
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

HTTP APPLICATION ANOMALY DETECTION
DETEKCE ANOMÁLIÍ HTTP APLIKACÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR VLASTIMIL RÁDSETOULAL
AUTOR PRÁCE

SUPERVISOR Mgr. Ing. PAVEL OČENÁŠEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav informačních systémů (UIFS) Akademický rok 2020/2021

 Zadání bakalářské práce

Student: Rádsetoulal Vlastimil
Program: Informační technologie
Název: Detekce anomálií HTTP aplikací
 HTTP Application Anomaly Detection
Kategorie: Web
Zadání:

1. Seznamte se s principy analýzy anomálií v prostředí systémů počítačových sítí.
2. Analyzujte požadavky na systém umožňující analýzu HTTP provozu a modelování

standardního a detekci nestandardního chování aplikací (např. u přechodů mezi stránkami
apod.)

3. Navrhněte systém pro detekci anomálií dle předchozího bodu a dle instrukcí vedoucího
práce.

4. Navržený systém implementujte.
5. Implementovaný systém ověřte vhodně zvolených na reálných datech.
6. Diskutujte získané výsledky a možnosti dalšího rozšíření.

Literatura:
Kurose, J. F. Computer networking: A top-down approach. Pearson, Essex, 2017, ISBN
978-1-292-15359-9.
Stallings, W. Network security essentials: Applications and standards. Hoboken, 2016, ISBN
978-0-13-452733-8.
Bishop, M. Computer security: Art & Science. Addison-Wesley, Boston, 2003, ISBN
0-201-44099-7.
Buczak, A., Guven, E.. A Survey of Data Mining and Machine Learning Methods for Cyber
Security Intrusion Detection. IEEE Communications surveys and tutorials. IEEE, 2016, 18(2),
s. 1153-1176.
Kruegel, Ch., Vigna, G. Anomaly Detection of Web-based Attacks. In: Proceedings of the
ACM Conference on Computer and Communications Security. ACM, Washington, DC, USA.
2003.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Očenášek Pavel, Mgr. Ing., Ph.D.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2020
Datum odevzdání: 12. května 2021
Datum schválení: 27. října 2020

Powered by TCPDF (www.tcpdf.org)

Zadání bakalářské práce/23896/2020/xradse00 Strana 1 z 1

Abstract
The goal of this work is to introduce anomaly detection principles and review its possibilities,
as one of the intrusion detection methods in HTTP traffic. This work contains theoretical
background crucial for performing an anomaly detection on HTTP traffic, and for utilising
neural networks in achieving this goal. The work proposes tailored design of an anomaly
detection model for concrete web server implementation, describes its implementation and
evaluates the results. The result of this work is successful initial experiment, of modeling
normal behavior of HTTP traffic and creation of the mechanism, capable of detection of
anomalies within future traffic.

Abstrakt
Cieľom tejto práce je predstaviť princípy a odhaliť možnosti detekcie anomálií v HTTP
prevádzke, ako jednej z metód, pre detekciu pokusov o prienik do webových systémov.
Táto práca obsahuje teoretický základ, kritický pre detekciu anomálií v HTTP prevádzke
a pre využitie neurónových sietí, k jej implementácii. Práca predstavuje dizajn modelu pre
detekciu anomálií, ušitý na mieru pre konkrétny webový server v tejto práci, opisuje jeho
implementáciu a hodnotí výsledky. Výsledok tejto práce je úspešný prvotný experiment,
ktorý spočíva v modelovaní bežnej, neškodnej HTTP prevádzky a vytvorení mechanizmu,
ktorý je schopný detegovať anomálie v budúcej prevádzke.

Keywords
anomaly, detection, autoencoders, HTTP, neural, networks

Kľúčové slová
anomália, detekcia, auto-enkóder, HTTP, neurónové, siete

Reference
RÁDSETOULAL, Vlastimil. HTTP Application Anomaly Detection. Brno, 2021. Bache-
lor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Mgr. Ing. Pavel Očenášek, Ph.D.

Rozšírený abstrakt
Cieľom tejto práce je predstaviť princípy a odhaliť možnosti detekcie anomálií v HTTP pre-
vádzke, ako jednej z metód, pre detekciu pokusov o prienik do webových systémov. Táto
práca obsahuje teoretický základ, kritický pre detekciu anomálií v HTTP prevádzke a pre
využitie neurónových sietí, k jej implementácii. Na to je potrebné porozumieť základným
princípom fungovania HTTP protokolu. Práca predstavuje základné súčasti tohoto pro-
tokolu, akými napríklad sú HTTP požiadavky a odpovede, alebo jednotlivé hlavičkové polia
HTTP požiadaviek. Ďaľšia časť kapitoly o HTTP vysvetľuje, kde sa protokol nachádza, z
pohľadu modelovania sietí pomocou sieťových modelov. Základné bezpečnostné riziká a im-
plementačné zraniteľnosti, sú vysvetlené na konci tejto kapitoly, z toho niektoré, vybrané,
sú vysvetlené podrobnejšie. Ako možnosť využitia neurónových sietí, pre účely detekcie
anomálií, je v práci predstavená neurónová sieť, v podobe auto-enkódera. Implementačná
časť je naprogramovaná v jazyku Python, ako široko používaným programovacím jazykom,
pre vedecké účely. Pre účely modelovania neurónových sietí a ich následného spustenia,
je využitý nástroj TensorFlow, ktorý je predstavený v kapitole o detekcii anomálií. Práca
predstavuje dizajn riešenia pre detekciu anomálií, ušitý na mieru, pre konkrétny webový
server, ktorého HTTP prevádzka bola nasimulovaná spoločnosťou GREYCORTEX s.r.o.,
počas penetračného testovania implementácie tohoto servera. Táto prevádzka je nutne
rozdelená do dvoch častí, na neškodnú prevádzku a na prevádzku, ktorá obsahuje HTTP
požiadavky, prichádzajúce serveru počas útokov na neho. K implementácií je použitý už
vyššie spomenutý auto-enkóder, ktorý sa natrénuje pomocou spracovaných častí požiada-
vok neškodnej prevádzky, v podobe URI. Detekcia anomálií potom spočíva v tom, že tento
model by mal byť schopný s určitou presnosťou skopírovať svoj vstup, na svoj výstup. Keďže
bol tento model natrénovaný s pomocou dát z neškodnej prevádzky, dáta zo škodlivej pre-
vádzky nebude vedieť zrekonštruovať a vyprodukuje rekonštrukčnú chybu, vyššiu ako je
stanovený limit, pre určenie anomálie. Táto chyba sa potom porovná s hraničnou hod-
notou, ktorá sa stanoví pomocou súčtu priemeru vypočítaného z rekonštrukčných chýb
normálnej prevádzky a experimentálne získanej fixnej hodnoty. Táto hodnota býva zvyča-
jne tri smerodatné odchylky distribúcie dát. Práca opisuje implementáciu navrhnutého
modelu a hodnotí výsledky a výstupy, dosiahnuté experimentami. Výsledok tejto práce
je úspešný, prvotný experiment, ktorý spočíva v modelovaní bežnej, neškodnej HTTP pre-
vádzky a vytvorení mechanizmu, ktorý je schopný detekovať anomálie v budúcej prevádzke.
Na záver práce sú zhodnotené výsledky práce a navrhnuté možné implementačné zlepšenia,
vrátane nápadov pre budúce návrhy, oveľa komplexnejších systémov pre detekciu anomálií,
ktoré by mohli byť schopné, dynamicky vyhodnocovať HTTP požiadavky, alebo presnejšie
ich dávky, v reálnej prevádzke.

HTTP Application Anomaly Detection

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work un-
der the supervision of Mgr.Ing.Pavel Očenášek, Ph.D. The supplementary information was
provided by Ing.Peter Chmelář, Ph.D and Ing.Marina Volkova, Ph.D from GREYCOR-
TEX s.r.o. All the relevant information sources, which were used during preparation of this
thesis, are properly cited and included in the list of references.

. .
Vlastimil Rádsetoulal

May 12, 2021

Acknowledgements
Hereby I would like to express my sincere appreciation for the help of my supervisors
Mgr.Ing.Pavel Očenášek, Ph.D., for the initial consultations and peaceful work, and Ing.Peter
Chmelář, Ph.D. for his always optimistic attitude during online consultations and all the
information and help provided. I would like to express the same level of appreciation for
the help and information from Ing.Marina Volkova, Ph.D.

Contents

1 Introduction 3

2 Hypertext Transfer Protocol 4
2.1 HTTP and its Versions . 4
2.2 HTTP on OSI . 5

2.2.1 Layered Network Models . 5
2.2.2 ISO OSI Model . 5
2.2.3 Where is HTTP . 7

2.3 HTTP Messages Overview . 8
2.3.1 Request Methods . 8
2.3.2 Request Header Fields . 9
2.3.3 Response Status Codes . 10
2.3.4 HTTP Request URI . 11

2.4 Attacks on HTTP . 11
2.4.1 Injection . 11
2.4.2 Broken Authentication and its Automated Attacks 12
2.4.3 XML External Entities (XXE) . 12

3 Anomaly Detection 14
3.1 Critical Questions in Anomaly Detection . 15
3.2 Anomaly Detection Outcomes . 16
3.3 Anomaly Detection Approaches . 16
3.4 Autoencoders . 17
3.5 TensorFlow . 19

3.5.1 TensorFlow Keras Layers . 19

4 Design and Data 21
4.1 Data Source and Preparation . 21
4.2 Data Preprocessing . 22

4.2.1 The Text Vectorization Layer . 23
4.2.2 The Embedding Layer . 24

4.3 The Autoencoder Architecture . 24

5 Implementation and Results 27
5.1 Implementation Tools . 27
5.2 Implemented Functions . 27
5.3 The Autoencoder . 29
5.4 The Script for Anomaly Detection . 30

1

5.4.1 Further Improvements . 31
5.5 The Results . 32

6 Conclusion 35

Bibliography 36

2

Chapter 1

Introduction

The importance of internet security implementations is raising year by year, as the internet
and the world-wide web became an indisputable parts of our everyday lives. Malicious
actors from all over the world, are constantly attempting to take an advantage of different
vulnerabilities within web application implementations to steal sensitive data, interrupt
services, generate an income and more.

