
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

APPLYING CODE CHANGE PATTERNS DURING
ANALYSIS OF PROGRAM EQUIVALENCE
POUŽITÍ ŠABLON ZMĚN KÓDU POČAS ANALÝZY EKVIVALENCE PROGRAMŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR PETR ŠILLING
AUTOR PRÁCE

SUPERVISOR Ing. VIKTOR MALÍK
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Šilling Petr
Programme: Information Technology
Title: Applying Code Change Patterns during Analysis of Program Equivalence
Category: Software analysis and testing
Assignment:

1. Study existing works on identification and analysis of software refactoring patterns.
Concentrate on identifying typical patterns of changes occurring in low-level production code,
especially the GNU/Linux kernel.

2. Get acquainted with DiffKemp, a tool for automatic analysis of semantic equivalence of
functions in the GNU/Linux kernel.

3. Propose an encoding of low-level code change patterns, using the intermediate
representation of the Clang/LLVM complier.

4. Design an extension of DiffKemp that would allow it to accept custom semantics-preserving
change patterns (using the proposed encoding) and to compare code matching the given
patterns as semantically equal.

5. Implement the proposed extension in the DiffKemp framework.
6. Evaluate the implemented solution on at least 3 pairs of past versions of the Linux kernel,

using a set of at least 10 custom patterns that commonly occurred in these versions.
Recommended literature:

Garrido, Alejandra. Software refactoring applied to C programming language. PhD thesis.
University of Illinois at Urbana-Champaign, 2000.
Official website of DiffKemp: https://github.com/viktormalik/diffkemp
Ullmann, Julian R. An algorithm for subgraph isomorphism. Journal of the ACM (JACM) 23.1
(1976): 31-42.

Requirements for the first semester:
The first 3 items of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malík Viktor, Ing.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: November 11, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24037/2020/xsilli01 Page 1/1

Abstract
The goal of this thesis is to propose a static analysis method for recognition of code change
patterns describing recurrent changes between different versions of low-level code. The
thesis proposes an encoding method of patterns, which uses the LLVM intermediate repre-
sentation, and a pattern matching algorithm based on gradual comparison of instructions
according to their control flow. The proposed analysis has been implemented as an ex-
tension of DiffKemp, a tool for analysing semantic differences between versions of large
C projects. Results of experiments conducted on three pairs of past versions of the Linux
kernel show that the extension is able to eliminate a substantial amount of false-positive
or generally undesirable differences from the output of DiffKemp, which would otherwise
require manual inspection.

Abstrakt
Cílem této práce je návrh statické analýzy pro rozpoznávání vzorů, popisujících často se
vyskytující změny mezi různými verzemi nízkoúrovňového kódu. V rámci práce je navržen
způsob kódování vzorů, využívající vnitřní reprezentaci LLVM, a algoritmus pro hledání
vzorů založený na postupném porovnávání instrukcí podle toku řízení. Navržená analýza
byla implementována jako rozšíření nástroje DiffKemp pro analýzu sémantických rozdílů
různých verzí rozsáhlých projektů napsaných v jazyce C. Výsledky experimentů provedených
na třech dvojicích minulých verzí linuxového jádra ukazují, že navržené rozšíření dokáže
eliminovat podstatné množství falešně pozitivních či obecně nežádoucích rozdílů z výsledků
porovnání nástrojem DiffKemp, které by jinak vyžadovaly manuální kontrolu.

Keywords
DiffKemp, SimpLL, LLVM, Clang, GNU/Linux kernel, code change pattern matching,
code change pattern representation, subgraph isomorphism, semantic difference analysis,
refactoring patterns, LLVM metadata, LLVM intermediate representation, control-flow
graph, elimination of false-positive reports

Klíčová slova
DiffKemp, SimpLL, LLVM, Clang, GNU/Linux kernel, porovnávání vzorů změn kódu,
reprezentace vzorů změn kódu, izomorfismus podgrafů, analýza sémantických rozdílů mezi
programy, refaktorovací vzory, LLVM metadata, vnitřní reprezentace LLVM, graf toku
řízení, odstraňování falešně pozitivních hlášení

Reference
ŠILLING, Petr. Applying Code Change Patterns during Analysis of Program Equivalence.
Brno, 2021. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Viktor Malík

Rozšířený abstrakt
Při úpravách částí programu, které by v ideálním případě měly zůstat dlouhodobě sta-
bilní (například po celou dobu života majoritní verze daného programu), může být zcela
zásadní mít informaci o tom, které další části programu budou změnami ovlivněny a jaký
bude dopad na sémantiku celého programu. Aby si vývojáři zjednodušili proces hledání
těchto zpravidla nežádoucích vedlejších účinků prováděných změn, mohou teoreticky využít
automatizované statické analyzátory sémantické ekvivalence, tedy nástroje, které dokáží
porovnat programy, případně pak různé verze stejného programu, a najít mezi nimi rozdíly
v sémantice. Aktuálně dostupné analyzátory sémantické ekvivalence jsou ovšem zpravidla
založeny na vysoce výpočetně náročných formálních metodách. Vývojáři pracující na
rozsáhlejších projektech se proto i nadále musí téměř zcela spoléhat na manuální analýzu
sémantických rozdílů a vedlejších účinků, což je ovšem proces, který je obzvláště časově
náročný a náchylný na lidské chyby.

Pomalu se však objevují i analyzátory, které se snaží o co největší škálovatelnost, a tedy
i použitelnost na rozsáhlé projekty. Jedním z takových analyzátorů je i DiffKemp, nástroj
pro analýzu sémantických rozdílů mezi programy napsanými v jazyce C, který se, vzhle-
dem k tomu že je vyvíjen v rámci firmy Red Hat, zaměřuje zejména na linuxové jádro.
DiffKemp využívá vysoce škálovatelnou techniku pro hledání sémantických rozdílů, která
obvykle produkuje jen velmi malý počet falešných hlášení. Obecně lze tedy řici, že se
DiffKemp principiálně nachází přímo mezi formálními metodami, které jsou zcela přesné,
ovšem rovněž velmi výpočetně náročné, a jednoduchými, výpočetně nenáročnými meto-
dami, obvykle z hlavní části založenými na prostém porovnávání textu.

Aby mohl DiffKemp dosáhnout požadované přesnosti a efektivity, převádí oba porovná-
vané programy z jazyka C do vnitřní reprezentace LLVM (LLVM IR) a následně se je pok-
ouší porovnat po jednotlivých instrukcích. Pokud však oba programy nejsou syntakticky to-
tožné, samotné porovnávání instrukcí generuje značný počet falešně pozitivních hlášení o sé-
mantických rozdílech. Aby se jejich množství snížilo na co nejnižší úroveň, DiffKemp před
samotným porovnáváním aplikuje několik sémantiku zachovávajících transformací kódu an-
alyzovaných programů, aby je k sobě co nejvíce syntakticky přiblížil, a rovněž v obou
programech hledá zabudované vzory změn kódu, o nichž je známo, že zachovávají séman-
tiku. Tyto sémantiku zachovávající vzory změn kódu jsou obzvláště důležité, protože s jejich
pomocí má DiffKemp možnost korektně porovnat i poměrně složité refaktorovací změny.
Protože však DiffKemp podporuje pouze staticky zabudované vzory, nemá možnost do-
datečně reagovat na rozdílné potřeby odlišných vývojářů a zároveň nedokáže zajistit pří-
padnou podporu změn, které by ovlivňovaly sémantiku (a to ani pokud by byly dané změny
sémantiky úmyslné a předem ověřené).

S ohledem na výše uvedené nedostatky pevně zabudovaných sémantiku zachovávající
vzorů změn kódu tato práce navrhuje a implementuje rozšíření nástroje DiffKemp, které
dává uživatelům možnost DiffKemp dynamicky rozšířit o vlastní vzory změň kódu, a tím
i určit, jaké další změny by měl DiffKemp považovat za sémanticky ekvivalentní. Protože
jde navíc o uživatelsky definované vzory, nemusí již ani nutně respektovat zachování séman-
tiky (respektive popisovat refaktorování). Naopak může v některých případech jít i o vzory
popisující změny v sémantice, které jsou předem ověřené jako bezpečné (například nutné
bezpečnostní opravy).

Konkrétněji práce zkoumá existující vzory změn kódu vyskytující se v nízkoúrovňových
projektech napsaných v jazyce C, jako je například linuxové jádro, a připravuje jejich kó-
dování založené na LLVM IR tak, aby měl DiffKemp možnost vzory dynamicky načítat.
Vzhledem k druhům vzorů změn kódu identifikovaných v rámci analýzy různých verzí lin-

uxového jádra práce přímo navrhuje dvě reprezentace vzodů změn kódu, jednu univerzální
a druhou specializovanou pro vzory popisující velmi jednoduhé, jednohodnotové změny.
Oba druhy reprezentace jsou kódovány v LLVM IR, a sice pomocí dvou funkcí s pevně
danou strukturou.

Práce dále navrhuje metodu detekce vzorů změn kódu v porovnávaných programech,
která je založena na problému hledání izomorfních pografů větších grafů a využívá infras-
trukturu LLVM, zejména fakt, že funkce jsou v LLVM reprezentovány jako grafy toku řízení.
Přesněji řečeno, metoda se pro každý vzor pokouší najít takové podgrafy grafů toku řízení
porovnávaných programů, které jsou izomorfní s grafy toku řízení příslušejícími danému
vzoru. Podgrafy se metoda pokouší nalézt za pomoci postupného porovnávání instrukcí.
Metoda byla implementována v jazyce C++ jako rozšíření nástroje DiffKemp.

Výsledné rozšíření bylo experimentálně ověřeno na třech párech předchozích verzí lin-
uxového jádra z hlediska jeho dopadu na analýzu sémantických rozdílů prováděnou nástro-
jem DiffKemp. Výsedky experimentů ukázaly, že za předpokladu, že jsou načteny rel-
evatní dynamické vzory změn kódu, rozšíření dokáže eliminovat značné množství poten-
ciálně nežádoucích rozdílů z výstupu nástroje DiffKemp. Pro ověření, že zavedení rozšíření
neovlivnilo zbylé části nástroje DiffKemp, bylo rovněž spuštěno všech 122 regresních testů
používaných nástrojem DiffKemp. Nakonec bylo pro zjednodušení budoucího ověřování
funkčnosti rozšíření dodáno i 16 nových regresních testů. Všechny regresní testy skončily
úspěchem, což dále svědčí o správné funkčnosti rozšíření.

Applying Code Change Patterns during Analysis
of Program Equivalence

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Viktor Malík. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Petr Šilling

May 10, 2021

Acknowledgements
I would like to thank my supervisor Ing. Viktor Malík for his help with the understanding
of important parts of DiffKemp and LLVM and for consultations regarding the theoretical
aspects of the thesis.

Contents

1 Introduction 2

2 Analyzing Semantic Differences using DiffKemp 4
2.1 Current State of Static Analysis of Semantic Equivalence 5
2.2 Representation of Compared Programs . 6
2.3 Definition of Function Equality . 8
2.4 Algorithm for Checking Function Equality 9

3 Code Change Pattern Matching 13
3.1 Code Change Pattern Definition . 14
3.2 Refactoring-Based Code Change Patterns 15
3.3 Semantics-Altering Code Change Patterns 17
3.4 Finding Change Patterns in Code . 19

4 Representation of Change Patterns 21
4.1 Encoding Code Change Patterns . 22
4.2 Pattern-Specific LLVM Metadata Nodes . 24

5 Design of the DiffKemp Extension 26
5.1 Top-Level Matching Algorithm . 26
5.2 Pattern Code Fragment Matching . 30
5.3 Generating Instruction Patterns from Value Patterns 32

6 Extension Implementation 35
6.1 Architecture of SimpLL . 35
6.2 Integration of the Pattern Matching Extension 36
6.3 Extending the LLVM Function Comparison Module 38

7 Experiments and Testing 39
7.1 Experimental Evaluation on the Linux Kernel 39
7.2 Regression Testing . 41

8 Conclusion 42

Bibliography 43

A Contents of the Attached Medium 46

B Compilation and Execution 47

1

Chapter 1

Introduction

When modifying code that should ideally remain stable and consistent for extended periods
of time (e.g., for the lifetime of a major software release version), it might be crucial to
know which parts of the program will be impacted, or, perhaps even more importantly, how
will the changes affect semantics. To ease the process of finding unintentional side-effects,
developers may want to utilize automated static analyzers of semantic equivalence, i.e.,
tools that can compare programs (or separate versions of the same program), displaying
any potential semantic differences to the user. The problem is that current techniques
for sound checking of semantic equivalence typically depend on computationally intensive
formal methods. Consequently, the applicability of such tools to large-scale projects is
fairly limited, forcing developers to rely almost entirely on an especially time-consuming
and error-prone manual analysis instead.

Nevertheless, analyzers that concentrate on scalability and usability on large projects
are slowly emerging as well. One such tool is DiffKemp, an analyzer of semantic differences
between C programs, focusing particularly on the Linux kernel due to the fact that it is being
developed in Red Hat. DiffKemp tries to find the middle ground between formal methods,
which are sound but heavy-weight, and simplified light-weight methods (often based on
plain text similarity)—it introduces a highly scalable technique that usually produces only
a small number of false non-equivalence results.

In order to achieve this, DiffKemp translates both analysed programs from C into
the LLVM intermediate code representation (LLVM IR) and attempts to compare them
instruction-to-instruction. Unfortunately, unless the programs are syntactically the same,
the instruction-to-instruction comparison by itself generates many false non-equivalence
reports. To lower their amount as much as possible, DiffKemp also applies several code
transformations in an attempt to bring the compared programs syntactically closer together
and searches both programs for predefined patterns that are known to preserve semantics.
These semantics-preserving change patterns (SPCPs) are especially important since they
allow DiffKemp to handle even rather complex refactorings. However, as SPCPs are
defined statically, they cannot properly respond to the needs of different developers, nor
can they support changes that impact semantics, even if the impact is purely intentional.

With respect to the above, this thesis proposes, designs, and implements an extension
of DiffKemp that allows to dynamically extend DiffKemp with custom patterns of code
modifications. Compared to the existing SPCPs, which are a fixed part of DiffKemp,
dynamic patterns enable users to specify which kinds of changes should be ignored during
the semantic comparison. These do not necessarily have to be semantics-preserving pat-

2

terns (representing refactorings), but also semantics-altering patterns that represent code
modifications verified to be safe (e.g., security fixes).

This thesis studies existing patterns used in low-level C projects, such as the Linux ker-
nel, and prepares their encoding based on LLVM IR so that the patterns can be loaded and
used by DiffKemp. Furthermore, the thesis proposes a method for detecting patterns in
compared programs. This matching method is based on the subgraph isomorphism problem
and leverages the LLVM infrastructure—in particular, the fact that LLVM functions are
represented as control-flow graphs (CFGs). More specifically, for each pattern, it tries to
find a subgraph of CFGs of analysed programs that is isomorphic to the CFG-based repre-
sentation of the pattern. Last, the thesis evaluates the extension on multiple past versions
of the Linux kernel in terms of its impact on the analysis of semantic differences conducted
by DiffKemp, demonstrating that it can eliminate a substantial amount of potentially
undesirable differences from the output of DiffKemp.

The rest of the thesis is organised as follows. First, Chapter 2 gives a more detailed
description of DiffKemp. Second, Chapter 3 presents an analysis of existing code change
patterns, as well as an overview of methods for detecting patterns in compared programs.
Chapter 4 follows by introducing a novel representation of dynamically defined code change
patterns based on the intermediate representation of LLVM. Chapter 5 describes the design
of the proposed DiffKemp extension. After that, Chapter 6 provides details about the
implementation of the extension. Then, Chapter 7 evaluates the extension on past versions
of the Linux kernel. Finally, Chapter 8 concludes the thesis, discussing possibilities for
future work.

3

Chapter 2

Analyzing Semantic Differences
using DiffKemp

This chapter describes the underlying concepts behind DiffKemp [17], a static analyzer of
semantic differences between multiple versions of programs that we use as the target plat-
form for our work. Compared to other tools for analysis of semantic differences, DiffKemp
aims to scale on large-scale C projects, such as the Linux kernel, while maintaining high
accuracy of the results at the same time.

