition, uniform block bindings must be altered to reflect new positions.

4.3.2 Introspecting Vertex Shaders

In order to draw multiple views, it is necessary to be able to alter VS so that the transforma-
tion of vertices is changed for the corresponding view. As mentioned above, VS computes
a position in clip-space from an input vertex. Whereas while using fixed-pipeline program-
mers have to follow a predefined structure of using specific matrices for transformation,
OpenGL’s standard itself does not define how the transformation should be arranged in
shaders. Applications are free to set up an arbitrary sequence of statements, which fulfill
their needs.

Luckily, most of the applications use the following variations of vertex shader:

• identity function
Vertex shader simply copies the input vertex data to output. This kind of behavior
is used, for instance, for rendering full screen quad geometry for post-processing, or
for rendering elements of GUI, which tends to have their position pre-calculated at
CPU-side.

• constant propagation
Vertex shader sets the output position to a hard-coded vector, stored inside the
shader’s code. This is an extreme case, for instance used to generate a full-screen
quad.

• matrix multiplication
The most common shader type, which follows Model-View-Projection transformation.
Typically, it gets either MVP or pair ModelView/Projetion matrices using uniforms,
and then simply multiple input vertex position with these matrices.

• Far plane rendering
A far-plane rendering is a special case of previous methods, in which the resulting
output vector has 𝑤 component set to 1, effectively placing the geometry at the
position of far plane. In addition, this maybe accompanied with model-view matrix
only using rotation and scale to simulate directional rendering.
This is commonly used when rendering skybox.

By determining which variant the vertex shader implements, it is possible to insert cus-
tom code so that the original function of the shader is preserved, but additional parameters
can be provided to render a different view.

Algorithm of shader analysis

According to the specification, a valid shader always has to provide main function, which
is called to by the graphic card to trigger the transformation. In theory, for any type of
shader, it is possible to parse its code into an Abstract Syntax Tree, a graph representation
of program.

By tracing the subtrees of such AST, it is possible to find all assignment statements
which assign to built-in variable gl_Position. Next, by tracing subtrees of such assignment

33

node, it is possible to determine which variables or uniforms are used to compute the result
and thus classify the type of transformation according to the cases defined above.

In the case of transformation matrix, GLSL typically computes resulting gl_Position
of vector by multiplying a column vector from right. Therefore, by tracing the multiplication
expression and searching for the left-most matrix, the name of transformation matrix can
be extracted. Depending on the type and implementation of a shader, this could be either
a projection, a view-projection or a MVP matrix.

4.3.3 Detecting the transformation uniform in a shader

Once the transformation matrix is identified in the shader program, it is necessary to track
its up-to-date position during the run-time of the application.

This can be easily accomplished by hooking and tracing glUniform4v function. Next,
when the hooked function is called, the used uniform location is searched in convertor’s
internal shader’s metadata and compared against stored uniform name and its location.
The value is then marked as transformation matrix if both locations are equal. After ac-
quiring the transformation matrix, the parameters of projection are estimated as described
in Section 4.3.4. An example of Vertex Shader is shown in Listing 4.1.

1 #version 330 core
2 layout (location = 0) in vec3 aPos;
3 layout (location = 1) in vec3 aNormal;
4 layout (location = 2) in vec2 aTexCoords;
5

6 out vec2 TexCoords;
7

8 uniform mat4 model;
9 uniform mat4 view;

10 uniform mat4 projection;
11

12 void main()
13 {
14 TexCoords = aTexCoords;
15 gl_Position = projection * view * model * vec4(aPos, 1.0);
16 }

Listing 4.1: An example of simple vertex shader which computes output vertex position
directly by multiplying the matrices inside the code. By tokenizing the assignment
statement and taking the first identifier from the left, the resulting matrix uniform name
can be detected.

Tracking of Uniform Buffer Objects

More complex shader programs may store matrices in Uniform Buffer Object (UBO).
These are continuous memory buffers with a structure defined similarly as a struct in C
by a programmer. UBOs are typically used by applications due to ability to share the
same data by attaching a single UBO to multiple shader programs. This is illustrated in
Figure 4.6. Thanks to this ability, the number of uniform passing API calls can be reduced,
and thus, the application’s performance can be improved.

34

In case of conversion, the usage of UBO adds additional complexity to tracking. The
tracking process boils down into additional steps:

• Detection of Uniform Block in shader
While injecting the shaders, when a matrix uniform is found, it is necessary to iden-
tify the instance name of uniform block, which contains the transformation matrix
uniform. This is done by parsing GLSL code of the shader.

• Getting slot location of Uniform Block
Each Uniform Block has a unique location with respect to the shader program. This
location is needed by convertor in order to match precise UBO with the slot that is
being attached. The location can be queried using glGetUniformBlockIndex.

• Locating Uniform Binding Point
Each uniform block has a uniform binding: a special binding slot that unifies uni-
form blocks from various programs into a single identifier. The uniform binding
ID for given uniform block location of given shader can be detected by sniffing
glUniformBlockBinding calls.

• Locating attached UBO’s
Each uniform binding has at most one UBO binded from which the data are taken
during the draw call. For a given uniform binding, the UBO identifier can be detected
by tracking glBindBufferBase or glBindBufferRange.

• Tracking data changes of UBO
Finally, it is necessary to detect when the new data are uploaded to UBO to sniff the
current transformation matrix.
This is done by sniffing glBufferData/glBufferSubData. However, it is necessary to
determine the position of matrix within the buffer at first. For this purpose, OpenGL
provides glGetActiveUniformsiv, which when used with GL_UNIFORM_OFFSET re-
turns the address of uniform within the block.

4.3.4 Estimating projection matrix from transformation

In general, there is not any compulsory format for the multiplication of vertex position in
the process of transformation. Applications may use any variation of joined or isolated
ModelViewProjection matrices. In the worst case, a single matrix, so-called MVP matrix, is
provided to shader using uniforms.

Although a decomposition of a matrix into arbitrary product of matrices is not possible
in general, this section tries to define cases for the transformation matrix when this is
possible.

Definition 4.3.1. Let symmetric projection matrix be matrix

⎛⎜⎜⎝
𝐹𝑥 0 0 0
0 𝐹𝑦 0 0
0 0 𝐴 𝐵
0 0 −1 0

⎞⎟⎟⎠
where

𝐴 =
−(𝑓 + 𝑛)

𝑓 − 𝑛

𝐵 =
−2(𝑓𝑛)

𝑓 − 𝑛

(4.3)

35

Uniform Block "Matrices"

Uniform Block "Shading"

0101010101
0101010100
0101010100
1010101010

Program (GLSL) Uniform Block
Binding Point

Uniform Buffer Object

index i

0101010101
0101010100
0101010100
1010101010

index+1

Uniform Block "Matrices"

Uniform Block "Shading"

Data uploaded
using glBufferData

By default, all blocks are bounded to index 0.uniform Matrices {
 mat4 model;
 mat4 VP;
};

binded to i+1

binded to i

Figure 4.6: Relations between Uniform Block (defined in a shader), Uniform Block Binding
points and Uniform Block Objects (UBO). A single UBO can be accessed by multiple
shaders under the same name when all uniform blocks over the shaders use the matching
uniform block binding point. Thus, to sniff the relations and detect which UBO actually
holds data for given uniform block, this levels of indirection must be sniffed from API calls.

Theorem 4.3.2. Let 𝑃 be a symmetric perspective projection matrix, 𝑀𝑉 be a model-view
transformation, which is only composed by translation, rotation and scalar scale, and
𝑀𝑉 𝑃 = 𝑃 ×𝑀𝑉 .

Then 𝑃 can be estimated from 𝑀𝑉 𝑃 matrix.

Proof. At first, assume that the transformation matrix consists of a rotation 3x3 matrix
𝑅 and associated translation 1x3 𝑡 vector. We can use the property of 𝑆𝑂3 group, which
ensures that the norm of each 3x3 row or column is equal to 1.

Let us denote the rotation submatrix as in Equation 4.4 and 𝑡 = (𝑘, 𝑙,𝑚).⎛⎝𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎞⎠ (4.4)

By multiplying 𝑀𝑉 with 𝑃 , 𝑀𝑉 𝑃 matrix becomes:

𝑀𝑉 𝑃 = 𝑀𝑉 · 𝑃 =

⎛⎜⎜⎝
𝐹𝑥 · 𝑎 𝐹𝑥 · 𝑏 𝐹𝑥 · 𝑐 𝐹𝑥 · 𝑗
𝐹𝑦 · 𝑑 𝐹𝑦 · 𝑒 𝐹𝑦 · 𝑓 𝐹𝑦 · 𝑘
𝐴 · 𝑔 𝐴 · ℎ 𝐴 · 𝑖 𝐴 · 𝑙 +𝐵
−𝑔 −ℎ −𝑖 −𝑙

⎞⎟⎟⎠ (4.5)

As 𝑅 ∈ 𝑆𝑂3, norms of (𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓) or (𝑔, ℎ, 𝑖) are equal to 1. Based on this fact,
we can derive following:

𝑛𝑜𝑟𝑚(𝐹𝑥 · 𝑎+ 𝐹𝑥 · 𝑏+ 𝐹𝑥 · 𝑐) =⇒
√︀

(𝐹𝑥)2 · 𝑎2 + (𝐹𝑥)2 · 𝑏2 + (𝐹𝑥)2 · 𝑐2

=⇒
√︀
(𝐹𝑥)2(𝑎2 + 𝑏2 + 𝑐2) =⇒

√︀
(𝐹𝑥)2 · 𝑛𝑜𝑟𝑚(𝑎, 𝑏, 𝑐) =⇒ |𝐹𝑥|

(4.6)

However, as 𝐹𝑥 is a result of 𝑡𝑎𝑛(𝑎𝑛𝑔𝑙𝑒) function, it is always positive, leaving out only
a unique result positive result of Equation 4.6.

36

𝐹𝑦 and 𝐴 can be estimated following the same recipe over vector (𝐹𝑦 · 𝑑, 𝐹𝑦 · 𝑒, 𝐹𝑦 · 𝑓)
and (𝐴 · 𝑔,𝐴 · ℎ,𝐴 · 𝑖), respectively.

The remaining 𝐵 can be obtained as shown in Equation 4.7.

𝑙 = −𝑀𝑃𝑉44 =⇒ 𝐴 · 𝑙 +𝐵 = 𝑀𝑃𝑉34 =⇒ 𝐵 = 𝑀𝑃𝑉34 − 𝑙 ·𝐴 (4.7)

In the second part of the proof, if model-view matrix was created using component-
symmetric scaling (scalar scaling), given as 𝑆 = (𝑠, 𝑠, 𝑠), one can still obtain the correct
parameters by inverting scale of matrix’s elements.

The resulting MVP matrix for the case of using scale is derived in Equation 4.8.

𝑀𝑉 𝑃 = 𝑀𝑉 · 𝑃 =

⎛⎜⎜⎝
𝐹𝑥 · 𝑎 · 𝑆 𝐹𝑥 · 𝑏 · 𝑆 𝐹𝑥 · 𝑐 · 𝑆 𝐹𝑥 · 𝑗
𝐹𝑦 · 𝑑 · 𝑆 𝐹𝑦 · 𝑒 · 𝑆 𝐹𝑦 · 𝑓 · 𝑆 𝐹𝑦 · 𝑘
𝐴 · 𝑔 · 𝑆 𝐴 · ℎ · 𝑆 𝐴 · 𝑖 · 𝑆 𝐴 · 𝑙 +𝐵
−𝑔 · 𝑆 −ℎ · 𝑆 −𝑖 · 𝑆 −𝑙

⎞⎟⎟⎠ (4.8)

Scale 𝑆 can be estimated by calculating the norm of (−𝑔 · 𝑆,−ℎ · 𝑆,−𝑖).
Then, taking the norm as before results in Equation 4.9.

