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Abstract

With the growing popularity of deep neural networks, the lack of transparency caused by
their black box representation is raising demand for their interpretability. The goal of this
thesis is to gain new insights into deep neural networks in speech processing tasks. Specifi-
cally, gender classification task on AudioMNIST dataset and speaker classification task on
filterbanks from VoxCeleb dataset using convolutional and residual neural network. Layer-
wise relevance propagation was used for the interpretation of these neural networks. This
method produced heatmaps highlighting features that contributed positively and negatively
to the correct classification. As results of interpretation show, classifications were mainly
based on lower frequencies in time. In the case of gender classification, I managed to find
the model’s high dependency on a small number of features. Using obtained information, I
created an augmented training set that increased the model’s robustness.

Abstrakt

S rastiicou popularitou hlbokych neurénovych sieti, nedostatok transparentnosti spdsobenej
ich funkciou ¢iernej skrinky, zvysuje dopyt po ich interpretacii. Cielom tejto prace je ziskat
novy pohlad na hlboké neurénové siete v tlohach spracovania reci. Konkrétne klasifika-
cia pohlavia z AudioMNIST datasetu a klasifikdcia rec¢nika z filter bank VoxCeleb datasetu
s pouzitim konvolu¢nej a rezidualnej neurénovej siete. Na interpreticiu tychto neurénovych
sieti bola pouzitd metdéda propagécie relevancii cez vrstvy. Tato metdda vytvori tepelnt
mapu, ktord vyznac¢i priznaky, ktoré prispeli ku spravnej klasifikicii pozitivne a ktoré
negativne. Ako vysledky interpretacie ukazuju, klasifikdcie boli zalozené najmé na nizsich
frekvenciach v reci a case. V pripade klasifikacie pohlavia sa mi podarilo najst vysoku zavis-
lost modelu na velmi malom pocte priznakov. Pomocou ziskanych informécii som vytvoril
rozsireny trénovaci set, ktory zvysil robustnost modelu.
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Rozsireny abstrakt

V dnesnej dobe st hlboké neurénové siete velmi rozsirené a pouzivané v réznych oblastiach
aj mimo informacnych technolégii ako st napriklad zdravotnictvo alebo doprava. AvsSak
stale pre nas predstavuju akusi ¢iernu skrinku, do ktorej vchadzaja vstupy v podobe dat
napr. obrazok a vychddzaji iné déta ako napr. ¢o je na obriazku. Tento nedostatok trans-
parentnosti vyvoldava otazky ohladom spolahlivosti ¢i doveryhodnosti tychto neurénovych
sieti alebo ich odolnosti voéi Gtokom. Z tychto dovodov je v poslednej dobe zvyseny dopyt
po interpretacii hlbokych neurénovych sieti s cielom viac porozumiet ich spravaniu a odhalit
na zaklade akych vstupov robia svoje rozhodnutia.

Pretoze pre Tudi je jeden z najlepsich a najjednoduchsich spésobov ako niec¢o vysvetlit
vizualizécia, prave metédy, ktoré interpretujui rozhodnutia neurénovych sieti pomocou
vizualizacie su zatial najlepsia moznost. Toto je lahsie realizovatelné pri modeloch neu-
réonovych sieti vytvorenych a pouzivanych pre spracovanie obrazu oproti modelom pre spra-
covanie reci. Tieto metddy dokazu odhalit nedostatky alebo chyby neurénovych sieti, ktoré
vznikli napriklad pri trénovani modelu a mézu byt sposobené artefaktmi nachidzajicimi
sa v trénovacich datach. V minulosti boli odhalené modely pre klasifikdciu z obrazu, ktoré
vykazovali vysoku presnost klasifikacie na predpripravenych trénovacich a testovacich da-
tach, avsak spravna klasifikdcia bola zaloZené prave na artefaktoch alebo priznakoch Speci-
fickych pre dané data a nie pre klasifikovany objekt. Takéto modely sa nazyvaji “Clever
Hans predictors”. Priklad tychto modelov je klasifikdcia korna na obrazku na zaklade vodoz-
naku alebo rozlisenie medzi psom huskym a vlkom na zaklade pritomnosti snehu.

Jedna z metdéd pre interpretaciu neurénovych sieti a metéda pouzitd v tejto praci je
propagdcia relevancii cez vrstvy neurondvej siete (angl. Layer-wise Relevance propagation),
ktora vytvori tepelni mapu dat, vstupujicich do neurénovej siete, zvyraznujucu priznaky
alebo ¢asti vstupu ktoré st délezité pre splnenie danej tlohy. Uvod do neurénovych si-
eti a hlavne rézne metody pre ich interpretaciu so zameranim prave na Layer-wise Rele-
vance propagation je popisany v teoretickej casti na zaciatku tejto prace. V nasledujtcich
kapitolach st podrobnejsie popisané pouzité datové sady, architektiry neurénovych sieti a
implementacia propagacie relevancii cez vrstvy tychto neuronévych sieti. Datova sada Au-
dioMNIST skladajica sa z nahravok 60 Iudi spolu s konvolu¢nou neurénovou sietou ktora
méa AlexNet architektiru st pouzité pre klasifikdciu pohlavia z nahravky. Pre klasifikdciu
recnika je pouzitd VoxCeleb datova sada a rezidualna neurénova siet.

Natrénovanim AlexNet modelu sa mi podarilo dosiahnut spravnu klasifikdciu pohlavia
s 97.83% presnostou. Interpretdciou tohto modelu bolo zistené, Ze model klasifikuje na
zéklade nizkych frekvencii a, v tomto pripade, len na zdklade malého mnozstva priz-
nakov indikujicich nizku robustnost modelu. Pri nastaveni 0.5% najdolezitejsich casovo-
frekvencnych ramcov, vzhladom na vytvorené tepelné mapy, na 0, presnost modelu klesla
na 10.8%. Na zdklade ziskanych informécii a tepelnych map som rozsiril pévodnu tréno-
vaciu sadu a znova natrénoval model. Takto natrénovany model mal v pripade rovnakého
nastavenia 0.5% najdolezitejsich ¢asovo-frekvenénych rdmcov na 0, presnost 28.67%. Pri
klasifikacii recnika vytvorené tepelné mapy naznacuju, ze klasifikdcia je robena opétf na
zéklade nizsich frekvencii, tentokrat je vsSak dolezity aj vyskyt priznakov v case. Tieto
heatmapy sa daju povazovat do istej miery doveryhodné vzhladom na ich vyhodnotenie
metodou “pixel-flipping”, kde presnost siete klesne rychlejsie, ak sa na 0 nastavuji najdo-
lezitejsie ramce vzhladom na vytvorené tepelné mapy.
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Chapter 1

Introduction

Deep neural networks are, nowadays, heavily used as state-of-the-art solutions to problems
like image, audio processing, or natural language understanding. Yet, they still represent a
black box where input comes into the neural network and prediction comes out, but inner
decision-making remains hidden. By analyzing some high-performing models trained for
image classification, discoveries showed that predictions were dependant on artifacts such
as image watermark[19] or background[31]. Even though these models have high accuracy
of predicting ground truth on train or test datasets, the reasons for these predictions are
considered wrong. Such problems of the models are hard to uncover on limited datasets
and end up revealed after a while, if at all. As demand for explainable neural networks
is rising, more discoveries and experiments are made. Because the easiest way to explain
and understand something is through visualization, interpretation of image classification
models can be easily understood.

This thesis aims to bring more insight into how are deep neural network models making
their predictions in selected audio signal classification tasks. The first task is a gender
classification from speech recording processed as a spectrogram using a convolution neural
network with AlexNet architecture, following previous work on this topic presented by
S. Becker et al. [4], and Samek et al. [33]. The second is speaker ID classification extending
previously done experiments for a more complex audio classification task using a residual
neural network model.

