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Abstract
Treatment using transcranial ultrasound is a rapidly arising domain of medicine. This
method brings options for non-invasive brain therapies, including ablation, neuromodula-
tion, or potentially opening the blood-brain barrier for the following treatment. The health
officer needs to constantly receive feedback on the ultrasound wavefield in the human skull
in real-time to accomplish the cure using these techniques. The traditional methods for
simulating monochromous ultrasound waves are computationally too expensive. That is
why their usage would be infeasible for these purposes, and it brings the need for alter-
native methods. This work proposed and implemented a method to solve the Helmholtz
equation in 3D space using a neural network achieving a faster convergence rate. The neural
network design uses lightweight architecture based on UNet. The main interest of this work
is neuromodulation because, in this application, it is possible to ignore several variables
and phenomena that would not be negligible in other use cases. Omitting them from the
calculations increased the chances of accomplishing computations in a reasonable time. The
method is fully unsupervised and uses exclusively artificially generated spherical harmonics
and physics-based loss for training, with no required ground truth labels. Results showed
a faster calculation with acceptable error than other traditional methods.

Abstrakt
Léčba pomocí transkraniálního ultrazvuku je rychle se rozvíjející doménou medicíny. Tato
metoda přináší možnosti neinvazivní mozkové terapie, včetně ablace, neuromodulace nebo
potenciálního otevření hematoencefalické bariéry pro následující léčbu. Zdravotník potře-
buje neustále dostávat zpětnou vazbu o ultrazvukovém vlnovém poli v lidské lebce v reál-
ném čase, aby mohl pomocí těchto technik provést léčbu. Tradiční metody pro simulaci
monochromních ultrazvukových vln jsou výpočetně příliš drahé. Jejich použití by proto bylo
pro tyto účely neproveditelné a přináší to potřebu alternativních metod.Tato práce navrhla
a implementovala metodu řešení Helmholtzovy rovnice ve 3D prostoru pomocí neuronové
sítě dosahující vyšší rychlosti konvergence. Návrh neuronové sítě využívá odlehčenou ar-
chitekturu založenou na UNet. Hlavním předmětem zájmu této práce je neuromodulace,
protože v této aplikaci je možné ignorovat několik proměnných a jevů, které by v jiných
případech nebyly zanedbatelné. Jejich vynecháním z výpočtů se zvýšila šance na provedení
výpočtů v rozumném čase. Tato metoda je plně bez dozoru a používá výhradně uměle
generované sférických harmonik a fyzikální ztráty pro trénink, bez nutnosti anotovaných
dat. Výsledky ukázaly rychlejší výpočet s přijatelnou chybou než jiné tradiční metody.

Keywords
Helmholtz equation, learned optimizer, unsupervised learning, physics-based loss function,
transcranial ultrasound.
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Rozšířený abstrakt
S výzkumem v oblasti neinvazivní léčby v oblasti mozku vzniká nový obor založený na
dávkování ultrazvukového záření. Podstata léčby a dávkování závisí na frekvenci, inten-
zitě a dalších vlastnostech ultrazvuku. V současné době nejznámější a nejvíce sledované
metody jsou ablace, neurostimulace a otevírání hematoencefalické bariéry pomocí ultra-
zvuku. Ablace je proces, při kterém cíleně pálíme části maligní tkáně v lidském mozku,
které mohlo vzniknout například rakovinným bujením. Tato metoda vyžaduje vysoké in-
tenzity a proto žádá značnou přesnost. Neurostimulace se využívá ke stimulaci zvolených
regionů mozku za účelem prevence, resp. léčby neurodegenerativních onemocnění jako
Alzheimerova, či Parkinosonova choroba. Dočasné otevření hematoencefalitické bariéry se
provádí za účelem přenosu léčiv za oblast této bariéry (do mozku).

Všechny zmíněné metody mají společný požadavek – pro jejich provádění je potřeba znát
relativně přesný model vlnového pole po zahájení působení ultrazvuku v lidském mozku.
Hlavní výzvou pro určení vlnového pole je přítomnost lebeční kosti, která zkresluje, nebo v
některých případech dokonce zcela zničí ohnisko ultrazvukových vln. Tento jev je přítomen
i v případě nižších frekvencí. Rozdílné tvary, složení či tloušťka lebky v populaci zcela
znemožnují předpočítat vlnové pole obecně a vyžaduje personalizovaný přístup ke každému
pacientovi.

Zdravotníci tedy musí znát stav vlnového pole, především aktuální pozici ohniska ul-
trazvuku v reálném čase. Tradiční metody řešící tento problém mají vysokou výpočetní
náročnost a pomalou rychlost konvergence. Výpočet vlnového pole v modelu lidské lebky
může trvat desítky minut až několik hodin, což činí metodu prakticky nevykonatelnou. V
současnosti je snaha najít metodu, která je vykonatelná na úkor přesnosti, nicméně musí
poskytnout dostatek informace pro zdravotníka. Cílem naší práce je prozkoumat metody
provádějící aproximaci vlnového pole v ustáleném stavu s monochromatickým zdrojem vl-
nění a nabídnout vhodnou alternativu pro stávající řešení.

Hlavním tématem našeho zájmu je neurostimulace, protože nám umožňuje zanedbat
některé proměnné a jevy, což zjednodušuje výslednou rovnici a zvyšuje naše šance na
poskutnutí podpory při dané terapii. Úřad pro kontrolu potravin a léčiv (FDA) dokonce
schválila neuromodulaci pomocí ultrazvuku pro léčbu Parkinsonovy choroby. Na základě
dostupné literatury jsme se rozhodli zanedbat v našem řešení různé jevy, jako například
třecí efekt nebo nelineární efekty, a naším cílem je řešit homogenní Helmholtzovu rovnici
ve 3D prostoru.

V rámci této práce byla navržena neuronová síť založená na architektuře UNet jako
alternativa pro iterativní numerické solvery pro parciální diferenciální rovnice. Hlavním
úkolem našeho řešení je iterativně snižovat chybu a přibližovat se ke správnému řešení
podobně jako solvery pro parciální diferenciální rovnice. Design našeho řešení vychází ze
sítě UNet a jde o relativně odlehčenou architekturu za účelem snížení času inference a
trénování modelu.

Navržená metoda je plně naučená bez učitele, tedy bez znalosti referenčního řešení, díky
využití fyzikální chybové funkce. Tato chybová funkce je reprezentována inverzním prob-
lémem vůči Helmholtzově rovnici. Díky této chybové funkci očekáváme dobrou generalizaci
větších domén a zřejmě se vyhneme nutnosti generování velkého množství referenčních dat,
což by představovalo výpočetně drahou úlohu.
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Chapter 1

Introduction

1.1 Problem description
With attempts to perform operations or treatments on the human brain comes the need
for an effective non-invasive method because of its highly vulnerable character. One of
the rapidly emerging methods is transcranial ultrasound therapy [5]. The essence of the
treatment depends on the addition of exogenous microbubbles, frequency, intensity and
other properties of the ultrasound. The most frequently researched types of treatment are
ablation [44], neurostimulation [41, 39] and opening of the blood-brain barrier [1]. The
ablation is a process of destroying the small, strictly selected part of the tissue, usually
with some malignant character. Neuromodulation is applied to stimulate regions of the
brain in order to prevent or treat, e.g. degenerative brain issues. Opening the blood-brain
barrier enables the delivery of medications to the brain.

The methods have one common aspect: the requirement of a relatively precise wavefield
model in the skull. The primary issue is the skull bone which causes distortions and shifting
of the focus position [23], even destroying it [64], even for methods using low frequencies [29].
The population’s skull shape and morphology differences prevent precomputing the general
wavefield model [15].

Thus the health officers need constant real-time feedback on the state of the wavefield
in the brain and mainly the focus of the wavefield [28]. However, commonly used methods
require minutes to hours to calculate the wave propagation in the human brain model,
making the treatment often infeasible in general practice [47, 49]. Eventually, the feasibly
usable method needs to reasonably sacrifice accuracy in order to speed up but provide
enough information about the wavefield [18].

This work explores existing methods for approximation wavefield in a steady-state with
the monochromous radiation source and proposes a suitable solution for the problem. The
topic of our interest is neuromodulation because it enables us to neglect some variables and
simplify the target equation and increase our chances of solving the problem in an adequate
time. Food and Drug Administration (FDA)1 even approved neuromodulation for treating
Parkinson’s disease [60]. The solution in this work excludes effects like the shear wave
effects or nonlinear effects, and our goal is to solve the homogeneous Helmholtz equation
in 3D space [54].

This work proposes UNet based architecture as an alternative to iterative numerical
partial differential equation solvers. The objective of the network is to iteratively decrease

1https://www.fda.gov/
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the error of the wavefield and improve its accuracy, similarly to numerical PDE solvers. The
design comes from UNet and relatively lightweight architecture in order to push down the
inference and training time and memory. The method is fully unsupervised where physics-
based loss [67] is represented by the inverse problem to our target equation [32]. We expect to
achieve improved generalizability [53] to higher scale problems. Physics-based also enables
us to avoid generating a massive amount of labelled data that would need to be generated
by computationally expensive simulations, potentially in higher domains.