𝑛𝑜𝑟𝑚(𝐹𝑥 · 𝑎 · 𝑆 + 𝐹𝑥 · 𝑏 · 𝑆 + 𝐹𝑥 · 𝑐 · 𝑆) =⇒
√︀

(𝐹𝑥)2 · 𝑎2 · 𝑆2 + (𝐹𝑥)2 · 𝑏2 · 𝑆2 + (𝐹𝑥)2 · 𝑐2 · 𝑆2

=⇒
√︀
𝑆2 · (𝐹𝑥)2(𝑎2 + 𝑏2 + 𝑐2) =⇒

√︀
𝑆2 · (𝐹𝑥)2 · 𝑛𝑜𝑟𝑚(𝑎, 𝑏, 𝑐) =⇒ |𝑆||𝐹𝑥|

(4.9)

Then, 𝐹𝑥, 𝐹𝑦 and 𝐴 are extracted using norm as before, but multiplied with the inverse
of scale 𝑆.

Note that this proof is suffiecient to always reconstruct the projection in the case of 𝑉 𝑃 ,
because the transformation of camera is always defined only using translation and rotation.

Estimating Far and Near plane distances

The extract parameters 𝐹𝑥, 𝐹𝑦, 𝐴 and 𝐵 are sufficient to recreate the projection matrix.
However, it is possible to extract both 𝑓 and 𝑛, which defines the distance to far and near
plane, respectively. As 𝐹𝑥 = 𝑙

𝑛 and 𝐹𝑦 = 𝑡
𝑛 in case of symmetric projection, estimation of

these two parameters can help us to estimate the distance to left (𝑙) and top (𝑡) clip-planes.
By estimating these, the projection could be altered proportionally to the original one.

To derive 𝑓 and 𝑛, we begin with Equation 4.3.
To simplify the form, let us define a substitution 𝑅 = 𝑓 − 𝑛, which is a depth range

between near and far plane.

−(𝑛+𝑅+ 𝑛)

𝑅
= 𝐴 ⇐⇒ −(2𝑛+𝑅)

𝑅
= 𝐴

−2((𝑛+𝑅)𝑛)

𝑅
= 𝐵 ⇐⇒ −2(𝑛2 +𝑅𝑛)

𝑅
= 𝐵

(4.10)

Next, we will continue by expressing 𝑅 in one of equations, and plugging into the other
one.

−(2𝑛+𝑅)

𝑅
= 𝐴 ⇐⇒ −2𝑛−𝑅−𝐴𝑅 = 0 ⇐⇒ 2𝑛+𝑅(1 +𝐴) = 0 ⇐⇒ 𝑅 =

−2𝑛

1 +𝐴
(4.11)

37

Now, by plugging into the equation, we obtain the parameter 𝑛 (near plane distance)
from 𝐴 and 𝐵.

−2(𝑛2+𝑅𝑛)
𝑅 = 𝐵 ⇐⇒ −2𝑛2 − 2𝑅𝑛−𝑅𝐵 = 0

⇐⇒ 𝑛2 +𝑅𝑛+ 𝐵
2 𝑅 = 0 ⇐⇒ 𝑛2 + 𝑛 · −2𝑛

1+𝐴 + 𝐵
2 · −2𝑛

1+𝐴 = 0

⇐⇒ 𝑛2 + 𝑛 · −2𝑛
1+𝐴 +𝐵 · −𝑛

1+𝐴 = 0 ⇐⇒ (1 +𝐴)𝑛2 + 𝑛 · −2𝑛+−𝐵𝑛 = 0

⇐⇒ (1 +𝐴)𝑛2 +−2𝑛2 +−𝐵𝑛 = 0 ⇐⇒ (1 +𝐴− 2)𝑛2 +−𝐵𝑛 = 0

⇐⇒ 𝑛((1 +𝐴− 2)𝑛−𝐵) = 0 ⇐⇒ 𝑛 = −𝐵
1−𝐴

(4.12)

Parameter 𝑓 can be obtained by plugging 𝑛 into the definition of 𝑅, derived above.

Estimation of orthogonal matrix

The use of orthogonal matrix as the projection matrix can be detected by comparing the
last row of MVP with vector (0, 0, 0, 1)

Next, 𝑓𝑥 and 𝑓𝑦 can be detected using similar steps as for perspective projection.
However, due to shape of the last row of the orthogonal matrix, it is no longer possible to
rescale the matrix.

As depth coordinate in view-space does not matter in orthogonal projection, so, intu-
itively, it can not be estimated from MVP matrix.

4.3.5 Extending pipeline

Now that we can estimate parameters of perspective transformation, it is possible to invert
vertex’s position from clip space to view space, apply virtual’s view horizontal translation,
and multiply corresponding result with adjusted perspective transformation with optical
center shift using the same algorithm in fixed-pipeline.

The inversion is expressed in Algorithm 2.
Algorithm 2: Inversion of clip-space to camera-space

Input : Clip-space position of vertex 𝑐𝑠, resulting from the original shader
Output: Vertex in camera-space coordinates
𝐹𝑥, 𝐹𝑦 := getProjectionParametersFromUniforms();
return (𝑐𝑠.𝑥/𝐹𝑥, 𝑐𝑠.𝑥/𝐹𝑥, −𝑐𝑠.𝑤);
A high-level overview of the modified transformation pipeline is shown in Figure 4.7.

4.3.6 Injecting Geometry Shader

Applications which use Geometry Shaders typically compute the transformation in those
shaders instead of Vertex Shader. Thus, in order to support applications which use them,
it is necessary to define the injection process for them as well.

In general, Geometry Shaders contain the main function, in which the input data from
the previous parts of pipeline (typically, from Vertex Shader) are processed, and which
outputs transformed vertices of the output primitives.

Each vertex primitive is assembled from the vertices emitted during the run-time of Ge-
ometry Shader. Each output vertex is emitted using GLSL’s EmitVertex function and after
all primitive’s vertices are emitted, the shader calls EndPrimitive to finish the assembling.

In conclusion, from the injection point of view, the process of injection of Geometry
Shader is almost identical to Vertex Shader. It is sufficient to find all assignment state-
ments to the shader’s built-in variable gl_Position, inspect the operation to find the

38

Input
Vertex Shader (original)

Inversion
of

projection

Translation
left/right

Projection
with

shear
Output
vertex

local-space clip-space

camera-space

camera-spaceclip space

Figure 4.7: A high-level depiction of transformation pipeline of Vertex Shader after injec-
tion. The original shader is wrapped and its resulting gl_Position is further transformed
inversely using estimated projection parameters. The resulting clip-space is retransformed
using quilt’s view transformation, relative to the original view, and with modified projec-
tion, made of estimated parameters and shear.

transformation matrix or determine the type of transformation, and apply the additional
steps for achieving the right multi-view position of the output vertex. This processed is
expressed in Algorithm 3.

Algorithm 3: Injection to Geometry Shader
Input : Geometry Shader
Output: Extended Geometry Shader that transforms to quilt 𝑖 camera
for assignment to gl_Position in GLSL code do

insertInversionOfProjectionCodeAfterAssignment();
insertQuiltCameraTransformation();
insertShearedProjection();

end

4.4 Layered framebuffers
The aforementioned conversion works fine provided the application renders directly to the
Backbuffer. As complex applications use artificial Frame Buffer Objects (referred as FBO),
it is necessary to define the flow for these. Rendering into non-default FBO is a part of
many rendering techniques such as post-processing effects (e.g. blur, depth of field), or
dereffered shading. The techniques are commonly referred as multi-pass rendering, because
the rendering process is split into multiple layers (for instance, FBOs), where each layer
may use the resulting texture of the previous one.

4.4.1 Mirroring artifact

To illustrate why it is necessary to devote extra time to support multi pass rendering,
consider a simple rendering pipeline made of two stages. In the first stage, the scene is
rendered as usual and the second stage applies a blur over the image from the first stage.
Without taking any extra care to detect and alter the principle of previous duplication

39

methods, the duplication of draw calls will be dispatched in both stages. In the first stage,
the output image will look correctly. However, the second stage will access the first stage’s
image, which is internally fragmented into a quilt. If the quilt has 3x3 cells in result, the
final image would contain 3x3 quilt views, each of them fragmented into 3x3 cells, resulting
in structure equal to a 9x9 quilt. This artifact is illustrated at Figure 4.8.

Figure 4.8: Example of the Mirroring artifact. The left image depicts result of the first
stage - a regular render of 3x3 quilt from the scene which contains a single backpack. The
right image shows the result of applying blur stage on the result of the first one. Clearly,
rendering of each cell of the resulting quilt samples whole color texture of the previous stage.
However, the texture is internally split into the grid due to quilt rendering. Therefore, the
result is a mirroring effect, which is incorrect. When the second quilt is used in display, the
user will perceive a flat image of 9 bluredbackpacks instead of desired blured 3D backpack.

Note that this issue can not be simply resolved by preventing the duplication. In
practice, it is desired to produce a quilt in all stages of multi-pass rendering so that the 3D
effect would be preserved.

In specific cases, the quilt rendering can be disabled when the application draws to
non-default FBO. For instance, in a scene of a prison, the application may render multiple
views to simulate CCTV cameras by rendering subviews to a custom FBO and finally,
rendering the color buffer using planar geometry to the final image. In such a case, the
output camera image should be flat, so no internal quilt production is needed, and therefore,
the quilt rendering can be disabled for such draw calls.

Unfortunately, detecting whether the draw call should be duplicated given FBO is am-
biguous as it depends on the effect, desired by artist.

Proposed heuristic

In theory, a simple heuristic could be used to expect the desire. Note that post-processing
effects typically render simple geometries such as full screen quads using identity trans-
formation, whereas rendering of CCTV cameras uses a regular transformations pipeline to
place the screen’s image into the space.

40

4.4.2 Using Layered FBOs to overcome Mirroring artifact

One approach is to support multi-pass rendering is to split the texture of FBO to a grid
directly as before using glViewport and override behavior of sampling operations trans-
parently in the stages. However, this requires tracking to detect if the texture is sampled
during the next draw calls, and intercept & alter sampling code in shader so that the proper
subregion of the texture is sampled instead. If shader recompilation is not possible, this
is even harder to implement correctly if the used program is reused for drawing multiple
types of geometries, not only for sampling the previous stage.

In addition, storing all views inside a single texture disallows the use of mip mapping
as the generated mip maps would contain color bleeding through the edges between views
subregions.

equivalent
representation

2D texture with implicit fragmentation to views Layered 2D texture: an array of textures

Figure 4.9: Two approaches of rendering to framebuffer when rendering multiview. The
framebuffer’s textures can either virtually split into a grid of views (left), or created with
multiple internal images, named layers (right). The major advantage of layering over split-
ting is the possibility of simultaneous rendering into each layer in a single draw call using
instanced Geometry Shader. This can not be achieved using splitted framebuffers due re-
quired complex clipping, which is typically not supported by GPUs. In theory, this could be
implemented in Geometry Shader by clipping the output triangle manually at the expense
of additional complexity. In addition, layered FBO can be easily accessed as a regular,
single view FBO using Proxy FBO, made of texture views into layered textures of the
FBO.

