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Abstract
The aim of this work is to design a method that simplifies two programs based on the
results of analysis of their semantic difference. The goal is to remove as many semantically
equivalent parts of the programs as possible. To find these equivalent parts, we apply our
own solution to the problem of finding the maximum common induced subgraph. Subse-
quently, we are able to simplify the programs by using backward static slicing. By applying
this simplification, we obtain sliced programs that consist of the differing parts and parts
that can affect these differences. The method has been implemented as an extension of the
DiffKemp tool, which is a static analyser of semantic differences between different versions
of large scale programs. Our experiments on the Linux kernel show that the method is able
to produce correct slices very efficiently (the analysis is prolonged only by 3.2%). Moreover,
the created slices are much smaller than the original programs, which makes them suitable
for further analysis.

Abstrakt
Cieľom tejto práce je navrhnúť metódu, ktorá zjednoduší dva porovnávané programy na
základe výsledkov ich sémantickej analýzy. Cieľom je odstránenie čo najväčšieho množstva
sémanticky ekvivalentných častí porovnávaných programov. Pre nájdenie týchto ekvivalent-
ných častí aplikujeme vlastné riešenie problému nájdenia najväčšieho spoločného induko-
vaného podgrafu. Následne sme schopní zjednodušiť programy využitím spätného statického
prerezávania. Aplikáciou tohto zjednodušenia získame prerezané programy, ktoré obsahujú
rozdielne časti a časti programov, ktoré môžu tieto rozdiely ovplyvniť. Táto metóda je
naimplementovaná ako rozšírenie nástroja DiffKemp, čo je statický analyzátor sémantick-
ých rozdielov medzi rôznymi verziami rozsiahlych programov. Experimenty vykonané na
jadrách Linux-u ukazujú, že metóda je schopná veľmi efektívne vyprodukovať korektné pre-
rezané programy (analýza sa predĺžila len o 3.2%). Navyše, vzniknuté prerezané programy
sú omnoho menšie, ako originálne, čo ich činí vhodnými pre ďalšiu analýzu.
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subgraph.
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Rozšířený abstrakt
Pri práci vo veľkých projektoch môže čo i len malou zmenou implementácie ľahko dôjsť
k narušeniu funkčnosti nejakej časti programu. K obmedzeniu týchto chýb sa využivajú
aj statické analyzátory, medzi ktoré patrí aj nástroj DiffKemp. Nástroj DiffKemp je
analyzátor sémantických rozdielov medzi rôznymi verziami programu. Používaním tohto
nástroja sú vývojárovi poskytnuté informácie o syntaktických rozdieloch dvoch verzií jeho
programu a sčasti aj elementárne sémantické odlišnosti. Sémantická analýza ekvivalencie
program je všeobecne náročný problém, ktorý úspešne riešia nástroje využívajúce formálne
metódy. Takéto metódy nezvládajú rozsiahle programy a sú pomalé, no presné.

DiffKemp si zakladá na vysokej škálovateľnosti, ktorú dosahuje využitím niekoľkých
konceptov. Spočiatku sú preložené dve verzie programu do jazyka LLVM IR. Preklad do
LLVM IR je veľmi efektívny len pre dva porovnávané programy, ktoré sú identické. Avšak,
môže vyvolať mnoho falošných výsledkov. Aby DiffKemp nebral do úvahy tieto falošné
výsledky, využíva koncept rôznych transformácií kódu. Následne aplikuje koncept porovná-
vania programov po jednotlivých inštrukciach. V prípade, že tento koncept nie je možné
aplikovať, snaží sa na daný kus kódu aplikovať vopred definované vzory zmien zachovávajúce
sémantiku.

Nástroj DiffKemp sa typicky používa pre dve verzie rovnakého programu, kde môžeme
predpokladať, že veľké časti programov sú zhodné. Preto môžeme tieto zhodné časti odstrá-
niť, čím sa rozsiahlosť programov zredukuje. Následne môžeme funkcie, ktoré DiffKemp
porovnal ako neekvivalentné predať nástrojom založených na formálnych metódach, aby
sme dosiahli presnejší verdikt sémantického porovnania. Odstránením ekvivalentných častí
z funkcií by mohli byť nástroje založené na formálnych metódach schopné dané funkcie spra-
covať a vyhodnotiť v rozumnom čase. Pre nájdenie ekvivalentných častí určených k odstrá-
neniu aplikujeme vlastné riešenie problému nájdenia najväčšieho spoločného indukovaného
podgrafu. Grafový algoritmus je možné aplikovať vďaka jazyku LLVM IR, ktorý reprezen-
tuje funkcie ako grafy riadenia toku programu. Po nájdení najväčšieho spoločného podgrafu
sme schopní odstrániť všetky ekvivalentné časti a dané funkcie zjednodušiť. Pre zreduko-
vanie funkcií využívame techniku prerezávania programov, konkrétne spätné statické pre-
rezávanie. Prerezávanie je ukutočnené na základe prerezávacieho kritéria, vďaka ktorému sa
odstránia určité časti programu. V našom prípade sú prerezávacími kritériami všetky náj-
dené rozdiely. Konkrétne spätné statické prerezávanie zachová okrem prerezávacieho kritéria
aj všetky časti kódu, ktoré mohli ovplyvniť zadefinvané kritérium. Aplikáciou prerezáva-
nia sa získajú prerezané programy. Výsledné prerezané programy, ktoré vzniknú metódou
navrhnutou v tejto práci, obsahujú rozdielne časti a závislé časti, ktoré môžu tieto rozdiely
ovplyvniť.

Navrhnutá metóda je uspešne zakomponovaná v nástroji DiffKemp ako následné spra-
covanie dvoch funkcií, ktoré nástroj určil ako neekvivalentné. Na základe validácie je ukáza-
né, že implementované riešenie nenarušilo funknčnosť nástroja DiffKemp a vyprodukované
prerezané funkcie si zachovali sémantiku v rozdielnych častiach kódu. Ďalej je na základe ex-
perimentov ukázaná efektivita metódy. Efektivita spočíva vo vytvorení funkcií obsahujúcich
o viac než polovicu menej inštrukcií ako pôvodné neprerezané funkcie. Okrem efektívneho
zredukovania počtu inštrukcií je časová náročnosť vyššia o približne 3.2% pôvodného času
porovnania.
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Chapter 1

Introduction

During development of large projects, even a tiny code change can easily disrupt function-
ality of some parts of the program. For finding these disruptions, one of the options to
use is static analysis of program semantics differences. Generally, the goal of static pro-
gram analysis is to collect some information about the behaviour of a program from its
source code without executing it under its original semantics [19]. Static analysis has sev-
eral forms, such as bug-pattern searching, dataflow analysis, or abstract interpretation.
Nowadays, many static analysis tools exist, such as Clang static analyser, Cppcheck and
others. In this thesis, we deal with DiffKemp, a tool that uses methods of static analysis
to find out whether two versions of the same program have the same semantics.

The existing methods in the area of static analysis of semantic equivalence are either
fast and inaccurate (they can cause many false positives) or slow and accurate (their com-
parison takes a long time). DiffKemp takes a middle ground – it is reasonably fast while
being able to provide the user with information about differences between two versions
of a program while ignoring changes that do not affect semantics. The main goal of the
DiffKemp tool is high scalability to real source code. To achieve high scalability, it uses
several different techniques. For analysis, DiffKemp translates the two versions of a pro-
gram into the LLVM intermediate representation (LLVM IR) language. Then, it tries to
compare the programs instruction by instruction. This instruction-by-instruction compari-
son works only on parts of the programs that are syntactically the same. Therefore, to make
the comparison more likely to succeed, various semantics-preserving code transformations
of the compared programs are performed. If the instruction-by-instruction comparison is
not possible, DiffKemp tries to match the differing pieces of code to one of predefined
semantics preserving change patterns.

Despite these features, DiffKemp still cannot handle some complicated refactorings.
Such complex refactorings could be handled by more heavy-weight methods for analysis
of semantic difference, however, the compared real world programs are usually large and
such methods do not scale on them. On the other hand, when dealing with two versions of
the same program, it can be assumed that large parts of the compared programs are very
similar and can be handled by DiffKemp. One of the possible solutions would be to use
DiffKemp to identify those parts and then to apply more advanced methods only to the
remaining pieces of code. To facilitate such approach in this work, we propose a method
which, based on the DiffKemp comparison, simplifies the compared programs so that only
the different parts remain.

One of the most common analysis techniques for simplifying programs is program slicing.
Program slicing is used for removing parts of a program that do not affect some point
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of the program, usually denoted as the slicing criterion. In this thesis, we use backward
static slicing to remove as many equivalent parts of the compared programs as possible.
Hence, our slicing criteria are the differing parts of the programs. To find the equivalent
parts of functions, we search for the solution to the maximum common subgraph problem
(since LLVM represents program functions using control-flow graphs). After application of
backward static slicing, the final program slice contains the different parts of the program
and every instruction that could affect them. After the slicing, the sliced functions can be
given to some slow and accurate method for getting more exact result.

The thesis is organised as follows. Chapter 2 is devoted to the description of the Dif-
fKemp tool, its intermediate representation, and algorithm for checking semantic equiva-
lence of functions. Chapter 3 is devoted to program slicing, forms of slicing, and the problem
of finding the maximum common subgraph. Chapter 4 is devoted to the proposed method
as a new extension of DiffKemp that removes as many equivalent parts of programs as
possible. Chapter 5 is devoted to the architecture of DiffKemp and integration of the
proposed method to DiffKemp. Chapter 6 is devoted to validation of the implementation,
regression tests, and experimental evaluation.

4



Chapter 2

DiffKemp

DiffKemp1 is a highly-scalable tool for analysing semantic differences between two ver-
sions of a program [15]. It uses methods of static analysis to automatically determine
differences in functions between two different versions of a software, with a special focus on
the GNU/Linux kernel. To achieve high scalability, DiffKemp performs the comparison
using three concepts:

• It applies instruction-by-instruction comparison on the level of LLVM inter-
mediate representation (LLVM IR). More details about LLVM IR are provided in
Section 2.1. This technique is very efficient for unchanged parts of programs, however
it may lead to many false results.

• To avoid a part of these false results, DiffKemp pre-processes the code using various
code transformations and static analyses. After the pre-processing, DiffKemp
tries to apply instruction-by-instruction comparison as often as possible.