1.2 Key contributions
In this thesis, we considered various approaches to accelerating wave propagation compu-
tation and eventually developed a novel method for 3D space. The selected method was
based on 2D Helmnet proposed by Stanziola et al. [63]. We implemented the Helmnet-based
solution for 3D and experimentally demonstrated its speed and accuracy compared to other
methods. The implemented framework provides the functionality of the trained model that
predicts a 3D wavefield in the steady-state given the speed of sound distribution and source
distribution. The functionality is shown in Figure 1.1.

Figure 1.1: Our 3D neural network-based iterative solver takes as input source and sound
speed distributions, and after performing a certain number of iterations outputs the target
wavefield.

1.3 Structure of thesis
• Chapter 1 introduced the problem and motivation for our aim to replace traditional

methods in some applications. The chapter described the most frequently studied
ultrasound-based treatments for the brain. Then we presented a positive prospect of
the method for future use not only restricted to wave equation.

• Chapter 2 explained the mathematical aspect of the problem. This chapter set the
governing equation for our main problem and showed traditional ways of solving the
wave equation. Except for traditional methods, we also showed a few alternative ways
of solving the problem. Therefore we introduced physics-based machine learning and
explained the motivation why we decided to apply it to solve the Helmholtz equation.

• Chapter 3 explained in detail the method proposed in this work. The chapter’s
primary goal is to describe the theoretical background for the Helmnet in 3D, the
essential parts of the solution (e.g. replay buffer for TBPTT), motivation for using

4



it, and planned ways to evaluate the result. The part of the evaluation is also an
artificial dataset described in this chapter.

• Chapter 4 focused on the technical aspects of our work connected to programming
language, selected framework and computational resources. The most important part
of this chapter is the recommendations for future work that should be considered. The
recommendations included exploring different parameters, neural network frameworks
etc.

• Chapter 5 provided a complete evaluation of the method provided by this work.
The three methods explored in this chapter are 3D Helmnet, GMRES and k-Wave
simulation.

1.4 Summary
The first chapter introduced the motivation for bringing the new method to the com-
putational ultrasound field of study. In this chapter, we also described this thesis’s key
contributions and structure.

5



Chapter 2

Wave propagation

Generally, computing the wave propagation in solid volumes is a remarkably complex task.
The exact computation of wavefield in the human skull involves acoustic absorption, non-
linear effects or shear motion. Ultrasound with parameters for our problem enables us to
omit absorption from the equation [69]. Moreover, the critical nonlinear effects are present
only for higher intensities [58]. The shear motion effect does not concern significant issues
since the radiation direction is perpendicular to the skull barrier. Its influence is negligible
when the radiation is near normal incidence [56, 71, 13]. Thus these two variables are also
neglected from our focus.

2.1 Wave equation
The objective of the work is to predict wavefield, which brings the need for a mathematical
representation of wave propagation. The general form of the wave equation in the n-
dimensional space:

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑐(𝑥)2∇2𝑢(𝑥, 𝑡) (2.1)

where 𝑢 : R𝑛 → C represents the 𝑛-dimensional wavefield in given time, 𝑥 ∈ R𝑛 is
the spatial coordinate and 𝑡 ∈ R+ is a time variable. 𝑐 : R𝑛 → R+ is the speed of sound
distribution and ∇2 is the spatial Laplacian operator.

Nonetheless, the time variable is negligible for many medicinal applications of transcra-
nial ultrasound therapy, including the method studied in this work. The time used for the
treatment exceeds the time needed to achieve the steady-state. Thus, the wavefield does
not need to be computed every time unit [39]. The time-independent character and the
monochromatic source simplify the problem. The Helmholtz equation describes the sim-
plified homogeneous time-independent wave propagation model subject to the Sommerfeld
radiation condition.

2.2 Helmholtz equation
The Helmholtz equation is the eigenvalue problem for the Laplace operator corresponding
to linear partial differential equations. It is based on Equation 2.1 by separation of variables
and dropping time dependence:

6



[︃
∇2 +

(︂
𝜔

𝑐(𝑟)

)︂2
]︃
𝑢(𝑟) = 𝜌(𝑟) (2.2)

where 𝑢 : R𝑛 → C is 𝑛-dimensional wavefield, 𝑟 is 𝑛-dimensional point, 𝑐 : R𝑛 → R+ is
the speed of sound distribution corresponding to the skull model, 𝜔 is the angular frequency,
𝜌 : R𝑛 → C is the source distribution. The source distribution is a 𝑛-dimensional tensor
with source points equal to the source amplitude. ∇2 is the spatial Laplace operator. In
this work, we assume to have just two sound speed values in distribution 𝑐. One value
is the background, and the other denotes sound speed in skull bone. The parameters are
illustrated in Figure 2.1.

Figure 2.1: Figure shows the visualization of the three most important variables of the
Helmholtz equation. The first picture shows the speed of sound (SOS) distribution 𝑐 of
the skull. The sound speed is derived and approximated using brain magnetic resonance
imaging (MRI). The second picture shows the solution’s expected result: the wavefield
after applying ultrasound therapy in the steady-state. The third picture illustrates source
distribution, one point (pixel) in the source tensor, with the value of source amplitude, for
every source.

The Equation 2.2 is solved conditioned to Sommerfeld radiation condition:

𝑙𝑖𝑚
|𝑟|→∞

|𝑟|
𝑛−1
2

(︂
𝜕

𝜕|𝑟|
− 𝑖

𝜔

𝑐0

)︂
𝑢(𝑟) = 0 (2.3)

where 𝜔 is the angular frequency of the source, 𝑛 ∈ R+ is the number of spatial dimen-
sions, 𝑐0 is the sound speed of the background, 𝑟 is the 𝑛-dimensional point and 𝑢 is the
wavefield. The problem is solved within the region Ω ⊂ R𝑛 as showed in Figure 2.2.

Equations were described by Stanziola et al. [63].
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Figure 2.2: The perfectly matched layer is used to surround the domain of interest Ω.
Figure shows one of the 2D training samples abstractly surrounded by the PML.

2.3 Numerical solutions

2.3.1 Perfectly matched layer (PML)

One way to remove the Sommerfeld radiation condition from the equation and get the so-
lution within the domain is by applying the perfectly matched layer (PML). PML is the
artificial absorption layer for wave equations for eliminating waves propagating from the
inside used to truncate computational domains in numerical methods to simulate problems
with open boundaries [65, 34]. In practice, it enables numerical methods to omit Equa-
tion 2.3 from our calculations. PML wraps up the domain as in Figure 2.2, and the system
behaves as the waves are propagating into the infinite space [8].

Our implementation of the 3D perfectly matched layer is based on Bermudez et al. [9].
The domain wrapped up by the PML is a cube with sizes 2𝐿𝑥, 2𝐿𝑦, 2𝐿𝑧 such that:

𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧

and
2𝐿𝑥 * 2𝐿𝑦 * 2𝐿𝑧 = Ω

where Ω ∈ R is the cubical domain of interest. Then the domain wrapped up by PML is
extended by PML so

Ω⊕ 𝑃𝑀𝐿 = 2(𝐿𝑥 +∆𝐿) * 2(𝐿𝑦 +∆𝐿) * 2(𝐿𝑧 +∆𝐿) (2.4)

where ∆𝐿 is the thickness of the PML and ⊕ is operator of addition the PML to the domain
of interest.

For bringing the absorption the derivative operators are transformed within the ex-
tended part ∆𝐿 of the domain of interest Ω:

𝜕

𝜕𝜂
→ 1

𝛾𝜂

𝜕

𝜕𝜂
(2.5)
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where 𝜂 = 𝑥, 𝑦 and 𝑧 for 3D space and

𝛾𝜂 =

{︃
1, if |𝜂| < 𝐿𝜂

1 + 𝑗
𝜔𝜎(𝜂), if 𝐿𝜂 ≤ |𝜂| < 𝐿𝜂 +∆𝐿

(2.6)

where 𝜔 is the angular frequency as described in Equation 2.2, area, such that |𝜂| < 𝐿𝜂

is equal to the domain Ω without PML extension, 𝐿𝜂 ≤ |𝜂| < 𝐿𝜂 +∆𝐿 denotes PML and 𝜎
is the absorption profile that grows quadratically within PML as defined by Bermudez et
al. [9]:

𝜎(𝜂) = 𝜎𝑚𝑎𝑥

(︁
1− 𝜂

∆𝐿

)︁2
, (2.7)

where 𝜎𝑚𝑎𝑥 is the maximum absorption coefficient, ∆𝐿 is the thickness of the PML as
in Equation 2.4.

Then the Laplace operator ∇2 from Equation 2.2 must contain PML for 3D that has to
be included in our equation and consequent implementation:

∇̂2 =
1

𝛾𝜂

𝜕

𝜕𝜂
=

1

𝛾𝑥

𝜕

𝜕𝑥
+

1

𝛾𝑦

𝜕

𝜕𝑦
+

1

𝛾𝑧

𝜕

𝜕𝑧
(2.8)

that gives us modified main equation:[︃
∇̂2 +

(︂
𝜔

𝑐(𝑟)

)︂2
]︃
𝑢(𝑟) = 𝜌(𝑟) (2.9)

The program realization of the thesis uses thickness of the PML layer ∆𝐿 = 8 and
maximal absorption coefficient 𝜎𝑚𝑎𝑥 = 2.

