
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

GPU-ACCELERATED SYNTHESIS OF PROBABILISTIC
PROGRAMS
GPU-AKCELEROVNÁ SYNTÉZA PRAVDĚPODOBNOSTNÍCH PROGRAMŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. VLADIMÍR MARCIN
AUTOR PRÁCE

SUPERVISOR RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Master's Thesis Specification

Student: Marcin Vladimír, Bc.
Programme: Information Technology
Field of
study:

Software Verification and Testing

Title: GPU-Accelerated Synthesis of Probabilistic Programs
Category: Algorithms and Data Structures
Assignment:

1. Study the current methods for automated design and synthesis of probabilistic programs
including methods based on MDP abstraction and counter-example guided inductive
synthesis.

2. Evaluate these methods on practically relevant case-studies and identify their performance
limitations.

3. Design an efficient parallelisation of these methods including a fine-grained parallelisation
that is able to utilise modern massively parallel graphical-processing units.

4. Implement the improvements and extensions within an existing probabilistic model-checker
(e.g. STORM or PRISM).

5. Carry out a detailed performance evaluation of the implemented methods including an
extension of the existing benchmarks.

Recommended literature:
1. Milan Češka, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen. Shepherding hordes

of Markov chains. In Proc. of TACAS'19. Springer, 2019.
2. Milan Češka, Christian Hensel, Sebastian Junges, and Joost-Pieter Katoen.

Counterexample-Driven Synthesis for Probabilistic Program Sketches. In Proc. of FM'19.
Springer, 2019.

Requirements for the semestral defence:
Items 1, 2 and partially item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Češka Milan, RNDr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: November 11, 2020

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/24076/2020/xmarci10 Page 1/1

Abstract
This paper examines the problem of automatic synthesis of probabilistic programs: having
a finite family of candidate programs, how can one efficiently identify a program that
satisfies a given specification. Even the most straightforward synthesis problems prove to
be 𝒩𝒫-hard. An improvement to this state of practice is brought by the Paynt tool,
which tackles this problem with a novel integrated technique for synthesising probabilistic
programs. Even though it efficiently deals with the exponential growth of the family size,
there is still a problem with the underlying state-space explosion. To solve this problem,
we have implemented GPU-oriented model-checking algorithms that takes advantage of
the GPU architecture and parallelise the task at a state level of a probabilistic model.
The overall acceleration that we were able to achieve with this approach was, under certain
conditions, close to the theoretically possible limit of the acceleration of the whole synthesis
process.

Abstrakt
V tejto práci sa zoberáme problémom automatizovanej syntézy pravdepodobnostných pro-
gramov: majme konečnú rodinu kandidátnych programov, v ktorej chceme efektívne identi-
fikovať program spĺňajúci danú špecifikáciu. Aj riešenie tých najjednoduchších syntéznych
problémov v praxi predstavuje 𝒩𝒫-ťažký problém. Pokrok v tejto oblasti prináša nástroj
Paynt, ktorý na riešenie tohto problému používa novú integrovanú metódu syntézy pravde-
podobnostných programov. Aj keď sa tento prístup dokáže efektívne vysporiadať s expo-
nenciálnym rastom rodín kandidátnych riešení, stále tu exituje problém spôsobený exponen-
ciálnym rastom jednotlivých členov týchto rodín. S cieľom vysporiadať sa aj s týmto problé-
mom, sme implementovali GPU orientované algoritmy slúžiace na overovanie kandidátnych
programov (modelov), ktoré danú úlohu paralelizujú na stavovej úrovni pravdepodobnos-
tých modelov. Celkové zrýchlenie doshiahnuté týmto prístupom za určitých podmienok
potom prinieslo takmer teoretický limit možného zrýchlenia syntézneho procesu.

Keywords
Discrete-Time Markov Chains, Markov Decision Processes, Model Checking, Synthesis of
Probabilistic Programs, CUDA, Parallelisation

Kľúčové slová
diskrétne Markovove reťazce, Markovove rozhodovacie procesy, overovanie modelov, syntéza
pravdepodobnostných programov, CUDA, paralelizácia

Reference
MARCIN, Vladimír. GPU-Accelerated Synthesis of Probabilistic Programs. Brno, 2021.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor RNDr. Milan Češka, Ph.D.

Rozšírený abstrakt
Pravdepodobnostné programy sú dôležitým modelovacím jazykom pre popis sytémov obsahu-
júcich nepredvídateľné alebo nespoľahlivé správanie. Ich aplikácia pokrýva široké spektrum
výskumných domén. Pri analýze spoľahlivosti sú nevyhnutné na kvantifikáciu straty správ,
zlyhaní systému atď. Ďalšiu oblasť ich aplikácie predstavuje náhodnosť, slúžiaca naprík-
lad na prerušenie symetrie v komunikačných sieťach [11]. Náhodnosť je taktiež cenná aj v
bezpečnostných protokoloch napríklad na zabezpečenie anonymity [32] alebo na vytvorenie
stratégií riadenia spotreby energie [27]. Za účelom získania garancií o správnosti a efek-
tívnosti pravdepodobnostných programov je možné použiť stochastickú kontrolu modelu
[19] založenú na konštrukcii a overení pravdepodobnostných modelov, ako sú Markovove
reťazce a Markovove rozhodovanie procesy. Vytvorený model potom overujeme voči danej
špecifikácii, ktorá je často popísaná ako formula temporálnej logiky. Automatizované
overovanie týchto vlastností podporuje niekoľko existujúcich nástrojov, ako sú Storm [14],
Prism [20] alebo Modest [13].

Spomenuté nástroje však zvyčajne vyžadujú na svojom vstupe úplný (pevný) model,
čo však v praxi nieje pravidlom. V počiatočných fázach vývoja systému máme k dispozícii
iba jeho neúplný popis obsahujúci neznáme voľby. Tie môžu predstavovať nedefinovanú
komponentu v sieťovej komunikácii alebo čiastočne implementovaný radič spotreby. Našim
cieľom je potom inštanciovať tieto voľby tak, aby výsledný návrh (realizácia) zodpovedala
danej špecifikácii – napr. minimalizovanie počtu stratených paketov alebo vybratie opti-
málnej stratégie na riadenia napájania. Na to aby sme mohli potvrdiť alebo vyvrátiť exis-
tenciu požadovanej realizácie, musíme preskúmať skupinu všetkých existujúcich realizácií.
Za účelom automatizácie tohto procesu možno použiť tzv. program sketch [1, 33] – popis
systému obsahujúci neznáme voľby – a necháme automatický syntetizátor vyplniť tento
popis, s cieľom získať hľadané riešenie. Na rozhodnutie, či konkrétna realizácia vyhovuje
špecifikácii, použije Markov reťazec ako operačný model.

Program sketch 𝒫 potom odpovedá rodine Markovových reťazcov ℛ, a cieľom autom-
atizovaného syntetizátora je potom prehľadať túto rodinu a nájsť reťazecℳ ∈ ℛ taký,
že ℳ |= Φ, kde Φ je daná špecifikácia. (Figure 1.1).

Automatická syntéza ako taká predstavuje obrovskú výzvu, najmä kvôli problému stavovej
explózie, ktorá ovplyvňuje syntézu dvojakým spôsobom: nielenže počet kandidátnych riešení
je exponenciálny voči počtu uvažovaných volieb, ale stavový priestor každého jednotlivého
reťazca obvykle taktiež rastie exponenciálne voči dĺžke popisu programu. Za posledné roky
došlo k významnému zlepšeniu v analýze pravdepodobnostných programov. Češka a kol. [8]
aplikovali prístup zjemňovania abstrakcie (AR) na rodiny realizácií a doplnili to proti-
príkladmi riadenou induktívnou syntézou (CEGIS). Táto práca stavia na novom výsledku
– konkrétne na algoritme predstavenom v [3], ktorý kombinuje dva vyššie spomenuté prís-
tupy a poskytuje výrazné zrýchlenie oproti prístupu založenom na postupnom overovaní
realizácií [9, 10], ktorý v tomto prípade predstavuje základnú metódu. Tento prístup však
rieši iba jeden z dvoch vyššie spomenutých problémov.

Analýza Markovových modelov je základným kameňom procesu syntézy a predstavuje
ortogonálny problém k syntéze pravdepodobnostných programov. Zatiaľ čo syntézny prístup
predstavený v [3] sa zaoberá exponenciálnym rastom veľkosti rodiny, analýza každého
konkrétneho modelu sa zoberá explóziou stavového priestoru reťazca. V tejto práci sa za-
meriame na druhý zo spomenutých problémov a na jeho vyriešenie sa snaží využiť potenciál
moderného hardvéru v podobe grafických kariet (GPU). Zrýchlením kontroly jednotlivých
modelov potom cielime aj na zrýchlenie celkového procesu syntézy pri práci s veľkými mod-
elmi. Naša implementácia rozširuje existujúcu [4], ktorá je založená na nástroji Storm.