• In case that this comparison is not sufficient, DiffKemp tries to match different parts
of code with predefined semantics preserving change patterns.

Description of the algorithm for checking equivalence of functions is provided in Section 2.2
in more detail.

Thanks to the mentioned concepts, DiffKemp achieves higher scalability than tools
based on heavy-weight formal methods, e.g., LLReve [13]. Such tools concentrate on sound
equivalence checking using, e.g., automata or logics, and they are not able to process large
programs. At the same time, DiffKemp is able to identify much more refactorings than
light-weight methods while it maintains a performance similar to these approaches. The
most known light-weight tool is the Unix diff tool [12] that is based on line-by-line lexical
comparison. The experiments that show the contribution of DiffKemp tool into the field
of program analysis can be found in article [15].

This chapter is organised into two sections. In Section 2.1, we describe LLVM IR as
the intermediate representation of DiffKemp. We concentrate on specific constructions
of LLVM IR that are important for our work. Then, we introduce several formalisms to
represent analysed programs and at the end of the section, we provide an example of the
intermediate representation of a function. In Section 2.2, we describe the algorithm for
checking semantic equivalence that DiffKemp uses.

1Difference of Kernel functions, modules, and parameters [14]
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2.1 Representation of the Program
Instead of analysing programs directly in the C language, DiffKemp uses a lower level
language to make the analysis easier. Specifically, it uses the internal representation of the
LLVM/Clang compiler, the LLVM Intermediate Representation [2]. This strongly typed
intermediate language is often used for program analysis due to its independence from the
source and the target code. It is an instruction-based program representation that represents
functions by control flow graphs (CFG). A CFG is a tuple (BB, E) where BB is a finite
set of basic blocks and E is a set of directed edges that connect the blocks and express the
control flow of the program. A basic block is a sequence of instructions. In this sequence,
there are no incoming or outgoing branches in the middle of the block. An incoming branch
always leads to the first instruction of the basic block and an outgoing branch always leads
from the last instruction of the basic block, a so-called terminator instruction. There are
several basic types of terminator instructions:

1. A branching instruction defines the control flow within the function, and it can
be:

(a) A conditional branching instruction that contains a boolean condition and
references to two basic blocks. Based on the evaluation of the condition, one
of the blocks is chosen as the following block in the control flow. We denote
the block that is followed if the condition is evaluated to true as the true-case
successor and the block that is followed when the condition is evaluated to false
as the false-case successor.

(b) An unconditional branching instruction references a single basic block that
will be performed next.

2. A return instruction returns the control flow back to the caller function and it
optionally returns a value.

Each function has a single entry block and may have several exit blocks. An instruction
performs an operation over a list of operands, which can be empty. An operand of the
instruction may be a variable, a constant, or a function. LLVM IR distinguishes two kinds
of variables:

1. global variables that correspond to the global variables of the original program and

2. local variables that have two categories [17]:

(a) stack-allocated local variables that are created by allocation of variables on
the stack frame of the currently executing function. The allocation is done by
using the alloca instruction. These usually correspond to the local variables of
the original program.

(b) register-allocated local variables (also calles registers) that are used to hold
intermediate values in the function, typically results of instructions. Each CFG
satisfies the static single assignment form that requires assignment to each vari-
able at most once, i.e., every time an instruction returns a value, a new local
variable is created [5, 15]. In case that values from multiple basic blocks converge
into one variable, a phi instruction is created. This instruction selects a value
based on the fact which basic block was executed prior to the current basic
block [2].
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In LLVM IR, global and stack-allocated local variables are always referenced using pointers.
Therefore, reading from and writing to these variables is always done using load and store
instructions, respectively.

For the purpose of the following explanation, we introduce several formalisms to repre-
sent the analysed programs. Let F be the set of all functions of the program. For a function
𝑓𝑖 ∈ 𝐹 , let:

• 𝐼𝑖 be the set of all instructions in 𝑓𝑖,

• 𝐿𝑖 be the set of all local variables in 𝑓𝑖,

• 𝐺𝑖 be the set of all global variables used in 𝑓𝑖,

• 𝑃𝑖 be the list of all parameters of 𝑓𝑖,

• 𝑉𝑖 = 𝐿𝑖 ∪𝐺𝑖 ∪ 𝑃𝑖 be the set of all variables used in 𝑓𝑖,

• 𝐶𝑖 be the set of all constants used in 𝑓𝑖.

For each instruction (except the return instruction), we also define its successors - the set
of instructions immediately following it. For branching instructions, these are the branch
targets and for other instructions, it is only the following instruction inside the basic block.
To formalise this, we introduce several functions:

• 𝑠𝑢𝑐𝑐 : 𝐼𝑖 → 𝐼𝑖 defines the successor of an unconditional branching and a non-branching
instruction,

• 𝑠𝑢𝑐𝑐𝑇 : 𝐼𝑖 → 𝐼𝑖 defines the true-case successor of a conditional branching instruction,

• 𝑠𝑢𝑐𝑐𝐹 : 𝐼𝑖 → 𝐼𝑖 defines the false-case successor of a conditional branching instruction.

2.1.1 LLVM IR in Practice

In this subsection, we give an example of what the intermediate representation of a program
may look like. At first, we need to define the forms of the LLVM IR. This language is
designed to be used in three equivalent forms:

1. an on-disk bitcode representation,

2. an in-memory compiler IR,

3. a human-readable assembly language representation.

In this thesis, we work with the human-readable form of LLVM IR. To obtain this form,
the source files are compiled using Clang with the following command:

clang -emit-llvm -S source_file.c

LLVM IR recognises two types of identifiers – local and global identifiers. Global identi-
fiers include functions and global variables. Local identifiers are registers (local variables),
basic block labels, and type definitions. Whereas global identifiers begin with the character
’@’, local variables are denoted by the character ’%’. Moreover, LLVM IR may contain
metadata marked with the character ’!’.

At first, let us consider the following example of a simple function in C language to see
how it is represented in the LLVM language:
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1 // Get absolute value of the given number
2 int abs(int x) {
3 return (x < 0) ? -x : x;
4 }

Listing 2.1: Function in the C language that returns absolute value of given number.

The LLVM representation of the abs function shown in Listing 2.1 can be found in
Listing 2.2. It represents a definition of the function named abs that returns an integer and
has a single parameter of an integer type. The entry block is at lines 3-7, and it contains
an allocation of a new stack variable (line 3), storing the value of the parameter to the new
stack variable (line 4) and its loading to a new register (line 5). Then, the local variable
is compared to 0 (line 6). Based on the result, the control flow of the function will be
transferred to one of the following basic blocks. The transfer is done by the conditional
branch instruction at line 7.

Besides the entry basic block, the function contains three more basic blocks. The one
with label ’5’ is the true-case successor of the entry block, and it creates a negation of the
given parameter. The one with label ’8’ is the false-case successor of the entry block, and
it simply loads the given parameter to a local variable. The last block with label ’10’, is
the function exit block, and it contains a phi instruction which selects a value based on
the basic block from which the control flow came. This value is then returned from the
function.

1 ; Function Attrs: noinline nounwind optnone ssp uwtable
2 define i32 @abs(i32 %0) #0 {
3 %2 = alloca i32, align 4
4 store i32 %0, i32* %2, align 4
5 %3 = load i32, i32* %2, align 4
6 %4 = icmp slt i32 %3, 0
7 br i1 %4, label %5, label %8
8

9 5: ; preds = %1
10 %6 = load i32, i32* %2, align 4
11 %7 = sub nsw i32 0, %6
12 br label %10
13

14 8: ; preds = %1
15 %9 = load i32, i32* %2, align 4
16 br label %10
17

18 10: ; preds = %8, %5
19 %11 = phi i32 [ %7, %5 ], [ %9, %8 ]
20 ret i32 %11
21 }

Listing 2.2: The LLVM IR representation of the abs() function.

2.2 Function Equality
The main goal of DiffKemp is to check whether two compared functions (typically being
two versions of the same program) are semantically equivalent. Informally, two functions are
semantically equivalent if, for the same input, they produce the same output. By input, we
understand the values of parameters of the function and the initial state of the memory. By
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output, we understand the return value of the function and the final state of the memory2.
Checking of semantic equality is a difficult problem, and therefore DiffKemp divides the
compared functions into smaller parts using so-called synchronisation points. A set of points
is placed into each function, and a one-to-one mapping (synchronisation) is created between
the two sets. Then, DiffKemp only compares semantics of every piece of code between
two succeeding synchronisation points to the semantics of the piece of code between the
two synchronised points in the other function. In other words, the synchronisation points
denote places where the functions are in a semantically equivalent (synchronised) state.
Typically, synchronisation points are placed at each instruction. When this is the case,
DiffKemp performs the so-called instruction-by-instruction comparison of the programs.
As this would normally be possible only for exactly the same programs, DiffKemp performs
various semantics-preserving transformations of the compared programs. This can be, e.g.,
inlining, dead code elimination, constant propagation, or redundant code elimination such
that instruction-by-instruction comparison can be made as often as possible. In addition,
DiffKemp also supports a possibility that synchronisation points cannot be placed at
each instruction. In such a case, it tries to match the corresponding pieces of code to
one of predefined semantics-preserving change patterns. If the codes are matched, they are
evaluated as semantically equal. To simplify the presentation in this thesis, we will only
consider the instruction-by-instruction comparison (cf. [15] for the full algorithm).

More formally, when comparing functions 𝑓1 and 𝑓2, the goal is to find the following:

• 𝑆1 ⊆ 𝐼1, 𝑆2 ⊆ 𝐼2: the sets of synchronisation points in 𝑓1 and 𝑓2,

• 𝑠𝑚𝑎𝑝 : 𝑆1 ↔ 𝑆2: the function representing the mapping of synchronisation points,

• 𝑣𝑎𝑟𝑚𝑎𝑝 : 𝑉1 ↔ 𝑉2: the function for mapping between local and global variables, as
the functions may generally use different variables.