The method chosen for interpretation for selected tasks is Layer-wise relevance propa-
gation. This method creates heatmaps highlighting relevant features in data that have a
positive and negative contribution to the correct prediction of the model. This method was
chosen because of its efficiency in computing such heatmaps and good human interpretabil-
ity of these heatmaps.

Chapter 2 describes artificial neural networks (ANN), their training process, and more
complex deep neural networks, specifically convolutional neural networks because it is the
main type of ANN used in this thesis. Chapter 3 is an introduction to the interpretation of
neural networks and provides information about different methods used for interpretation.
It describes Layer-wise relevance propagation (LRP) in more depth because it is a method
used for neural network interpretation in this thesis. Chapter 4 describes used datasets
and neural network architectures. Chapter 5 provides some insight into machine learning
libraries and the implementation of crucial parts of LRP computation. Chapter 6 describes
experiments with different models, produced heatmaps, and performed experiments.



Chapter 2

Artificial Neural Networks

Artificial Neural Networks (ANNs) are getting more popular in last few decades, especially
with increasing computer power. In recent years ANNs have been highly used in a variety of
tasks that are simple for humans but difficult for computers, such as image or voice recog-
nition, translation, processing a large amount of data, etc. This chapter briefly describes
the concepts of deep feed-forward neural networks used in this thesis.

2.1 Artificial representation of a biological neuron

Artificial Neural Networks represent a group of algorithms inspired by the structure of
a biological brain which consists of neurons and connections between them. Biological
neurons are cells connected with dendrites used as input (electrical signal) receivers and
axons, used for propagation of output to other neurons. Inputs are processed inside of the
neuron’s cell body and sent further to other neurons through the axon [39].

Although artificial networks are a significantly simplified version of how a brain works
and information is processed, the principle remains similar. Artificial neurons are connected
through weights representing dendrites [39]. Input data are scaled by weights and summed
with bias creating activation energy of a neuron as depicted in Figure 2.1.

In 1958 F.Rosenblatt[32] described Perceptron—a neural network model using only
one artificial neuron as described above. If the sum of input values scaled by weights is
larger than a selected threshold, the output is one, otherwise zero. Therefore it can only
solve binary linear classification problems.

Activation functions in neural networks simulate responses to input in a biological neu-
ron [9]. For a neural network to perform non-linear tasks, an activation function needs to
be used in a neuron. There are several activation functions used for different tasks prof-
iting from their advantages. Rectified linear unit (ReLU) is one of the most widely used
activation functions in neural networks, used mainly in hidden layers [15].

To make a neural network model the desired function, we perform training first, i.e., up-
dating weights of neurons w.r.t. input data and model output. Model training is performed
on a dataset (collection of input data) using a backpropagation algorithm (Section 2.3).

Depending on network architecture there are two main types of how a neural network
can learn, based on the provided data [15]. Supervised learning is based on training the
model with data samples pre-labeled with the correct class. This type of learning is mainly
used for regression and classification tasks, where a model is supposed to map inputs to a
labeled output. Unsupervised learning, on the other hand, is performed with previously
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Figure 2.1: Artificial representation of biological neuron. Image taken from [1].

unlabeled data. A goal of such model learning is to identify information and patterns in
provided data. This method can sometimes achieve better results than supervised learning
in the same tasks [35][38]. In this thesis, all models are trained with supervised learning,
specifically for classification problems.

2.1.1 Deep Neural Networks

Information presented in this subsection is obtained from [21, 13, 11]. Deep neural networks
are structured as a chain of several different connected functions. These functions represent
layers of the network and are composed as follows: input layer, hidden layers, and output
layer. The number of hidden layers determines the depth of the neural network. Utilizing
hidden layers that perform non-linear operations on inputs allows to better approximate
desired function f. There are different types of deep neural networks based on the infor-
mation flow or type of used layers. Neural networks where the information flows from the
input layer to the output layer are called Feed-forward neural networks. Neural networks
extended with connections that feed the model’s output to itself are called Recurrent Neural
Networks.

The goal of Feed-Forward neural network is to approximate some function f, i.e., map
one vector space onto another y = f(x;0) by learning parameters 6. Specific types of Feed-
forward neural networks are Convolutional neural networks or Residual neural networks.
Both convolutional and residual neural networks are used in this thesis. The residual neural
networks contain shortcut connections that perform identity mapping and skips some layers.
These shortcuts are a solution to the saturation followed by the degradation of accuracy
during training of deep neural networks.

2.2 Activation functions

Activation functions in neural networks define the “activity” of a neuron, i.e., the output
of the neuron and thus the output of a network. Neural networks (NNs) without activation
functions produce their output only as a linear function. Also, a multi-layer neural network
that uses only linear activation functions behaves just like a single-layer network and can
be simplified into one. Both models, NNs without activation functions and Multi-layer NNs



only with linear activation, represent linear models such as logistic regression and have their
limitations. Description of activation functions in this chapter is based on information from
[9][36][10].

Although linear models are simple, they perform well only on data that can be sepa-
rated linearly and do not benefit from a multi-layer architecture as non-linear models do.
The simplest example of an activation function is the Binary Step Function (2.1). It is
a threshold-based activation function, where the threshold value determines if a neuron is
activated (its output is used as input to neurons in the next layer) or not. This significantly
narrows Binary Step Function usage to only binary classification. Also, the gradient of this
function is zero. Therefore, such a network cannot be trained using back-propagation.

1 ifxz>0
in - o 2.1
Join() {0 if 2 <0 (2.1)

One of the most common and widely used non-linear activation functions is the Sigmoid
function. Sigmoid produces output values in the range (0,1) and is defined as follows

1
fsigmoid(x) = m ) (22)
where the derivate can be easily computed as
!/ eix
fsigmoid(x) = m ) (2'3)

which results in its broad usage in shallow neural networks with some significant disad-
vantage — Vanishing Gradient problem [43] [10]. This problem is caused by saturation
during the training process, specifically in regions where f(z) approaches 0 or 1, where
the gradient approaches zero. This results in minor to none output signal transmitted,
therefore weights of first layers are ineffectively updated.

Another activation function similar to the sigmoid is the Hyperbolic Tangent function
also called the Tanh function. Unlike the sigmoid, tanh is symmetric around the origin and
produces a value in the range of (—1, 1) and is defined as follows

ftanh(x) = 2fsigmoid(2$) -1 s (24)

where fgigmoid is from Equation 2.2. Tanh is preferred over sigmoid because it has a steeper
gradient that converges faster and has lower classification error. However, computing the
derivative is more difficult for the Tanh function than for Sigmoid and Tanh also suffers
from the vanishing gradient.

However, the most popular activation function in deep neural networks is the ReLU
function and its optimizations. ReLU stands for Rectified Linear Unit and is defined as

ifx>0
Fretu(z) = max(0,2) =4 T (2.5)
0 ifxz<O

ReLU solves the vanishing gradient problem because the derivative is constant 1 for numbers
greater than zero, the derivative function is defined as

) 1 ifz>0
= 2.6
frelu(x) {O ifr<0 ( )
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The absence of exponential functions during computation makes the usage of ReLLU more
efficient and cheaper compared to Sigmoid or Tanh. Another improvement achieved by
using the ReLU function is that not all of the neurons are activated at once. Unlike models
utilizing Sigmoid or Tanh functions where all neurons are activated at the same time, with
ReLU artificial networks can function a bit more like the biological neural network in the
brain, where only a small fraction of neurons are activated simultaneously. This boosts the
efficiency in learning by allowing the model to acquire sparse activations in case of input
being lower than zero. On the other hand, when input is > 0, the model can obtain a large
number of features from data provided during training [10].