4.4.3 Shadowing of Frame Buffer Objects

Alternatively, it is possible to replace (shadow) an FBO with an internally created layered
FBO. A Layered FBO is a framebuffred, created by attaching layered textures (named
Array Textures [15, p. 178]). The number of layers matches the count of views in quilt. In
comparison to a regular 2D texture, Arrayed Textures can be used in Layered Rendering,
in which the draw call affects more than just a single output texture. For instance, Cube
Maps are similar to arrayed textures as their internal storage includes 6 times more texture
buffers than a regular 2D texture. However, the array textures are a more generalized and
less restricted form of cube map texture.

41

In addition to Layered Rendering, an array texture can be sampled as a regular 2D
texture by creating a so-called Texture View Texture View [15, p. 270]. A texture view is
a proxy texture object which may point to a sublayer, or a sublevel of an existing texture.

Both approaches of storing the quilt are compared in Figure 4.9.

Depth attachment

Color attachment

Color attachment

Depth attachment

Color attachment

Depth attachment

Color attachment

Depth attachment

Color attachment

Depth attachment

Proxy FBO
view 1

Proxy FBO
view 5

Proxy FBO
view 9

internally
replaced with

Texture views

Original FBO
(GL_TEXTURE_2D)

Shadow FBO
(GL_TEXTURE_2D_ARRAY)

Proxy FBO
(GL_TEXTURE_2D)

Used for programs which support
Geometry Shader injection

Used for programs without Geometry Shader
e.g. for fixed-pipeline rendering

Created by the original application
for drawing.

…

…

Figure 4.10: Each Frame Buffer Object (FBO) created by the application is internally
replaced with a shadow Frame Buffer Object, which consist of layered texture attachments.
Whenever the original frame buffer is bound during the call, the convertor use the shadow
FBO to draw and to sample from. As some shader programs or draw calls from fixed-
pipeline does not support layered rendering, which is only done in Geometry Shader, proxy
FBOs are created to allow rendering of the draw call per view. Each proxy FBO is created
using textures, resulting from Texture View. Therefore, proxy FBO are memory lightweight
indirection of the shadowing FBO.

General idea of Shadowing

This approach requires tracking of all FBO used by the application and internally recreating
a compatible FBO with the same attachments, but created using layers. Additionally, it
is needed to replace the sampling operations of the layered FBO’s texture in all affected
shaders and choose the correct layer, corresponding to the layered of currently drawn cell
of the quilt.

Algorithm of the Shadowing Process

In conclusion, during each draw call to a non-default FBO, a layered FBO is re-bound
instead of the current FBO, and the draw call is drawn using Geometry Shader with in-
stancing. If such drawing is possible only using injected VS, a temporary proxy FBO is
created for each view of the quilt of given layered FBO. For a quilt which contains 45
views, this results to additional 45 proxy Frame Buffer Objects, each made of Texture
Views to particular layer of the layered FBO.

42

Finally, when the texture of the original FBO is about to be used in rendering, this
is detected and the intercepted draw call is dispatched for each view with view’s Texture
View. During each subdraw call, a texture view is bound instead of the texture of the
original FBO, created by the application. The creation of shadow FBO and corresponding
proxy FBO is illustrated in Figure 4.10.

Rebinding Texture Units

When the application wants to draw using an attachment of the original FBO, it is necessary
to carry on that the original FBO is replaced with the shadowed instance.

If recompilation of shaders was possible, this could be implemented by changing the
type of sampler uniform in shaders to sampler2DArray or sampler2DArrayShadow in case
of sampling depth buffer.

However, recompilation is avoided and the use of FBO attachments in samplers of given
shader can not be detected in advance, because the shader could also be used for rendering
non-shadowed textures, for which the original sampler should be preserved.

Instead, the convertor can track the state of Texture Units, which binds OpenGL tex-
tures to indexed slots, whose indices are then assigned to uniforms in the shaders. By
detecting if Texture Unit is bound to an attachment of FBO, it is possible to create a 2D
texture view which is binded instead.

This can be achieved by tracing glActiveTexture for detecting which texture unit is
currently affected by subsequent calls to glBindTexture, or by tracing glBindTextureUnit.
The state of a texture unit is structured as each texture unit supports multiple targets for
binding, which may be bound in parallel.

4.4.4 Tracking of textures and FBO’s lifetime

In order to create a shadowed layered FBO for the application’s FBO, it is necessary to track
the lifetime of attachments of the FBO and to create layered textures for each attachment.

This can be achieved by hooking glGenTextures, glGenFramebuffers, and glFramebuffer-
Texture for attachment.

Shadowing each texture that is created by the application would be memory-demanding
and wasteful. Instead, the shadowing process can be done on-demand by book-keeping
metadata about existing FBOs and their attachments, and only shadowing the attachments
and the FBO when needed.

In addition, it is also possible to cache temporary texture views and proxy FBO between
frames.

Preventing shadowing of shadow maps

Some applications may use the shadow mapping technique for rendering direct shadows of
dynamic geometry in real-time.

This technique uses an auxiliary FBO for rendering the scene from the light’s point of
view. The buffer is than accessed to determine if the resulting pixel of rendered geometry
should be lit. This includes sampling of the depth buffer attachment of the shadow map.

However, if the shadowing of FBO was turned on when rendering the shadow map,
the depth map would be affected by shift and the shadow map would be layered despite
rendering from the same position of light from all views. The shift of transformation

43

would cause a different position of light for each of the quilt’s view, leading to shading
inconsistencies.

Instead, the shadowing of FBO could be turned off with using a simple heuristic. When
the decision about shadowing of FBO is about to be made, the attachments can be queried.
If the convertor detects that the FBO has only depth-buffer attachment, this is considered
to be a depth map, and the shadowing is turned off for the FBO.

4.5 Instanced Geometry Shader Rendering
After the previous concept, a reasonable implementation of HoloInjector would in theory
support most of applications.

However, the technique which creates a shadow FBO and dispatches single draw call
multi times may use too many redundant API calls to fill the quilt, thus decreasing the
FPS.

Instead, a single draw call could be used to draw to multiple layers of FBO. This
technique is know as Layered Rendering and is achieved using two subconcepts - layer ID
and instancing.

Emit
primitive
to view 1

invoke Geometry Shader for primitive

Emit
primitive to

view 2

Emit
primitive
to view 3

Figure 4.11: Use of instanced Geometry Shader. Upon each invocation of Geometry Shader
for a primitive, multiple instances are invoked in parallel. Each instance can emit an output
primitive for corresponding view of the quilt. In the figure, 3 invocations are used as an
example.

Layer ID is a built-in output variable in Geometry Shader, which is accessed during the
emit call to find out the output layer of FBO in which the primitive should be rendered.
Typically, this is only done once per primitive as splitting the primitive into multiple views
is undefined.

Geometry Shader’s Instancing provides the possibility to dispatch the main loop of
Geometry Shader multiple times per single draw call. Each instance has its unique ID in
the variable gl_Invocation.

To implement this technique, two implementations are necessary to support both exist-
ing Geometry Shaders and to enhance the existing Vertex Shaders-only’s based pipelines
with a new stage inserted in between.

44

4.5.1 Inserting Geometry Shader into the Pipeline

The process of insertion has to tackle with the following processes:

1. Duplicate the geometry in shader correctly

2. Reroute Inputs/Output between Stages

Duplication of Geometry

Due to language requirements, a geometry shader has to define the type of input and output
primitives in compile-time by using layout keyword [15, p. 430]. For simplicity, consider
triangles as both input and output primitives.

Then, it is necessary to determine how many instances of Geometry Shader
with how many primitives per instance will be executed. The OpenGL’s stan-
dard supports at least 32 invocations of Geometry Shader per draw call, defined as
MAX_GEOMETRY_SHADER_INVOCATIONS. However, a typical autostereoscopic may use more
than 32 views, so it is necessary to define this in a configurable way.

In addition to instancing a single Geometry Shader’s invocation can yield more than a
single primitive. This is determined by setting max_vertices’s parameter of output layout
directive. By default, OpenGL Specification supports up to 256 vertices, resulting to at
least 85 output primitives per invocation.

Together, it is possible to combine both to satisfy the maxima supported by GPU’s
driver, and to achieve parallelism by using invocations over primitive duplications.

Finally, a single primitive is always emitted with gl_LayeredID defined by using Equa-
tion 4.13 where 𝑙 defines the output layer ID, 𝑖 is the invocation number read from
gl_InvocationID, 𝐷 is the count of primitives emitted per invocation and 𝑑 is the current
number of already emitted primitives.

𝑙 = 𝑖 *𝐷 + 𝑑 (4.13)

Rerouting In/Out variables

After defining the function of the inserted Geometry Shader, it is necessary to ensure that
the inserted Geometry Shader will not affect the pipeline by causing linking errors. In a
more complex application, simply adding another stage while keeping the same code of the
original GLSL shaders is not possible.

In addition to uniforms, which serve as a constant per-primitive memory, the pro-
grammable stages of pipelines are allowed to interchange data by using In/Out variables.

Typically, these variables are tightened together by name. The exchange mechanism is
based on writing the result in the first stage and reading the value in the next one.

However, as these variables are defined per primitive, a single variable can only be used
for two successive shader stages such as VS-GS or GS-FS. Thus, by introducing Geometry
Shader into the existing pipeline, the mechanism break.

To support the passing mechanism, it is necessary to add an additional stage of the
in/out variable. For each output variable in Vertex Shader, an input variable is defined
together with an output variable.

As the variable is tighten to primitive, the Geometry Shader receives an array of an
input variable, for each input vertex. Thus, in addition to duplicating, it is necessary to
write to the output variable while emitting each vertex.

45

Vertex Shader Fragment Shader
…
out vec2 uv;
…

…
in vec2 uv;
…

Vertex Shader

Geometry Shader

…
out vec2 uv;
… …

in vec2 uv
out vec2 uv_fs;
…

Fragment Shader
…
in vec2 uv_fs;
…

Figure 4.12: Example of In/Out renaming. Originally, both Vertex Shader and Fragment
Shader used the same name of in/out variable. However, upon inserting Geometry Shader,
a single variable can not be both in and out inside Geometry Shader due to language
restriction. Therefore, a temporary variable uv_fs is introduced between GS and FS, and
the name of original variable must be changed in FS correspondingly.

As two variables with different layout can not be defined with the same name, it is
necessary to substitute names in either Fragment or Vertex Shader so that both the input
and output variables could be generated.

This is illustrated in Figure 4.12.
Finally, this process is described in Algorithm 4.

Algorithm 4: Rerouting in/out variables
Result: Reroute out variables from Vertex Shader to in variables in Fragment

Shader
for out variable in VS do

newName:= variableName + ”_fs“;
findAndRenameVariable(fragmentshader, variableName, newName);
GSdefinitions += ”in type variableName[VERTEX_COUNT];“;
GSdefinitions += ”out type newName;“;
for assignment to gl_Position in GS do

vertex := getVertexIDForCurrentAssignment();
assignmenetCode += ”newName = variableName[vertex];“;

end
end

Type of the input primitive

In a generic case, the type of the input primitive may not be known during the link time,
thus the inserted Geometry Shader may cause loss of rendered geometry or unexpected
artifacts. The real primitive output type of Vertex Shader always depends on the type
chosen in the draw call.