Konkrétne sa nám našou paralelnou implementáciou podarilo zrýchliť kontrolu modelov
až 16 krát pri kontrole Markovových rozhodovacích procesov a až 716 krát pri kontrole
Markovových reťazcov. Toto zrýchlenie následne viedlo až k takmer teoretickému limitu
zrýchlenia celkového procesu syntézy. Pri experimentoch sme taktiež zistili, že naša par-
alelná varianta nieje vždy najlepšia zo širokej škály prístupov implementovaných v nástroji
Storm. Našťastie sme navrhli metriku, ktorá je viac menej schopná ešte pred začatím
overovania modelu identifikovať, ktorá implementácia by sa mala použiť. Výsledkom je
teda adaptívny prístup ku kontrole modelu.

V neposlednom rade sme sa taktiež pokúsili vylepšiť škálovateľnosť aj pri práci s menšími
modelmi. Za týmto účelom sme navrhli tzv. family-based paralelizáciu, ktorej cieľom je
kontrola viacerých modelov súčasne. Tu sme však dospeli k záveru, že táto metóda nieje
v aktuálnej verzii syntézneho procesu použiteľná kvôli rozdielnym vlastnostiam súčasne
analyzovaných modelov.

GPU-Accelerated Synthesis of Probabilistic Pro-
grams

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of RNDr. Milan Češka, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Vladimír Marcin

May 25, 2021

Acknowledgements
I would like to thank my supervisor RNDr. Milan ČEŠKA, Ph.D. for his support both
during designing the presented methods and in the critical time of writing this thesis.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Discrete – Time Markov Chains . 6

2.1.1 Model Checking MCs . 7
2.1.2 Iterative Methods . 9

2.2 Markov Decision Processes . 10
2.2.1 Model Checking MDPs . 11
2.2.2 Value Iteration. 12

2.3 General-Purpose Computing on GPUs . 14
2.3.1 Programming and Memory Model. 14
2.3.2 GPU Architecture and Execution Model. 15

3 Synthesis of Probabilistic Programs 17
3.1 Families of Markov Chains . 17
3.2 Counterexample-Guided Inductive Synthesis 18
3.3 Abstraction Refinement . 19
3.4 Hybrid Dual-Oracle Synthesis . 21

4 Original Sequential Implementation of Paynt 22
4.1 Bottlenecks of Synthesis Process . 22
4.2 Implementation of the MC Model Checking 23

4.2.1 Topological Solver . 23
4.2.2 Finding the Hotspots . 24

4.3 Implementation of the MDP Model Checking 25
4.3.1 Finding the Hotspots . 25

4.4 Data Structures . 26

5 Parallelisation 28
5.1 Problem Decomposition . 28
5.2 Analysis CUDA/OpenCL . 29

5.2.1 OpenCL . 29
5.2.2 CUDA . 29

5.3 State-Based Parallelisation . 29
5.3.1 Matrix-Vector Multiplication . 30
5.3.2 Model Checking MCs in parallel . 34
5.3.3 Model Checking MDPs in parallel 35

5.4 Family-Based Parallelisation . 37

1

5.4.1 Model Checking Multiple MDPs in parallel 37
5.4.2 Model Checking Multiple MCs in parallel 39

6 Experimental Evaluation 40
6.1 Model Checking MCs . 40
6.2 Model Checking MDPs . 44

6.2.1 Single MDP Model Checking . 44
6.2.2 Multiple MDPs Model Checking . 46

6.3 Synthesis of Probabilistic Programs . 49

7 Conclusion 53

Bibliography 55

A Storage Medium 59

2

Chapter 1

Introduction

“The first step is to establish that
something is possible then probability
will occur.”

Elon Musk

Probabilistic programs are an important modelling language to describe systems con-
taining unpredictable or unreliable behaviour. Their application covers a wide range of
research domains. In reliability analysis, they are essential to quantify message loss, system
failures etc. Another area of stochastic behaviour is randomisation, serving, for example,
to prevent flooding or break symmetry in communication networks [11]. Randomisation
is also valuable in security protocols, for example, to ensure anonymity [32] or construct
dynamic power management plans [27]. To obtain guarantees about the correctness and
efficiency of a probabilistic program, one can use stochastic model-checking [19] based on
the construction and verification of probabilistic models such as Markov chains (MC) and
Markov Decision Processes (MDP). The constructed model is then analysed against the con-
straints specified by the probabilistic extension of temporal logic. Automated verification
of these constraints is supported by several existing tools such as Storm [14], Prism [20]
or Modest [13].

However, these tools typically require a fixed model, which is often not the case in
practice. In the early stages of system development, we still have an incomplete descrip-
tion containing some holes. A hole may represent some undefined component for network
communication or a partially implemented controller. The aim is then to complete these
holes such that the resulting design (realisation) meets a given specification – e.g. min-
imise the number of lost messages or select the optimal power management strategy. In
order to confirm or refute the existence of the desired realisation, we must examine a fam-
ily of all possible designs. To automate this process, one usually starts with the so-called
sketch [1, 33] – a system description with holes, representing a family of designs – and let
the automatic synthesizer (a program that designs programs) fill in this description to ob-
tain a program that satisfies a given specification. To decide whether a realisation satisfies
a specification, we use a Markov chain as its operational model.

Program sketch 𝒫 then corresponds to a family of Markov chains ℛ, and the goal of
an automated synthesizer is to explore this family and identify a chain ℳ ∈ ℛ such
that ℳ |= Φ, where Φ is the desired specification (see Figure 1.1).

3

...
// X, Y are holes
while (rand() % 3 < 3){
 a = a + 1;
}
...

...
// X, Y are holes
while (rand() % 3 < 2){
 a = a + 1;
}
...

...
// X, Y are holes
while (rand() % 3 < X) {
 a = Y + 1;
}
...

...
while (rand() % 3 < 1){
 a = a + 1;
}
...

...
while (rand() % 3 < 2) {
 a = a + 1;
}
...

Figure 1.1: The workflow of the synthesis process.

Automated synthesis itself represents a tremendous challenge, particularly due to the state-
space explosion problem that affects the synthesis in a twofold manner: not only the amount
of possible solutions is exponential wrt. the number of considered holes, but also the state-
space of each chain, usually grows exponentially wrt. the length of the program’s descrip-
tion. Over the last years, there has been significant improvement in analysing probabilistic
program sketches and temporal logic constraints. Češka et al. [8] applied abstraction refine-
ment (AR) on families of realisations and complemented this with a counterexample-guided
inductive synthesis (CEGIS) approach [7]. This thesis builds on top of a more recent result
– an algorithm presented in [3] that combines the latter two approaches and yield an accel-
eration of multiple orders of magnitude over the one-by-one approach [9, 10], representing
the baseline.

The modern trend in hardware development appears to favour the number and the
density of transistors instead of higher clock speed due to silicon-based hardware physical
limitations. It leads to increasing the number of cores, resulting in many-core and multi-
core architectures. Unless a significant breakthrough occurs, this trend will only continue.
In the last few years, we have also seen the emergence of a special-purpose many-core single
instruction, multiple threads (SIMT) hardware – a GPU – as a general-purpose processing
device. This situation has also brought innovations in the field of analysis of probabilistic
programs. This situation has also brought innovations in the field of analysis of proba-
bilistic programs. Several research groups either implemented GPU-aided model-checking
algorithms into existing tools or developed new tools based on many-core algorithms [6, 31].
In light of that, our goal was parallelisation of the synthesis algorithm, while we were only
slightly inspired by the approaches presented in the [6] and tried to improve them further.

Key contributions. Analysis of individual Markov chains and Markov decision processes
represents a cornerstone of the synthesis process and it is a difficulty orthogonal to the syn-
thesis of probabilistic programs. While the synthesis approach presented in [3] deals with
the exponential growth of the family size, analysis of each particular model deals with
the explosion of the chain underlying state-space. This work will address this problem by
catching the potential of modern GPUs for stochastic model-checking. By speeding up
the model-checking, we also aim to speed up the synthesis itself when working with large
models. Our implementation extends an existing one [4], which is based on the Storm
model checker [14]. The first step was to speed up the model-checking of individual family
members, i.e. MC model-checking. Here, in some cases, we achieved an acceleration of up
to two orders of magnitude compared to the original approach. The next step was the par-
allelisation of the MDP model-checking, while the analysed MDP represents the above-

4

mentioned abstraction of the given family. It resulted in many cases up to 16 times faster
execution time compared to the method used previously. We have also found that our
parallel variant is not always the best of the wide range of model-checking approaches im-
plemented in Storm. Fortunately, we also came up with a metric that can identify these
situations. Thus, a result is an adaptive approach to model-checking, where we decide
based on the properties of the analysed model which approach will be used.

We have already successfully implemented our methods in Storm and experimentally
show the effectiveness on multiple models from various areas such as: performance & re-
liability, security, planning & synthesis and communication, network and multimedia pro-
tocols. All successfully accelerated methods were made available through the Python API
of the Storm tool and incorporated in the synthesis algorithm. Subsequent experiments
have shown that in cases where we were able to accelerate both versions of model-checking,
we accelerated the overall synthesis process up to 4 times, while the value of acceleration
was quite close to the theoretical limit of possible acceleration.