The process of comparing two functions 𝑓𝑖, for 𝑖 ∈ {1, 2}, is shown in Algorithm 1. At
first, the transformations are done (line 1) for easier instruction-by-instruction comparison.
After that, if the numbers of function parameters are different, the functions are considered
as non-equal (lines 2-3). Otherwise, parameters of functions are mapped by their order in
varmap (lines 5-6). Also, the global variables used in functions are mapped by their name
in varmap (lines 7-8). In the main loop, DiffKemp works with the queue 𝑄 that stores
pairs of synchronisation points that need to be compared. In each iteration of the loop, the
following is done:

1. A synchronisation pair is taken from 𝑄 (line 11).

2. Check, whether synchronisation points 𝑠1 or 𝑠2 are already in synchronisation maps
and if they are mapped to each other (lines 12-13).

3. Function cmpInst compares instructions 𝑠1 and 𝑠2 (lines 14-15). The cmpInst function
performs comparison of the instruction operations and operands. As we mentioned in
Section 2.1, an operand can be of three types:

• Variable - the function checks if they are mapped in varmap.
• Constant - the function checks if the values are equal.

2This is a simplified definition that does not consider function termination or side effects. For a complete
definition, see [15].
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Algorithm 1: Checking semantic equivalence of functions.
Input : Functions 𝑓1, 𝑓2
Output: 𝑡𝑟𝑢𝑒 if 𝑓1 is semantically equal to 𝑓2, 𝑓𝑎𝑙𝑠𝑒 otherwise

1 run transformations of 𝑓1 and 𝑓2
2 if |𝑃1| ≠|P2| then
3 return false

// Initialisation of synchronisation maps
4 𝑆1 = {𝑖1𝑖𝑛}, 𝑆2 = {𝑖2𝑖𝑛}
5 for 1 ≤ 𝑖 ≤ |𝑃1| do
6 𝑣𝑎𝑟𝑚𝑎𝑝(𝑝1𝑖 ) = 𝑝2𝑖
7 for 𝑔1 ∈ 𝐺1 do
8 𝑣𝑎𝑟𝑚𝑎𝑝(𝑔1) = 𝑔2 ∈ 𝐺2 s.t. 𝑔1 has the same name as 𝑔2

// Main loop
9 𝑄 = (𝑖1𝑖𝑛, 𝑖

2
𝑖𝑛)

10 while Q is not empty do
11 take any (𝑠1, 𝑠2) from 𝑄
12 if 𝑠1 ∈ 𝑆1 or 𝑠2 ∈ 𝑆2 then
13 check if 𝑠1 is mapped to 𝑠2
14 if ¬𝑐𝑚𝑝𝐼𝑛𝑠𝑡(𝑠1, 𝑠2) then
15 return false

// Update synchronisation sets and maps
16 𝑆1 = 𝑆1 ∪ {𝑠1}, 𝑆2 = 𝑆2 ∪ {𝑠2}
17 𝑠𝑚𝑎𝑝(𝑠1) = 𝑠2

// Results of instructions are stored in new local variables
18 𝑣𝑎𝑟𝑚𝑎𝑝(𝑣1) = 𝑣2
19 if 𝑠1 is conditional branch then
20 insert (𝑠𝑢𝑐𝑐𝑇 (𝑠1), 𝑠𝑢𝑐𝑐𝑇 (𝑠2)) to 𝑄
21 insert (𝑠𝑢𝑐𝑐𝐹 (𝑠1), 𝑠𝑢𝑐𝑐𝐹 (𝑠2)) to 𝑄

22 else if 𝑠1 is not return then
23 insert (𝑠𝑢𝑐𝑐(𝑠1), 𝑠𝑢𝑐𝑐(𝑠2)) to 𝑄

24 return true

• Function - the function recursively calls Algorithm 1 to check if the called func-
tions have the same semantics.

4. When two instructions are compared as non-equal, functions are claimed to be non-
equal and the comparison ends (lines 14-15).

5. Otherwise, synchronisation sets and maps are updated (line 16) by inserting the 𝑠1
and 𝑠2 instructions into synchronisation sets. A synchronisation between 𝑠1 and 𝑠2 is
created (line 17). Newly created variables are defined and mapped (line 18).

6. Successors of 𝑠1 and 𝑠2 are found and inserted into 𝑄 for continuing in the synchronous
traversal (lines 19-23). The successors of these instructions depend on the type of the
compared instructions.

When the queue Q is empty, i.e., DiffKemp compared the entire functions and all instruc-
tions were synchronised, the functions are declared as semantically equal [15].
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Chapter 3

Slicing of LLVM Programs

The thesis aims to simplify programs based on their semantic differences. The differences
are found in the previous analysis, which is done at the level of LLVM IR, which represents
the functions by control flow graphs. Program simplification (often referred to as program
slicing) is a well-known and widely used technique. Our simplification is specific because
we have two input functions and we simplify both of them simultaneously based on some
relations (differences) between them. Therefore, the traditional slicing is not sufficient, as
we are not dealing with a single program. Since the functions are represented using CFGs,
we combine slicing techniques with graph algorithms. In particular, our simplification of
functions represented by CFGs uses two concepts:

1. static backwards program slicing that is one of the traditional slicing techniques
and

2. graph algorithms that find similarity of graphs, specifically the maximum common
subgraph.

This chapter is organised into two sections, where we describe the above two concepts. In
Section 3.1, we describe the main principles of slicing, its importance for this thesis, and we
focus on static slicing and its two different forms. In Section 3.2, we describe the problem of
finding a maximum common induced subgraph, and we provide a reason why this problem
is significant for this thesis.

3.1 Program Slicing
Analysis of programs is typically a challenging problem, mainly in the sphere of static
analysis. For many applications of static analysis, it has been found that it is not necessary
to analyse the entire program. Often, it is enough to analyse only some of the program’s
parts related to the verified property [3]. The technique for simplifying programs that is
used to speed up and streamline analysis of a program is a so-called program slicing
[4, 9] introduced by Mark Weiser [20]. Informally, it removes parts of a program that
are unnecessary due to the specified property. After the removal, a slice is constructed.
A program slice, which can be executable, is an extraction of a program that influences or
is influenced by the slicing criteria. The slicing criterion can be typically a value of the
variable, which means that the parts of the program that are affected or affect the value of
the variable are sliced. The slicing criterion can also be reachability, which means that the
parts of the program from which it is not possible to get to a certain point of the program

11



are sliced. Formally, the slicing criterion is defined as a pair < 𝑝, 𝑉 >, where 𝑝 is a program
point, and 𝑉 is a subset of program variables [6]. The program slice is defined as a subset of
program statements that do not change the behaviour of the original program according to
program point 𝑝, whereas the variables included in 𝑉 are the same in the original program
and slice.

Simplification of programs for the purpose of acceleration and streamlining of program
analysis is nowadays highly desired and beneficial. Therefore, applications of program slicing
can be found in many branches of information technologies such as differencing, testing,
debugging, re-engineering, program comprehension, and software measurement [18].

There exist several different types of slicing based on various criteria. The original
program slice introduced by Mark Weiser is nowadays called executable backward static
slice, where:

• Executable because the final slice must be an executable program. In some applications
of slicing, such as debugging, executability is not required.

• Backward because the slicing is done from the slicing criteria whereas only the pre-
vious statements are considered (simply put, the traversal is done from target to
source). More information about backward slicing is provided in Subsection 3.1.1.
Besides backward slicing, there also exists forward slicing that is also described in
Subsection 3.1.1 (simply put, the traversal is done from target to the end).

• Static because the slice is computed as the solution to a static analysis problem. This
means that static slicing keeps every statement of the program that may affect the
slicing criteria in every possible execution of the program, i.e., without considering
the program inputs, unlike dynamic slicing.

Besides these common types, there are other special program slicing techniques, i.e., con-
ditioned slicing, amorphous slicing, and quasi slicing.

Since this thesis aims to simplify two programs so that only semantic differences are
kept, we can look at this problem as a problem of slicing. As we have the source codes
available and the complete analysis of DiffKemp uses static analysis, we will review static
slicing. Moreover, as we need to keep all parts of programs that may influence the parts
with identified differences, we will use backward slicing. Finally, as the sliced programs are
intended for further analysis, we will require executable slices.

3.1.1 Forward vs Backward Slicing

Now, we show the difference between forward and backward slicing, since these are the two
most important types of static slicing. Both of them produce different program slices. To
see what particular slices may look like, consider an example of function fce written in
C in Listing 3.1. To produce the final slice, we need to determine the slicing criteria first.
After that, we can choose one of the approaches of static slicing. Therefore, let us declare
the statement int res = sum(a,b) at line 7 as the slicing criterion.

Forward slicing was introduced by Horwitz in [10]. Forward slicing keeps program state-
ments that are affected by the slicing criterion. Program slice produced by application of
forward slicing is shown in Listing 3.2. Only the statement at line 8 is affected by the slic-
ing criterion, therefore everything else is removed. As we can see, the final slice can not
be executable, since the variable b is not defined. There exist forms of forward slicing that
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produce an executable slice. However, we will not analyse those in this thesis since forward
slicing is not the goal of our work (cf. [8] for executable forward slicing).

By applying backward slicing, the program slice contains program statements that can
affect the slicing criterion [9]. Informally, it works as follows:

1. For each statement in the slicing criterion, take all its operands and add to the slice
those statements that change the value of that operand.

2. Then, repeat the same recursively for each statement added.

Program slice produced by backward slicing on the provided example is shown in Listing 3.3.
Statement at line 2 is not relevant according to the selected slicing criterion, hence it is
removed. Statement at line 8 does not affect the slicing criterion since it occurs after the
criterion, hence it is removed. Other statements have to stay since they can affect the slicing
criterion, hence they are relevant. In this thesis, we propose a method that uses backward
static slicing.

1 int fce (int a) {
2 printf("fce\n");
3 int b;
4 scanf("%d", &b);
5 if (b < 0)
6 b = b * -1;
7 int res = sum(a,b);
8 return ++res;
9 }

Listing 3.1: Source code
before the slicing.

1 int fce (int a) {
2

3

4

5

6

7 int res = sum(a,b);
8 return ++res;
9 }

Listing 3.2: The forward
slice.

1 int fce (int a) {
2

3 int b;
4 scanf("%d", &b);
5 if (b < 0)
6 b = b * -1;
7 int res = sum(a,b);
8

9 }

Listing 3.3: The backward
slice.