2.4 Partial derivative equations solvers
There are plenty of methods for solving partial derivative equations, including the Helmholtz
equation. The methods vary by accuracy, speed and other related parameters. This work
explored methods of solving PDEs based on differential operator, solution function, and
forcing function (the same form as the Helmholtz equation). The equations with this form
can be rewritten into a more general form:

𝐴(𝑐)𝑢 = 𝜌, (2.10)

where 𝐴(𝑐) is a linear forward operator depending on sound speed distribution 𝑐, 𝑢
is the solution function and 𝜌 is the (known) forcing function. This equation is solvable
by many techniques including boundary element methods [25], finite-element methods [9]
or finite difference methods [70]. For our needs, it is not possible to inverse the forward
operator (isolate solution) because of the size of the problem. That is why we need to
employ iterative schemes. The solution of the partial derivative equation can be viewed
as an optimization task for which we need to set the proper loss function and apply the
optimization (minimization) algorithm.

To find a solution using an optimization algorithm, we must choose a loss function. The
most meaningful candidate for the loss function is the squared norm of the residual 𝑒𝑘,
equivalent to the mean square error. The loss function for this purpose was introduced by
Raissi et al. [51] and is described by the following equation:
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𝐿𝑘(𝑢𝑘, 𝑐, 𝜌) = ||𝑒𝑘||2 =
∫︁
Ω
|𝑒𝑘|2𝑑𝑟, (2.11)

s.t. 𝑒𝑘 = 𝐴(𝑐)𝑢𝑘 − 𝜌 (2.12)
Other alternative approaches might be RMSE or MAE [14], using the physics-constrained

loss [75] or Dirichlet energy [74].
With the selected loss (residual) function, it is now possible to apply a numeric solution.

A suitable method for this purpose is Generalized minimal residual method (GMRES).
GMRES is an iterative numerical method which approximates the solution by the vector
in a Krylov subspace with minimal residual [59]. The Arnoldi iteration method is used for
the construction of an 𝑙2-orthogonal basis of the Krylov subspaces. [31].

Generally, solving the Helmholtz equation using iterative methods is computationally
expensive because of a known slow convergence of methods using Krylov subspace [21].
The already mentioned motivation for this work is that the Krylov subspace methods are
ineffective, especially when the number of waves in the Helmholtz operator becomes large.
Also, standard algebraic preconditioners do not remedy the situation [21]. The issue is
that every iteration update is local. However, the monochromatic wave problem is not
local, and we know that, e.g. vital radiation source on one side of the domain of interest Ω
influences the state of the wavefield in the point on the other side of the domain Ω.

The method used for generating the reference solution in this work is a part of k-
Wave [68], also a conventional solver with the application of k-space pseudo spectral [11].

2.4.1 The generalized minimal residual (GMRES) algorithm

Since the GMRES is used as a benchmark for our solution (however just in small domain),
we described it in more detail. The algorithm was proposed in 1986 by Saad and Schultz [59].
The method intended to improve methods like the ORDHODIR method from 1980 [73],
Axellson’s method from 1980 [3] or the generalized conjugate residual method [20].

As the name suggests, the method computes the solution with the minimal residual. A
general algorithm for GMRES described by the authors is described by the Algorithm 1 [59].

2.4.2 Neural networks for PDEs

Neural networks are a promising alternative to classical methods for solving PDEs. This
method brings a new point of view to the topic and remedies specific known issues. Con-
volutional neural networks (CNN) are capable of processing changes globally and speeding
up the solution [22]. Their usage for solving physical equations is becoming more common
[12]. Except for that, this field of study is still quickly developing, and we can expect new
techniques and improvements, which will eventually improve the whole solution, including
neural networks. Advantages are massive developers community improving the software
or specialized hardware as Tensor Processing Unit (TPU) [35]. Moreover, using neural
networks, it is possible to overcome some unpleasant phenomena related to the PDEs, like
curse of dimensionality described by Bellman [7, 6, 48].

Their usage offers very promising approximation capabilities for nonlinear functions [10].
Physics-informed neural networks (PINN) [43] offers ability of unsupervised learning opti-
mization without annotated data. Blechschmidt et al. [10] described a general approach for
approximating the solution 𝑢 : (𝒯 ,𝒟)→ R by PINN:

𝜕𝑡𝑢(𝑡, 𝑥) +𝒩 [𝑢](𝑡, 𝑥) = 𝑓, (2.13)
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Algorithm 1 GMRES
initialize 𝑥0, 𝑚, 𝜖 ◁ 𝑥0 is the initial value and 𝑚 number of iterations, 𝜖 is maximal error
𝑟0 = 𝑓 −𝐴𝑥0 ◁ Algorithm starts
𝑣1 = 𝑟0/||𝑟0||
for j < m do ◁ Iterative solution

ℎ𝑖,𝑗 = (𝐴𝑣𝑗 , 𝑣𝑖), 𝑖 = 1, 2, ..., 𝑗

𝑣𝑗+𝑖 = 𝐴𝑣𝑗 −
∑︀𝑗

𝑖=1 ℎ𝑖,𝑗𝑣𝑖
ℎ𝑗+1,𝑗 = ||𝑣𝑗+1||
𝑣𝑗+1 = 𝑣𝑗+1/ℎ𝑗+1,𝑗

end for
𝑥𝑚 = 𝑥0 + 𝑉𝑚𝑦𝑚, where 𝑦𝑚 minimizes ||𝛽𝑒1 − 𝐻̄||, 𝑦 ∈ R𝑚

𝑟𝑚 = 𝑓 −𝐴𝑥𝑚
if 𝑟𝑚 > 𝜖 then

𝑥0 = 𝑥𝑚
𝑣1 = 𝑟𝑚/||𝑟𝑚||
goto start

𝑢(0, 𝑥) = 𝑢0(𝑥), (2.14)

where 𝒩 , 𝑢 is a solution and 𝑓 is a forcing term, 𝑥 ∈ Ω. As discussed earlier, we
neglect the time variable 𝑡 from our computations. Then the trained neural network should
approximate the solution function 𝑢𝜃(𝑥) ≈ 𝑢(𝑥) using optimized parameters 𝜃. The physical
information differs this method from other learning-based techniques trying to optimize the
solution exclusively using data by the fitting network to labelled data {𝑥𝑖, 𝑢(𝑥𝑖)}𝑁𝑖=1. The
PINN approach was already successfully applied in a wide range of applications, including
fluid dynamics [52], inverse problems [45], or stochastic differential equations [72], which
suggests us it may bring success also for the Helmholtz equation.

Stanziola et al. [63] proposed method employing architecture UNet [57] originally used
for biomedical image segmentation. Architecture UNet is shaped as a letter ”U“. It consists
of a contracting path (the left side of Figure 2.3) and expanding path (the right side of
Figure 2.3).
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Figure 2.3: The original UNet architecture. Figure is adopted by Ronneberger et al. [57].

The work by Stanziola et al. [63] used UNet as an iterative 2D solver for boosting the
current solution to the solution with a minor error. The application of the learned iterative
solver for the Helmholtz equation was initially proposed by Rizzuti et al. [55] with the
usage of UNet, using the finite-differences for the discretization. The UNet by Rizzuti et
al. was trained using ground truths, but it is suggested that training in true fields might
not be necessary for successful results. Stanziola et al. [63] also suggest using some Krylov
iterations to prevent the solution from diverging as a regularization technique.

2.5 Summary
Wave propagation is a too complex topic to be described in one chapter of the thesis.
Despite that, we tried to remind the most important aspects of the wave propagation in
the application of transcranial ultrasound in section 2.1. That includes the general form of
the wave equation that is generally time-dependent. The time-dependent equation was not
solved in this work because, in general practice, the wavefield achieves steady-state within
a short time, and the simulation wavefield before that happens is not essential.

We also explained the variables and phenomena we intentionally omitted from our fo-
cus. The main problem of this thesis is not the general wave equation, but the Helmholtz
equation encapsulated into the perfectly matched layer to satisfy the Sommerfeld radiation
condition. Section 2.2 shortly outlines the Helmholtz equation and visually demonstrates
its most important variables of it.

The subsection 2.3.1 also reports about the perfectly matched layer and its essence for
this work. We also shortly presented the mathematically-implementational aspect of the
PML and prefigured the procedure of using PML for 3D adopted by Bermudez et al. [9]. A
more detailed description of the implementation of the PML is included in Chapter 4. The

12



thickness and absorption coefficient used in this work is adopted by Stanziola et al. [63]
since the size of the problem is more or less the same. However, in a lower dimension than
our work.

This chapter enumerates a few most common (numerical) techniques for solving partial
derivative equations, specifically wave equations. These methods might serve as a bench-
mark for our newly emerging method and help us evaluate our results. The highlighted
method of those is GMRES, which is a dedicated section 2.4.1. Since GMRES plays an
essential role in our evaluation and is also applied in the 2D Helmnet [63] as a benchmark,
we described it as slightly more profound than other methods, including the pseudocode of
the algorithm.

The section 2.4 defines the physical loss function of our problem in general. This loss
function does not need the reference value of the data, only the input data. The function was
tested using the primitive optimizing algorithm. It showed that it yields visually meaningful
data when optimized.