As it may not be possible to alter shaders in run-time, solving this problem would
require manual root cause detection and overriding settings for the used program, either to
preset a different primitive type, or to disable insertion.

46

4.5.2 Injection of existing Geometry Shader

In case the application already uses a Geometry Shader, it is still possible to convert such
shader to an instanced one by applying following steps:

• Insert layout declaration with instancing.

• Multiply the count of max_vertices with the count of duplications.

• Substitute main() with a different name (e.g.) oldMain(int duplicationID)

• Append new main() and call oldMain() for 𝐷 times in loop.

• After each gl_Position assignment statement, add an assignment to gl_LayeredID
using Equation 4.13.

4.6 Conclusion
In the previous sections, the major stages and rendering approaches of OpenGL were an-
alyzed and an altered flow for these was suggested. The convered parts of the rendering
pipeline were chosen with respect to frequency of use.

4.6.1 Notable missing features

As the state space of all possible OpenGL applications is larger than the aforementioned
OpenGL features, many applications remain unsupported. In the following section, a brief
list is given with suggestions on possible implementation.

• Multiple OpenGL Contexts per application
Applications may use multiple OpenGL contexts for rendering. Typically, a context
represents a visible surface such as a GUI window. The use of multiple contexts is
thus typically for editors with multiple preview windows, such as Blender.
To support such applications, the implementation must explicitly be able to separate
between objects of different contexts, to track the selection of the current context,
and possibly to support multi-threading.

• 3D enhancement of Ray-tracers/Ray Marchers
OpenGL can be used to implement ray tracing by rendering a simple geometry (typ-
ically, a full screen quad) and computing the resulting color using ray tracing.
This approach is used for implementing ray tracers, but also for rendering volumetric
scenes such as clouds, flames, or smog.
Whereas the transformation of geometry is correctly shifted by the injector, the ray
tracing can not be altered automatically, because the raytracer may use uniforms for
passing the definition of a camera, or generate the camera parameters algoritmically.
To support such ray tracers, users would manually have to select such shaders and
semantically annotate which uniforms are used and what for. Then, in theory, the
injection could modify the shader using regular expressions.

47

• Precompiled shaders
Applications may prefer to compile shaders once, store them in binary format, and
load the binary on the next load. In general, this can speed up the load time of
demanding applications which contain many materials and thus hundreds of shaders.
However, the binary format is not standardized, but vendor-specific, thus no sys-
tematic support for injection to such binary shaders can be defined. On the other
hand, applications are shipped with source codes of shaders with high probability,
because architecture of GPUs can change over time, which would break the portabil-
ity of the application, if it was only equipped with precompiled shaders. Therefore,
it is probably sufficient to hook methods which take precompiled shaders, such as
glShaderBinary, and return an error which should force the application to recom-
pile.

4.6.2 Suggestions on supporting DirectX

The described processes before are valid only for rendering using OpenGL. Luckily, as
DirectX’s rendering model is similar to OpenGL’s, the described method could be ported
to this library as well. This section gives a few hints on the additional steps required for
successful porting.

Hooking

At Windows, LD_PRELOAD can not be used due to system restrictions. Instead, dynamic
hooking is typically employed at this platform while using WinAPI for creating process
and forcing the load of a custom library. This is commonly referred as DLL injection.

Analogously to dlsym, getProcAddress can be hooked and addresses can be overridden.

Differences between OpenGL and DirectX

In contrast to OpenGL’s static methods, DirectX’s SDK is based on classes with virtual
methods. The hooking of a such system would therefore require virtual table (vtable) hook-
ing.

The mapping of objects is very similar in both libraries. What differs is the use of
different shading languages, but both languages have a similar programming model and
similar constructions.

48

Chapter 5

Implementation

This chapter describes the implementation of ideas introduced in the previous chapter into
practice. The ultimate goal of the chapter is to give the reader such knowledge that could
be used in extending the implementation with ease.

5.1 Overview of implementation
The conversion layer is implemented in the programming language C++, mostly using
Object-oriented paradigm. From the architectural point of view, the layer is a collection of
classes, which are logically grouped and isolated.

The iterative development of the layer has resulted into a division of classes into the
following logical groups:

• dispatcher.hpp - Dispatcher
Dispatcher provides an interface between the application above the convertor and
the internals of the convertor. Therefore, all hooked functions of OpenGL and other
libraries are catched in the dispatcher, where they are rerouted into internal classes.

• /hooking/ - Hooking utilities
Hooking classes provide a simple framework for adding new functions to be hooked
easily, and dealing with a complex process of rerouting and calling the original func-
tion.

• /tracking/ - Resource tracking
Resources form a group of classes, tracking the state of each OpenGL object, created
by the application. Objects are textures, renderbuffers, Frame Buffer Objects, and
shaders. The primary reason is to allow querying of currently bounded resources as
well as their properties, which is for instance important for Draw manager in order
to choose how to duplicate draw calls.

• /manager/ - Managers
Managers are responsible for implementing a particular responsibility, routed from
dispatcher. They do not own any objects or resources.

• /pipeline/ - Pipeline transformators
Pipeline transformators are classes which contain functionality for parsing shaders,
extracting metadata, and modifying the shaders.

49

• /utils/ - Utilities
Utility classes such as loggers, text formatters, and various wrappers around C-style
OpenGL calls and object management.

• /ui/ - Overlay
Overlay is an in-application menu, which provides sliders and inputs for controlling
the settings of display, but also facitilities for debugging such as inspector. This group
constitutes of classes, needed for overlay rendering, input hooking, and glue logic for
manipulation of settings using the underlying GUI library.

• /paralax/ - Paralax-like mapping
An attempt to replicate the algorithm, used by VR convertor. This is an experimental
code, which is not reachable from the rest of code.

The architecture of HoloInjector is split into several layers and subparts: hooking, state
tracking, and managers.

5.1.1 Flow of data

The conversion layer is serving as a translation SW layer between the application and the
underlying hardware. Thus, its architecture can be displayed as a black box, which at the
input side contains connection points (OpenGL API methods) and output pins at the left
side, which are concrete OpenGL API calls, called towards hardware.

In general, the function of the injector boils down to a rerouting of calls with additional
side activities such as state tracking.

A typical call to OpenGL by the application thus starts from Dispatcher’s virtual
method. Next, the call is either directly delegated to OpenGL’s driver if it is not important
for the injector or the implementation of the call could be as trivial as a single call to state
tracker.

More complex API calls are implemented using managers. Managers themselves do not
hold any state, but help to reduce the amount of code in the dispatcher, and thus to keep
the code clean. Subsequently, the method defined in a manager typically leads to multiple
OpenGL API calls.

5.1.2 Context

As the name suggests, Context is a class which manages the lifetime of all created objects.
The class is thus composed of all trackers and internal classes with a long lifetime.

Currently, the application assumes a single context to exist over during run-time. This
could be in future extended to support applications with multiple OpengGL contexts.

Context is implemented using PIMPL1 design pattern to prevent excessive inclusion of
header files.

5.1.3 Hooking

The fundamental class for hooking is OpenglRedirectorBase, where all functions, whose
hooked handlers should be available, are placed there.

There are two ways how a function is hooked. One way is by exporting the function
name in the compile module of OpenglRedirectorBase.cpp. Another way is by redirecting

1PIMPL = Pointer to implementation

50

the function address when the application uses dlsym for querying the function’s address.
Both ways are covered together by using the specialized macro, described in the following
section.

In order to introduce a new hooked function, the function is declared as a virtual function
in OpenglRedirectorBase with the same signature as the original function. Next, an
expansion of macro with name OPENGL_FORWARD is defined in OpenglRedirectorBase.cpp
with name and parameters of the hooked function, following the signature. When expanded,
the macro automatically generates a function with the same signature, but C export style,
so that the generated function’s address can be passed in hook. The macro also defines the
definition of such a function so that the virtual method in the class is used as a hooked
function’s handler. In addition, the macro generates a definition of the virtual method,
which by default calls the original function with arguments serving as an identity. The flow
of execution is illustrated in Figure 5.1.

OpenRedirectorBase.cpp
call to method from application

Cpp Virtual Call Dispatcher

call to singleton's virtual method

is method overriden?

Dispatcher's implementation

overriden

Call to driver's method

not overriden

prevent driver seeing the call

delegate to driver

Figure 5.1: A diagram, explaining the flow of execution of the hooked function.
When the function is called, the execution ends up in exported function, defined
in OpenglRedirectorBase.cpp, which delegates the execution to virtual method of
OpenglRedirectorBase-based class using singleton pattern. Subsequently, depending on
whether the method is overridden, either original function is called or user-defined callback.
Optionally, the original function can be called from user’s callback.

The whole process of making use of the hooked functions is then implemented using class
specialization. A specialized class then overrides the virtual method with its definition of
handler method. The original function is available by calling the base’s virtual method.

The process of hooking is done using singleton pattern. When a specialized class is
constructed, the address is stored in the implementation of module in a static variable.
All subsequent calls to hooked functions will result in querying the stored address, and
delegating the call to its methods. The overriding handlers are then called via virtual table
mechanism.

For most of the hooked functions recursion does never happened, thus when a hooked
function is called inside of a call to a handler of the other one, the original function is called
instead of the hook. This way it is possible to call the original functions by calling their
usual interface, and it is not necessary to use to the base virtual methods. This concept is
implemented by storing a thread-local boolean flag inside OpenglRedirectorBase, which
determines if currently there is already a hooked function being handled.

51

5.1.4 Resource tracking

As algorithms used in conversion are context-dependent, resource tracking allows the con-
vertor to keep the state of resources (more precisely, OpenGL objects) without excessive
state polling.

Object tracking follows OpenGL’s object managing paradigm, where objects may be
created and deleted, and also bound to context in order to change.

<<typename T>>

ContextTracker

add(id, T object),

has(size_id): bool,

get(size_id): T,

remove(id),

size(): size_t

<<typename T>>

BindableContextTracker

bind(id),

unbind(),

getBoundId(): size_t

T
FramebufferTracker

FramebufferMetadata

FramebufferMetadata

+id

Figure 5.2: All object trackers are derived from ContextTracker or
BindableContextTracker, which implements functionality to mimic OpenGL object
management. Trackers store metadata, associated with real OpenGL objects, represented
using specialized XYZMetadata class.

A special class, ContextTracker, is used as a base class for all trackers. It provides the
most common methods such as add(id) (simulating glGenerateXYZ), remove (simulating
glDeleteXYZ). In addition, a derived class BindableContextTracker is defined, providing
functionality in order to bind specific object to context. Both classes and their members
are visualized in Figure 5.2.

These two classes provides enough functionality for the classes such as ProgramTracker
or FramebufferTracker to be pure template instances usings of specific storage type over
BindableContextTracker.

However, specific objects require additional functionality for tracking so-called shadow-
ing.

Shadowing of FBOs

In order to shadow a FBO, the attachments must have a layered version available. This
is ensured by implementing method createShadowedTexture in TextureMetadata. As
renderbuffers are a specialization of texture, they also implement the method.

When creating the layered textures, the proper width and height of the original texture
must be sniffed together with texture format. In addition, a texture format conversion is
implemented to convert from relative size (e.g. GL_RGBA) to fixed size OpenGL data
format (e.g. GL_RGBA8).