3.2 Maximum Common Subgraph
In most cases, during comparing two functions, where one is refactoring the other, a signifi-
cant part of functions is equal, and functions differ only in small parts. In the simplification
process of such functions, we want to reduce functions as much as possible by applying
the slicing technique to consist only of parts of code that differ plus their dependencies to
preserve semantics. As we outlined in the introduction of this chapter, traditional slicing
is not sufficient here, because the preceding difference analysis (described in Algorithm 1)
only analyses the functions up to the point where the first difference is found. It is very
likely, though, that large parts of the functions after (in the sense of control-flow) the first
difference are equivalent. In order to find such parts, we analyse the graph problem (since
functions are CFGs), whose task is to find as many common parts of two given graphs as
possible. This problem is commonly known as the problem of finding a maximum common
subgraph. After finding these equivalent parts, we can apply slicing to remove common
parts. Before explaining what the maximum common subgraph is, we need to understand
its background [16].

In Section 2.1, we explained that each function in LLVM IR is represented by a control
flow graph (CFG). For a quick reminder, CFG consists of finite set of basic blocks (BB)
and a set of directed edges (E) that connect the blocks and express the control flow of the
program. Let 𝐺 = (𝐵𝐵,𝐸) and 𝐺′ = (𝐵𝐵′, 𝐸′) be two graphs:

• 𝐺′ is a subgraph of 𝐺 if it is a graph where 𝐵𝐵′ ⊆ 𝐵𝐵 and 𝐸′ ⊂ 𝐸.
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(a) (b) (c)

Figure 3.1: (a) an old version of function (b) a new version of function (c) a maximum
common subgraph

• A common subgraph of 𝐺 and 𝐺′ is a graph that is isomorphic to some subgraphs of
𝐺 and 𝐺′. A graph, 𝐺 is isomorphic to 𝐺′ if there exists a bijective function 𝑓 : 𝐵𝐵 →
𝐵𝐵′ which preserves edges, i.e., ∀(𝑢, 𝑣) ∈ 𝐵𝐵 ×𝐵𝐵, (𝑢, 𝑣) ∈ 𝐸 ⇔ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸′.

• 𝐺′ is an induced subgraph of 𝐺 if 𝐵𝐵′ ⊆ 𝐵𝐵 and 𝐸′ = 𝐸∩(𝐵𝐵′×𝐵𝐵′). Informally,
we get 𝐺′ by removing all blocks of 𝐺 which are not in 𝐵𝐵′ and keeping all edges
whose source and destination blocks are both in 𝐵𝐵′.

• Finally, we can define a maximum common subgraph (MCS) that is the largest
common subgraph of G and G’. We distinguish two types of MCS [7]:

1. Maximum common edge subgraph (MCES) is the largest induced subgraph com-
mon to G and G’ in the term of the number of edges.

2. Maximum common induced subgraph (MCIS) is the largest induced subgraph
common to G and G’ in the term of the number of basic blocks. In this thesis,
we focus only on MCIS.

Finding MCS is an optimisation NP problem (also called NPO problem) of the subgraph
isomorphism problem, which is a famous NP-complete problem [11]. A problem is cate-
gorised as NP if it can be solved in polynomial time by a non-deterministic Turing machine
(cf. [21] for details). If a solution to the NP problem is known, the demonstration of the
solution correctness can always be reduced to P (polynomial bounds time of solution). If
P is not equivalent to NP, the solution to the NP problem requires an exhaustive search in
the worst case.

In the MCS problem, we have a pair of graphs, and the task is to find the largest
induced subgraph common to the given graphs [1]. For a better understanding, consider
two functions represented as CFGs shown in Figure 3.1. As we can see, CFG presented in
(b) refactors CFG presented in (a) by adding some additional code (the green circle). Other
parts are equivalent. Therefore, the MCS of these functions is equivalent to the subgraph
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shown in (c). After this, when the common parts of two functions are found, we can apply
static backward slicing, which preserves differing parts of the presented CFGs and every
statement that can affect differences. In the case presented in Figure 3.1, the final program
slice from the old version of the function would be empty. The final program slice from the
new version of the function would contain the basic block represented by the green circle
and all basic blocks with dependent instructions. We consider an instruction dependent if it
can affect the execution of a differentiating instructions (any instruction in the green basic
block).

Several algorithms solve the MCS problem with various worst-case run-time, such as
brute-force and backtracking algorithms, usage of compatibility graphs, and usage of vertex
cover [1]. Finding MCS is often associated with finding a maximum clique (usage of com-
patibility graphs). A clique is a set of such vertices in a graph that each vertex is connected
to every other vertex [7]. The maximum clique is the largest set of pairwise compatible
pairs [1]. Therefore, optimisation algorithms for finding maximum clique can be used to
find MCS. In this thesis, we use our own algorithm for finding the MCS that is based on
a simple exhaustive search. Thanks to some properties that CFGs have (e.g., they have
a single entry node or a maximum of two outgoing edges for each node), our approach is
much more efficient than the classic brute-force approach. The method proposed in this
thesis that solves the maximum common subgraph of comparing function in LLVM IR and
subsequently slices as many equivalent parts of code as possible is described in Chapter 4.
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Chapter 4

Equivalence Slicing

This thesis aims to simplify two nonequivalent functions as much as possible based on the
previous results of the analysis of semantic equivalence of two programs. The previous anal-
ysis is described in Algorithm 1, which ends at the moment when it finds two non-equal
instructions. This means that parts of the functions located behind the first difference (in
the sense of control flow) remain unanalysed. However, these may contain large pieces of
code that are semantically equal between the compared versions. To find these semanti-
cally equivalent parts, we will search for the maximum common subgraph as described in
Section 3.2. In particular, once we have found a difference, we try to find the first pair
of instructions that are reachable from the difference and from which the sychronisation
of the compared functions can be restored. We denote this pair of instructions as the next
synchronisation pair. Moreover, since finding MCS is generally very hard, we split our MCS
algorithm into two phases, as described below. Once we have found the MCS, we use back-
ward static slicing to remove parts of the functions that are semantically equivalent. We
described slicing in Section 3.1. Since we apply backward static slicing, we remove each
instruction from equivalent parts of functions that can not affect differing instructions.

Formally, when analysing functions 𝑓1 and 𝑓2, the goal is to find so-called keep sets
𝐾1 ⊆ 𝐼1 and 𝐾2 ⊆ 𝐼2 that contain differing instructions.

Because of a more comprehensive solution, we propose a method that is logically divided
into two phases:

1. The first phase finds maximum common subgraph of the compared functions.
This phase consist of two subphases:

(a) In the first subphase, we are finding the MCS on the level of entire basic blocks
by following the control flow. In other words, we search for sychronisation of
blocks that are successors of some previously sychronised blocks, starting from
entry blocks of the compared functions. This step can be done in a quite efficient
way and it is usually able to find a synchronisation in large parts of functions.

(b) In the second subphase, we are finding the MCS on the level of individual in-
structions (i.e., finding the next sychronisation pair), but our search is limited
for blocks that were not sychronised in (a). This is a more time-consuming step,
but it is usually performed on small parts of the functions only.

2. The second phase produces a slice by keeping instructions compared as different
and their dependencies. All other instructions are removed from the functions.
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Algorithm 2: The full algorithm of slicing.
Input : Functions 𝑓1, 𝑓2
Output: sliced 𝑓1, 𝑓2

1 𝐾1 = {}, 𝐾2 = {}
2 𝑄 = (𝑏𝑏1𝑖𝑛, 𝑏𝑏

2
𝑖𝑛)

// First phase
3 while Q is not empty do

// First subphase
4 (DiffInst1,DiffInst2) = findMCSBasicBlocks(𝑄)

// Second subphase
5 (𝐾 ′

1,𝐾
′
2) = findMCSInsts(DiffInst1,DiffInst2)

6 𝐾1 = 𝐾1 ∪𝐾 ′
1

7 𝐾2 = 𝐾2 ∪𝐾 ′
2

8 insert all successors of newly synchronised basic blocks to 𝑄
// Second phase

9 𝑓1 = sliceFunction(𝑓1, 𝐾1)
10 𝑓2 = sliceFunction(𝑓2, 𝐾2)

Since the solution consists of more phases, the chapter is organised as follows. In Section 4.1,
we introduce the top-level algorithm of the proposed solution. In Section 4.2, we propose
a method that finds the maximum common induced subgraph of two given control flow
graphs on the level of basic blocks and on the level of instructions. In this section, we also
introduce a function that compares two basic blocks starting from given instructions. This
function is used in both subphases of finding the MCS. In Section 4.3, we propose a method
that removes any possible semantically equivalent parts of programs based on the found
subgraph.

4.1 Top-level Algorithm
At the beginning of this chapter, we introduce the top-level algorithm that removes equiva-
lent parts of two given programs. This algorithm is shown in Algorithm 2. As we mentioned
in the introduction of this chapter, the solution consists of two phases. In the first phase,
we are working with a queue 𝑄 that stores pairs of basic blocks of functions 𝑓1 and 𝑓2 that
were not analysed yet. The algorithm works as follows:

1. We initialise the keep sets 𝐾𝑖 for 𝑖 ∈ {1, 2} for collecting the instructions that are
different (line 1).

2. We start the analysis from entry blocks of both functions that are inserted to the
queue (line 2).

3. To remove every equivalent part of functions, we generalise the method of finding
MCS for any number of differences and subsequent search of synchronisation. Hence,
we put the process of finding the MCS into a loop that guarantees the analysis of
each basic block of function (line 3). Inside the loop, the following is done:

(a) We find the MCS of functions on the level of basic blocks by following the
control flow. For each pair of basic blocks in Q, we compare their semantics and
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if they are equal, we continue by synchronising their successors and subsequently
comparing them. Basic blocks that contain differences or that are not successors
of any synchronised basic block remain unanalysed. This step is performed in
function findMCSBasicBlocks, which operates on the queue 𝑄 and it also returns
the first pair of identified differing instructions denoted DiffInst1 and DiffInst2
for 𝑓1 and 𝑓2, respectively.