In pursuit of securing the networks of organisations and their web systems, there are
multiple layers of the protections implemented. From firewalls and secure configurations,
to user access control, to malware protection or patch management. One of the networking
elements that needs to be protected from various types of attacks is the one, that the end
users come in contact with the most. It is the application layer, more specifically web
applications on HTTP. As this applications come in contact with the world, connected to
the internet, their security robustness is critical. One of the methods to prevent adversaries
from achieving their goals, is intrusion detection. In this work we will try to detect malicious
incoming HTTP messages. For this purpose we will be looking at potentially malicious,
abnormal HTTP requests and we will talk about them as anomalies. An anomaly stands for
deviation from norm. In order to define such norm, we will be modeling normal behavior
of HTTP traffic. We will be exploring the possibilities of neural networks, concretely
autoencoders, in reaching our goal. We will try to model norm of HTTP web server traffic,
provided by GREYCORTEX s.r.o., from which has this assignment landed. After successful
modeling of the norm, we can perform anomaly detection, that should detect abnormal
HTTP requests, in comparison to this norm.

In this journey we will need to introduce basic components of HTTP, the version used
in mentioned traffic, where does HTTP stand in terms of networking models and some of
the critical vulnerabilities and risks in chapter 2. Then to understand anomaly detection
problematic, to understand neural networks in form of autoencoders and to introduce the
powerful tool TensorFlow, was chapter 3 created. The chapters 4 and 5 describe the design,
data preprocessing needed, implementation parts and results of our concrete experiment.

3

Chapter 2

Hypertext Transfer Protocol

In this chapter we will discuss Hypertext Transfer protocol’s brief version history and its
version evolution. We will then go more in depth examining its messages and also explaining
its position on OSI model. At the end we will have a look at some known attack possibilities.

2.1 HTTP and its Versions
According to [5] The Hypertext Transfer Protocol is an application-level protocol that pro-
vides lightness and speed necessary for distributed, collaborative, hypermedia information
systems. It is a generic, stateless, object-oriented protocol suitable for many tasks, through
extension of its request methods. A feature of HTTP is the typing of data representation,
which allows systems to be built independently of the data being transferred. HTTP has
been in use by the World-Wide Web global information initiative since 1990. HTTP is a
request/response protocol in which HTTP client sends requests to the server listening for
TCP [20] connections, usually on ports 80 and 443, depending on whether secure version
of protocol is used or not. However ports may vary depending on server implementation.

The first version of HTTP denoted as HTTP/0.9 is very simple where requests consist
of one line and was used for transfer of raw data across the internet. This version has not
been standardized and initially had no version number.

In terms of standardization the first version to be officially defined in RFC document is
HTTP/1.0. It is defined and described in RFC1945. In this protocol messages are allowed
to be in MIME-like format and contain meta-information about transferred data and other
modifiers in requests and responses [13]. However first documented version of protocol
is lacking consideration of some important technical aspects such as caching, proxies or
persistent connections. Counting all these reasons and some more there was a need for
protocol version change, which resulted in defining HTTP/1.1 in RFC2616. This RFC has
then been obsoleted by series of RFC documents RFC7230-RFC7235.

Despite the fact, that HTTP/2 provided as standard in [3] is the latest version of
HTTP and HTTP/3 is in development, for now as an internet draft, we will explain general
information about HTTP from the series of RFC documents about HTTP/1.1. The reason
for this is also the fact, that provided HTTP traffic of the web server in this work is in this
protocol version.

4

2.2 HTTP on OSI
In computer networks it comes to great importance harmony between hardware and software
elements. For easier understanding of complicated network architectures, the networks are
described divided into parts. This leads to creation of layered models where these parts are
layers interconnected rather functionally than physically [1]. As one of the reasons for using
layered models to describe computer networks is to simplify understanding of the network
model, it is crucial to know on which layer do we operate when working with networking
elements. We chose to describe ISO OSI model, due to its higher granularity than in case
of TCP/IP, leading to greater understanding of individual steps taken in modeling network
services. This section will briefly lead us in knowing where HTTP is and for that the
information from [1] is going to serve us.

2.2.1 Layered Network Models

There are several reasons to use the description of computer networks in form of layered
models summarized and presented in [1]:

• Simplification of understanding the network model.

• The network layering based on functions eases implementation, as the functions of
each layer are consistent and distinct. Then programming software implementations
and designing hardware based on its functionality within the layer is easier.

• The troubleshooting of the network is able to be separated into troubleshooting of
individual layers and thus a potential error can be isolated and corrected within its
layer without affecting other network functions.

• The development and implementation of the functions in each layer can be focused on
its own duties and the protocols specifically designed for each layer are more efficient,
meanwhile the lower layers of the model are maintaining the transparency towards
higher layers.

Two main standard layered models are ISO OSI and TCP/IP pictured in 2.1

2.2.2 ISO OSI Model

The ISO OSI model consists of seven layers shown in the left part of 2.1. Each layer of
ISO OSI model handles data in its specific unit called Protocol Data Unit from now on
referenced as PDU. Some layers add layer-specific information in form of a header, a trailer,
or both to the data. The header is situated at the beginning of the PDU and the trailer
information at the end. The information within the header and trailer is used for controlling
the communication between two entities on the layer [1].

Network devices such as routers, switches, network interface cards and more usually
operate in the bottom three layers and the hosts in the whole seven layers. Let’s take a
look at each layers brief explanation, but not going too much in depth, as it would be out
of the scope of this work [1].

Physical Layer handles data as raw bits thus the PDU for the physical layer is a bit.
The purpose of this layer is to transparently transmit bits from the data-link layer of the

5

Figure 2.1: OSI and TCP/IP layered models: left OSI model, right TCP/IP model.
Adopted from [1].

sender to the data-link layer of the receiver. This transmission not only includes data, but
also additional control information. Physical layer protocols used then vary depending on
the type of physical medium and the signal transmitted. The signal can be represented and
sent as an electrical voltage in cables, light signals in fiber links, or even through the air in
form of electromagnetic signal [1].

Data-Link Layer provides us with PDU in form of a frame. It servers the network with
multiple functions such as controlling the inter-connections of data-circuits within physical
layer, identification and parameter exchange, error in transmission detection, relaying and
more [1].

Network Layer has a PDU unit known as a packet. This layers is responsible for
routing the data from one network and controlling the subnet, relaying. It provides network
connections between transport layer entities by utilising the data-link connections available.
It handles segmentation and blocking of the packets in case of different data-link standards
and packet sizes. It not only detects errors using notifications from the data-link layer and
its own detection mechanisms, but can in some cases provide recovery from them. It assures
maintaining the sequential order of the packets and controls the flow to prevent flooding
its destination with excess data. Network layer is capable of many more tasks, but this is
only a brief explanation and is sufficient for our imagination of the layer’s work [1].

Transport Layer uses a segment as PDU and provides two different types of ser-
vices depending on whether connection needs to be established or not. These divide into
connection-oriented communication and connectionless. The two most common transport
protocols used in accomplishing these goals are Transmission Control Protocol (TCP)[20]

6

and User Datagram Protocol (UDP)[19]. In connection-oriented communication, where the
protocol TCP is used, this layer provides additional end-to-end error detection, establish-
ment and release of transport connections, segmentation of the data into segments at the
sender and reconstruction at the recipient. It is also capable of monitoring Quality of Ser-
vice parameters and PDU delimiting, in order to maintain the continuity of communication.
Important part of its functionality is also sequence control, for ensuring warranty of the
data arrival in unchanged sequence from the sequence initially sent. The transport layer
also helps the session layer to differentiate which data belongs to what session [1].

Session Layer unlike other previously mentioned layers does not have its own PDU
representation. It handles the data in the form that it is provided. The purpose of the
session layer is to support organization of the communication of presentation entities, when
multiple simultaneous communication sessions take place. It is responsible for starting the
sessions between communicating entities, token management, which serves to identify which
entity owns the token for data transmission. Session layer as well provides mapping session
connections to transport connections [1].

Presentation Layer serves for the data form negotiation with another communicating
entity. After successful negotiation it can provide multiple different services to application
layer such as encryption, compression and translation. The application then may choose
which services it wishes to use [1].

Application Layer defines the services and functions provided at user end. The pro-
tocols used in application layer vary depending on the type of user data to be transferred.
The layer defines different acceptable Quality of Service parameters for each service pro-
vided. It also decides what security mechanisms should be used, such as access control or
authentication and in connection-oriented services the application layer is responsible for
synchronization of these services [1].

2.2.3 Where is HTTP

In one sentence HTTP is an application layer protocol. If we take a look at the definition
in [11] stating that HTTP is a stateless application-level request/response protocol with
extensible semantics and self descriptive message payloads and review its message semantics,
we will come to knowing that HTTP does not need take an advantage of any stored context
on server. Although HTTP does provide mechanisms for state management in [2] in form of
cookies, its concept of session is different from that in OSI model. In terms of presentation

layer, some of its functions may be included within HTTP request in form of request header
fields, such as content negotiation. Then data encryption is used by HTTP’s secure version
HTTP over TLS described in [22].