Last but not least, we tried to improve scalability even when working with small mod-
els. For this purpose, we have proposed family-based parallelisation, which aims at model-
checking multiple chains at once. However, here we conclude that this method is not
applicable in the current version of the synthesis process due to the different properties of
the models analysed simultaneously.

Structure of this thesis. The rest of this thesis is structured as follows. Chapter 2
introduces the reader to the necessary theory regarding Markov chains and Markov deci-
sion processes. In Chapter 3 we briefly present a probabilistic synthesis problem and give
an overview of techniques for its solution. After that, we will look at the original sequen-
tial implementation of the core algorithms of the synthesis process (Chapter 4). Further,
Chapter 5 introduces all of our parallel methods. Finally, in Chapter 6, the performance of
the multiple implementations is compared on relevant models.

5

Chapter 2

Preliminaries

In this chapter, we provide the necessary theory, based on [12, 7, 8, 16], and introduce
notation that will be used throughout the thesis. First we present the simplest probabilistic
model – discrete-time Markov chains. We will also, in more detail, introduce the techniques
to analyse these models. In the second part of this chapter, we will address a slightly more
complex concept – Markov decision processes. It is an extension of Markov chains, which
introduces non-deterministic choices between successor states. Both of these operational
models will play an essential role in the synthesis of probabilistic programs. Finally, in
the last part of this chapter, we will briefly introduce the basic architecture of modern
GPUs.

2.1 Discrete – Time Markov Chains
Definition 1 (Probability Distribution). A (discrete) probability distribution over a finite
set 𝑋 is a function 𝜇 : 𝑋 → [0, 1] such that

∑︀
𝑥∈𝑋 𝜇(𝑥) = 1. The set 𝐷𝑖𝑠𝑡𝑟(𝑋) denote

the set of all probability distributions over 𝑋.

Definition 2 (Descrite-Time Markov Chain). A (discrete-time) Markov chain (MC) is
a tuple ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡,P), where 𝑆 is a finite set of states, 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑆 is an initial state,
P : 𝑆 → 𝐷𝑖𝑠𝑡𝑟(𝑆) is a transition probability matrix.

The transition probability matrix P specifies for each state s the probability P(𝑠, 𝑠′)
of transitioning from 𝑠 to 𝑠′ in one step (i.e., by a single transition). This probability
depends only on the current state 𝑠 and not, for example, on the path leading to state
𝑠 from an initial state. Simply put, the state of the system does not depend on history.
This is known as the Markov property (memorylessness). A Markov chain also induces
an transition probability graph, where states act as nodes and there is a transition from 𝑠
to 𝑠′ iff P(𝑠, 𝑠′) > 0 (see Figure 2.1). We say that state 𝑠 is absorbing iff P(𝑠, 𝑠) = 1.

A path 𝜋 in Markov chain is a possibly infinite path in the underlying graph. It is defined
as infinite state sequence 𝜋 = 𝑠0𝑠1𝑠2 · · · ∈ 𝑆𝜔, where 𝑠0 = 𝑠𝑖𝑛𝑖𝑡 and P(𝑠𝑖, 𝑠𝑖+1) > 0 for all
𝑖 ≥ 0. By applying the Markov property we can quantify the probability of finite path using
the transition probability matrix: P[𝑠0𝑠1 . . . 𝑠𝑛] = Π𝑛−1

𝑖=0 P(𝑠𝑖, 𝑠𝑖+1). However, this ”naive“
multiplication yields a probability mass zero if we do it over infinite paths. This situation
is addressed by introducing the so-called cylinder sets. Formally, the cylinder set 𝐶(𝜔), for
a finite path 𝜔 is the set of infinite paths with the common finite prefix 𝜔. The probability
of a cylinder set 𝐶 of 𝑠0𝑠1𝑠2 . . . 𝑠𝑛, is simply P(𝑠0, 𝑠1) · P(𝑠1, 𝑠2) · ... · P(𝑠𝑛−1, 𝑠𝑛). In this
way, we can measure every set of paths that can be expressed as a complement and/or

6

𝑠0

𝑠1 𝑠2

𝑠6𝑠5𝑠4𝑠3

1 2 3 64 5

0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5

1 1 1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 1/2 0 0 0 0 0 0 0 0 0 0
0 0 0 1/2 1/2 0 0 0 0 0 0 0 0
0 0 0 0 0 1/2 1/2 0 0 0 0 0 0
0 1/2 0 0 0 0 0 1/2 0 0 0 0 0
0 0 0 0 0 0 0 0 1/2 1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 1/2 1/2 0
0 0 1/2 0 0 0 0 0 0 0 0 0 1/2
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 2.1: Knuth-Yao algorithm [18] for simulating a six-sided die by repeatedly tossing
a fair coin. The coin is flipped until finally the outcome is between one and six.

a countable union of cylinder sets. For example, the probability of 𝐶1 ∪ 𝐶2, with 𝐶1 and
𝐶2 being cylinder sets, is P(𝐶1) + (1− P(𝐶2)).

Example 1. Consider a Markov chain depicted in Figure 2.1. We want to find out whether
the usage of a fair coin to simulate a six-sided die is correct. In our example, we will check if
the probability of reaching state 2 is exactly 1

6 (one can analogously verify the probabilities
of other states). In our example, we can write a set of paths that eventually end up in state
2 as:

⋃︀
𝑖∈N 𝑠0(𝑠1𝑠3)

𝑖𝑠1𝑠42
𝜔 where (𝑠1𝑠3)

𝑖 denotes, that the cycle between 𝑠1 and 𝑠3 is taken
𝑖 times. Given this characterization, the desired probability can be expressed as:

∞∑︁
𝑖=0

P(𝑠0(𝑠1𝑠3)
𝑖𝑠1𝑠42) =

1

8

∞∑︁
𝑖=0

(︂
1

4

)︂𝑖

=
1

8
· 1

1− 1
4

=
1

6

2.1.1 Model Checking MCs

Stochastic model-checking [19] is a method used to calculate the likelihood that a particular
events will occur while a verified system is running. Standard model checkers take as input
a description of a model (represented as a state transition system) along with specification
(typically a formula in probabilistic temporal logic) and return a probability that the model
meets the given property. The cornerstone technique in MC model-checking is the calcula-
tion of so-called reachability probabilities, as the deciding of more complex properties can,
in most cases, be reduced to the calculation of reachability. Therefore, in this work we will
primarily focus on properties of this type.

Definition 3 (Unbounded Reachibility). For a set 𝐺 ⊆ 𝑆 of target (goal) states, reachibility
property 𝜙 ≡ P[𝑠 |= ♦𝐺] denote the probability of eventually reaching any of the states in
𝐺 from 𝑠 ∈ 𝑆. An MC ℳ satisfies 𝜙 iff it is satisfied in the initial state, i.e. ℳ |= 𝜙 ⇔
𝑠𝑖𝑛𝑖𝑡 |= 𝜙. One can also express qualitative property as 𝜙 ≡ P◁▷𝜆[♦𝐺], where 𝜆 ∈ ⟨0, 1⟩ and
◁▷∈ {<,≤, >,≥}. It express that the probability to reach 𝐺 relates to 𝜆 according to ◁▷,
and it holds for a given state 𝑠 iff P[𝑠 |= ♦𝐺] ◁▷ 𝜆.

Consider a Markov chain ℳ with a finite number of states. Model checking this chain
against the reachability property P◁▷𝜆[♦𝐺] means calculating exact probabilities 𝑥(𝑠) =
P[𝑠 |= ♦𝐺] for each state 𝑠 ∈ 𝑆, and then checking if P[𝑠𝑖𝑛𝑖𝑡 |= ♦𝐺] ◁▷ 𝜆. These 𝑥(𝑠) values
are obtained as a unique solution of a system of linear equations as shown in Algorithm 1.

7

Algorithm 1: Computing unbounded reachability probabilities for MC.
Input: An MC ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡,P), target states 𝐺 ⊆ 𝑆
Output: A probability vector 𝑥(𝑠) = P[𝑠 |= ♦𝐺] for each 𝑠 ∈ 𝑆

1 𝑆0 ← {𝑠 ∈ 𝑆 |P[𝑠 |= ♦𝐺] = 0} // a graph problem

2 𝑆1 ← 𝐺
3 𝑆? ← 𝑆 ∖ (𝑆0 ∪ 𝑆1)
4 Solve the following linear equation system:

𝑥(𝑠) =

⎧⎪⎨⎪⎩
0, if 𝑠 ∈ 𝑆0

1, if 𝑠 ∈ 𝑆1∑︀
𝑠′∈𝑆 P(𝑠, 𝑠′) · 𝑥(𝑠′) if 𝑠 ∈ 𝑆?