(b) We follow by finding MCS on the level of instructions inside the basic blocks
that remained unanalysed after the previous step. This search aims to find the
next synchronisation pair of instructions which denote the beginning of some
semantically equivalent parts of functions. While searching for such instructions,
we also collect all skipped (i.e., differing) instructions. This step is performed
in function findMCSInsts which takes the first differing pair of instructions as
the input and returns so-called keep sets (i.e., the sets of instructions that were
compared as non-equal and must be thus kept in the final slice). The contents
of the returned sets 𝐾 ′

1 and 𝐾 ′
2 are added to the main keep sets 𝐾1 and 𝐾2. For

more details about finding MCS on the level of basic blocks and instructions, see
Section 4.2.

(c) After a synchronisation is found, we repeat this process, starting from the succes-
sors of the newly synchronised blocks (we insert the successors into 𝑄 in line 8).
The loop ends once all basic blocks were compared and 𝑄 is empty.

4. The second phase starts when the entire functions were analysed. Now, we can slice
them to keep only differing instructions and their dependencies. The slicing is done
in function sliceFunction (lines 9-10). This function gets a function for slicing 𝑓𝑖
and a set 𝐾𝑖 that contains instructions that must be kept. For more details about
applying backward static slicing in our solution, see Section 4.3.

4.2 Finding Maximum Common Subgraph
As we already know, we are usually analysing two versions of the same program, i.e.,
most parts of functions are semantically equal, and only some parts differ. To find each
semantically equivalent part, we need to analyse the entire functions. Therefore, as the
first step, we analyse as many function parts as possible to narrow down the detection of
the different parts and subsequent search for synchronisation. In this section, we propose
a function that finds the maximum common subgraph of two given functions represented
as two control flow graphs.

The solution of finding the maximum common subgraph is divided into two subphases,
as we mentioned in the introduction. In both of them we use special function that com-
pares given basic blocks from given instructions. Therefore, this section consists of three
subsections. In Subsection 4.2.1, we review the comparison of two basic blocks from given
instructions. In Subsection 4.2.2, we review the finding of MCS on the level of basic blocks.
In Subsection 4.2.3, we review the finding of MCS on the level of instructions.

4.2.1 Comparison of basic blocks

In our method, we often compare instructions without previously comparing the instructions
that are located before them (in the control flow). Therefore, it often happens that the
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Algorithm 3: A function that compares basic blocks from given instructions until
the end of basic blocks.

Input : synchronisation points 𝑠1, 𝑠2
Output: 𝑡𝑟𝑢𝑒 if basic blocks are equal, else 𝑓𝑎𝑙𝑠𝑒
Function cmpBasicBlocksFromInsts(𝑠1, 𝑠2):

// Backup of maps
1 𝑆′

1 = 𝑆1, 𝑆
′
2 = 𝑆2

2 𝑠𝑚𝑎𝑝′ = 𝑠𝑚𝑎𝑝
3 𝑣𝑎𝑟𝑚𝑎𝑝′ = 𝑣𝑎𝑟𝑚𝑎𝑝
4 while 𝑠1 is not terminator ∧ 𝑠2 is not terminator do

// Let (𝑜11, ..., 𝑜1𝑛1
) and (𝑜21, ..., 𝑜2𝑛2

) be list of operands
// of 𝑠1, 𝑠2, respectively

5 for 1 ≤ 𝑖 ≤ 𝑚𝑖𝑛(𝑛1, 𝑛2) do
6 if 𝑜1𝑖 ∈ 𝑉1 ∧ 𝑜2𝑖 ∈ 𝑉2 ∧ 𝑜1𝑖 , 𝑜

2
𝑖 are not in varmap then

7 𝑣𝑎𝑟𝑚𝑎𝑝(𝑜1𝑖 ) = 𝑜2𝑖
8 if ¬𝑐𝑚𝑝𝐼𝑛𝑠𝑡(𝑠1, 𝑠2) then

// Restore maps
9 𝑆1 = 𝑆′

1, 𝑆2 = 𝑆′
2

10 𝑠𝑚𝑎𝑝 = 𝑠𝑚𝑎𝑝′

11 𝑣𝑎𝑟𝑚𝑎𝑝 = 𝑣𝑎𝑟𝑚𝑎𝑝′

12 return false
13 𝑆1 = 𝑆1 ∪ {𝑠1}, 𝑆2 = 𝑆2 ∪ {𝑠2}
14 𝑠𝑚𝑎𝑝(𝑠1) = 𝑠2
15 𝑣𝑎𝑟𝑚𝑎𝑝(𝑣1) = 𝑣2
16 𝑠1 = succ(𝑠1)
17 𝑠2 = succ(𝑠2)
18 return true

compared instructions have local variables on their input, which are the result of instructions
that have not been compared yet. Therefore, those variables do not have mapping in varmap,
which means that using the cmpInst function directly (listed in Algorithm 1) would compare
such instructions as different. We do not want this to happen, because those unmapped
variables can have the same semantics. Hence, for comparing the instructions in our method,
we propose a special function that makes up the missing mapping. In addition, we will
always apply our new comparison to all instructions of the basic blocks from some given
(starting) instructions. Therefore, we propose the cmpBasicBlocksFromInst function which
is described in Algorithm 3. It works as follows:

1. We back up the synchronisation maps and sets for a case when the comparison is not
successful (lines 1-3).

2. We iterate through all instructions starting from the given 𝑠1, 𝑠2 until the end of basic
blocks (line 4).

3. We check the operands of the current instructions. When the operands do not have
a mapping, we create it (lines 5-7). The missing mapping can occur when the operands
are results of instructions that are located in unanalysed basic blocks.
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Algorithm 4: First subphase – finding the MCS on the level of basic blocks.
Input : queue 𝑄
Output: differing instructions DiffInst1, DiffInst2
Function findMCSBasicBlocks(𝑄):

1 while 𝑄 is not empty do
2 take any (𝑏𝑏1, 𝑏𝑏2) from Q
3 if cmpBasicBlocksFromInsts(first inst of 𝑏𝑏1, first inst of 𝑏𝑏2) then
4 𝑡1 = terminator of 𝑏𝑏1
5 𝑡2 = terminator of 𝑏𝑏2
6 if 𝑡1 is conditional branch then
7 insert non-analysed (𝑠𝑢𝑐𝑐𝑇 (𝑡1), 𝑠𝑢𝑐𝑐𝑇 (𝑡2)) to 𝑄
8 insert non-analysed (𝑠𝑢𝑐𝑐𝐹 (𝑡1), 𝑠𝑢𝑐𝑐𝐹 (𝑡2)) to 𝑄

9 else if 𝑡1 is not return then
10 insert non-analysed (𝑠𝑢𝑐𝑐(𝑡1), 𝑠𝑢𝑐𝑐(𝑡2) to 𝑄

11 else
12 DiffInst1 = first differing instruction in 𝑏𝑏1
13 DiffInst2 = first differing instruction in 𝑏𝑏2
14 return (DiffInst1,DiffInst2)

4. At the beginning, we do not know whether there is a difference and where it can be.
Therefore we compare instruction by instruction (line 8).

5. When the compared instructions are equal, we insert them into sets and create a syn-
chronisation (lines 13-15).

6. Once the synchronisation is broken by finding differing instructions, we need to remove
the synchronisation added within this function, as it may be incorrect. Hence, we
restore maps and sets from the backup (lines 9-11), and the function returns false.

7. We set 𝑠1 and 𝑠2 to the successors of the current instructions (lines 16-17).

8. If all instructions of basic blocks were compared as equal, we declare the given parts
of basic blocks equal, and we return true.

4.2.2 MCS on the Level of Basic Blocks

The search of MCS on the level of basic blocks is shown in Algorithm 4, where we work
with the same queue 𝑄 as in the top-level Algorithm 2. As we synchronously go through
the given functions by following the control flow, we work with pairs of basic blocks stored
in 𝑄. For the purpose of the following explanation, we introduce a new formalism BBi to
be the set of all basic blocks in function 𝑓𝑖. In each iteration of the algorithm, the following
is done:

1. We take a pair of basic blocks 𝑏𝑏1 from 𝑓1 and 𝑏𝑏2 from 𝑓2 that are going to be
compared (line 2).

2. We compare the taken basic blocks by using the function cmpBasicBlocksFromInsts.
In principle, the function does the same as Algorithm 1, but it compares only one pair
of basic blocks (𝑏1, 𝑏2) from the given instructions 𝑠1 and 𝑠2. The function is described
in Subsection 4.2.1.
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Figure 4.1: (a) the old version of function (b) the new version of function

3. If the compared basic blocks are semantically the same (synchronised), we insert their
successors into 𝑄 (lines 4-10).

4. In case of unequal basic blocks, we store the found unequal instructions to DiffInst1
from 𝑓1 and DiffInst2 from 𝑓2. In this case, we take another pair from the queue for
comparison without inserting the successors of these blocks.

Since we insert only successors of synchronised basic blocks, we ensure finding of a part of
the maximum common subgraph on the level of basic blocks. For a better understanding,
let us consider two control flow graphs in Figure 4.1. The entry blocks are basic blocks 1 and
exit blocks are basic blocks with number 8 in the old version and 10 in the new version. In
the previous analysis, DiffKemp found a difference in the first instructions of basic blocks
marked as 3. According to the proposed findMCSBasicBlocks function, we compared and
synchronised basic blocks highlighted with grey, i.e., basic blocks marked with 1, 2, 4,
8 in the old version and 1, 2, 4, 10 in the new version. The remaining blocks are not
analysed yet, because:

• they contain differing instructions (specifically basic blocks 3) or

• they are not successors of any synchronised basic block (specifically basic blocks 5,
6, 7 in the old version and 5, 6, 7, 8, 9 in the new version).

