
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

INTERPRETATIONOFNEURALNETWORKS INSPEECH
PROCESSING
INTERPRETACE NEURONOVÝCH SÍTÍ VE ZPRACOVÁNÍ ŘEČI

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MAREK SARVAŠ
AUTOR PRÁCE

SUPERVISOR Ing. KATEŘINA ŽMOLÍKOVÁ
VEDOUCÍ PRÁCE

BRNO 2021



Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Sarvaš Marek
Programme: Information Technology
Title: Interpretability of Neural Networks in Speech Processing
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with methods of neural network interpretation, such as Layerwise relevance
propagation.

2. Get acquainted with application of neural network to speech processing tasks, such as
gender classification.

3. Apply selected interpretability method to a speech processing task. Aim to replicate results
available in literature.

4. Extend the experiments by e.g. using additional methods, or application to a different speech
processing task.

5. Analyze the obtained results. Discuss the problems and potential extensions.
Recommended literature:

Samek, Wojciech, et al. "Toward Interpretable Machine Learning: Transparent Deep Neural
Networks and Beyond." arXiv preprint arXiv:2003.07631 (2020).
dle doporučení vedoucí

Requirements for the first semester:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Žmolíková Kateřina, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: October 30, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24073/2020/xsarva00 Page 1/1



Abstract
With the growing popularity of deep neural networks, the lack of transparency caused by
their black box representation is raising demand for their interpretability. The goal of this
thesis is to gain new insights into deep neural networks in speech processing tasks. Specifi-
cally, gender classification task on AudioMNIST dataset and speaker classification task on
filterbanks from VoxCeleb dataset using convolutional and residual neural network. Layer-
wise relevance propagation was used for the interpretation of these neural networks. This
method produced heatmaps highlighting features that contributed positively and negatively
to the correct classification. As results of interpretation show, classifications were mainly
based on lower frequencies in time. In the case of gender classification, I managed to find
the model’s high dependency on a small number of features. Using obtained information, I
created an augmented training set that increased the model’s robustness.

Abstrakt
S rastúcou popularitou hlbokých neurónových sietí, nedostatok transparentnosti spôsobenej
ich funkciou čiernej skrinky, zvyšuje dopyt po ich interpretácii. Cieľom tejto práce je získať
nový pohľad na hlboké neurónové siete v úlohách spracovania reči. Konkrétne klasifiká-
cia pohlavia z AudioMNIST datasetu a klasifikácia rečníka z filter bánk VoxCeleb datasetu
s použitím konvolučnej a reziduálnej neurónovej siete. Na interpretáciu týchto neurónových
sietí bola použitá metóda propagácie relevancií cez vrstvy. Táto metóda vytvorí tepelnú
mapu, ktorá vyznačí príznaky, ktoré prispeli ku správnej klasifikácii pozitívne a ktoré
negatívne. Ako výsledky interpretácie ukazujú, klasifikácie boli založené najmä na nižších
frekvenciách v reči a čase. V prípade klasifikácie pohlavia sa mi podarilo nájsť vysokú závis-
losť modelu na veľmi malom počte príznakov. Pomocou získaných informácií som vytvoril
rozšírený trénovací set, ktorý zvýšil robustnosť modelu.

Keywords
deep neural networks, convolutional neural networks, speech processing, interpretation of
neural networks, Layer-Wise Relevance Propagation

Kľúčové slová
hlboké neuónové siete, konvolučné neurónové siete, spracovanie reči, interpretácia neurónových
sietí, Layer-Wise Relevance Propagation

Reference
SARVAŠ, Marek. Interpretation of neural networks in speech processing. Brno, 2021. Bach-
elor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Kateřina Žmolíková



Rozšírený abstrakt
V dnešnej dobe sú hlboké neurónové siete veľmi rozšírené a používané v rôznych oblastiach
aj mimo informačných technológií ako sú napríklad zdravotníctvo alebo doprava. Avšak
stále pre nás predstavujú akúsi čiernu skrinku, do ktorej vchádzajú vstupy v podobe dát
napr. obrázok a vychádzajú iné dáta ako napr. čo je na obrázku. Tento nedostatok trans-
parentnosti vyvoláva otázky ohľadom spoľahlivosti či dôveryhodnosti týchto neurónových
sietí alebo ich odolnosti voči útokom. Z týchto dôvodov je v poslednej dobe zvýšený dopyt
po interpretácií hlbokých neurónových sietí s cieľom viac porozumieť ich správaniu a odhaliť
na základe akých vstupov robia svoje rozhodnutia.

Pretože pre ľudí je jeden z najlepších a najjednoduchších spôsobov ako niečo vysvetliť
vizualizácia, práve metódy, ktoré interpretujú rozhodnutia neurónových sietí pomocou
vizualizácie sú zatiaľ najlepšia možnosť. Toto je ľahšie realizovateľné pri modeloch neu-
rónových sietí vytvorených a používaných pre spracovanie obrazu oproti modelom pre spra-
covanie reči. Tieto metódy dokážu odhaliť nedostatky alebo chyby neurónových sietí, ktoré
vznikli napríklad pri trénovaní modelu a môžu byť spôsobené artefaktmi nachádzajúcimi
sa v trénovacích dátach. V minulosti boli odhalené modely pre klasifikáciu z obrazu, ktoré
vykazovali vysokú presnosť klasifikácie na predpripravených trénovacích a testovacích dá-
tach, avšak správna klasifikácia bola založená práve na artefaktoch alebo príznakoch špeci-
fických pre dané dáta a nie pre klasifikovaný objekt. Takéto modely sa nazývajú “Clever
Hans predictors”. Príklad týchto modelov je klasifikácia koňa na obrázku na základe vodoz-
naku alebo rozlíšenie medzi psom huskym a vlkom na základe prítomnosti snehu.

Jedna z metód pre interpretáciu neurónových sietí a metóda použitá v tejto práci je
propagácia relevancií cez vrstvy neuronóvej siete (angl. Layer-wise Relevance propagation),
ktorá vytvorí tepelnú mapu dát, vstupujúcich do neurónovej siete, zvýrazňujúcu príznaky
alebo časti vstupu ktoré sú dôležité pre splnenie danej úlohy. Úvod do neurónových si-
etí a hlavne rôzne metódy pre ich interpretáciu so zameraním práve na Layer-wise Rele-
vance propagation je popísaný v teoretickej časti na začiatku tejto práce. V nasledujúcich
kapitolách sú podrobnejšie popísané použité dátové sady, architektúry neurónových sietí a
implementácia propagácie relevancií cez vrstvy týchto neuronóvých sietí. Dátová sada Au-
dioMNIST skladajúca sa z nahrávok 60 ľudí spolu s konvolučnou neurónovou sieťou ktorá
má AlexNet architektúru sú použité pre klasifikáciu pohlavia z nahrávky. Pre klasifikáciu
rečníka je použitá VoxCeleb dátová sada a reziduálna neurónová sieť.

Natrénovaním AlexNet modelu sa mi podarilo dosiahnuť správnu klasifikáciu pohlavia
s 97.83% presnostou. Interpretáciou tohto modelu bolo zistené, že model klasifikuje na
základe nízkych frekvencií a, v tomto prípade, len na základe malého množstva príz-
nakov indikujúcich nízku robustnosť modelu. Pri nastavení 0.5% najdôležitejších časovo-
frekvenčných rámcov, vzhľadom na vytvorené tepelné mapy, na 0, presnosť modelu klesla
na 10.8%. Na základe získaných informácií a tepelných máp som rozšíril pôvodnú tréno-
vaciu sadu a znova natrénoval model. Takto natrénovaný model mal v prípade rovnakého
nastavenia 0.5% najdôležitejších časovo-frekvenčných rámcov na 0, presnosť 28.67%. Pri
klasifikácii rečníka vytvorené tepelné mapy naznačujú, že klasifikácia je robená opäť na
základe nižších frekvencií, tentokrát je však dôležitý aj výskyt príznakov v čase. Tieto
heatmapy sa dajú považovať do istej miery dôveryhodné vzhľadom na ich vyhodnotenie
metódou “pixel-flipping”, kde presnosť siete klesne rýchlejšie, ak sa na 0 nastavujú najdô-
ležitejšie rámce vzhľadom na vytvorené tepelné mapy.



Interpretation of neural networks in speech pro-
cessing

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Kateřina Žmolíková. The supplementary information was
provided by Ing. Ondřej Glembek, Ph.D. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Marek Sarvaš

May 8, 2021

Acknowledgements
I would like to thank my supervisor Ing. Kateřina Žmolíková for her valuable advice, guid-
ance and patience in improving this work. I would like to thank Ing. Ondřej Glembek, Ph.D.
for providing ResNet model and dataset needed for experiments. Computational resources
were supplied by the project "e-Infrastruktura CZ" (e-INFRA LM2018140) provided within
the program Projects of Large Research, Development and Innovations Infrastructures.



Contents

1 Introduction 2

2 Artificial Neural Networks 3
2.1 Artificial representation of a biological neuron . . . . . . . . . . . . . . . . . 3
2.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Neural network training process . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Understanding Neural Networks decision making 11
3.1 Interpretable and explainable deep neural networks . . . . . . . . . . . . . . 11
3.2 Layer-wise relevance propagation . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Other methods for neural network interpretation . . . . . . . . . . . . . . . 18
3.4 Requirement for neural network explainability methods . . . . . . . . . . . 19

4 Used datasets and deep neural network architectures 22
4.1 AudioMNIST audio dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 VoxCeleb audio dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 AlexNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Speaker ID classification model . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Solution design and implementation 27
5.1 Machine learning libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Existing solutions and proposed solution design . . . . . . . . . . . . . . . . 28
5.3 Implementation of LRP for AlexNet and ResNet models . . . . . . . . . . . 28

6 Proposed experiments for audio signal interpretation 31
6.1 Explanation of audio spectrogram gender classification . . . . . . . . . . . . 31
6.2 Increasing robustness of model for gender classification . . . . . . . . . . . . 35
6.3 Interpretation of speaker ID classification with ResNet model . . . . . . . . 39

7 Conclusion 46

Bibliography 47

A Contents of the included storage media 51

1



Chapter 1

Introduction

Deep neural networks are, nowadays, heavily used as state-of-the-art solutions to problems
like image, audio processing, or natural language understanding. Yet, they still represent a
black box where input comes into the neural network and prediction comes out, but inner
decision-making remains hidden. By analyzing some high-performing models trained for
image classification, discoveries showed that predictions were dependant on artifacts such
as image watermark[19] or background[31]. Even though these models have high accuracy
of predicting ground truth on train or test datasets, the reasons for these predictions are
considered wrong. Such problems of the models are hard to uncover on limited datasets
and end up revealed after a while, if at all. As demand for explainable neural networks
is rising, more discoveries and experiments are made. Because the easiest way to explain
and understand something is through visualization, interpretation of image classification
models can be easily understood.

This thesis aims to bring more insight into how are deep neural network models making
their predictions in selected audio signal classification tasks. The first task is a gender
classification from speech recording processed as a spectrogram using a convolution neural
network with AlexNet architecture, following previous work on this topic presented by
S. Becker et al. [4], and Samek et al. [33]. The second is speaker ID classification extending
previously done experiments for a more complex audio classification task using a residual
neural network model.

The method chosen for interpretation for selected tasks is Layer-wise relevance propa-
gation. This method creates heatmaps highlighting relevant features in data that have a
positive and negative contribution to the correct prediction of the model. This method was
chosen because of its efficiency in computing such heatmaps and good human interpretabil-
ity of these heatmaps.

Chapter 2 describes artificial neural networks (ANN), their training process, and more
complex deep neural networks, specifically convolutional neural networks because it is the
main type of ANN used in this thesis. Chapter 3 is an introduction to the interpretation of
neural networks and provides information about different methods used for interpretation.
It describes Layer-wise relevance propagation (LRP) in more depth because it is a method
used for neural network interpretation in this thesis. Chapter 4 describes used datasets
and neural network architectures. Chapter 5 provides some insight into machine learning
libraries and the implementation of crucial parts of LRP computation. Chapter 6 describes
experiments with different models, produced heatmaps, and performed experiments.

2



Chapter 2

Artificial Neural Networks

Artificial Neural Networks (ANNs) are getting more popular in last few decades, especially
with increasing computer power. In recent years ANNs have been highly used in a variety of
tasks that are simple for humans but difficult for computers, such as image or voice recog-
nition, translation, processing a large amount of data, etc. This chapter briefly describes
the concepts of deep feed-forward neural networks used in this thesis.

2.1 Artificial representation of a biological neuron
Artificial Neural Networks represent a group of algorithms inspired by the structure of
a biological brain which consists of neurons and connections between them. Biological
neurons are cells connected with dendrites used as input (electrical signal) receivers and
axons, used for propagation of output to other neurons. Inputs are processed inside of the
neuron’s cell body and sent further to other neurons through the axon [39].

Although artificial networks are a significantly simplified version of how a brain works
and information is processed, the principle remains similar. Artificial neurons are connected
through weights representing dendrites [39]. Input data are scaled by weights and summed
with bias creating activation energy of a neuron as depicted in Figure 2.1.

In 1958 F. Rosenblatt[32] described Perceptron — a neural network model using only
one artificial neuron as described above. If the sum of input values scaled by weights is
larger than a selected threshold, the output is one, otherwise zero. Therefore it can only
solve binary linear classification problems.