Last but not least, we briefly pointed out alternative approaches for solving physical
problems (specifically PDEs) using machine learning. The approach is so-called physics
informed neural networks (PINN). The section 2.4.2 mentioned a few of many methods
for solving partial derivative equations using neural networks. The methods and possible
use cases are a large amount. Thus we mentioned only a few most interesting for this
work. The base for our solution is the architecture UNet for the image segmentation and is
widely used in combination with a physics-based loss function. The section also described
the motivation for solving this approach, mentioned the direct and indirect implications of
using PINN, and eventually explained that our method, given its loss, is based on these
approaches. A more detailed description of the UNet-based architecture used in our work
is in the following Chapter 3.
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Chapter 3

UNet for 3D Helmholtz equation

3.1 Helmnet
As we mentioned earlier, Stanziola et al. proposed Helmnet1 [63] - UNet based neural
network architecture for approximating iterative solver for 2D Helmholtz equation. The
proposed method achieved impressive results compared to classical PDEs iterative solvers
in terms of speed, accuracy, and trade-off. The accuracy of the Helmnet was computed
using two loss functions - relative Chebyshev distance norm 𝑙∞ and average RMSE error
norm:

𝑙∞ =
||𝑢̂− 𝑢||∞
||𝑢||∞

(3.1)

𝑅𝑀𝑆𝐸 =

√︂
||𝑢̂− 𝑢||22

N
(3.2)

where 𝑢̂ is the solution provided by the trained iterative solver, 𝑢 is the reference solution
and 𝑁 is the total number of pixels in the wavefield. The predicted and reference wavefields
were normalized to a maximal amplitude of 1. The benchmark for the Helmnet was the
GMRES method. As a result after 1000 iterations the 𝑙∞ error achieved 0.36% and mean
RMSE 4.6×10−4. The 𝑙∞ = 1% was even achieved after 250 iterations, and this error might
be sufficient for medical usage. GMRES achieved an order of magnitude worse results after
1000 iterations.

The reference ground truth of the time-independent wave equation was generated us-
ing k-Wave. The time-domain solver kspaceFirstOrder2DG computed the solution in the
steady-state. For the evaluation, the region of the perfectly matched layer was excluded
because the PML is defined differently for k-Wave than for Helmnet, and this region is not
interesting for practical applications.

Our reproduction of the Helmnet showed excellent results in terms of generalization to
higher domains and other source positions, source amplitudes and frequencies. Hyperpa-
rameters required for reproducing Helmnet results the same way as in this work are shown
in Table3.1. Except for the error function, it is also possible to track the error of the solver
using the residual function (without knowledge of the reference solution) also defined in
Equation 2.12 and used by Helmnet as a loss function. This feature enables us to find the
optimal value of the residual (order of magnitude 10−4 with given data) and regulate the
number of iterations accordingly.

1https://github.com/ucl-bug/helmnet
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Figure 3.1: Figure shows the sound speed distribution of the domain with size 480x480
with 24 merged samples and the radiation source located in the ”empty“ space of the
grid. The left wavefield is the reference wavefield generated by k-Wave simulation, and
1000 iterations of the learned optimizer predict the right wavefield. The error after 1000
iterations is approximately 0.5%. This sample’s inference (1000 iterations) took 9.29s using
1 GPU on the Karolina supercomputer. The colour of the sample denotes the speed of the
sound in the given material.
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Table 3.1: This table shows hyperparameters used for training 2D solver. The hyperpa-
rameters was used for our reproduction of Helmnet.

epochs 1000
buffer size 600
batch size 32
learning rate 0.0001
weight decay 0.000001
depth 6
state channels 2
interlayer channels 8
activation function PReLU
TBPTT unrolling steps 10
gradient clipping 1

Table 3.2: This table shows the time needed for training the 2D solver on 9000 samples
sized 96x96 using 8 GPUs NVIDIA A100 on supercomputer Karolina. Hyperparameters
for training can be found in Table 3.1. Other values are the time needed for computation
of wavefield in steady-state for one sample of the size 96x96 using 1 GPU NVIDIA A100
on Karolina using learned optimizer (neural network) and GMRES method. Both methods
use 1000 iterations per sample (we even showed that GMRES have significantly higher error
after the 1000th iteration).

Training ∼ 9 hours
Inference (neural network) ∼ 4 seconds
Computation (GMRES) ∼ 8 seconds

Figure 3.2: Figure shows the sound speed distribution of the domain with a size of 96x96.
However, instead of an idealized skull model generated as a sum of several circular har-
monics, this sample contains a filled rectangle and its predicted wavefield using a neural
network. The ℓ∞ error after 1000 iterations is below 0.45%. This sample’s inference (1000
iterations) took 4.54s using 1 GPU on the Karolina supercomputer.
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3.2 2D training dataset
The significant advantage of the PINN is their ability to train without annotated data. As
we already mentioned, generating ground truths for the Helmholtz equation is computa-
tionally intensive (even for two dimensions). Generation of the large dataset for supervised
training would consume a massive amount of time and computational resources. The Helm-
net took advantage of PINN and used a physics-based loss function instead of labelled data.

Although there is no need for annotated data, the method still needs raw inputs. The
required input data are as illustrated in Figure 1.1, source distribution and sound speed
distribution. Creating source distribution is a trivial task (placing source amplitude value in
the corresponding pixel position for every source), and the generation of the artificial skull
model is a little more complicated. The speed sounds dataset needs to resemble a human
skull scan and cover its differences in population. For this purpose, the authors summed
up a few 2D circular harmonics with random amplitude and phase and created around
them barriers with uniformly random thickness between 2 and 10 pixels. The value filling
the barrier is homogeneous within the artificial skull bone and denotes sound propagation
speed. The value, in reality, is usually 1.5 to 2 times faster than in the background (soft
tissues) [63]. This is preserved in the dataset, with a background sound speed value of 1
and skull bone speed sound of 1.5 to 2.
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Figure 3.3: Samples from the training dataset [63]. Since the physics-based loss is used, we
do not need any target wavefields.

3.3 Iterative solution using trained solver
As we mentioned in section 2.4.2, we aim to use a learned optimizer instead of solving
Equation 2.2 directly. Thus the iterative optimization equation can be written as follows:

𝑢𝑘+1 = 𝑢𝑘 + 𝑓𝜃(𝑢𝑘, 𝑐, 𝜌), (3.3)

where 𝜃 is the vector containing the model parameters of the learned optimizer, 𝑓𝜃 is the
learned optimizer with following parameters - 𝑢𝑘 denoting the previous solution, 𝑐 denoting
the sound speed distribution and the source distribution 𝜌. Source frequency 𝜔 is omitted
here because it is the constant value.
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This specific approach is, from some perspectives, quite problematic. Inputs to the
optimizer 𝑓𝜃 are values that belong to very different domains, making the training process
much harder and requiring a more significant amount of training data.

Even though the general idea will be preserved, instead of using the optimizer with
inputs of 𝑐 and 𝜌, we will apply knowledge of the forward operator 𝐴(𝑐) that we have
already introduced in the Equation 2.2, and we will use residual 𝑒𝑘 as follows:

𝑢𝑘+1 = 𝑢𝑘 + 𝑓𝜃(𝑢𝑘, 𝑒𝑘), (3.4)

where residual 𝑒𝑘 might be viewed as a physics loss:

𝑒𝑘 = 𝐴(𝑐)𝑢𝑘 − 𝜌, (3.5)

and 𝐴(𝑐) is defined by the following relation:

𝐴(𝑐) =

[︃̂︀∇2 +

(︃
𝜔

𝑐(𝑟)

)︃2]︃
(3.6)

where members of equation corresponds to the Equation 2.2.
The final form of the iterative function contains a connection to the standard iterative

solver, that is, the memory ℎ𝑘 [50]. From the lenses of optimization, we could also view
this memory as a momentum which is commonly used in many similar optimization prob-
lems [19]. This the updated iteration is defined by this relation (see Figure 3.4 for schematic
expression):

(∆𝑢𝑘+1, ℎ𝑘+1) = 𝑓𝜃(𝑢𝑘, 𝑒𝑘, ℎ𝑘)

𝑢𝑘+1 = 𝑢𝑘 +∆𝑢𝑘+1

(3.7)

Figure 3.4: Figure shows the inputs and output of the learned optimizer. Residual 𝑒𝑘 is
computed using 𝜌, 𝑐, 𝑢𝑘 with application of perfectly matched layer.

To sum it up, the function 𝑓𝜃 is considered an optimizer with memory ℎ𝑘, enabling many
strategies used in this work. The learned optimizer used in this work was first introduced
for various image reconstruction problems. The residual was given by the gradient of the
log-likelihood loss function for a Gaussian prior.

As we have already mentioned, function 𝑓𝜃 is a trained neural network with model
parameters of 𝜃, and 𝑒𝑘 is a residual computed using a homogeneous Helmholtz equation
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with the application of PML. The network uses auxiliary input of the variable absorption
coefficients that characterize the PML to cover the Sommerfeld radiation condition by
simulating open boundaries even the domain of interest is enclosed.