4.2.3 MCS on the Level of Instructions

After the previous subphase, there remained unanalysed basic blocks, therefore we follow
by finding MCS on the level of instructions inside them. We can found other semantically
equal parts for removal in the unanalysed blocks. Therefore, we try to find the next syn-
chronisation pair after the found differences. We propose a second subphase that tries to
find the synchronisation pair in the unanalysed basic blocks. The finding of the next syn-
chronisation pair is actually finding the MCS on the level of instructions. The algorithm of
finding such instructions is shown in Algorithm 5. It works with two queues of instructions
𝑄1 for the function 𝑓1 and 𝑄2 for the function 𝑓2 that we use to traverse the functions on
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Algorithm 5: Second subphase – the search of the synchronisation after difference.
Input : differing instructions DiffInst1, DiffInst2
Output: sets of instructions that must remain in slices 𝐾 ′

1, 𝐾 ′
2

Function findMCSInsts(DiffInst1 ,DiffInst2):
1 synchronisationFound = false
2 𝐾 ′

1 = {}
3 𝑄1 = {DiffInst1}
4 while 𝑄1 is not empty do
5 take front 𝑠1 from 𝑄1

// Empty the set because previous 𝑠1 instruction did not have
// synchronisation

6 𝐾 ′
2 = {}

7 𝑄2 = {DiffInst2}
8 while 𝑄2 is not empty do
9 take front 𝑠2 from 𝑄2

10 if 𝑐𝑚𝑝𝐵𝑎𝑠𝑖𝑐𝐵𝑙𝑜𝑐𝑘𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑠𝑡𝑠(𝑠1, 𝑠2) then
11 synchronisationFound = true
12 break
13 insert 𝑠2 into 𝐾 ′

2

14 insert all non-analysed successors of 𝑠2 to 𝑄2

15 if synchronisationFound then
16 break
17 insert 𝑠1 into 𝐾 ′

1

18 insert all non-analysed successors of 𝑠1 to 𝑄1

19 if 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝐹𝑜𝑢𝑛𝑑 then
20 𝐾 ′

1 = 𝐾 ′
1 ∪𝑄1

21 𝐾 ′
2 = 𝐾 ′

2 ∪𝑄2

22 return (𝐾 ′
1,𝐾

′
2)

the principle of breadth first search. These queues store possible synchronisation points, i.e.,
instructions that have no synchronisation yet. At the input, the algorithm gets the pair of
differing instructions computed in the previous subphase, from which the search for syn-
chronisation begins. At the end of the algorithm, we get sets containing instructions without
synchronisation (i.e., different parts of the functions). The algorithm works as follows:

1. We initialise the sets 𝐾 ′
1 and 𝐾 ′

2 that will contain differing instruction from functions
𝑓1, 𝑓2 respectively (line 2 and line 6). We start finding the synchronisation from the
differing instructions DiffInst1 found in 𝑓1 and DiffInst1 found in 𝑓2 by putting them
into 𝑄1 and 𝑄2 (line 3 an line 7).

2. We freeze the instruction 𝑠1 taken from 𝑄1 while we iterate through all instructions
without synchronisation from 𝑓2 until we find a synchronisation. In other words, we
compare each unanalysed instruction from 𝑓1 with each unanalysed instruction from
𝑓2. During this analysis we use the breadth first search of control flow graphs.

3. In order to avoid getting a ”false synchronisation“, (i.e., a situation when we would
compare two seemingly equivalent instructions as equal, but the following parts would
be different), we require that the synchronisation is found from the given instructions
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%28 = and %12, 4095
%29 = icmp eq %28, 0
%30 = or %12, 292
%31 = trunc %30 to i16
%.1 = select %29, %31, %.01
%32 = call @__proc_create(%6, %0, %.1, 1)
%33 = icmp ne %32, null
br %33, label %34, label %43

%20 = and %12, 4095
%21 = icmp eq %20, 0
%22 = or %12, 292
%23 = trunc %22 to i16
%.1 = select %21, %23, %.01
%24 = call @__proc_create(%6, %0, %.1, 1)
%25 = icmp ne %24, null
br %25, label %26, label %34

%27 = getelementptr %24, 0, 7
store %3, %27
%28 = getelementptr %24, 0, 11
store %4, %28
%29 = load %6
%30 = call @proc_register(%29, %24)
%31 = icmp slt %30, 0
br i1 %31, label %32, label %34
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%35 = getelementptr %32, 0, 7
store %3, %35
%36 = getelementptr %32, 0, 11
store %4, %36
%37 = getelementptr %32, 0, 6
store @proc_file_inode_operations, %37
%38 = load %6
%39 = call i32 @proc_register( %38, %32)
%40 = icmp slt %39, 0
br i1 %40, label %41, label %43
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Figure 4.2: (a) old version of function (b) new version of function

for all subsequent instructions to the end of basic blocks. To do this, we use the
function cmpBasicBlocksFromInsts which compares the basic blocks starting from
𝑠1 and 𝑠2 (line 10).

4. Sets 𝐾 ′
1 and 𝐾 ′

2 contain instructions for which no synchronisation was found. If we
do not find synchronisation for an instruction, we will add it to the appropriate keep
set. For instructions from 𝑓1, we do this only when we have compared it with all (not
yet analysed) instructions in 𝑓2. In contrast, we go through the instructions from 𝑓2
repeatedly (we go through all of them for each instruction from 𝑓1). Therefore, every
time we start the traversal from the beginning, we have to reset the keep set 𝐾 ′

2.

5. If we do not find synchronisation for an instruction, we put all its successors in to the
appropriate queue, thus guaranteeing the traversal in the breadth first search order.
We do not insert instructions that were analysed in the previous phases or instructions
that are in the keep sets.

6. When the finding of synchronisation ended, the sets 𝐾 ′
1 and 𝐾 ′

2 contain the instruc-
tions that must be kept (such instructions have no synchronisation). When there is no
synchronisation found, these sets contain each instruction from 𝑓1 and 𝑓2 that we did
not analyse in the first subphase. Otherwise, when a synchronisation was found, they
contain instructions from 𝑓1 and 𝑓2 starting from differing instructions until the new
synchronisation point. In such a case, there may remain some unanalysed basic blocks
(those after the found synchronisation), hence we repeat the entire MCS algorithm
for these blocks.

7. We always add the basic blocks that remained in 𝑄1 and 𝑄2 to keep sets, because
that are some instructions that were not analysed yet, but they are located after non-
equal instructions. Since we cannot reach them, we keep them in slices. Note that
we could further improve this step by trying to find another synchronisation between
instructions left in 𝑄1 and 𝑄2. An example of this case is shown in the figure we
illustrate.

For illustrating what happened in this subphase, see Figure 4.2 which display contents of
some basic blocks from Figure 4.1. The differing instructions are the first instructions in
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basic blocks 3 in both versions. Therefore, we freeze the first instruction in the old version,
and we iterate through the entire basic block 3 in the new version without successfully
finding the synchronisation. Hence, we analyse other remaining basic blocks, i.e., 5, 6, 7,
8, 9. The synchronisation was not found in any of mentioned basic blocks. Then we get the
successor of frozen instruction and do the full process of finding again. The synchronisation
was not found for any instruction from block 3 in 𝑓1. Therefore, we take the basic block 5
(the only successor of block 3) in the old version, and we again try to find synchronisation
with one of the non-synchronised basic blocks from the new version. This process continues
until we get the first instruction (%20) from basic block 5 in the old version. For this
instruction we find a synchronisation with the first instruction (%28) of the basic block 6
in the new version. The entire basic blocks 5 in 𝑓1 and 6 in 𝑓2 are equal, i.e the function
cmpBasicBlocksFromInsts succeeds. Before ending this subphase, we need to check the
sizes of queues. Since we traverse the functions by breadth first search, at the moment when
the synchronisation is found, the block 7 from the new version is still in 𝑄2 (i.e., unanalysed).
This means that this block is an extra one without any synchronisation, therefore it has to
be kept in the slice.

Now, when the synchronisation is found, we have still unanalysed basic blocks 6, 7
in 𝑓1 and 8, 9 in 𝑓2, hence we repeat the entire MCS search, starting from the newly
synchronised blocks 5 and 6. The first subphase founds another difference right in the first
blocks 6 and 8. This difference is shown in Figure 4.2 with a red arrow. The new differing
instructions are %29 in the old version and %37 in the new version. Therefore, we again
move to the second subphase and try to find the next synchronisation.

In the second subphase, we freeze instruction %29 in 𝑓1 and try to find a synchronisation
for it. This time, we succeed rather quickly and find a synchronisation starting from %38 in
the new version. We can see this next synchronisation in Figure 4.2. The second subphase
ends with two unsynchronised instructions in 𝐾 ′

2 while 𝐾 ′
1 is empty in this case.

The remaining basic blocks, specifically 7 and 9, are analysed in the first subphase.
This subphase compares blocks as equal, and the analysis of functions ends. Hence, we
analysed the entire functions and collected all the differing instructions in 𝐾1 and 𝐾2. At
this moment, we can create the program slices. About the production of program slices in
this thesis, see the next Section 4.3.

4.3 Equivalence Slicer
In the first phase, we analysed the entire functions and collected differing parts of functions
that are semantically unequal. Now, we need to produce the final program slices. The
differing instructions are stored in sets 𝐾1 for 𝑓1 and 𝐾2 for 𝑓2. To produce backward static
slices, we also need to keep every instruction that can affect the differences and remove
other instructions. Then, the slices are produced, and we have only semantically differing
parts of non-equal functions. The algorithm of producing final program slices is shown in
function sliceFunctions in Algorithm 6. At the input, it takes a function 𝑓 that will be
sliced and a set 𝐾 that consists of instructions that should remain in the final slice. At the
output, we get the sliced function. In this algorithm, the following is done:

1. We iterate through each instruction included in set 𝐾 (lines 1-2).

2. We add each instruction 𝑘 from 𝐾 to the final slice (lines 3).
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Algorithm 6: Second phase – producing the backward static slices.
Input : function 𝑓 , set 𝐾 representing the slicing criteria
Output: sliced function 𝑓
Function sliceFunction(𝑓,𝐾):

1 while 𝐾 is not empty do
2 take any 𝑘 ∈ 𝐾
3 add 𝑘 to slice
4 for each operand 𝑜 of 𝑘 do
5 if 𝑜 is the result of an instruction 𝑖 then
6 𝐾 = 𝐾 ∪ {𝑖}
7 if type(𝑜) = pointer then
8 𝐾 = 𝐾 ∪ {all 𝑠𝑡𝑜𝑟𝑒 instructions to 𝑜 between definition of 𝑜 and 𝑘}
9 return slice

3. Each instruction can have operands and we need to include instructions that may
affect values of these operands to the final slice.

(a) If these operands are local variables, i.e., results of instructions, we add the
instructions to the slice (lines 4-6).