Thus HTTP somehow ”touches“ all top three layers of OSI model, but it’s functions
cannot be strictly assigned by one of them, except for application layer. For simplicity
it is much more suitable to consider TCP/IP model pictured in the right part of 2.1,
where HTTP would simply belong to application layer. On both layered models HTTP
servers use transport layer to listen to the incoming connection’s over Transmission Control
Protocol(TCP) [20].

7

Figure 2.2: Example of HTTP request.

2.3 HTTP Messages Overview
Hypertext Transfer Protocol is based on client-server architecture and as we already know
message of the protocol is either a request or response. A server listens on a connection
waiting for a request, to be able to parse received message. Then its task is to interpret
the message semantics and respond to the request related to desired source. A Client on
the other hand creates request messages and examines received responses from server. We
will be working with HTTP requests in our Anomaly Detection so in this section we will
take a look at request messages and possible responses from server. The information in this
section is retrieved from [12].

When we retrieve HTTP request from packet capture file we can see it contains multiple
fields and its tokens alongside with request message and optionally content data in payload.
The figure 2.2 shows us an example of request message and its header fields.

2.3.1 Request Methods

The request method is the indicator of the client’s intentions and primary source of the
semantics of request. It also defines the expected response by client from server. The
standardized methods in HTTP are not specific for the resource and should have the same
semantics applied to any resource upon definition. Then it is up to each resource to deter-
mine whether the proclaimed semantics are implemented or allowed [12].

The following are standardized methods commonly used in HTTP, defined by [12]:

• GET: method requests to transfer a current representation of the target resource.

• HEAD: method requests to transfer only the status line and header section of the
resource.

8

• POST: used to perform processing that is specific for the resource on the request
payload.

• PUT: method requests to create or replace the state of target resource representations
with the request payload.

• DELETE: method prompts to remove all current associations between the target
resource and its current functionality.

• CONNECT: requires from server to establish a tunnel identified by the target resource.

• OPTIONS: this method serves for the description of communication options for the
target resource.

• TRACE: method requests for a remote, application-level loop-back of the request
message and must not contain payload data.

It is expected from all general-purpose servers to support methods GET and HEAD,
but other methods are optional, depending on implementation [12].

2.3.2 Request Header Fields

Request header fields purpose is to provide more information about the request context,
suggest preferred formats for the expected response, provide authentication credentials,
modify the request processing or even make the request conditional based on the resource
state [12]. Request header fields divide into these groups:

• Controls

• Conditionals

• Content Negotiation

• Authentication Credentials

• Request Context

Controls shown in figure 2.3 are request header fields that are responsible for directing
specific handling of the request. For example Expect header field can inform server, that
client wishes to send large message body in this request with token ”100-continue“. Then
client waits for the indication, represented by response code 100, if it is worth sending
message body in advance, before actually sending it.

Conditionals request header fields allow client usage of precondition on the state of
target source, before execution of the action related to requested source, which has to be
decided by this precondition. The evaluation portion of such condition depends on the
request method semantics and conditional [10].

Content negotiation header fields sent by user agent help in proactive negotiation about
the response content. For example Accept field is used to determine the media types that
are acceptable by user agent in the response. Or Accept-Charset field used to help to
identify different char set capabilities of user agent [10].

9

Figure 2.3: Controls request header fields and their definitions in RFC documents. Picture
adopted from [12]

Authentication credentials type of header fields contain two header fields responsible
for deliverance of authentication credentials, which are alongside authentication further
explained and defined in [9]. Two header fields present in this group are Authorization and
Proxy-Authorization.

Request context header fields provide some additional information about user agent in
field User-Agent. The User-Agent field helps servers to identify range of interoperability
problems and avoid user agent limitations. There is also field with name From used for
storing contact information, concretely e-mail address of person controlling the requesting
user agent [12].

2.3.3 Response Status Codes

In our anomaly detection we will not really take into consideration responses from the server
as we are going to detect anomalous requests from clients and the modeled system will not
need to include server responses. However, there are ways to use server responses, pairing
them with according client requests for anomaly detection. For tnhe completion we can list
and describe the main groups from [12]:

• 1xx: responses beginning with number 1 are of Informational character e.g., the
request was received or continuing process.

• 2xx: this group of responses are indication of success and may tell us, that the request
was received, understood and accepted.

• 3xx: indicates redirection, meaning further action in order to complete the request
are needed.

• 4xx: client error response codes that server sends when the request either contains
bad syntax or cannot be fulfilled. For example requested resource is not present.

• 5xx: server error response codes signalling the server failure to fulfill an apparently
valid request.

10

2.3.4 HTTP Request URI

There are many different ways for adversaries to exploit HTTP protocol. HTTP request
fields are easy to modify for the needs of an attacker. In our anomaly detection we will
focus strictly on HTTP request URI.

URI stands for Uniform Resource Identifier which is divided into subsets Uniform Re-
source Locator and Uniform Resource Name. In HTTP URI identifies the resource for which
the request should be applied. URIs used in HTTP are represented in either absolute or
relative form [4].

2.4 Attacks on HTTP
In today’s world and historically the awareness of security threats across computer networks
is on slow rise. On the other hand attackers are faster and willing to exploit any vulnera-
bilities created in quick development, especially in web applications as they are widely used
and often operate with sensitive data. Addressing this problems a nonprofit foundation
The Open Web Application Security Project(OWASP) created standard awareness docu-
ment for developers of web applications and purposes of web application security, about the
most critical security risks [14]. We will review this list of top ten critical security risks to
web applications and recognize which ones of them can we consider for anomaly detection
algorithms.

The following is full list of top ten critical security risks provided by [14]:

• Injection

• Broken Authentication

• Sensitive Data Exposure

• XML External Entities (XXE)

• Broken Access Control

• Security Misconfiguration

• Cross-Site Scripting XSS

• Insecure Deserialization

• Using Components with Known Vulnerabilities

• Insufficient Logging and Monitoring

2.4.1 Injection

Different types of injections such as SQL, NoSQL, OS , or LDAP injection occur, when
part of a command or query contain malicious, untrusted data sent to an interpreter. This
data can trick the interpreter into accessing, editing or removing data without legitimate
authorization or even in executing commands [14].

11

There are multiple reasons why application could be vulnerable for such attacks. If
data supplied by user is not validated, filtered or sanitized before interpreting or dynamic
queries or non-parameterized calls are used directly in the interpreter without context-
aware escaping. Even when stored procedures are parameterized, they can still introduce
SQL injection if PL/SQL or T-SQL processing extensions concatenate queries and data,
or executes malicious data with EXECUTE IMMEDIATE or exec(). The best prevention
proposed by OWASP is simply code review followed by thorough testing of all parameters,
headers, URL, cookies and different data type inputs processed [14].

In addition to usage of safe APIs, avoiding the use of the interpreter entirely or at least
providing parameterized interface, usage of SQL controls within queries, escaping special
characters with specific escape syntax given by interpreter for any residual dynamic queries
and more, anomaly detection could provide great first contact protection against incoming
hostile data. By detecting anomalous portions of queries, cookies or other injection vectors
in HTTP traffic even an otherwise vulnerable web-application attacks could be avoided [14].

2.4.2 Broken Authentication and its Automated Attacks

In order to prevent authentication-related attacks, securely implemented confirmation of
user identities, authentication, and session management are essential. In case of incorrect
implementation of functions responsible for authentication and session management within
web applications, several security incidents might take place. From credential theft, sensi-
tive information leaks to compromising the whole system. For example if application does
not implement automated threat or credential stuffing protections, attackers are free to
use millions of valid username and password combinations for automated injection in or-
der to gain access to accounts. It is also dangerous if system permits usage of insufficiently
strong or well-known passwords, such as ”12345“ or combination of password and username

”admin/admin“. Some other weaknesses could be unencrypted or weakly hashed passwords,
exposure of Session IDs in the URL, improper rotation of Session IDs after successful login
and their invalidation [14].

There are multiple ways anomaly detection algorithms might be useful in detection of
such attacks. In case of credential stuffing and other brute force or automated attacks
anomaly detection algorithms would need to be able to recognize unusually large number
of authentication attempts and evaluate the traffic as anomalous. It would be important
that the anomaly detection mechanism would work not only with single HTTP requests,
but with batches of them so it would find if the requests sent to the server had any logical
connection [14].

2.4.3 XML External Entities (XXE)

Some applications use or allow usage of the XML format for data transmission between the
client and the server. The principle of this vulnerability lies in the fact that many older
or poorly configured XML processors evaluate references to external entities within XML
documents. These external entities then can serve attackers in disclosing internal files using
the file URI handler, internal port scanning, denial of service attacks or even remote code

12

execution. If applications accept XML directly from untrusted sources and allow input of
untrusted data into its XML documents, they are vulnerable to attackers interfering with
their internal processing of XML data [14].

An example of such external entity can be Uniform Resource Identifier, that is de-
referenced and evaluated in the processing of an XML document.[16]. There is also pos-
sibility that when HTTP server usually expects to receive the messages in default forms,
such as Content-Type: application/x-www-form-urlencoded it can also accept other content
types as well as XML. Then if adversaries use XML formatted requests, they can try to
exploit XXE vulnerabilities [14].

In the case of uploads, hypothetical anomaly detection algorithm could be able to rec-
ognize, that usually web application, that it is working with, is not used to receive data in
XML format and mark this attempt as anomalous. Then some security analyst would be
able to decide whether some hidden intentions were persuaded [14].

13

Chapter 3

Anomaly Detection

The main focus of this work is to detect anomalies in HTTP traffic. There are many different
approaches and use cases for anomaly detection, but let’s first take a look at the definition of
anomaly and its detection possibilities. This chapter mainly follows information published
in [18].