The main downside of the basic ReLLU function is its left side saturation since the
derivate constant is zero when x < 0, causing some neurons to become permanently deac-
tivated. Weights of the dead neurons will no longer be updated during the training, which
has a negative effect on a whole deep neural network. In order to eliminate the dying ReLLU
problem a modified version of ReLLU called Leaky ReLU(LReLU) is used, comparison shown
in Figure 2.2. The solution lies in a small constant such as 0.01 that determines the slope
of the function for negative values. Leaky ReLLU gradient for inputs < 0 is a small constant
and not zero, thus no neuron can be permanently deactivated, potentially creating a dead
part of the deep neural network [10][43].
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Figure 2.2: Comparison of ReLU(left) and LReLU(right) activation function with slope
coefficient of 0.01

Another variation of ReLU is Parametric Rectified Linear Unit (PReLU). In this case,
the parameter for the left side of the function for inputs < 0 is learned during training
unlike in LReLLU where the parameter is a constant given in advance.

2.3 Neural network training process

Training a neural network, also called learning of the neural network, is a process that
aims to make the neural network model the desired function, i.e. to minimize the error



between the neural network output and dataset targets, by updating the values of the
model parameters. This process is performed in two phases, forward and backward.

In the forward phase, input data from a training dataset are fed into a neural network
creating a computational graph across the network as the data flows from an input layer
towards an output layer (assuming the Feed-forward neural network architecture), using
current weight values. The output of the neural network from the forward phase is used
to compute an error of network w.r.t. observed target from a dataset. In the backward
phase, the gradient of the error function is computed and weights are updated (e.g. using
stochastic gradient descent). The most used algorithm to compute gradient in the backward
pass is the back-propagation. Paired with a learning algorithm such as gradient descent,
it allows more simple and efficient learning in comparison to finding the best weights by
brute force. Especially in multi-layer models, the error of a model is not a simple function
of its weights [11]]29].

Loss function

One of the optimization steps in neural network training is evaluating how far the prediction
is from the correct value presented in a dataset, i.e., error of the set of weights in a model.
The model is evaluated with a function called the objective function. Usually, in neural
network models, the aim is to minimize the function. In that case, the objective function
is called the loss function, also referred to as the cost function. The product of the loss
function, evaluating how far off the prediction of the network is, is called “loss” or “cost”.
Loss functions can be divided into two groups, for regression and classification problems,
based on the type of task a neural network is designed for [1][6].

In regression problems, neural networks aim to approximate a mapping function with
numerical or continuous output. For regression problems, some of the basic loss functions
are the mean absolute error (MAE), or the most used, mean squared error (MSE)

1 N
n Z(tn - yn)2 ) (27)
n=1

where t,, is the true value, y, is the predicted value, and N is the number of data points.
However, mean or least squared type errors can lead to a solution highly dependent on a
small number of edge points. These points are also called outliers and have a lot higher
values than the rest. Such errors are prone to incorrectly labeled data and can be solved
by using more robust loss functions [41][6].

Classification problems on the other hand aim to approximate mapping function with
discrete output usually as positive integers representing different classes or labels. However,
the output can be a continuous value when predicting a probability. This probability is
often interpreted as the likelihood that given input belongs in the predicted class. Mostly
used loss function for classification problems is the cross-entropy [5]

N K
L(W) = - Z Ztkn lnyk(XmW) 5 (28)

n=1 k=1

because it computes the error between probability distributions [7][6]. In this case, a train-
ing set is composed of a set of input vectors {x,}, where n = 1,..., N and a set of cor-
responding target vectors {tx} € {0,1}. K represents the number of classes and y;, is the
output of a network, where w is a learnable parameter.



Back-propagation

The back-propagation algorithm can perform an inexpensive computation of the gradient.
This computation is performed from the output layer to the input layer during the backward
phase of the model training. The loss function is, in this phase, used to compute the gradient
w.r.t. network weights using the chain rule of differential calculus.[1][11].

This algorithm assumes that a neural network has a set of hidden layer inputs A1, ho...hg,
followed by output o, loss function L, and the weights between two layers h, and h,1 are
W(h, hy.1)- 1f only one path from hl to o exists, the gradient can be computed as follows:

vrel. k. (2.9)

8w(h5—17hr) a %

oL 0L | do - Ohiy1 Oh,
8w(he—17hr)

ohi 11 "o,

In a multi-layer neural network, the number of these paths grows exponentially. So many
paths can seem to be difficult and computationally demanding to solve. However, the
computational graph of a neural network is acyclic, and the chain rule can be computed
recursively from the layer closest to the output o using dynamic programming. Therefore,
the expression for computing gradient for a set of paths P is generalized equationl described
as:

oL L 5 0o 1 Ohisy | Oh,

- = . 2.10
aw(h6717h7,) 80 ( )

[hr,hr+1,...hk,o]EP 8hk i=r ahz 8w(hefl7h7')

The previous information about computing the gradient using the chain rule and respective
equations were acquired and are described in more detail in [1].

2.4 Convolutional Neural Networks

Convolutional Neural Network or CNN is a special type of Feed-forward model with state-
of-the-art performance in tasks focusing on pattern recognition such as image or voice
recognition. To process more complex data such as image data and lower the computational
complexity CNNs utilize convolutional and pooling layers. A big improvement over classic
neural networks lies in the reduced number of learnable parameters using convolutional
layers, which results in an efficiency boost when computing an output or training the model.
Another advantage is the presence of Equivariance and Invariance to the translation of input
features [11]. Equivariance means that output changes as input changes, allowing detecting
edges and shapes in different places through the image, or in time-series data showing
where features are present in time. This is achieved using shared weights in convolution.
Invariance, on the other hand, reduces the importance of the precise location of features,
when it does not matter whether a detected object is on the left or right side of an image.
Pooling layers allow the CNN to be invariant to some translations of the input.

The architecture of a Convolutional neural network usually consists of an input layer,
convolutional layers alternating with pooling layers implementing, for example, the max-
pooling method shown in Figure 2.3. The neural network is completed by fully connected
layers producing scores for classification. The convolutional layer produces activations that
are used as inputs to the non-linear activation function, such as ReLLU. Subsequently pooling
layer performs down-sampling of the output of activation functions.
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Figure 2.3: Convolution Neural Network basic architecture. Taken from [12].

Convolutional layer

The convolution layer plays a significant role in how the Convolutional neural networks
work and their success in solving tasks with grid-like data topology. Convolution can be
defined as an operation of two functions producing a third function and it is given as

s(t) = /x(a)w(t —a)da, (2.11)

denoted with an asterisk
s(t) = (xxw)(t) , (2.12)

where z is an input function and w is a weighting function called the kernel. Because data
in the computer are processed as discrete and convolution is usually used over more than a
single dimension, it can be defined as discrete convolution with two-dimensional input and
kernel as follows

S(i,j) = (K« I)(i,5) = Y Y _1(i —m,j—n)K(m,n). (2.13)

This form of the equation is achieved because of commutative property, by flipping the ker-
nel relatively to the input. In CNNs convolution is often implemented as cross-correlation
achieving the same results without the need of flipping the kernel

S(i,j) = (K = I)(i,5) = > Y _I(i+m,j+n)K(m,n). (2.14)

Convolutional Networks trained using convolution would learn the same values of parame-
ters, but they would be flipped [11].

Unlike the classic ANNs, where the relation between each input and output unit is de-
termined by a specific parameter, in CNNs, kernels allow detecting features more effectively
and significantly reduce the number of stored parameters. This is called sparse connectiv-
ity because a single input unit does not connect to all output units but only to a few based
on the kernel size and vice versa the output is not affected by all input units. For example,
a neural network layer for processing an RGB-colored image of size 64x64x3 would have
12288 parameters, whereas using a kernel of size 6x6x3 produces only 108 parameters.[28]
In the convolutional layer, kernels convolve along the input producing activation maps, and
thus each weight value of kernel is used on every input unit. This is referred to as weight



sharing, and it is another characteristic present in the convolutional layer that increases
the effectivity of CNNs over ANNs. This is based on the hypothesis that one set of learned
features can be present in multiple regions in the input, and therefore it is redundant to
learn the set of features more than once.