The solution updates used in this work are similar to the Euler schema described by Lu
et al. [42]:

𝑋𝑛+1 = 𝑋𝑛 + 𝑓𝑛(𝑌𝑛) (3.8)

The memory recurrent belief state ℎ𝑘 allows this work to use various optimizers. The
optimizer is given by the information stored in the memory. Storing the second-order
information (gradient and its magnitude) from the preceding step would make an optimizer
similar to the method proposed by Andrychowicz et al.[2]. Instead of pure residual, they
suggest to Learning to learn by gradient descent by gradient descent. This method is not
used in this work, but we suggest exploring this option in the future.

Since our method requires a certain amount of iterations, we have to find a global loss
function for our solution because loss defined in Equation 2.11 is usable for one iteration.
If the number of iterations is constant, one approach can compute the loss function after
performing all the iterations, but performing backpropagation over many iterations would
be infeasible. Because of that, we decided to compute loss as a sum of all partial losses for
every iteration:

𝑅 =
𝑇∑︁

𝑘=0

𝑤𝑘𝐿𝑘(𝑢𝑘, 𝑐, 𝜌) (3.9)

where 𝑅 is the total loss, 𝑇 is the total number of iterations, 𝑘 is the iteration number,
𝑤𝑘 is the weight of the significance of the loss in the 𝑘-th iteration, 𝐿𝑘 is already mentioned
physics-based loss (residual) and other symbols are knows from previous sections.

Figure 3.5: This figure shows the convergence progress to the solution by the 2D learned
optimizer proposed in Helmnet framework. Images show iterations with numbers 1, 3, 10,
25 and 1000. We can see that the partial solution is very similar to the final result after
the small number of iterations. This leads us to decrease the number of iterations to save
computational time.

3.4 Extension of the Helmnet to 3D
Extending the Helmnet to 3D is suggested by Stanziola et al. [63] in the original paper. This
is also necessary for therapeutic usage to provide information about wavefield in the whole
brain model. As mentioned in the earlier sections, the 3D wave prediction is a time-critical
issue, and it needs to be solved within seconds with adequate accuracy for neuromodulation.
Indeed, we have to avoid very deep architectures to decrease time and memory limits.
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Because of that reason, we kept architecture similar to the original Helmnet but adapted
it for 3D inputs. The input layer of the neural network has the spatial dimensions to
match the input data, that is, in this case, tensors with size 96x96x96. The input layer
contains six channels, which consist of two channels for the real and imaginary parts of
the complex wavefield 𝑢𝑘, another two channels for the real and imaginary parts of the
complex residual 𝑒𝑘 representing the physics-based loss, and three channels for the variable
absorption coefficients 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧, required for the Perfectly Matched Layer in every
coordinate.

An important and frequently used block for this network is the double-3D-convolutional
layer (DC3D). This layer consists of two convolutions with 3x3x3 kernels with non-linear
activation of parametrized-RELU [27]. Their job is to compute the output passed to sub-
sequent layers and compute the hidden state. See the illustration in Figure 3.6.

Figure 3.6: Two consequent Conv3D layers with kernel 3x3x3.

The encoding block is another entity (block) present in the neural network. Every
encoding block contains two double-3D-convolutional layers. The first one accepts two
inputs: the hidden state and the current input representation, and the second layer accepts
output from the first one and recomputes the hidden state. The output from the first layer
then splits into the second layer, the decoding block and follows to the downsampler and
the encoding block at the lower levels, etc. The EB is illustrated in Figure 3.7. The size
of the hidden state is the same as the size of the input and has two channels for real and
imaginary parts of the complex number.
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Figure 3.7: The encoding block consists of two DC3D such that first one sends its output
to the EBs at the lower layers, to decoding blocks (out of EB) and to another DC3D to
recompute hidden state ℎ.

Encoding blocks are also connected to another type of block called the Decoding block
(Figure 3.8). This block upsamples the output from the decoding block at the lower level
and merges it with the output of the encoding block at the corresponding level.

Figure 3.8: Encoding block merges upsampled output from lower-level DB and EB.

The general intuition behind this network is some level of the translation invariance of
the iterative solver prescribed by the fully convolutional architecture. Another expectation
from the network is the possibility of the local updates (as GMRES) with the combina-
tion of long-range handling dependencies and global updates. This property should be
achieved by multiscale cascade structure (encoder-decoder structure) [26]. The proposed
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network (Figure 3.9) has 48160 parameters, but there is a chance that we will need a more
heavyweight network for the effective 3D solver. Initial measurements of this architecture
showed that inference by the model lasts about three times more than in the case of a 2D
network. Assuming this (or similar) architecture will work and converge similarly to a 2D
solution, we can expect that the complete prediction of the wavefield for a sample with a
size 963 would take about 12 seconds. Thus we will have to think about accelerating this
computation.

Figure 3.9: This is the first proposal of the neural network for a 3D optimizer. The network
is very lightweight because it contains only 48160 parameters. This number of parameters
might be changed in the future to better generalizability.

3.4.1 Training of the 3D Helmnet

Since the beginning of the project, it was expected to be very computationally expensive to
train the neural network for the 3D data, even though the number of parameters is not much
higher than in the case of the original 2D Helmnet. As shown in Table 3.2, the inference
of the 2D solver took approximately 4 seconds and training about 9 hours. This suggests
that the training of the one dimension higher model could last days on the same device.
Moreover, the memory requirements could be an order of magnitude higher, and there was
a concern that we would need to adjust parameters to require even more resources.
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Figure 3.10: Figure shows the artificially generated sphere representing the shape of the
human skull.

The dataset for 3D Helmnet consisted of 9 000 3D sound speed maps. 8 000 samples
were used for training, 500 for validation and 500 for final evaluation. The evaluation data
has generated also reference solutions using k-Wave. The reference solution is unnecessary
during the training, thanks to the physics-based loss function. The thickness of the skulls
in the dataset is between 10 to 15 pixels, the background sound speed is 1𝑚/𝑠, and the
source frequency is 1𝐻𝑧. During the training was source position selected randomly. It is
suggested to restrict source position only to meaningful ones (near the outer side of the
skull). Placing a radiation source inside the skull might help train the model in general,
but it will probably lose some of its accuracy for real-life usage.

The size of the training data was 963 (see Figures 3.11 and 3.10). 3D data are generated
by summing up several spherical harmonics with random parameters to simulate differences
of the skull in population [24].
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Figure 3.11: Figure shows the artificially generated 3D data cut on one of the axis to
visualize better.

This method will require tens to hundreds of iterations to achieve an acceptable solution.
From the memory and computational power perspective of view, it is not feasible to perform
backpropagation updates through all iterations, so we are using truncated backpropagation
through time (TBPTT) [66] in combination with replay buffer [30]. The number of truncated
backpropagation steps is in our work 10, but it is suggested to try a higher number of
TBPTT steps in the future work, according to computational abilities. The replay buffer
contains the experience with samples in various stages of evolution. That is for enabling:

• fast improvement in early stages

• precise improvements in late stages

• preserve the solution when improvement is not possible

The replay buffer contains triplets 𝑇𝑏:

𝑇𝑏 = (𝑐, 𝑢𝑘, ℎ𝑘) (3.10)
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where 𝑐 is the speed of sound distribution, 𝑢𝑘 is the wavefield in 𝑘-th iteration and ℎ𝑘
is the memory in the 𝑘-th iteration.

The samples in the replay buffer are chosen randomly to preserve the uniform distri-
bution of states in all iterations from zero to maximal limit. In our implementation is the
number of replay buffers 100. The buffer size of 100 was just an unresolved workaround
because the larger samples in the buffer would not fit into the RAM with unchanged other
parameters and hardware resources. It is strongly suggested for future work to explore ways
to expand replay buffer size. One of the possible solutions to decrease memory requirements
would be gradient checkpointing. To achieve better results, we suggest using replay buffer
size 𝐵𝑠:

𝐵𝑡 ≈
10𝑘𝑚𝑎𝑥

𝛼
(3.11)

where 𝐵𝑡 is the replay buffer size, 𝑘𝑚𝑎𝑥 is the maximal number of iterations and 𝛼 is
the number of TBPTT steps. The longer the TBPTT chain is, the less amount of samples
we need, and the buffer size should also reflect the iteration amount. We need to increase
chances that almost for every iteration there is at least one sample in the buffer.

Then the loss of one batch is based on loss defined in Equation3.9 with uniform weight
(all weights 𝑤𝑘 = 1):

𝑅𝑏𝑎𝑡𝑐ℎ =
1

𝑁

𝑁∑︁
𝑛

𝛼∑︁
𝑘

𝐿𝑘(𝑢𝑘,𝑛, 𝑐𝑛, 𝜌) (3.12)

where 𝑅𝑏𝑎𝑡𝑐ℎ is the loss of the batch with size 𝑁 , 𝑘 is the iteration index in TBPTT
steps, 𝛼 is the number of TBPTT steps, 𝐿𝑘 is the loss, 𝑢𝑘,𝑛 is the predicted solution on
given indexes, 𝑐𝑛 is the corresponding sound speed distribution (same for whole TBPTT),
𝜌 is the source distribution.

The loss calculation also uses Laplacian ∇2 to include the impact of PML to approxi-
mately satisfy Sommerfeld radiation condition [76].

Every training step performs the fluctuation in the replay buffer. The randomly selected
sample in the buffer is replaced with a new, suitable one. In this work, we used the maximal
iteration number of 500. Using a higher amount of the maximal iteration is suggested. In
this work, we were restricted by the memory limits.