This target objective of DiffKemp arises from two fundamental assumptions [17]:
(1) existing techniques for sound equivalence checking1 have difficulties concerning scal-
ability because they generally depend on heavy-weight formal methods, and, on the other
hand, (2) scalable light-weight analysers based on simple text similarity (such as the Unix
diff tool) or abstract syntax tree matching [20] cannot conduct a proper analysis of se-
mantic equivalence. In light of this, DiffKemp seeks the middle ground between the two
approaches: it can analyse large-scale projects in a matter of minutes while being able to
handle most common code refactorings. However, it is not sound and might fail to show
the equality of some heavily refactored programs.

In its core, DiffKemp expects to receive two versions of the same program (with one
being a refactoring of the other). To simplify the semantic comparison, the programs are
translated into a lower-level language, in particular the LLVM intermediate representation
(LLVM IR) [14]. Checking of semantic equality is then based on the following concepts:

• By default, an instruction-to-instruction comparison is conducted. This is a sim-
ple and very scalable approach which is especially useful if the compared programs
are syntactically the same. On the other hand, it may lead to numerous false non-
equivalence results, also known as false-positives.

• In order to bring the programs to a state where they can be compared instruction-
to-instruction as often as possible, several code transformations are performed.

• Lastly, DiffKemp contains a list of predefined semantics-preserving change patterns.
Changes matching these patterns are evaluated as semantically equal, even if they
contain different instructions.

1Analysis soundness—the properties inferred by a sound analysis hold true for the given program in
all of its possible executions [19].

4

The rest of this chapter is organized as follows. Section 2.1 gives a more detailed de-
scription of various existing approaches to static analysis of semantic equivalence. The
representation of the compared programs—which relies on LLVM IR—is explained in Sec-
tion 2.2. Section 2.3 formally defines the concept of semantic equality. Finally, the primary
algorithm for equivalence checking used by DiffKemp is presented in Section 2.4.

2.1 Current State of Static Analysis of Semantic Equivalence
According to [13], static analysis is a technique for analyzing source code at compile time.
In other words, it is the art of reasoning about the behaviour of computer programs with-
out actually running them [19] (at least not with the original semantics), which derives
properties that hold for all possible execution paths. This is in direct contrast with dy-
namic analysis, which derives properties that are valid for one or more execution paths of
a running program [2].

Static analysis can provide a variety of insights about the analyzed code since its ap-
plications range from fairly simple programming error checkers to much more sophisticated
formal analyzers and verifiers [13]. This thesis focuses on so-called differential static analyz-
ers, which extract information about the differences between two programs. In particular,
the thesis focuses on the analysis of semantic differences between these programs, which
are expected to be separate versions of the same program.

In recent years, several projects on static analysis of semantic equivalence have emerged,
creating a widely studied field of program analysis. The tools implemented based on these
projects generally rely on costly formal methods, which—while eliminating false-positives
common for more relaxed techniques—suffer greatly from scalability issues. Application on
large enterprise projects, such as the Linux kernel, is therefore not feasible. Examples of
such works are LLReve [11], SymDiff [12] or DiSE [22]. A more complete overview of
analyzers of semantic differences can be seen in [17].

To give a concrete example, we present an experiment from [17], which evaluates
LLReve—an open-source equivalence checker aimed at C programs compiled to LLVM IR.
Because LLReve generates constraints in the form of Horn clauses, the analysis is quite
time-consuming. Consequently, the tool fails to compare almost all functions from the
Linux kernel in the 30-second long time frame provided by the experiment. Furthermore,
LLReve does not support some operations common in industrial applications, such as calls
via function pointers, floating-point arithmetic, and general bit operations. This results in
several crashes during the comparison, which is unacceptable for commercial use.

Contrary to approaches based on formal methods, simpler and faster alternatives like
the Unix diff tool also exist. While such tools are easily applicable to projects with the
size of the Linux kernel, the information they provide originates from plain text comparison,
making it unsuitable for a proper analysis of semantic differences.

Additionally, more advanced light-weight techniques exist as well. For example, [20]
proposes to parse both compared programs and to produce their abstract syntax trees
(ASTs). ASTs can then be traversed in parallel, creating a mapping for both variable names
and types. As a result, simple semantics-preserving changes, such as variable renaming and
type aliasing, may be handled with relative ease. However, even such tools would fail when
confronted with more elaborate refactorings.

Considering the examples above, two essential properties of industrially applicable se-
mantic equivalence analysers can be identified: (a) high evaluation speed and scalability,
and (b) the ability to support complex refactoring patterns utilized in real-life projects.

5

While tools satisfying these conditions already exist, most of them concentrate only on
providing an effective description of differences between the compared programs, and not
on semantic equivalence itself. This applies to, e.g., JDiff [1], which is able to compare
Java programs using their control-flow graphs (defined in Section 2.2).

Nevertheless, tools focusing on both practicality and the analysis of semantic equiva-
lence exist as well. For example, BinHunt [9] generates an intermediate representation
from binary files and uses it to construct control-flow graphs. The resulting graphs are
then matched according to the subgraph isomorphism problem (described in Chapter 3).
However, the usage of binary files may be quite limiting compared to DiffKemp, which
primarily targets low-level C projects, because the loss of direct access to the corresponding
source files also results in the loss of source code metadata. Therefore, some changes, e.g.,
regarding offsets of structure members, may be hard to correlate.

2.2 Representation of Compared Programs
Before the analysis of semantic differences may begin, DiffKemp needs to lower the level
of abstraction of compared programs. Doing so not only makes the analysis easier and more
language-independent but also hides multiple semantics-preserving changes. These may be,
e.g., the syntactical changes between for and while loops, which are present only in higher
level languages like C.

In particular, DiffKemp translates analysed C programs into a low-level source-lan-
guage-independent code representation called LLVM IR—the intermediate representation
of LLVM [14]. In general, LLVM is a modular compiler framework designed to provide
high-level metadata useful for program analysis and code transformations. For example,
LLVM provides an explicit function representation based on control-flow graphs, which can
be used to retrieve information about control flow or to traverse analysed programs.

To formalize this representation, we provide the following definitions, which are based
on [1, 14, 16, 17] and describe the relevant parts of LLVM IR. All examples and instructions
assume that the C language and the LLVM infrastructure are used, although they may be
simplified for the sake of brevity.

Control-flow graph (CFG) A directed graph in which nodes represent basic blocks,
and edges represent the flow of control between program branches. Each LLVM function
corresponds to a single CFG and may be perceived as one.

Basic block (BB) A sequence of LLVM instructions where only the first instruction
(called the entry instruction) may be the target of jumps and which ends with exactly one
terminator instruction and contains no other branching instructions.

Instruction An operation performed over a (possibly empty) list of operands, where
each operand is a variable, a constant, or a function. The operation is characterized by the
associated instruction kind, and all variables and constants are typed. Instructions may
produce a result. For example, arithmetic instructions, such as add for integer addition and
fsub for floating-point subtraction, need to store the resulting value. Instruction kinds and
the LLVM type system are defined by [16].

6

Variable Variables may be local to a given function, or global. Local variables in LLVM
do not necessarily correspond to local variables from original programs. In fact, there are
two kinds of local variables: virtual registers and variables allocated on the stack by the
alloca instruction. Registers are temporary variables produced as results of instructions
and that satisfy the requirement that each of them is assigned to at most once (also known
as the static single assignment property, or SSA). Registers can get accessed directly. On
the other hand, variables that get allocated on the stack are operated through pointers
and, therefore, load and store instructions have to be used to read and write their val-
ues, respectively. Only stack-allocated variables may correspond to variables from original
programs. Global variables need to be accessed via load and store as well. Function
parameters are a subset of all local variables. In the human-readable representation of
LLVM IR, identifiers of local variables (and types) start with %, while the identifiers of
global variables (and functions) are prefixed by @.

Metadata Additional information attached to instructions, functions, or global variables.
Metadata are not typed and, in the human-readable representation of LLVM IR, are prefixed
in syntax by !. Metadata can be either strings of characters or nodes. Metadata nodes
group other metadata and values together (similarly to structured data types). Attached
metadata get identified by name, which may be shared across metadata of the same kind.

Branching The (possibly conditional) flow of program control between connected ba-
sic blocks. Generally, branching occurs when one of the following three instructions gets
executed: (a) the branching br instruction, which can branch both conditionally and un-
conditionally, (b) the call instruction, which represents an ordinary function call, or (c) the
ret instruction, used to terminate the current function. Instructions that might be executed
immediately after an instruction 𝑖 are called the successor instructions of 𝑖.

C Code
1 int example(int param) {
2 int result;
3 if (param > 0)
4 result = fun(param);
5 return result;
6 }

entryBB

trueBB exitBB

Control-flow graph

𝑡𝑟
𝑢
𝑒

𝑓
𝑎𝑙𝑠𝑒

LLVM IR Code
1 define i32 @example(i32) {
2 entryBB:
3 %1 = alloca i32 ; result allocation
4 %2 = icmp sgt i32 %0, 0
5 br i1 %2, label %trueBB, label %exitBB
6
7 trueBB:
8 %3 = call i32 @fun(i32 %0)
9 store i32 %3, i32* %1

10 br label %exitBB
11
12 exitBB:
13 %4 = load i32, i32* %1
14 ret i32 %4
15 }

Figure 2.1: Sample function defined in both C and LLVM IR, and the associated CFG.

7

Figure 2.1 shows a simplified structure of LLVM IR for a sample function written in C,
and the corresponding CFG. Additionally, it shows that unconditional branches and stan-
dard non-branching instructions have only a single successor, while conditional branches
(Line 5 in LLVM IR) typically have two successors.

2.3 Definition of Function Equality
After the analysed programs get translated into LLVM IR, a low-level code representation
described in Section 2.2, DiffKemp may start comparing them. It does so by analyzing
pairs of functions, utilizing one of the key aspects of LLVM IR, where each function is
represented by a CFG composed of basic blocks. This not only divides compared programs
into smaller, easily manageable segments (which is important for scalability) but also gives
direct access to all instructions present in currently compared functions through their CFGs.

Since checking semantic equality of entire functions at once would be fairly complicated,
DiffKemp achieves it by splitting each function into the same number of blocks that can be
compared separately. These small blocks of code are delimited by so-called synchronisation
points, at which both compared functions are synchronized, i.e., have the same state of
memory (defined by both the stack and the heap). For each block of code located between
two synchronisation points 𝑠1 and 𝑠′1 taken from the first compared function, a block of code
between two corresponding synchronisation points 𝑠2 and 𝑠′2 that is semantically equal must
exist in the second compared function [17]. Two blocks of code are considered semantically
equal if and only if the following two conditions hold [17]:

1) During execution, the blocks either both terminate, or both do not terminate.

2) If the blocks terminate, they produce the same output for the same input, where input
and output represent the values of all input variables and the initial state of memory,
and the values of all output variables and the final state of memory, respectively.

Generally, the sets of (mainly local) variables used in the corresponding blocks of code
are not the same. Therefore, a variable mapping indicating which variables from the first
compared function are corresponding to which variables from the second compared function
has to be created as well.

More formally, let 𝑓1 and 𝑓2 be two compared functions, and 𝐼1, 𝐼2 and 𝑉1, 𝑉2 their
sets of instructions and variables, respectively. The problem of checking semantic equality
can be then defined as the problem of finding two sets of synchronisation points 𝑆1 ⊆ 𝐼1
and 𝑆2 ⊆ 𝐼2 and two synchronisation mapping functions: 𝑠𝑚𝑎𝑝 : 𝑆1 ↔ 𝑆2, creating a
mapping of synchronisation points between 𝑓1 and 𝑓2, and 𝑣𝑎𝑟𝑚𝑎𝑝 : 𝑉1 ↔ 𝑉2, creating an
analogous mapping of variables, such that the blocks of code between pairs of corresponding
synchronisation points are semantically equal. The above definition is a simplified version
of the formal definition presented in [17].

Such mapping functions are rather hard to produce. Generally, both syntactical and
control flow transformations and a sophisticated matching algorithm are required. An
example containing a graphical representation of suitable 𝑠𝑚𝑎𝑝 and 𝑣𝑎𝑟𝑚𝑎𝑝 mappings,
and the associated LLVM IR of the two compared functions, is presented in Figure 2.2.

As can be seen in Figure 2.2, synchronisation points are typically located at each in-
struction. However, the example also shows that in certain scenarios, e.g, when using a
syntactically different, although semantically equal algorithm, this might not be the case.
For instance, it may be observed that the instruction 𝑖1 in 𝑓1 performs the same operation

8

Function 𝑓1

1 define i32 @f1(i32 %x, i32 %y) {
2 %1 = mul i32 %x, 5
3 %2 = mul i32 %y, 4
4 %3 = add i32 %1, %2
5 %4 = mul i32 %3, %3
6 %5 = mul i32 %3, %4
7 ret i32 %5
8 }

Function 𝑓2

1 define i32 @f2(i32 %x, i32 %y) {
2 %1 = shl i32 %x, 2
3 %2 = add i32 %x, %1
4 %3 = shl i32 %y, 2
5 %4 = add i32 %2, %3
6 %5 = call i32 @ipow(i32 %4, i32 3)
7 ret i32 %5
8 }

𝑆1

𝑖1

𝑖2

𝑖3

𝑖4

𝑖6

𝑆2

𝑖1

𝑖3

𝑖4

𝑖5

𝑖6

𝑠𝑚𝑎𝑝

𝑉1

%x
%y

%1
%2
%3
%4
%5

𝑉2

%x
%y

%1
%2
%3
%4
%5

𝑣𝑎𝑟𝑚𝑎𝑝

Figure 2.2: Two compared functions 𝑓1 and 𝑓2 with the associated 𝑠𝑚𝑎𝑝 and 𝑣𝑎𝑟𝑚𝑎𝑝
mappings. For 𝑛 ∈ {1, 2, . . . , 6}, instructions from both functions are represented in order
by 𝑖𝑛. Variables used in 𝑓1 and 𝑓2 are represented by the corresponding LLVM IR identifiers.
For two parameters, 𝑥 and 𝑦, 𝑓1 and 𝑓2 are semantically equal, as they both calculate the
result of (5𝑥+ 4𝑦)3.

as the sequence of instructions 𝑖1, 𝑖2 in 𝑓2. Therefore, the functions are synchronised before
the execution of 𝑖2 in 𝑓1 and 𝑖3 in 𝑓2.

DiffKemp currently supports many of these special cases using the list of predefined
semantics-preserving change patterns (SPCPs). When a SPCP is identified, the blocks of
code are considered semantically equal—even if the standard per-instruction comparison
does not succeed. However, there are plenty of different refactorings which create a diverging
synchronisation mapping, and a static list of SPCPs may be unable to handle all of them
appropriately. Therefore, this thesis proposes an extension of DiffKemp, which provides
support for dynamically defined, configurable patterns as well.

2.4 Algorithm for Checking Function Equality
This section introduces an algorithm for checking semantic equality of compared functions,
based on the problem presented in Section 2.3. Specifically, for two functions 𝑓1 and 𝑓2, this
section describes a method for finding the appropriate sets 𝑆1 and 𝑆2 of synchronisation
points and the associated mapping functions smap and varmap. The code between all

9

matched synchronisation points should be semantically equal. The algorithm is a slightly
simplified version of the top-level matching algorithm proposed by [17].

The most straightforward approach would be to place synchronisation points at each
instruction, although this is achievable only when comparing programs that are syntacti-
cally the same, or at least extremely similar. However, by applying code and control flow
transformations before the main algorithm begins, even different program constructions
can be brought syntactically closer to each other (i.e., into a state where the ordinary per-
instruction mapping of synchronisation points might be achievable). DiffKemp supports
several of such transformations, all of which maintain semantic equivalence. In particu-
lar, transformations like function inlining, constant propagation, indirect call substitution,
and redundant instructions, dead code, and dead parameter elimination are performed. To
avoid scalability issues, exhaustive transformations, e.g., the inlining of function calls, are
executed only lazily. Further details on supported transformations can be seen in [17].

When a per-instruction mapping of synchronisation points is found, all matching instruc-
tions are simply compared against each other, instruction-to-instruction. Two instructions
are considered semantically equal if and only if they perform the same operation on the
same number of operands that are (a) the same, or (b) can be mapped to each other using
the 𝑣𝑎𝑟𝑚𝑎𝑝 function [17].

In all other scenarios, the selected group of instructions has to be matched against the
semantics-preserving change patterns (SPCPs). As described in Section 2.3, if an SPCP
match is found, the corresponding group of instructions is considered semantically equal
as well and the algorithm may continue. However, if such a match cannot be found and
the instruction-to-instruction comparison fails nonetheless, the functions are evaluated as
semantically non-equal (and the difference may be displayed to the end-user).