In one sentence, anomalies are substantial variations from the norm. Anomalies are also
called outliers, as these samples or even whole datasets ”lie“ in noticeable distance from
data, that is considered normal.A Good example to picture anomaly is results of an IQ test.

The usual expected value of one’s IQ test results is around 100, with a standard deviation
of 15. If someone scores in such test one standard deviation higher or lower, this is not
considered an anomaly, despite this result varies from the norm. The result that is around
three times standard deviation from the mean, in this case it would be for example 145,
but also 65, is to be considered anomalous. This example is simple and only uses single
quantitative attribute (IQ score) with an unimodal distribution, from well-known statistics.
Most of the problems solved by anomaly detection algorithms are multidimensional, and
may involve nominal or categorical variables[18].

In statistics categorical variable places an individual into one of several groups or cat-
egories on the basis of some qualitative property [8]. Categorical variables might also be
used in our HTTP traffic anomaly detection. For example taking into consideration HTTP
method in combination with content-length and request URI could identify some anomalous
requests that don’t usually occur in previously defined normal traffic. Another possibility
would be using User-agent field to help to identify unusual usage of obsolete browsers, with
several vulnerabilities that adversaries may take an advantage of. The problem with this
approach is, that we would need very large dataset of HTTP requests and still legitimate
browsers accessing the server, that are not common or new, would be marked as an anomaly.
We will discuss this problem in implementation section of this work.

Anomaly detection principle is based on models and predictions achieved from past
data. The statistics used to describe behaviour or characterize a system in the past will
continue to characterize behaviour or system in the future [18].

In HTTP traffic we can simulate normal traffic in closed environment using web appli-
cation or system how it was intended. If the simulation is extensive and varied enough we
can expect to see similar traffic in the future. In some real cases, data that changes over

14

time, for example increasing heights or lifespan among humans, can be characterized by
long-term trends, or by cyclic behavior. Changes in structure of web application or system
need to be taken into consideration and recreating or adjusting the previous model could
become necessary.

3.1 Critical Questions in Anomaly Detection
It is important to ask questions presented in [18] modified for needs of this thesis and answer
them, before deciding what approach to take in anomaly detection. These questions are
relevant to the formulation of anomaly detection algorithms:

• How is the norm characterized ?

• What to do in case of multiple substantially different cases considered as normal ?

• What is substantial variation in our particular problem ?

• How do we address multi-attribute data ?

• How do we solve changes occurring over time ?

The norm is in our case characterized as HTTP traffic on the server, which is not affected
by any misuse or attack. The traffic consists of HTTP requests, achieved by simulation
of casual user’s behavior in the system. It is important to simulate the traffic in closed
environment, as if we used real traffic when server is connected to the internet, there is no
affirmation that some otherwise anomalous samples or even blocks of samples are getting
into our modeled normal behavior. It is also important to note, that there are attacks which
do not look anomalous at first glance. For this type of attacks, anomaly detection is not
suitable and should be used in the combination with other intrusion detection techniques.

The structure of HTTP web applications or systems typically does not allow substan-
tially different cases of usage. There might be instances of some less used parts of the
system, that could cause minor variation in normal traffic model, however these would not
be significant enough and with well suited simulation might not vary at all.

The substantial variation as we mentioned before is usually three times standard devi-
ation from the mean of the distribution. But when it comes to HTTP requests how do we
decide the distribution of requests ? First of all we need to identify in which attributes do
requests vary and then create enumeration of the observations of each attribute in order
to create their distribution. We could also take combinations of attributes and enumerate
these, where the most common combination of attributes would situate in the distribution
around the mean and some unseen combinations of attributes could mean an anomaly.
In our case we will use an autoencoder to determine reconstruction error of normal and
anomalous data, where we will calculate the mean of normal data reconstruction errors and
compare attack data reconstruction error with threshold, determined by adding multiples
of standard deviation of the distribution of normal data reconstruction error’s. We will
discuss more about determining this threshold in the implementation chapter 5.

Addressing multi-attribute data problem is cut off due to the fact that we will at first
only use HTTP request URIs for modeling normal system behavior, therefor only one

15

attribute is present. In case we would like to use multiple fields from HTTP request, we
could still create sequences of multiple attributes, or combine multiple models which would
process attributes on their own. Similar approach is used in [6] which we will examine later.

The biggest concern is raised when it comes to addressing changes that happen over
time. It would be great if system, that model will be created for would never change, but
in information technologies world, implementations change fast. This creates need for easy
to update model representing what we consider as normal behavior. In practice it means,
as we will use machine learning, retraining the model.

3.2 Anomaly Detection Outcomes
When system norm is defined and anomaly detection algorithm applied, there are three
possible outcomes, that should be taken into consideration [18]:

• Correct detection

• False Positives

• False Negatives

Correct detection is a desired outcome, where detected abnormality in data is in fact
anomalous and is not part of the expected process. In real-life systems it is impossible to
achieve anomaly detection where only the correct detections occur. This leaves room for
false positives and false negatives. False positive outcome in anomaly detection happens
to look anomalous, but is accepted by our perception of the intentional behavior of the
system. On the other side of unwanted outcomes are false negatives. In this case anomaly
detection doesn’t catch an anomaly that occurred in the system, due to abnormality being
insufficiently significant [18].

To address false positives and false negatives we can aim to only estimate the possibility
of sample being anomalous rather than simply answering whether it is abnormal or not.

3.3 Anomaly Detection Approaches
In this section we will take a look at anomaly detection approaches in computer networking
systems and cyber-security as it is important to review all the possibilities and character-
istics, that have been researched, before designing own solution.

According to [18]The main approaches of anomaly detection can be divided into three
primary groups:

• Distance-based

• Density-based

• Rank-based

16

Distance-based group of approaches suppose that points that are farther from others are
considered more anomalous. This Approach addresses fuzziness of anomalies, and take into
account that some anomalies might be more or less anomalous as others. In density-based
group, points are to be more anomalous when they lie in relatively low density regions.
Rank-based approaches state, that the nearest neighbours of the most anomalous points
have different nearest neighbours, than these anomalous points [18].

The nature of the data for this approaches may vary in terms of supervision. Three
cases of this data are following [18]:

• Supervised: training data possess classification labels and the comparisons and dis-
tances are with respect to labeled training data.

• Unsupervised: there are no labels known, therefor comparisons and distances are
applied to entire data set.

• Semi-supervised: in this case there are provided some labels for example samples of
new malware or malicious http request containing SQL injection and a semi-supervised
learning algorithm may find similarities in other unlabeled cases and determine their
membership in the same category.

In our anomaly detection attempt the data for learning the norm of HTTP traffic
on server are of unsupervised character. The data are retrieved from penetration testing
session of GREYCORTEX s.r.o. which was divided into simulating normal behavior of
clients using web-system and attacking part. There are no provided labels, however for
the training data we will only use the normal behavior part. Even though in unsupervised
anomaly detection algorithm one of the characteristics that should be met is dynamically
defined normal behaviors, in our work we should first experiment with the possibilities
of implementing anomaly detection algorithm for given purpose and only then move to
automatising the learning process.

For HTTP traffic detection it is meaningful to use distance-based anomaly detection
approach. It is in place to ask a question how to determine whether one observed HTTP
request is farther from another. There are multiple attributes, that could be taken into
consideration in answering this question. How to decide the metrics for comparison of
HTTP requests ? These questions are some of the critical for implementation of our anomaly
detection algorithm.

3.4 Autoencoders
During the research of possibilities of anomaly detection in HTTP traffic one option stood
out with its elegance and prospect of utilising deep learning techniques. It is apparently
usage of autoencoders. Let’s take a look at what autoencoders are, what different types of
them are known and how can we use them in anomaly detection. The information we will
use in this section is from [15].

An autoencoder is a neural network trained to attempt to produce output from its
input. The word attempt is important because rather than autoencoder’s output being

17

Figure 3.1: The general architecture of autoencoders. Encoding an input x with encoder
f to internal representation or code h, decoding it with decoder g and mapping it to the
output r. Adopted from [15]

identical copy of the same autoencoder’s input, it can vary depending on reconstruction
error. It wouldn’t be especially useful to just copy inputs to outputs, therefor autoencoders
are usually designed and trained to be unable to learn to copy perfectly. The models are
accounting this fact forced to prioritize which aspects are important for the characteristic
input and thus often learn the most remarkable and characterizing properties of the data
[15].

Autoencoder has an internal hidden layer h that describes a code used to represent initial
input. We can imagine this as some kind of compression algorithm. This neural network
consists of two parts encoder and decoder. Encoder is the part already mentioned, which
creates an internal representation of the input and decoder then produces reconstruction of
the input providing it at the output of whole network [15]. This architecture can be seen
in figure 3.1.

The main reason to construct autoencoders is apparently not copying inputs to outputs,
but as we have previously mentioned, it may help in obtaining useful features from the data.
One way to obtain such features is to constrain the dimension of internal representation of
the input, making it smaller than an initial dimension of the input. Such an autoencoder is
then called undercomplete and this type of an autoencoder is forced to capture the most
relevant features of the training data. The Learning process of this type of autoencoder is
then described as minimizing a loss function, where loss function is penalizing dissimilarities
of the output of the decoder portion from input of the autoencoder. Loss function can for
example be mean squared error. However if these autoencoders are given too much capacity,
they struggle to obtain or learn any useful information from the input data. On the other
hand if dimension of input data is equal to dimension of the hidden code, the autoencoder
can learn to copy the input to output without learning anything useful about the input
data. The same problem persists in overcomplete autoencoders, where the hidden code
has dimension greater than input [15].