Activation functions in neural networks simulate responses to input in a biological neu-
ron [9]. For a neural network to perform non-linear tasks, an activation function needs to
be used in a neuron. There are several activation functions used for different tasks prof-
iting from their advantages. Rectified linear unit (ReLU) is one of the most widely used
activation functions in neural networks, used mainly in hidden layers [15].

To make a neural network model the desired function, we perform training first, i.e., up-
dating weights of neurons w.r.t. input data and model output. Model training is performed
on a dataset (collection of input data) using a backpropagation algorithm (Section 2.3).

Depending on network architecture there are two main types of how a neural network
can learn, based on the provided data [15]. Supervised learning is based on training the
model with data samples pre-labeled with the correct class. This type of learning is mainly
used for regression and classification tasks, where a model is supposed to map inputs to a
labeled output. Unsupervised learning, on the other hand, is performed with previously

3



INPUT NODES 

∑
OUTPUT NODE 

w1 

w2 

w3 

w4 

w5 

b 
+1 BIAS NEURON 

y 

x4

x3

x2

x1

x5

Figure 2.1: Artificial representation of biological neuron. Image taken from [1].

unlabeled data. A goal of such model learning is to identify information and patterns in
provided data. This method can sometimes achieve better results than supervised learning
in the same tasks [35][38]. In this thesis, all models are trained with supervised learning,
specifically for classification problems.

2.1.1 Deep Neural Networks

Information presented in this subsection is obtained from [21, 13, 11]. Deep neural networks
are structured as a chain of several different connected functions. These functions represent
layers of the network and are composed as follows: input layer, hidden layers, and output
layer. The number of hidden layers determines the depth of the neural network. Utilizing
hidden layers that perform non-linear operations on inputs allows to better approximate
desired function 𝑓 . There are different types of deep neural networks based on the infor-
mation flow or type of used layers. Neural networks where the information flows from the
input layer to the output layer are called Feed-forward neural networks. Neural networks
extended with connections that feed the model’s output to itself are called Recurrent Neural
Networks.

The goal of Feed-Forward neural network is to approximate some function 𝑓 , i.e., map
one vector space onto another 𝑦 = 𝑓(𝑥; 𝜃) by learning parameters 𝜃. Specific types of Feed-
forward neural networks are Convolutional neural networks or Residual neural networks.
Both convolutional and residual neural networks are used in this thesis. The residual neural
networks contain shortcut connections that perform identity mapping and skips some layers.
These shortcuts are a solution to the saturation followed by the degradation of accuracy
during training of deep neural networks.

2.2 Activation functions
Activation functions in neural networks define the “activity” of a neuron, i.e., the output
of the neuron and thus the output of a network. Neural networks (NNs) without activation
functions produce their output only as a linear function. Also, a multi-layer neural network
that uses only linear activation functions behaves just like a single-layer network and can
be simplified into one. Both models, NNs without activation functions and Multi-layer NNs

4



only with linear activation, represent linear models such as logistic regression and have their
limitations. Description of activation functions in this chapter is based on information from
[9][36][10].

Although linear models are simple, they perform well only on data that can be sepa-
rated linearly and do not benefit from a multi-layer architecture as non-linear models do.
The simplest example of an activation function is the Binary Step Function (2.1). It is
a threshold-based activation function, where the threshold value determines if a neuron is
activated (its output is used as input to neurons in the next layer) or not. This significantly
narrows Binary Step Function usage to only binary classification. Also, the gradient of this
function is zero. Therefore, such a network cannot be trained using back-propagation.

𝑓𝑏𝑖𝑛(𝑥) =

{︃
1 if 𝑥 ≥ 0

0 if 𝑥 < 0
(2.1)

One of the most common and widely used non-linear activation functions is the Sigmoid
function. Sigmoid produces output values in the range (0, 1) and is defined as follows

𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
, (2.2)

where the derivate can be easily computed as

𝑓 ′𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
𝑒−𝑥

(1 + 𝑒−𝑥)2
, (2.3)

which results in its broad usage in shallow neural networks with some significant disad-
vantage — Vanishing Gradient problem [43] [10]. This problem is caused by saturation
during the training process, specifically in regions where 𝑓(𝑥) approaches 0 or 1, where
the gradient approaches zero. This results in minor to none output signal transmitted,
therefore weights of first layers are ineffectively updated.

Another activation function similar to the sigmoid is the Hyperbolic Tangent function
also called the Tanh function. Unlike the sigmoid, tanh is symmetric around the origin and
produces a value in the range of (−1, 1) and is defined as follows

𝑓𝑡𝑎𝑛ℎ(𝑥) = 2𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥)− 1 , (2.4)

where 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑 is from Equation 2.2. Tanh is preferred over sigmoid because it has a steeper
gradient that converges faster and has lower classification error. However, computing the
derivative is more difficult for the Tanh function than for Sigmoid and Tanh also suffers
from the vanishing gradient.

However, the most popular activation function in deep neural networks is the ReLU
function and its optimizations. ReLU stands for Rectified Linear Unit and is defined as

𝑓𝑟𝑒𝑙𝑢(𝑥) = max(0, 𝑥) =

{︃
𝑥 if 𝑥 ≥ 0

0 if 𝑥 < 0
. (2.5)

ReLU solves the vanishing gradient problem because the derivative is constant 1 for numbers
greater than zero, the derivative function is defined as

𝑓 ′𝑟𝑒𝑙𝑢(𝑥) =

{︃
1 if 𝑥 ≥ 0

0 if 𝑥 < 0
(2.6)

5



The absence of exponential functions during computation makes the usage of ReLU more
efficient and cheaper compared to Sigmoid or Tanh. Another improvement achieved by
using the ReLU function is that not all of the neurons are activated at once. Unlike models
utilizing Sigmoid or Tanh functions where all neurons are activated at the same time, with
ReLU artificial networks can function a bit more like the biological neural network in the
brain, where only a small fraction of neurons are activated simultaneously. This boosts the
efficiency in learning by allowing the model to acquire sparse activations in case of input
being lower than zero. On the other hand, when input is ≥ 0, the model can obtain a large
number of features from data provided during training [10].

The main downside of the basic ReLU function is its left side saturation since the
derivate constant is zero when 𝑥 < 0, causing some neurons to become permanently deac-
tivated. Weights of the dead neurons will no longer be updated during the training, which
has a negative effect on a whole deep neural network. In order to eliminate the dying ReLU
problem a modified version of ReLU called Leaky ReLU(LReLU) is used, comparison shown
in Figure 2.2. The solution lies in a small constant such as 0.01 that determines the slope
of the function for negative values. Leaky ReLU gradient for inputs < 0 is a small constant
and not zero, thus no neuron can be permanently deactivated, potentially creating a dead
part of the deep neural network [10][43].

Figure 2.2: Comparison of ReLU(left) and LReLU(right) activation function with slope
coefficient of 0.01

Another variation of ReLU is Parametric Rectified Linear Unit (PReLU). In this case,
the parameter for the left side of the function for inputs < 0 is learned during training
unlike in LReLU where the parameter is a constant given in advance.

2.3 Neural network training process
Training a neural network, also called learning of the neural network, is a process that
aims to make the neural network model the desired function, i.e. to minimize the error

6



between the neural network output and dataset targets, by updating the values of the
model parameters. This process is performed in two phases, forward and backward.

In the forward phase, input data from a training dataset are fed into a neural network
creating a computational graph across the network as the data flows from an input layer
towards an output layer (assuming the Feed-forward neural network architecture), using
current weight values. The output of the neural network from the forward phase is used
to compute an error of network w.r.t. observed target from a dataset. In the backward
phase, the gradient of the error function is computed and weights are updated (e.g. using
stochastic gradient descent). The most used algorithm to compute gradient in the backward
pass is the back-propagation. Paired with a learning algorithm such as gradient descent,
it allows more simple and efficient learning in comparison to finding the best weights by
brute force. Especially in multi-layer models, the error of a model is not a simple function
of its weights [11][29].

Loss function

One of the optimization steps in neural network training is evaluating how far the prediction
is from the correct value presented in a dataset, i.e., error of the set of weights in a model.
The model is evaluated with a function called the objective function. Usually, in neural
network models, the aim is to minimize the function. In that case, the objective function
is called the loss function, also referred to as the cost function. The product of the loss
function, evaluating how far off the prediction of the network is, is called “loss” or “cost”.
Loss functions can be divided into two groups, for regression and classification problems,
based on the type of task a neural network is designed for [1][6].

In regression problems, neural networks aim to approximate a mapping function with
numerical or continuous output. For regression problems, some of the basic loss functions
are the mean absolute error (MAE), or the most used, mean squared error (MSE)

1

𝑛

𝑁∑︁
𝑛=1

(𝑡𝑛 − 𝑦𝑛)
2 , (2.7)

where 𝑡𝑛 is the true value, 𝑦𝑛 is the predicted value, and 𝑁 is the number of data points.
However, mean or least squared type errors can lead to a solution highly dependent on a
small number of edge points. These points are also called outliers and have a lot higher
values than the rest. Such errors are prone to incorrectly labeled data and can be solved
by using more robust loss functions [41][6].

Classification problems on the other hand aim to approximate mapping function with
discrete output usually as positive integers representing different classes or labels. However,
the output can be a continuous value when predicting a probability. This probability is
often interpreted as the likelihood that given input belongs in the predicted class. Mostly
used loss function for classification problems is the cross-entropy [5]

𝐿(w) = −
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑡𝑘𝑛 ln 𝑦𝑘(x𝑛,w) , (2.8)

because it computes the error between probability distributions [7][6]. In this case, a train-
ing set is composed of a set of input vectors {𝑥𝑛}, where 𝑛 = 1, . . . , 𝑁 and a set of cor-
responding target vectors {𝑡𝑘} ∈ {0, 1}. 𝐾 represents the number of classes and 𝑦𝑘 is the
output of a network, where w is a learnable parameter.

7



Back-propagation

The back-propagation algorithm can perform an inexpensive computation of the gradient.
This computation is performed from the output layer to the input layer during the backward
phase of the model training. The loss function is, in this phase, used to compute the gradient
w.r.t. network weights using the chain rule of differential calculus.[1][11].

This algorithm assumes that a neural network has a set of hidden layer inputs ℎ1, ℎ2...ℎ𝑘,
followed by output 𝑜, loss function 𝐿, and the weights between two layers ℎ𝑟 and ℎ𝑟+1 are
𝑤(ℎ𝑟,ℎ𝑟+1). If only one path from h1 to 𝑜 exists, the gradient can be computed as follows:

𝜕𝐿

𝜕𝑤(ℎ𝑒−1,ℎ𝑟)
=

𝜕𝐿

𝜕𝑜
·

[︃
𝜕𝑜

𝜕ℎ𝑘

𝑘−1∏︁
𝑖=𝑟

𝜕ℎ𝑖+1

𝜕ℎ𝑖

]︃
𝜕ℎ𝑟

𝜕𝑤(ℎ𝑒−1,ℎ𝑟)
∀𝑟 ∈ 1...𝑘 . (2.9)

In a multi-layer neural network, the number of these paths grows exponentially. So many
paths can seem to be difficult and computationally demanding to solve. However, the
computational graph of a neural network is acyclic, and the chain rule can be computed
recursively from the layer closest to the output 𝑜 using dynamic programming. Therefore,
the expression for computing gradient for a set of paths P is generalized equation1 described
as:

𝜕𝐿

𝜕𝑤(ℎ𝑒−1,ℎ𝑟)
=

𝜕𝐿

𝜕𝑜
·

⎡⎣ ∑︁
[ℎ𝑟,ℎ𝑟+1,...ℎ𝑘,𝑜]∈𝑃

𝜕𝑜

𝜕ℎ𝑘

𝑘−1∏︁
𝑖=𝑟

𝜕ℎ𝑖+1

𝜕ℎ𝑖

⎤⎦ 𝜕ℎ𝑟
𝜕𝑤(ℎ𝑒−1,ℎ𝑟)

. (2.10)

The previous information about computing the gradient using the chain rule and respective
equations were acquired and are described in more detail in [1].

2.4 Convolutional Neural Networks
Convolutional Neural Network or CNN is a special type of Feed-forward model with state-
of-the-art performance in tasks focusing on pattern recognition such as image or voice
recognition. To process more complex data such as image data and lower the computational
complexity CNNs utilize convolutional and pooling layers. A big improvement over classic
neural networks lies in the reduced number of learnable parameters using convolutional
layers, which results in an efficiency boost when computing an output or training the model.
Another advantage is the presence of Equivariance and Invariance to the translation of input
features [11]. Equivariance means that output changes as input changes, allowing detecting
edges and shapes in different places through the image, or in time-series data showing
where features are present in time. This is achieved using shared weights in convolution.
Invariance, on the other hand, reduces the importance of the precise location of features,
when it does not matter whether a detected object is on the left or right side of an image.
Pooling layers allow the CNN to be invariant to some translations of the input.

The architecture of a Convolutional neural network usually consists of an input layer,
convolutional layers alternating with pooling layers implementing, for example, the max-
pooling method shown in Figure 2.3. The neural network is completed by fully connected
layers producing scores for classification. The convolutional layer produces activations that
are used as inputs to the non-linear activation function, such as ReLU. Subsequently pooling
layer performs down-sampling of the output of activation functions.

8



}Conv. Module #1 }Conv. Module #2 }Classification

Input
conv2d
+ ReLU

conv2d
+ ReLU

maxpool maxpool fully
connected

fully
connected

output: cat? (y/n)

Figure 2.3: Convolution Neural Network basic architecture. Taken from [12].