Pooling layer

The purpose of the pooling layer is to downsample the output of the convolutional layer.
The reduction in spatial dimensions is achieved by replacing the input with a statistic of
neighboring input units in a particular region. In this thesis, the max-pooling function,
shown in Figure 2.4, will be used. It downsamples the input by taking only the max value
in the neighborhood of a particular size. The size of the max-pool kernel should not be
larger than 3 due to the destructive effect of the max-pooling layer [28].

max-pooling

Figure 2.4: Max-pool function with kernel size 2 and stride 2

There are other popular pooling functions such as an average of a neighborhood or a
weighted average of a neighborhood, where weights are based on the distance of the input
unit from the center of the kernel. In addition to decreasing the number of the parameters,
the pooling layer allows the network to be invariant to some translations made in small
regions [11].
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Chapter 3

Understanding Neural Networks
decision making

Artificial neural networks (ANNs) as part of Artificial Intelligence (A.I.) is state-of-the-art
technology with broad use in various industries such as information technology, engineering,
e.g. self-driving cars, medicine and others. It increases the productivity and capability of
these industries to produce discoveries, technologies, or products that otherwise would
either not have been discovered or they would have taken significantly more time. ANNs
(mentioned in Chapter 2) are capable of performing tasks difficult if not impossible to solve
with other programming approaches. Tasks such as image or voice recognition, natural
language understanding, or creating something new. This chapter describes what are the
ANNSs learning, what they “see”, or what has a significant impact on their functioning, as
well as methods for obtaining this information, i.e. interpreting the ANNs.

3.1 Interpretable and explainable deep neural networks

Even though ANNs are nowadays heavily used, they are still a black box in behavior and
decision-making. Lack of transparency of the neural networks’ decision-making process and
learned patterns may lead to a problem, where if something goes wrong it is hard to say what
exactly. Another vulnerability is adversarial attacks against neural networks in speech and
image recognition and/or classification. Besides, the lack of transparency of these models
increases distrust in neural networks’ decisions and their accuracy. The lack of trust, in this
case, is legitimate as, for example, deep neural network models’ decisions and performance
in image classification are extremely good on train and validation datasets, but they may
fail in real-life applications. Some neural networks, for example, in image recognition, may
perform very well on validation datasets predicting correct outputs but, their predictions
are based on artifacts in images such as background or a copyright watermark. Such
neural networks are called Clever Hans predictors, and an example of such predictions
could be a classification of a horse[19] or garbage truck[33], shown in Figure 3.1, based on
the watermark present in the image. Another example presented in the [31] shows that a
logistic regression classifier distinguished husky and wolf based on snow in the background.
These flaws could remain, as in the horse classification, unnoticed for a very long time.
Because of the mentioned cases, sometimes it is hard to verify deep neural network models’
credibility outside prepared datasets. Methods for explaining these models are researched
and developed to provide information about models and their potential flaws.

11
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Figure 3.1: Image (right) and its heatmap of pixels relevant to the model prediction.
This heatmap uncovers a Clever Hans predictor, because as can be seen, the logo is high-
lighted.(Taken from [33])

According to the [33], at first, there were attempts to explain predictions of machine
learning models on a global scale by verifying that the output function of a model produces
high values only for correct targets. These approaches did not shed any light on what
features are important for the prediction. Therefore, methods based on the idea of Pixel-
wise decomposition[20] become popular. These methods aim to produce an output that
determines how relevant to the model is each pixel. Methods producing heatmaps, which
show the contribution of each pixel, are described and compared in this chapter.

Explaining deep neural networks comes with three main difficulties as the models are
more complex [33]. The complexity comes from the number of layers that perform linear
and non-linear transformations on the input. In such networks of layers some neurons are
activated by the small fraction of data points, whereas other neurons are activated more
globally. Thus the output of the neural networks is affected by global as well as local effects
in the input. The second difficulty comes from the presence of a shattered gradient[3] effect
in ReLU neural networks with higher depth, where the gradient becomes more noisy. This
can cause problems in explanation methods that depend on the usage of the model’s gradient
such as sensitivity analysis or simple Taylor decomposition[24]. The last difficulty is finding
a reference point as the base of the explanation. The reference point is some root point,
which is not present in actual data, that some methods use to compute an explanation.
For example, the output can change rapidly based on the reference point, but the reference
point itself does not carry any significant information for further interpretation.

Interpretation of speech classification

Applying different explanation methods in image classification revealed new information
about neural network models, for example, uncovering Clever Hans predictors. With the
success of these methods, they are gradually starting to be used in other domains. Here we
give an example of speech classification, specifically, predicting gender from audio record-
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ings. Because one of the best ways, how to interpret neural networks is through visual-
ization, interpretation of audio signals can be more challenging than image interpretation.
To gain new insight into speech classification, several experiments were proposed in [4] and
[33]. The experiments were done on raw waveforms and audio spectrograms. Layer-wise
relevance propagation (Section 3.2) was chosen as an explanation method for used CNN
models. In both cases, raw waveforms and audio spectrograms, LRP highlighted features
based on their contribution to the prediction. Blue features have negative relevance on the
prediction, whereas red features have positive relevance towards correct prediction.

Raw waveform explanation is presented in Figure 3.2, showing that the model’s predic-
tion was based on the outer hull[33][4]. However, this information is hard to interpret for
an observer.

audionet | gender | vp47 | digit O | rep. 16 | prediction 1
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Figure 3.2: Explanation of audio signal based on raw waveform acquired by LRP. Taken
from [33]

To raise interpretability for people observing the results, the same method (LRP) was
used for a second model that was trained and explained on spectrograms. Spectrograms
provided more information about the model and revealed that gender predictions depended
mainly on the lowest fundamental frequencies and immediate harmonics[42] (fig. 3.3).

3.2 Layer-wise relevance propagation

Layer-wise relevance propagation (LRP) belongs to a group of backward propagation tech-
niques for explaining deep neural networks utilizing their layered structure. These tech-
niques scale better when used on complex deep neural networks than simple gradient-based
methods [24]. Considering a deep neural network as a series of connected layers as in [33]:

fl@)=fro o filz), (3.1)

where z is the input of the network and f; if the function performed by lth layer in the
network. LRP computes activation scores in forward pass and subsequently propagates the
output score f(x) in backward direction towards the input layer using propagation rules[24]
(subsection 3.2.1) as shown in Figure 3.4.

The propagation process is conservative analogous to Kirchhoff’s current law in electrical
circuits [34]. In neural networks, this means that all activation energy or relevance (in
backward propagation) flowing into the neuron has to flow out of the neuron, i.e. be
redistributed into the lower layer. Conservation property for neuron k is described in [24]
as:

Z Rj =Ry, (3.2)
J

13



female sample male sample

gender | vp12 | digit O | rep. 14 | prediction 1

gender | vp2 | digit O | rep. 13 | prediction O

4kHz

correct

2kHz

2kHz

incorrect

Figure 3.3: Explanation heatmaps of audio signal based on spectrogram acquired by LRP.
Taken from [33].

where j and k are indices for neurons of two successive layers and Ry, is the relevance
of a neuron k at the upper layer. R, represents redistributed share of relevance R}, into
the neuron j in the lower layer. Similarly, the relevance of neuron j in the lower layer is
the sum of the relevance propagated from an upper layer:

Rj=) Rjcy . (3.3)
K

These relevance values, which are propagated up to the input layer, make the final heatmap.
Heatmap represents data points with positive and negative contributions to a model pre-
diction.