Algorithm 2.1, which is based on [17], formalises these concepts using the ideas from
Section 2.3. For brevity, the constituting functions are described only informally, and the
implementation details behind SPCPs have been omitted. The full explanation can be
found directly in [17].

Algorithm 2.1 operates on two compared functions, 𝑓1 and 𝑓2, and, for 𝑖 ∈ {1, 2},
introduces 𝑃𝑖 as the parameter list of 𝑓𝑖 and 𝐺𝑖 as the set of all global variables used
in 𝑓𝑖. The algorithm returns true if the comparison succeeds, and operates on a queue 𝑄
of synchronisation point pairs prepared for further analysis.

The algorithm starts by applying all available code transformations (Line 1). This,
among other things, removes all parameters which do not affect the output, i.e., those
parameters that cannot change the semantics. If 𝑓1 and 𝑓2 do not have the same number of
parameters (after the mentioned transformations), the functions are considered semantically
different (Line 3).

Then, the initialisation of the synchronisation sets and the mapping functions begins. In
the beginning, only the first instructions in the entry basic blocks of functions 𝑓1 and 𝑓2 are
considered synchronized. These are denoted by 𝑖1𝑖𝑛 and 𝑖2𝑖𝑛 for 𝑓1 and 𝑓2, respectively, and are
placed inside the corresponding synchronisation sets (Line 4). On Line 5, a synchronisation
mapping is formed between 𝑖1𝑖𝑛 and 𝑖2𝑖𝑛 as well.

Furthermore, a variable mapping between pairs of parameters (Lines 6–7) and between
pairs of global variables (Lines 8–9) is created. Parameters of 𝑓1 and 𝑓2 are mapped based
on their order, while the global variables used in 𝑓1 and 𝑓2 are mapped according to their
names. The remaining instructions and variables are processed lazily.

Afterwards, the primary comparison loop begins, operating until the queue 𝑄 of synchro-
nisation point pairs is empty. Initially, before entering the main loop, the first synchronized

10

Algorithm 2.1: Analysing functions for semantic equivalence [17]
Input: Compared functions 𝑓1 and 𝑓2
Result: true if 𝑓1 and 𝑓2 are semantically equal, false otherwise

1: perform code transformations of 𝑓1 and 𝑓2
2: if |𝑃1| ≠ |𝑃2| then // Require the same number of parameters
3: return false

// Initialise the synchronisation sets and maps
4: 𝑆1 := {𝑖1𝑖𝑛}, 𝑆2 := {𝑖2𝑖𝑛}
5: 𝑠𝑚𝑎𝑝(𝑖1𝑖𝑛) := 𝑖2𝑖𝑛
6: for 1 ≤ 𝑖 ≤ |𝑃1| do
7: 𝑣𝑎𝑟𝑚𝑎𝑝(𝑝1𝑖) := 𝑝2𝑖
8: for 𝑔1 ∈ 𝐺1 do
9: 𝑣𝑎𝑟𝑚𝑎𝑝(𝑔1) := 𝑔2 ∈ 𝐺2 s.t. 𝑔1 and 𝑔2 have the same name

// Start the main comparison loop
10: 𝑄 := {(𝑖1𝑖𝑛, 𝑖2𝑖𝑛)} // Begin with entry instructions
11: while 𝑄 ̸= ∅ do
12: take any pair (𝑠1, 𝑠2) from 𝑄
13: 𝑝 := 𝑑𝑒𝑡𝑒𝑐𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑠1, 𝑠2)
14: foreach (𝑠′1, 𝑠

′
2) ∈ 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝(𝑠1, 𝑠2) do

15: if 𝑠′1 or 𝑠′2 has already been visited then
16: ensure that 𝑠′1 has already been mapped to 𝑠′2
17: check semantic equality of blocks (𝑠1, 𝑠

′
1) and (𝑠2, 𝑠

′
2)

// Update the synchronisation sets and maps
18: 𝑆1 := 𝑆1 ∪ {𝑠′1}, 𝑆2 := 𝑆2 ∪ {𝑠′2}
19: 𝑠𝑚𝑎𝑝(𝑠′1) := 𝑠′2
20: update 𝑣𝑎𝑟𝑚𝑎𝑝 according to 𝑝
21: insert (𝑠′1, 𝑠

′
2) into 𝑄

22: return true

pair of instructions (𝑖1𝑖𝑛, 𝑖
1
𝑖𝑛) is queued up for analysis (Line 10). The operations performed

during each iteration are described below [17].

1) A single pair of synchronisation points (𝑠1, 𝑠2) is taken from the queue 𝑄 (Line 12).

2) Function 𝑑𝑒𝑡𝑒𝑐𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛 checks whether the code blocks starting at 𝑠1 and 𝑠2 match
some predefined semantics-preserving change pattern 𝑝 (Line 13).

3) Function 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝 retrieves all possible successor synchronisation point pairs follow-
ing (𝑠1, 𝑠2). If no pattern has been identified, the successor pairs are placed at the
instructions immediately following 𝑠1 and 𝑠2, i.e., a single pair or two pairs (for condi-
tional branches) of synchronisation points are returned. SPCPs may define their own
implementation of 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝, typically returning the instructions located immedi-
ately after the blocks that match the pattern. Each of the returned pairs is processed
using the following steps:

11

i) If any synchronisation point in (𝑠′1, 𝑠
′
2) has already been visited, it is required

that both 𝑠′1 and 𝑠′2 are already mapped to each other (Lines 15–16). If no such
mapping exists, the functions are considered semantically different, and 𝑓𝑎𝑙𝑠𝑒
gets returned.

ii) Blocks of code between the current and the next synchronisation point get se-
mantically compared (Line 17). Unless a pattern is used, these blocks always
contain only a single instruction, which is matched directly. If the blocks are
semantically different, the algorithm claims that 𝑓1 and 𝑓2 are semantically non-
equal as well, returning 𝑓𝑎𝑙𝑠𝑒.

iii) The synchronisation sets and maps get updated, and the pair (𝑠′1, 𝑠
′
2) is inserted

into the queue 𝑄 (Lines 18–21).

Finally, if the queue 𝑄 is successfully emptied, the functions 𝑓1 and 𝑓2 are considered
semantically equal (Line 22), and the comparison of the next pair of functions may begin.

12

Chapter 3

Code Change Pattern Matching

Software development is a never-ending process, with numerous new features, patches, and
enhancements getting implemented each year. When stability is a concern, developers
might utilize tools like DiffKemp (introduced in Chapter 2) to ensure that the changes do
not create unwanted semantic differences in code which should remain consistent for longer
periods of time. Several of these changes can be described using so-called code change
patterns (CCPs), i.e., patterns of recurrent software modifications [18], which are especially
important for DiffKemp due to the per-instruction nature of its semantic comparison.
CCPs get formally defined in Section 3.1.

DiffKemp can already handle many CCPs in the form of semantics-preserving change
patterns (SPCPs; described in Section 2.3). However, since the number of existing patterns
is theoretically unbounded (each developer may use a completely different set of patterns),
supporting all of them with predefined SPCPs is simply not feasible. Additionally, not
all code change patterns have to describe semantics-preserving changes—on the contrary,
quite a large subset of CCPs is composed of, e.g., security fixes, safety assertions, and other
desirable semantic changes. As a result, two major kinds of code change patterns may be
identified, both of which get described in more detail in Sections 3.2 and 3.3, respectively:

1) Semantics-preserving patterns, commonly known as refactoring patterns, i.e., patterns
that modify code in a way that preserves its observable behaviour [8]. Some of these,
e.g., the addition of a new value into an enumeration type, are already handled by
SPCPs [17].

2) Semantics-altering patterns, corresponding to changes which cause semantic differ-
ences. For example, they might add, remove, or rewrite a conditional expression in
an attempt to fix programming mistakes [21].

Consequently, while some highly repetitive CCPs may get incorporated into DiffKemp
directly, it would be most beneficial to introduce dynamically defined patterns that can be
tailored to specific developer needs, and a new pattern detection method capable of finding
both types of CCPs in the compared programs.

The process of detecting CCPs may be considered a pattern matching problem since it
compares generic descriptions of patterns with segments of code from analysed programs.
In other words, it matches them against each other. Section 3.4 briefly introduces differ-
ent approaches to pattern matching, in particular those presented in [5], i.e., naive linear
matching, control-flow graph matching, and dependence graph matching, with emphasis on
control-flow graph matching due to its straightforward applicability to LLVM functions.

13

3.1 Code Change Pattern Definition
Code change patterns (CCPs) are essential for the DiffKemp extension proposed later
in this thesis. Therefore, before the different kinds of CCPs get presented, this section
formally defines CCPs. The definition is tailored specifically to the proposed extension and
builds on the idea that CCPs describe recurrent software modifications. Furthermore, the
definition uses the notions of input, output, and mapping presented in Section 2.3.

Generally, a code change pattern can be understood as a pair of code fragments whose
input and output can be mapped together. In other words, the code fragments describe
two different ways to transform a semantically equivalent input to a semantically equivalent
output. Additionally, both code fragments should have the following properties:

• One code fragment should be a transformation of the other. The transformation does
not necessarily have to be semantics-preserving, although the semantics are typically
either unchanged or changed only slightly.

• Each code fragment should come from a different version of the same program (or,
in broader terms, from a different program). It is important to know which code
fragment belongs to which version of the program. Therefore, the rest of this thesis
will refer to the original code fragment from the older program version as the old side
of the CCP, and to the modified one as the new side of the CCP.

The above structure of CCPs is depicted visually in Figure 3.1.

Code change pattern

Original
input

Modified
input

Old side New side

Original
code

Original
output

Modified
code

Modified
output

Older
version

Newer
version

Based
on

Mapping

Mapping

Based
on

Figure 3.1: Structure of a code change pattern. The pattern consists of two fragments of
code with mapped input and output. Both fragments correspond to a different version of
the same program.

Formally, a code change pattern 𝑝 is a tuple

𝑝 = (𝑐𝑜, 𝑐𝑛, 𝑖𝑚𝑎𝑝, 𝑜𝑚𝑎𝑝)

where

• 𝑐𝑜 and 𝑐𝑛 are the code fragments associated with the older and newer versions of
compared programs, respectively (i.e., the old side and the new side of 𝑝), and

14

• 𝑖𝑚𝑎𝑝 and 𝑜𝑚𝑎𝑝 are mapping functions that map the input of 𝑐𝑜 to the input of 𝑐𝑛,
and the output of 𝑐𝑜 to the output of 𝑐𝑛, respectively.

A code fragment 𝑐 can then be defined as a tuple

𝑐 = (𝑖, 𝑜, 𝑏)

where

• 𝑏 is the main body of 𝑐, composed of instructions and statements that describe how
to transform an input into an output, and

• 𝑖 and 𝑜 are the input and the output of 𝑐, respectively.

For brevity, we also define functions 𝑖𝑛(𝑐) and 𝑜𝑢𝑡(𝑐), which denote the input and the
output of a code fragment 𝑐, respectively.

3.2 Refactoring-Based Code Change Patterns
Refactoring is a crucial, albeit often overlooked, part of software development. It is the
process of restructuring programs by applying series of transformations without changing
the observable behaviour, making the programs easier to understand and to modify, and
preventing their decay caused by advancements of other technologies [8].

This process is especially important for DiffKemp because, typically, two versions
of the same program get compared (and not two separate programs). Additionally, it is
expected that the purpose of the whole comparison is to check for the semantic equality of
the two programs. In other words, it is suspected that one of the compared programs is
actually a refactoring of the other. As stated in Chapter 2, a large number of refactorings is
already supported—either by LLVM IR and code transformations or by SPCPs. However,
there are still patterns which would cause DiffKemp to report semantic differences even
when none are present. Therefore, this section evaluates existing catalogues, i.e., lists,
of refactoring patterns (so-called semantics-preserving patterns), trying to find those that
are not yet supported by DiffKemp but could be handled by an extension for matching
dynamically defined patterns.

Most refactoring catalogues, e.g., the renowned Fowler’s catalogue [8], are created for
high-level, object-oriented languages such as Java. This inadvertently limits their applica-
tion to source code written in C, which is targeted by DiffKemp. However, while some
refactoring patterns in these catalogues are inapplicable to C code, e.g., because they op-
erate on classes or interfaces, patterns that can be generalized to lower-level languages get
presented as well. For example, the analysis of refactoring patterns provided by Fowler’s
catalogue revealed the following patterns which are currently not supported by DiffKemp:

• Combine functions into transform—combines related operations from multiple func-
tions into a single, transformed function. While this pattern could, in some cases,
be handled by, e.g., function inlining, it may result in much more complicated (and
unsupported) refactorings as well.

• Substitute algorithm—replaces a complicated algorithm with a simpler alternative
which preserves the original behaviour.

15

• Code relocation—the process of relocation of some pieces of code within a compared
function. While DiffKemp supports code relocation, it only handles its most simplest
cases, e.g., the extraction of independent variables outside of a loop [17]. Therefore,
more sophisticated code relocation, such as the intertwining blending of two previ-
ously independent loops, remains unsupported. This can be considered as a complex
extension of the Slide Statements pattern, which relocates some lines of related code
so that they are placed closer together.

Refactoring catalogues for lower-level languages like C are, on the other hand, far less
common. Nevertheless, some comprehensive lists of C patterns do exist. One such list
is proposed by [10]—the same list that has been used in [17] to evaluate the number of
semantics-preserving changes supported by DiffKemp. However, by examining the pat-
terns from [10] that were not handled by DiffKemp, we were unable to discover any
significant patterns. This is because (1) the three patterns related to pointer-to-variable
and variable-to-pointer conversions were flagged by [17] as practically non-existent in the
Linux kernel (and are, therefore, not relevant), and (2) the two remaining patterns, i.e., the
conversion of a global variable into a parameter and the grouping of a set of variables into
a new structure, could still not be fully supported without a proper analysis of the global
state of the compared programs.

Consequently, we have conducted our own study of refactoring patterns used within the
Linux kernel. The analysis has been performed by running DiffKemp on 42 past refactor-
ing commits pushed to the Linux kernel GitHub repository1, and by manually reviewing
the reported semantic differences, searching for possibly repetitive patterns. In particular,
four refactoring patterns have been discovered in these commits:

• Replace check before list retrieval—replaces a linked list emptiness check with a func-
tion that returns a NULL pointer if the accessed list is empty.

• Extract code to function—extracts related code into a new function. Unless it results
in complex control flow refactorings, this pattern could also get handled by, e.g.,
function inlining.

• Extract conditionally executed statements—moves conditionally executed blocks of
code outside of their respective switch or if-else-if statements, introducing a new
flag variable that chooses which code to execute instead.

• Introduce loop flag—replaces a condition present inside of a loop with a new flag
variable. The application of this pattern is demonstrated in Figure 3.2.

In total, seven suitable refactoring patterns have been identified. These are, however,
only refactoring patterns, and developers might want to add certain semantics-altering
changes as well. While such changes should hardly be considered refactorings, they do
tend to accompany changes performed during refactoring sessions quite frequently. For
example, a developer might introduce a new pointer value validity check when rewriting an
old function. Therefore, Section 3.3 follows with an examination of catalogues of patterns
that do affect program semantics.

1GitHub repository of the Linux kernel—https://github.com/torvalds/linux.

16

https://github.com/torvalds/linux

Original code
1 for (int i = 0; i < 5; i++) {
2 if (is_prepared(i)) {
3 perform_action();
4 break;
5 }
6 }

Modified code
1 bool flag = false;
2 for (int i = 0; i < 5; i++) {
3 if (is_prepared(i)) {
4 flag = true;
5 break;
6 }
7 }
8
9 if (flag) {

10 perform_action();
11 }

Figure 3.2: Example application of the Introduce loop flag refactoring pattern. The observ-
able behaviour of both code samples is the same.

3.3 Semantics-Altering Code Change Patterns
Section 3.2 explains the importance of refactoring patterns. However, most software modi-
fications actually do affect semantics. These changes can also be highly repetitive, and may
already be known to be safe, in which case they do not have to reviewed again (even though
they impact semantics). For example, security fixes might introduce new conditional as-
sertions, undeniably changing program semantics in the process. While occasionally, such
changes do get created as byproducts of poorly executed refactoring attempts, i.e., are
purely accidental, in which case the developer should be notified about their existence,
they might also be completely intentional, meaning that the developer may not want to
receive any notifications about them at all.