Shadowing of Frame Buffer Objects (FBOs) is implemented in FramebufferMetadata
class, in its method createShadowedFBO(). The function iterates over attachments, and
triggers creation of shadowed attachment by calling method createShadowedTexture.

Each FramebufferMetadata contains a list of references to TextureMetadata, standing
for intercepted attachments.

52

Texture unit remapping

In addition to drawing to shadowed FBO, sampling of such FBO must be defined cor-
rectly as well. This is implemented by tracing state of texture units and detecting if
any of texture unit is bound to an attachment of FBO. This is implemented as a part of
TextureUnitTracker (texture_tracker.cpp) which provides methods for detecting if unit
is bound to a framebuffer object, and for rebinding to shadow to a texture view of shadow
FBO’s layer.

5.1.5 Pipeline

Pipeline is a group of classes which are employed to parse and modify shaders. The func-
tionality is split into multiple classes. The top-level class PipelineInjector encapsulates
the remaining class with a single method call process(), which receives the input pipeline
as a collection of shaders, and outputs a modified pipeline with extracted metadata.

Internally, the class use ShaderInspector over each transformation shader to extract
metadata. Some of inspector’s methods use internally ShaderPaser to tokenize GLSL code.

The remaining classes, such as ProjectionEstimator or OutputFBO, are used for es-
timating the parameters of projection matrix and for managing a lifetime of the internal
layered backbuffer, respectively.

Rendering for displays different from Looking Glass

Currently, the conversion of quilt to native image is implemeneted as an additional
pass using a shader 2, provided by Ing. Tomáš Milet. This is implemented in
pipeline/output_fbo.cpp, in OutputFBO class, in renderToBackbuffer() method. The
implementation does not support any additional displays, and the parameters of display
are entered manually using configuration.

To suppport more displays, a plug-in system could be proposed, which would allow
developers of displays to provide their compiled library in specified directory, which would
contain C methods for registration and for providing conversion shader. Subsequently, the
user would be allowed to choose the display using overlay.

5.1.6 Managers

A manager is a class whose responsibility is to implement a subset of hooked OpenGL calls.
For instance, DrawManager implements dispatching of all draw calls.

Converting draw calls

The implementation of draw calls is available in DrawManager. The original draw call
is passed as a lambda function to draw function. Then, a decision process starts with
cheching whether a program is bound and if the program has a detected transformation.
The process is then delegated to drawGeneric methods, which detects if the program use
Geometry Shader or Vertex Shader, or if any program is bound. Depending on these, one
of drawWithGeometryShader, drawWithVertexShader or drawLegacy is called.

In both drawWithGeometryShader drawWithVertexShader, texture units are remapped
to use shadowed FBO. In case of Geometry Shader rendering, if texture unit was bound

2https://github.com/dormon/3DApps/blob/master/src/quiltToNative.cpp

53

to an attachment of FBO such as depth map or color texture, the rendering degrates to
per-view rendering and remapping the texture init to a texture views of shadow FBO.

Rebinding Frame Buffer Objects

The purpose of FramebufferManager clas is to manage binding of FBO. This is governed by
a simple rule: draw calls to back buffer should be redirected to the unique instance of Out-
putFBO, stored in Context, and the rest of draw calls should be redirected to shadow FBO.
This logic is implemented in bindFramebuffer method. In addition, a correct framebuffer
must set when the application calls glClear.

The second purpose of class is to trigger rendering of OutputFBO’s instance to native
image at the end of frame. This is done by hooking glXSwapBuffers.

5.1.7 Utils

Utils provide RAII-oriented helpers for communication with OpenGL or processing GLSL.
For instance, glsl_preprocess.hpp provides the functions for preprocessing GLSL.

Preprocessing is done using a standard C/C++ preprocessor with additional substitu-
tion as some of GLSL built-in macros such as #version are not defined for C++. Prepro-
cessing is outsourced using external library named simplecpp3. The reason for using this
library is an easy integration into a C++ project in constrast to a standard C preprocessor
provided by GNU.

5.2 Overview of platform-depedency
Typically, software engineering strives for platform independency, a state in which software
would be compileable and runnable at any platform and hardware. However, as the conver-
tor uses hooking for taking control of the application, this is not possible, because hooking
is not standardized and platform-specific details are used to set up hooks. This section tries
to give an overview of parts of code, which are platform-dependent and which would need
to be reprogrammed when porting the convertor to different platforms than Linux.

5.2.1 Loading the library

Hooking is implemented in the file startup_injector.cpp by exploiting the overloading
of hidden function __libc_dlsym, implementing dlsym in the implementation of GNU
Dynamic Loader. Thus, this methods assume the use of the aforementioned loader in the
system. This trick has been taken from apitrace4 and it is necessary to be able to chain
load both the convertor and an additional library such as apitrace for the purposes of
debugging.

Alternatively, the implementation using dynamic code patching via library subhook is
also available in this file. The use of this method requires one to disable SELinux’s protec-
tion. In practice, both methods are functionally equal.

In addition, the module startup_main.cpp contains two methods, hi_setup and
hi_cleaner, which are called before and after passing the context to the ap-
plication’s main function. These methods use GNU Linker’s specific attribute
__attribute((constructor)) and __attribute((destructor)).

3https://github.com/danmar/simplecpp
4https://github.com/apitrace/apitrace

54

5.2.2 Hooking X Window System

As OpenGL does not specify the management of context, this is typically vendor-specific.
At Linux, when using X Window System (also referred as X11), which is a widespread
window manager, the context is provided by an extension GLX. Any OpenGL function
loader will lead its calls to a subset of this extension. Hooked functions of GLX are part
of hooking/opengl_redirector_base.cpp and are overloaded in dispatcher.cpp. This
includes methods such as glXCreateContext, glXMakeCurrent, glXSwapBuffers and most
importantly, glXGetProcAddress.

In addition to context management, window manager also provides events from input
peripherals. These are important for implementing a GUI overlay, which serves for adjusting
settings of the convertor during run-time or for more comfortable debugging of resources.

X11 provides XNextEvent method for developers to poll an incoming event to a window.
By hooking this function and sniffing for event types KeyPress, MotionNotify, ButtonPress,
events from keyboard, mouse and mouse button can be detected, respectively.

5.3 Code quality
As the purpose of the convertor is to convert OpenGL API calls to different API calls,
such a task would be time demanding to implement as it would require to either mock up
an OpenGL driver, or use Computer Vision to process the rendered image, and determine
consistency.

Instead, parts of the code were tested using unit testing. This was, however, only possible
for encapsuled and self-standing modules, which does not call any OpenGL API method
themselves. Such modules are trackers, projection estimator, pipeline injector, parsers, and
string utils. Despite of this list, the overal code coverage stays low due to large modules
such as dispatcher or hooking classes which can not be simply tested using unit testing.

55

Chapter 6

Experiments

This chapter describes practical experiments with applying the conversion layer to existing
various OpenGL applications. In practice, it is impossible to verify the functionality with
all existing OpenGL applications, but instead, testing focuses on verifying that applications
which implement a certain rendering method are possible to convert. Although such test-
ing does not necessarily imply that all applications implementing the technique will work
flawlessly, it at least increases predictability and reveals limitations.

6.1 Test setup
The programmable pipeline was tested using OpenGL tutorials such as LearnOpenGL1

to verify different rendering techniques. The method has been employed on examples of
techniques such as shadow mapping, normal mapping, skybox drawing, drawing to auxiliary
framebuffers.

For techniques such as screen-space ambient occlusion, the method failed to provide
a consistent multiview image, due to suspected problems in passing data to FS (see Sec-
tion 6.3.4).

The fixed-pipeline OpenGL was tested on such as NeHe tutorials2 and the more complex
application Nexuiz. Due to the simplicity of fixed-pipeline transformation, an implemen-
tation based on the method above is sufficient to convert most of such applications with
minimal visual defects.

6.2 Measuring performance
The impact of injection was measured on selected supported applications. The results
are shown in Table 6.1 and in Table 6.2. Each measurement was a recording of the frame
period (time per frame) in milliseconds. As most of the applications are static, the recorded
sequences consist of the same frame, rendered multiple times. The measurements test the
correlation between the frame rate and increasing number of views, and the correlation
between increasing resolution and frame period.

Three different applications were used. Stanford Dragon features a large mesh, which
should solely fill the pipeline. Cubes provides trivial geometry with simple shading. The
purpose of Steep Parallax Mapping is to feature simple geometry, but expensive shading, so

1GitHub.com:JoeyDeVries/LearnOpenGL
2GitHub.com:gamedev-net/nehe-opengl

56

https://github.com/JoeyDeVries/LearnOpenGL
https://github.com/gamedev-net/nehe-opengl/tree/master/linuxglx

Figure 6.1: Pairs of images, showing original application (left) and resulting quilt (right).

Figure 6.2: Pairs of images, showing original application (left) and resulting quilt (right).
This example demonstrates ability to handle the applications, which use shadow mapping

Figure 6.3: Demonstration of skybox rendering.

57

Quilt/Resolution 1282 2562 5122 10242 20482 40962

1x1 16.5ms 16.5ms 16.5ms 16.5 16.5ms 16.5ms
3x3 63.8ms 70.3ms 71.5ms 68.2ms 79.6ms 80.6ms
5x9 263.9ms 271.0ms 284.5ms 307.0ms 343.6ms 400.5ms

(a) Stanford Dragon (complex geometry)

Quilt/Resolution 1282 2562 5122 10242 20482 40962

1x1 16.5ms 16.5ms 16.5ms 16.5ms 16.5ms 16.5ms
3x3 16.5ms 16.5ms 16.5ms 20.6ms 36.0ms 56.4ms
5x9 19.4ms 32.3ms 50.2ms 69.5ms 93.1ms 166.5ms

(b) Steep Parallax Mapping scene (complex shading)

Quilt/Resolution 1282 2562 5122 10242 20482 40962

1x1 16.1ms 16.2ms 16.1ms 16.5ms 16.4ms 16.4ms
3x3 16.5ms 16.5ms 16.5ms 16.5ms 16.5ms 24.7ms
5x9 16.5ms 16.1ms 24.2ms 37.9ms 65.6ms 115.6ms

(c) Cubes (simple geometry)

Quilt/Resolution 1282 2562 5122 10242 20482 40962

1x1 21.3ms 22.5ms 21.0ms 21.3ms 21.8ms 24.5ms
3x3 23.4ms 22.1ms 26.0ms 25.8ms 32.7ms 44.8ms
5x9 67.3ms 74.5ms 86.0ms 105.3ms 144.3ms 196.4ms

(d) Asteroids (many trivial draw calls)

Table 6.1: Average frame period. Lower is better. Quilt (number of views) vs resolution
(width/height of each of view). Test setup: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz

and NVIDIA GeForce GT 920M.

that the dependency on resolution could be measured. Finally, Asteroids provide hundreds
of draw calls with trivial geometry

Clearly, it can be concluded that the injection and rendering into multiple views affect
performance. In the case of complex geometry, but cheap shading, the performance does
not depend much on the resolution, because the graphics card’s pipeline is busy with the
transformation of geometry.

Contrary, in case of expensive shading, the period increases less than twice when the
resolution is doubled. While keeping same number of views, the frame period is correlated
with increasing the resolution.