3.2.1 Different LRP propagation rules

The information in this subsection is obtained from [34][16][17]. The simplest basic LRP
propagation rule denoted as LRP-0 redistributes relevances of the upper layer in proportion

to inputs of given layer
a; Wik
R; = E 2Ry, 3.4
> a]wjk (34)

where I; is relevance of given layer j and R}, is relevance propagated from previous layer
k. Input of the neuron in given layer j is a; and w;k is weight connecting layer j with
layer k. Although this rule satisfies properties such as (a; = 0) V (w;: =0) = Rj =0,
applying only this rule on the whole network produces a similar result as explaining via
Gradientx Input. The gradient in deep neural networks can be noisy, therefore, more robust
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Figure 3.4: Illustration of how each neuron redistributes all relevance (or activation energy)
flowing into it from the lower layer into the upper layer. Image taken from [33].

rules are a better option for explaining such networks. In addition to LRP-0, enhanced rules
were proposed to increase the explainability of deep neural networks.

The first improvement from basic LRP-0 consists of constant value € added to the
denominator. This improvement is denoted as LRP-€[17]:

R: =
! zk:Zo,j“j

aj Wik
Wik + € - sign(d g ; ajwi)

Ry, . (3.5)

The addition of € causes small or contradictory relevances of neuron k£ to be absorbed.
Only the most significant features are propagated as the value of € grows. Explanation
utilizing this rule tends to be less noisy with fewer input features presented in a heatmap
than explanation made by uniform usage of LRP-0.

Another possible improvement from LRP-0 is a rule denoted as LRP-vy (equation 3.6)
is achieved by disproportionately favoring the positive contribution of relevances.

" a; - (wjk +ywj,)
7= Z , . -
& Zo,j aj - (wik + ’ijk)

(3.6)

The value of v determines how much are positive relevances favored over negative ones. By
limiting the growth of negative and positive relevances, LRP-y explanation becomes more
stable, smooth, and less noisy. Although the LRP-af rule [20] was originally proposed
as a method for treating positive and negative relevances in a disproportion fashion, the
equivalent result can be achieved by choosing gamma in LRP-~.

Even though the above rules provide an enhancement in some way over LRP-0, using
any of them uniformly results in suboptimal results. According to [23], every rule has a
negative effect in terms of faithfulness and understanding of interpretation when used uni-
formly. LRP-0 produces a noisy heatmap by highlighting many local artifacts, resulting
in unfaithful and inexplicable explanation. LRP-¢ produces a faithful heatmap by high-
lighting relevant features, but they are too sparse to be easily interpretable. LRP-v, on
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Figure 3.5: Pixel-wise explanation of castle in the image using different LRP rules with
parameters v = 0.25, € = 0.25. Taken from [23]

the other hand, highlights features more densely than LRP-¢ but picks unrelated features
as relevant, making this method to be considered unfaithful. The best explanation was
achieved by combining all three rules in one network using different rules for different parts
of the network as shown in the Figure 3.5.

3.2.2 How to implement LRP rules for different neural network layers

Efficiency plays a great role in computing and can save a lot of time. The rules presented
in the Subsection 3.2.1 can be generalized into one Equation 3.7, allowing them to be
implemented efficiently [23].

a;p(w;k)
R J J R . 3.7
= TS ayplu (3.7

Rho represents a copy of a given neural network layer to whose weights and biases was
applied a mapping function § —— p(f) and € is small increment. The propagation of
relevance is made in four steps [23]: The first step(1) is a forward pass through a copy of
a given layer. The second(2) and fourth(4) steps are division and product, respectively,
element-wise operations. The third(3) step is a backward pass of relevance, which can be
also computed as a gradient [23].

LVt zp =€+ )5 aip(wj)
Vi @ sk = Ryi/zk

Vi cj = 2o p(wik) - sk
\V/k : Rj = a;Cj

The information below, about relevance propagation through different neural network
layers is obtained from the thesis by Lapuschkin [17]. Relevance propagation implementa-

16



tions mentioned below are only for layers present in the model architectures used in this
thesis. The backpropagation implementations below assume that, in general, the mapping
of from neurons x; at one layer to neuron x; at the other layer is computed as an equation

Ty = lewl] + bj s (38)
%

where x; is the input neuron of layer 4, w;; is the value of weight connecting neuron z; with
neuron x;, and b; is bias.

Linear layers that perform a linear transformation on the input using weights, such
as fully connected layers and convolutional layers. Relevance propagation in backward pass
through these layers is implemented as

(Li+1) TiWgi (I+1)
R, S 2wy b, R . (3.9)
Equation 3.8 can be adapted to implement relevance propagation through pooling layers,
specifically to this thesis, average- and max-pooling. Average pooling layers can be
implemented as convolutional layers, where all weights have the value of w = %, where n is
the number of input neurons. Max pooling layers implement function

xj = max(z;) , (3.10)

where the output neuron z; is assigned to a single maximal value from all of its input

neurons x;. Therefore, in backward propagation, the incoming relevance value R;Hl) is
propagated to the single neuron x; with maximal activation value as follows:

(+1 (o
Rﬁ’_l;rl) _ R; if arg max;(z;) . (3.11)
0 else
Backward pass through ReLU activation functions uses the identity rule[14], RZ@ = Rz(lﬂ).
Batch normalization layers implementing function
X —
p= 2 HB 5, (3.12)

\/O’%-l-é

where v and § are parameters learned during a model training. pp is the mini-batch mean
value, and 0% is the mini-batch variance, both values are fixed after the training. € is a
small constant preventing division by zero. The batch normalization, in a forward pass,
can be computed as a sequence of equations:

x' =x—pup (3.13)
x'=x"s (3.14)
z=x"+8 (3.15)

where s is a substitution from the equation, s = v - (0% + €) 2. The backward pass of

relevance through equations 3.13 to 3.15 creates an equation [17]

(i+1)
RO — % 7 (3.16)

where © is element-wise multiplication.
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3.3 Other methods for neural network interpretation

Beside Layer-wise relevance propagation and its use of the structure of neural networks,
methods based on other principles were proposed to gain new insights into neural networks.
These methods do not use layers as such but rely on different aspects of neural networks.
They aim to explain models using approaches such as gradients in combination with input
data, various analyses of model sensitivity to certain input features, and their perturbations.
In this section, some of these methods are mentioned, and later in section 3.4 described
their advantages and disadvantages.

3.3.1 Occlusion

Another method available to explain neural networks is Occlusion analysis [33][2]. It is a
specific type of perturbation analysis, where during neural network analysis, input features
or whole patches are being occluded. For example, when explaining models trained for
image classification, square regions of the input image are replaced with grey or zero values.
The relevance is obtained by measuring the effect of occluded regions on the prediction and
accuracy of the explained model. However, the relevance can be computed in two ways,
based on the problem the neural network is used for. In terms of prediction, the heatmap
is built from scores computed as the difference between functions.

Rfci = fc(x) - fc($|:ci:0> . (3.17)

Regions or features that caused the biggest decrease in prediction accuracy are highlighted
in such heatmap, this type of occlusion is also referred to as Occlusiony_g;rr. In terms
of explaining classification, it is computed as the difference between probabilities £ and
perturbed x|, —o:

R:):i — Pc(m) - Pc(x|zi:0) ’ (318)

and referred to as Occlusionp_g;py. Because visual artifacts can occur in heatmaps pro-
duced by occlusion of input images, there were proposed enhancements such as inpainting
the patches instead of setting them to grey [33].

3.3.2 Gradient based explanations

Integrated Gradients is one of the methods for explaining deep neural networks based on
their gradients. Another variant is, for example, SmoothGrad[33]. The Integrated Gradient
method utilizes sensitivity of backpropagation methods and implementation invariance of
gradients[3]. On the other hand, it suffers from the shattered gradient problem. This
problem can be minimized by averaging relevance scores of multiple integrations paths as
proposed in the experiments by W. Samek and G. Montavon[33]. Let f : R™ — [0,1] be
a function representing some deep neural network, £ € R™ networks input, and ' € R"
networks baseline input, for example, a black image in computer vision. The Integrated
Gradient defines relevance scores of features, where these scores are produced by integrating
gradients along a straight path from 2’ to . Integrated Gradient along i*" dimension[3] is
defined as: . , ,

R:Ci:(xi—a;;)-/ of@ta-@-2), (3.19)

a=0 Oz;

This method satisfies completeness because the sum of the attributions is equal to the differ-
ence between function f with input x and baseline x’. The baseline for most networks can
be chosen as f(z') = 0 therefore the attributions are propagated among input features|3].
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3.4 Requirement for neural network explainability methods

Methods described in Sections 3.2 and 3.3 implement different approaches towards neural
network explainability. Therefore, every one of them produces slightly distinct relevance
scores and heatmaps. In computer vision, for example, LRP tends to highlight features
mostly in favor of positive relevances. The occlusion method highlights important regions
in the image. And the integrated gradient highlights relevant pixels but shows more negative
relevance in heatmap than LRP, Figure 3.6.