Despite that, DiffKemp currently cannot distinguish between intentional and acci-
dental semantic differences in any way, and always displays all of them. Therefore, this
section examines catalogues of code change patterns that—contrary to the refactoring pat-
terns presented in Section 3.2—do not preserve the semantics of affected programs, i.e., are
semantics-altering. Again, a particular focus is given to patterns that are applicable to our
problem domain, and to patterns discovered within the Linux kernel.

Similarly to refactoring catalogues, lists of semantics-altering code change patterns for
high-level languages exist as well. For example, [21] presents a list of so-called bug fix
patterns, i.e., descriptions of common changes performed when correcting programming
mistakes. Even though the patterns in [21] are based solely on Java projects, they rarely
depend on high-level language constructs. As a result, the vast majority of patterns pre-
sented in [21] are directly applicable to C code and, therefore, to DiffKemp as well. The
list of relevant patterns from [21] is presented below. Note that some patterns, e.g., the
addition and removal of conditions, have been grouped together for the sake of brevity.

• Add or remove condition—adds or removes a condition, typically a precondition or a
postcondition of the related operation.

• Add or remove conditional branch—adds or removes a conditional branch from either
a switch statement, or an if-else-if statement.

17

• Change conditional expression—changes the expression used within a conditional
statement, e.g., by inverting the whole expression.

• Change assignment expression—changes the expression on the right-hand side of a
variable assignment.

Moreover, for semantics-altering changes, even lists of patterns focusing directly on the
Linux kernel can be found. In particular, [15] presents a study of bug fix patterns used
within the Linux kernel (among other software), based on which the following patterns can
be identified:

• Allocate longer buffer—increases the size of an allocated buffer to prevent its overflow.

• Assign fewer bytes to buffer—reduces the number of bytes written into a buffer be-
cause its capacity is smaller than the original number of assigned bytes.

• Move NULL check before dereference—moves a check for a NULL pointer before the
corresponding dereference of the same pointer.

• Add memory release—adds a new statement for releasing allocated memory. The
same can be achieved by relocating existing memory releasing statements so that
they free the specified blocks of memory in all possible execution paths.

Last, we have again conducted our own analysis of frequent changes occurring in the
Linux kernel. This time, the analysis has been performed on the kernel of the eighth major
version of RHEL2 due to its focus on long-term stability. Multiple functions from differ-
ent release candidate versions of RHEL 8 have been compared using DiffKemp, and the
reported semantic differences have been manually examined for the existence of semantics-
altering code change patterns. The list of discovered patterns can be seen below.

• Add single statement—adds a previously missing statement (typically a function call)
to a function.

• Introduce assertion—introduces a kernel-specific assertion statement, which (com-
pared to traditional assertions) does create semantic differences.

• Introduce flag parameter—adds a flag parameter to a function. Generally, this also
results in changes of the original function name and semantics (for all execution
paths).

• Substitute macro constant—replaces a macro constant with a global variable or a
function call. Doing so often modifies program semantics or—at the very least—
changes the underlying LLVM IR code in a way that causes DiffKemp to detect
semantic differences.

• Wrap expression in macro—envelops an expression using a macro function. Typically,
a conditional expression gets wrapped in either the likely or the unlikely macro,
as can be seen in Figure 3.3.

Overall, twenty code change patterns have been identified (including the refactoring
patterns presented in Section 3.2).

2Red Hat Enterprise Linux (RHEL)—a commercial Linux distribution developed by Red Hat—
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux.

18

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

Original code
1 if (is_prepared()) {
2 perform_action();
3 }

Modified code
1 if (unlikely(is_prepared())) {
2 perform_action();
3 }

Figure 3.3: Example application of the Wrap expression in macro code change pattern.
Compared to the example presented in Section 3.2, this pattern changes the semantics of
the sample C code, and, therefore, cannot be considered as a refactoring pattern.

3.4 Finding Change Patterns in Code
Having a set of code change patterns (CCPs) is only a part of the problem. The patterns
still need to get detected when present in the compared programs. This creates a matching
problem, where patterns have to be systematically compared with analysed programs in
order to possibly find a match, i.e., to identify the CCP used within the program (if such
a CCP exists). Note that the matching procedure has to find a suitable match in both
compared programs. That is because—as presented in Section 3.1—a CCP is characterized
by both the original and the modified code (i.e., by its old side and its new side, respectively).

Due to the importance of pattern matching, this section briefly describes the three
matching techniques presented in [5]—naive linear matching, control-flow graph matching,
and dependence graph matching. A particular focus is given to the CFG matching since it
can be applied directly to LLVM IR functions, which are the backbone of the semantic anal-
ysis conducted by DiffKemp. Patterns are expected to be represented by small, specialized
segments of LLVM IR code (the representation is explained in detail in Chapter 4).

The naive matching method is, as its name implies, rather simple: it completely ignores
control flow and strictly linearly iterates over program instructions, trying to match them
to a pattern (using instruction-to-instruction comparison). Consequently, any patterns that
depend on control flow branching cannot be discovered by naive matching, which makes
it unsuitable for DiffKemp because many patterns presented in Sections 3.2 and 3.3 do
rely on program branching. Nonetheless, this approach might be sufficient for some smaller
patterns and may even be used as the backbone of more sophisticated procedures.

On the other hand, control-flow graph matching does analyse control flow because it
uses CFGs (introduced in Section 2.2), meaning that it can be applied directly to LLVM
functions—even when branching is involved. Specifically, it searches for subgraphs of pro-
gram CFGs that are isomorphic to CFGs produced by patterns (which are expected to be
much smaller), i.e., it tries to find a subgraph isomorphism between the two CFGs. Two
graphs are isomorphic if and only if there exists a bijection between their sets of vertices
that preserves edge adjacency [23] (other definitions of subgraph isomorphism and related
terms can be found, e.g., in [6]).

As an example, let us consider the pattern graph and the program graph from Figure 3.4.
There, the pattern graph is isomorphic to a subgraph of the larger program graph, i.e., a
subgraph isomorphism exists between them. This is because for all vertices and edges
present in the pattern graph, corresponding vertices connected by edges that have the same
orientation can be found in the program graph.

It should be noted that finding a subgraph isomorphism is not an easy task—on the con-
trary, in its most general form, it is an NP-complete problem [4]. Consequently, many algo-
rithms focusing on the subgraph isomorphism problem already exist. The most well-known

19

Pattern control-flow graph

A

B C

D

Program control-flow graph

A

B C

D E

F

Figure 3.4: Example of a subgraph isomorphism between two control-flow graphs. The
pattern CFG (left) is isomorphic to a subgraph (denoted by nodes and edges that are not
dashed) of the larger program CFG (right). In order to successfully match a CCP, an
isomorphism of this kind has to be found for both of its sides.

explore a tree-structured state space, where states represent feasible solutions. Examples
of these include Ullmann’s algorithm [23], which systematically iterates over matrices that
encode possible subgraph isomorphisms, or the VF3 algorithm [4], which uses so-called fea-
sibility rules to ensure the consistency of visited states. However, these approaches would
be rather hard to integrate into the robust LLVM architecture since they typically aim
at general graphs and not specifically at CFGs. Therefore, the matching process that we
present in Chapter 5 does not rely on any of the previous algorithms. Despite that, its im-
plementation utilizes certain heuristics that are mentioned in previous works (most notably,
the pruning of graph nodes based on the number of neighbours).

Finally, dependence graph matching is a method that works with so-called program
dependence graphs (PDGs)—graphs that portray not only control dependencies but also
data dependencies for each performed operation [7]. In other words, PDGs extend CFGs
with data dependencies. As a result, the general approach to the matching problem is
the same as with CFG matching, with the only exception being that a PDG is matched
instead of a CFG. Compared to CFG matching, PDG matching has one major advantage
due to its ability to analyze data dependencies: it can successfully find a match even if extra
instructions that are unrelated to patterns, e.g., initialization instructions for isolated blocks
of memory, get inserted into the control flow. Despite that, explicit PDG matching is not
very suitable for DiffKemp since DiffKemp analyses data dependencies using mapping
functions (introduced in Section 2.3). Therefore, the matching procedure we introduce
works on CFGs but exploits data dependencies as well.

20

Chapter 4

Representation of Change Patterns

Section 3.4 follows the introduction to semantics-preserving and semantics-altering code
change patterns (CCPs), discussing essential preliminaries necessary for the pattern match-
ing extension proposed in this thesis. However, before the extension can be described in
further detail, it is important to define exactly how to encode real-world CCPs—originating
directly from fragments of C code—in a way that is suitable for DiffKemp. An encoding
may be considered suitable if, among other things, it (1) uses the two-side pattern structure
proposed in Section 3.1, (2) can describe the patterns presented in Sections 3.2 and 3.3,
and (3) requires a pattern parsing process that is inexpensive in terms of both time and
implementation complexity.

Since DiffKemp utilizes the LLVM infrastructure, the most straightforward approach
that satisfies the above conditions would be the direct use of LLVM IR, as doing so would
not require any new libraries nor sophisticated parsing tools. Additionally, with a pattern
representation based on LLVM IR, it would theoretically be possible to encode any pattern
that might appear in the compared programs since DiffKemp represents programs using
LLVM IR as well.

On the other hand, LLVM IR is a very low-level language. Therefore, larger patterns
could be rather hard to produce manually, especially without prior knowledge of LLVM.
Moreover, while it might be possible to encode all patterns, adding support for certain kinds
of patterns, e.g., those describing changes in control flow, would also involve fairly complex
modifications of the top-level comparison algorithm of DiffKemp itself. Chapter 6 further
elaborates on this problem.

Nonetheless, an encoding based on specialized segments of LLVM IR code has been
chosen as the most practical option available, mainly because of two reasons:

1. While it would be possible to, e.g., design a custom, text-based and more user-friendly
encoding, doing so would likely be much less efficient as a sophisticated parser would
have to get developed as well.

2. Manual creation of CCPs is not the primary focus of the proposed extension. On
the contrary, since LLVM IR can be easily generated via the LLVM infrastructure,
the whole pattern generation process could get automated, e.g., by potential future
extensions of DiffKemp.

The rest of this chapter introduces the LLVM IR pattern representation. In particular,
Section 4.1 proposes two kinds of pattern representations, while Section 4.2 provides details
about custom LLVM metadata nodes, which are crucial for pattern parameterization.

21

4.1 Encoding Code Change Patterns
This section builds on the understanding of CCPs presented in Section 3.1 and proposes
representations of CCPs based on LLVM IR (introduced in Section 2.2).

Since patterns can be, theoretically, created for any code modification, they may have
different levels of complexity and may describe completely unrelated kinds of changes.
Additionally, the study of patterns presented in Sections 3.2 and 3.3 suggests that a sub-
stantial amount of CCPs describe modifications of individual values, e.g., changes in macro
constants or buffer allocations, or—on the contrary—modifications possibly spanning over
multiple program branches, e.g., changes in conditions or code relocation. Therefore, we
propose the following pattern representations:

1) Instruction patterns, capable of encoding all kinds of CCPs, including those that affect
multiple program branches (i.e., multiple basic blocks).

2) Value patterns, which can efficiently encode CCPs that describe single-value changes.

Before describing both representations in detail, it should be noted that instruction
patterns are generic. Therefore, they can also encode CCPs that are more suitable for
value patterns (although doing so would result in a much less compact representation).
To illustrate the differences between instruction patterns and value patterns more clearly,
the following explanation will use the same CCP—describing a substitution of an integer
macro for a global constant—for both representations. However, such CCPs would generally
never be represented by an instruction pattern, although the decision ultimately depends
on exactly how restrictive the given representation should be and is, therefore, strictly in
the hands of the end user.

As stated in Section 3.1, each CCP can be characterized by two fragments of code, each
from a different program version—the original code and the modified code, i.e., the old
side and the new side of the pattern, respectively, and by the functions 𝑖𝑚𝑎𝑝 and 𝑜𝑚𝑎𝑝,
which define mappings between input and output, respectively. Therefore, to encode both
sides of a pattern into LLVM IR, two independent blocks of code have to be present in
the representation. This can either be done using separate LLVM modules or separate
functions. Since having both pattern sides in the same module greatly increases clarity
and eliminates the need to parse multiple modules, we propose to use two functions—one
for each pattern side, i.e., each code fragment. To determine which function corresponds
to which pattern side, we use special prefixes of their identifiers. In particular, functions
with the diffkemp.old prefix belong to the old side of the pattern and functions with the
diffkemp.new prefix belong to the new side of the pattern. This general idea is used by
both the instruction and the value patterns, described below.

Figure 4.1 shows an example of the general structure of instruction patterns. As pre-
sented above, the representation is composed of two functions, each describing one side of
the encoded CCP. Each function can be split into the following sections, each corresponding
to its respective counterpart from the definition of code fragments provided in Section 3.1.

• Input, which is defined by function parameters.

• Output, which is denoted by the arguments of calls to the special @diffkemp.mapping
function, which handles output identification and output mapping (explained below).

• Main body, generally consisting of all instructions and basic blocks present in the func-
tion. To increase readability and efficiency, custom !diffkemp.pattern metadata

22

nodes can get attached to instructions to limit the size of the main body. The con-
cept of !diffkemp.pattern metadata gets discussed in further detail in Section 4.2.

Instruction pattern representation
1 ; For RHEL 8.1 (older version)
2 define void @diffkemp.old.side(i32) {
3 %2 = icmp sle i32 %0, 30
4 call void @diffkemp.mapping(i1 %2)
5 ret void
6 }
7
8 ; For RHEL 8.2 (newer version)
9 define void @diffkemp.new.side(i32) {

10 %2 = load i32, i32* @node
11 %3 = icmp sle i32 %0, %2
12 call void @diffkemp.mapping(i1 %3)
13 ret void
14 }

Figure 4.1: Instruction-based representation of a code change pattern extracted from differ-
ences reported by DiffKemp during the comparison of two versions of the RHEL kernel.
The pattern describes a substitution of an integer macro (old side) for a global constant
@node (new side). The example has been simplified for brevity.

Finally, in instruction patterns, the mapping functions 𝑖𝑚𝑎𝑝 and 𝑜𝑚𝑎𝑝 are encoded in
the following way:

• imap gets created by mapping function parameters from both functions in order (both
functions must have the same number of parameters).

• omap gets specified by calling the @diffkemp.mapping function before returning
from either function. All instructions that get used as arguments of this call get
mapped together (pairwise in order, since the call should be present in both func-
tions). For single values, the return instruction can be used in the same manner as
the @diffkemp.mapping function call.

Combining all parts of instruction patterns creates a universal CCP representation that
can be easily parsed by tools from the LLVM infrastructure. However, while instruction
patterns are universal, they are also quite sizeable—even when encoding a relatively simple
CCP, as can be seen in Figure 4.1. Moreover, they might be rather limiting for certain
use cases, since they need to directly specify all instructions that should be present in the
compared programs. For example, in Figure 4.1, the representation should encode a macro
substitution pattern. While it certainly does so, it also has to include specific information
about the instructions present in the main body of the pattern—for example, it has to
specify that the macro substitution has to be tied to a value comparison performed by an
icmp instruction. This, however, does not necessarily have to be the case for many places
where the pattern occurs. To address this issue, we propose to use so-called value patterns,
which can encode patterns describing single-value changes much more efficiently.

23

Again, the structure of value patterns consists of two separate functions (one for each
pattern side), as can be seen in Figure 4.2. However, compared to instruction patterns, both
functions only contain a single return instruction, which returns the value prescribed by the
encoded CCP (global variables, such as the variable @node, are returned as a pointer). That
is possible since value patterns are no longer generic—they are restricted to single-value
changes. Therefore, they do not need to directly encode code fragments with respect to
the definition from Section 3.1. Instead, value patterns only encode a single pair of values
that—even though they might be different—should always be compared as equal when,
e.g., used as instruction operands. The complete structure of the pattern (i.e., of its code
fragments and mapping functions) can be then determined lazily during pattern matching
depending on the instructions present in the compared program versions. This enables
users to describe single-value changes without tying patterns to specific instructions.

For RHEL 8.1
1 define i32 @diffkemp.old.side() {
2 ret i32 30
3 }

For RHEL 8.2
1 define i32* @diffkemp.new.side() {
2 ret i32* @node
3 }

Figure 4.2: Value-based representation of the pattern presented in Figure 4.1. The pattern
has been simplified using only return instructions referencing the values required by the
pattern. Contrary to the instruction-based representation, this representation does not
enforce the existence of specific instructions, such as an icmp value comparison instruction.