Convolutional layer

The convolution layer plays a significant role in how the Convolutional neural networks
work and their success in solving tasks with grid-like data topology. Convolution can be
defined as an operation of two functions producing a third function and it is given as

𝑠(𝑡) =

∫︁
𝑥(𝑎)𝑤(𝑡− 𝑎) d 𝑎 , (2.11)

denoted with an asterisk
𝑠(𝑡) = (𝑥 * 𝑤)(𝑡) , (2.12)

where 𝑥 is an input function and 𝑤 is a weighting function called the kernel. Because data
in the computer are processed as discrete and convolution is usually used over more than a
single dimension, it can be defined as discrete convolution with two-dimensional input and
kernel as follows

𝑆(𝑖, 𝑗) = (𝐾 * 𝐼)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑖−𝑚, 𝑗 − 𝑛)𝐾(𝑚,𝑛). (2.13)

This form of the equation is achieved because of commutative property, by flipping the ker-
nel relatively to the input. In CNNs convolution is often implemented as cross-correlation
achieving the same results without the need of flipping the kernel

𝑆(𝑖, 𝑗) = (𝐾 * 𝐼)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑖+𝑚, 𝑗 + 𝑛)𝐾(𝑚,𝑛). (2.14)

Convolutional Networks trained using convolution would learn the same values of parame-
ters, but they would be flipped [11].

Unlike the classic ANNs, where the relation between each input and output unit is de-
termined by a specific parameter, in CNNs, kernels allow detecting features more effectively
and significantly reduce the number of stored parameters. This is called sparse connectiv-
ity because a single input unit does not connect to all output units but only to a few based
on the kernel size and vice versa the output is not affected by all input units. For example,
a neural network layer for processing an RGB-colored image of size 64x64x3 would have
12288 parameters, whereas using a kernel of size 6x6x3 produces only 108 parameters.[28]
In the convolutional layer, kernels convolve along the input producing activation maps, and
thus each weight value of kernel is used on every input unit. This is referred to as weight

9



sharing, and it is another characteristic present in the convolutional layer that increases
the effectivity of CNNs over ANNs. This is based on the hypothesis that one set of learned
features can be present in multiple regions in the input, and therefore it is redundant to
learn the set of features more than once.

Pooling layer

The purpose of the pooling layer is to downsample the output of the convolutional layer.
The reduction in spatial dimensions is achieved by replacing the input with a statistic of
neighboring input units in a particular region. In this thesis, the max-pooling function,
shown in Figure 2.4, will be used. It downsamples the input by taking only the max value
in the neighborhood of a particular size. The size of the max-pool kernel should not be
larger than 3 due to the destructive effect of the max-pooling layer [28].

7 3 5 2

8 7 1 6

4 9 3 9

0 8 4 5

max-pooling 8 6

9 9

Figure 2.4: Max-pool function with kernel size 2 and stride 2

There are other popular pooling functions such as an average of a neighborhood or a
weighted average of a neighborhood, where weights are based on the distance of the input
unit from the center of the kernel. In addition to decreasing the number of the parameters,
the pooling layer allows the network to be invariant to some translations made in small
regions [11].

10



Chapter 3

Understanding Neural Networks
decision making

Artificial neural networks (ANNs) as part of Artificial Intelligence (A.I.) is state-of-the-art
technology with broad use in various industries such as information technology, engineering,
e.g. self-driving cars, medicine and others. It increases the productivity and capability of
these industries to produce discoveries, technologies, or products that otherwise would
either not have been discovered or they would have taken significantly more time. ANNs
(mentioned in Chapter 2) are capable of performing tasks difficult if not impossible to solve
with other programming approaches. Tasks such as image or voice recognition, natural
language understanding, or creating something new. This chapter describes what are the
ANNs learning, what they “see”, or what has a significant impact on their functioning, as
well as methods for obtaining this information, i.e. interpreting the ANNs.

3.1 Interpretable and explainable deep neural networks
Even though ANNs are nowadays heavily used, they are still a black box in behavior and
decision-making. Lack of transparency of the neural networks’ decision-making process and
learned patterns may lead to a problem, where if something goes wrong it is hard to say what
exactly. Another vulnerability is adversarial attacks against neural networks in speech and
image recognition and/or classification. Besides, the lack of transparency of these models
increases distrust in neural networks’ decisions and their accuracy. The lack of trust, in this
case, is legitimate as, for example, deep neural network models’ decisions and performance
in image classification are extremely good on train and validation datasets, but they may
fail in real-life applications. Some neural networks, for example, in image recognition, may
perform very well on validation datasets predicting correct outputs but, their predictions
are based on artifacts in images such as background or a copyright watermark. Such
neural networks are called Clever Hans predictors, and an example of such predictions
could be a classification of a horse[19] or garbage truck[33], shown in Figure 3.1, based on
the watermark present in the image. Another example presented in the [31] shows that a
logistic regression classifier distinguished husky and wolf based on snow in the background.
These flaws could remain, as in the horse classification, unnoticed for a very long time.
Because of the mentioned cases, sometimes it is hard to verify deep neural network models’
credibility outside prepared datasets. Methods for explaining these models are researched
and developed to provide information about models and their potential flaws.

11



Figure 3.1: Image (right) and its heatmap of pixels relevant to the model prediction.
This heatmap uncovers a Clever Hans predictor, because as can be seen, the logo is high-
lighted.(Taken from [33])

According to the [33], at first, there were attempts to explain predictions of machine
learning models on a global scale by verifying that the output function of a model produces
high values only for correct targets. These approaches did not shed any light on what
features are important for the prediction. Therefore, methods based on the idea of Pixel-
wise decomposition[20] become popular. These methods aim to produce an output that
determines how relevant to the model is each pixel. Methods producing heatmaps, which
show the contribution of each pixel, are described and compared in this chapter.

Explaining deep neural networks comes with three main difficulties as the models are
more complex [33]. The complexity comes from the number of layers that perform linear
and non-linear transformations on the input. In such networks of layers some neurons are
activated by the small fraction of data points, whereas other neurons are activated more
globally. Thus the output of the neural networks is affected by global as well as local effects
in the input. The second difficulty comes from the presence of a shattered gradient[3] effect
in ReLU neural networks with higher depth, where the gradient becomes more noisy. This
can cause problems in explanation methods that depend on the usage of the model’s gradient
such as sensitivity analysis or simple Taylor decomposition[24]. The last difficulty is finding
a reference point as the base of the explanation. The reference point is some root point,
which is not present in actual data, that some methods use to compute an explanation.
For example, the output can change rapidly based on the reference point, but the reference
point itself does not carry any significant information for further interpretation.

Interpretation of speech classification

Applying different explanation methods in image classification revealed new information
about neural network models, for example, uncovering Clever Hans predictors. With the
success of these methods, they are gradually starting to be used in other domains. Here we
give an example of speech classification, specifically, predicting gender from audio record-

12



ings. Because one of the best ways, how to interpret neural networks is through visual-
ization, interpretation of audio signals can be more challenging than image interpretation.
To gain new insight into speech classification, several experiments were proposed in [4] and
[33]. The experiments were done on raw waveforms and audio spectrograms. Layer-wise
relevance propagation (Section 3.2) was chosen as an explanation method for used CNN
models. In both cases, raw waveforms and audio spectrograms, LRP highlighted features
based on their contribution to the prediction. Blue features have negative relevance on the
prediction, whereas red features have positive relevance towards correct prediction.

Raw waveform explanation is presented in Figure 3.2, showing that the model’s predic-
tion was based on the outer hull[33][4]. However, this information is hard to interpret for
an observer.

Figure 3.2: Explanation of audio signal based on raw waveform acquired by LRP. Taken
from [33]

To raise interpretability for people observing the results, the same method (LRP) was
used for a second model that was trained and explained on spectrograms. Spectrograms
provided more information about the model and revealed that gender predictions depended
mainly on the lowest fundamental frequencies and immediate harmonics[42] (fig. 3.3).

3.2 Layer-wise relevance propagation
Layer-wise relevance propagation (LRP) belongs to a group of backward propagation tech-
niques for explaining deep neural networks utilizing their layered structure. These tech-
niques scale better when used on complex deep neural networks than simple gradient-based
methods [24]. Considering a deep neural network as a series of connected layers as in [33]:

𝑓(𝑥𝑥𝑥) = 𝑓𝐿 ∘ · · · ∘ 𝑓1(𝑥𝑥𝑥) , (3.1)

where 𝑥𝑥𝑥 is the input of the network and 𝑓𝑙 if the function performed by 𝑙th layer in the
network. LRP computes activation scores in forward pass and subsequently propagates the
output score 𝑓(𝑥) in backward direction towards the input layer using propagation rules[24]
(subsection 3.2.1) as shown in Figure 3.4.

The propagation process is conservative analogous to Kirchhoff’s current law in electrical
circuits [34]. In neural networks, this means that all activation energy or relevance (in
backward propagation) flowing into the neuron has to flow out of the neuron, i.e. be
redistributed into the lower layer. Conservation property for neuron 𝑘 is described in [24]
as: ∑︁

𝑗

𝑅𝑗←𝑘 = 𝑅𝑘 , (3.2)

13



female sample

in
co

rr
ec

t

0s 0.5s 1s

0k
H

z
2k

H
z

4k
H

z

gender | vp12 | digit 0 | rep. 14 | prediction 1

0s 0.5s 1s

0k
H

z
2k

H
z

4k
H

z

gender | vp2 | digit 0 | rep. 13 | prediction 0

0s 0.5s 1s

0k
H

z
2k

H
z

4k
H

z

gender | vp56 | digit 0 | rep. 11 | prediction 0

0s 0.5s 1s

0k
H

z
2k

H
z

4k
H

z

gender | vp25 | digit 0 | rep. 0 | prediction 1

male sample

co
rr

ec
t

Figure 3.3: Explanation heatmaps of audio signal based on spectrogram acquired by LRP.
Taken from [33].

where 𝑗 and 𝑘 are indices for neurons of two successive layers and 𝑅𝑘 is the relevance
of a neuron 𝑘 at the upper layer. 𝑅𝑗←𝑘 represents redistributed share of relevance 𝑅𝑘 into
the neuron 𝑗 in the lower layer. Similarly, the relevance of neuron 𝑗 in the lower layer is
the sum of the relevance propagated from an upper layer:

𝑅𝑗 =
∑︁
𝑘

𝑅𝑗←𝑘 . (3.3)

These relevance values, which are propagated up to the input layer, make the final heatmap.
Heatmap represents data points with positive and negative contributions to a model pre-
diction.

3.2.1 Different LRP propagation rules

The information in this subsection is obtained from [34][16][17]. The simplest basic LRP
propagation rule denoted as LRP-0 redistributes relevances of the upper layer in proportion
to inputs of given layer

𝑅𝑗 =
∑︁
𝑘

𝑎𝑗𝑤𝑗𝑘∑︀
𝑗 𝑎𝑗𝑤𝑗𝑘

𝑅𝑘 , (3.4)

where 𝑅𝑗 is relevance of given layer 𝑗 and 𝑅𝑘 is relevance propagated from previous layer
𝑘. Input of the neuron in given layer 𝑗 is 𝑎𝑗 and 𝑤𝑗𝑘 is weight connecting layer 𝑗 with
layer 𝑘. Although this rule satisfies properties such as (𝑎𝑗 = 0) ∨ (𝑤𝑗: = 0) =⇒ 𝑅𝑗 = 0,
applying only this rule on the whole network produces a similar result as explaining via
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡×𝐼𝑛𝑝𝑢𝑡. The gradient in deep neural networks can be noisy, therefore, more robust

14



Figure 3.4: Illustration of how each neuron redistributes all relevance (or activation energy)
flowing into it from the lower layer into the upper layer. Image taken from [33].

rules are a better option for explaining such networks. In addition to LRP-0, enhanced rules
were proposed to increase the explainability of deep neural networks.

The first improvement from basic LRP-0 consists of constant value 𝜖 added to the
denominator. This improvement is denoted as LRP-𝜖𝜖𝜖[17]:

𝑅𝑗 =
∑︁
𝑘

𝑎𝑗𝑤𝑗𝑘∑︀
0,𝑗 𝑎𝑗𝑤𝑗𝑘 + 𝜖 · 𝑠𝑖𝑔𝑛(

∑︀
0,𝑗 𝑎𝑗𝑤𝑗𝑘)

𝑅𝑘 . (3.5)

The addition of 𝜖 causes small or contradictory relevances of neuron 𝑘 to be absorbed.
Only the most significant features are propagated as the value of 𝜖 grows. Explanation
utilizing this rule tends to be less noisy with fewer input features presented in a heatmap
than explanation made by uniform usage of LRP-0.

Another possible improvement from LRP-0 is a rule denoted as LRP-𝛾𝛾𝛾 (equation 3.6)
is achieved by disproportionately favoring the positive contribution of relevances.

𝑅𝑗 =
∑︁
𝑘

𝑎𝑗 · (𝑤𝑗𝑘 + 𝛾𝑤+
𝑗𝑘)∑︀

0,𝑗 𝑎𝑗 · (𝑤𝑗𝑘 + 𝛾𝑤+
𝑗𝑘)

𝑅𝑘 . (3.6)

The value of 𝛾 determines how much are positive relevances favored over negative ones. By
limiting the growth of negative and positive relevances, LRP-𝛾 explanation becomes more
stable, smooth, and less noisy. Although the LRP-𝛼𝛽𝛼𝛽𝛼𝛽 rule [20] was originally proposed
as a method for treating positive and negative relevances in a disproportion fashion, the
equivalent result can be achieved by choosing gamma in LRP-𝛾.