In more complex geometric scenes, the performance directly depends on the number of
views. In some non-optimized scenes, such as Asteroids, which dispatch many draw calls
with trivial meshes, performance does not decrease linearly with number of views initially,
because instancing of Geometry Shader can help in overcoming the overhead of many draw
calls with simple geometry.

In conclusion, the exact effect on performance depends on scene’s complexity and
complexity of shading. For simple applications and lower resolutions, the effect can be
minimal, in some cases neglectible. Note that contemporary Looking Glass Display use

58

Quilt/Resolution 2562 5122 10242 20482 40962

1x1 0.72ms 0.75ms 0.78ms 0.8ms 1.49ms
3x3 1.67ms 1.76ms 2.46ms 7.5ms 40.6ms
5x9 6.72ms 11.1ms 25.0ms 265.6ms 300.5ms

(a) Stanford Dragon (complex geometry)

Quilt/Resolution 2562 5122 10242 20482 40962

1x1 0.17ms 0.21ms 0.21ms 0.21ms 0.4ms
3x3 0.21ms 0.21ms 0.29ms 0.78ms 4.5ms
5x9 0.19ms 0.42ms 1.05ms 10.6ms 40.5ms

(b) Steep Parallax Mapping scene (complex shading)

Quilt/Resolution 2562 5122 10242 20482 40962

1x1 0.18ms 0.18ms 0.18ms 0.18ms 0.32ms
3x3 0.17ms 0.19ms 0.24ms 0.64ms 4.71ms
5x9 0.21ms 0.33ms 0.99ms 12.7ms 57.5ms

(c) Cubes (simple geometry)

Quilt/Resolution 2562 5122 10242 20482 40962

1x1 10.3ms 10.3ms 10.4ms 10.5ms 10.6ms
3x3 10.2ms 10.3ms 10.4ms 10.3ms 10.3ms
5x9 10.1ms 10.7ms 10.3ms 34.9ms 118.5ms

(d) Asteroids (many trivial draw calls)

Table 6.2: Average frame period. Lower is better. Quilt (number of views) vs resolution
(width/height of each of view). Test setup: Threadripper 1920X 3.5GHz (12/24) and

NVIDIA 2x2080Ti.

2500 x 1600 LCD, which results in 4MPix. A 5x9 quilt with 512x512 texture size per
view exceeds 11 MPix. However, the resolution of displays is expected to increase in order
to lift antialiasing problem. For instance, the brand new Looking Glass 8k Display uses
7680 x 4320 LCD, which equals to 33 MPix [5]. To feed the display, 1024x1024 quilt must
be used which equals to 47 MPix.

6.3 Limitations
The limitations of the presented method can be divided into two categories:

• Lack of information
Many problems stem from ambiguities and limited knowledge of black box conversion.

• Robustness of implementation
Due to limited time to deliver, implementation trade-offs are causing failures in a few
specific use-cases.

59

6.3.1 Drop of FPS

Due to design of autostereoscopic displays, all views of quilt must be rendered in each frame,
resulting to significant performance decrease. The performance of a graphical application
is typically addressed in frames per second (FPS).

A naïve approach which renders all views to layered FBOs with the same size of texture
as the original FBO will take at least 𝑁 times more time to render, where 𝑁 equals to count
of frame. For example, if the original application was providing smooth 100FPS and the
display has 45 unique views, the conversion would achieve 2 to 3 FPS, effectively removing
interactivity from the application.

To ease this problem, the resolution of layered FBOs can be decreased as typical displays
does not provide much huger internal screens than flat LCDs. The resolution of drawing
target affects the count of needed shading operations.

If the original application is not bounded by amount of transformations, the use of
instancing in Geometry Shaders may help to reduce the amount of OpenGL calls and fill
the pipeline more efficiently.

Tracking the position of viewer’s eyes

Alternatively, so-called View-Dependent Light Field Displays has started emerging re-
cently [35], which actively track positions of user’s eyes and thus only require two frames
per frame, one per each eye. Instead of rendering the full quilt, only two images are thus
needed. Therefore, the duplicating part of draw calls could be altered to draw only for
images, specified by bitmask in each frame.

This would reduce the drop of frames only to half of the original’s application frame
count. Note that even if these displays render only two images, classical stereoscopic con-
version algorithms can not be used, because these two view may have a strong off-axis
transformation with respect to the original view.

6.3.2 Flatness of HUD

Any rendering technique which projects 3D positions to screen and pass such position to
transformation instead of transformation matrix itself are limited to flat 2D rendering due
to missing spatial information. Naturally, this is mostly the case for HUD, but in addition,
this may affect billboarding as well.

6.3.3 Frustum culling

The conversion layer works over subspaces of volume, provided in draw calls in current
frame. A typical optimized rendering engine will employ techniques to skip drawing of
the meshes which are invisible from the application’s point of view to prevent pipeline
operations which does not affect the resulting image, but consume resources. An example
is illustrated in Figure 6.4.

Also, during the era of fixed-pipeline rendering, such optimization was even implemented
over parts of mesh as geometry was uploaded to GPU in each draw call, and thus more
drastic clipping significantly improved the performance.

Luckily, any mesh, which at least partially affects the resulting image, is typically let to
be rendered by modern engines, which use programmable pipeline, and clipping is solved
by GPU implicitly, as the geometry is already pre-stored at GPU during draw calls.

60

Figure 6.4: An example of frustum calling in combination with conversion of application
Counter-Strike 1.6. The left-most, the original and the right-most images clearly show
missing geometry (white areas), removed by CPU-side culling.

This issue may affect side views of quilt due to missing information in draw calls.

6.3.4 Shading transformations

Applications implement shading in fragment shader based on angles or positions of lights
and position of view. In order to achieve shading which corresponds to the correct shifted
position of view, these must be altered as well. However, as no standard exists for passing
such data to fragment shader, more complex analysis is required to understand which
outputs of transformation pipeline must be changed, and this typically fails.

This limitation is clearly visible when rendering reflective materials, resulting in im-
proper specular reflections, and can be perceived in Figure 6.5.

Figure 6.5: The same reflection on golden sphere’s surface in side view (right) as in the front
view (left), caused by missing propagation of altered transformation matrix to computation
of camera-space position and pixel’s normal in Fragment Shader.

This could be solved by allowing experienced users to manually edit the injected trans-
formation shader. Changes could be associated permanently with specific shader by hashing
content of the original shader.

6.3.5 Complexity of programmable shaders

We currently use regular expressions to automatically extract metadata about used uniforms
and operations in shaders. This results in failures of detection in complex applications,
which may use variable shadowing or if-else branching. We believe this could be improved
by using a proper GLSL parser and more complex analysis.

61

Figure 6.6: Ample shows failure due to technique SSAO, which uses transformations in
Fragment Shaders. All examples were converted automatically, and originate from

LearnOpenGL’s repository.

62

Chapter 7

Conclusion

This thesis describes the process of designing and implementing software for semi-automated
conversion of 3D OpenGL applications to produce the output, suitable for autostereoscopic
displays. The major contribution of the thesis is in describing, designing and implementing
the process of conversion to multiview.

The resulting convetor is able to automatically convert simple OpenGL applications
correctly. This was tested using open-source OpenGL tutorials, which implement various
rendering techniques.

The implementation was tested by converting example applications and the performance
was measured. In conclusion, the performance varies, and it depends mostly on complexity
of the original scene. In the case of suboptimal rendering, the use of Geometry Shader to-
gether with instacing can compensate the overhead of the original application, and decrease
the performance loss.

This thesis has been succesfully presented at the student conference Excel@FIT VUT
in the form of paper. The paper was awarded by scientific commision and the conference’s
commercial partner. The resulting source codes have been open-sourced at the popular
public code repository GitHub.

Future improvements

The implementation of the thesis is rather a proof of concept than a finished product. More
complex applications may lead to crashing or invalid visual output due to missing hooks
for less frequently used OpenGL calls and extensions.

In the future, these problems could be overcomed with more thorough testing and man
hours invested in verification. A few suggestions are given in Section C.1. The robustness
could also be improved by using a proper GLSL parser for extending the pipeline and by
supporting more platforms such as Windows or MacOS, porting the convertor to DirectX,
or supporting a different window manager from X Window (such as Wayland). In addition,
the number of additional OpenGL API calls per a single original API call was not optimized
and additional reasonable improvement could be achieved here by caching state changes and
using bindless API calls for named OpenGL objects.

With a few minor changes, the implementation could also be used for converting the
applications to stereo for VR at Linux platform. As most of the similar convertors are
implemented for Microsoft Windows, this platform could benefit from such a tool.

63

https://github.com/Romop5/holoinjector

Bibliography

[1] Camera - Looking Glass Documentation. Accessed: 2021-5-07. Available at:
https://docs.lookingglassfactory.com/keyconcepts/camera/.

[2] Google Cardboard. Google. Accessed: 2021-05-07. Available at:
https://arvr.google.com/cardboard/.

[3] HoloPlay Core SDK - Looking Glass Documentation. Accessed: 2021-05-07. Available
at: https://docs.lookingglassfactory.com/holoplay-core/index.

[4] Load OpenGL Functions. Accessed: 2021-4-25. Available at:
https://www.khronos.org/opengl/wiki/Load_OpenGL_Functions.

[5] Looking Glass 8K. Looking Glass Factory. Accessed: 2021-5-17. Available at:
https://lookingglassfactory.com/8k#specs.

[6] Neil’s News. Accessed: 2021-05-07. Available at:
https://neil.fraser.name/news/2010/04/18/.

[7] Oculus Rift. Accessed: 2021-05-07. Available at: https://www.oculus.com/rift/.

[8] Quilts - Looking Glass Documentation. Accessed: 2021-5-07. Available at:
https://docs.lookingglassfactory.com/keyconcepts/quilts/.

[9] Steam Overlay (Steamworks Documentation). Accessed: 2020-04-25. Available at:
https://partner.steamgames.com/doc/features/overlay.

[10] Supported Games - vorpX - VR 3D-Driver for Oculus Rift. Accessed: 2021-4-25.
Available at: https://www.vorpx.com/supported-games/.

[11] VR Conversion for non-VR games. Accessed: 2021-4-25. Available at:
https://www.trinusvirtualreality.com/vr-conversion-for-non-vr-games/.

[12] The OpenGL©Graphics System:A Specification - (Version 3.0). The Khronos Group
Inc., September 2008. Available at:
https://www.khronos.org/registry/OpenGL/specs/gl/glspec30.pdf.

[13] The Voxon VX1, 3D Volumetric Display now commercially available. Jul 2017.
Accessed: 2021-4-25. Available at: https://www.opli.net/opli_magazine/eo/2017/the-
voxon-vx1-3d-volumetric-display-now-commercially-available-july-news/.

[14] Features - vorpX - VR 3D-Driver for Oculus Rift. Apr 2018. Accessed: 2021-4-25.
Available at: https://www.vorpx.com/features/.

64

https://docs.lookingglassfactory.com/keyconcepts/camera/
https://arvr.google.com/cardboard/
https://docs.lookingglassfactory.com/holoplay-core/index
https://www.khronos.org/opengl/wiki/Load_OpenGL_Functions
https://lookingglassfactory.com/8k#specs
https://neil.fraser.name/news/2010/04/18/
https://www.oculus.com/rift/
https://docs.lookingglassfactory.com/keyconcepts/quilts/
https://partner.steamgames.com/doc/features/overlay
https://www.vorpx.com/supported-games/
https://www.trinusvirtualreality.com/vr-conversion-for-non-vr-games/
https://www.khronos.org/registry/OpenGL/specs/gl/glspec30.pdf
https://www.opli.net/opli_magazine/eo/2017/the-voxon-vx1-3d-volumetric-display-now-commercially-available-july-news/
https://www.opli.net/opli_magazine/eo/2017/the-voxon-vx1-3d-volumetric-display-now-commercially-available-july-news/
https://www.vorpx.com/features/

[15] The OpenGL©Graphics System:A Specification - (Version 4.6). The Khronos Group
Inc., October 2019. Available at:
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf.