5 return 𝑥

Example 2. Previously, in Example 1, we derived that P[𝑠0 |= ♦{2}] = 1
6 . As a next step,

we will discuss an algorithmic way to obtain P[𝑠0 |= ♦2], by applying the Algorithm 1.
From Figure 2.1 we can see that 𝑆1 = {2} and 𝑆0 = {1, 3, 4, 5, 6, 𝑠2, 𝑠5, 𝑠6}. Using the char-
acterization from Algorithm 1 we obtain:

𝑥(1) = 𝑥(3) = 𝑥(4) = 𝑥(5) = 𝑥(6) = 𝑥(𝑠2) = 𝑥(𝑠5) = 𝑥(𝑠6) = 0

𝑥(2) = 1

𝑥(𝑠0) = 1/2 𝑥(𝑠1) + 1/2 𝑥(𝑠2)

𝑥(𝑠1) = 1/2 𝑥(𝑠3) + 1/2 𝑥(𝑠4)

𝑥(𝑠3) = 1/2 𝑥(𝑠1) + 1/2 𝑥(1)

𝑥(𝑠4) = 1/2 𝑥(2) + 1/2 𝑥(3)

Solution of this system of equations yields: 𝑥 = (16 ,
1
3 , 0,

1
6 ,

1
2 , 0, 0, 0, 1, 0, 0, 0, 0)𝑇 . As we

can see, by solving a system of linear equations, we obtain the same result as using cylinder
sets and geometric series.

In practice, modern model-checkers reduce the derived system of linear equations to
a system with |𝑆?| unknowns instead of |𝑆|. It is done in the following way. Let |𝑆?| be
a set of states that have a non-zero probability of reaching 𝐺, but at the same time need
more than 0 steps to reach 𝐺. Let 𝐴 = [P(𝑠, 𝑠′)]𝑠,𝑠′∈𝑆?

be a matrix of transition probabilities
between the states in 𝑆?. Let the vector 𝑏 = [

∑︀
𝑔∈𝐺P(𝑠, 𝑔)]𝑠∈𝑆?

denotes the probabilities to
reach state 𝑔 ∈ 𝐺 in a single step. Then 𝑥 = (𝑥𝑠)𝑠∈𝑆?

(where 𝑥𝑠 = P[𝑠 |= ♦𝐺]) is the unique
solution of:

𝑥 = 𝐴 · 𝑥 + 𝑏 ≡ (𝐼 −𝐴) · 𝑥 = 𝑏

where 𝐼 is the identity matrix. For our example we have 𝑆? = {𝑠0, 𝑠1, 𝑠3, 𝑠4}, and we are
interested in the solution of:⎛⎜⎜⎝

1 −1/2 0 0
0 1 −1/2 −1/2
0 −1/2 1 0
0 0 0 1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
𝑥𝑠0
𝑥𝑠1
𝑥𝑠3
𝑥𝑠4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
1/2

⎞⎟⎟⎠

8

which yields: 𝑥 = (16 ,
1
3 ,

1
6 ,

1
2)𝑇 . Values for other states are 0 or 1. Here we would like to

point out the difference in the size of the original matrix from Figure 2.1 and the matrix
𝐴, which is ≈11 times smaller.

2.1.2 Iterative Methods

The system of linear equations can be solved by any common approach, which involves
direct methods, such as Gaussian elimination, or iterative methods, such as Jacobi and
Gauss-Seidel. The benefit of direct methods is that they compute exact solutions in a fixed
number of steps. However, the main disadvantage is their scalability with increasing model
size, and even the reduction mentioned above is not enough for direct methods to apply to
large models.

An alternative is offered by iterative methods, which are preferred in practice due to their
scalability, but at the expense of accuracy. Therefore, in this thesis we will consider only
the iterative methods. The idea is that, starting with an initial estimate for the vector 𝑥,
each iteration produces an increasingly accurate approximation to the solution of the linear
equation system. Let 𝑥(𝑘) denotes the approximation computed in the 𝑘-th iteration. Each
estimate 𝑥(𝑘) than uses values of 𝑥(𝑘−1) and iterative process is terminated when the solution
vector is judged to have converged sufficiently.

The specific methods then differ from each other in the way they calculate the vector
𝑥(𝑘). Below we will introduce the two most well-known iterative methods.

Jacobi Iteration Method. The Jacobi method is based on the fact that the 𝑖-th equation
of the linear equation system 𝐴 · 𝑥 = 𝑏:

|𝑆?|−1∑︁
𝑗=0

𝐴(𝑖, 𝑗) · 𝑥(𝑗) = 𝑏(𝑖) for 𝑖 ∈ {0, . . . , |𝑆?| − 1}

can be rearranged as:

𝑥(𝑖) =

⎛⎝𝑏(𝑖)−
∑︁
𝑗 ̸=𝑖

𝐴(𝑖, 𝑗) · 𝑥(𝑗)

⎞⎠ /𝐴(𝑖, 𝑖)

which yields this update scheme:

𝑥(𝑘)(𝑖) =

⎛⎝𝑏(𝑖)−
∑︁
𝑗 ̸=𝑖

𝐴(𝑖, 𝑗) · 𝑥(𝑘−1)(𝑗)

⎞⎠ /𝐴(𝑖, 𝑖)

Note that for for probabilistic model-checking, the diagonal elements 𝐴(𝑖, 𝑖) will always be
non-zero.

Gauss-Seidel Method. The Jacobi method can be improved by using the most up-to-
date values of 𝑥(𝑗) that are available. This gives rise to the Gauss-Seidel method:

𝑥(𝑘)(𝑖) =

⎛⎝𝑏(𝑖)−
∑︁
𝑗<𝑖

𝐴(𝑖, 𝑗) · 𝑥(𝑘)(𝑗)−
∑︁
𝑗>𝑖

𝐴(𝑖, 𝑗) · 𝑥(𝑘−1)(𝑗)

⎞⎠ /𝐴(𝑖, 𝑖)

9

2.2 Markov Decision Processes
As mentioned above, each state of a Markov chain had a unique probability distribution
over its successors. However, what if we want to model, for example, the abstraction of
a modular system (e.g., with interchangeable implementations), or we simply do not have
statistical information of probabilities. We can no longer model such requirements using
the Markov chain, and therefore we present Markov decision processes, a concept first
introduced by Bellman [5] in the 1950s.

Definition 4 (Markov Decision process). A Markov decision process (MDP) is a tuple
ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,P), where 𝑆 and 𝑠𝑖𝑛𝑖𝑡 indicate the same as in MC, 𝐴𝑐𝑡 is a finite set
of actions, and P : 𝑆 9 𝐷𝑖𝑠𝑡𝑟(𝑆) is a partial transition probability function. Let 𝐴𝑐𝑡(𝑠)
denotes the set of all available actions in state 𝑠 ∈ 𝑆. In general we require 𝐴𝑐𝑡(𝑠) ̸= ∅ for
each 𝑠 ∈ 𝑆.

Based on the above, we can now easily model properties containing non-determinism.
Suppose the MDP is in state 𝑠, then the successor selection is made in two steps. First,
we non-deterministically choose one of the actions in 𝐴𝑐𝑡(𝑠), say 𝛼. In the second step,
the successor is chosen using the probability distribution given by P(𝑠)(𝛼). It should be
obvious that if for all states 𝑠 ∈ 𝑆, holds |𝐴𝑐𝑡(𝑠)| = 1, this specific MDP is equivalent to
an MC.

A path 𝜋 in an MDP is defined as possibly infinite sequence of pairs of states and actions
𝜋 = 𝑠0

𝛼0−→ 𝑠1
𝛼1−→ · · · ∈ (𝑆 × 𝐴𝑐𝑡)𝜔, where ∀𝑖 ∈ N0 : P(𝑠𝑖, 𝛼𝑖, 𝑠𝑖+1) > 0 and 𝛼𝑖 ∈ 𝐴𝑐𝑡(𝑠𝑖).

Let Pathsℳ(𝑠) and Pathsℳ𝑓𝑖𝑛(𝑠) denote the sets of all infinite and finite paths taken from
state 𝑠 in ℳ, respectively. Then we use Pathsℳ, Pathsℳ𝑓𝑖𝑛 to denote the sets of all such
paths in the MDP ℳ. For finite 𝜋 = 𝑠0

𝛼0−→ 𝑠1
𝛼1−→ . . .

𝑛−1−−→ 𝑠𝑛, let 𝑙𝑎𝑠𝑡(𝜋) = 𝑠𝑛 denote
the last state of 𝜋. The probability of a finite path is evaluated in the same way as for
MCs, using a transition probability matrix: P[𝜋] = Π𝑛−1

𝑖=0 P(𝑠𝑖, 𝛼𝑖, 𝑠𝑖+1). However, in order
to define the probability space over infinite paths (as in MCs), we must first completely
resolve all the present non-determinism. To do so, one might use a scheduler responsible
for deterministically choosing an action in each state of an MDP.