Even though the above rules provide an enhancement in some way over LRP-0, using
any of them uniformly results in suboptimal results. According to [23], every rule has a
negative effect in terms of faithfulness and understanding of interpretation when used uni-
formly. LRP-0 produces a noisy heatmap by highlighting many local artifacts, resulting
in unfaithful and inexplicable explanation. LRP-𝜖 produces a faithful heatmap by high-
lighting relevant features, but they are too sparse to be easily interpretable. LRP-𝛾, on

15



Figure 3.5: Pixel-wise explanation of castle in the image using different LRP rules with
parameters 𝛾 = 0.25, 𝜖 = 0.25. Taken from [23]

the other hand, highlights features more densely than LRP-𝜖 but picks unrelated features
as relevant, making this method to be considered unfaithful. The best explanation was
achieved by combining all three rules in one network using different rules for different parts
of the network as shown in the Figure 3.5.

3.2.2 How to implement LRP rules for different neural network layers

Efficiency plays a great role in computing and can save a lot of time. The rules presented
in the Subsection 3.2.1 can be generalized into one Equation 3.7, allowing them to be
implemented efficiently [23].

𝑅𝑗 =
∑︁
𝑘

𝑎𝑗𝜌(𝑤𝑗𝑘)

𝜖+
∑︀

𝑗 𝑎𝑗𝜌(𝑤𝑗𝑘)
𝑅𝑘 . (3.7)

Rho represents a copy of a given neural network layer to whose weights and biases was
applied a mapping function 𝜃 ↦−→ 𝜌(𝜃) and 𝜖 is small increment. The propagation of
relevance is made in four steps [23]: The first step(1) is a forward pass through a copy of
a given layer. The second(2) and fourth(4) steps are division and product, respectively,
element-wise operations. The third(3) step is a backward pass of relevance, which can be
also computed as a gradient [23].

1: ∀𝑘 : 𝑧𝑘 = 𝜖+
∑︀

𝑗 𝑎𝑗𝜌(𝑤𝑗𝑘)

2: ∀𝑘 : 𝑠𝑘 = 𝑅𝑘/𝑧𝑘
3: ∀𝑘 : 𝑐𝑗 =

∑︀
𝑘 𝜌(𝑤𝑗𝑘) · 𝑠𝑘

4: ∀𝑘 : 𝑅𝑗 = 𝑎𝑗𝑐𝑗

The information below, about relevance propagation through different neural network
layers is obtained from the thesis by Lapuschkin [17]. Relevance propagation implementa-

16



tions mentioned below are only for layers present in the model architectures used in this
thesis. The backpropagation implementations below assume that, in general, the mapping
of from neurons 𝑥𝑖 at one layer to neuron 𝑥𝑗 at the other layer is computed as an equation

𝑥𝑗 =
∑︁
𝑖

𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑗 , (3.8)

where 𝑥𝑖 is the input neuron of layer 𝑖, 𝑤𝑖𝑗 is the value of weight connecting neuron 𝑥𝑖 with
neuron 𝑥𝑗 , and 𝑏𝑗 is bias.

Linear layers that perform a linear transformation on the input using weights, such
as fully connected layers and convolutional layers. Relevance propagation in backward pass
through these layers is implemented as

𝑅
(𝑙,𝑙+1)
𝑖←𝑗 =

𝑥𝑖𝑤𝑗𝑖∑︀
𝑖 𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑗

·𝑅(𝑙+1)
𝑗 . (3.9)

Equation 3.8 can be adapted to implement relevance propagation through pooling layers,
specifically to this thesis, average- and max-pooling. Average pooling layers can be
implemented as convolutional layers, where all weights have the value of 𝑤 = 1

𝑛 , where 𝑛 is
the number of input neurons. Max pooling layers implement function

𝑥𝑗 = max
𝑖

(𝑥𝑖) , (3.10)

where the output neuron 𝑥𝑗 is assigned to a single maximal value from all of its input
neurons 𝑥𝑖. Therefore, in backward propagation, the incoming relevance value 𝑅

(𝑙+1)
𝑗 is

propagated to the single neuron 𝑥𝑖 with maximal activation value as follows:

𝑅
(𝑙,𝑙+1)
𝑖←𝑗 =

{︃
𝑅

(𝑙+1)
𝑗 if argmax𝑖(𝑥𝑖)

0 else
. (3.11)

Backward pass through ReLU activation functions uses the identity rule[14], 𝑅(𝑙)
𝑖 = 𝑅

(𝑙+1)
𝑖 .

Batch normalization layers implementing function

𝑧 =
x− 𝜇𝐵√︁
𝜎2
𝐵 + 𝜖

𝛾 + 𝛽 , (3.12)

where 𝛾 and 𝛽 are parameters learned during a model training. 𝜇𝐵 is the mini-batch mean
value, and 𝜎2

𝐵 is the mini-batch variance, both values are fixed after the training. 𝜖 is a
small constant preventing division by zero. The batch normalization, in a forward pass,
can be computed as a sequence of equations:

x′ = x− 𝜇𝐵 (3.13)
x′′ = x′ · 𝑠 (3.14)
𝑧 = x′′ + 𝛽 (3.15)

where s is a substitution from the equation, 𝑠 = 𝛾 · (𝜎2
𝐵 + 𝜖)−

1
2 . The backward pass of

relevance through equations 3.13 to 3.15 creates an equation [17]

𝑅(𝑙) =
x⊙ 𝑠⊙𝑅(𝑙+1)

𝑧
, (3.16)

where ⊙ is element-wise multiplication.

17



3.3 Other methods for neural network interpretation
Beside Layer-wise relevance propagation and its use of the structure of neural networks,
methods based on other principles were proposed to gain new insights into neural networks.
These methods do not use layers as such but rely on different aspects of neural networks.
They aim to explain models using approaches such as gradients in combination with input
data, various analyses of model sensitivity to certain input features, and their perturbations.
In this section, some of these methods are mentioned, and later in section 3.4 described
their advantages and disadvantages.

3.3.1 Occlusion

Another method available to explain neural networks is Occlusion analysis [33][2]. It is a
specific type of perturbation analysis, where during neural network analysis, input features
or whole patches are being occluded. For example, when explaining models trained for
image classification, square regions of the input image are replaced with grey or zero values.
The relevance is obtained by measuring the effect of occluded regions on the prediction and
accuracy of the explained model. However, the relevance can be computed in two ways,
based on the problem the neural network is used for. In terms of prediction, the heatmap
is built from scores computed as the difference between functions.

𝑅𝑥𝑖 = 𝑓𝑐(𝑥𝑥𝑥)− 𝑓𝑐(𝑥𝑥𝑥|𝑥𝑖=0) . (3.17)

Regions or features that caused the biggest decrease in prediction accuracy are highlighted
in such heatmap, this type of occlusion is also referred to as 𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑓−𝑑𝑖𝑓𝑓 . In terms
of explaining classification, it is computed as the difference between probabilities 𝑥𝑥𝑥 and
perturbed 𝑥𝑥𝑥|𝑥𝑖=0:

𝑅𝑥𝑖 = 𝑃𝑐(𝑥𝑥𝑥)− 𝑃𝑐(𝑥𝑥𝑥|𝑥𝑖=0) , (3.18)
and referred to as 𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑃−𝑑𝑖𝑓𝑓 . Because visual artifacts can occur in heatmaps pro-
duced by occlusion of input images, there were proposed enhancements such as inpainting
the patches instead of setting them to grey [33].

3.3.2 Gradient based explanations

Integrated Gradients is one of the methods for explaining deep neural networks based on
their gradients. Another variant is, for example, SmoothGrad[33]. The Integrated Gradient
method utilizes sensitivity of backpropagation methods and implementation invariance of
gradients[3]. On the other hand, it suffers from the shattered gradient problem. This
problem can be minimized by averaging relevance scores of multiple integrations paths as
proposed in the experiments by W. Samek and G. Montavon[33]. Let 𝑓 : 𝑅𝑛 → [0, 1] be
a function representing some deep neural network, 𝑥𝑥𝑥 ∈ 𝑅𝑛 networks input, and 𝑥′𝑥′𝑥′ ∈ 𝑅𝑛

networks baseline input, for example, a black image in computer vision. The Integrated
Gradient defines relevance scores of features, where these scores are produced by integrating
gradients along a straight path from 𝑥′𝑥′𝑥′ to 𝑥𝑥𝑥. Integrated Gradient along 𝑖𝑡ℎ dimension[3] is
defined as:

𝑅𝑥𝑖 = (𝑥𝑖 − 𝑥′𝑖) ·
∫︁ 1

𝛼=0

𝜕𝑓(𝑥′𝑥′𝑥′ + 𝛼 · (𝑥𝑥𝑥− 𝑥′𝑥′𝑥′)

𝜕𝑥𝑖
𝑑𝛼 . (3.19)

This method satisfies completeness because the sum of the attributions is equal to the differ-
ence between function 𝑓 with input 𝑥 and baseline 𝑥′. The baseline for most networks can
be chosen as 𝑓(𝑥′𝑥′𝑥′) ≈ 0 therefore the attributions are propagated among input features[3].

18



3.4 Requirement for neural network explainability methods
Methods described in Sections 3.2 and 3.3 implement different approaches towards neural
network explainability. Therefore, every one of them produces slightly distinct relevance
scores and heatmaps. In computer vision, for example, LRP tends to highlight features
mostly in favor of positive relevances. The occlusion method highlights important regions
in the image. And the integrated gradient highlights relevant pixels but shows more negative
relevance in heatmap than LRP, Figure 3.6.

Figure 3.6: Preview of heatmaps obtained by Occlusion, Integrated Gradient and Layer-wise
relevance propagation (top to bottom) in correct classified images of ’space bar’, ’beacon/-
lighthouse’, ’snow mobile’, ’viaduct’, ’greater swiss mountain dog’ (left to right). Figure
taken from Transparent Deep Neural Networks and Beyond [33].

Neural networks are, in general, evaluated by how reliable their predictions are, i.e. how
high is the probability that their predictions will be correct. To determine the usefulness
of neural networks explanation is more complicated because there is no ground truth in
such explanations. Several aspects were proposed to help evaluate if and how big an im-
pact explanation methods have on neural network’s performance. Information about the
following requirements for explanation methods is obtained from William Swartout and Jo-
hanna Moore’s conference paper [40] and Transparent Deep Neural Networks and Beyond
article [33].

19



Faithfulness

Faithfulness as a property of methods for neural network explanation is associated with
how the explanation is created. An incorrect or confusing explanation of a neural network
model is not useful and can provide misleading information about the model, possibly
causing more problems than an unexplained model. Explanations must be based on the
same knowledge as is the model’s decision-making to accurately and faithfully represent
its decision structure. Pixel-flipping is a method for determining the faithfulness of the
explained model. The Pixel-flipping method is based on removing the most relevant pixels
from an input image and evaluating changes in the model’s output. As relevant pixels or
features begin to disappear from the input, the model accuracy, i.e. probability of correct
prediction, should be decreasing, Figure 3.7.

0 20 40 60 80 100
% of pixels perturbed

0

2

4

6

8

10

12

14

m
e
a
n
 o

u
tp

u
t 

sc
o
re

Occ

IG

LRP

Rand

0 20 40 60 80 100
% of pixels perturbed

0

2

4

6

8

10

12

14

16

m
e
a
n
 o

u
tp

u
t 

sc
o
re

Occ

IG

LRP

Rand

VGG-16 ResNetOcclusion

LRP

IG

Figure 3.7: Experiment for determining faithfulness of different explanation approaches on
image classification model. As we can observe Integrated Gradient method(bottom picture
of a dog) found pixels on which model depends the most. Although the input image nearly
does not change for the human eye, the prediction accuracy drops drastically [33].

Even though faithfulness determines if the explanation highlights relevant and compre-
hensive features of the model, it does not ensure an easily interpretable explanation for a
human observer.

Interpretability

The intention for research and use of interpretation methods is to gain, to some extent,
insight and try to understand the black box that neural networks are. For this to be

20



successful, explanations produced by these methods need to be interpretable to humans.
According to Miller [22], “most of the research and practice in this area seems to use the
researchers’ intuitions of what constitutes a ’good’ explanation”. It is hard to define what a
good explanation is because different people may interpret the same explanation differently,
based on their knowledge and capabilities. Miller [22] also highlights findings important for
explainable AI. Some of these findings are that:

• referring to causes is, for people, more important than referring to probabilities, or

• people are more likely to ask “why event P happened instead of some event Q”[22]
than why event P happened

In [33], the interpretability of different explanation methods for image classification models
is measured based on the produced explanation’s file size. This comparison shows that
occlusion produced the smallest file size, roughly showing where important features are
located, therefore, it should be the best for interpretation.

Applicability

Other important characteristics of explanation methods are applicability and runtime. Ap-
plicability determines if a method can be applied to a variety of neural network models,
including those which are the subject of research, and how easy the implementation of
the method is. Runtime determines computing efficiency, how many resources and time
the method needs to produce the explanations. According to the results of the comparison
between Occlusion analysis, LRP, and Integrated gradients method presented in [33], Occlu-
sion analysis is the easiest to implement and can be obtained for every network. However, it
is the slowest among the three. LRP, on the other hand, is the fastest method but assumes
that a model has the structure of a neural network consisting of a sequence of layers.