Occlusion

IG

LRP
>

Figure 3.6: Preview of heatmaps obtained by Occlusion, Integrated Gradient and Layer-wise
relevance propagation (top to bottom) in correct classified images of ’space bar’, ’beacon/-
lighthouse’, ’snow mobile’, 'viaduct’, ’greater swiss mountain dog’ (left to right). Figure
taken from Transparent Deep Neural Networks and Beyond [33].

Neural networks are, in general, evaluated by how reliable their predictions are, i.e. how
high is the probability that their predictions will be correct. To determine the usefulness
of neural networks explanation is more complicated because there is no ground truth in
such explanations. Several aspects were proposed to help evaluate if and how big an im-
pact explanation methods have on neural network’s performance. Information about the
following requirements for explanation methods is obtained from William Swartout and Jo-
hanna Moore’s conference paper [40] and Transparent Deep Neural Networks and Beyond
article [33].
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Faithfulness

Faithfulness as a property of methods for neural network explanation is associated with
how the explanation is created. An incorrect or confusing explanation of a neural network
model is not useful and can provide misleading information about the model, possibly
causing more problems than an unexplained model. Explanations must be based on the
same knowledge as is the model’s decision-making to accurately and faithfully represent
its decision structure. Pizel-flipping is a method for determining the faithfulness of the
explained model. The Pizel-flipping method is based on removing the most relevant pixels
from an input image and evaluating changes in the model’s output. As relevant pixels or
features begin to disappear from the input, the model accuracy, i.e. probability of correct
prediction, should be decreasing, Figure 3.7.
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Figure 3.7: Experiment for determining faithfulness of different explanation approaches on
image classification model. As we can observe Integrated Gradient method(bottom picture
of a dog) found pixels on which model depends the most. Although the input image nearly
does not change for the human eye, the prediction accuracy drops drastically [33].

Even though faithfulness determines if the explanation highlights relevant and compre-
hensive features of the model, it does not ensure an easily interpretable explanation for a
human observer.

Interpretability

The intention for research and use of interpretation methods is to gain, to some extent,
insight and try to understand the black box that neural networks are. For this to be
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successful, explanations produced by these methods need to be interpretable to humans.
According to Miller [22], “most of the research and practice in this area seems to use the
researchers’ intuitions of what constitutes a ’'good’ explanation”. It is hard to define what a
good explanation is because different people may interpret the same explanation differently,
based on their knowledge and capabilities. Miller [22] also highlights findings important for
explainable AI. Some of these findings are that:

o referring to causes is, for people, more important than referring to probabilities, or

o people are more likely to ask “why event P happened instead of some event Q”[22]
than why event P happened

In [33], the interpretability of different explanation methods for image classification models
is measured based on the produced explanation’s file size. This comparison shows that
occlusion produced the smallest file size, roughly showing where important features are
located, therefore, it should be the best for interpretation.

Applicability

Other important characteristics of explanation methods are applicability and runtime. Ap-
plicability determines if a method can be applied to a variety of neural network models,
including those which are the subject of research, and how easy the implementation of
the method is. Runtime determines computing efficiency, how many resources and time
the method needs to produce the explanations. According to the results of the comparison
between Occlusion analysis, LRP, and Integrated gradients method presented in [33], Occlu-
sion analysis is the easiest to implement and can be obtained for every network. However, it
is the slowest among the three. LRP, on the other hand, is the fastest method but assumes
that a model has the structure of a neural network consisting of a sequence of layers.
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Chapter 4

Used datasets and deep neural
network architectures

The usage of LRP for interpretation requires access to the internal structure of a neural
network. It is crucial to understand the input data to accurately interpret neural network
decisions. This chapter describes datasets used for interpretation of two speech classification
models for gender classification using spectrograms (AudioMNIST dataset) and speaker ID
classification using audio filter banks (VoxCeleb dataset). Another part of the chapter
describes deep neural network models used with these datasets. The AlexNet model is
used with AudioMNIST and ResNet with Voxceleb dataset, showing their architecture and
produced outputs.

4.1 AudioMNIST audio dataset

To replicate and extend experiments proposed by S. Becker et al.[4] the same dataset and
model are used. This dataset was originally used for the interpretation of both digit and
gender speech classification models. Tt consists of audio recordings (spoken digits 0 —9) of
60 different speakers of various nationalities and age, where 12 speakers are females and 48
males. Each speaker has 500 recordings, where every digit (0 — 9) is repeated ten times,
producing a total of 30000 audio recordings.

The raw audio samples were recorded with a 48kHz sampling frequency, stored as a
.wav file. These samples were preprocessed into spectrograms (Figure 4.1) with python
script included in the AudioMNIST repository. At first, the recordings were downsampled
to 8kHz and zero-padded into 8000-dimensional vectors. Then, spectrograms were created
using Short-time Fourier transform with Hann window, 455 samples per segment, and
overlapping segments with the size of 420 samples per segment. Produced spectrograms of
audio recordings had size of 228 x 230 (frequency x time). The highest frequency bin and
last three time segments were cropped, creating spectrograms with the size of 227 x 227.
The amplitude was converted into decibels using d = 20log; ﬁ, where d is result in
decibels, a is spectrogram amplitude and a,.y is reference amplitude (a,.y = max(a)).

The preprocessed data were reduced to 24 speakers (12 female and 12 male chosen
randomly) and split into three disjoint splits: training, validation, and test split containing
6000, 3000, and 3000 recordings, respectively.
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Figure 4.1: Spectrograms of AudioMNIST recordings, female(left) and male(right) speaker.

4.2 VoxCeleb audio dataset

Features from VoxCeleb[25][26][8] audio dataset were used to extend interpretation exper-
iments to a different task such as speaker classification. This dataset was chosen because
I obtained a neural network model pre-trained on features from this dataset for a speaker
classification task. In particular, the data were from the VoxCeleb2 dev dataset containing

seconds

Figure 4.2: Spectrograms of VoxCeleb features augmented with music(top) and
noise(bottom).
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speech recordings of 5994 individual speakers and its augmentations with music and noise
from the MUSAN([37] dataset. Features used for model training and interpretation exper-
iments are 64-dimensional filterbanks showed in Figure 4.2. In every dimension, the mean
value is normalized to 0, and each frame represents 25ms of speech with a 15ms overlap.
Each file with 64 x 200 features corresponds to a two-second segment of the recording.

4.3 AlexNet architecture

For the gender classification task, a convolutional neural network model was used, as pro-
posed in the article by S.Becker et al.[4]. The model has AlexNet architecture with adapted
parameters for classification from spectrograms (section 4.1). It consists of two main parts:
feature extraction block and classification block. The feature extraction block is composed
of five convolutional layers, ReLLU activation functions, and max-pooling layers. The input
data has a size of 227 x 227 and a single channel as described in the Section 4.1. The
five convolutional layers with kernel sizes 11, 5, and 3 respectively, and max-pooling layers
down-sample the input (2.4). ReLU activation function (2.2) is very popular and crucial for
interpretation with the LRP method. Adaptive average pooling is applied to ensure that
size of the feature tensor is 6x6. The output of the average pooling layer is flattened and
fed into a classification block. The classification block is composed of three dense layers
feeding the output of size (1,2) into sigmoid activation function. During an evaluation of
the model, the prediction is obtained as ygender = argmaz(out), where out is output tensor
of the model and value of ygender represents gender as follows:

B male  if argmaz(out) =0
Ygender female if argmaz(out) =1

4.3.1 Training of the model

AlexNet model was trained for 200 epochs on the 6000 recordings training set described in
Section 4.3 with a batch size of 50 recordings, where recordings in each batch were chosen
randomly. The learning rate was set to le-4 and momentum to 0.9. Binary Cross Entropy
was used as a loss function to evaluate the model during training. Stochastic gradient
descent was used as an optimizer function for updating the model’s weights. After 200
epochs model achieved a gender prediction accuracy of 97.83% on both validation and test
sets (described in Section 4.3).