18

3.5 TensorFlow
In our work we will be using TensorFlow interface for implementing and running machine
learning algorithms. It is important to introduce some of its features and terminology, as we
will be using it in the design of our model and its data preprocessing in chapter 4, and the
implementation chapter 5. Some of the terminology and theory applies to machine learning
in general, but something is exclusive for TensorFlow. The majority of the information in
this section comes from [21] and from TensorFlow online guides and blogs.

TensorFlow is a scalable and multi-platform programming interface, developed by the
researchers and engineers of the Google Brain team, used for the implementation and run-
ning of the machine learning algorithms, including convenience wrappers for deep learning
[21]. The Tensor in its name stands for multi-dimensional array, which has an uniform
type, called dtype, where all tensors are immutable, meaning that you cannot update the
contents of a tensor, only create a new one [25].

TensorFlow utilises high-level application interface (API) called Keras, which we will
be using in achieving our goals in implementation. The initial release of Keras was as
a standalone API, that could leverage Theano as a back-end, and later the support for
TensorFlow was added. Theano is Python library used for defining, optimizing, and efficient
evaluation of mathematical expressions involving multi-dimensional arrays [17].

Model in machine learning is a function with learnable parameters. It maps an input
to an output. The training of the model on data, can then obtain the optimal parameters.
In TensorFlow, one of the ways for creating a machine learning model, is by using the
Layers API. The most common type of model is the Sequential model. It is a linear stack
of layers, where each layer has exactly one input and output tensor. It is not appropriate
when we need model with multiple outputs and inputs, or any of the layers within the
model does [26].

3.5.1 TensorFlow Keras Layers

There are many different layers for use in TensorFlow models. In our anomaly detection
solution and autoencoder neural network we will use four different layers. The Text Vec-
torization Layer, the Embedding Layer, the Flatten Layer for the text preprocessing and
the Dense Layer for the construction of an autoencoder.

The Text Vectorization Layer provides basic options for managing text data in a
Keras model. It is used to transform a batch of strings, where one sample of the data
represents one string, into either list of token indices, or a dense representation. In list of
token indices, each word of the string has its unique integer value assigned and in dense
representation each sample is one dimensional tensor of float values representing data about
the tokens. This layer provides ability to use its method adapt() on a dataset, analyzing
the dataset, determining the frequency of individual string values and creating vocabulary
from them. The vocabulary can have either limited or unlimited size. When the limit of the
vocabulary is present, the layer will use the most frequent terms to create the vocabulary.
This layer also contains method for text standardization which by default is lowering the
case and stripping the punctuation. This layer is also capable of creating n-grams, which
are slices of the string of the length n characters. In some modes, such as binary, count

19

and tf-idf, the layer by default pads the output to maximal number of tokens[27]. The Text
Vectorization Layer of TensorFlow’s Keras API is a little bit different from what we define
as our text vectorization layer in chapter 4, but it is a significant part of it.

The Embedding Layer provides embedding functionality within Keras API. The word
indices created by text vectorization layer, can be converted into input features in different
ways. One of them is applying one-hot encoding to the token indices, converting them
into vectors consisting of ones and zeros. If we are working with larger vocabulary, that
contains many words, this vector will be of the size of this vocabulary, resulting in very
sparse features. This is highly inefficient as all the features would be zeros, except for the
one representing the word. The embedding is on the other hand much more effective, as we
can map each word to a vector of fixed size. The size of the embedding vectors can be much
smaller than the number of unique words within the vocabulary, to be able to represent
them as input features. Since the embedding layer in a neural network is trainable, it can
manage to extract salient features from these words and sequences [21].

The Dense Layer is a building block for our autoencoder architecture described in
chapter 4. The TensorFlow guide [24] describes the dense layer as regular densely-connected
neural network layer. A dense connection of layers means, that each neuron in a layer
receives an input from all previous neurons. The dense layer applies activation function to
the input and provides it to the output. The scheme of such activation function is following:

activation(dot(input, kernel) + bias)

where input is an input provided to a layer, kernel is a weights matrix created by the
layer, bias represents a bias vector created by the layer and a dot() function calculates a
dot product between the input and the weights [24].

20

Chapter 4

Design and Data

In this chapter we will introduce the data used for modeling the norm of HTTP traffic of
targeted web server and the attack data used for testing anomaly detection outcomes. We
will review the data retrieval and its following preprocessing needed in order to use it in the
neural network. For this purpose we need to describe additional preprocessing layers for
text vectorization and embedding and then we can introduce overall design of autoencoder
neural network used for anomaly detection.

4.1 Data Source and Preparation
The data we use in our anomaly detection attempt comes from penetration testing session
of GREYCORTEX s.r.o. provided by Petr Chmelář. The goal of this session was to create
data suitable for optimization and testing of methods used for HTTP traffic analysis with
emphasis on repeatability and possibility of automatized generation of normal as well as
malicious HTTP traffic. Among the main goals was to obtain information about normal
traffic, detection of security risks and vulnerabilities introduced and explained in [14] and
chapter 2. For this purpose the team prepared safe environment including web server with
representative applications, disconnected from the internet and automatisation and testing
frameworks. The server(Apache) contained installed applications of content management
system WordPress, e-learning system Moodle, Prestashop e-shop and intentionally vulner-
able application WebGoat.

In the first part of the session divided into repeatable experiments focused on generating
unharmful HTTP traffic by using various browsers including Firefox, Chrome, Internet
Explorer and Safari. There was around twenty scenarios committed on all applications
with seventy-eight executions. For example in case of WordPress creation of page, adding
or removing items in the e-shop, purchasing or canceling the order before payment, etc. In
the second part of the penetration test, separated by time gap, were tested vulnerabilities of
web applications using open and free to use tools for penetration testing and vulnerability
detection such as OpenVAS, Nessus, Metasploit, Hail Mary, Hydra, SQLmap, BurpSuite
and more.

Besides the side scripts gathered using Selenium framework allowing for further gen-
eration of more data, the team obtained packet capture files of the network traffic during
testing. This packet capture files are source of the data used for modeling the normal

21

behaviour of HTTP traffic in our neural network. These were then parsed into Comma
Separated Values(CSV) format using network protocol analyzer TShark. Using this tool
we separated the HTTP layer of the packet. Initially the intentions were to use multiple
HTTP request header fields, but after consultation with Petr Chmelář, we decided to only
use HTTP request URI field in the beginning of such project. We agreed, that in case of
successful modeling of HTTP traffic norm and anomaly detection based on created model
using request URIs, we can design and implement more complex anomaly detection al-
gorithm with other request header fields in the future, detecting other different types of
anomalies in HTTP traffic. The packet capture files were fortunately divided into parts
where normal traffic was separated from the one with attacks, so we could easily parse these
files one by one with TShark into separated CSV files with following command line:

tshark -r 1.pcapng -Y ’http.request.method == POST or http.request.
→˓ method == GET’ -T fields -e frame.time -e http.request.uri -E
→˓ header=y > normal.csv

Where -r option specifies a capture file from which to read. -Y is a display filter which
selects packets matching following filter. In our case we choose to use HTTP requests whose
request methods are either POST or GET. -T option is used to set the format of the output
of decoded packet data, in form of fields, followed by options -e specifying the values to
choose, that would create columns of these values [7].

Now as we know the steps needed for preparation of our data for their usage in our
anomaly detection, we can move to describing the design of the data preprocessing.

4.2 Data Preprocessing
The nature of our data is in text form. With previously mentioned preparation, we obtained
data set in comma separated values format, consisting of strings representing chosen request
header fields. Then each header field has its own place and in case of construction of a data
set will represent one column. In order for neural network model in form of an autoencoder
to be able to work with the data provided, the data cannot be in form of a string. First of
all we need to be able to represent words within the strings as numbers and then create a
vector out of them, that can be passed into the model input.

The processing of samples, which in our case are HTTP request URIs 1, contains the
following steps:

• Standardization of samples.

• Splitting samples into substrings (words).

• Tokenization of substrings, which also includes indexing of the tokens in form of
associating unique int values with tokens.

• Transformation of tokenized samples using this index into dense float vector.
1We do not use full request URIs including protocol specification and host as this information does not

change throughout the whole data. Our request URIs are all from the same server.

22

These steps are then processed within additional preprocessing layers that add to the
core autoencoder neural network. The main two layers are The Text Vectorization Layer and
The Embedding Layer. Our preprocessing design also includes the layer used for flattening
the output of the embedding layer, but since it only serves as dimension reduction, we will
describe it alongside with the embedding layer.

4.2.1 The Text Vectorization Layer

The text vectorization layer of TensorFlow is responsible for standardization of samples with
standardization method and tokenization of substrings. In our design we can differentiate
between the text vectorization layer of our architecture and the text vectorization layer
implemented in TensorFlow. The layer from TensorFlow needs to be provided with samples
divided into words to be able to tokenize them. First we need to decide how to split HTTP
request URI string into such words. Then the layer will be able to create vocabulary from
this words. However the text vectorization layer of our architecture, is defined as all the
steps of the preprocessing, before training TensorFlow’s text vectorization layer and the
final vectorization using this layer.

In natural language text preprocessing the substrings that would samples be split into
would represent words of the sentences, which would represent the samples. We do not
process natural language and instead of sentences we posses HTTP request URIs. They
have parts separated with numerous special characters, in order for interpreters being able
to distinguish these parts. We can also use this parts as our substrings and define separator
as one of the listed special characters:

"\, /, +, =, ?, &, %, . and ,"

However we cannot split with:

" - " or " _ "

as these characters are included within some of the names in our data set, therefor these
would be split incorrectly.