[16] Dlsym(3) — Linux manual page. Kernel.org, November 2020. Accessed: 2020-10-01.
Available at: https://man7.org/linux/man-pages/man3/dlsym.3.html.

[17] Ld.so(8) — Linux manual page. Kernel.org, November 2020. Accessed: 2020-10-01.
Available at: https://man7.org/linux/man-pages/man8/ld.so.8.html.

[18] Algorri, F., Urruchi, V., García Cámara, B. and Sánchez Pena, J. Liquid
Crystal Microlenses for Autostereoscopic Displays. Materials. january 2016, vol. 9,
p. 36. DOI: 10.3390/ma9010036.

[19] Azuma, R. T. A Survey of Augmented Reality. Presence: Teleoper. Virtual Environ.
Cambridge, MA, USA: MIT Press. august 1997, vol. 6, no. 4, p. 355–385. DOI:
10.1162/pres.1997.6.4.355. ISSN 1054-7460. Available at:
https://doi.org/10.1162/pres.1997.6.4.355.

[20] Beazley, D. M., Ward, B. D. and Cooke, I. R. The inside Story on Shared
Libraries and Dynamic Loading. Computing in Science and Engg. USA: IEEE
Educational Activities Department. september 2001, vol. 3, no. 5, p. 90–97. DOI:
10.1109/5992.947112. ISSN 1521-9615. Available at:
https://www.dabeaz.com/papers/CiSE/c5090.pdf.

[21] Bianco, S., Ciocca, G. and Marelli, D. Evaluating the Performance of Structure
from Motion Pipelines. Journal of Imaging. august 2018, vol. 4, p. 98. DOI:
10.3390/jimaging4080098.

[22] BlueSkyDefender. GitHub: BlueSkyDefender/Depth3D. Accessed: 2021-02-10.
Available at: https://github.com/BlueSkyDefender/Depth3D.

[23] Broxton, M., Flynn, J., Overbeck, R., Erickson, D., Hedman, P. et al.
Immersive Light Field Video with a Layered Mesh Representation. ACM Trans.
Graph. New York, NY, USA: Association for Computing Machinery. july 2020,
vol. 39, no. 4. DOI: 10.1145/3386569.3392485. ISSN 0730-0301. Available at:
https://doi.org/10.1145/3386569.3392485.

[24] Buck, B. and Hollingsworth, J. K. An API for Runtime Code Patching. Int. J.
High Perform. Comput. Appl. USA: Sage Publications, Inc. november 2000, vol. 14,
no. 4, p. 317–329. DOI: 10.1177/109434200001400404. ISSN 1094-3420. Available at:
https://doi.org/10.1177/109434200001400404.

[25] Cass, S. 3-D TV is Officially Dead (For Now) and This is Why it Failed. IEEE
Spectrum, Jan 2014. Accessed: 2021-04-25. Available at:
https://spectrum.ieee.org/tech-talk/consumer-electronics/audiovideo/3d-tv-is-
officially-dead-for-now-and-this-is-why-it-failed.

[26] Chang, A., Choi, J. and Yu, K. Ghosting reduction method for color anaglyphs.
february 2008, vol. 6803. DOI: 10.1117/12.766422.

[27] Damato, J. How does strace work? Feb 2016. Accessed: 2021-04-25. Available at:
https://blog.packagecloud.io/eng/2016/02/29/how-does-strace-work/.

65

https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://man7.org/linux/man-pages/man3/dlsym.3.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://doi.org/10.1162/pres.1997.6.4.355
https://www.dabeaz.com/papers/CiSE/c5090.pdf
https://github.com/BlueSkyDefender/Depth3D
https://doi.org/10.1145/3386569.3392485
https://doi.org/10.1177/109434200001400404
https://spectrum.ieee.org/tech-talk/consumer-electronics/audiovideo/3d-tv-is-officially-dead-for-now-and-this-is-why-it-failed
https://spectrum.ieee.org/tech-talk/consumer-electronics/audiovideo/3d-tv-is-officially-dead-for-now-and-this-is-why-it-failed
https://blog.packagecloud.io/eng/2016/02/29/how-does-strace-work/

[28] Favalora, G. Volumetric 3D Displays and Application Infrastructure. Computer.
september 2005, vol. 38, p. 37 – 44. DOI: 10.1109/MC.2005.276.

[29] Grunin, L. Looking Glass holographic display lets you interact with 3D creations like
you’re in VR – without the headset. CNET, 24. july 2018. Available at:
https://www.cnet.com/reviews/looking-glass-preview/.

[30] Holliman, N. 3D Display Systems. december 2002, vol. 38.

[31] Kellnhofer, P., Didyk, P., Wang, S.-P., Sitthi Amorn, P., Freeman, W. et al.
3DTV at Home: Eulerian-Lagrangian Stereo-to-Multiview Conversion. ACM Trans.
Graph. New York, NY, USA: Association for Computing Machinery. july 2017,
vol. 36, no. 4. DOI: 10.1145/3072959.3073617. ISSN 0730-0301. Available at:
https://doi.org/10.1145/3072959.3073617.

[32] Kovács, P. and Balogh, T. 3D Visual Experience. In:. January 2010, p. 391–410.
DOI: 10.1007/978-3-642-12802-8_17.

[33] Lang, B. Analysis: Monthly-connected VR Headsets on Steam Pass 2 Million
Milestone. Road to VR, Jan 2021. Accessed: 2021-04-25. Available at: https:
//www.roadtovr.com/steam-survey-vr-monthly-active-user-2-million-milestone/.

[34] Levoy, M. and Hanrahan, P. Light Field Rendering. In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques. New York,
NY, USA: Association for Computing Machinery, 1996, p. 31–42. SIGGRAPH ’96.
DOI: 10.1145/237170.237199. ISBN 0897917464. Available at:
https://doi.org/10.1145/237170.237199.

[35] Li, T., Huang, Q., Alfaro, S., Supikov, A., Ratcliff, J. et al. Light-Field
Displays: A View-Dependent Approach. In: ACM SIGGRAPH 2020 Emerging
Technologies. New York, NY, USA: Association for Computing Machinery, 2020.
SIGGRAPH ’20. DOI: 10.1145/3388534.3407293. ISBN 9781450379670. Available at:
https://doi-org.ezproxy.lib.vutbr.cz/10.1145/3388534.3407293.

[36] Lopez, J., Babun, L., Aksu, H. and Uluagac, S. A Survey on Function and
System Call Hooking Approaches. Journal of Hardware and Systems Security.
september 2017, vol. 1. DOI: 10.1007/s41635-017-0013-2.

[37] Martin S. Banks, R. S. A. and Watt, S. J. Stereoscopy and the Human Visual
System. SMPTE motion imaging. may 2012. DOI: 10.5594/j18173.

[38] Mehrabi, M., Peek, E. M., Wuensche, B. C. and Lutteroth, C. Making 3D
Work: A Classification of Visual Depth Cues, 3D Display Technologies and Their
Applications. In: Proceedings of the Fourteenth Australasian User Interface
Conference - Volume 139. AUS: Australian Computer Society, Inc., 2013, p. 91–100.
AUIC ’13. ISBN 9781921770241.

[39] Premecz, M. Iterative parallax mapping with slope information. In: In Central
European Seminar on Computer Graphics. 2006, p. 2006.

[40] Robertson, G., Card, S. and Mackinlay, J. Three views of virtual reality:
nonimmersive virtual reality. Computer. march 1993, vol. 26, p. 81. DOI:
10.1109/2.192002.

66

https://www.cnet.com/reviews/looking-glass-preview/
https://doi.org/10.1145/3072959.3073617
https://www.roadtovr.com/steam-survey-vr-monthly-active-user-2-million-milestone/
https://www.roadtovr.com/steam-survey-vr-monthly-active-user-2-million-milestone/
https://doi.org/10.1145/237170.237199
https://doi-org.ezproxy.lib.vutbr.cz/10.1145/3388534.3407293

[41] Ruijters, D. Integrating autostereoscopic multi-view lenticular displays in
minimally invasive angiography. january 2008.

[42] SELinuxProject. SELinuxProject/selinux. Available at:
https://github.com/SELinuxProject/selinux.

[43] Shawn Frayne, S. P. L. Superstereoscopic display with enhanced off-angle
separation. 2019. US10298921B1. Available at: https:
//patentimages.storage.googleapis.com/c4/16/67/f22fae9bc3a003/US10298921.pdf.

[44] Urey, H., Chellappan, K. V., Erden, E. and Surman, P. State of the Art in
Stereoscopic and Autostereoscopic Displays. Proceedings of the IEEE. 2011, vol. 99,
no. 4, p. 540–555. DOI: 10.1109/JPROC.2010.2098351.

[45] Yin, H., Liang, Z. and Song, D. HookFinder: Identifying and Understanding
Malware Hooking Behaviors. In:. January 2008.

[46] Zhou, Y., Guo, H., Fu, R., Liang, G., Wang, C. et al. 3D reconstruction based on
light field information. In:. August 2015, p. 976–981. DOI:
10.1109/ICInfA.2015.7279428.

67

https://github.com/SELinuxProject/selinux
https://patentimages.storage.googleapis.com/c4/16/67/f22fae9bc3a003/US10298921.pdf
https://patentimages.storage.googleapis.com/c4/16/67/f22fae9bc3a003/US10298921.pdf

Appendix A

Additional results of conversion

Figure A.1: Blending sort (LearnOpenGL)

Figure A.2: Cubemap environment mapping (LearnOpenGL): note invalid position of cam-
era in reflections.

68

Figure A.3: Scene Cubes, displayed using Looking Glass display.

69

Appendix B

HoloInjector’s Manual

B.1 Installation
Up-to-day version of HoloInjector can be found at website Romop5/holoinjector@GitHub.com.

Building of HoloInjector is based on CMake system. Prior to building, it’s necessary
to get and build the prerequisite libraries. This is done by cloneDeps.sh. The script
creates a new directory 3rd within holoinjector, and subdirectory install with results
of building.

Next, the configuration must be generated in build directory with links to prerequisites.
Finally, HoloInjector is built by entering build directory, and entering command:

$ ccmake ../ && make

Upon sucessufull build, the resulting libHoloInjector.so is placed in build directory.

B.2 Acquiring parameters of display for Looking Glass
The parameters of display could be extracted using two ways. Firstly, a specialized Holo
Play SDK is available, which allows querying of device parameters. Secondly, the parame-
ters can be extracted using a USB protocol and by decoding USB packets. An experimental
implementation by Ing. Tomáš Milet is available at Github 1.

B.3 Using HoloInjector to obtain 3D image
In order to start the injection, use LD_PRELOAD with absolute path to libHoloInjector.so.

An example of running arbitrary application from it’s directory with the injector:

$ LD_PRELOAD=/path/to/libHoloInjector.so ./app <app-specific-arguments>

Upon sucessfull loading, the application is in so-called Normal mode. In normal mode,
the rendering pipeline is not affected by the injector and the output of application should
not differ from the original application.