21



Chapter 4

Used datasets and deep neural
network architectures

The usage of LRP for interpretation requires access to the internal structure of a neural
network. It is crucial to understand the input data to accurately interpret neural network
decisions. This chapter describes datasets used for interpretation of two speech classification
models for gender classification using spectrograms (AudioMNIST dataset) and speaker ID
classification using audio filter banks (VoxCeleb dataset). Another part of the chapter
describes deep neural network models used with these datasets. The AlexNet model is
used with AudioMNIST and ResNet with Voxceleb dataset, showing their architecture and
produced outputs.

4.1 AudioMNIST audio dataset
To replicate and extend experiments proposed by S. Becker et al.[4] the same dataset and
model are used. This dataset was originally used for the interpretation of both digit and
gender speech classification models. It consists of audio recordings (spoken digits 0− 9) of
60 different speakers of various nationalities and age, where 12 speakers are females and 48
males. Each speaker has 500 recordings, where every digit (0 − 9) is repeated ten times,
producing a total of 30000 audio recordings.

The raw audio samples were recorded with a 48kHz sampling frequency, stored as a
.wav file. These samples were preprocessed into spectrograms (Figure 4.1) with python
script included in the AudioMNIST repository. At first, the recordings were downsampled
to 8kHz and zero-padded into 8000-dimensional vectors. Then, spectrograms were created
using Short-time Fourier transform with Hann window, 455 samples per segment, and
overlapping segments with the size of 420 samples per segment. Produced spectrograms of
audio recordings had size of 228× 230 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦× 𝑡𝑖𝑚𝑒). The highest frequency bin and
last three time segments were cropped, creating spectrograms with the size of 227 × 227.
The amplitude was converted into decibels using 𝑑 = 20 log10

𝑎
𝑎𝑟𝑒𝑓

, where 𝑑 is result in
decibels, 𝑎 is spectrogram amplitude and 𝑎𝑟𝑒𝑓 is reference amplitude (𝑎𝑟𝑒𝑓 = max(𝑎)).

The preprocessed data were reduced to 24 speakers (12 female and 12 male chosen
randomly) and split into three disjoint splits: training, validation, and test split containing
6000, 3000, and 3000 recordings, respectively.

22



Figure 4.1: Spectrograms of AudioMNIST recordings, female(left) and male(right) speaker.

4.2 VoxCeleb audio dataset
Features from VoxCeleb[25][26][8] audio dataset were used to extend interpretation exper-
iments to a different task such as speaker classification. This dataset was chosen because
I obtained a neural network model pre-trained on features from this dataset for a speaker
classification task. In particular, the data were from the VoxCeleb2 dev dataset containing

Figure 4.2: Spectrograms of VoxCeleb features augmented with music(top) and
noise(bottom).

23



speech recordings of 5994 individual speakers and its augmentations with music and noise
from the MUSAN[37] dataset. Features used for model training and interpretation exper-
iments are 64-dimensional filterbanks showed in Figure 4.2. In every dimension, the mean
value is normalized to 0, and each frame represents 25ms of speech with a 15ms overlap.
Each file with 64× 200 features corresponds to a two-second segment of the recording.

4.3 AlexNet architecture
For the gender classification task, a convolutional neural network model was used, as pro-
posed in the article by S.Ḃecker et al.[4]. The model has AlexNet architecture with adapted
parameters for classification from spectrograms (section 4.1). It consists of two main parts:
feature extraction block and classification block. The feature extraction block is composed
of five convolutional layers, ReLU activation functions, and max-pooling layers. The input
data has a size of 227 × 227 and a single channel as described in the Section 4.1. The
five convolutional layers with kernel sizes 11, 5, and 3 respectively, and max-pooling layers
down-sample the input (2.4). ReLU activation function (2.2) is very popular and crucial for
interpretation with the LRP method. Adaptive average pooling is applied to ensure that
size of the feature tensor is 6x6. The output of the average pooling layer is flattened and
fed into a classification block. The classification block is composed of three dense layers
feeding the output of size (1, 2) into sigmoid activation function. During an evaluation of
the model, the prediction is obtained as 𝑦gender = 𝑎𝑟𝑔𝑚𝑎𝑥(out), where 𝑜𝑢𝑡 is output tensor
of the model and value of 𝑦gender represents gender as follows:

𝑦gender =

{︂
𝑚𝑎𝑙𝑒 if 𝑎𝑟𝑔𝑚𝑎𝑥(out) = 0

𝑓𝑒𝑚𝑎𝑙𝑒 if 𝑎𝑟𝑔𝑚𝑎𝑥(out) = 1

4.3.1 Training of the model

AlexNet model was trained for 200 epochs on the 6000 recordings training set described in
Section 4.3 with a batch size of 50 recordings, where recordings in each batch were chosen
randomly. The learning rate was set to 1e-4 and momentum to 0.9. Binary Cross Entropy
was used as a loss function to evaluate the model during training. Stochastic gradient
descent was used as an optimizer function for updating the model’s weights. After 200
epochs model achieved a gender prediction accuracy of 97.83% on both validation and test
sets (described in Section 4.3).

4.4 Speaker ID classification model
Another neural network model chosen for interpretation is trained to classify speakers from
an audio recording. This model is a more robust and complex deep neural network than
previously used AlexNet. It is based on ResNet34 architecture with some changes to perform
well on a designated task. Pretrained model was provided by Phonexia/VUT FIT, with a
classification accuracy of 96% on both training and validation datasets. Input data into this
network are filterbank features of size 64×200 and a single channel described in Section 4.2.

This architecture is using mainly a combination of 2D convolutional layers (Conv2d)
and 2D batch-normalization (BatchNorm2d) layers. Starting with one convolutional and
one batch-norm layer, followed by four main parts composed of multiple blocks of Conv2d,
BatchNorm2d layers, and a residual connection. The main hidden layers consist of 3, 4,

24



6, and 3 blocks. Each main layer downsamples the input in half by setting 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 in
the first convolutional layer of the first block. The blocks consist of two Conv2d and two
BatchNorm2d layers, as shown in Figure 4.3 on the right. In addition, the first block in
each main layer has a residual connection composed of Conv2d and BatchNorm2d layers,
shown in Figure 4.3 on the left. Activation functions used in this architecture were ReLU.
Followed by mean and standard deviation pooling, which summarizes the whole utterance
into one vector. The network ends with a dense layer for speaker embeddings extraction
with (𝑁, 256) output features tensor followed by an 1D batch-normalization layer and a
dense layer producing output speaker ID tensor of size (𝑁, 5994), where 𝑁 represents batch
size. The prediction of the model is obtained as 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥(logits), where logits represent
the value of each speaker.

Convolutional layer

Convolutional layer

BatchNorm layer

Convolutional layer

BatchNorm layer

BatchNorm layer

+

input

output

residual connection

Convolutional layer

BatchNorm layer

Convolutional layer

BatchNorm layer

+

input

output

residual connection

Figure 4.3: This figure shows the architecture of one block in the ResNet model. The
first block in the main layer has a convolutional and batch normalization layer in its resid-
ual connection(left). Other blocks in the main layer have a residual connection without
additional layers in it(right).

25



ReLU

Convolution

ReLU

Dense Layer

Dense Layer

ReLU

Dense Layer

MaxPool

ReLU

Convolution

MaxPool

ReLU

Convolution

MaxPool

ReLU

Convolution

ReLU

Convolution

AdaptiveAveragePool

output

input  Bx1x227x227

Data dimensionsArchitecture

 Bx256x27x27

 Bx96x56x56

 Bx96x27x27

 Bx256x13x13

 Bx384x13x13

 Bx384x13x13

 Bx256x13x13

 Bx256x6x6

 Bx1x9216

 Bx1x1024

 Bx1x2

 Bx1x1024

Figure 4.4: AlexNet architecture scheme showing its layers(left) and dimensions of their
tensors(right). The First and last size is the dimensions of input and output tensors,
respectively. Others are dimensions of the output tensor of the respective layer. B in
represents a batch size of a given tensor.

26



Chapter 5

Solution design and
implementation

The Layer-wise relevance propagation can be implemented in different ways depending
on neural network architecture and chosen library. This chapter gives a brief overview
of different libraries for machine learning, existing LRP implementations, and finally, my
implementation used for experiments in this thesis.

5.1 Machine learning libraries
Machine learning libraries described in this section were initially released in 2015 (Keras and
Tensorflow) and 2016 (PyTorch). Since then, they have gained on popularity in research,
development, real-life applications, and others. They allow easy creation, training, and
evaluation of a broad spectrum of machine learning models while also providing some pre-
trained models. These are not the only libraries for machine learning but are the most
popular.

5.1.1 TensorFlow and Keras

TensorFlow is a free, open-source library for machine learning developed by Google writ-
ten in Python, C++, and CUDA. Code written in TensorFlow can run on both CPU
or GPU, allowing acceleration in computation, especially with high dimensional matrices
called tensors which are primary data structures in this library. The big difference between
TensorFlow and PyTorch is the implementation of a computational graph. In TensorFlow,
the computational graph is static, where the sequence of computation is defined beforehand,
allowing the use of placeholders. This approach has great performance, but it is hard to
debug. TensorFlow has great production and deployment options in comparison to Pytorch
and therefore is very popular among developers.

Keras is an open-source high-level Python API later integrated into TensorFlow. Keras
can be used independently of other libraries. However, since it handles only high-level
computations, it is convenient to use Keras on top of the other machine learning library
that functions as a backend.

27



5.1.2 PyTorch

PyTorch[30] is also an open-source machine learning library initially released in 2016 and
developed by Facebook. It is based on the Torch library and written in Python, C++, and
CUDA. Programs written in PyTorch can also run on both CPU and GPU. PyTorch is
highly popular in the research field, mainly for its simplicity, flexibility, and it tends to be
easier to use than TensorFlow when starting with machine learning. It is a high-performance
library that handles low-level computations, has efficient memory usage and great debugging
options. It allows to easily build customized neural network models, debug them with, for
example, forward and backward hooks, and convert PyTorch tensors into Numpy multi-
dimensional arrays. The big difference from TensorFlow is the dynamic computational
graph. In PyTorch, the computational graph is built and can be changed during runtime.
I chose PyTorch for its simplicity, debugging options, popularity in research, and hooks.

5.2 Existing solutions and proposed solution design
There are existing solutions for interpreting neural networks implementing different meth-
ods, mentioned in Chapter 3, to explain various models trained for different tasks. However,
only a couple of these projects implement LRP. Each solution takes a different approach
to implement explanation methods and models using different Python libraries, like Py-
Torch, Keras, Caffe, or even NumPy for LRP. In a lot of cases, LRP is implemented as
either variations of Python classes with methods computing LRP rules. Or, in the case of
PyTorch implementations, whole layers are implemented with a custom forward and back-
ward passes, and LRP is computed in a backward function utilizing PyTorch’s dynamic
computational graph. These solutions have usually implemented LRP only for a couple of
layers depending on the model used for interpretation.Also, all of these implementations
were for image classification models.

As I chose PyTorch as a library for my thesis and both models used for the interpretation
are also implemented in PyTorch, I decided to utilize easy-to-use forward hooks available
in PyTorch in combination with classes computing LRP for each type of layer. I did not
want to implement whole layers with forward pass function and backward pass functions as
it is already well optimized. In addition to separate classification from LRP computation,
I decided to create a class for each type of neural network layer used in the models. Each
class implements relevance propagation according to LRP rules and is callable outside the
interpreted model. This separation is achieved by storing the weights, inputs, and outputs of
layers during a forward pass through the model using registered forward hooks as described
in the following Section 5.3.

5.3 Implementation of LRP for AlexNet and ResNet models
The main function for computing LRP is composed of the definition of forward hooks,
their registration, forward pass of the model, and loop for computing the LRP through the
layers. First, forward hooks are implemented so that for each layer important for LRP (e.g.
excluding ReLU) a custom object representing that layer is created with corresponding
weights and stored into a list of custom layers ready for LRP as shown in Listing 5.1.

def f_hook(module, input, output):
if isinstance(module, nn.Conv2d):

28



# bias is set to false in ResNet
layers.append(ConvLayer(input[0], output, type(module),

module.weight.data, None, module.kernel_size,
module.stride, module.padding, module.groups))

elif isinstance(module, nn.Linear):
layers.append(LinearLayer(input[0], output, type(module),

module.weight.data, module.bias.data))
Listing 5.1: Part of the forward hook function, where convolutional and dense layer are
being added into the list for LRP computation in the future.

These hooks are registered before the forward pass of the model. After the forward pass
of input data and the creation of custom layer objects, the registered forward hooks are
deleted. The relevance tensor is initialized from the model’s output tensor and propagated
backward through the layers from the output to the input layer as shown in 5.2.

with torch.no_grad():
layers.reverse()
R = Rinit
for layer in layers:

R = layer.lrp(R)
if verbose:

print(f’Current relevance tensor shape: {R.shape}’)
return R

Listing 5.2: Computation of LRP through layers, where Rinit is output of the model and
R is relevance tensor newly propagated through given layer.

Each type of neural network layer has a corresponding class implementing LRP com-
putation according to the rules and decomposition described in the subsection 3.2.2. Each
class has object variables, such as weights input and output tensors of representing layer,
needed to compute LRP. LRP implementation of convolutional, linear, and max-pooling
layers was inspired by the solution presented in the LRP-toolbox[18] repository but written
in PyTorch and further adapted to the layers of AlexNet and ResNet models. The adap-
tation mainly involves the addition of padding, optional bias, and groups in convolutional
layers. Using the LRP method on ResNet architecture required the implementation of
batch normalization layers shown in Listing 5.3 and solving relevance propagation through
residual connections (Listing 5.4).
def lrp(self, R):

.