The proposed pattern representations also support several other features, e.g., prefixes
for preventing symbol name collisions. However, these are beyond the scope of this thesis
and have been therefore omitted for brevity.

4.2 Pattern-Specific LLVM Metadata Nodes
Since instruction patterns are robust and universal, it may be necessary to specify additional
details that further define the structure of the encoded CCP. Doing so may not be strictly
necessary in some cases. However, in others, it might optimize pattern matching. Therefore,
this section introduces a method for encoding auxiliary information about CCPs into the
generic structure of instruction patterns proposed in Section 4.1.

Since instruction patterns are built around LLVM IR instructions, the encoding of
supplementary information should reflect that. For example, it might require additional
instructions—e.g., calls to specialized functions—to be inserted into the main body of
instruction patterns. However, while doing so would be possible, it would increase the
complexity of pattern matching since the LLVM toolchain would parse the additional in-
structions as a direct part of pattern control-flow graphs. Therefore, it would be best to
utilize features of LLVM IR that have been designed with auxiliary information in mind—in
particular, LLVM metadata (introduced in Section 2.2).

LLVM uses multiple kinds of built-in metadata. In addition, it also enables users to cre-
ate custom metadata that can then, for example, be attached to instructions through meta-
data nodes, which would be ideal for instruction patterns. Therefore, we propose to support
the metadata presented in Table 4.1. All metadata nodes that include the pattern-specific
metadata should be attached to instructions through the !diffkemp.pattern identifier.

24

Table 4.1: Overview of custom kinds of metadata available for instruction patterns.
Metadata kind Semantics

pattern-start
Marks the first pair of differing instructions (used for
pattern matching optimization).

pattern-end
Labels the end of the main body of a code fragment.
After this kind of metadata, only the code fragment
output and its mapping may get specified.

group-start
Denotes the start of an instruction group. Grouped
instructions have to be matched as a single block
(no additional instructions are allowed between them).

group-end Indicates that the active instruction group has ended.

disable-name-comparison
Disables name-based comparison of structures, replacing
it with a complete type equality verification.

The specific kinds of metadata get specified by metadata strings (i.e., strings that have
the ! metadata prefix), which should be placed inside the attached metadata nodes and
match the identifier of the desired metadata kind. Additionally, since metadata nodes are
similar to structured types, it is possible to define multiple kinds of metadata in a single
metadata node. Figure 4.3 demonstrates how to add two different kinds of metadata,
pattern-start and group-start, to an instruction via a single metadata node.

1 !0 = !{ !"pattern-start", !"group-start" }
2 call void @example(), !diffkemp.pattern !0

Figure 4.3: Simplified example of a call instruction with attached !diffkemp.pattern
metadata. The metadata node !0 appends two kinds of metadata: pattern-start and
group-start.

With the proposed kinds of metadata, instruction patterns should be well-prepared to
encode any of the patterns presented in Sections 3.2 and 3.3. Additionally, even if some
other helpful kinds of metadata were to be discovered in the future, adding support for
them should be straightforward due to the flexibility of LLVM metadata.

25

Chapter 5

Design of the DiffKemp Extension

This chapter builds on the preliminary ideas behind DiffKemp and code change patterns
(CCPs) described in previous chapters, focusing on the goal of this thesis, the design of
the pattern matching DiffKemp extension. Considering the fact that both instruction
patterns and value patterns need to be supported, the extension can be divided into the
following parts.

First, since the two code fragments of each CCP are independent of each other, they
need to be matched to the code in the corresponding programs separately. Therefore, a
top-level algorithm that provides a simple interface for the matching process of instruction
patterns must exist. The top-level algorithm can then execute the matching process for each
pattern code fragment and analyse the resulting mapping of pattern input and output. The
top-level matching algorithm for instruction patterns gets introduced in Section 5.1.

Second, the matching algorithm for code fragments of instruction patterns has to be
created. This algorithm is presented in Section 5.2 and is the most sophisticated part of the
extension since instruction patterns are (in contrast to value patterns) fully defined with
respect to the CCP definition from Section 3.1. The algorithm must be executed twice for
each instruction pattern—once for each side of the pattern (i.e., pattern code fragment and
the associated program version). During each execution, the algorithm gradually compares
instructions from the selected pattern side and its corresponding program. If a match for
all pattern instructions is found on both sides, and if all input constraints defined by the
pattern are satisfied, the top-level matching algorithm detects a match.

Finally, value patterns have to be processed. However, since value patterns only specify
a pair of values that should be present in the compared programs, they need to be initialized
based on the code around the instructions to which the pattern should be matched. Doing
so lazily generates fully-defined patterns, which can then be analysed using the matching
algorithm for instruction patterns. In other words, for each value pattern, its internal
instruction pattern representation is created according to the given comparison context.
The generation of instruction patterns from value patterns is described in Section 5.3.

5.1 Top-Level Matching Algorithm
This section explains the top-level instruction pattern matching algorithm, which controls
the selection and execution of the lower-level control-flow-based pattern code fragment
matching algorithm (described in Section 5.2). All of the presented algorithms expect that
DiffKemp is comparing two versions of the same program.

26

Since pattern matching should serve as the final validation step before declaring two
functions as semantically different, pattern matching should be run after the blocks of
code (𝑠1, 𝑠

′
1) and (𝑠2, 𝑠

′
2), compared on Line 17 of Algorithm 2.1, get determined as not

equal. Then, instead of immediately interrupting the ongoing comparison of functions 𝑓1
and 𝑓2 because the blocks (𝑠1, 𝑠′1) and (𝑠2, 𝑠

′
2) differ, the pattern matching procedure should

check whether the blocks can be matched to one of the loaded LLVM IR patterns. If a
match is found, the comparison should disregard the difference associated with the pattern.
Otherwise, the comparison should keep its original result and return. Additionally, it
should be noted that the matching of dynamically loaded patterns could also theoretically
be incorporated directly into the SPCP detection process from Algorithm 2.1. However, we
have decided not to do so, mainly because of two things:

1) Since the number of dynamically loaded pattern may potentially be quite large, we
want to only start the matching process after a difference between two compared
instructions gets detected to achieve higher efficiency. Therefore, it is better to begin
matching after the difference first gets detected by the main function comparison
algorithm.

2) The matching procedure for dynamically loaded patterns can skip instructions unre-
lated to the pattern that is being matched. However, the skipped instructions still
need to be compared by the primary function comparison algorithm afterwards.

The top-level pattern matching procedure is described by Algorithm 5.1. The algo-
rithm expects to receive the first pair of instructions (𝑖𝑜, 𝑖𝑛) that has been compared as
semantically different by Algorithm 2.1, where 𝑖𝑜 belongs to the block (𝑠1, 𝑠

′
1) from the

older version of the compared program and 𝑖𝑛 belongs to the block (𝑠2, 𝑠
′
2) from the newer

version. Additionally, the algorithm needs access to the original mapping functions 𝑠𝑚𝑎𝑝
and 𝑣𝑎𝑟𝑚𝑎𝑝 from Algorithm 2.1, and requires a set 𝑃𝑖 of instruction patterns that should
be used as the basis for pattern matching. Value patterns are not given to the algorithm,
since they should be converted to instruction patterns based on context (the conversion
process is explained in detail in Section 5.3).

Algorithm 5.1 starts by iterating over patterns (𝑐𝑜, 𝑐𝑛, 𝑖𝑚𝑎𝑝, 𝑜𝑚𝑎𝑝) until a match is
found or all patterns are exhausted (in which case, the algorithm returns an empty set
since no matching pattern has been identified). At the beginning of each iteration, the
algorithm calls the function 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺, which is responsible for single-side instruction
pattern matching (presented in Section 5.2). In particular, 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺 is called twice—
the first time with 𝑖𝑜 and the pattern code fragment 𝑐𝑜 corresponding to the same pro-
gram version (which, in the case of 𝑖𝑜, is the older version) and the second time with 𝑖𝑛
and 𝑐𝑛 (i.e., for the newer program version). The calls to 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺 return two tuples
(𝑟𝑜, 𝑖𝑚𝑎𝑡𝑐ℎ𝑜, 𝑜𝑚𝑎𝑡𝑐ℎ𝑜,𝑀𝑜) and (𝑟𝑛, 𝑖𝑚𝑎𝑡𝑐ℎ𝑛, 𝑜𝑚𝑎𝑡𝑐ℎ𝑛,𝑀𝑛)—for the older and newer pro-
gram version, respectively—where, for 𝑥 ∈ {𝑜, 𝑛}, the following holds:

• 𝑟𝑥 is the primary result of the single-side matching process (𝑡𝑟𝑢𝑒 if it successfully
finds a match, 𝑓𝑎𝑙𝑠𝑒 otherwise).

• 𝑖𝑚𝑎𝑡𝑐ℎ𝑥 is the mapping of input matches, which provides information about how to
map the input of the code fragment 𝑐𝑥 to variables from the corresponding program
version 𝑥. In other words, it maps the input variables of 𝑐𝑥 to the matching variables
from 𝑥.

27

Algorithm 5.1: Top-level instruction pattern matching
Input: Pair of differing instructions (𝑖𝑜, 𝑖𝑛)

𝑠𝑚𝑎𝑝 and 𝑣𝑎𝑟𝑚𝑎𝑝 from Algorithm 2.1
Set of available instruction patterns 𝑃𝑖

Result: A set of matched instructions, which is empty if no pattern is matched
1: foreach (𝑐𝑜, 𝑐𝑛, 𝑖𝑚𝑎𝑝, 𝑜𝑚𝑎𝑝) ∈ 𝑃𝑖 do
2: (𝑟𝑜, 𝑖𝑚𝑎𝑡𝑐ℎ𝑜, 𝑜𝑚𝑎𝑡𝑐ℎ𝑜,𝑀𝑜) := 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺(𝑖𝑜, 𝑐𝑜)
3: (𝑟𝑛, 𝑖𝑚𝑎𝑡𝑐ℎ𝑛, 𝑜𝑚𝑎𝑡𝑐ℎ𝑛,𝑀𝑛) := 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺(𝑖𝑛, 𝑐𝑛)
4: if 𝑟𝑜 ∧ 𝑟𝑛 then

// Check the mapping of inputs
5: 𝑣𝑎𝑙𝑖𝑑 := 𝑡𝑟𝑢𝑒
6: foreach (𝑖𝑜𝑐 , 𝑖

𝑜
𝑚) ∈ 𝑖𝑚𝑎𝑡𝑐ℎ𝑜 do

7: 𝑖𝑛𝑐 := 𝑖𝑚𝑎𝑝(𝑖𝑜𝑐)
8: if 𝑣𝑎𝑟𝑚𝑎𝑝(𝑖𝑜𝑚) ̸= 𝑖𝑚𝑎𝑡𝑐ℎ𝑛(𝑖

𝑛
𝑐) then

9: 𝑣𝑎𝑙𝑖𝑑 := 𝑓𝑎𝑙𝑠𝑒
10: break
11: if ¬𝑣𝑎𝑙𝑖𝑑 then continue

// Synchronize outputs
12: foreach (𝑜𝑜𝑐 , 𝑜

𝑜
𝑚) ∈ 𝑜𝑚𝑎𝑡𝑐ℎ𝑜 do

13: 𝑜𝑛𝑐 := 𝑜𝑚𝑎𝑝(𝑜𝑜𝑐)
14: 𝑠𝑚𝑎𝑝(𝑜𝑜𝑚) := 𝑜𝑚𝑎𝑡𝑐ℎ𝑛(𝑜

𝑛
𝑐)

15: 𝑣𝑎𝑟𝑚𝑎𝑝(𝑜𝑜𝑚) := 𝑜𝑚𝑎𝑡𝑐ℎ𝑛(𝑜
𝑛
𝑐)

16: return 𝑀𝑜 ∪𝑀𝑛

17: return ∅

• 𝑜𝑚𝑎𝑡𝑐ℎ𝑜 is the mapping of output matches, which contains a similar mapping of the
output of 𝑐𝑥. In particular, it maps the instructions (or, more specifically, the variables
created by them) that got marked as the output of 𝑐𝑥 to the matching instructions
from 𝑥 (i.e., to the corresponding variables).

• 𝑀𝑥 is the set that contains instructions from 𝑥 that have been matched to instructions
from the pattern code fragment 𝑐𝑥. In other words, the set identifies which instructions
exactly are affected by the matching pattern (the previous mappings only contain
information related to the input and the output of 𝑐𝑥 and not its main body).

Concrete details about the creation of the tuples returned from calls to 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺 are
presented in Section 5.2.

After getting the results of both evaluations of 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺, the top-level algorithm
checks whether both pattern code fragments have been matched successfully (Line 4). If
so, it continues by validating the correctness of the mappings 𝑖𝑚𝑎𝑡𝑐ℎ𝑜 and 𝑖𝑚𝑎𝑡𝑐ℎ𝑛 with
respect to the input mapping function 𝑖𝑚𝑎𝑝 of the current pattern. The validation phase
uses a helper variable 𝑣𝑎𝑙𝑖𝑑 (which holds the input validation result) and iterates over all
mapped input match pairs (𝑖𝑜𝑐 , 𝑖

𝑚
𝑐) that are given by 𝑖𝑚𝑎𝑡𝑐ℎ𝑜. For each pair, the following

actions are performed:

28

• The corresponding input variable 𝑖𝑛𝑐 from the newer program version is retrieved from
𝑖𝑚𝑎𝑝 using 𝑖𝑜𝑐 . This is possible since 𝑖𝑚𝑎𝑝 maps the input of the code fragment 𝑐𝑜 to
the input of 𝑐𝑛. Therefore, it must also contain the mapping between 𝑖𝑜𝑐 and 𝑖𝑛𝑐 , since
both belong to the input of 𝑐𝑜 and 𝑐𝑛, respectively. Considering the fact that each
code fragment input must be matched to exactly one variable from the corresponding
program version, 𝑖𝑚𝑎𝑝 effectively creates a bijective mapping between 𝑖𝑚𝑎𝑡𝑐ℎ𝑜 and
𝑖𝑚𝑎𝑡𝑐ℎ𝑛.

• The variables that got matched to 𝑖𝑜𝑐 and 𝑖𝑛𝑐 (i.e., 𝑖𝑜𝑚 = 𝑖𝑚𝑎𝑡𝑐ℎ𝑜(𝑖
𝑜
𝑐) and 𝑖𝑚𝑎𝑡𝑐ℎ𝑛(𝑖

𝑛
𝑐),

respectively) are validated with respect to 𝑣𝑎𝑟𝑚𝑎𝑝 (Lines 8–10). This ensures that
the matched variables are either the same or can be mapped together, i.e., that
the pattern matches in both 𝑐𝑜 and 𝑐𝑛 use the same (or mapped) input variables.
Doing so is necessary since the matching of input is done separately for each pattern
code fragment. Therefore, the variables matched to code fragment input could be
potentially completely unrelated to each other.

If the input validation fails (i.e., if 𝑓𝑎𝑙𝑠𝑒 gets assigned to 𝑣𝑎𝑙𝑖𝑑), the pattern match is
discarded, and the algorithm continues with the following pattern, if available (Line 11).

Afterwards, the algorithm analogically iterates over the mapped output match pairs
(𝑜𝑜𝑐 , 𝑜

𝑜
𝑚) taken from 𝑜𝑚𝑎𝑡𝑐ℎ𝑜. At the start of each iteration, it retrieves the corresponding

output variable 𝑜𝑛𝑐 using the pattern output mapping function 𝑜𝑚𝑎𝑝. Then, the matched
output variables 𝑜𝑜𝑚 = 𝑜𝑚𝑎𝑡𝑐ℎ𝑜(𝑜

𝑜
𝑐) and 𝑜𝑚𝑎𝑡𝑐ℎ𝑛(𝑜

𝑛
𝑐) are mapped together via both 𝑠𝑚𝑎𝑝

and 𝑣𝑎𝑟𝑚𝑎𝑝 (Lines 14–15). This is in direct contrast with the input validation process
since—contrary to the variables matched to code fragment input, which should be created
by instructions placed before the first differing pair of instructions (𝑖𝑜, 𝑖𝑛) and, hence, that
should have already been processed and mapped to each other accordingly—instructions
associated with the output variables have not yet been analysed by the main function
comparison algorithm (i.e., cannot be mapped together before Line 14 of Algorithm 5.1).