Definition 5 (Scheduler). A scheduler for an MDP ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,P) is a function
𝜎 : Pathsℳ𝑓𝑖𝑛 → 𝐴𝑐𝑡 such that for all finite path fragments 𝜋 ∈ Pathsℳ𝑓𝑖𝑛 it holds that
𝜎(𝜋) ∈ 𝐴𝑐𝑡(𝑙𝑎𝑠𝑡(𝜋)). The set of all schedulers of ℳ is denoted as Σℳ.

Now a scheduler can be applied to an MDP such that if an MDP enters a state 𝑙𝑎𝑠𝑡(𝜋)
via a path 𝜋, a scheduler deterministically chooses an action 𝜎(𝜋). So, by using a scheduler,
we get an MC called induced Markov chain.

Definition 6 (Induced Markov Chain). For an MDP ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,P) and scheduler
𝜎 ∈ Σℳ, the induced MC is ℳ𝜎 = (Pathsℳ𝑓𝑖𝑛, 𝑠𝑖𝑛𝑖𝑡,P𝜎) where for any 𝜋, 𝜋′ ∈ Pathsℳ𝑓𝑖𝑛:

P𝜎(𝜋, 𝜋′) =

{︃
P(𝑙𝑎𝑠𝑡(𝜋), 𝜎(𝜋))(𝑠′) if 𝜋′ = 𝜋

𝜎(𝜋)−−−→ 𝑠′

0 otherwise

Note that induced MC has possibly an infinitely large state-space depending on the used
scheduler. However, in the case of memoryless schedulers, we can construct a finite-state
MC.

10

Definition 7 (Memoryless scheduler). A scheduler 𝜎 is memoryless if 𝜎(𝜋) depends only
on 𝑙𝑎𝑠𝑡(𝜋), i.e., for any 𝜋, 𝜋′ ∈ Pathsℳ𝑓𝑖𝑛, 𝑙𝑎𝑠𝑡(𝜋) = 𝑙𝑎𝑠𝑡(𝜋′)⇒ 𝜎(𝜋) = 𝜎(𝜋′).

The input of the memoryless scheduler is thus a path of length 1, representing the current
state 𝑠 ∈ 𝑆 in a given MDP. Furthermore, if we reach state 𝑠, the scheduler will always
return the same action 𝛼 = 𝜎(𝑠). Thus, the MC obtained using a memoryless scheduler is
fully consistent with Definition 2.

Example 3. Consider the MDP ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,P) depicted in Figure 2.2. Here 𝑆 =
{𝑠0, 𝑠1, 𝑠2, 𝑠3}, 𝑠𝑖𝑛𝑖𝑡 = 𝑠0, 𝐴𝑐𝑡 = {𝛼0, 𝛼1}, and the transition probability matrix P is shown
in Figure 2.2. We can see that the only state with non-deterministic choice is state 𝑠1. In
this state there are two possible probability distributions:

P(𝑠1, 𝛼0) = [𝑠2 ↦→ 0.5, 𝑠3 ↦→ 0.5]

P(𝑠1, 𝛼1) = [𝑠2 ↦→ 0.6, 𝑠2 ↦→ 0.3, 𝑠3 ↦→ 0.1]

Example of the finite path is 𝜋 = 𝑠0
𝛼0−→ 𝑠1

𝛼0−→ 𝑠2 and example of the infinite path is
𝜋′ = 𝑠0

𝛼0−→ 𝑠1
𝛼0−→ 𝑠2

𝛼0−→ 𝑠2
𝛼0−→ The probability of finite path 𝜋 can be calculated

as P[𝜋] = P(𝑠0, 𝛼0, 𝑠1) · P(𝑠1, 𝛼0, 𝑠2) = 1 · 0.5 = 0.5. In our example, there are only two
memoryless schedulers:

𝜎0 = [𝑠1 ↦→ 𝛼0]

𝜎1 = [𝑠1 ↦→ 𝛼1]

Applying scheduler 𝜎0 induces an MC, which omits the blue line from the transition
probability matrix and applying the 𝜎1 scheduler on the contrary omits the red line.

P =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0

0 0 0.5 0.5
0.6 0 0.3 0.1

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

Figure 2.2: An example of the MDP and its transition probability matrix P with row
grouping.

2.2.1 Model Checking MDPs

As with MC model-checking, we will focus on the reachability properties. In MCs rechability
probability could be obtained as the unique solution of a system of linear equations. In
the case of MDP, the non-deterministic choices between probability distributions nullify
the sense of the individual probability of reaching a particular state since there is no longer
only one probability. Thus, in the case of MDPs, the verified properties will have slightly
different semantics. We say that property 𝜙 holds for an MDPℳ iff it holds for the induced

11

MCs of all schedulers, i.e. ℳ |= 𝜙 ⇔ ∀𝜎 ∈ Σℳ : ℳ𝜎 |= 𝜙. To avoid iterating through
an infinite number of schedulers, instead of asking if an MDP meets the given specification,
we will ask:

Does the property hold even in a worst/best case of non-deterministic choices?

This question, therefore, raises the idea of finding the maximum or minimum probability.
For example, one could be interested in ”the maximum probability of error occurrence“ or

”the minimum probability of a message being delivered“. In order to find these probabilities,
it is sufficient to look only at a special kind of schedulers, as illustrated in Proposition 1.

Proposition 1 (Maximizing/minimizing Scheduler). Letℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,P) be an MDP
and 𝜙 be a property. Then 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ∈ Σℳ denote the memoryless schedulers such that
∀𝜎 ∈ Σℳ : P[ℳ𝜎𝑚𝑖𝑛 |= 𝜙] ≤ P[ℳ𝜎 |= 𝜙] ≤ P[ℳ𝜎𝑚𝑎𝑥 |= 𝜙].

So now, in order to decide reachability property 𝜙 ≡ P≤𝜆[♦𝐺] (safety property ≤), we
compute a maximising scheduler 𝜎𝑚𝑎𝑥. Using this scheduler we can assign to each state
𝑠 ∈ 𝑆 its maximal probability for reaching a 𝐺: 𝑥(𝑠) := max𝜎∈ΣℳP[ℳ𝜎, 𝑠 |= ♦𝐺], and then
asserting that 𝑥𝑚𝑎𝑥(𝑠𝑖𝑛𝑖𝑡) ≤ 𝜆. Similarly, deciding 𝜙 ≡ P≥𝜆[♦𝐺] (liveness property ≥), in-
volves finding, for each 𝑠 ∈ 𝑆, minimum probabilities 𝑥𝑚𝑖𝑛 of reaching 𝐺 and then checking
whether 𝑥𝑚𝑖𝑛(𝑠𝑖𝑛𝑖𝑡) ≥ 𝜆. This upper/lower bound 𝑥𝑚𝑎𝑥/𝑥𝑚𝑖𝑛 on the reachability proba-
bility can be obtained as a solution to a mixed-integer linear program (MILP). The benefit
of this approach is that it computes exact answers. However, its drawback is poor scalabil-
ity while working with large models. An alternative method is Value iteration algorithm,
offering better scalability, but at the expense of accuracy.

2.2.2 Value Iteration.

The idea behind the Value Iteration (VI) method, is that instead of computing an exact
solution, it computes a probability of reaching 𝐺 within 𝑛 steps. In practice, if 𝑛 is large
enough, the result is sufficiently accurate. Formally, we introduce 𝑥𝑛(𝑠) for 𝑠 ∈ 𝑆, 𝑛 ∈ N
and equations:

𝑥𝑛(𝑠) =

⎧⎪⎨⎪⎩
0, if (𝑠 ∈ 𝑆0) ∨ (𝑠 /∈ 𝑆1 ∧ 𝑛 = 0)

1, if 𝑠 ∈ 𝑆1

max𝛼∈𝐴𝑐𝑡(𝑠)

(︀∑︀
𝑠′∈𝑆 P(𝑠, 𝛼, 𝑠′) · 𝑥𝑛−1

𝑠′
)︀

otherwise.

It can be shown [29], that lim𝑛→∞𝑥𝑛
𝑠 = max𝜎∈ΣℳP[ℳ𝜎, 𝑠 |= ♦𝐺]. Thus, for sufficiently

large 𝑛, we can approximate the actual probabilities by the values of 𝑥𝑛(𝑠). Furthermore,
the minimum probabilities can be computed in near identical fashion, by replacing ”max“
with ”min“ in the above.

Typically, a value of 𝑛 is not set before the start of the computation, but rather deter-
mined on-the-fly according to the convergence of the values 𝑥𝑛(𝑠). A simple but effective
way is to terminate the calculation if max𝑠∈𝑆(𝑥𝑛(𝑠)−𝑥𝑛−1(𝑠)) < 𝜀, where 𝜀 is a user spec-
ified threshold. In cases where the 𝑥𝑛(𝑠) values are quite small, the more reliable criterion
may be max𝑠∈𝑆

(︀
(𝑥𝑛(𝑠)− 𝑥𝑛−1(𝑠))/𝑥𝑛−1(𝑠)

)︀
< 𝜀, i.e. the maximum relative difference.