(b) In the case that the type of the operand is a pointer, we search for each store
instruction to the pointer between the instruction 𝑘 and the definition of the
pointer. We need to keep these instructions (lines 7-8) to satisfy the conditions
of backward static slicing.
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Chapter 5

Implementation

In the previous chapter, we proposed a method that removes as many semantically equiva-
lent parts of two functions as possible. As we explained, it creates two program slices that
can be further processed, e.g., analysed by some heavy-weight formal method that can give
a more precise result of the semantic comparison. Before we describe the implementation
details of the equivalence slicer, we give an outline how DiffKemp is implemented. We
described how DiffKemp checks semantic equivalence in Chapter 2.

This chapter is organised as follows. In Section 5.1 we describe DiffKemp in terms of
implementation where we present its two phases that are important for checking function
equivalence. In Section 5.2, we describe an integration of the designed method into the
DiffKemp tool.

5.1 Architecture of DiffKemp
Comparison of different versions of programs in DiffKemp is split to two phases, called
generate and compare [14]. As we already described, DiffKemp analyses given programs,
written in C language, in LLVM IR. The generate phase is used for compilation of C
programs to this low-level representation. This phase is described in Subsection 5.1.1. After
the LLVM representation is produced, the equivalence of programs is checked in the compare
phase. This phase is described in Subsection 5.1.2.

5.1.1 Generate Phase

In the generate phase, the source files containing the definitions of the compared functions
are compiled into the LLVM IR language, often used for program analysis. More informa-
tion about LLVM IR can be found in Section 2.1. The output of the generate phase is
a snapshot, on which the subsequent semantics comparison is based.

A snapshot is an abstraction of one version of the compared project compiled into
LLVM IR. It is represented as a folder containing the appropriate LLVM IR files and
a configuration file with a list of functions that will be compared. For each function from
a list of functions or paramters given at the input of the generate phase, this configuration
file specifies the LLVM IR file containing its definition. Diffkemp is primarily used on the
Linux kernel and the list of functions is usually taken from a so-called KABI1 list, which is
a part of the Red Hat Enterprise Linux (RHEL) kernel source files and it is located in the

1Kernel Application Binary Interface
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kabi_whitelist_x86_64 file. It is also possible to use a custom list, where each function
name for comparison will be located on a separate line. The course of the generate phase
is shown in Figure 5.1. It consist of two subphases:

1. The first subphase is called a source finder. DiffKemp uses the cscope utility2 for
finding the source definitions of the given functions or functions that use given kernel
parameters.

2. The second subphase is compilation. DiffKemp uses the LLVM/Clang compiler for
getting the internal representation (LLVM IR) from the C programs.

Kernel params
KABI symbols

Kernel source

Generate

LLVM
snapshot

Source
finder

CompilerC source LLVM IR

Figure 5.1: The principle of the generate phase.

Example of running the generate phase:

bin/diffkemp generate kernel/linux-3.10.0-862.el7 snapshots/linux-
3.10.0-862.el7 kernel/linux-3.10.0-862.el7/kabi_whitelist_x86_64

In this example, a snapshot of the source files of the Linux kernel version 3.10.0-862.el7
will be created and located in snapshots/linux-3.10.0-862.el7/ folder. The source files
and the kabi_whitelist_x86_64 are located in kernel/linux-3.10.0-862.el7/ folder.

5.1.2 Compare Phase

The second phase of the DiffKemp tool is the compare phase, in which semantics of the
previously created snapshots is compared. More information about function comparison was
given in Section 2.2. It takes two snapshots and its output is a decision for each function
found in both compared snapshots, whether the semantics of the function is the same or
different. A majority of the compare phase is implemented in a component of DiffKemp
called SimpLL, whose architecture is shown in Figure 5.2. SimpLL works in three subphases
which correspond to the following course:

1. The first subphase is code slicing and simplifying where various function trans-
formations take place. Their task is to simplify the code for easier comparison. These
transformations are implemented using so-called LLVM passes.

2. The second subphase is semantic diff. After the simplification subphase, there is
a communication between the classes ModuleComparator and DifferentialFunction-
Comparator, whose task is to compare the required functions.

3. The third subphase is difference localisation. This subphase is done only when
the previous subphase compares functions as non-equal. The found differences are
represented using the YAML language.

2http://cscope.sourceforge.net
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Figure 5.2: The principle of the compare phase.

Example of running the compare phase:

bin/diffkemp compare snapshots/linux-3.10.0-862.el7 snapshots/linux-
3.10.0-957.el7 -f bio_add_page --show-diff

In this example, the bio_add_page function of the Linux kernels of versions 3.10.0-862.el7
and 3.10.0-957.el7 will be compared. The possible difference will be saved to a newly cre-
ated folder diff-linux-3.10.0-862.el7-linux-3.10.0-957.el7/ in bio_add_page.diff
file.

5.2 Integration of Proposed Slicer
We implemented the method proposed in Chapter 4 in the DiffKemp tool. It is imple-
mented in a new class named EquivalenceSlicer in C++ language as a post-processing
step of the compare phase. This class contains a method slice that removes each equiva-
lent part of compared functions based on the previous analysis. DiffKemp already contains
one program slicer, called VarDependencySlicer which implements forward slicing. Parts
of our implementation use parts of this slicer, in particular our second phase is implemented
using this slicer.

Snapshot 1

Snapshot 2

Diffkemp

Code
slicing and
simplifying

Semantic diff

Difference
localisation

Equivalence
slicing

EQUAL

7 NOT
EQUAL

+ additional info
+ sliced programs

LLVM
IR

Figure 5.3: Integration of equivalence slicer.

Equivalence slicer can be enabled by a new command-line option --equivalence-slicer.
The slicing is done by enabling the equivalence slicer (only in case of non-equal functions)
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in the ModuleComparator class. This class contains a method compareFunctions where
is also slicing done. By using the command line option --output-llvm-ir, we can get an
LLVM IR file for both compared versions of the program. These produced files contain
entire modules, where the compared functions are already sliced. The integration of the
equivalence slicer into compare phase is shown in Figure 5.3 highlighted by blue colour.

Now, every pair of functions compared as non-equal can be sliced. These slices can be
given to some heavy-weight formal tool that could be able to check the semantic difference
and give us a more precise result than DiffKemp.
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Chapter 6

Experimental Evaluation

We have proposed and implemented a method that removes equivalent parts of the com-
pared functions in Diffkemp. In this chapter, we perform several experiments to evaluate
our approach. The validation and experiments are done with disabled inlining, because our
extension does not support the inlining pattern. Therefore, the results provided in this sec-
tion and in the paper [15] may be different. The experiments were run on a 4 core, 2.6 GHz
Intel Xeon Ivy Bridge machine with 8GB RAM in LLVM 11 version.

This chapter is organised as follows. In Section 6.1, we show that implementation of this
method does not change the results of checking the semantic equivalence and we provide
other validations of our solution. In Section 6.2, we evaluate benefits of the implemented
method.

6.1 Cross-validation
In this section, we show that our extension is valid and does not change the decision made
by DiffKemp. To show it, we made a cross-validation in five different RHEL versions.
It is shown in Table 6.1. The cross-validation is done by slicing some functions and then
comparing the sliced functions using DiffKemp. We show results of Diffkemp without
the extension where original functions were compared. Then, we show results of DiffKemp
with the extension, where we run EquivalenceSlicer on the original functions, which
produces slices. Subsequently, we run the compare phase again on the sliced functions.
The results show that the implemented slicing technique preserves the semantically non-
equivalent parts, that DiffKemp again identifies. Moreover, the cross-validation shows
that slices are valid programs, i.e., all instructions have their dependencies in the slice.
Otherwise, the comparison would end with errors what would be reflected in a different
number of compared functions according to the results without the extension in Table 6.1.
The only difference is in RHEL versions 7.4-7.5 in non-equal results and it is caused by a
new error. After investigation, we found out that this error is caused by a bug in DiffKemp
which did not show up before. It did not show up, because the analysis ended when it found
the first difference in functions and it did not get to the point where our extension did.

In addition, we show that our extension does not break any of the existing code by
running the existing set of unit and regression tests that successfully passed. We also im-
plemented a new set containing twenty-five regression tests in six RHEL versions. These
tests serve to check the functionality of the EquivalenceSlicer class. The functionality is
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RHEL Results: equal/non-equal/unknown
versions w/o extension with extension

7.3-7.4 403/269/6 403/269/6
7.4-7.5 544/184/6 544/183/6
7.5-7.6 605/128/6 605/128/6
8.0-8.1 361/85/25 361/85/25
8.1-8.2 330/165/26 330/165/26

Table 6.1: Cross-validation of equivalence slicer.

checked by comparison of the program slices from the output of EquivalenceSlicer and
prepared model slices. The correctness of model slices was manually checked.

6.2 Evaluation of the Slicing Extension
Now, when the validity of our method is shown, we can discuss the benefits of the imple-
mented solution. In this section, we provide two experiments shown in Table 6.2. In the first
experiment, we show how long the comparison takes with and without the extension. In
average, DiffKemp compares one pair of kernels without the extension in 07:11 minutes.
With our extension, DiffKemp compares one pair of kernels in 7:25 minutes in average.
Therefore, we can declare that our extension takes only 14 more seconds of comparison
in average. This shows that our method is rather efficient in practice.

In the second experiment, we show how many instruction of non-equal functions our
extension removed, whereas the semantics of different parts of functions is preserved. At
the end of the comparison in DiffKemp without the extension, we have 16 786 instructions
in non-equivalent functions. With the extension, we get only 7 588 instructions which is
54.8% less than without the extension.

RHEL Runtime: mm:ss Number of instructions
versions w/o extension with extension w/o extension with extension

7.3-7.4 07:08 07:31 5 182 2 358
7.4-7.5 09:31 09:40 3 544 1 178
7.5-7.6 08:03 08:23 3 272 1 501
8.0-8.1 05:08 05:20 2 119 1 308
8.1-8.2 06:08 06:15 2 669 1 243

Table 6.2: Runtime and number of instructions with and without the extension.
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Chapter 7

Conclusion

In this thesis, we proposed a method that is able to remove as much semantically equal parts
of two given non-equal functions as possible. Before simplification, we need to detect these
semantically equivalent parts of programs that should not stay in the result functions. Since
we work with LLVM IR language, where functions are represented as control flow graphs,
we are using a graph algorithm to find such semantically equivalent parts. Specifically,
we are finding the solution to the maximum common subgraph problem. When we find
the maximum common subgraph, we use static backward slicing technique to keep only
differences (our slicing criteria) and instructions that can affect them. After this, we get
two program slices that consist of non-equivalent parts of programs and their dependencies.