Since we only used TBPTT steps 𝛼 = 10, which is a relatively small number compared
to required iterations, there was a concern that the model would learn short temporal
dependency and would not be able to improve for a longer time. It is suggested to explore
the possibility of unbiasing the TBPTT [66], but the phenomenon does not significantly
influence this work, and we can perform hundreds of iterations successfully. Because of
that, we assume that pushing the required iteration number down has a better perspective
for future work. Related work proposes also using a so-called experience buffer for storing
memory ℎ𝑘 instead of generating it as our work does [37].

The optimizer used in our work is Adam [38] with a batch size of only 4 (!). Our
memory-expensive implementation conditions the number of samples in one batch, and it
is strongly suggested to use higher values in future work. This work uses a learning rate of
10−4 and Xavier weight initialization [40].

The condition for storing experience in the replay buffer is that the iteration of experi-
ence 𝑘 is lower than maximal iteration 𝑘 < 𝑘𝑚𝑎𝑥 and that the residual 𝐿 of the sample is
below 𝐿𝑚𝑎𝑥. The 𝐿𝑚𝑎𝑥 used in this work is 0.7. The description of the implementation is
in the Chapter 4
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Algorithm 2 Training of the 3D helmnet
Require: Training data 𝒯 , Validation data 𝒱, source distribution 𝜌, buffer size 𝐵𝑡, maxi-

mal iteration 𝑘𝑚𝑎𝑥, TBPTT steps 𝛼, batch size 𝑁
𝑖← 0
while 𝑖 < |𝐵𝑡| do ◁ initial filling the replay buffer

𝑖← 𝑖+ 1
𝑘 ← 𝒰(0, 𝑘𝑚𝑎𝑥)
𝑐← 𝒯𝑖𝑐
Random init 𝑢𝑘, ℎ𝑘
Store (𝑐, 𝑢𝑘, ℎ𝑘) in the replay buffer

end while
𝑉 ←∞ ◁ Best model loss
for 𝑒𝑝𝑜𝑐ℎ ∈ 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 do

Randomly sample batch with batch size 𝑁 out of 𝐵𝑡

for 𝑒 ∈ 𝑁𝑏𝑎𝑡𝑐ℎ do
for 𝑖 ∈ {0, ..., 𝛼} do

𝑟𝑒𝑠𝑖−1 ← 𝐴(𝑐)𝑢𝑖−1 − 𝜌
𝑢𝑖 ← 𝑢𝑖−1 + 𝑓𝜃(𝑢𝑖−1, 𝑟𝑒𝑠𝑖−1, ℎ𝑖−1)

end for
𝐿𝑛 =

∑︀
𝑖 𝐿𝑖,𝑛

end for
𝑖← 𝒰(𝑘 + 1, 𝑘 + 𝑡)
if 𝑖 < 𝑘𝑚𝑎𝑥 & 𝑟𝑒𝑠𝑖 < 0.7 then

Store experience (𝑐, 𝑢𝑖, ℎ𝑖) into the replay buffer 𝐵𝑡 instead of experience 𝑒.
else

𝑐← 𝒯𝑖𝑐
Random init 𝑢𝑘, ℎ𝑘
Store (𝑐, 𝑢𝑘, ℎ𝑘) in the replay buffer

end if
𝑅← 1

𝑁𝑏𝑎𝑡𝑐ℎ

∑︀
𝑛 𝐿𝑛

𝒢 ← ∇𝜃𝑅
𝜃 ← 𝑆𝐺𝐷(𝜃,𝒢)
if 𝑒𝑝𝑜𝑐ℎ%10 = 0 then

𝐿𝑣𝑎𝑙 ← 0
for 𝑑 ∈ 𝒱 do

Random init 𝑢𝑘, ℎ𝑘
Random init 𝜌𝑣
for 𝑖 ∈ 𝑘𝑚𝑎𝑥 do

𝑟𝑖−1 ← 𝐴(𝑐)𝑢𝑖−1𝜌𝑣
𝑢𝑖 ← 𝑢𝑖−1 + 𝑓𝜃(𝑢𝑖−1, 𝑒𝑖−1, ℎ𝑖−1)

end for
𝐿← 𝐿𝑘𝑚𝑎𝑥,𝑛

𝐿𝑣𝑎𝑙 ← 𝐿𝑣𝑎𝑙 + 𝐿
end for
if 𝐿𝑣𝑎𝑙 < 𝑉 then

𝑉 ← 𝐿𝑣𝑎𝑙

Save 𝜃
end if

end if
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3.5 Summary
The chapter provided insight into the topic of the physics-informed neural networks de-
scribed in 2D Helmnet and mainly introduced our proposed solution for solving the Helmholtz
equation using a neural network.

The section 3.1 reminds the 2D Helmnet proposed by Stanziola et al. [63]. The section
contains experiments we performed by reproducing the solution and describes the eval-
uation methods used in the paper. We pointed few most impressive achievements and
summarized the required resources for training and inference using the model. We also
showed hyperparameters and other configurations required to reproduce our results with
2D Helmnet.

In section 3.2 we described the artificially generated dataset for 2D model training and
also the generation of the reference data. The data generation process is simple and uses
only circular harmonics to model a skull sample. We adopted this approach for 3D.

The vital section of this chapter was section 3.3 that described the concept of wavefield
inference using a learned optimizer. It was justified within this section the input and output
shape of the neural network architecture and explained important terms like belief state or
residual. The introduced loss function referenced the physics informed neural networks
mentioned earlier in this work. At the end of the section, we briefly demonstrated the
process of wavefield prediction using this method.

The section 3.4 showed the entire design of the 3D solution. The section closely explains
all neural network architecture building blocks, including Double Convolutional BLock,
Encoding Block, and Decoding Block. It is essential to remind that the total size of the
neural network is only slightly larger than for 2D. The reason is that a much larger model
would extend the time required to accomplish wavefield prediction. The input and output
sizes and channels (residual, absorption coefficients) are also mentioned in this section. This
section also includes a few proposals for future work.

Section 3.4.1 described the whole process of training 3D Helmnet, differences from
the 2D original version of Helmnet and explained essential concepts (like the truncated
backpropagation through time (TBPTT)). Except for that, the data generation process
using spherical harmonics is described here.

The data are generated as simple as in the case of 2D using the automated script. The
reference solutions are calculated using software k-Wave and its kspaceFirstOrder3DG
function. In this section are a few examples of the training dataset, but since the visual-
ization of 3D data is a challenging task, the samples are usually cut by one axis to achieve
a 2D image. The cut point is selected to show some contours of the skull model. If the cut
were at the index 0, only the background would be visualized.

The following part of the section explains the replay buffer for TBPTT. This buffer
is responsible for the learning chain of the wavefield improvements. The section also de-
scribed that the data in the replay buffer must have a uniform distribution in terms of
iteration number, sure accuracy (residual), and the size of the buffer must be sufficient. We
also pointed out that the replay buffer size and content should be the objective of future
work because different replay buffers could yield a model with different (potentially useful)
properties.

Furthermore, last but not least, the section reminds some downsides of our training,
like using the batch size of only 4. This was not selected by careful selection but because
of the lack of memory.
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Chapter 4

Implementation

This work’s main objective and achievement is the proposal and evaluation of a novel
method for transcranial ultrasound therapy. Implementing the method is not trivial, and it
is essential to use external dependencies and well-known frameworks for its successful reali-
sation. The current implementation uses the ML framework Pytorch1. The critical aspects
of the solution to our governing problem are speed and accuracy. Many of our recommen-
dations for future work consisted of improvements conditioned by better computational
and memory resources. However, plenty of the improvements would be directly caused and
enabled by the better implementation. Because of that, the code provided by this work is
only considered experimental and requires refactoring to be used in real industry.

This chapter describes the technical aspects of the algorithms used in this work and their
realisation. The main goal of this chapter is to reveal weak and strong spots of our program
to enable improvement in future work. As we have already shown, our solution successfully
competes with classical methods with finely optimised implementation. Nevertheless, it
is still expected that only by improving the implementation we could achieve even better
results and provide solutions usable in practical applications. It is strongly recommended
for future work to employ a faster framework, e.g. Jax2 to improve the performance of the
program.

4.1 Structure of the project
This section describes the modules of the Python part of the implementation. Generally,
the following modules are responsible for training the model and its inference. Code for
experiments and data generation is not essential for understanding the 3D Helmnet or
future work. This is omitted from the explanation.

• derivative.py This module contains simple structure holding the FFT-based deriva-
tive [33]. This is used by the PML.

• double_conv.py The file contains frequently used layer in our architecture, called
Double Convolutional (DC) Layer. The layer simply consist of two instances of Conv3d
by torch.nn interleaved by parameterized rectified linear unit (PReLU) activation
function. The kernel size used for 3D convolutional layers is 3 and the padding 1.

1https://pytorch.org/
2https://github.com/google/jax
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• encoder_block.py The module encoder_block contains class implementing func-
tionality of the encoder. The encoder is the left part of the UNet (see Figure 3.9).
The encoder consists of double convolutional layer and 3D convolution with kernel
size 8, padding 3 and stride 2. It is responsible for downscaling the input in order to
achieve multiscale solver characteristics.