4.4 Speaker ID classification model

Another neural network model chosen for interpretation is trained to classify speakers from
an audio recording. This model is a more robust and complex deep neural network than
previously used AlexNet. It is based on ResNet34 architecture with some changes to perform
well on a designated task. Pretrained model was provided by Phonexia/VUT FIT, with a
classification accuracy of 96% on both training and validation datasets. Input data into this
network are filterbank features of size 64 x 200 and a single channel described in Section 4.2.

This architecture is using mainly a combination of 2D convolutional layers (Conv2d)
and 2D batch-normalization (BatchNorm2d) layers. Starting with one convolutional and
one batch-norm layer, followed by four main parts composed of multiple blocks of Conv2d,
BatchNorm2d layers, and a residual connection. The main hidden layers consist of 3, 4,
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6, and 3 blocks. Each main layer downsamples the input in half by setting stride = 2 in
the first convolutional layer of the first block. The blocks consist of two Conv2d and two
BatchNorm2d layers, as shown in Figure 4.3 on the right. In addition, the first block in
each main layer has a residual connection composed of Conv2d and BatchNorm2d layers,
shown in Figure 4.3 on the left. Activation functions used in this architecture were RelLU.
Followed by mean and standard deviation pooling, which summarizes the whole utterance
into one vector. The network ends with a dense layer for speaker embeddings extraction
with (N, 256) output features tensor followed by an 1D batch-normalization layer and a
dense layer producing output speaker ID tensor of size (N, 5994), where N represents batch
size. The prediction of the model is obtained as y = argmax(logits), where logits represent
the value of each speaker.

input input

Convolutional layer Convolutional layer

Convolutional layer

BatchNorm layer BatchNorm layer

Y
. BatchNorm layer
Convolutional layer ]
1 1

A 4

Convolutional layer

UoI}O8UUOI [BNnpISal
uoI}28UUOI [BNpISal

BatchNorm layer BatchNorm layer
=+ )<
output output

Figure 4.3: This figure shows the architecture of one block in the ResNet model. The
first block in the main layer has a convolutional and batch normalization layer in its resid-
ual connection(left). Other blocks in the main layer have a residual connection without
additional layers in it(right).
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Figure 4.4: AlexNet architecture scheme showing its layers(left) and dimensions of their

tensors(right).
respectively.

represents a batch size of a given tensor.
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The First and last size is the dimensions of input and output tensors,
Others are dimensions of the output tensor of the respective layer.
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Chapter 5

Solution design and
implementation

The Layer-wise relevance propagation can be implemented in different ways depending
on neural network architecture and chosen library. This chapter gives a brief overview
of different libraries for machine learning, existing LRP implementations, and finally, my
implementation used for experiments in this thesis.

5.1 Machine learning libraries

Machine learning libraries described in this section were initially released in 2015 (Keras and
Tensorflow) and 2016 (PyTorch). Since then, they have gained on popularity in research,
development, real-life applications, and others. They allow easy creation, training, and
evaluation of a broad spectrum of machine learning models while also providing some pre-
trained models. These are not the only libraries for machine learning but are the most
popular.

5.1.1 TensorFlow and Keras

TensorFlow is a free, open-source library for machine learning developed by Google writ-
ten in Python, C++, and CUDA. Code written in TensorFlow can run on both CPU
or GPU, allowing acceleration in computation, especially with high dimensional matrices
called tensors which are primary data structures in this library. The big difference between
TensorFlow and PyTorch is the implementation of a computational graph. In TensorFlow,
the computational graph is static, where the sequence of computation is defined beforehand,
allowing the use of placeholders. This approach has great performance, but it is hard to
debug. TensorFlow has great production and deployment options in comparison to Pytorch
and therefore is very popular among developers.

Keras is an open-source high-level Python API later integrated into TensorFlow. Keras
can be used independently of other libraries. However, since it handles only high-level
computations, it is convenient to use Keras on top of the other machine learning library
that functions as a backend.
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5.1.2 PyTorch

PyTorch[30] is also an open-source machine learning library initially released in 2016 and
developed by Facebook. It is based on the Torch library and written in Python, C++, and
CUDA. Programs written in PyTorch can also run on both CPU and GPU. PyTorch is
highly popular in the research field, mainly for its simplicity, flexibility, and it tends to be
easier to use than TensorFlow when starting with machine learning. It is a high-performance
library that handles low-level computations, has efficient memory usage and great debugging
options. It allows to easily build customized neural network models, debug them with, for
example, forward and backward hooks, and convert PyTorch tensors into Numpy multi-
dimensional arrays. The big difference from TensorFlow is the dynamic computational
graph. In PyTorch, the computational graph is built and can be changed during runtime.
I chose PyTorch for its simplicity, debugging options, popularity in research, and hooks.

5.2 Existing solutions and proposed solution design

There are existing solutions for interpreting neural networks implementing different meth-
ods, mentioned in Chapter 3, to explain various models trained for different tasks. However,
only a couple of these projects implement LRP. Each solution takes a different approach
to implement explanation methods and models using different Python libraries, like Py-
Torch, Keras, Caffe, or even NumPy for LRP. In a lot of cases, LRP is implemented as
either variations of Python classes with methods computing LRP rules. Or, in the case of
PyTorch implementations, whole layers are implemented with a custom forward and back-
ward passes, and LRP is computed in a backward function utilizing PyTorch’s dynamic
computational graph. These solutions have usually implemented LRP only for a couple of
layers depending on the model used for interpretation.Also, all of these implementations
were for image classification models.

As I chose PyTorch as a library for my thesis and both models used for the interpretation
are also implemented in PyTorch, I decided to utilize easy-to-use forward hooks available
in PyTorch in combination with classes computing LRP for each type of layer. I did not
want to implement whole layers with forward pass function and backward pass functions as
it is already well optimized. In addition to separate classification from LRP computation,
I decided to create a class for each type of neural network layer used in the models. Each
class implements relevance propagation according to LRP rules and is callable outside the
interpreted model. This separation is achieved by storing the weights, inputs, and outputs of
layers during a forward pass through the model using registered forward hooks as described
in the following Section 5.3.

5.3 Implementation of LRP for AlexNet and ResNet models

The main function for computing LRP is composed of the definition of forward hooks,
their registration, forward pass of the model, and loop for computing the LRP through the
layers. First, forward hooks are implemented so that for each layer important for LRP (e.g.
excluding ReLLU) a custom object representing that layer is created with corresponding
weights and stored into a list of custom layers ready for LRP as shown in Listing 5.1.

def f_hook(module, input, output):
if isinstance(module, nn.Conv2d):
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# bias is set to false in ResNet
layers.append(ConvLayer (input [0], output, type(module),
module.weight.data, None, module.kernel_size,
module.stride, module.padding, module.groups))
elif isinstance(module, nn.Linear):
layers.append(LinearLayer (input [0], output, type(module),
module.weight.data, module.bias.data))
Listing 5.1: Part of the forward hook function, where convolutional and dense layer are
being added into the list for LRP computation in the future.