Following URI sample:

/moodle/mod/quiz/processattempt.php?cmid=30796

will then transform into sequence of words, separated by white space character:

moodle mod quiz processattempt php cmid 30796

The standardization method of natural language text input usually includes lower-casing
and punctuation stripping. We do not have reasons to do otherwise, therefor standardiza-
tion part of our Text Vectorization Layer transforms samples into lower case and strips the
punctuation.

Large data sets usually need to have vocabulary size specified as there would be too
many words. Then the most common words are chosen and according to their count within
given data set, assigned a token. In our case we are not operating with very large data set

23

and can use all words, that we managed to get from splitting URI samples. This would
leave us with vocabulary of size 8252 words.

After passing our input data into the layer, in form of sequences of the words, we will
get sequences of integer indices. Now these sequences are of variable length. However, we
need to have sequences of the same length for our neural network. The last step of this
part of the preprocessing of the data, would be to use padding to compensate for shorter
sequences with zeros, attaching them to the end of each incomplete sequence, to the length
of the longest sequence within the data set.

4.2.2 The Embedding Layer

The Embedding layer of our model is responsible for transformation of tokenized samples
using positive integers (indices) assigned to them, into dense vectors of fixed size.

Some of the parameters when designing such a layer are input dimension, output dimen-
sion and whether or not are masking and padding used for the input data of the layer. By
crafting the text vectorization layer we also received its vocabulary as the part of it. The
length of resulting vocabulary will then represent the input dimension of our embedding
layer.

The next task is deciding the size of the output dimension, which would represent
number of floats within each vector, representing the word in the sequence of the sample.
This value is usually empirically decided and adjusted for the purposes of the designed
model and according to its results. However [23] proposes ”general rule of thumb“ about
the number of embedding dimensions. They state, that the embedding vector dimension
should be the fourth root of the number of categories. The number of categories is in our
case the number of words in our vocabulary. So when we calculate the following formula:

4
√
𝑉 = 4

√
8252 ∼= 9.5310 ≈ 10

where V is the length of our vocabulary, we will get approximate dimension size for our
embedding layer. We can then experiment during the implementation by either increasing
or decreasing this number and see, what works best for this concrete problem.

The output of the embedding layer would then lead to the input of the flattening layer,
which reduces the dimension of the data from shape (samples, words, vectors) to (samples,
words*vectors).

4.3 The Autoencoder Architecture
After the data is retrieved from CSV file, preprocessed with The Text Vectorization Layer
and The Embedding Layer it can be used for training the autoencoder. It is important to
say, we need to train the autoencoder only with the normal, unharmful HTTP traffic data,
as the principle of our anomaly detection is evaluation of the reconstruction error produced
by the autoencoder. The hypothesis is, that in attempting to reconstruct the attack data

24

with its internal representation of the normal data, the reconstruction error will be higher
by at least set threshold, than the reconstruction error of the normal data reconstruction.

The autoencoder neural network, shown in the figure 4.1, is divided into two Sequential
models, an encoder and a decoder. The encoder is responsible for dimension reduction of
the data provided to its input. By doing this, it can learn some useful properties of the
data. It consists of four Dense layers, where one of them is an input layer and remaining
three are hidden layers. Each one of these layers cuts the previous dimensions of the input
into half. The output of the last hidden layer of the encoder, is connected to the input of
the decoder.

The decoder is responsible for attempting the data reconstruction. It as well as the
encoder consists of four layers. The autoencoder parts can be used separately, but in the
mode of autoencoder, the input layer of the decoder is hidden. This input layer is then
followed by two additional hidden layers, where the dimension of their inputs increase two
times over each layer. The last, output layer of the decoder, has the same number of output
neurons as the number of features provided on the input of the autoencoder. Every layer of
the autoencoder uses activation function relu, except for the output layer, that uses linear
activation function.

25

Figure 4.1: The Autoencoder Neural Network’s architecture. Each list in the graph rep-
resents one layer of the autoencoder. The additional information provided in each layer is
activation function and input and output shapes. Left: encoder part, right:decoder part
of the model.

26

Chapter 5

Implementation and Results

This chapter contains information about implementation details and the results of anomaly
detection algorithm. We will introduce some of the remaining tools, used to accomplish the
implementation goals, that have not yet been mentioned. We will also discuss some of the
workarounds needed in the implementation and possible improvements for the future.

5.1 Implementation Tools
The implementation is realised in programming language Python as it is one of the most
popular programming languages for data science. Even though the performance of in-
terpreted languages, which Python is, for difficult computation tasks is lower than the
performance of lower-level programming, its extension libraries such as NumPy, built on
lower layer Fortran and C implementations, are enabling fast, vectorized operations on
multidimensional arrays. The version of Python used in our implementation is Python
3.8.

The data extraction from packet capture files provided by GREYCORTEX s.r.o. is
achieved by using TShark, network protocol analyzer. This tool is listed here for the
completion of tools used, but it was not used in the implementation part. It was used in
order to prepare suitable data set for the model and its use is described in chapter 4.

The data extraction from CSV file, its representation in form of dataframes and op-
erations on this data is provided by open source Python Data analysis Library, Pandas.
For the data manipulation, in form of high-level mathematical functions, is used Python
library NumPy. The version number of NumPy used during the implementation is 1.19.4.
Machine learning library Sklearn provides our implementation with function for splitting
the training and the test data. For graphical outputs is used Python plotting library Mat-
plotlib.

5.2 Implemented Functions
Our anomaly detection is implemented in Python script anomalydetection.py, which consists
of multiple functions needed for the realisation of the data preprocessing, autoencoder
training and evaluation of the test and attack data. These functions are following:

27

• get_data(filename, encoding)

• df_to_dataset(dataframe, shuffle, batch_size)

• vectorize_text(dataset)

• prediction(model, normal_data, attack_data, test_data)

• fit_model(model, epochs, batch_size, data)

• plot_loss(history)

The get_data() function requires one positional argument filename, specifying the location
of the data in CSV format. It reads this file and parses it into dataframe using pandas func-
tion read_csv().It has one more optional argument which, specifies the encoding of the data
to be used (default encoding is UTF-7). The dataframe has three initial columns, as they
are present in the dataset. The columns are HTTP request method, HTTP content-length
and HTTP request URI. We agreed to use only HTTP request URI in our implementa-
tion as usage of the other two, would create more complex implementation requirements.
Therefor, this function drops this columns and also removes rows of the dataframe, that
contain None values. Part of the preprocessing from the Text Vectorization layer, that we
have defined in chapter 4, already happens in this function. This function also iterates over
the HTTP URI strings within dataframe and splits them into sequences of words separated
by white space character. The function returns retrieved and processed dataframe.

Another function in the list is the df_to_dataset() function. It is the function used to
transform pandas dataframe into TensorFlow dataset. This transformation is needed for the
data used for creation of vocabulary, as it is the easiest way, how to provide the sequences of
split words, into adapt() method of TensorFlow’s TextVectorization. The function requires
one positional argument, dataframe, which specifies the dataframe to be transformed. The
function also provides ability to shuffle data within the dataset. To enable shuffling, the
optional boolean argument shuffle needs to be set to True. The function also provides
combining consecutive elements into batches and pre-fetching of the elements, which helps
to improve latency as later elements of the dataset are prepared at the time of processing
of the current element. The last optional argument specifies the batch size. Throughout
other parts of the implementation, except from the adapting of the text vectorization layer,
the implementation uses pandas dataframes. However, this function might come in use, in
case of further implementation iterations.

The vectorize_text() function is responsible for initialization of the text vectorization
layer. It either uses adapt() method of TextVectorization or directly passes the vocabulary
into initialization of the text vectorization layer. The location of vocabulary to be used,
is specified by the optional argument vocabulary. It is also capable of saving the newly
created vocabulary, when the optional boolean argument save is set to True. The saved
vocabulary is in CSV format and at this point for read-only purposes. In order for this
saved vocabulary to be used, slight adjustments to the functions are required. The function
returns initialized text vectorization layer, ready to be used.

The function essential for the anomaly detection is prediction(). It is used for the
evaluation of the attempts to reconstruct the attack data and the test data by the au-
toencoder. It requires four positional arguments. The first argument, model, specifies the

28

autoencoder used for the prediction. The remaining three arguments are for the normal,
attack and test data, in this order. First of all the function uses the autoencoder to predict
the normal data. For this the method predict() of the autoencoder is called with the input
set to the normal data. This method returns reconstructions predicted by the model, which
should be very similar to the input data. Then the function for calculation of the mean
squared error, mse(), between the input normal data and the predicted reconstructions of
the normal data is called. This function is included within Keras losses functions. This
will leave us with the list of mean squared error values. The majority of this values, should
be relatively low, as the autoencoder model, provided to the function, was trained on the
normal data. The function then proceeds to calculation of the fixed threshold, which is the
value, used to decide if the reconstruction errors of the upcoming test data, are high enough
to be considered anomalous. In other words, if the reconstruction error between the input
test data sample, is higher by this threshold than the reconstruction error of the predicted
test data sample, this sample is considered anomalous. This value is calculated by adding
the mean of the reconstruction errors of the normal data to one standard deviation of the
reconstruction errors of the normal data. The final calculation is comparing the reconstruc-
tion errors of the samples of the test data and the attack data with the threshold. The
function does not have return value, but it prints the percentage of the anomalies within
the test data and the attack data on the standard output. It also plots the graphs of the
distribution of the reconstruction errors of the attack and the normal data.

The fit_model() function is used to define callback function, in form of an early stop,
that finishes the training of the model in case of unchanging validation loss, with patience
of ten epochs. The next step within the function is to call fit() method on the model,
which is part of Keras Model and is responsible for training the model on the input data.
Our function requires four positional arguments. The arguments are model, epochs, batch
and data. The model argument is expected to be compiled form of Keras model, as in this
function it will be fit with the data and trained. The second argument specifies number of
epochs of the training cycle. The third argument is used to define batch size of the data,
in order for more optimal data handling. The last argument expects input data, that the
model will be trained on. The function returns a history object, which is an attribute to
record the training loss values and metrics values at each successful epoch. It also contains
validation loss values and validation metrics values as we opt to monitor it.