• experience.py The file holds structure containing information about experience in
the replay buffer. The experience consists of the predicted wavefield, hidden belief
state, speed of sound distribution residual, source distribution and number of the
iteration.

• fast_laplacian_pml.py The Laplacian is used for calculating the physics-based
loss. This module provides Laplacian operator with included PML to enable comput-
ing the residual.

• hparams.json Configuration file, contains not only hyperparameters, but general
config of the program. This file simplifies experiments with various source position,
replay buffer size, number of unrolling steps, frequency, etc.

• output_later.py The class defines module of the neural network responsible for
the last layer. The number of ouput channels is 2 (real and imaginary part of the
wavefield). The used kernel size is 1 and the last layer is also 3D convolutional layer.

• replay_buffer.py The file holds the class responsible for modeling the replay buffer.
The important functionality is behaviour similar to list and option to return random
sample from the buffer.

• solver.py This script is the runnable core of the whole implementation. The script
contains the class IterativeSolver3D, that is a module from GPU-accelerated pytorch-
lightning3. The module performs training, validation and eventually inference on new
samples. After finishing the training is only important function for inference method
forward, however to calculate residual and overall error is also important module with
Laplacian. By running the file is started the training with the parameters defined in
hparams.json. Training is performed by the class Trainer provided by interface of
Pytorch Lightning and during the training is saved 10 models with the best valida-
tion loss. The validation is performed using random source position, using validation
dataset (500 samples). The training is performed similarly using random source po-
sitions, using training dataset (9000 samples). We suggest exploring possibility of
validation using similarity metric and comparison to reference data instead of using
residual.

• source_module.py This file is responsible for suitable representation of the source
distribution and providing random source distributions.

• unet_3d.py Architecture of the neural network based on UNet. Uses encoder
for encoding and downsampling the data, and encoder combined with the layer
ConvTranspose3d for encoding and upsamplig the result. The depth of the UNet
is given by the expected size of the training samples of 96, thus the depth is 4. Using
larger domains of the training samples could be infeasible, so the depth and size of the
training samples is still a stable part of the implementation, not the configuration.

3https://www.pytorchlightning.ai/
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• utils.py provides heler functions, including loading the configuration, or the pre-
trained model.

4.2 Proposals for the future work
As we already mentioned in this and other previous chapters, this work omitted many
potential improvements. This section summarized them.

• higher training domain; despite the fact that this work showed that our solution
successfully generalizes to higher domains, it is recommended to explore options of
using larger data for training. This could lead to increasing the size of the network,
which would prolong the inference of the one iteration. However, this could decrease
the number of the required iterations.

• replay buffer content; we recommend for the future work to analyze the content
of the replay buffer during the training. This work is not checking the distribution
of 𝑖 for wavefield in given iteration 𝑤𝑖, thus we cannot show what iterations is model
learning in given stage of the training. Controlling it in can reveal other lacks in this
work. It would be also useful to explore ways how to specialize the model only for the
brutal changes in the beginning stages of the wavefield optimization, or for fine tuning
at the end. Controlling the samples in the buffer can even bring various models for
every stage of the optimization.

• batch size; the significant restriction of this work is model trained only with batch
size 4. This is much lower than commonly evaluated or used batch size [36]. The
reason for this is lack of memory. We strongly recommend evaluate models trained
with greater batch sizes and compare the training process.

• gradient checkpointing; It is expectable that even with the machines with larger
memory resources, it wouldn’t be possible to study all possible parameters and op-
tions. We recommend to use the Gradient Checkpointing introduced by Chen et al. [16]
in 2016. This method would enable training larger-than-memory models. Common
libraries like PyTorch provide this method as a part of the framework.

• TBPTT steps, buffer size, maximal iteration; These parameters are binded
and should be modified while the Equation 3.11 is satisfied. If it is possible from the
memory point of view, the increase of the unrolling steps could improve the way of
converging to the solution. On the other hand it might be desired to decrease the
number of iterations at all and try to specialize the model.

• Single source position training; Stanziola et al. [63] used one source position for
the whole training process in the original 2D Helmnet. In case of 2D, the training
using one source position generalized perfectly to any other source position (located in
the place similar to real ultrasound). Our experiments showed that the model trained
on the single source position overfits to the position. This does not necessarily mean
it is a useless model. Eventually, the trained model provided as a result of this work is
trained by random source positions. We strongly suggest restrict the possible source
position only to positions that are meaningful for the therapy. Another suggestion
is to explore the performance of single source position. If the model would perform
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much better, there is a way to use it and rotate the skull accordingly to achieve the
result.

• Gradient clipping; Stanziola et al. [63] used gradient clipping [17] for Helmnet.

• Absorption; another remedy might be changing the absorption coefficients of the
PML.

4.3 Summary
This chapter briefly described the state of the current PyTorch-based implementation. The
main contribution is the proof of concept, but we still need improvements and optimization
for industrial usage. There are still many potential parameters and modifications that could
bring us better performance and overall results. It is strongly recommended to study these
improvements in the future.
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Chapter 5

Experiments

This work aimed to achieve similar success as 2D Helmnet. The first step towards 3D
Helmnet was reproducing end evaluating 2D results. All experiments within this work was
performed using GPUs NVIDIA A1001 on supercomputer Karolina2. This chapter shows
the brief evaluation of the 2D Helmnet proposed by Stanziola et al. [63] and our results for
3D in comparison to GMRES [59] and k-Wave [68]. Training processes are performed using
parallel 8 GPUs, the maximal number of GPUs in one allocated node by Karolina.

5.1 2D results
As we showed in Table 3.2, the time required for training 2D Helmnet using Karolina was
about 9 hours per 1000 epochs. The validation loss is illustrated in Figure 5.1.

1https://www.nvidia.com/en-us/data-center/a100/
2https://www.it4i.cz/en/infrastructure/karolina
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Figure 5.1: This chart shows the evolution of ℓ∞ error with training epochs. This suggests
decreasing the iteration number for training because the error is close to its minimum after
less than a hundred iterations. However, it is essential to say that the loss decreases almost
until the end of the training with 1000 iterations. The training took about 9 hours using 8
GPUs on the reference machine.

The evaluation confirmed the successful results described in the original paper [63]. The
inference time with 1000 iterations is 4 seconds using GPU on Karolina.
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Figure 5.2: This chart shows the evolution of RMSE error according to the iteration number
while predicting the wavefield. We may observe that the method converges quickly to values
close to the minimal error. The minimal RMSE error is 4.285 * 10−4. However, the error
of 9.40896 * 10−4 is achieved already after 44 iterations. The progress of the solution is
illustrated in Figure 3.5.

5.2 3D Helmnet experiments
The previous section showed that we could reproduce results for 2D Helmnet proposed in
the original paper. In this section, we present the results achieved in this work and also
highlight potential improvements. Our experiments used the reference machine Karolina,
as in previous experiments. The GPU used for experiments is also the same as in the
previous experiments (NVIDIA A1003).

The base of our experiments contained our learned optimizer under test using other
methods for comparison. The methods selected for comparison are function kspaceFirstOrder3DG
by the k-Wave solver and GMRES method. The k-Wave software was used to generate refer-
ence solutions, and GMRES was used to show how fast and close the result to the reference
solution can our method achieve compared to GMRES. Implementation of GMRES used
in this work is provided by Matlab [4, 59].

Figure 5.3 showed the progress of training and validation loss while training the model.
Our model was trained using 70 epochs. We suggest explore options to train using more
epochs (e.g., model by Stanziola et al [63] was trained using 1000 epochs). The training
took approximately 70 hours using 8 GPUs on a reference machine.

3https://www.nvidia.com/en-us/data-center/a100/

35

https://www.nvidia.com/en-us/data-center/a100/


Figure 5.3: The chart shows the evolution of the training and validation loss of the learned
optimizer. The model was trained using 9000 training samples with 70 epochs. The vali-
dation dataset consisted of 500 samples, and the model was trained and evaluated with a
random source position.

5.2.1 Residual convergence

After training the model, the first step towards providing a learned optimizer is to verify
the residual convergence to zero during the iterative solution. The chart in Figure 5.4 shows
the 300 iterations by the 3D learned solver. The solved wavefield with a low residual is
shown in Figure 5.5.

The chart in Figure 5.6 shows the oscillation of the residual between the 300th and
1300th iteration. Keeping in the replay buffer only samples with low quality caused faster
convergence, but residual exploding from some iterations caused the model not to learn to
handle optimized samples. This feature might be useless because we can quite accurately
detect that the optimization is finished using the residual. Accelerated residual convergence
using less optimized buffer content (with exclusively low-quality samples) should be the
objective of future work.

These few experiments showed the general capability of our solver to optimize residuals
and yield meaningful results. The following steps compare our results with traditional
solvers, specifically k-Wave.
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Figure 5.4: This experiment shows the iterative solution of the single sample with size 963

with the source at the position (82, 48, 54) and with perfectly homogeneous sound speed
distribution with value 1. The residual starts approximately at a value 0.001, and the best
value 7.559 * 10−6 if achieved after 300 iterations
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Figure 5.5: Figure illustrates the result of the 300 iterations of the 3D learned solver
(Figure 5.4). Different structure at the edges is a sign of the PML. The source is placed at
the position (82, 48, 54) and this 2D image is cut on the index 40 by the y-axis. The whole
process of inference took 8.5s using the reference machine Karolina.
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Figure 5.6: This chart shows the progress of the residual after the 300th iteration. The
result is indistinguishable by the human eye from the result in Figure 5.5. Generally, after
achieving some iteration, the residual is no longer improving but is oscillating in order of
magnitude 10−6 up and down. This phenomenon is learned by keeping optimized samples in
the replay buffer and performing only tiny modifications if the improvement is impossible.