Finally, after the pattern input is successfully validated and the output mappings are
created, the algorithm returns 𝑀𝑜 ∪ 𝑀𝑛 (Line 16), i.e., the set of all instructions that
have been matched to the detected pattern, combined for both of its code fragments 𝑐𝑜
and 𝑐𝑛. It should be noted that the algorithm could be extended to support multiple
pattern matches originating from the same instruction pair. The extension would be rather
straightforward—instead of returning immediately after the first pattern match is found,
the algorithm could continue analysing other patterns, keeping the previous results (i.e., the
unions of 𝑀𝑜 and 𝑀𝑛), and merging them into a single set, which would be then returned
after all patterns are analysed.

Additionally, the processing of a pattern match continues even after Algorithm 5.1
returns. In particular, Algorithm 2.1 has to retain the results of all successful pattern
matches for the duration of the whole function comparison and use them to identify which
instructions (from either of the compared functions) have been matched to a pattern. All
matched instructions should then be skipped since instructions associated with a code
change pattern should always be considered semantically equal, regardless of potential
semantic differences. This skipping of instructions should be performed immediately after
the main function comparison algorithm takes the pair (𝑠1, 𝑠2) of synchronisation points
from its queue 𝑄 (i.e., after Line 12 of Algorithm 2.1). In particular, if any of the instructions
represented by 𝑠1 and 𝑠2 have been identified as parts of a dynamic pattern match, they
should be skipped, i.e., their successors should be used instead.

29

5.2 Pattern Code Fragment Matching
This section follows the explanation of the top-level pattern matching algorithm for instruc-
tion patterns presented in Section 5.1. In particular, it describes the matching procedure
for code fragments, which has to be evaluated twice for each analysed pattern, i.e., it ex-
plains the semantics of the function 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺 used within Algorithm 5.1. Similarly to
the primary function comparison algorithm, the single-side matching procedure utilizes the
LLVM infrastructure to analyse pattern code fragments by their control-flow graphs (CFGs;
defined in Section 2.2). However, compared to Algorithm 2.1, it does not aim at finding
instructions that are semantically different. Instead, it searches for instructions that can
be matched to those present in the main body of the given code fragment.

Algorithm 5.2: Control-flow-based pattern code fragment matching
Input: Differing instruction 𝑖𝑑𝑝 from one of the compared programs

The corresponding pattern code fragment 𝑐
Result: 𝑟, the result status, which is true if a match gets found, false otherwise

𝑖𝑚𝑎𝑡𝑐ℎ, the mapping of input matches
𝑜𝑚𝑎𝑡𝑐ℎ, the mapping of output matches
𝑀 , the set of all matched program instructions

matchCFG (𝑖𝑑𝑝, 𝑐):
1: 𝑀 := {}
2: initialize 𝑣𝑎𝑟𝑚𝑎𝑝𝑐 with shared global variables
3: 𝑄 := {(𝑖𝑏𝑐, 𝑖𝑑𝑝)}
4: while 𝑄 ̸= ∅ do
5: take any pair (𝑖𝑐, 𝑖𝑝) from 𝑄
6: if 𝑖𝑐 can be matched to 𝑖𝑝 then

// Let (𝑜𝑐1, . . . , 𝑜𝑐𝑛) and (𝑜𝑝1, . . . , 𝑜
𝑝
𝑛) be

the operands of 𝑖𝑐 and 𝑖𝑝, respectively.
7: foreach 1 ≤ 𝑘 ≤ 𝑛 do
8: if 𝑜𝑐𝑘 ∈ 𝑖𝑛(𝑐) then
9: 𝑖𝑚𝑎𝑡𝑐ℎ(𝑜𝑐𝑘) := 𝑜𝑝𝑘

10: if 𝑖𝑐 ∈ 𝑜𝑢𝑡(𝑐) then
11: 𝑜𝑚𝑎𝑡𝑐ℎ(𝑖𝑐) := 𝑖𝑝
12: 𝑀 := 𝑀 ∪ {𝑖𝑝}
13: 𝑣𝑎𝑟𝑚𝑎𝑝𝑐(𝑖𝑐) := 𝑖𝑝

// Queue up the following instruction pair
14: foreach (𝑖′𝑐, 𝑖

′
𝑝) ∈ 𝑠𝑢𝑐𝑐𝐼𝑛𝑠𝑡𝑃𝑎𝑖𝑟(𝑖𝑐, 𝑖𝑝) do

15: insert (𝑖′𝑐, 𝑖
′
𝑝) into 𝑄

16: if all instructions in 𝑐 have been matched then
17: return (𝑡𝑟𝑢𝑒, 𝑖𝑚𝑎𝑡𝑐ℎ, 𝑜𝑚𝑎𝑡𝑐ℎ,𝑀)
18: else
19: return (𝑓𝑎𝑙𝑠𝑒, 𝑖𝑚𝑎𝑡𝑐ℎ, 𝑜𝑚𝑎𝑡𝑐ℎ,𝑀)

The implementation of the function 𝑚𝑎𝑡𝑐ℎ𝐶𝐹𝐺 is shown in Algorithm 5.2. The algo-
rithm expects to receive the first instruction 𝑖𝑑𝑝 from one of the analysed program versions
that has been compared as semantically different and the pattern code fragment 𝑐 cor-

30

responding to the same program version as 𝑖𝑑𝑝. In other words, using the notation from
Algorithm 5.1, it requires 𝑖𝑜 and 𝑐𝑜 for the older program version, and 𝑖𝑛 and 𝑐𝑛 for the
newer program version. The selected program version is denoted by 𝑝.

Algorithm 5.2 starts by creating the set 𝑀 of instructions from 𝑝 that have been matched
to instructions from the main body of 𝑐. The set 𝑀 , as well as the mapping of input
matches 𝑖𝑚𝑎𝑡𝑐ℎ and the mapping of output matches 𝑜𝑚𝑎𝑡𝑐ℎ, which are also used within
Algorithm 5.2, are all initially empty (their semantics are described in detail in Section 5.1).
Additionally, a mapping between global variables that are used within both 𝑐 and 𝑝 and
that share the same name is established (Line 2).

Then, the primary matching loop begins. The loop works similarly to Algorithm 2.1—it
relies on the queue 𝑄, operating until 𝑄 is emptied. However, since pattern matching is
always done instruction-to-instruction and never on larger blocks of code, instructions are
at all times queued up in the same sequence as they are present in the underlying LLVM IR
code. Therefore, synchronisation points and the corresponding mapping function 𝑠𝑚𝑎𝑝 are
not necessary. Initially, only the instruction pair (𝑖𝑏𝑐, 𝑖

𝑑
𝑝) is queued up for matching, where

𝑖𝑏𝑐 denotes the first instruction in the main body of 𝑐.
At the beginning of each iteration, a single pair of instructions (𝑖𝑐, 𝑖𝑝) is taken from 𝑄,

and the algorithm checks whether 𝑖𝑐 can be matched to 𝑖𝑝. Similarly to Algorithm 2.1,
the matching of individual instructions is based on simple instruction-to-instruction com-
parison. The variable mapping function 𝑣𝑎𝑟𝑚𝑎𝑝𝑐 is used during the instruction matching
process to check the correspondence between already matched variables (and the instruc-
tions that created them).

Then, let (𝑜𝑐1, . . . , 𝑜
𝑐
𝑛) and (𝑜𝑝1, . . . , 𝑜

𝑝
𝑛) be the operands of 𝑖𝑐 and 𝑖𝑝, respectively. If the

matching of 𝑖𝑐 to 𝑖𝑝 succeeds, the algorithm first processes the input variables (Lines 7–9).
In particular, it maps each operand 𝑜𝑐𝑘 that is also the input of 𝑐 to the corresponding
operand 𝑜𝑝𝑘 by the the mapping of input matches 𝑖𝑚𝑎𝑡𝑐ℎ, 1 ≤ 𝑘 ≤ 𝑛. In other words, if 𝑜𝑐𝑘
is the input of 𝑐, a mapping between 𝑜𝑐𝑘 and the matching operand of 𝑖𝑝 is created.

Additionally, Lines 10–11 perform a similar analysis with the output of 𝑐. However, it is
the instructions themselves (or, more specifically, the variables created by them) that may
be used as part of the output of 𝑐 (i.e., not their operands). Therefore, if 𝑐 specifies 𝑖𝑐 as
its output, 𝑖𝑝 gets directly mapped to 𝑖𝑐 by the mapping of output matches 𝑜𝑚𝑎𝑡𝑐ℎ. After
the input and the output are processed, the program instruction 𝑖𝑝 (i.e., the instruction
that has been matched to 𝑖𝑐) is placed into the set of matched instructions 𝑀 (Line 12).
Moreover, a variable mapping between 𝑖𝑐 and 𝑖𝑝 is generated (Line 13).

Afterwards, the function 𝑠𝑢𝑐𝑐𝐼𝑛𝑠𝑡𝑃𝑎𝑖𝑟—a specialized variant of 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟 from Algo-
rithm 2.1—retrieves all instruction pairs (𝑖′𝑐, 𝑖

′
𝑝) that should be queued up after (𝑖𝑐, 𝑖𝑝).

The implementation of 𝑠𝑢𝑐𝑐𝐼𝑛𝑠𝑡𝑃𝑎𝑖𝑟 is displayed in Algorithm 5.3, which operates on the
currently analysed instructions 𝑖𝑐 and 𝑖𝑝 from Algorithm 5.2.

If a match between 𝑖𝑐 and 𝑖𝑝 has been established, 𝑠𝑢𝑐𝑐𝐼𝑛𝑠𝑡𝑃𝑎𝑖𝑟 behaves analogously
to 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟 (Line 2), i.e., it returns the instructions immediately following 𝑖𝑐 and 𝑖𝑝, if
available. Otherwise, if 𝑖𝑝 has a single successor (i.e., if it is an internal instruction of
a basic block or an unconditional branch instruction), 𝑠𝑢𝑐𝑐𝐼𝑛𝑠𝑡𝑃𝑎𝑖𝑟 indicates that the
matching algorithm should keep 𝑖𝑐 and try to match it to the instruction that immediately
follows 𝑖𝑝. In other words, the algorithm allows to skip instructions of 𝑝 when searching
for suitable instructions matching those in the main body of 𝑐. The function 𝑠𝑢𝑐𝑐 retrieves
the single successor of the given instruction. If the number of immediate successors of 𝑖𝑝
is different, 𝑠𝑢𝑐𝑐𝐼𝑛𝑠𝑡𝑃𝑎𝑖𝑟 yields an error, failing the pattern matching process, as it either

31

Algorithm 5.3: Calculating successor instruction pairs
Input: Currently analysed instructions 𝑖𝑐 and 𝑖𝑝
Result: Tuple of successor instruction pairs
succInstPair (𝑖𝑐, 𝑖𝑝):

1: if 𝑖𝑐 can be matched to 𝑖𝑝 then
// Use the default successor calculation

2: return 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟(𝑖𝑐, 𝑖𝑝)

3: else if 𝑖𝑝 has a single successor then
// Try to match 𝑖𝑐 to the next program instruction

4: return (𝑖𝑐, 𝑠𝑢𝑐𝑐(𝑖𝑝))

5: else
6: yield error

cannot continue (𝑖𝑝 is a terminator instruction and, therefore, has no successors) or would
branch out (𝑖𝑝 is a conditional branch instruction, i.e., has two successors).

It should be noted that since 𝑠𝑢𝑐𝑐𝐼𝑛𝑠𝑡𝑃𝑎𝑖𝑟 yields an error even when 𝑖𝑝 has two suc-
cessors, the pattern matching procedure might fail to match patterns that describe changes
in control flow (e.g., additions of new conditional statements)—it may abort the matching
process even when suitable instructions in 𝑝 exist in all execution paths following 𝑖𝑝 (which,
in this case, must be a conditional branch instruction). However, although the algorithm
could potentially be extended to support this use case, e.g., with a backtracking proce-
dure, patterns describing changes in control flow would still not work properly. This is
because Algorithm 2.1 expects the compared functions 𝑓1 and 𝑓2 to have the same control-
flow graphs (at least if they should be compared as semantically equal) and would have to
be modified significantly to be able to process matches of the patterns in question. Such
modifications of the core parts of DiffKemp would be beyond the scope of this thesis.

Finally, after the queue 𝑄 is emptied, Algorithm 5.2 returns the resulting mappings
𝑖𝑚𝑎𝑡𝑐ℎ and 𝑜𝑚𝑎𝑡𝑐ℎ, and the set of matched instructions 𝑀 . Additionally, if all of the
instructions in the main body of 𝑐 have been matched, the algorithm returns true to indicate
a successful match. Otherwise, it also returns false since the matching of 𝑐 to 𝑝 failed. The
results are then further analysed by the top-level instruction pattern matching algorithm,
as described in Section 5.1.

5.3 Generating Instruction Patterns from Value Patterns
So far, the algorithms presented in this chapter have only dealt with instruction patterns.
However, Chapter 4 also introduced so-called value patterns—specialized variants of pat-
terns that are only composed of a single pair of values, i.e., do not properly represent code
change patterns with respect to the definition provided in Section 3.1. Therefore, this sec-
tion presents a conversion process, which can generate instruction patterns based on the
descriptions of value modifications given by value patterns loaded into DiffKemp and the
context of the code to which the patterns should be matched.

An overview of the instruction pattern generation process is shown in Algorithm 5.4.
The algorithm takes the first pair of instructions (𝑖𝑜, 𝑖𝑛) that have been compared as se-

32

Algorithm 5.4: Generating instruction patterns from value patterns
Input: Pair of differing instructions (𝑖𝑜, 𝑖𝑛)

Set of available value patterns 𝑃𝑣

Result: Set 𝑃 𝑣
𝑖 of instruction patterns generated from value patterns

1: 𝑃 𝑣
𝑖 := {}

2: foreach 𝑝𝑣 = (𝑣𝑜, 𝑣𝑛) ∈ 𝑃𝑣 do
3: if an instruction pattern can be created from 𝑝𝑣, 𝑖𝑜 and 𝑖𝑛 then
4: 𝑝𝑣𝑖 := 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑝𝑣, 𝑖𝑜, 𝑖𝑛)
5: 𝑃 𝑣

𝑖 := 𝑃 𝑣
𝑖 ∪ {𝑝𝑣𝑖 }

6: return 𝑃 𝑣
𝑖

mantically different (i.e., the same pair as the one used in Algorithm 5.1) and the set 𝑃𝑣 of
all value patterns loaded into DiffKemp, and tries to generate a new instruction pattern
for each pattern in 𝑃𝑣.

In particular, the algorithm starts by creating an (initially empty) set 𝑃 𝑣
𝑖 of generated

instruction patterns, and iterating over all value patterns 𝑝𝑣 = (𝑣𝑜, 𝑣𝑛) present in 𝑃𝑣. During
each iteration, unless 𝑝𝑣 cannot be converted, it executes the pattern conversion procedure
𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛 which—based on the value pattern and the pair of differing instructions
given to it—creates an internal-only instruction pattern 𝑝𝑣𝑖 , which is inserted into 𝑃 𝑣

𝑖 .
The function 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛 generates instruction patterns according to the values

(and their types) present in the given value pattern 𝑝𝑣 and the instructions that the newly
created instruction pattern should be matched to (i.e., the context of the first differing
instructions 𝑖𝑜 and 𝑖𝑛). In particular, the code fragment for the older program version,
which is denoted by 𝑝𝑜, of each of the generated instruction patterns is constructed using
one of the methods described below. For 𝑣𝑛 and 𝑖𝑛, the code fragment for the newer version
is created analogously.

• If 𝑣𝑜, i.e., the value corresponding to 𝑝𝑜, is a constant (for example, an integer) and
𝑖𝑜 uses 𝑣𝑜 as one of its operands, the code fragment is constructed as follows:

– The main body will contain the instruction 𝑖𝑜 (since it has 𝑣𝑜 as its operand).
– The input will consist of all of the operands of 𝑖𝑜 that are not constant (i.e., that

reference variables that should be present in the code before 𝑖𝑜).
– The output will be empty if 𝑖𝑜 does not return a value (and, hence, does not

create any variables that need to be mapped) or will be composed of the variable
produced by 𝑖𝑜.

• If 𝑣𝑜 is a pointer to a global variable (pointers to local variables cannot be used in
value patterns since only return instructions are allowed) and 𝑖𝑜 is a load instruction
that loads from the global variable referenced by 𝑣𝑜 (an example of this case can be
seen in Figure 4.1), the process is similar to the one for constant values. However,
since 𝑖𝑜 is a load instruction, it is the instruction 𝑖′𝑜, denoting the instruction that
uses the value loaded by 𝑖𝑜, that needs to be placed inside the main body of the
code fragment and analysed with regards to the input and the output of the code
fragment. Additionally, the load instruction 𝑖𝑜 must be placed into the main body as

33

well (before 𝑖′𝑜, since 𝑖′𝑜 depends on the result of 𝑖𝑜). Hence, the operand of 𝑖′𝑜 that
references the value loaded by 𝑖𝑜 should not be regarded as a part of the input of the
code fragment.