.

.
s = torch.true_divide(W_positive,

torch.sqrt(self.run_std ** 2 + self.eps))
Rx = torch.true_divide(self.X * s[..., na, na], self.Y)
Rx = Rx * R
return Rx

Listing 5.3: Implementation of basic LRP for batch normalization layer. W_positive rep-
resents learned 𝛾 parameter, self.run_std is mini-batch mean value, and self.eps represents
𝜖 from Equation 3.12. self.Y is output of the layer represented as 𝑧 in Equation 3.15 and
R is relevance tensor propagated from the previous layer.

29



I implemented a BasicBlock class representing blocks of layers with residual connections
in the used ResNet model, enabling to backpropagate relevance correctly through these
connections. BasicBlock class has two lists of layer objects, one for layers of represented
part of neural network and the other for layers used in residual connection. When a residual
connection is present, relevance from the lower layer is propagated as if there was a linear
layer with two inputs and weights set to 1. Then the relevance is propagated further
simultaneously, through usual neural network layers, and layers in residual connection.
Sum of relevances produced by these two ways is propagated into the upper layers.

# compute LRP for hidden layers
for layer in self.layers:

self.R = layer.lrp(self.R, rule, eps=eps, gamma=gamma)

# compute LRP for residual connection
for layer_short in self.res_connection:

self.R_residual = layer_short.lrp(self.R_residual, rule,
eps=eps, gamma=gamma)

return self.R + self.R_residual

Listing 5.4: Implementation of LRP computation through residual connection, where
self.layers is list of hidden layers in the block. Layers inside residual connection are in
the self.res_connection list, eps and gamma are constants (𝜖, 𝛾) set for LRP rules. Rele-
vance tensor propagated from previous layer is divided in proportion to output of hidden
layers and residual connection into self.R (relevance that came from hidden layers) and
self.R_residual (relevance that came from residual connection)

30



Chapter 6

Proposed experiments for audio
signal interpretation

One of the goals of this thesis is to train and interpret a gender classification model. With
the trained model and implemented interpretation method, I try to replicate results made
by S. Becker et al. [4]. Further goal is to extend these experiments further based on results
and use information obtained by LRP to improve the model. In the second part of the
experiments, the challenge is to interpret a more complex model, trained for a more complex
task, such as the mentioned ResNet model. This model is trained on a much bigger dataset
with various data augmentations making it more robust. Another difference is the input
data. While in the case of AlexNet, it is spectrograms, ResNet uses filter banks, which are
more difficult to interpret.

6.1 Explanation of audio spectrogram gender classification
I used the previously proposed method — LRP, to find out based on what the AlexNet model
is making its decisions. The LRP used for this experiment utilizes LRP-0 to propagate
relevance values through linear layers and LRP-eps for hidden and input layers with epsilon
value 0.8. This value was chosen based on preliminary experiments. Figure 6.1 shows
heatmaps overlayed on top of the corresponding spectrograms of audio recordings. The
obtained heatmaps look similar to the ones presented in [4], where the neural network
makes decisions based on the lower frequencies.

In Figure 6.2, spectrograms of female and male recording are modified by setting 1%
of the bins with the highest positive contribution towards correct prediction to zero w.r.t.
LRP heatmaps shown in Figure 6.1. This 1% shows that even though the Figure 6.1 shows
relevant bins in higher frequencies, the most relevant bins are located in lower frequencies.
In case of male speakers, the model learned to look at parts of spectrograms that were
zero-padded during the pre-processing but had a value of −80 in spectrograms. The male
spectrograms have padded areas that are usually bigger than those in female spectrograms.
In male spectrograms, on average, 75 dimensions out of 227 have padded values (−80).
Female spectrograms have 52 out of 227 dimensions, on average, with a padded value
(−80). This difference in male and female data may be one of the causes of such a flaw
of the model. It is possible that the dependency on the padded area can be reduced by
augmentation of the training dataset, e.g. choosing a different approach on how to pad

31



the data. However, this shows behavior similar to Clever Hans predictors, where a model
performs very well but has learned patterns that can be considered wrong.

Figure 6.1: Heatmaps produced by LRP on female(left) and male(right) spectrograms.
Red represents time-frequency bins with positive relevance scores and blue with negative
relevance scores.

Figure 6.2: AudioMnNIST spectrograms, female(left) and male(right), where 1% of the
most relevant time-frequency bins were set to zero.

Heatmaps produced by LRP are interpretable for humans but do not guarantee that
these explanations are also faithful. To determine the faithfulness of the used LRP method
and rules, I used the same method as proposed by S. Becker et al. [4] called pixel-flipping.
This method is based on setting specific pixels, in this case, time-frequency bins, of input

32



data to zero before classification and evaluating the model’s performance. In this experi-
ment, from 0% to 100% of spectrogram bins were set to zero with three different strategies.
First, from the most relevant spectrogram bins with the highest positive contribution ac-
cording to LRP, referred to as lrp. The second strategy chose spectrogram bins randomly,
referred to as random. The third strategy is the reverse of the lrp, where the first bins set
to zero were the ones with the highest negative contribution, referred to as lrp_rev.

Figure 6.3: Accuracy of AlexNet model w.r.t. pixel-flipping method. Lrp represents setting
time-frequency bins to zero from the ones with highest positive contribution, lrp_rev with
highest negative contribution, and random sets bins at random.

Results of the pixel-flipping evaluation are shown in Figure 6.3. In case of pixel-flipping
using lrp, AlexNet’s accuracy dropped rapidly right at the beginning, where only 0.5%
to 1% time-frequency bins were set to zero. Evaluation with the pixel-flipping method
shows two things. First, it proves the faithfulness of LRP method, i.e. time-frequency bins
highlighted by heatmaps are indeed the most relevant. The second is that this model’s
predictions heavily depend on a small fraction of time-frequency bins. The faithfulness
is also supported by the fact that setting bins, with high negative contribution towards
correct prediction, to zero, slightly increases the model’s accuracy by 0.03%. Furthermore,
the accuracy of the model does not decrease even when 95% of the spectrogram’s time-
frequency bins are set to zero, such spectrogram is shown in Figure 6.4.

Individual values of the model’s accuracy w.r.t pixel-flipping are shown in Table 6.1.
With only 1% of time-frequency bins changed to zero, the accuracy dropped from 97.83%
to 4.33%, which uncovers the low robustness of the model. Because of a drastic drop in
accuracy, I used the pixel-flipping method for only 1% of pixels to get more insight into
such a sudden drop. In this experiment, N spectrogram bins were set to zero, where N

33



Figure 6.4: Spectrogram of female voice recording, where 95% of time-frequency bins with
the lowest positive contribution towards correct prediction is set to zero w.r.t. hetmap
produced by LRP. This spectrogram is still classified correctly as female voice.

takes values from 0 to 515 and is increased by 5. As shown in Figure 6.5, at only 60 to 70
flipped time-frequency bins model’s accuracy drops to around 50%.

Figure 6.5: Accuracy of AlexNet model w.r.t. pixel-flipping method. Showing only first
one percent (515 bins) of time-frequency bins changed.

34



The results of the pixel-flipping evaluation differ from the results in the original by
S. Becker et al. [4]. In the original paper, the curve representing accuracy drop achieved by
pixel-flipping was less steep, and in the case of pixel-flipping w.r.t. lrp, the accuracy dropped
only slightly under 50%. Also, the random curve was similar to the lrp_rev curve in the
evaluation I achieved (Figure 6.3). In this case, the drop under the chance level is caused by
the low robustness of the model and the fact that the model is highly dependent on time-
frequency bins with a high positive contribution towards correct prediction. When these
bins are removed with the pixel-flipping method, a high portion of the positive contribution
is removed as well. This results in predominantly negative contributions contributions
towards correct classification, and therefore the opposite gender is classified. I do not
know what exactly caused such a big difference in accuracy w.r.t. LRP but it can be
caused by several factors such as a differently trained model and/or differences in LRP
implementation.

Table 6.1: Numeric representation of model’s accuracy showed in Figure 6.3. Rows show
different approaches to pixel-flipping time-frequency bins, and columns show the model’s
accuracy w.r.t. percentage of the bins set to zero.

Percentage of bins changed to zero
Method 0 0.5 1 5 10 15 20 25 30

lrp 97.83 10.8 4.33 2.43 2.17 2.13 2.13 2.13 2.13
random 97.83 97.53 97.70 96.80 93.70 89.70 84.03 79.67 74.87

lrp_reverese 97.83 97.86 97.86 97.86 97.86 97.86 97.86 97.86 97.86

6.2 Increasing robustness of model for gender classification
I decided to use the information obtained by the explanation method in previous experi-
ments to improve the trained model. The aim is to lower the model’s high dependency on
such a small number of time-frequency bins and potentially increase its performance on a
validation set.

First, I created an augmented training set using the pixel-flipping method described
in the previous Section 6.1 by setting 1% of the most relevant time-frequency bins to 0.
Besides the bins set to zero this augmented dataset has the same features as the original
AudioMNIST training dataset described in Chapter 4. The pre-trained model reaching
an accuracy of 97.83% was re-trained on the augmented dataset for 100 epochs with the
same hyperparameters described in Section 4.3. This new model was evaluated with the
pixel-flipping method on the original AudioMNIST validation set. Results of pixel-flipping
evaluation and spectrograms of this re-trained model are shown in Figure 6.6 and Figure
6.7, respectively. Figure 6.6 shows that the model accuracy is around 50%, and the lrp or
random pixel-flipping method has almost no effect on it. Figure 6.7 shows the heatmap
(left) produced by LRP for the re-trained model and spectrogram of the same recording
with 1% of, according to LRP, the most relevant time-frequency bins set to zero (right).
The spectrogram (right) in the Figure 6.7 shows that there is a shift of the most relevant
bins to the higher frequency range in comparison to the spectrogram (left) in the Figure 6.2.
The accuracies for different models in the Table 6.2 show that the pixel-flipping method
where time-frequency bins are set to zero is not a suitable method for augmentation of a
training set.

35



Figure 6.6: Accuracy of AlexNet model w.r.t. pixel-flipping method. Lrp represents setting
time-frequency bins to zero from the ones with the highest positive contribution and random
sets bins at random. This model was trained on a dataset augmented with the pixel-flipping
method.

The second approach is again to change the values of the most relevant bins to lower
high dependency on them. But the new values should be more less obtrusive, so they blend
in, and the model eventually learns to make predictions based on more time-frequency
bins. To achieve this, I propose to set the values of the 1% bins with the highest positive
relevance to an average value of their Moore neighborhood. Using this method, I created
augmented training set from the original AudioMNIST. I repeat the process by taking the
originally trained model and train it again on the augmented dataset for 100 epochs with
the same hyper-parameters as described in Section 4.3. Heatmap and spectrogram with 1%
of the most relevant bins highlighted produced by the LRP method in Figure 6.8 shows that
model trained on this augmented dataset makes predictions based on the lower frequencies
as it should. When compared to female spectrogram in Figure 6.2, there is a slight shift
in the most relevant bins, but they stayed in a low-frequency range, which is a good sign.
However, the heatmaps of the new model cannot determine if it is more robust or on how
many spectrograms’ bins the predictions depend. As before, the pixel-flipping method is
used to evaluate how the new model would respond to augmented spectrograms.

The evaluation of the improved model and comparison to the previously trained model
and the original one is in Figure 6.9 and Table 6.2. The results show increased robustness
of the model trained on dataset augmented by average values of Moore neighborhood. The
accuracy of the improved model on the non-augmented validation dataset was increased
by 1%. Because the validation set is composed of 3000 spectrograms this means that 30

36



Figure 6.7: Heatmap produced by LRP of AlexNet model trained on a dataset augmented
with the pixel-flipping method. Spectrogram shows 1% of the most relevant time-frequency
bins and their shift to higher frequencies in comparison to the female spectrogram in Figure
6.2.

Figure 6.8: Heatmap produced by LRP of AlexNet model trained on a dataset augmented
by setting the 1% of the most relevant bins to average value of their Moore neighborhood.
The spectrogram on the right shows that the most relevant time-frequency bins remained
in the low frequency range, similar to Figure 6.2

more data samples were classified correctly. However, the main reason for this experiment
was to make the model more robust, therefore lowering the dependency on a small number
of time-frequency bins. With 0.5% of the most relevant bins changed to zero, the model

37



achieved an accuracy of 28.6%, and with 1% of changed bins, the accuracy was 22%. This
means an increase in almost 18% in both cases.

Figure 6.9: Accuracy of differently trained AlexNet models w.r.t. pixel-flipping method,
where time-frequency bins were set to zero from the ones with the highest positive contri-
bution. AlexNet represents a model trained on the original dataset. AlexNet_aug_zero
represents a model trained on a dataset augmented with pixel-flipping. AlexNet_aug_mean
represents a model trained on a dataset augmented by setting the most relevant pixels to
an average value of their Moore neighborhood instead of zero.

Table 6.2: Numeric representation of accuracies for different models showed in Figure 6.9.
Rows show different models, whereas columns show their accuracy w.r.t. percentage of
relevant time-frequency bins set to zero.