The last function plot_loss() is used to plot the losses values during the training. It
requires one positional argument history, which is returned by the fit() method of the
model. It pictures the evolution of train loss and validation loss values, over the epochs, in
single graph. This function does not have return value.

5.3 The Autoencoder
The implementation of the autoencoder, shown in listing 5.1, within our script is in form
of python Class called AutoEncoder. Its base class is TensorFlow’s Model. AutoEncoder
consists of two attributes, in form of keras sequential models, the encoder and the decoder.
It also defines method call(self, x), which is responsible for autoencoder’s logic. It
receives input data x and encodes them using its encoder. Following is the decoding of
internally encoded data and finally the function returns data as decoded. The output shapes

29

of the layers within the autoencoder can be seen as the first argument in Dense(). The
second argument is the activation function for each layer.

class AutoEncoder(Model):
def __init__(self):

super(AutoEncoder, self).__init__()
self.encoder = tf.keras.Sequential([

tf.keras.layers.Dense(1024, activation="relu"),
tf.keras.layers.Dense(512, activation="relu"),
tf.keras.layers.Dense(256, activation="relu"),
tf.keras.layers.Dense(128, activation="relu")])

self.decoder = tf.keras.Sequential([
tf.keras.layers.Dense(256, activation="relu"),
tf.keras.layers.Dense(512, activation="relu"),
tf.keras.layers.Dense(1024, activation="relu"),
tf.keras.layers.Dense(1580, activation="linear")
])

def call(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded

Listing 5.1: Implementation of the autoencoder class.

5.4 The Script for Anomaly Detection
So far we have explained the implementation of the functions within the script, the autoen-
coder class and now, we have to take a look at its core. The algorithm part of our anomaly
detection, is situated in main function of the anomalydetection.py and it uses functions
explained in section 5.2, for its tasks. In this section we will explain behavior of this main
function, which includes retrieving the data, preprocessing it, training the model with the
normal part of the data and evaluating the predictions.

The first thing that the script does is, that it uses get_dat() function in order to
retrieve HTTP traffic, that has been previously merged into one CSV file called data.csv.
The initial part of the preprocessing already happens in this function. It prepares the
sequences, that are in form of HTTP URI strings, by splitting them into words. This is
closely explained in the chapter 4. This data is then split into two pandas dataframes, to
separate the normal traffic from malicious. It was achieved by manually searching for the
time gap within the packet capture files, as it is how GREYCORTEX s.r.o. team, that
performed the penetration tests on the web server, decided to separate normal traffic and
attacks on the server.

The portion of the data within the dataframe, that represents normal HTTP traffic is
then split into training and test data, where the test is fifteen percents from total amount
of normal data. Some of the functions within the script require to know maximal length

30

of the sequence, consisting of words within each sample, therefor the longest sequence was
identified and maxlen variable set to 158.

The script then proceeds to converting the training portion of normal data into dataset,
using function df_to_dataset(), as it is needed for use by the text vectorization layer of
TensorFlow. The next step is to adapt new text vectorization layer, which will be used for
this model, either by using vocabulary locally stored, or by using adapt() method of the
TextVectorization. All of this does function vectorize_text() which is called with our
newly formed dataset. It returns layer which the script uses for text vectorization of each
parts of the data separately.

After the text vectorization layer is successfuly created and trained with normal data,
resulting in creation of vocabulary, the length of its vocabulary can be used to initialize the
embedding layer of TensorFlow.

Following step of the script is, that on all the data parts, which are normal training
data, normal test data and attack data, script applies preprocessing layers. First the
text vectorization layer is used, followed by padding the sequences to maxlen, then the
embedding layer is applied and finally, the Flatten() reduces the shape of the output from
the embedding layer by one dimension.

In the next part an instance of AutoEncoder is created. This is then compiled into
model, using adam optimizer and mse as a loss function. The model is then trained on
normal train data, with recommended number of epochs to be two hundred 1. Straight
after the training of the model is finished, plot_loss() function plots validation loss and
train loss progress during the training.

Up until this point, the script has preprocessed the input data, split it into different
parts and created the model, that is trained to be able to encode and reconstruct the data,
that is similar to our normal HTTP traffic sample. The last task of the script is to call
the function, responsible for prediction, prediction(). This function proceeds to try three
different encoding-decoding attempts on all of our three parts of the data. First the normal
data reconstruction, from which can be calculated the threshold to detect the anomalies, as
mentioned in section 5.2. The function and the script then prints the result of the anomaly
detection to standard output in form of two lines, with percentage of detected anomalies
within attack and test data. It also plots some kind of distribution, in form of histogram,
of the reconstruction errors of normal and attack data.

5.4.1 Further Improvements

The implementation of the anomaly detection will be in future most likely split from the
modeling of normal behavior. However, this implementation was only an initial experiment,
to determine if such anomaly detection can be successful. The script for anomaly detection
can be significantly improved for features such as automatic retrieval of the traffic and its

1The number of epochs is relatively high due to the fact, that we want to achieve high level of recon-
struction of normal data and teach the model its most salient features. During the trial-error part of the
implementation, experiments with lowering the number of epochs resulted in lower capability of the model
to detect the anomalies.

31

evaluation. It could also be able to mark single samples of anomalies within live traffic.
The modeling part then could be re-trained on larger portions of the data, and for exam-
ple trained for an anomaly detection within whole web system implementation scenarios,
that use different kind of applications. Also the current state of the script requires for
every experiment conducted, the model to be retrained. This is not an issue if you are
experimenting with the shape of the model and new data, as it would be required anyway.

5.5 The Results
The results of our anomaly detection experiment, that consisted of modeling the normal
HTTP traffic of given web server, should reflect the capability of our detection mechanism,
to differentiate between an anomalous and expected HTTP traffic. For this purpose we
have split our training and test data, to be able to compare the prediction of percentage of
anomalies, within test and attack data.

The portion of the test data is retrieved by a split function, which shuffles the samples
within normal data, therefor we will at each iteration of re-training of the model, get slightly
different approximations of the percentage of anomalies. This is also caused by the fact,
that each time while using this function, we are training the model with different portions of
the normal data, therefor the expected noise within test data, affects the resulting anomaly
approximation differently. However, this helps us to verify, that the implementation of our
autoencoder, gets its job done, in different layouts of the training data.

Let’s take a look at different outputs of our anomaly detection, starting with the simple
text output. When we try to run our script multiple times, with same parameters includ-
ing number of epochs, the proportion between test and normal data, and the proportion
between validation and training data, described in previous parts of this chapter, we will
get fairly similar outputs, shown in listing 5.2. We achieved these results with setting the
number of epochs to three hundred, splitting the normal and test data by fifteen percent
and validation and training data by ten percent. The number of up to five percent of ap-
proximated anomalies within the test data, in each of these outputs, is caused by the fact,
that we have truly small data set for modeling the normal network, therefor some scenarios
of the application usage or some noise could propagate into this approximation of the per-
centage of anomalies. On the other hand, the percentage of anomalies within attack data is
significantly higher. It is not near one hundred percent, because it is almost impossible to
provide the server with only attack requests. It also characterizes the intensity of the pen-
etration test and the sensitivity of our anomaly detection, to abnormally looking requests.
After consultation of these results with Petr Chmelář, we agreed, that this approximated
percentage of anomalies within the attack part of the data set, could represent the amount
of malicious HTTP requests.

The following are graphical outputs in figures 5.1 and 5.2, that will help us to demon-
strate the distribution of reconstruction errors within normal data and attack data recon-
struction attempts. For this experiment, we have adjusted the percentage of the test data,
split from the normal data, to five percent, to be able to use larger portion of the normal
data for the training. The number of the epochs remained the same.

32

1. Percentage of anomalies in attack data: 61.72
Percentage of anomalies in test data: 3.11

2. Percentage of anomalies in attack data: 69.94
Percentage of anomalies in test data: 5.20

3. Percentage of anomalies in attack data: 70.61
Percentage of anomalies in test data: 4.28

Listing 5.2: Listing of three different outputs, from separate model trainings.

Figure 5.1: The distribution of the reconstruction errors of the autoencoder, for normal
data samples. Note that reconstruction errors have metrics prefix 1e-4.

The plots of the figures need to have limited number of examples to 1250, for better
visibility of higher reconstruction errors. As we can see in figure 5.1 the majority of the
reconstruction errors lie within the range of 0 to 2.5e-5. This is caused by the fact, that our
autoencoder is trained on this data, therefor its reconstruction does not generate high error
values. On the other hand the attack data reconstruction errors, shown in the figure 5.1,
are more widely spread. The majority of reconstruction errors of the attack data samples
is in range of 0 to 4e-4. This is the result of high frequency of the anomalies within the
data set and the autoencoder not being able to reconstruct such abnormal data.

The last picture, that can be seen in figure 5.3, shows the progress of the loss of the
training loss and the validation loss functions during the training of the model. This
information can indicate, whether or not we are under-fitting or over-fitting the model.

33

Figure 5.2: The distribution of the reconstruction errors of the autoencoder, for attack data
samples. Note that reconstruction errors have metrics prefix 1e-3.

Figure 5.3: The graph of the training loss and validation loss functions progress, during the
training of the model.