It is important to note, that these criteria do not guarantee that the resulting values are
within 𝜀 of the true results. An illustration of how to implement the VI algorithm is given
in Algorithm 2. Note that there is no need to store all the 𝑥𝑛 vectors (just the last two will
suffice).

12

Algorithm 2: Computing the maximal reachability probability for an MDP, using
the VI algorithm.

Input: An MDP ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,P), target states 𝐺 ⊆ 𝑆
Output: A probability vector 𝑥(𝑠) = P[𝑠 |= ♦𝐺] for each 𝑠 ∈ 𝑆

1 𝑆0 ← {𝑠 ∈ 𝑆 | ∀𝜎 ∈ Σℳ : P[ℳ𝜎, 𝑠 |= ♦𝐺] = 0} // a graph problem

2 𝑆1 ← {𝑠 ∈ 𝑆 | ∃𝜎 ∈ Σℳ : P[ℳ𝜎, 𝑠 |= ♦𝐺] = 1} // a graph problem

3 𝑆? ← 𝑆 ∖ (𝑆0 ∪ 𝑆1)
4 𝑥(𝑠)𝑠∈𝑆 ← (𝑠 ∈ 𝑆1) ? 1 : 0
5 do
6 foreach 𝑠 ∈ 𝒮? do
7 𝑥′𝑠 ← max𝛼∈𝐴𝑐𝑡(𝑠)

(︀∑︀
𝑠′∈𝑆 P(𝑠, 𝛼, 𝑠′) · 𝑥𝑠′

)︀
8 end
9 𝑠𝑤𝑎𝑝(𝑥𝑠, 𝑥

′
𝑠)

10 while max{|𝑥𝑠 − 𝑥′𝑠| | 𝑠 ∈ 𝑆?} ≤ 𝜀
11 return 𝑥

Example 4 ([12]). To illustrate the VI method, assume an MDPℳ from Example 3, and
safety property 𝜙 ≡ P≤0.6[♦𝑠2]. In order to decide whether ℳ |= 𝜙, we must compute, for
each 𝑠 ∈ 𝑆, an upper bound 𝑥𝑚𝑎𝑥 on the reachability probability. Using Algorithm 2, we
can see that 𝑆0 = {𝑠3} and 𝑆1 = {𝑠2}, yielding the following equations for VI:

𝑥𝑛(𝑠2) = 1 for 𝑛 ≥ 0

𝑥𝑛(𝑠3) = 0 for 𝑛 ≥ 0

𝑥0(𝑠𝑖) = 0 for 𝑖 ∈ {0, 1}
𝑥𝑛(𝑠0) = 𝑥𝑛−1

𝑠1 for 𝑛 > 0

𝑥𝑛(𝑠1) = max{0.5 · 𝑥𝑛−1
𝑠2 + 0.5 · 𝑥𝑛−1

𝑠3 , 0.6 · 𝑥𝑛−1
𝑠0 + 0.1 · 𝑥𝑛−1

𝑠3 + 0.3 · 𝑥𝑛−1
𝑠2 } for 𝑛 > 0

Following this equations, the initial vector 𝑥0 = (0, 0, 1, 0)𝑇 . In order to get a new vector
𝑥1, vector 𝑥0 is multiplied by the transition matrix P.⎛⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 0.5 0.5
0.6 0 0.3 0.1

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎝

0
0
1
0

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0

0.5
0.3

1
0

⎞⎟⎟⎟⎟⎟⎠
The resulting vector now contains probabilities for all available states and actions and
follows the same row grouping as the used matrix. We now look for maximum over
the groups (actions) as we are interested in maximal probabilities. Since we have only
one state with more than one action, the group reduction will be only one operation
𝑥1(𝑠1) = max{0.5, 0.3} = 0.5. Below, we show the vector 𝑥𝑛 = (𝑥𝑛𝑠0 , 𝑥

𝑛
𝑠1 , 𝑥

𝑛
𝑠2 , 𝑥

𝑛
𝑠3)𝑇 , for

an increasing 𝑛, terminating with 𝜀 = 0.001.

13

𝑥0 = (0, 0, 1, 0)𝑇 𝑥7 = (0.66, 0.696, 1, 0)𝑇

𝑥1 = (0, 0.5, 1, 0)𝑇 𝑥8 = (0.696, 0.696, 1, 0)𝑇

𝑥2 = (0.5, 0.5, 1, 0)𝑇 𝑥9 = (0.696, 0.7176, 1, 0)𝑇

𝑥3 = (0.5, 0.6, 1, 0)𝑇 𝑥10 = (0.7176, 0.7176, 1, 0)𝑇

𝑥4 = (0.6, 0.6, 1, 0)𝑇 . . .

𝑥5 = (0.6, 0.66, 1, 0)𝑇 𝑥22 = (0.74849, 0.74849, 1, 0)𝑇

𝑥6 = (0.66, 0.66, 1, 0)𝑇 𝑥23 = (0.74849, 0.74909, 1, 0)𝑇

The exact values are 𝑥 = (0.75, 0.75, 1, 0)𝑇 , which differ from 𝑥23 by up to 0.00151. How-
ever, as we obtained upper bound probabilities, we can now conclude thatℳ ̸|= 𝜙 because
𝑥𝑚𝑎𝑥(𝑠0) = 0.74849 > 0.6.

We would like to point out that, similarly to MC model-checking, we can reduce the P
matrix, and consider only 𝑆? states inducing the submatrix 𝐴 = [𝑃 (𝑠, 𝛼, 𝑠′)]𝑠,𝑠′∈𝑆?,𝛼∈𝐴𝑐𝑡(𝑠).
To compensate for the loss of 𝑆1 states, we again use a vector 𝑏𝑠∈𝑆?,𝛼∈𝐴𝑐𝑡(𝑠) :=

∑︀
𝑔∈𝐺P(𝑠, 𝛼, 𝑔),

denoting the probabilities to reach state 𝑔 ∈ 𝐺 in a single step from 𝑠 ∈ 𝑆?. Then the it-
erative equation will look like 𝑥′ = 𝐴 · 𝑥 + 𝑏, where 𝑥 is also reduced to contain only
the states in 𝑆?. Thus, the first iteration for the MDP ℳ and property 𝜙 from Example 4
will look like:

𝑥1 = 𝑟𝑒𝑑𝑢𝑐𝑒

⎡⎢⎣
⎛⎜⎝ 0 1

0 0
0.6 0

⎞⎟⎠ · (︂0
0

)︂
+

⎛⎜⎝ 0

0.5
0.3

⎞⎟⎠
⎤⎥⎦ =

(︂
0

0.5

)︂

2.3 General-Purpose Computing on GPUs
While modern mainstream CPUs are designed to handle a wide range of tasks quickly, they
are limited in the concurrency of tasks running. GPUs use an entirely different approach.
A GPU was designed as an accelerator for a particular task set, namely quickly render high-
resolution images and video. To this end, GPUs use their massively parallel architecture
where thousands of threads all perform the same actions over their respective data. Since
GPUs can perform parallel operations on multiple data sets, they are commonly used for
non-graphical tasks such as scientific computation or machine learning.

2.3.1 Programming and Memory Model.

Each GPU program consists of a host part that runs on CPU and a device part composed
of so-called kernels. The kernels are parallel programs that are executed as sets of threads
on GPU. The threads are organized into one, two or three dimension groups called thread
blocks. Each kernel then represents a grid of one or more thread blocks (while it can
also have up to three dimensions). The threads within a block can synchronize among
themselves through light-weight synchronization barriers. Each thread within a grid has
a unique identifier, which can be derived from its block id (position of its block within
a grid), the block dimension and the thread id (its position within its block). Using thread
id a running thread can decide which work it should do.

14

Grid

Block
(1,0)

Block
(0,1)

Block
(0,2)

Block
(1,1)

Block
(1,2)

Block
(0,0)

Shared Memory

Texture Cache

Instruction
Unit

...

Registers

P1

Registers

P2

Registers

P3

SIMD Multiprocesor 1

Constant Cache

SIMD Multiprocesor 2

SIMD Multiprocesor N CPU / Host GPU / Device

Grid

Block
(1,0)

Block
(0,1)

Block
(0,2)

Block
(1,2)

Block
(0,0)

Kernel 1

Block (1,1)
T(0,1)

T(1,1)

T(2,1)

T(3,1)

T(0,2)

T(1,2)

T(2,2)

T(3,2)

T(0,3)

T(1,3)

T(2,3)

T(3,3)

T(0,4)

T(1,4)

T(2,4)

T(3,4)

T(0,0)

T(1,0)

T(2,0)

T(3,0)
Kernel 2

Block
(1,1)

Device Memory

Figure 2.3: The CUDA Platform and Memory Model. Redrawn from the source: [17].

There are various kinds of memories in the CUDA memory model that significantly
differ in address space, access latency, scope, and lifetime. The memory hierarchy loosely
copies the program grid-block-thread hierarchy and is organized as follows:

(1) off-chip device/global memory: is the largest and has a very high latency, which is
usually the main performance bottleneck. It is also the only memory that the host
program can access.