Percentage of bins changed to zero
Model 0 0.5 1 5 10 15 20 25

AlexNet 97.83 10.8 4.33 2.43 2.17 2.13 2.13 2.13
AlexNet_aug_zero 46.67 51.93 52.93 53.5 93.70 89.70 84.03 79.67

AlexNet_aug_mean 98.80 28.67 22.00 10.03 5.17 2.2 1.63 1.23

Even though the gender classification on spectrograms is a simple task, these experi-
ments demonstrated the usefulness of neural network interpretation in different ways:

• gaining insight into neural network predictions by creating heatmaps, in this case
showing that decisions are based on lower frequencies,

• uncovering robustness and vulnerability to a small number of highly important data
points,

38



• potentially improving models based on the obtained information,

• allowing to “debug” the neural networks as shown in Figure 6.7, where we can observe
a shift of time-frequency bins important to decision making, explaining the model’s
drop of accuracy after training.

6.3 Interpretation of speaker ID classification with ResNet
model

This experiment aims to explain a deeper neural network model, described in Section 4.4,
with a similar approach to previous AlexNet explanations. The main difference in explain-
ing this network over Alexnet is in ResNet’s utilization of the batch normalization layers,
pooling through time, and residual connections.

Heatmaps shown in Figure 6.10 are produced by LRP utilizing only the LRP-0 rule
on all layers. The input data are filterbanks of speech recording augmented by music
(top) and noise (bottom). Time-frequency (TF) bins with positive relevance attribution
are highlighted in red, whereas bins with negative attribution are blue. The heatmaps are
noisy as expected when using only the LRP-0 rule. The most relevant time-frequency bins
are mostly located around lower and fundamental frequencies and spread through time,
which can be considered as expected behavior. However, the LRP-0 tends to create chunks
of relevant bins that are less spread throughout the time than the combination of other
LRP rules.

The unexpected behavior present in these heatmaps is the presence of positive and
negative time-frequency bins in the same areas creating a checkerboard effect [27]. This
effect could be a product of deconvolution created during the relevance back-propagation.

To evaluate the faithfulness of the LRP method on this model, I chose the pixel-flipping
method the same way as in Sections 6.1 and 6.2. Figure 6.11 shows the accuracy of the
ResNet model, w.r.t. percentage of time-frequency bins set to zero, on the training set
modified with the pixel-flipping. Random curve represents a random choice of bins changed
to zero. Lrp curve represents an evaluation where bins were set to zero in ascending order
from the ones with the most positive relevance. Lrp_rev represents evaluation similar to the
lrp but with descending order, i.e. from bins with the highest negative relevance attribution.
The lrp and lrp_rev curves have an almost identical course that is steeper than the rand
curve.

This can be interpreted as two things. First, the LRP method produces heatmaps
that, to some extent, correctly show the most relevant parts in neural network decision
making. Second, according to LRP, time-frequency bins with positive relevance attribution
are roughly equally important as bins with negative relevance attribution in terms of correct
speaker classification. The equal importance of both negative and positive bins, which is
unexpected behavior, is the main difference from AlexNet interpretation experiments in
Section 6.1. Another difference from AlexNet experiments is the drop in the model accuracy
between lrp and random curve. In the case of ResNet, the lrp (blue) curve has a similar
shape to the random (orange) curve, and it is much closer to it. This is probably caused
by the difference in robustness of the models. The ResNet model is a lot more robust;
therefore, changing the most important time-frequency bins to zero has not as significant
an impact as in the case of AlexNet. The result of the pixel-flipping experiment can be
caused by the noisy gradient in such a deep neural network as this ResNet model is. Also,

39



Figure 6.10: This figure shows heatmaps produced by LRP utilizing only the LRP-0 rule on
top of the VoxCeleb filterbank spectrograms augmented with music(top) and noise(bottom).
The red-colored time-frequency bins represent bins with positive relevance values (posi-
tive contribution towards correct prediction). The blue-colored time-frequency bins repre-
sent bins with negative relevance values (negative contribution towards correct prediction).
These heatmaps show that uniform LRP-0 creates noisy heatmaps with a checkerboard
effect[27], therefore, it is not a sufficient rule for interpretation of such a deep model as is
Resnet.

this shows the importance of more robust LRP rules when LRP is used as an explanation
method in deep neural networks.

In the previous experiments with the AlexNet (Section 6.1), even heatmaps produced
only by the LRP-0 rule were interpretable, and features with positive and negative attributes
were easily distinguished. But, as the Figure 6.10 shows, this does not apply to ResNet’s
heatmaps, and therefore using more robust rules such as LRP-𝛾 and LRP-𝜖, for the relevance
back-propagation, should bring improvements.

As the first improvement, I used LRP-𝜖, which, in theory, should make heatmaps less
noisy and perhaps easier to interpret. Based on preliminary experiments, I chose 𝜖 = 0.5.
LRP-𝜖 was used for most of the hidden layers consisting of convolutional and 2D batch
normalization layers and input layer. For linear layers, 1D batch normalization layer and

40



Figure 6.11: Results of pixel-flipping evaluation of LRP on ResNet model, utilizing only
LRP-0 rule, made on 20000 data samples. Lrp(blue) curve represents a drop in model
accuracy w.r.t. percentage of time-frequency bins set to zero from the bins with the highest
positive contribution to correct prediction. Lrp_rev(red) curve represents a drop in model
accuracy w.r.t. percentage of time-frequency bins set to zero, from the bins with the
highest negative contribution to correct prediction. Accuracy, when time-frequency bins
are randomly set to zero, is represented by a random(orange) curve. The fact that the lrp
and lrp_rev curves have the same shape and close to the random curve shows that the
LRP-0 rule fails at the interpretation of such a deep neural network as is ResNet. Also,
the LRP-0 rule cannot produce heatmaps that distinguish between features with a positive
and negative contribution to the correct prediction.

pooling layers before the linear ones LRP-0 remained used. This combination of the rules
selection was based on the results presented by Montavon et al. [23].

Heatmaps of the same recordings as in Figure 6.10, produced after the addition of the
LRP-𝜖 rule shown in Figure 6.12 are significantly less noisy. The time-frequency bins with
positive (red) and negative (blue) relevances are now more separated, visibly aligned along
with lower frequencies, and therefore easier to interpret. Based on these heatmaps I assume,
that the model’s decisions are mostly based on the features in the lower frequency range.

To verify this assumption, I made an evaluation with the pixel-flipping method, as in
previous experiments. The results in Figure 6.13 show a faster decrease in accuracy after
setting the values of time-frequency bins to zero w.r.t. their positive relevance (blue curve)
than with LRP-0 for all layers shown in Figure 6.11. In addition, the slower decrease in
accuracy when pixel-flipping the bins w.r.t. their negative relevance (red curve) shows an
improvement. Even though the time-frequency bins with negative relevance values have still

41



Figure 6.12: This figure shows heatmaps produced by LRP utilizing LRP-0 with LRP-eps
rules, where 𝜖 = 0.8, on top of the VoxCeleb filterbank spectrograms augmented with mu-
sic(top) and noise(bottom). The red-colored time-frequency bins represent bins with pos-
itive relevance values (positive contribution towards correct prediction). The blue-colored
time-frequency bins represent bins with negative relevance values (negative contribution
towards correct prediction). These heatmaps show that adding a more robust rule such as
LRP-eps causes less noisy features. Using LRP-eps creates heatmaps easier for interpreta-
tion by reducing noise and checkerboard effect [27].

a big impact on the model’s prediction, a slower decrease in accuracy means that features
contributing to an incorrect prediction are slightly better identified using LRP-𝜖.

Even though the LRP-𝜖 rule in combination with the LRP-0 rule produced sufficient
results, adding LRP-𝛾 should improve the results even more in terms of heatmap inter-
pretability. In the following experiment, the LRP-𝛾 rule was added for relevance propa-
gation in approximately 1/3 of the layers (from the input layer), creating a similar chain
of LRP rules as shown in Figure 3.5. The 𝜖 value remained 0.5, and for the LRP-𝛾 rules,
the constant value was set to 𝛾 = 5. The 𝛾 value was chosen on preliminary experiments,
where 𝛾 ≤ 1 created sparse and noisy heatmaps that were hard to interpret and highlighted
features that were not nearly the most important for the model’s predictions. Heatmaps
produced by a combination of all three rules (LRP-0, -𝜖, -𝛾) are mostly less noisy, as shown
in Figure 6.14. Features highlighted in these heatmaps are more separated based on their
contribution to the correct prediction (positive,i.e. red or negative, i.e. blue) relevance val-
ues). These highlighted features suggest that a speaker is classified based on found features
in his voice throughout the time and mostly in a lower frequency range. The presence of

42



Figure 6.13: Results of pixel-flipping evaluation of LRP on ResNet model, utilizing LRP-0
and LRP-𝜖 rules, where 𝜖 = 0.8, made on 20000 data samples. Lrp(blue) curve represents a
drop in model accuracy w.r.t. percentage of time-frequency bins set to zero from the bins
with the highest positive contribution to correct prediction. Lrp_rev(red) curve represents
a drop in model accuracy w.r.t. percentage of time-frequency bins set to zero, from the
bins with the highest negative contribution to correct prediction. Accuracy, when time-
frequency bins are randomly set to zero, is represented by a random(orange) curve. The
shape of Lrp, lrp_rev and the distance between them show that LRP successfully finds
features positively contributing to correct prediction but is less successful in finding the
most important features that negatively contribute to correct prediction.

features in lower frequencies is similar to results obtained by previous experiments with
AlexNet in Section 6.1.

The faithfulness evaluation of the relevance heatmaps, produced by the combination of
three rules, can be seen in Figure 6.15. The method for this evaluation was again pixel-
flipping with the same meaning of individual curves as in previous experiments. The lrp
curve, where time-frequency bins with the most positive relevance values are set to zero, is
less steep in comparison to the previous evaluation (Figure 6.13), where only LRP-0 and
LRP-𝜖 rules were used. This change can be caused by the fact that LRP-𝛾 favors features
with positive relevance values over the features with negative relevance values. Therefore,
some time-frequency bins that are less important may have higher positive relevance when
using LRP-𝛾 over LRP-𝜖. On the other hand, the lrp_rev curve, where time-frequency bins
with the highest negative value are set zero first, is a lot less steep compared to using only
LRP-𝜖 and LRP-0 rules. This behavior suggests that the addition of the LRP-𝛾 rule better
separates and highlights features with a negative contribution towards correct prediction.

43



Figure 6.14: This figure shows heatmaps produced by LRP utilizing a combination of LRP-
0, LRP-𝜖, and LRP-𝛾 rules, where 𝜖 = 0.8 and 𝛾 = 5, on top of the VoxCeleb filterbank spec-
trograms augmented with music(top) and noise(bottom). The red-colored time-frequency
bins represent bins with positive relevance values (positive contribution towards correct
prediction). The blue-colored time-frequency bins represent bins with negative relevance
values (negative contribution towards correct prediction). In comparison to Figure 6.12,
the addition of the LRP-𝛾 rule caused even less noisy heatmaps. Also, it visibly divided
features with the positive and negative contribution to the correct prediction, which makes
these heatmaps even better and easier to interpret.

In conclusion, both combinations of rules, LRP-0 + LRP-𝜖 and LRP-0 + LRP-𝜖 + LRP-
𝛾, could highlight features important for correct speaker classification. According to the
results of pixel-flipping evaluations LRP-0 + LRP-𝜖 could find individual time-frequency
bins or smaller areas of important features better. On the other hand, the combination
of LRP-0 + LRP-𝜖 + LRP-𝛾 could better distinguish between features that contribute to
the correct prediction and the ones that do not. Additionally, this combination of rules
produced nicer heatmaps better for interpretation with decent faithfulness.

44



Figure 6.15: Results of pixel-flipping evaluation of LRP utilizing LRP-0, LRP-𝜖, and LRP-
𝛾, where 𝜖 = 0.8 and 𝛾 = 5, on ResNet model made on 20000 data samples. Lrp(blue) curve
represents a drop in model accuracy w.r.t. percentage of time-frequency bins set to zero
from the bins with the highest positive contribution to correct prediction. Lrp_rev(red)
curve represents a drop in model accuracy w.r.t. percentage of time-frequency bins set to
zero, from the bins with the highest negative contribution to correct prediction. Accuracy,
when time-frequency bins are randomly set to zero, is represented by a random(orange)
curve. The shape of lrp, lrp_rev and the distance between them show that LRP can be
considered faithful because it correctly highlights features important for correct or incorrect
prediction.

45



Chapter 7

Conclusion

The goal of this thesis was an interpretation of the deep neural network used for audio
classification, i.e., find features in data with high contribution to made prediction and
try to replicate results of gender classification from spectrograms originally presented by
S. Becker et al. [4]. Then with information obtained from previous results extend the
interpretation experiments further.

I successfully produced heatmaps similar to the ones presented in the original paper.
According to these heatmaps, used convolutional neural network made gender predictions
from spectrograms based on lower frequencies. Evaluation of these heatmaps with the
pixel-flipping method showed their faithfulness and uncovered low robustness of the trained
model. Even though this model achieved 97.8% accuracy in predicting correct gender, using
LRP, I found out that the predictions were based on a small number of spectrogram’s time-
frequency (TF) bins. Using the pixel-flipping method w.r.t. LRP, the model’s accuracy of
predicting correct gender dropped from 97.8% to only 10.8% when only 0.5% of TF bins
were set to zero. To extend these experiments and use information obtained from heatmaps,
I create an augmented training dataset w.r.t. heatmaps and re-trained the model. I manage
to make the re-trained model more robust, i.e. less dependant on such a small number of TF
bins, boosting its accuracy when 0.5% of TF bins were set to zero w.r.t. LRP from 10.8% to
28.67%. I further extended the experiments using LRP to interpret a more complex ResNet
model trained for the speaker ID classification task. Interpretation of this model showed
some negative effects caused by deep convolutional networks when using LRP-0 rule, such
as noisy heatmaps or checkerboard effect presented in heatmaps. I overcame these problems
using more robust LRP rules during propagation, creating less noisy and relatively easier
to interpret heatmaps.