34

Chapter 6

Conclusion

Throughout this work we have reviewed the possibilities of an anomaly detection as one of
the methods for intrusion detection in web systems. We have introduced autoencoder neural
networks and explained, how they could be used for anomaly detection. What is more, we
have managed to successfuly implement initial experiment, which consisted of modeling the
normal behavior of HTTP traffic and been able to use it for anomaly detection of upcoming
HTTP traffic.

However, there are many improvement possibilities that have yet to be done. First of
all the implementation result in form of script, needs to be adjusted if it is to be used in
real world. This would mean slight adjustments, where this script would be able to either
routinely or dynamically retrieve HTTP traffic in order to attempt the reconstruction of its
messages and detecting the malicious ones as anomalies. The modeling of normal behavior
of HTTP traffic, should be separated from anomaly detection. The script would only be
using already trained model for anomaly detection.

The model can be also used as a building block for more complex solution, including
other different information from HTTP traffic. One of the limitation of our solution was
relatively small data set. If we are be able to obtain larger data sets, we will have op-
portunity to build even more precise anomaly detection models, than what we have now.
Hypothetically, we can try to create anomaly detection solution, based on autoencoder neu-
ral networks, that is independent on the web server implementation. On the other hand,
we can try to create pre-trained models for concrete implementation scenarios, that would
be deployed within particular web server implementations, with its specific applications.

35

Bibliography

[1] Alani, M. M. Guide to OSI and TCP/IP Models. 1st ed. Springer International
Publishing, 2014. ISBN 978-3-319-05151-2.

[2] Barth, A. HTTP State Management Mechanism [Internet Requests for Comments].
RFC 6265. RFC Editor, April 2011. http://www.rfc-editor.org/rfc/rfc6265.txt.
Available at: http://www.rfc-editor.org/rfc/rfc6265.txt.

[3] Belshe, M., Peon, R. and Thomson, M. Hypertext Transfer Protocol Version 2
(HTTP/2) [Internet Requests for Comments]. RFC 7540. RFC Editor, May 2015.
http://www.rfc-editor.org/rfc/rfc7540.txt. Available at:
http://www.rfc-editor.org/rfc/rfc7540.txt.

[4] Berners Lee, T., Fielding, R. T. and Masinter, L. Uniform Resource Identifier
(URI): Generic Syntax [Internet Requests for Comments]. STD 66. RFC Editor,
January 2005. http://www.rfc-editor.org/rfc/rfc3986.txt. Available at:
http://www.rfc-editor.org/rfc/rfc3986.txt.

[5] Berners Lee, T., Fielding, R. T. and Nielsen, H. F. Hypertext Transfer Protocol
– HTTP/1.0 [Internet Requests for Comments]. RFC 1945. RFC Editor, May 1996.
http://www.rfc-editor.org/rfc/rfc1945.txt. Available at:
http://www.rfc-editor.org/rfc/rfc1945.txt.

[6] C., K. and G., V. Anomaly Detection of Web-based Attacks [online]. Reliable
Software Group, 2003 [cit. 2021-3-10]. Available at:
https://sites.cs.ucsb.edu/~vigna/publications/2003_kruegel_vigna_ccs03.pdf.

[7] Combs, G. Tshark - Dump and analyze network traffic [online]. 2019 [cit. 2021-05-09].
Available at: https://www.wireshark.org/docs/man-pages/tshark.html.

[8] Daren S. Starnes, D. Y. and Moore, D. S. The Practice of Statistics. 5th ed. W.
H. Freeman and Company, 2014. ISBN 978-1-4641-0873-0.

[9] Fielding, R. and Reschke, J. Hypertext Transfer Protocol (HTTP/1.1):
Authentication [Internet Requests for Comments]. RFC 7235. RFC Editor, June
2014. http://www.rfc-editor.org/rfc/rfc7235.txt. Available at:
http://www.rfc-editor.org/rfc/rfc7235.txt.

[10] Fielding, R. and Reschke, J. Hypertext Transfer Protocol (HTTP/1.1):
Conditional Requests [Internet Requests for Comments]. RFC 7232. RFC Editor,
June 2014. http://www.rfc-editor.org/rfc/rfc7232.txt. Available at:
http://www.rfc-editor.org/rfc/rfc7232.txt.

36

http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
https://sites.cs.ucsb.edu/~vigna/publications/2003_kruegel_vigna_ccs03.pdf
https://www.wireshark.org/docs/man-pages/tshark.html
http://www.rfc-editor.org/rfc/rfc7235.txt
http://www.rfc-editor.org/rfc/rfc7235.txt
http://www.rfc-editor.org/rfc/rfc7232.txt
http://www.rfc-editor.org/rfc/rfc7232.txt

[11] Fielding, R. and Reschke, J. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing [Internet Requests for Comments]. RFC 7230. RFC Editor, June
2014. http://www.rfc-editor.org/rfc/rfc7230.txt. Available at:
http://www.rfc-editor.org/rfc/rfc7230.txt.

[12] Fielding, R. and Reschke, J. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content [Internet Requests for Comments]. RFC 7231. RFC Editor, June 2014.
http://www.rfc-editor.org/rfc/rfc7231.txt. Available at:
http://www.rfc-editor.org/rfc/rfc7231.txt.

[13] Fielding, R. T., Gettys, J., Mogul, J. C., Nielsen, H. F., Masinter, L. et al.
Hypertext Transfer Protocol – HTTP/1.1 [Internet Requests for Comments]. RFC
2616. RFC Editor, June 1999. http://www.rfc-editor.org/rfc/rfc2616.txt.
Available at: http://www.rfc-editor.org/rfc/rfc2616.txt.

[14] Foundation, O. OWASP Top 10 - 2017. Publication. OWASP Foundation, 2017.
Available at:
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf.

[15] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning (Adaptive
Computation and Machine Learning series). 1st ed. MIT Press, 2016.
http://www.deeplearningbook.org. ISBN 978-0262035613.

[16] Gupta, C., Singh, R. K. and Mohapatra, A. K. A survey and classification of
XML based attacks on web applications. Information Security Journal: A Global
Perspective. [online]. 29th ed. 2020, no. 4, [cit. 2021-5-8]. Available at:
https://doi-org.ezproxy.lib.vutbr.cz/10.1080/19393555.2020.1740839.

[17] LISA, L. Theano 1.0.5 - Project Description [online]. 2020 [cit. 2021-05-09]. Available
at: https://pypi.org/project/Theano/.

[18] MEHROTRA Kishan G, H. H. and SUBRAHMANIAN, V. Anomaly Detection
Principles and Algorithms. 1st ed. Springer International Publishing, 2017. ISBN
978-3-319-67524-4.

[19] Postel, J. User Datagram Protocol [Internet Requests for Comments]. STD 6. RFC
Editor, August 1980. http://www.rfc-editor.org/rfc/rfc768.txt. Available at:
http://www.rfc-editor.org/rfc/rfc768.txt.

[20] Postel, J. Transmission Control Protocol [Internet Requests for Comments]. STD
7. RFC Editor, September 1981. http://www.rfc-editor.org/rfc/rfc793.txt.
Available at: http://www.rfc-editor.org/rfc/rfc793.txt.

[21] RASCHKA, S. and MIRJALILI, V. Python machine learning : machine learning
and deep learning with Python, scikit-learn, and TensorFlow. 2nd ed. Packt
Publishing Ltd., 2017. ISBN 978-1-78712-593-3.

[22] Rescorla, E. HTTP Over TLS [Internet Requests for Comments]. RFC 2818. RFC
Editor, May 2000. http://www.rfc-editor.org/rfc/rfc2818.txt. Available at:
http://www.rfc-editor.org/rfc/rfc2818.txt.

37

http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
http://www.deeplearningbook.org
https://doi-org.ezproxy.lib.vutbr.cz/10.1080/19393555.2020.1740839
https://pypi.org/project/Theano/
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2818.txt

[23] TensorFlow, T. Introducing TensorFlow Feature Columns [online]. 2017 [cit.
2021-05-09]. Available at: https://developers.googleblog.com/2017/11/introducing-
tensorflow-feature-columns.html.

[24] TensorFlow, T. Dense Layer [online]. 2021 [cit. 2021-05-09]. Available at:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense?hl=fr.

[25] TensorFlow, T. Introduction to Tensors [online]. 2021 [cit. 2021-05-09]. Available
at: https://www.tensorflow.org/guide/tensor.

[26] TensorFlow, T. Models and layers [online]. 2021 [cit. 2021-05-09]. Available at:
https://www.tensorflow.org/js/guide/models_and_layers.

[27] TensorFlow, T. Text Vectorization [online]. 2021 [cit. 2021-05-09]. Available at:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/
preprocessing/TextVectorization.

38

https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense?hl=fr
https://www.tensorflow.org/guide/tensor
https://www.tensorflow.org/js/guide/models_and_layers
https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing/TextVectorization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing/TextVectorization

	Introduction
	Hypertext Transfer Protocol
	HTTP and its Versions
	HTTP on OSI
	Layered Network Models
	ISO OSI Model
	Where is HTTP

	HTTP Messages Overview
	Request Methods
	Request Header Fields
	Response Status Codes
	HTTP Request URI

	Attacks on HTTP
	Injection
	Broken Authentication and its Automated Attacks
	XML External Entities (XXE)

	Anomaly Detection
	Critical Questions in Anomaly Detection
	Anomaly Detection Outcomes
	Anomaly Detection Approaches
	Autoencoders
	TensorFlow
	TensorFlow Keras Layers

	Design and Data
	Data Source and Preparation
	Data Preprocessing
	The Text Vectorization Layer
	The Embedding Layer

	The Autoencoder Architecture

	Implementation and Results
	Implementation Tools
	Implemented Functions
	The Autoencoder
	The Script for Anomaly Detection
	Further Improvements

	The Results

	Conclusion
	Bibliography