(2) off-chip local memory: refers to ”memory“ (bytes are stored in global memory) where
registers and other thread-data is spilled.

(3) on-chip shared memory: is very fast and usually used for inter-thread communication
within one block. If multiple blocks are executed in parallel, this memory is equally
split between them (warning: Only a limited amount available, so it should not be
overused.).

(4) off-chip constant & texture memories: are read-only regions in the global memory
space with on-chip read-only caches.

(5) on-chip registers: are the fastest but also the smallest memory of the whole hierarchy.
Each thread is allocated a set of registers when a kernel is started and generally stores
frequently used variables which are private to each thread.

2.3.2 GPU Architecture and Execution Model.

A CUDA-compliant (Compute Unified Device Architecture) GPGPU device is composed
of several streaming multiprocessors (SMs). Each SM has its own set of processor cores
(CUDA cores) called streaming processors (SPs).

As we said before, single kernel execution is split into multiple blocks of threads. Each
block is then assigned to one SM, whereas each SM can execute several blocks indepen-
dently. The number of blocks that can be physically executed in parallel on the same SM is
limited by the amount of shared memory and the number of registers. The GPUs comput-
ing architecture employs a Single Instruction Multiple Threads (SIMT) model of execution,

15

which means that each thread is executed independently with its own instruction and local
state. Moreover, threads of a single block are split into warps; each typically consists of
32 threads. The execution of several warps may be interleaved to cover waiting times for
memory access to slow global memory. Threads in a warp execute the same instructions
(even memory loads) in a lockstep fashion and therefore it is desirable that the memory
accesses for these threads are physically coalesced and that their code paths do not di-
verge. These two mentioned conditions are also the most common mistakes when creating
GPU programs. For example, suppose there is a condition in the kernel code that con-
tains the thread id of one thread. In that case, its next instruction will be different from
the next instruction of the other threads within its warp, and the whole warp holds its
execution while this one thread performs its divergent instructions. The same philosophy
applies to shared/global memory access. We said that the accesses of the threads within
the warp should be physically coalesced, which means that the adjacent threads read from
the adjacent locations within one so-called cache line. If it wasn’t the case, and one thread
would like to read with a non coalesced pattern, the other threads within its warp would
have to wait, and so the overall performance is at most 1/32 of the maximal one (see Fig-
ure 2.4). Threads/warps are not assigned to SPs arbitrarily, but IDs of threads executed
in the same warp are sequential. Therefore a programmer can plan and use algorithms and
data structures that take this into account.

Figure 2.4: Correct vs Incorrect memory access by single warp threads [22].

16

Chapter 3

Synthesis of Probabilistic
Programs

In the previous chapter, we introduced Markov chains and showed how to verify whether
a given MC meets a required property. Now, we will address an opposite problem. Let us
have a set of Markov chains; how can we find the one that meets a given specifications.
This is the situation addressed by synthesis methods, and in this chapter, we will introduce
the hybrid dual-guided synthesis approach, which was firstly presented in [2]. Name hybrid
comes from using two oracles, which are based on the earlier presented synthesis methods,
namely AR [8] and CEGIS [7]. It focuses on sets of Markov Chains, having different
topologies of the state-space and in order to describe them, it uses a concept of so-called
families [8].

3.1 Families of Markov Chains
Definition 8 (Family of MCs). A family of MCs is a tuple 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) with 𝑆 and
𝑠𝑖𝑛𝑖𝑡 as before, 𝐾 is a finite set of parameters with domains 𝑉𝑘 ∈ 𝑆 for each 𝑘 ∈ 𝐾, and
ℬ : 𝑆 → 𝐷𝑖𝑠𝑡𝑟(𝐾) denotes a family of transition probability functions.

Function ℬ maps each state to a distribution over parameters. It is these parameters
that represent the unknown options (holes) of a system under design. Since parameter
domains are subsets of 𝑆, function ℬ maps the state to a distribution over states after
substituting specific values into holes. Thus, it yields a concrete Markov chain representing
one realisation (member) of a family. The following definition describes this more formally.

Definition 9 (Realisation). A realisation of a family 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) of Markov chains
is a function 𝑟 : 𝐾 → 𝑆 such that ∀𝑘 ∈ 𝐾 : 𝑟(𝑘) ∈ 𝑉𝑘. We say that 𝑟 induces MC
𝒟𝑟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,ℬ𝑟) iff ℬ𝑟(𝑠, 𝑠′) =

∑︀
𝑘∈𝐾,𝑟(𝑘)=𝑠′ ℬ(𝑠)(𝑘) for all pairs of states 𝑠, 𝑠′ ∈ 𝑆. Then,

let ℛ𝒟 denotes the set of all realisations.

Here we would like to point out that the size of the set of all realisations ℛ𝒟 = Π𝑘∈𝐾𝑉𝑘

is exponential in |𝐾|, which rises the first state-space explosion problem.

Example 5. To better illustrate the concept of families, assume a family 𝒟 = (𝑆, 𝑠0,𝐾,ℬ)
of Markov chains with a set of states 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}, a set of parameters 𝐾 =
{𝑋,𝑌, 𝑇, 𝐹} with domains 𝑇𝑋 = {𝑠1, 𝑠2}, 𝑇𝑌 = {𝑡, 𝑓}, 𝑇𝑇 = {𝑡}, 𝑇𝐹 = {𝑓} (since 𝑇
and 𝐹 can each take only one value, actually they are not parameters), and a family of

17

transition probability functions ℬ, which is shown in Figure 3.1 (together with all the family
members). Notice the different topology of the underlying state-space of each of realisations
resulting in a different sets of reachable states.

Figure 3.1: A family 𝒟 of 4 Markov chains. For simplicity, some probabilities are omitted,
but note that all probabilities must be added to one. The gray out states means that they
are unreachable in the specific realisation (adapted from [3]).

We define two types of synthesis problems currently supported by the presented method.
In case, when the state-space 𝑆 and the set of parameters 𝐾 are finite, the both of these
problems are decidable and, to be more specific, 𝒩𝒫-hard [35].
Problem 1 (Feasibility synthesis). Given a family of Markov chains 𝒟 over parameters 𝐾
and a specification 𝜙 ≡ P◁▷𝜆[♦𝐺], find a realisation 𝑟 : 𝐾 ↦→ 𝑉 such that 𝒟𝑟 |= 𝜙.
Problem 2 (Maximum Synthesis). Given a family of Markov chains 𝒟 over parameters 𝐾
and a maximising property 𝜙𝑚𝑎𝑥 ≡ P◁▷𝜆[♦𝐺], find a realisation 𝑟 : 𝐾 ↦→ 𝑉 such that:

𝑟* ∈ arg max𝑟∈ℛ𝒟P[𝒟𝑟 |= ♦𝐺]

The minimal synthesis problem is defined analogously. In the following, we will focus
mainly on feasibility synthesis, as the basic idea for maximum synthesis remains the same,
with the difference that if we obtain a feasible solution, we update the threshold 𝜆 of
maximising property to exclude this solution. After exhaustion of the state-space of reali-
sations, the actual solution is declared optimal (maximal). Variant of the minimal synthesis
is defined analogously.

One possible solution to the synthesis problems is the so-called one-by-one approach,
where one have to enumerate through each realisation 𝑟 ∈ ℛ𝒟. However, the parameter-
space and state-space explosions render this approach unusable for large families, which
brings the need for advanced techniques that accelerate the pruning of the state-space of
candidate solutions.

3.2 Counterexample-Guided Inductive Synthesis
This section will introduce the counterexample-guided inductive synthesis (CEGIS) [7] syn-
thesis method, which forms the basic building block of the presented hybrid method. Con-
sider Figure 3.2. First, we assume a set of realisations ℛ. We pick a realisation 𝑟 ∈ ℛ

18

(using a SAT solver), and check whether the particular 𝑟 is a solution. If it is a solution,
the synthesis is complete, and the realisation 𝑟 is returned to the user. Otherwise, we
compute a so-called counterexample; i.e. a fraction of the chain 𝒟𝑟 that contains enough of
paths that violate Φ (for more detailed description see [7]). Based on this counterexample,
we then create a set ℛ′ which contains 𝑟 and potentially more realisations that all violate
the given property, and thus we can prune ℛ′ from ℛ. This process repeats until we find
a feasible realisation or until the set of realisations is empty.

Figure 3.2: Counterexample-Guided inductive synthesis.

Example 6 (CEGIS illustration). Consider running CEGIS, on a family from Example 5,
and safety property 𝜙 ≡ P≤0.3[♦{𝑡}]. Let 𝑟0 be the first selected realisation. Via MC model-
checking, we obtain P[𝒟𝑟, 𝑠0 |= ♦{𝑡}] = 0.8 > 0.3, therefore, we construct a counterexample
that contains the (only) path to {𝑡}: 𝑠0 → 𝑠1 → 𝑡 having probability 0.8 > 0.3. It induces
CE 𝐶 = {𝑠0, 𝑠1, 𝑡}. The next step is to create a set ℛ′ of realisations that also violate
the property 𝜙. In order to do so, we compute a so-called conflict. Shortly, a conflict is
represented by a set of relevant parameters concerning a counterexample (for more details
we again refer to [7]). Conflict for 𝐶 is 𝐾 = {𝑋,𝑌 }, i.e. the set of all parameters used
in the definition of ℬ(𝑠) for 𝑠 ∈ 𝐶. This implies that none of the parameters can be
generalised, and thus, we reject only a single realisation 𝑟0. Other realisations also do
not allow any generalisation, so the process will be iterating through realisations until
accidentally guessing 𝑟3 (since it is only feasible solution).