For future work, I propose implementing LRP, or even other interpretation methods, for
more neural network layers and change the way of creating these layers during computation
so the computation of LRP can be modified and easily used for different models. Because
LRP is heavily dependent on the model’s architecture and needs to have access to its layer,
such generalized implementation could potentially make usage of interpretation methods
more common not only in the field of research. For example, LRP could be used as a form
of debugging for neural networks, i.e. by looking on heatmaps that highlight important
features in data, one could determine if these features represent desired behavior or not.
Another example is using interpretation methods as a tool to increase deep neural network
credibility among people, e.g. when a company creates a product using machine learning.

46



Bibliography

[1] Aggarwal, C. Neural Networks and Deep Learning: A Textbook. January 2018.
ISBN 978-3-319-94462-3.

[2] Arras, L., Osman, A., Müller, K. and Samek, W. Evaluating Recurrent Neural
Network Explanations. CoRR. 2019, abs/1904.11829. Available at:
http://arxiv.org/abs/1904.11829.

[3] Balduzzi, D., Frean, M., Leary, L., Lewis, J. P., Ma, K. W.-D. et al. The
Shattered Gradients Problem: If resnets are the answer, then what is the question?
In: Precup, D. and Teh, Y. W., ed. Proceedings of the 34th International
Conference on Machine Learning. International Convention Centre, Sydney,
Australia: PMLR, 06–11 Aug 2017, vol. 70, p. 342–350. Proceedings of Machine
Learning Research. Available at:
http://proceedings.mlr.press/v70/balduzzi17b.html.

[4] Becker, S., Ackermann, M., Lapuschkin, S., Müller, K.-R. and Samek, W.
Interpreting and Explaining Deep Neural Networks for Classification of Audio
Signals. CoRR. 2018, abs/1807.03418.

[5] Bishop, C. Pattern Recognition and Machine Learning. Springer, January 2006.
Available at: https://www.microsoft.com/en-us/research/publication/pattern-
recognition-machine-learning/.

[6] Brownlee, J. Loss and Loss Functions for Training Deep Learning Neural Networks
[online]. Machine Learning Mastery Pty. Ltd., october 2019 [cit. 2021-03-02]. Available
at: https://machinelearningmastery.com/loss-and-loss-functions-for-training-
deep-learning-neural-networks/.

[7] Chollet, F. et al. Deep learning with Python. Manning New York, 2018.

[8] Chung, J. S., Nagrani, A. and Zisserman, A. VoxCeleb2: Deep Speaker
Recognition. In: INTERSPEECH. 2018.

[9] Ding, B., Qian, H. and Zhou, J. Activation functions and their characteristics in
deep neural networks. In: 2018 Chinese Control And Decision Conference (CCDC).
2018, p. 1836–1841. DOI: 10.1109/CCDC.2018.8407425.

[10] Godin, F., Degrave, J., Dambre, J. and De Neve, W. Dual Rectified Linear
Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent
Neural Networks. Pattern Recognition Letters. september 2018, vol. 116. DOI:
10.1016/j.patrec.2018.09.006.

47

http://arxiv.org/abs/1904.11829
http://proceedings.mlr.press/v70/balduzzi17b.html
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/


[11] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[12] ML Practicum: Image Classification [online]. Google, september 2020 [cit. 2021-02-23].
Available at: https://developers.google.com/machine-learning/practica/image-
classification/convolutional-neural-networks.

[13] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. CoRR. 2015, abs/1512.03385. Available at:
http://arxiv.org/abs/1512.03385.

[14] Hui, L. Y. W. and Binder, A. BatchNorm Decomposition for Deep Neural Network
Interpretation. In: Rojas, I., Joya, G. and Catala, A., ed. Advances in
Computational Intelligence. Cham: Springer International Publishing, 2019,
p. 280–291. ISBN 978-3-030-20518-8.

[15] Karayiannis, N. and Venetsanopoulos, A. Artificial Neural Networks: Learning
Algorithms, Performance Evaluation, and Applications. January 1993. ISBN
978-1-4419-5132-8.

[16] Kohlbrenner, M., Bauer, A., Nakajima, S., Binder, A., Samek, W. et al.
Towards Best Practice in Explaining Neural Network Decisions with LRP. In: 2020
International Joint Conference on Neural Networks (IJCNN). 2020, p. 1–7. DOI:
10.1109/IJCNN48605.2020.9206975.

[17] Lapuschkin, S. Opening the machine learning black box with Layer-wise Relevance
Propagation. Berlin, 2019. Doctoral Thesis. Technische Universität Berlin. Available
at: http://dx.doi.org/10.14279/depositonce-7942.

[18] Lapuschkin, S., Binder, A., Montavon, G., Müller, K.-R. and Samek, W. The
LRP Toolbox for Artificial Neural Networks. Journal of Machine Learning Research.
2016, vol. 17, no. 114, p. 1–5. Available at: http://jmlr.org/papers/v17/15-618.html.

[19] Lapuschkin, S., Binder, A., Montavon, G., Müller, K.-R. and Samek, W.
Analyzing Classifiers: Fisher Vectors and Deep Neural Networks. In:. June 2016,
p. 2912–2920. DOI: 10.1109/CVPR.2016.318.

[20] Lapuschkin, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R.
et al. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation. PLoS ONE. july 2015, vol. 10, p. e0130140. DOI:
10.1371/journal.pone.0130140.

[21] Mehlig, B. Artificial Neural Networks. CoRR. 2019, abs/1901.05639. Available at:
http://arxiv.org/abs/1901.05639.

[22] Miller, T. Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence. 2019, vol. 267, p. 1–38. DOI:
https://doi.org/10.1016/j.artint.2018.07.007. ISSN 0004-3702. Available at:
https://www.sciencedirect.com/science/article/pii/S0004370218305988.

[23] Montavon, G., Binder, A., Lapuschkin, S., Samek, W. and Müller, K.-R.
Layer-Wise Relevance Propagation: An Overview. In: Samek, W., Montavon, G.,

48

http://www.deeplearningbook.org
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.14279/depositonce-7942
http://jmlr.org/papers/v17/15-618.html
http://arxiv.org/abs/1901.05639
https://www.sciencedirect.com/science/article/pii/S0004370218305988


Vedaldi, A., Hansen, L. K. and Müller, K.-R., ed. Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning. Cham: Springer International Publishing,
2019, p. 193–209. DOI: 10.1007/978-3-030-28954-6_10. ISBN 978-3-030-28954-6.
Available at: https://doi.org/10.1007/978-3-030-28954-6_10.

[24] Montavon, G., Samek, W. and Müller, K.-R. Methods for interpreting and
understanding deep neural networks. Digital Signal Processing. 2018, vol. 73, p. 1–15.
DOI: https://doi.org/10.1016/j.dsp.2017.10.011. ISSN 1051-2004. Available at:
https://www.sciencedirect.com/science/article/pii/S1051200417302385.

[25] Nagrani, A., Chung, J. S. and Zisserman, A. VoxCeleb: a large-scale speaker
identification dataset. In: INTERSPEECH. 2017.

[26] Nagrani, A., Chung, J. S., Xie, W. and Zisserman, A. Voxceleb: Large-scale
speaker verification in the wild. Computer Science and Language. Elsevier. 2019.

[27] Odena, A., Dumoulin, V. and Olah, C. Deconvolution and Checkerboard
Artifacts. Distill. 2016. DOI: 10.23915/distill.00003. Available at:
http://distill.pub/2016/deconv-checkerboard.

[28] O’Shea, K. and Nash, R. An Introduction to Convolutional Neural Networks.
ArXiv e-prints. november 2015.

[29] Park, Y.-S. and Lek, S. Chapter 7 - Artificial Neural Networks: Multilayer
Perceptron for Ecological Modeling. In: Jørgensen, S. E., ed. Ecological Model
Types. Elsevier, 2016, vol. 28, p. 123–140. Developments in Environmental
Modelling. DOI: https://doi.org/10.1016/B978-0-444-63623-2.00007-4. ISSN
0167-8892. Available at:
https://www.sciencedirect.com/science/article/pii/B9780444636232000074.

[30] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., Alché Buc, F. d', Fox, E. et al.,
ed. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
2019, p. 8024–8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[31] Ribeiro, M., Singh, S. and Guestrin, C. “Why Should I Trust You?”: Explaining
the Predictions of Any Classifier. In:. February 2016, p. 97–101. DOI:
10.18653/v1/N16-3020.

[32] Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage
and Organization (1958). In:. February 2021, p. 183–190. DOI:
10.7551/mitpress/12274.003.0020. ISBN 9780262363174.

[33] Samek, W., Montavon, G., Lapuschkin, S., Anders, C. and Müller, K.-R.
Toward Interpretable Machine Learning: Transparent Deep Neural Networks and
Beyond. March 2020.

[34] Samek, W., Montavon, G., Vedaldi, A., Hansen, L. and Müller, K.-R.
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. January
2019. ISBN 978-3-030-28953-9.

49

https://doi.org/10.1007/978-3-030-28954-6_10
https://www.sciencedirect.com/science/article/pii/S1051200417302385
http://distill.pub/2016/deconv-checkerboard
https://www.sciencedirect.com/science/article/pii/B9780444636232000074
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[35] Sathya, R. and Abraham, A. Comparison of Supervised and Unsupervised
Learning Algorithms for Pattern Classification. International Journal of Advanced
Research in Artificial Intelligence. february 2013, vol. 2. DOI:
10.14569/IJARAI.2013.020206.

[36] Sharma, S., Sharma, S. and Athaiya, A. ACTIVATION FUNCTIONS IN
NEURAL NETWORKS. International Journal of Engineering Applied Sciences and
Technology. may 2020, vol. 04, p. 310–316. DOI: 10.33564/IJEAST.2020.v04i12.054.

[37] Snyder, D., Chen, G. and Povey, D. MUSAN: A Music, Speech, and Noise
Corpus. 2015.

[38] Soni, D. The Vanishing Gradient Problem [online]. Towards Data Science Inc.,
march 2018 [cit. 2021-03-02]. Available at: https:
//towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d.

[39] Suzuki, K. Artificial Neural Networks - Methodological Advances and Biomedical
Applications. April 2011. ISBN 978-953-307-243-2.

[40] Swartout, W. and Moore, J. Explanation in Second Generation Expert Systems.
In:. January 1993, p. 543–585. DOI: 10.1007/978-3-642-77927-5_24.

[41] Theodoridis, S. and Koutroumbas, K. Pattern Recognition, Fourth Edition.
November 2008. ISBN 1597492728.

[42] Traunmüller, H. and Eriksson, A. The frequency range of the voice fundamental
in the speech of male and female adults. january 1995, vol. 2.

[43] Wang, C.-F. The Vanishing Gradient Problem [online]. Towards Data Science Inc.,
january 2019 [cit. 2021-03-02]. Available at:
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484.

50

https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484


Appendix A

Contents of the included storage
media

/
augmented_datasets/
data/
eval_data/

AlexNet/
speakerID/

figures/
interpretation/

__init__.py
interpret_methods.py
lrp_class.py

models/
AlexNet/
AudioNet/
customDataset.py
__init__.py
wrapper.py

SpeakerID/
thesis/
AlexNet_experiments.ipynb
AlexNet_pf_video.py
AlexNet_wrong.txt
cnn_lrp_demo.py
create_dataset.py
dataset_check.py
lrp_eval.py
README.md
relu.py
speakerID_eval.py
speakerID_experiments.ipynb
speakerID_heatmaps.py
speaker_lrp_demo.py

51



utils.py
enviroment.yml
LICENSE
thesis.pdf

Source files (.py and .ipynb) and how to setup an enviroment are described in README.md
in included storage media.

• augmented_datasets/ — datasets created using pixel-flipping method w.r.t.
heatmaps produced by LRP

• data/ — AlexNet spectrograms in .hdf5 format for demo

• figures/ — experiment figures used in thesis

• interpretation/ — source codes for Layer-wise Relevance Propagation

• models/ — AlexNet architecture, trained models and utilities for model loading,
training, evaluating and etc.

• SpeakerID/ — ResNet model and VoxCeleb data used for experiments

• thesis/ — LaTeX source code for thesis

• README.md — manual for running the code, loading enviroment and description
of .py and .ipynb scripts

• enviroment.yml — anaconda enviroment with dependencies

• LICENSE — code license

• thesis.pdf — Bachelor thesis in pdf

52


	Introduction
	Artificial Neural Networks
	Artificial representation of a biological neuron
	Activation functions
	Neural network training process
	Convolutional Neural Networks

	Understanding Neural Networks decision making
	Interpretable and explainable deep neural networks
	Layer-wise relevance propagation
	Other methods for neural network interpretation
	Requirement for neural network explainability methods

	Used datasets and deep neural network architectures
	AudioMNIST audio dataset
	VoxCeleb audio dataset
	AlexNet architecture
	Speaker ID classification model

	Solution design and implementation
	Machine learning libraries
	Existing solutions and proposed solution design
	Implementation of LRP for AlexNet and ResNet models

	Proposed experiments for audio signal interpretation
	Explanation of audio spectrogram gender classification
	Increasing robustness of model for gender classification
	Interpretation of speaker ID classification with ResNet model

	Conclusion
	Bibliography
	Contents of the included storage media