If neither of the above cases can be applied (e.g., since 𝑣𝑜 is a pointer to a global variable
but 𝑖𝑜 is not a load instruction), the construction of the instruction pattern gets aborted.
The same applies to the case when both fragments could be created, but the instructions
that use the values prescribed by the value pattern do not perform the same operation
in both program versions (e.g., the older version adds the value, while the newer version
subtracts it), as such a change cannot be attributed to a value pattern alone.

When both code fragments are constructed successfully, the instruction pattern 𝑝𝑣𝑖 is
finalized by creating the mapping functions 𝑖𝑚𝑎𝑝 and 𝑜𝑚𝑎𝑝, where 𝑖𝑚𝑎𝑝 is built according
to the order of the instruction operands used as the input of the code fragments, and 𝑜𝑚𝑎𝑝
is generated analogically with respect to the output of the code fragments (which, in this
case, can contain at most a single output variable in each code fragment).

Finally, after analysing all available value patterns, Algorithm 5.4 returns the set 𝑃 𝑣
𝑖 of

newly generated instruction patterns (which might possibly still be empty). This set should
be constructed lazily before each evaluation of Algorithm 5.1, to which it should be passed
on as a part of the set 𝑃𝑖 of available instruction patterns.

34

Chapter 6

Extension Implementation

This chapter describes the most important implementation details of the pattern matching
extension of DiffKemp proposed in this thesis. The extension is based on the algorithms
presented in Chapter 5.

Since the extension serves as an additional component of the DiffKemp analyser, it is
written in the C++ programming language1—the same language used by the core parts of
DiffKemp—and its source code is accessible through the official public GitHub repository
of DiffKemp2 under the Apache 2.0 license. The integration of the pattern matching ex-
tension into the architecture of DiffKemp is described in Section 6.2, and the most notable
aspects of the implementation process are presented in Section 6.3. Due to the influence
of DiffKemp on the implementation of the pattern matching extension, Section 6.1 first
introduces the core components of SimpLL, the function comparison module of DiffKemp.

6.1 Architecture of SimpLL
This section describes the parts of the architecture of DiffKemp that are the most relevant
to the proposed pattern matching extension. In particular, it explains the operations per-
formed by the core components of SimpLL, the core C++ module of DiffKemp, responsible
for the comparison of two functions translated to LLVM IR (i.e., for the checking of seman-
tic equivalence of functions presented in Section 2.4). SimpLL is typically executed from
the front-end command-line interface of DiffKemp, which is written in Python. However,
it may operate as a standalone module as well. The essential components of the architecture
of SimpLL, shown in Figure 6.1, are described below. The descriptions are inspired by the
source files of DiffKemp available in its GitHub repository.

LLVM IR parser A composite component that represents the LLVM IR parsing tools
from the LLVM infrastructure. Despite the fact that SimpLL only compares two functions
at once, LLVM IR files are always processed in their entirety. Therefore, the whole modules
represented by the given LLVM IR files are the result of the parsing process.

1A small module related to the extension is also implemented for the front-end of DiffKemp (written in
the Python language). However, this module only handles new command-line arguments introduced with
the extension and not the matching of patterns. Therefore, it has been omitted to simplify the presentation.

2GitHub repository of DiffKemp—https://github.com/viktormalik/diffkemp.

35

https://github.com/viktormalik/diffkemp

LLVM IR
parser

First
program

Second
program

Module
analyser

Module
comparator

Differential
function

comparator

3 7EQUAL NOT
EQUAL

Figure 6.1: The original architecture of SimpLL, the core component of DiffKemp respon-
sible for function comparison.

Module analyser Controls the analysis of the parsed modules. In particular, it applies
all available semantics-preserving code transformations (briefly introduced in Section 2.4)
and—with the help of the module comparator—begins the comparison of the selected pair
of functions.

Module comparator Manages the comparison of the given pair of functions, producing
the final result of the analysis. By default, it only passes the functions to the differential
function comparator. However, when the default comparison finds semantic differences and
the differences correspond to function calls, the module comparator also iteratively tries
to repeat the comparison after performing function inlining (with the goal of potentially
correcting a false-positive).

Differential function comparator An extension of the LLVM function comparator3

that allows it to operate on functions from different modules. Compares the given pair of
functions using the control-flow-based analysis presented in Section 2.4.

6.2 Integration of the Pattern Matching Extension
The extension proposed in this thesis has been implemented as a part of the architecture
of DiffKemp or, more specifically, the architecture of the SimpLL module (introduced in
Section 6.1). The pattern matching algorithms from Chapter 5, which the extension builds
upon, have been implemented in a straightforward manner—with the exception of the value
pattern conversion algorithm presented in Section 5.3, which is partially replaced by a direct
value-to-value comparison. The core components of the pattern matching extension, as well
as the value-to-value comparison, are described below. The integration of the components
into the architecture of SimpLL is displayed in Figure 6.2.

YAML parser Parses pattern configuration files, which are written in YAML4 and con-
tain the paths to the LLVM IR patterns that should be loaded. The parsing of pattern
configuration files is performed by the appropriate tools from the LLVM infrastructure, and
the identified pattern files are handed over to the LLVM IR parser.

3LLVM function comparator—https://llvm.org/doxygen/classllvm_1_1FunctionComparator.html.
4YAML Ain’t Markup Language (YAML)—a human-friendly data serialization language designed

to work well with all modern programming languages [3].

36

https://llvm.org/doxygen/classllvm_1_1FunctionComparator.html

LLVM IR
parser

First
program

Second
program

YAML
parser

Pattern
configuration

Module
analyser

Module
comparator

Differential
function

comparator

Pattern
comparator

Instruction
pattern

comparator

Value
pattern

comparator

3 7EQUAL NOT
EQUAL

Figure 6.2: Architecture of SimpLL after the integration of the pattern matching extension.

Pattern comparator Controls the pattern matching process, i.e., it implements the top-
level matching algorithm presented in Section 5.1. In other words, if a difference is found,
it tries to match the code starting with the first pair of instructions compared as seman-
tically different by the differential function comparator to one of the loaded patterns. To
achieve this, it utilizes the single-side pattern comparators specialized for the specific kinds
of patterns (i.e., the instruction pattern comparator and the value pattern comparator).
Additionally, the pattern comparator also analyses the code around the received pair of
instructions with respect to the value pattern conversion process described in Section 5.3.

Instruction pattern comparator Implements the control-flow-based matching algo-
rithm for code fragments of instruction patterns from Section 5.2. It does so by extending
the LLVM function comparator, which performs a top-down analysis of function differences,
starting with basic blocks and continuing by comparing individual instructions, operands,
and other values and variables. Program instructions that are compared as equal to those
present in the given code fragment are considered to match the corresponding pattern.

Value pattern comparator A specialized variant of the LLVM function comparator
that optimizes the matching of value patterns. This is possible since the LLVM function
comparator analyses code in a top-down manner. In particular, it also analyses instruction
operands individually and independently of the associated instruction. Therefore, the values
specified in value patterns can be compared directly, without the need to explicitly generate
instruction patterns (although the general idea behind the comparison stays the same).
However, any additional load instructions related to value patterns containing pointers to
global variables must still be processed separately by the higher-level pattern comparator.

37

Together, the newly introduced components enable SimpLL or, more specifically, the
differential function comparator to receive LLVM IR patterns and use them to validate the
discovered differences. In particular, before the differential function comparator declares
any two instructions as semantically different, it first passes them to the newly added pattern
comparator, which may then match them to one of the loaded patterns (and, in doing so,
allow the differential function comparator to disregard the difference). The differential
function comparator was extended so that it can properly process the results of the pattern
matching analysis. More implementation details regarding the pattern matching process
can be found in Section 6.3.

6.3 Extending the LLVM Function Comparison Module
This section gives further details about the implementation of the code fragment matching
algorithm introduced in Section 5.2. In particular, it describes the most notable implemen-
tation details of the instruction pattern comparator, which tries to match a pattern code
fragment (i.e., the LLVM function that represents it) to a function from the corresponding
compared program, in which a differing instruction has been identified.

Generally, to implement the algorithm as an extension of the LLVM function com-
parator, only minor modifications of the original comparison process were necessary. For
example, the LLVM function comparator can only compare the given pair of functions as a
whole (i.e., from the entry basic block to the terminating basic block or blocks). Therefore,
the instruction pattern comparator had to include a mechanism that allows it begin from
the instruction where the first known difference between the originally compared programs
is located. Nevertheless, some more substantial changes had to be implemented as well in
order to increase the efficiency and accuracy of pattern matching. These are listed below.

• The instruction pattern comparator might skip internal instructions of basic blocks
and unconditional branch instructions based on the next expected instruction. In
particular, if the comparator needs to match a branch instruction (since it is the
next unmatched instruction in the pattern code fragment), it may jump to the first
available branch instruction that has the same number of immediate successors (if
such an instruction exists).

• Since basic blocks connected by unconditional branch instructions may be considered
as a single basic block, the instruction pattern comparator additionally allows to
skip unconditional branch instructions unless they are directly specified by the given
pattern code fragment. This effectively enables the comparator to match a pattern
even to a function that has a different control-flow graph (provided the differences are
caused by unconditionally connected basic blocks).

38

Chapter 7

Experiments and Testing

The previous chapters have introduced a pattern matching extension of DiffKemp with the
goal of removing potentially undesirable or wrongly reported (i.e., false-positive) differences
from the output of DiffKemp. This chapter follows by presenting a series of experiments,
which was performed in order to verify that the extension is able to eliminate differences
associated with the dynamically loaded LLVM IR patterns. As the target of the experi-
ments, Red Hat Enterprise Linux (RHEL) was chosen due to its popularity and emphasis
on stability—its kernel contains a list of functions, a so-called Kernel Application Binary
Interface (KABI), that should ideally remain semantically stable for the lifetime of each
major release of RHEL [17]. The outcome of the experiments is discussed in Section 7.1.

Additionally, to enable faster verification of the extension in the future and to check the
correctness of as many execution paths of the matching process as possible, a number of
new regression tests were created and executed. Moreover, since the incorporation of the
extension also required small modifications of the parts of DiffKemp related to the main
program comparison, the previously available regression tests were used to ensure that the
core of DiffKemp remained unchanged even when no patterns are utilized. The regression
tests also target the kernel of RHEL, and their results are described in Section 7.2.

The output produced by DiffKemp during the experimental evaluation as well as the
LLVM IR patterns from both the evaluation and regression testing are available on the
attached memory medium (contents of which are described in Appendix A). Additionally,
Appendix B presents the steps necessary to execute both the experiments and the tests.

7.1 Experimental Evaluation on the Linux Kernel
This section describes experimental evaluation of the extension proposed in this thesis. The
extension was evaluated by performing a series of experiments on the kernel of RHEL. In
particular, three pairs of the most recently released versions of RHEL1 were selected. For
each pair of versions, the following sequence of actions was performed:

1) The KABIs of both versions were compared by DiffKemp without using patterns.

2) The reported differences were saved and manually examined for the existence of code
change patterns (CCPs; introduced in Chapter 3). In particular, in each pair of
versions, we—to the best of our abilities—searched for the five most repetitive CCPs.

1At the time of testing, the three pairs of the most recent release candidate versions of RHEL consisted
of RHEL 8.0/8.1, RHEL 8.1/8.2, and RHEL 8.2/8.3.

39

Table 7.1: A comparison of pairs of RHEL versions with and without LLVM IR patterns

RHEL versions KABI functions
Non-equal results Runtime (mm:ss)
without with without with
patterns patterns patterns patterns

8.0/8.1 471 85 75 04:46 04:43
8.1/8.2 521 161 146 05:15 05:13
8.2/8.3 628 178 169 07:26 07:08

3) All of the identified CCPs were encoded into LLVM IR (using the encoding methods
proposed in Chapter 4).

4) The KABIs of the selected pair of versions were compared again, this time with all of
the created LLVM IR patterns being loaded into DiffKemp.

5) The results of both comparisons were analysed in terms of execution time and the
number of KABI functions proclaimed semantically different (i.e., not equal). Addi-
tionally, it was manually verified that only the differences related to the identified
CCPs were affected by the loaded LLVM IR patterns.

The results of the experiments can be seen in Table 7.1. Each experiment was repeated
five times, and the runtimes were calculated as averages of the time spent on comparing
KABI functions compiled to LLVM IR on a 4 core, 2.80 GHz Intel Core i7 Kaby Lake
machine with 16 GB of RAM. The compilation time is not included in the statistics.

For all pairs of the compared versions of RHEL, the results show that by applying few
patterns, the total number of KABI functions evaluated as not equal can be lowered. In
particular, on average, each pattern removed approximately 2.27 differences declared as not
equal. It should be noted, however, that the actual amount of eliminated non-equal results
varied considerably due to differences in repetitiveness of the CCPs discovered among pairs
of RHEL versions. For instance, across all pairs of versions, we were able to find only
a single pattern that could remove more than five non-equal results by itself. The high
number of 15 eliminated non-equal functions between RHEL versions 8.1 and 8.2 can be
attributed precisely to this repetitive CCP. On the other hand, the lower repetitiveness of
other patterns does not indicate any potential issues with the extension since—according to
our manual inspection—all of their occurrences were successfully identified by the pattern
matching procedure.

Additionally, the results reveal one rather interesting fact—after applying patterns,
the version comparison was consistently faster by a few seconds. That may come as a
surprise since the proposed extension only introduces a new pattern matching analysis (i.e.,
the execution time should generally rise). However, by lowering the number of non-equal
functions, DiffKemp does not need to locate the corresponding differences in the original
C source code nearly as often as before. Since difference localisation is one of the most
demanding operations performed by DiffKemp, the total execution time may be lower
even when analysing patterns.

Based on the findings presented above, we were able to confirm that our extension
can help to improve results reported by DiffKemp (at least for the evaluated versions of
RHEL) since many false-positives can be linked to a particular CCP. Moreover, the results
indicate that generally, usage of patterns might have a slightly positive impact on runtime
performance (which is one of the most crucial factors related to DiffKemp). Since the

40

proposed pattern representation is generic, these findings also suggest that the extension
should be broadly applicable to C projects other than the kernel of RHEL.

7.2 Regression Testing
To ensure that the changes incorporated into DiffKemp do not affect its output in an
undesirable way, DiffKemp contains a set of 122 regression tests, all of which were passing
before the development of the extension proposed in this thesis. The tests focus on three
pairs of versions of the RHEL 7 kernel as well as a single pair of versions of the upstream
Linux kernel and are specified inside configuration files that, for each pair of versions,
contain a list of symbols (usually a subset of KABI functions) that should be compared,
and the expected comparison results.

Since the regression tests rely on RHEL 7 (i.e., not the currently most recent version of
RHEL), we decided not to extend the original tests with pattern-related features. Instead,
we created a completely new set of function comparison tests, which are dedicated to the
verification of pattern matching and—similarly to the experimental evaluation presented
in Section 7.1—target the KABI functions in the three pairs of the most recently released
versions of RHEL. The tests, as well as the pattern matching extension itself, support all
LLVM versions from 5.0 to 11. Therefore, they can be used directly in the continuous
integration of DiffKemp.

The set of regression tests for pattern matching consists of 16 new tests, each of which
requires a selected group of LLVM IR patterns to be loaded into the testing instance of
DiffKemp. When a pattern matching test gets executed, it first loads the necessary
LLVM IR patterns. Afterwards, it compares the two KABI functions that are specified in
the configuration file of the test. Finally, the test checks whether the obtained equality
verdict is the same as the expected result. The patterns used for regression testing were
designed with the goal of analysing as many execution paths of the pattern matching
procedure as possible. Repetitive patterns were preferred as well. An overview of the new
set of regression tests can be seen in Table 7.2. A single regression test for RHEL versions
8.1 and 8.2 depends on two LLVM IR patterns. All other pattern matching tests only
require a single pattern.