The proposed method was successfully implemented in the DiffKemp tool as a post-
processing step. DiffKemp is a fast static analyser. The main goal of DiffKemp tool is
a high scalability to real source code. It provides information about syntactic differences
of two given functions while it ignores changes that do not affect the semantics. Since the
check of semantic equality is a difficult problem, we can use some heavy-weight tool to get
more precise result of semantic equality. These tools are not able to process large programs.
With a help of our solution we remove semantically equivalent parts of programs when
Diffkemp compares two functions as non-equal. Then, these simplified functions can be
further given to some heavy-weight tool for more precise semantic comparison.

The contribution of our method is shown in several experiments. They show that our
method is able to reduce the size of functions by 54.8% in only 3.2% more time of comparison
while it preserves the semantics of nonequivalent parts of two given function. The validity
of implemented method is also shown in several ways. For further improvements, we have
prepared multiple regression tests that check the correct functionality of equivalence slicing.

In future, we would like to fix the known limitation and prepare some heavy-weight tool
for immediate semantic comparison of sliced non-equal functions.

32



Bibliography

[1] Abu-Khzam, F. N., Samatova, N. F., Rizk, M. A. and Langston, M. A. The
Maximum Common Subgraph Problem: Faster Solutions via Vertex Cover. In: 2007
IEEE/ACS International Conference on Computer Systems and Applications. 2007,
p. 367–373. DOI: 10.1109/AICCSA.2007.370907.

[2] Adve, V. and Lattner, C. LLVM Language Reference Manual. 2021. Available at:
https://llvm.org/docs/LangRef.html.

[3] Binkley, D. and Harman, M. A large-scale empirical study of forward and
backward static slice size and context sensitivity. In: International Conference on
Software Maintenance, 2003. ICSM 2003. Proceedings. 2003, p. 44–53. DOI:
10.1109/ICSM.2003.1235405.

[4] Binkley, D. W. and Gallagher, K. B. Program Slicing. In: Zelkowitz, M. V.,
ed. Elsevier, 1996, vol. 43, p. 1–50. Advances in Computers. DOI:
https://doi.org/10.1016/S0065-2458(08)60641-5. ISSN 0065-2458. Available at:
https://www.sciencedirect.com/science/article/pii/S0065245808606415.

[5] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N. and Zadeck, F. K. An
Efficient Method of Computing Static Single Assignment Form. In: Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
New York, NY, USA: Association for Computing Machinery, 1989, p. 25–35. POPL
’89. DOI: 10.1145/75277.75280. ISBN 0897912942. Available at:
https://doi.org/10.1145/75277.75280.

[6] De Lucia, A. Program slicing: methods and applications. In: Proceedings First
IEEE International Workshop on Source Code Analysis and Manipulation. 2001,
p. 142–149. DOI: 10.1109/SCAM.2001.972675.

[7] Duesbury, E., Holliday, J. and Willett, P. Maximum Common Subgraph
Isomorphism Algorithms. MATCH Communications in Mathematical and in
Computer Chemistry. April 2017, vol. 77, no. 2, p. 213–232. © 2016 MATCH. This is
an author produced version of a paper subsequently published in MATCH Commun.
Math. Comput. Chem. Uploaded with permission from the copyright holder.
Available at: http://eprints.whiterose.ac.uk/102232/.

[8] Harman, M., Danicic, S., Sivagurunathan, Y. and Simpson, D. The Next 700
Slicing Criteria. 1996.

[9] Harman, M. and Hierons, R. M. An overview of program slicing. Softw. Focus.
2001, vol. 2, no. 3, p. 85–92. DOI: 10.1002/swf.41. Available at:
https://doi.org/10.1002/swf.41.

33

https://llvm.org/docs/LangRef.html
https://www.sciencedirect.com/science/article/pii/S0065245808606415
https://doi.org/10.1145/75277.75280
http://eprints.whiterose.ac.uk/102232/
https://doi.org/10.1002/swf.41


[10] Horwitz, S., Reps, T. and Binkley, D. Interprocedural Slicing Using Dependence
Graphs. ACM Trans. Program. Lang. Syst. New York, NY, USA: Association for
Computing Machinery. january 1990, vol. 12, no. 1, p. 26–60. DOI:
10.1145/77606.77608. ISSN 0164-0925. Available at:
https://doi.org/10.1145/77606.77608.

[11] Kann, V. On the approximability of the maximum common subgraph problem. In:
Finkel, A. and Jantzen, M., ed. STACS 92. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1992, p. 375–388. ISBN 978-3-540-46775-5.

[12] Kerrisk, M. The Linux Programming Interface: A Linux and UNIX System
Programming Handbook. 1stth ed. USA: No Starch Press, 2010. ISBN 1593272200.

[13] Kiefer, M., Klebanov, V. and Ulbrich, M. Relational Program Reasoning Using
Compiler IR. In: Blazy, S. and Chechik, M., ed. 8th Working Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE 2016), Revised Selected
Papers. Springer, November 2016, vol. 9971, p. 149–165. Lecture Notes in Computer
Science. DOI: 10.1007/978-3-319-48869-1_12.

[14] Malík, V. Diffkemp [online]. Github, april 2021 [cit. 2021-01-08]. Available at:
https://github.com/viktormalik/diffkemp.

[15] Malík, V. and Vojnar, T. Automatically Checking Semantic Equivalence between
Versions of Large-Scale C Projects. In: Proceedings of the 2021 14th IEEE
Conference on Software Testing, Verification and Validation. Porto de Galinhas,
Brazil: IEEE Computer Society, 2021, p. 329–339.

[16] MINOT, M. and Ndiaye, S. N. Searching for a maximum common induced subgraph
by decomposing the compatibility graph. In: Bridging the Gap Between Theory and
Practice in Constraint Solvers, CP2014-Workshop. Lyon, France: [b.n.], September
2014, p. 1–17. Available at: https://hal.archives-ouvertes.fr/hal-01301095.

[17] Sarda, S. and Pandey, M. LLVM Essentials. Packt Publishing, 2015. ISBN
1785280805.

[18] Sasirekha, N., Robert, A. E. and Hemalatha, D. M. Program slicing techniques
and its applications. 2011.

[19] Vojnar, T. Static Analysis and Verification [online]. 2020 [cit. 2021-04-11]. Available
at:
https://www.fit.vutbr.cz/study/courses/SAV/public/Lectures/sav-lecture-01.pdf.

[20] Weiser, M. Program Slicing. In:. IEEE Press, 1981, p. 439–449. ICSE ’81. ISBN
0897911466.

[21] Weisstein, E. W. NP-Problem [online]. MathWorld–A Wolfram Web Resource [cit.
2021-04-18]. Available at: https://mathworld.wolfram.com/NP-Problem.html.

34

https://doi.org/10.1145/77606.77608
https://github.com/viktormalik/diffkemp
https://hal.archives-ouvertes.fr/hal-01301095
https://www.fit.vutbr.cz/study/courses/SAV/public/Lectures/sav-lecture-01.pdf
https://mathworld.wolfram.com/NP-Problem.html


Appendix A

Content of CD

The enclosed CD contains following files and directories:
/

bin/............................................................DiffKemp bin
diffkemp/...............................................DiffKemp source files
docker/.......................................................Setup for docker
rpm/...........................................................Build for Fedora
tools/ ................................................ DiffKemp useful scripts
tests/.................................................Unit and regression tests
tex/..............................................LATEXsource files of this thesis
README.md ....................................................... README file
requirements.txt ..................................... DiffKemp requirements
setup.py ..................................................... DiffKemp setup
build.sh................................................DiffKemp build script
count_instructions.py ......................... Script for counting instructions

Implemented EquivalenceSlicer class can be found in folder /diffkemp/simpll/, specif-
ically in EquivalenceSlicer.cpp and EquivalenceSlicer.h. The model slices used in
regression tests are located in tests/regression/sliced_functions/. The implementa-
tion of regression tests is in tests/regression/slicer_test.py.
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Appendix B

How to Build and Test

The project can be built and run by using development container image1. After retrieving
the container, it can be run by using:

docker/diffkemp-devel/run-container.sh

Once it is loaded, we can build the DiffKemp, download necessary Kernel souce codes and
create snapshots by using attached script:

sh build.sh

B.1 Regression Tests
To run all regression tests, we use:

pytest tests

Or we can run only regression tests created for the EquivalenceSlicer by using:

pytest tests/regression/slicer_test.py

B.2 Reproduction of Experiments
To reproduce experiments, we need to compare pairs of RHEL versions. E.g., for RHEL
versions 7.3-7.4 without the extension we run command:

bin/diffkemp -v compare snapshots/linux-3.10.0-514.el7/ snapshots/
linux-3.10.0-693.el7/ --stdout --show-diff --inlining-off
--report-stat > 514-693_without.log 2>&1

1It is available at: https://hub.docker.com/r/viktormalik/diffkemp-devel/
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For the same version with the extension we run:

bin/diffkemp -v compare snapshots/linux-3.10.0-514.el7/ snapshots/
linux-3.10.0-693.el7/ --stdout --show-diff --equivalence-slicer
--report-stat > 514-693_with.log 2>&1

After this, we have compared functions in given versions. The results of these comparisons
are stored in 514-693_without.log and 514-693_with.log files. At the end of these files,
we can find in statistics the durations of the comparisons. To get the number of instructions,
we use attached script with the results of comparisons:

python3 count-instructions.py 514-693_without.log
python3 count-instructions.py 514-693_with.log

B.3 How to Get Sliced Functions
To see how compared functions were sliced, we use command line options:

1. --equivalence-slicer for enabling the implemented EquivalenceSlicer and

2. --output-llvm-ir for creating the modules that contain sliced functions.

E.g., by using following command:

bin/diffkemp -v compare snapshots/linux-3.10.0-514.el7/ snapshots/
linux-3.10.0-693.el7/ --stdout --show-diff --equivalence-slicer
--report-stat --output-llvm-ir -f __ethtool_get_settings

We can find the modules containing sliced functions in files:

• snapshots/linux-3.10.0-514.el7/net/core/ethtool-simpl.ll

• snapshots/linux-3.10.0-693.el7/net/core/ethtool-simpl.ll
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