These hooks are registered before the forward pass of the model. After the forward pass
of input data and the creation of custom layer objects, the registered forward hooks are
deleted. The relevance tensor is initialized from the model’s output tensor and propagated
backward through the layers from the output to the input layer as shown in 5.2.

with torch.no_grad():
layers.reverse()
R = Rinit
for layer in layers:
R = layer.lrp(R)
if verbose:
print (f’Current relevance tensor shape: {R.shapel}’)
return R

Listing 5.2: Computation of LRP through layers, where Rinit is output of the model and
R is relevance tensor newly propagated through given layer.

Fach type of neural network layer has a corresponding class implementing LRP com-
putation according to the rules and decomposition described in the subsection 3.2.2. Each
class has object variables, such as weights input and output tensors of representing layer,
needed to compute LRP. LRP implementation of convolutional, linear, and max-pooling
layers was inspired by the solution presented in the LRP-toolbox[18] repository but written
in PyTorch and further adapted to the layers of AlexNet and ResNet models. The adap-
tation mainly involves the addition of padding, optional bias, and groups in convolutional
layers. Using the LRP method on ResNet architecture required the implementation of
batch normalization layers shown in Listing 5.3 and solving relevance propagation through
residual connections (Listing 5.4).

def 1lrp(self, R):

s = torch.true_divide(W_positive,
torch.sqrt(self.run_std **x 2 + self.eps))

Rx = torch.true divide(self.X * s[..., na, nal], self.Y)

Rx = Rx * R

return Rx
Listing 5.3: Implementation of basic LRP for batch normalization layer. W_ positive rep-
resents learned ~ parameter, self.run_ std is mini-batch mean value, and self.eps represents
€ from Equation 3.12. self.Y is output of the layer represented as z in Equation 3.15 and
R is relevance tensor propagated from the previous layer.
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I implemented a BasicBlock class representing blocks of layers with residual connections
in the used ResNet model, enabling to backpropagate relevance correctly through these
connections. BasicBlock class has two lists of layer objects, one for layers of represented
part of neural network and the other for layers used in residual connection. When a residual
connection is present, relevance from the lower layer is propagated as if there was a linear
layer with two inputs and weights set to 1. Then the relevance is propagated further
simultaneously, through usual neural network layers, and layers in residual connection.
Sum of relevances produced by these two ways is propagated into the upper layers.

# compute LRP for hidden layers
for layer in self.layers:
self.R = layer.lrp(self.R, rule, eps=eps, gamma=gamma)

# compute LRP for residual connection

for layer_short in self.res_connection:
self.R_residual = layer_short.lrp(self.R_residual, rule,
eps=eps, gamma=gamma)

return self.R + self.R_residual

Listing 5.4: Implementation of LRP computation through residual connection, where
self.layers is list of hidden layers in the block. Layers inside residual connection are in
the self.res_connection list, eps and gamma are constants (e, v) set for LRP rules. Rele-
vance tensor propagated from previous layer is divided in proportion to output of hidden
layers and residual connection into self.R (relevance that came from hidden layers) and
self. R_residual (relevance that came from residual connection)
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Chapter 6

Proposed experiments for audio
signal interpretation

One of the goals of this thesis is to train and interpret a gender classification model. With
the trained model and implemented interpretation method, I try to replicate results made
by S.Becker et al. [4]. Further goal is to extend these experiments further based on results
and use information obtained by LRP to improve the model. In the second part of the
experiments, the challenge is to interpret a more complex model, trained for a more complex
task, such as the mentioned ResNet model. This model is trained on a much bigger dataset
with various data augmentations making it more robust. Another difference is the input
data. While in the case of AlexNet, it is spectrograms, ResNet uses filter banks, which are
more difficult to interpret.

6.1 Explanation of audio spectrogram gender classification

I used the previously proposed method — LRP, to find out based on what the AlexNet model
is making its decisions. The LRP used for this experiment utilizes LRP-0 to propagate
relevance values through linear layers and LRP-eps for hidden and input layers with epsilon
value 0.8. This value was chosen based on preliminary experiments. Figure 6.1 shows
heatmaps overlayed on top of the corresponding spectrograms of audio recordings. The
obtained heatmaps look similar to the ones presented in [4], where the neural network
makes decisions based on the lower frequencies.

In Figure 6.2, spectrograms of female and male recording are modified by setting 1%
of the bins with the highest positive contribution towards correct prediction to zero w.r.t.
LRP heatmaps shown in Figure 6.1. This 1% shows that even though the Figure 6.1 shows
relevant bins in higher frequencies, the most relevant bins are located in lower frequencies.
In case of male speakers, the model learned to look at parts of spectrograms that were
zero-padded during the pre-processing but had a value of —80 in spectrograms. The male
spectrograms have padded areas that are usually bigger than those in female spectrograms.
In male spectrograms, on average, 75 dimensions out of 227 have padded values (—80).
Female spectrograms have 52 out of 227 dimensions, on average, with a padded value
(—80). This difference in male and female data may be one of the causes of such a flaw
of the model. It is possible that the dependency on the padded area can be reduced by
augmentation of the training dataset, e.g. choosing a different approach on how to pad
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the data. However, this shows behavior similar to Clever Hans predictors, where a model
performs very well but has learned patterns that can be considered wrong.

0 0.5 1
seconds seconds

Figure 6.1: Heatmaps produced by LRP on female(left) and male(right) spectrograms.
Red represents time-frequency bins with positive relevance scores and blue with negative
relevance scores.

kHz

0 0.5 1
seconds seconds

Figure 6.2: AudioMnNIST spectrograms, female(left) and male(right), where 1% of the
most relevant time-frequency bins were set to zero.

Heatmaps produced by LRP are interpretable for humans but do not guarantee that
these explanations are also faithful. To determine the faithfulness of the used LRP method
and rules, I used the same method as proposed by S. Becker et al. [4] called pixel-flipping.
This method is based on setting specific pixels, in this case, time-frequency bins, of input
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data to zero before classification and evaluating the model’s performance. In this experi-
ment, from 0% to 100% of spectrogram bins were set to zero with three different strategies.
First, from the most relevant spectrogram bins with the highest positive contribution ac-
cording to LRP, referred to as Irp. The second strategy chose spectrogram bins randomly,
referred to as random. The third strategy is the reverse of the lrp, where the first bins set
to zero were the ones with the highest negative contribution, referred to as lrp_ rewv.
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Figure 6.3: Accuracy of AlexNet model w.r.t. pixel-flipping method. Lrp represents setting
time-frequency bins to zero from the ones with highest positive contribution, lrp_ rev with
highest negative contribution, and random sets bins at random.

Results of the pixel-flipping evaluation are shown in Figure 6.3. In case of pixel-flipping
using Irp, AlexNet’s accuracy dropped rapidly right at the beginning, where only 0.5%
to 1% time-frequency bins were set to zero. Evaluation with the pixel-flipping method
shows two things. First, it proves the faithfulness of LRP method, i.e. time-frequency bins
highlighted by heatmaps are indeed the most relevant. The second is that this model’s
predictions heavily depend on a small fraction of time-frequency bins. The faithfulness
is also supported by the fact that setting bins, with high negative contribution towards
correct prediction, to zero, slightly increases the model’s accuracy by 0.03%. Furthermore,
the accuracy of the model does not decrease even when 95% of the spectrogram’s time-
frequency bins are set to zero, such spectrogram is shown in Figure 6.4.

Individual values of the model’s accuracy w.r.t pixel-flipping are shown in Table 6.1.
With only 1% of time-frequency bins changed to zero, the accuracy dropped from 97.83%
to 4.33%, which uncovers the low robustness of the model. Because of a drastic drop in
accuracy, I used the pixel-flipping method for only 1% of pixels to get more insight into
such a sudden drop. In this experiment, N spectrogram bins were set to zero, where N
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Figure 6.4: Spectrogram of female voice recording, where 95% of time-frequency bins with
the lowest positive contribution towards correct prediction is set to zero w.r.t. hetmap
produced by LRP. This spectrogram is still classified correctly as female voice.
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