Table 7.2: An overview of the new set of regression tests dedicated to pattern matching
RHEL versions Number of tests Number of patterns All tests passed

8.0/8.1 6 6 yes
8.1/8.2 5 6 yes
8.2/8.3 5 5 yes

After fully incorporating the pattern matching extension into DiffKemp, we executed
all available regression tests again. All 138 (122 original and 16 new) tests successfully
passed, suggesting that the extension works as intended on all of the selected KABI func-
tions and that the previous features of DiffKemp remain unaffected by its addition.

41

Chapter 8

Conclusion

In this thesis, we have analysed so-called code change patterns (CCPs), i.e., patterns of
repetitive software modifications. Due to the presence of CCPs in low-level C code, includ-
ing the Linux kernel, we have also proposed, designed, and implemented an extension of
DiffKemp (an analyser of semantic differences), capable of identifiying CCPs in compared
programs. The extension is able to load a selected set of patterns, each of which must be
encoded in LLVM IR as a pair of functions. The dynamically loaded patterns can then
be matched to the code from the compared programs, potentially eliminating unwanted
differences (e.g., false-positives) from the output of DiffKemp. The matching process is
based on an instruction-to-instruction comparison, which proceeds in sequence according
to control flow.

The extension was evaluated on multiple pairs of the most recent versions of the kernel
of Red Hat Enterprise Linux, showing that with a proper set of patterns, it can eliminate a
number of non-equivalence results reported by DiffKemp. Doing so should further decrease
the amount of work required to check semantic stability between different versions of a
program—especially since a substantial number of reported differences related to patterns
is composed of false-positives. The extension was also evaluated by multiple regression
tests, which showed that its addition did not negatively impact other parts of DiffKemp.

Future work could improve the pattern matching extension and the related aspects of
DiffKemp in several ways. For example, a more user-friendly and, ideally, fully automated
method of generating LLVM IR patterns might be introduced. Additionally, CCPs that
describe modifications of control flow, e.g., introductions of new conditional statements,
could get supported (although doing so would require extensive changes in the core parts
of DiffKemp). Last, the extension could be improved by lowering the time complexity
of the matching algorithm, e.g., by adding more heuristics. However, since the conducted
experiments do not reveal any issues regarding time complexity, focusing on other aspects
of the extension might be better.

42

Bibliography

[1] Apiwattanapong, T., Orso, A. and Harrold, M. J. A Differencing Algorithm for
Object-Oriented Programs. In: Proceedings of the 19th IEEE International
Conference on Automated Software Engineering. Los Alamitos, CA, USA: IEEE
Computer Society, September 2004, p. 2–13. ASE ’04. DOI:
10.1109/ASE.2004.1342719. ISBN 0-7695-2131-2.

[2] Ball, T. The Concept of Dynamic Analysis. In: Proceedings of the 7th European
Software Engineering Conference Held Jointly with the 7th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. Berlin,
Heidelberg: Springer-Verlag, October 1999, vol. 24, no. 6, p. 216–234. ESEC/FSE-7.
DOI: 10.1145/318774.318944. ISBN 978-3-540-48166-9.

[3] Ben Kiki, O., Evans, C. and Net, I. döt. YAML Ain’t Markup Language
(YAML™) Version 1.2. [online]. July 21, 2009. Revised 1. 10. 2009 [cit. 2021-05-02].
3rd edition. Available at: https://yaml.org/spec/1.2/spec.html.

[4] Carletti, V., Foggia, P., Saggese, A. and Vento, M. Introducing VF3: A New
Algorithm for Subgraph Isomorphism. In: Foggia, P., Liu, C.-L. and Vento, M.,
ed. Graph-Based Representations in Pattern Recognition. Cham, Switzerland:
Springer International Publishing, May 2017, p. 128–139. LNCS 10310. ISBN
978-3-319-58961-9.

[5] Conradi, T. Matching of Control- and Data-Flow Constructs in Disassembled Code.
Hamburg, Germany, 2015. Bachelor’s thesis. Hamburg University of Technology,
Institute for Software Systems.

[6] Conte, D., Foggia, P., Sansone, C. and Vento, M. Thirty Years Of Graph
Matching In Pattern Recognition. International Journal of Pattern Recognition and
Artificial Intelligence. Singapore: World Scientific Publishing Company. May 2004,
vol. 18, p. 265–298. DOI: 10.1142/S0218001404003228. ISSN 0218-0014.

[7] Ferrante, J., Ottenstein, K. J. and Warren, J. D. The Program Dependence
Graph and Its Use in Optimization. ACM Transactions on Programming Languages
and Systems. New York, NY, USA: Association for Computing Machinery. July
1987, vol. 9, no. 3, p. 319–349. DOI: 10.1145/24039.24041. ISSN 0164-0925.

[8] Fowler, M. Refactoring: Improving the Design of Existing Code. 2nd ed. Boston,
MA, USA: Addison-Wesley Professional, November 2018. ISBN 978-0-13-475759-9.

[9] Gao, D., Reiter, M. K. and Song, D. BinHunt: Automatically Finding Semantic
Differences in Binary Programs. In: Chen, L., Ryan, M. D. and Wang, G.,

43

https://yaml.org/spec/1.2/spec.html

ed. Information and Communications Security. Berlin, Heidelberg: Springer-Verlag,
October 2008, p. 238–255. ICICS ’08. DOI: 10.1007/978-3-540-88625-9_16. ISBN
978-3-540-88624-2.

[10] Garrido, A. Software Refactoring Applied to C Programming Language.
Urbana-Champaign, USA, 2000. Master’s thesis. University of Illinois.

[11] Kiefer, M., Klebanov, V. and Ulbrich, M. Relational Program Reasoning Using
Compiler IR. Journal of Automated Reasoning. Berlin, Heidelberg: Springer-Verlag.
September 2017, vol. 60, no. 3, p. 337–363. DOI: 10.1007/s10817-017-9433-5. ISSN
0168-7433.

[12] Lahiri, S. K., Hawblitzel, C., Kawaguchi, M. and Rebelo, H. SymDiff: A
language-agnostic semantic diff tool for imperative programs. In: Parthasarathy,
M. and Seshia, S. A., ed. Computer Aided Verification. Berlin, Heidelberg:
Springer-Verlag, July 2012, p. 712–717. CAV ’12. DOI:
10.1007/978-3-642-31424-7_54. ISBN 978-3-642-31423-0.

[13] Lahiri, S. K., Vaswani, K. and Hoare, C. A. R. Differential Static Analysis:
Opportunities, Applications, and Challenges. In: Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research. New York, NY, USA:
Association for Computing Machinery, November 2010, p. 201–204. FoSER ’10. DOI:
10.1145/1882362.1882405. ISBN 978-1-4503-0427-6.

[14] Lattner, C. and Adve, V. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization. Palo
Alto, CA, USA: IEEE Computer Society, March 2004, p. 75–86. CGO ’04. DOI:
10.1109/CGO.2004.1281665. ISBN 0-7695-2102-9.

[15] Liu, C., Yang, J., Tan, L. and Hafiz, M. R2Fix: Automatically Generating Bug
Fixes from Bug Reports. In: Proceedings of the 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. Washington, DC, USA:
IEEE Computer Society, March 2013, p. 282–291. ICST ’13. DOI:
10.1109/ICST.2013.24. ISBN 978-0-7695-4968-2.

[16] LLVM Project. LLVM Language Reference Manual. LLVM 11 Documentation
[online]. January 14, 2021. Revised 15. 1. 2021 [cit. 2021-01-21]. Available at:
https://releases.llvm.org/11.0.1/docs/LangRef.html. Path: LLVM Home;
Documentation; Reference; LLVM Language Reference Manual.

[17] Malík, V. and Vojnar, T. Automatically Checking Semantic Equivalence between
Versions of Large-Scale C Projects. In: Proceedings of the 2021 14th IEEE
Conference on Software Testing, Verification and Validation. Porto de Galinhas,
Brazil: IEEE Computer Society, April 2021, p. 329–339. ICST ’21.

[18] Martinez, M., Duchien, L. and Monperrus, M. Automatically Extracting
Instances of Code Change Patterns with AST Analysis. In: Proceedings of the 2013
IEEE International Conference on Software Maintenance. Washington, DC, USA:
IEEE Computer Society, September 2013, p. 388–391. ICSM ’13. DOI:
10.1109/ICSM.2013.54. ISBN 978-0-7695-4981-1.

44

https://releases.llvm.org/11.0.1/docs/LangRef.html

[19] Møller, A. and Schwartzbach, M. I. Static Program Analysis [online]. Aarhus:
Department of Computer Science, Aarhus University, October 2018, revised 30. 11.
2020 [cit. 2021-16-01]. Available at: http://cs.au.dk/~amoeller/spa/.

[20] Neamtiu, I., Foster, J. S. and Hicks, M. Understanding Source Code Evolution
Using Abstract Syntax Tree Matching. In: Proceedings of the 2005 International
Workshop on Mining Software Repositories. New York, NY, USA: Association for
Computing Machinery, May 2005, vol. 30, no. 4, p. 1–5. MSR ’05. DOI:
10.1145/1083142.1083143. ISBN 1-59593-123-6.

[21] Pan, K., Kim, S. and Whitehead, E. J. Toward an Understanding of Bug Fix
Patterns. Empirical Software Engineering. Norwell, MA, USA: Kluwer Academic
Publishers. June 2009, vol. 14, no. 3, p. 286–315. DOI: 10.1007/s10664-008-9077-5.
ISSN 1382-3256.

[22] Person, S., Dwyer, M. B., Elbaum, S. and Pǎsǎreanu, C. S. Differential
Symbolic Execution. In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, November 2008, p. 226–237. SIGSOFT
’08/FSE-16. DOI: 10.1145/1453101.1453131. ISBN 978-1-59593-995-1.

[23] Ullmann, J. R. An Algorithm for Subgraph Isomorphism. Journal of the ACM.
New York, NY, USA: Association for Computing Machinery. January 1976, vol. 23,
no. 1, p. 31–42. DOI: 10.1145/321921.321925. ISSN 0004-5411.

45

http://cs.au.dk/~amoeller/spa/

Appendix A

Contents of the Attached Medium

The most notable directories on the attached memory medium are the following:

• /diffkemp/

– /diffkemp/ – Source codes of DiffKemp.
– /tests/ – Automated tests used by DiffKemp.

• /experiments/ – Results of experiments and the patterns used to generate them.

• /tex/ – LATEX source codes of this thesis.

• /init.sh – Project initialisation script.

• /README.txt – Readme file containing the manual for compilation and execution.

• /xsilli01_bp.pdf – This thesis in PDF.

The source codes of the pattern matching extension of DiffKemp proposed in this thesis
can be found in the /diffkemp/diffkemp/simpll directory. The modules that contain the
extension are listed below.

• InstPatternComparator – Matching of instruction patterns.

• PatternComparator – Top-level pattern matching controller.

• PatternSet – Set of loaded LLVM IR patterns.

• ValuePatternComparator – Matching of value patterns.

The regression tests created for the extension (as well as the original regression tests)
are located in the /diffkemp/tests/regression directory. The relevant files and subdi-
rectories are the following:

• patterns/ – Required LLVM IR patterns and pattern configuration files.

• rhel-80-81-patterns.yaml – Specification of tests for RHEL versions 8.0 and 8.1.

• rhel-81-82-patterns.yaml – Specification of tests for RHEL versions 8.1 and 8.2.

• rhel-82-83-patterns.yaml – Specification of tests for RHEL versions 8.2 and 8.3.

46

Appendix B

Compilation and Execution

This appendix describes how to compile the project and execute both the evaluation ex-
periments and pattern matching regression tests. It assumes that the working directory
contains all files and directories from the attached memory medium (contents of which are
outlined in Appendix A). It should also be noted that since multiple kernels of Red Hat
Enterprise Linux (RHEL) have to be downloaded, prepared, compiled and compared, the
whole process may be rather time-consuming and requires a large amount of disk space, as
well as a stable internet connection.

Compilation and Kernel Preparation
First, the dependencies of DiffKemp and rhel-kernel-get1 have to be installed. These
are presented in the README.md files placed in their respective public GitHub repositories.
To summarize, the following dependencies and packages are required:

• Kernel build dependencies: gcc, make, bison, flex, libelf-dev, libssl-dev.

• Archivation utilities: cpio, tar, xz, bzip2.

• Clang and LLVM for development (to run the experiments, versions 9, 10 or 11 should
be used; otherwise, versions 5, 6, 7 and 8 are also supported).

• CScope, CMake and the Ninja build system.

• Python 3 for development and with CFFI.

• Python packages from diffkemp/requirements.txt.

• The progressbar Python package (can be installed automatically by the included
initialisation script as well).

Second, the included init.sh initialisation script can be used to download and prepare
the necessary versions of the kernel of RHEL 8 or, if not on an internal Red Hat network, the
equivalent versions of the CentOS kernel. The script might require superuser privileges since
it needs to use pip. The kernel preparation can be performed by the following command:
./init.sh kernels

1rhel-kernel-get—an open-source tool for automatic downloading and preparing of Linux kernels—
https://github.com/viktormalik/rhel-kernel-get.

47

https://github.com/viktormalik/rhel-kernel-get

After the necessary versions of the kernel of RHEL 8 are placed in the diffkemp/kernel
directory, DiffKemp should be compiled into the diffkemp/bin directory using the same
initialisation script:
./init.sh compile

Finally, DiffKemp has to translate the KABIs of the prepared kernel versions into
LLVM IR (i.e., it has to generate so-called kernel snapshots). The following command
should generate the required snapshots into the diffkemp/snapshots directory:
./init.sh snapshots

Since the compilation process is quite complicated and requires many dependencies,
DiffKemp also provides a Docker container image that contains all of the necessary pre-
requisites. The image can be initialised by running the run-container.sh script from the
diffkemp/docker/diffkemp-devel directory.

Experiments and Tests
Contrary to the initialisation phase, the commands for evaluation and regression testing
expect to be executed from the top-most diffkemp directory.

The evaluation experiments have to be run for each pair of the prepared kernel snap-
shots separately. During each experiment, the snapshots should be first compared without
patterns. Then, the comparison should be repeated with the corresponding pattern config-
uration file. The following commands execute the experiments:
RHEL 8.0 vs 8.1 without patterns
bin/diffkemp compare snapshots/linux-4.18.0-80.el8 \
snapshots/linux-4.18.0-147.el8 --report-stat --stdout

RHEL 8.0 vs 8.1 with patterns
bin/diffkemp compare snapshots/linux-4.18.0-80.el8 \
snapshots/linux-4.18.0-147.el8 --report-stat --stdout \
--pattern ../experiments/rhel-80-81-config.yaml

RHEL 8.1 vs 8.2 without patterns
bin/diffkemp compare snapshots/linux-4.18.0-147.el8 \
snapshots/linux-4.18.0-193.el8 --report-stat --stdout

RHEL 8.1 vs 8.2 with patterns
bin/diffkemp compare snapshots/linux-4.18.0-147.el8 \
snapshots/linux-4.18.0-193.el8 --report-stat --stdout \
--pattern ../experiments/rhel-81-82-config.yaml

RHEL 8.2 vs 8.3 without patterns
bin/diffkemp compare snapshots/linux-4.18.0-193.el8 \
snapshots/linux-4.18.0-240.el8 --report-stat --stdout

RHEL 8.2 vs 8.3 with patterns
bin/diffkemp compare snapshots/linux-4.18.0-193.el8 \
snapshots/linux-4.18.0-240.el8 --report-stat --stdout \
--pattern ../experiments/rhel-82-83-config.yaml

The pattern matching regression tests can be executed using the following command:
pytest tests -k patterns

48

	Introduction
	Analyzing Semantic Differences using DiffKemp
	Current State of Static Analysis of Semantic Equivalence
	Representation of Compared Programs
	Definition of Function Equality
	Algorithm for Checking Function Equality

	Code Change Pattern Matching
	Code Change Pattern Definition
	Refactoring-Based Code Change Patterns
	Semantics-Altering Code Change Patterns
	Finding Change Patterns in Code

	Representation of Change Patterns
	Encoding Code Change Patterns
	Pattern-Specific LLVM Metadata Nodes

	Design of the DiffKemp Extension
	Top-Level Matching Algorithm
	Pattern Code Fragment Matching
	Generating Instruction Patterns from Value Patterns

	Extension Implementation
	Architecture of SimpLL
	Integration of the Pattern Matching Extension
	Extending the LLVM Function Comparison Module

	Experiments and Testing
	Experimental Evaluation on the Linux Kernel
	Regression Testing

	Conclusion
	Bibliography
	Contents of the Attached Medium
	Compilation and Execution