In order to see display-native image, Duplication mode has to be reached. This is
done by pressing key. See B.3 for specific keys.

1https://github.com/dormon/3DApps/blob/master/src/holoCalibration.cpp

70

https://github.com/Romop5/holoinjector

Important key bindings

• F1/F2
Increment/decrement horizontal offset.

• F3/F4
Increment/decrement shear coefficient.

• F5 Reset horizontal offset & shear.

• F10
Sends an event to X11 to hide the upper decoration of the window (needed for appli-
cations, running in window).

• F11
In Normal mode, pressing this key toggles Overlay menu.

• F12
Toggles between Normal Mode and Duplication mode.

B.3.1 Enviromental variables

To quickly experiment with various parameters, enviromental variables come handy. In
the following list, many of variables allow changing of internal parameters of duplication,
initiate actions upon start, or allow interesting diagnosis.

• HI_XMULTIPLIER
Initial horizontal shift.

• HI_DISTANCE
Initial distance of focus plane

• HI_NOW
Start the application already in duplication mode.

• HI_QUILT
Display quilt instead of native image in duplication mode.

• HI_WIDE
Set initial shift/distance to some non-zero value.

• HI_QUILTX
Override number of quilt X views (by default: 5).

• HI_QUILTY
Override number of quilt Y views (by default: 9).

• HI_FBOWIDTH
Override width of a single view (e.g. 128/256/512).

• HI_FBOHEIGHT
Override height of a single view (e.g. 128/256/512).

71

• HI_EXIT_AFTER
Useful for diagnostic: force kill of application after N frames. Screenshot is taken as
well. The format of screenshot name can be affected by HI_SCREENSHOT.

• HI_CAMERAID
In duplication mode, show output of camera with ID.

• HI_SCREENSHOT
Format of screenshot. See code for more details.

• HI_NONINTRUSIVE
Don’t inject shaders/programs. Useful for FPS measuring.

• HI_RUNINBG
Prevent Show() of X11 window. Useful for batch scripts.

• HI_RECORDFPS
After each frame’s swap, print frame period time (in microseconds).

B.3.2 Configuration

Apart from enviromental variables, HoloInjector can also accept config-based inputs
at predefined directories. It supports a priority loading: the top-level priority has a
config in the current working directory, named holoinjector.cfg. Next, the path
/.config/holoinjector/holoinjector.cfg is used. Finally, the settings can be speci-
fied in system-wide config in etc/holoinjector.cfg.

The list of the YAML config keys is identical to the list of enviromental variables, except
for case of letters. Therefore, the list is given without further descriptions: ”xmultiplier“,

”distance“, ”now“, ”quilt“, ”wide“, ”quiltX“, ”quiltY“, ”fboWidth“, ”fboHeight“,

”exitAfter“, ”cameraID“, ”screenshot“, ”nonIntrusive“, ”runInBg“, ”recordFPS“, ”vertex“

Overriding pipeline injector

It is possible to overide automatic settings, detected by the pipeline injector when analyzing
shader program. This is done by creating a YAML configuration file, named as a hash of
the shader. Hashes can be found using Inspector. The path to configuration files is the
current working directory by default.

• transformationMatrixName
Overrides the detected transformation matrix. Useful for complex shaders which may
use functions to compute gl_Position.

• shouldMakeProgramInvisible
Prevents rendering of the geometry using this shader program. Useful if the conversion
fails, and one would like to permanently disable the invalid produced geometry.

B.3.3 In-application menu

The purpose of In-application menu is to control various parameters in run-time and to
trigger futher actions such as forcing window to turn to a fullscreen or to show an inspector.

72

Figure B.1: Overlay menu.

73

Appendix C

For further developers

Debugging an application with complex set of states and inputs can be hard to manage.
This section thus attempts to give reader a few tips which were empirically expererienced
during creation of this thesis.

C.1 Testing the injector
Typical software projects involve tests at different levels, be it unit tests or system tests,
to provide a mechanism for making sure that the quality and stability of project does not
decrease over time.

Creating tests, however, requires developer to separate functionality into isolated units
with well-defined functionality. This has proven not to be feasibile while developing HoloIn-
jector. In order to test parts of the injector which maps OpenGL calls to different ones,
one would have to mock up a whole OpenGL driver with respect to OpenGL specification.

C.1.1 Regression testing

As such task was unbearable and costly for a one-year job, different approach was choosen.
In order to test the project, one has to use existing applications such as OpenGL tutorials to
feed the injector with. Regression is then achieved as manual comparision of visual results
between different commits.

This applies to parts of code which immediately use OpenGL or which call other com-
ponents. The rest of code consist of algorithms and data structures, which can be isolated
and tested separately, so the project also employes limited regression testing using unit
tests.

C.1.2 Idea: A concept of automated testing

As such manual regression testing becomes soon repetitive, this text comes up with a
concept of automatization, which was not implemented due to time constrains, but the
injector contains at least parts of infrastructure, serving as building blocks for further
developement of testing.

The idea of automated testing over existing applications is following: most of applica-
tions are deterministic themselfs. The stochasticity raises from external sources such as
random number generators or time clocks.

74

In order to test regression, one could possibly identify contemporarily working examples
for which injector gives correct visual results. Next, one or multiple screenshots under use
of the injector would be created and stored. Afterwards, this process would repeat each
time a regression test is run, comparing the most recent screenshot with the reference
one. Provided the same rendering machine, graphics card and driver is used for rendering
both reference and tested image, the comparison of two same-resolution non-compressed
images should give exact match. In practise, a sum of absolute differences would be used
with reasonable epsilon for introducing robustness due to possible errors, caused by various
defects such as hard-disk errors or non-deterministic outputs of renderer itself.

For applications, which depends on stochascity of external components, a specific dy-
namic library would be created which would overload such stochastic generators with deter-
ministic ones. For instance, one can replace random number generator with a well defined
sequence of numbers, or system clock with a monotonous increasing function.

C.2 Tips for debugging
Due to lack of code coverage via unit tests, debugging of the injector stands for a serious
challenge with identifying the smallest example of existing applications.

Even if you manage to find such application, understanding the problem relies on getting
a deep insight behind the scenes.

This section provides a few techniques to start with when feeling overwhelmed of the
problem’s complexity.

C.2.1 Exploiting git bisect for fun and profit

When doing many small incremental changes, a mistake or logical error can be simply
identified even without having look into code explicitely.

This can be achieved by the tool named git bisect which allows us to quickly identify
the first commit which introduced the change which broke the code.

This technique is, however, only usable if the error happened after introducing change
somewhere in the past.

The usage is pretty straightforwad. At first, mark the current (or the commit you know
that does not work) using a command git bisect bad. Next, just find the last commit
for which the code you are trying to debug was working well, and mark it as a git bisect
good. The tool will lead you over each commit in logarithmic manner.

The user’s experience can be made even smoother with creating a command or script file
with command which change directory to build, builds the project, starts the test program,
and finaly let you decide whether the current commit is good or bad.

C.2.2 Application overlay

Upon succesfully loading the injector into application, a overlay GUI should be available
with possibility of manipulating with parameters used for the injection, as described in
user’s manual.

In addition, the injector also provides an inspector - a graphical widget, which dumps
the information tracked by the injector.

Currently, inspector shows following tracked entities:

75

• shader programs & shaders
The inspector allows you to list intercepted programs and the attached shaders. For
each program, the displayed metadata includes state of injection or linkage, giving
you insight whether program is correctly drawing. When a problematic program is
identified, the attached shaders can be investigated to find out what sort of shaders
result into failure of injection into transformation pipeline. The inspector also allows
to make shader/program invisible to help you identify the geometry that the program
is responsible for being drawn.

• frame buffer objects
The inspector shows tracked FBOs together with their attachements. If attachment is
a 2D texture, the texture is rendered, giving you insight whether rendering is correct.

C.2.3 Using different logger’s levels

The injector differentiates between several levels of logging.

• error level
This level includes messages of fatal errors which will affect the visual result with
high probability. Such errors mostly happen once a time, typically when a resource is
started to be tracked or when creating an additional resource (for instance shadowing
texture) with improper format.

• info level
Regular message logs and possibly warnings, which does not affect rendering result,
but gives insight about the current state of injector on load etc.

• debug level
The purpose of debug level is to give developer more information about the state of
injector on events which does not happen regularly. This may include the creation of
resource as well, but with more detailed information, including hints on reasons why
different paths in decisions of the injector were taken.

• per-frame debug level
This level includes log messages on events that happen repeatedly in every frame, such
as draw calls or system message events. The purpose is to give a simplified exhaustive
log of important procedure calls, dispatched by the injector. For a complete trace of
OpenGL’s calls, it’s advised to use an utility for API tracing. See section C.2.4 for
more details.

C.2.4 API tracing

The most descriptive insight into the state of calls to OpenGL can be achieved by using
so-called API tracer. API tracers are tool which inserts a wrapping layer over underlying
API interface and trace any API call to underlying interface during the run-time.

The trace is recorded and can be analyzed offline using specialized tools, which allows to
see parameters of specific API calls. In addition, the OpenGL’s state and resources at the
time of API call can be analyzed and inspected, and violations of OpenGL’s specifications
together with programming errors are reported as well.

Such tools are ultimate solution for solving problems such as black screen despite logs
and code give you idea of correct resource binding.

76

The major disadvantage is the count of API calls. For typical application with many
meshes, multiple draw passes and the injector working, a single frame can have up to several
thousands of API calls. This may significantly increase the time for replayer to look-up the
state for given API call.

Even then, the trace will not show the internal state of the injector. This can be
partialy relieved with disusing OpenGL’s string functions such as glGetUniformLocation
and providing log message as a string parameter at the cost of false alarms in the log of
errors.

77

Appendix D

Content of enclosed CD

3rd
glm-master.zip
imgui-master.zip
simplecpp-master.zip

holoinjector
build
cloneDeps.sh
cmake
CMakeLists.txt
LICENSE
media
README.md
src
tests

holoinjector-tests
dataset_helpers
examplesList.txt
fpsGenerator.sh
fpsResults
generateReadme.sh
getDataset.sh
README.md
results
runDataset.sh

README.md
thesis
video.mp4
video1.mp4
video2.mp4
video3.mp4
video4.mp4
xdobia11.pdf

78

	Introduction
	Introduction to displaying methods
	Overview of 3D displaying
	Autostereoscopic displays
	Conclusion of 3D displays
	From light fields to Native images of 3D displays
	Converting 3D applications to multiview displays
	Conclusion

	Theory of application hooking
	Motivation for hooking
	Definition of hooking
	Hooking OpenGL's API
	Conclusion

	Designing the conversion layer
	Ultimate goal of conversion
	Modifying fixed-pipeline rendering
	Inspecting programmable pipeline
	Layered framebuffers
	Instanced Geometry Shader Rendering
	Conclusion

	Implementation
	Overview of implementation
	Overview of platform-depedency
	Code quality

	Experiments
	Test setup
	Measuring performance
	Limitations

	Conclusion
	Bibliography
	Additional results of conversion
	HoloInjector's Manual
	Installation
	Acquiring parameters of display for Looking Glass
	Using HoloInjector to obtain 3D image

	For further developers
	Testing the injector
	Tips for debugging

	Content of enclosed CD