5.2.2 k-Wave reference solution

The reference solution for this work was generated using the software k-Wave. Using the
memory of our GPU (40960MiB) was the maximal possible domain of size 416× 416× 416,
which was sufficient for evaluation.

The first simple experiment demonstrates that the predicted solution achieves similarity
to the reference solution by k-Wave. The comparison between the reference solution and
the predicted one is in Figure 5.7. The prediction of the homogeneous environment is not
helpful for industrial or medical usage. However, this simple example shows the ability to
achieve the same results for the elementary problem as the classical method.

The downside is that 300 iterations took 8.5s to yield the given result, while k-Wave
finished in 1.81s. Even though it seems that for the domain 96 × 96 × 96 is the learned
optimizer useless compared to k-Wave, the 3D Helmnet might still bring an advantage.
Figure 5.8 shows an impressively fast convergence rate where the model is able after 25
iterations to achieve a visually very similar result with an error of only 1.02%. This is
performed within 0.71s, which is two times faster than the k-Wave.
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Figure 5.7: The comparison of reference solution by k-Wave and the prediction after 300
iterations. An average error is 0.927%. The source is located on position (70, 70, 70). This
is the cut on the y-axis (index 40). However, the cut by every axis should be the same.

Figure 5.8: This series of wavefield images show relatively fast progress of the computation.
In this order after the second, third, fifth, eighth and 25th iterations. The time required to
accomplish 25 iterations is 0.71s, and the error compared to the k-Wave solution is 1.02%.
The settings are the same as in Figure 5.7.

5.2.3 Multiple sources

Since the model was trained using one source, it is essential to verify its generalizability
to domains with multiple sources. The usage in the therapy is not that common, yet still,
there might be applied even for multiple beam sources [46, 61, 62]. In this work, we trained
the model using one training source (at random locations) to apply to multiple sources.
Figure 5.9 shows an accurate approximation with two sources applied, and Figure 5.10 shows
three sources. The time required to compute wavefield for multiple sources is equivalent to
one source in both methods. Notice that the error is slightly larger for more sources.
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Figure 5.9: Predicted solution is computed using 50 iterations (≈ 1.4s). The sources are at
positions (82, 48, 54) and (39, 48, 54). The image is cut by axis y at index 40.

Figure 5.10: The predicted solution is computed using 50 iterations (≈ 1.4s). The two
sources are at the same positions as in Figure 5.9, thus positions (82, 48, 54) and (3948, 54).
One more source is added at the position (55, 48, 70). The image is cut by y-axis at index
40.
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5.2.4 Large domains

Our solution accelerates the wave prediction, especially in the larger domain, compared to
k-Wave. The larger domain is, the higher acceleration we achieve (the maximal comparable
domain is 4163 since our resources do not allow higher domains in k-Wave).

Figure 5.11: Our solution achieved a mean error of 1.05% after 32 iterations. The domain
is 4163, the largest domain we can compute using k-Wave. The inference by 3D Helmnet
took ≈ 61 seconds using one GPU on Karolina, and the k-Wave simulation took ≈ 500
seconds, which makes more than 8-times accelerated calculation.

Figure 5.12: Figure shows three sources in the larger domain (4163). The speedup using
the 3D Helmnet is similar as in Figure 5.11

5.2.5 Missing dependency

The known issue of our solution is the weak influence on distant parts of the field from the
source. The neural network was trained using the 963 domain and generalizes well until
some distance from the source. This usually happens for larger domains if the radiation
source is placed in one corner. The effect is the missing information about the waves in the
other corner.
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Figure 5.13: The domain with size 5763 was not able to develop an optimal wavefield using
Helmnet. When the solution started propagating to places further from the source, the
computed part lost its information.

5.2.6 Homogeneous objects

The learned optimizer showed generalizability for predicting wavefields in objects with dif-
ferent morphology than the training data. Figure 5.14 shows the prediction of the wavefield
with the present square in the region. Figure 5.15 even demonstrates this feature in a larger
domain.

Figure 5.14: The wavefield prediction of the small square in the region with domain size
963.
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Figure 5.15: Similar experiment as Figure 5.14 but with the domain size 4483.

5.2.7 Artificial skull

This experiment shows the ability to predict the wavefield of the artificial yet still similar
data to real ones. Figure 5.16 shows the result of the wave prediction in the artificial skull
cut by the y-axis.

Figure 5.16: The residual of the predicted data was ≈ 7 * 10−6 and the difference from
reference sample was 0.85%
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Figure 5.17: The chart shows the time required to compute the wavefield using our optimizer
(”NN“) and k-Wave. The axis ”Domain size“ shows the size of the one side in the square
domain.
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Figure 5.18: This figure shows evolution of 500 samples in 1000 iterations using learned
optimizer.
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Prediction SOS

Figure 5.19: Even though the model was trained using entirely homogeneous media, we
showed that the solution also converges for the media with heterogeneous structure. This
sample was created using the injection of uniform noise between −0.3 and 0.3, and the
residual achieved ≈ 8 * 10−6 after 250 iterations.

5.2.8 GMRES

Setting the system of equation in 3D for GMRES is difficult and we were able to solve the
maximal domain of 643.

46



100 101 102 103

Iterations

10 4

10 3

10 2

Re
sid

ua
l

GMRES
NN

Figure 5.20: The ” NN “ curve is our learned optimizer and its performance on one sample.
The curve ”GMRES“ is a result of the GMRES method. The residual 4.4 * 10−5 was
achieved by a learned optimizer after 80 iterations, while this was a result of a GMRES
after 1000 iterations. Notice that our method does not converge to the perfect result, only
to a particular approximation level. This is one of the issues of our method. The curves
are related to Figure 5.21.
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Figure 5.21: The first image shows the reference solution generated by k-Wave. The second
image shows a solution optimized by GMRES, with residual 4 * 10−6. The solution needed
3500 iterations to achieve this residual (≈ 175s). Our learned optimizer predicts the last
image. The residual is 2.16 * 10−5 (≈ 2.9s). The domain size of this figure is 643.
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Chapter 6

Final Considerations

6.1 Conclusions
The main goal of this work was to propose a method that enables health officers to visualize
the state of wavefield in the human brain during the application of ultrasound and to explore
similar methods. Predicting the wavefield is generally a computationally intensive task,
especially in 3D, where computational capability and memory often restrict the calculation.

The goal was finished, and we proposed, implemented and evaluated the novel method
for predicting the wavefield after applying ultrasound in the steady-state. Our method
showed promising experimental results compared to traditional approaches and showed a
perspective view for its further development.

We demonstrated that the method works faster than traditional approaches, especially
in larger domains and makes it feasible to predict wavefields in larger domains in 3D. A
domain with size 4163 performed more than eight times faster computation than k-Wave.
Our work showed generalization to various shapes, ultrasound source locations, multiple
sources and domain sizes. The tested domain sizes that worked well were between 643 to
4963, which exceeded the maximal domain size that was commutable using on the machine
in k-Wave.

The solution to PDE-like problems using neural networks brings advantages, not re-
stricted only to the Helmholtz equation. This work also provided plenty of recommenda-
tions for future work. The most important of them are reminded in the following section.

6.2 Future work
Despite the work bringing positive results, there is still plenty of space for further devel-
opment, experiments and research in this field of study. Besides the enormous potential
applications for physics-informed neural networks in numerical problems, there are also
many options to improve this research.

The implementation’s current state is closer to the prototype and for demonstration
purposes than for production. It is strongly recommended to rewrite the whole framework
into the new one using a faster neural network library (e.g. Jax1). Another important rec-
ommendation is to apply more-than-memory training using gradient checkpointing. This
would enable using the much higher amount of ”virtual memory“. It would be possible to
perform experiments with different configurations and hyperparameters with higher mem-

1https://github.com/google/jax
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ory limits. The training batch size in our work is four exclusively because of memory
reasons. This, along with the replay buffer, should also be increased and find the opti-
mal values for these parameters. We found out that the model can be tuned to converge
faster, slower, longer etc. Finding the trade-off between the maximal possible accuracy and
convergence speed should also be an objective of future work in this field.
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Appendix A

Running the solution

The main functionality implemented in this thesis is training the model and performing
inference. It is required to install the Python libraries defined in requirements.txt and
strongly recommended use multiple GPUs for the training and ideally also for the inference.

A.1 Training
Before running the training is possible to set the parameters in the file hparams.json. The
file contains the training hyperparameters and the configuration like available GPUs or
path to the training data. For the start of the training, run the following command:

python3 train.py

A.2 Inference
The only parameters that need to be set for the inference are the available GPU, number
of iterations, source positions and path to the target file in the format .npy. They must be
set in the file hparams.json. After setting parameters user runs the following command:

python3 predict.py
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