3.3 Abstraction Refinement
Abstraction refinement (AR) [8] is the second synthesis method used by the hybrid method.
The approach of this method is opposite to that of the CEGIS. Instead of analysing a sin-
gle realisation, and then inferring statements about others, an AR argues about sets of
realisations at once. In order to do so, it abstracts the set of realisations by constructing
a stochastic process in which all realisations are possible at once. Formally, this process
corresponds to an MDP, which in each state 𝑠 ∈ 𝑆 has the possibility of a non-deterministic
choice between specific realisations inℛ𝒟. Specifically, we will refer to this MDP as quotient
MDP.

Definition 10 (Quotient MDP [8]). Assume a family of MCs 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ). A quo-
tient MDP of 𝒟 is an MDP ℳ𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,ℛ𝒟,P), where P(·)(𝑟) ≡ ℬ𝑟.

19

Thus, a quotient MDP is an abstraction of a given family, and over-approximates the be-
haviour of each family member. It means that it can simulate the behaviour of each real-
isation and can switch realisations directly at run-time. For example, let’s take a look at
Figure 3.3, which shows the quotient MDP of the family from Example 5. We can easily
see that the resulting MDP also contains paths not included in any of the original family
members.

𝑠0 𝑠1 𝑠2 𝑡 𝑓⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑠0 0 1 0 0 0
0 0 1 0 0

𝑠1 0 0 0 0.8 0.2
0 0 0 0.6 0.4

𝑠2 0 0 0 0.4 0.6
0 0 0 0.2 0.8

𝑡 0 0 0 1 0
𝑓 0 0 0 0 1

Figure 3.3: An example of quotient MDP of a family from Figure 3.1, together with its
transition probability matrix P with row grouping.

Now let us look at how the synthesis itself works using this method. Consider Figure 3.4.
The input of this method is a set of realisations ℛ, from which we create a quotient MDP
that overapproximates the behaviour of all of them. Assume a safety property Φ ≡ P≤𝜆[♦𝐺].
During the model-checking, we compute minimizing and maximising schedulers 𝜎𝑚𝑖𝑛 and
𝜎𝑚𝑎𝑥, respectively, together with the particular lower and upper bounds on the reachability
probabilities (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥). Now, if 𝑥𝑚𝑎𝑥 ≤ 𝜆, we know that each realisation for sure
satisfies Φ and we can return any realisation as a solution. On the contrary, if 𝑥𝑚𝑖𝑛 > 𝜆,
then for each realisation 𝑟 ∈ ℛ𝒟, 𝒟𝑟 ̸|= Φ, and there is no feasible solution. Finally, if
𝑥𝑚𝑖𝑛 ≤ 𝜆 < 𝑥𝑚𝑎𝑥 then we cannot conclude anything unlessℳ𝒟

𝜎𝑚𝑖𝑛
represents a valid family

member, i.e. it is a solution. Otherwise, the problem remains undecided as the abstraction
is too coarse. The solution to this problem is to refine this abstraction and split the family
into two subfamilies, each of which will be analysed separately using the method described
above. If the subfamilies are undecidable again, we continue to split them into even smaller
ones until either we reject all family members or, find a feasible realisation.

Example 7 (AR illustration). To demonstrate the AR method, we again use the family
from Example 5 and the same property as in Example 6, i.e. 𝜙 ≡ P≤0.3[♦{𝑡}]. We begin
with the set of all realisations and construct the corresponding quotient MDP depicted in
Figure 3.3. Via MDP model-checking we obtain 𝑥𝑚𝑖𝑛(𝑠0) = 0.2 ≤ 0.3 < 0.8 = 𝑥𝑚𝑎𝑥(𝑠0).
For a better demonstration of the method, let’s pretend that the MC ℳ𝒟

𝜎𝑚𝑖𝑛
is not a valid

family member, so we got an undecidable case. Let us pick parameter 𝑋 and split the set
of all realisations into subsets ℛ1 = {𝑠1} × {𝑡, 𝑓} and ℛ2 = {𝑠2} × {𝑡, 𝑓}1. For each set
of realisations, the process is then repeated again: model-checking quotient MDP corre-
sponding to the set ℛ1 yields 𝑥𝑚𝑖𝑛(𝑠0) = 0.6 > 0.3 allowing us to reject all realisations
associated with this subfamily, and model-checking the second quotient MDP again results

1Note that the split operation is removing non-determinism in state 𝑠0, which corresponds to the omission
of a row in the transition probability matrix for individual subfamilies.

20

Figure 3.4: Abstraction refinement deductive synthesis.

in undecidable result. Splitting ℛ2, this time at parameter Y, yields another two sub-cases:
ℛ3 = {𝑠2}×{𝑡} and ℛ4 = {𝑠2}×{𝑡}, each containing a single MC, from which we conclude
that realisation 𝑟3 represents the desired solution.

3.4 Hybrid Dual-Oracle Synthesis
As the two previous approaches are conceptually completely different, the hybrid method
represents the middle ground between them, and seeks to take advantage of both methods.
In particular, the presented hybrid method switches between CEGIS and AR methods. It
estimates the efficiency of the two methods and allocate bigger time slot to the method
which performs better (e.g. prunes more family members per time unit). In [3], they
also found that the CE oracle can effectively use the bounds calculated during AR phase to
create smaller counterexamples, which ultimately cause the faster pruning of the state-space
of families in the CEGIS phase.

Figure 3.5: Oracle-guided synthesis (adapted from [3]).

21

Chapter 4

Original Sequential
Implementation of Paynt

In this chapter, we will focus on the original sequential implementation of the Paynt
(Probabilistic progrAm sYNThesizer) tool [4], implementing the presented hybrid synthesis
method. It is based on the probabilistic model checker Storm [14]. The focus will be on
subroutines implementing MC and MDP model-checking, as they represent a core stage of
the synthesis algorithm (to illustrate, see gray parts of figures 3.4 and 3.2). As it turns out,
they are also bottlenecks of the whole process when working with large models because of
the explosion of the underlying state-space of the chain. Note that some of the variables
and function names were changed to better match the definition in this thesis.

4.1 Bottlenecks of Synthesis Process
To support our claim that model-checking is the main bottleneck when working with large
models, we will show some profiling results. By running Paynt several times on families
that included large models, we discovered that:

(1) The model_checking method really takes up the most time. From the obtained logs,
we found that the time spent in this method is ≈ 68% of the total time (note: it
is called whenever it is necessary to verify a specific model, and only within this
method, depending on the type of model, it is decided whether it will be MDP or MC
model-checking.).

(2) About 22% of the total time is taken by construct_ce method. It is called only
in the CEGIS phase, if we find a family member who does not meet the verified
property. Its task is to find the smallest counterexample violating this property (see
Figure 3.2). Obviously, the percentage of the taken time depends on the number of
(unsat) iterations of the CEGIS phase, and thus the value presented is only a rough
estimate, valid for our test set.

(3) The remaining ≈ 10% of the calculation will no longer be analysed in detail. It
consists of several parts such as models building, SAT solving and overhead associ-
ated with controlling the synthesis process. From our perspective, these parts are
uninteresting as most of them form the necessary overhead and therefore cannot be
significantly accelerated.

22

𝑠0 𝑠1

𝑠2 𝑠3

𝑠4

𝑠5

𝑠6

Figure 4.1: A directed graph with 4 maximal SCCs (distinguished by colours). The states
𝑠0 and 𝑠1 present a so-called trivial SCCs as they consist of only one state. The states 𝑠2,
𝑠3, and 𝑠4 form a non-trivial SCC, just as states 𝑠5 and 𝑠6.

4.2 Implementation of the MC Model Checking
If one uses the Storm tool on the MC model-checking (as the Paynt tool does), it is
necessary to specify which solver will be used to solve the derived system of linear equa-
tions (see Algorithm 1, line 4) before calling the model_checking method. The original
implementation uses a topological solver [36], which will be briefly introduced in this section.

4.2.1 Topological Solver

Instead of directly calculating the probability from initial states to targets, it divides
the whole state-space into several partitions, and solve them individually. The idea be-
hind this approach is that if there is a loop in the analysed system, where the convergence
of associated probabilities take several steps, propagation of the intermediate changes to
the outside present a waste. Therefore, the first step of this approach is finding Strongly
Connected Components (SCCs). In graph theory, an SCC of a directed graph G is a subset
of vertices, such that for each pair of vertices a and b, both a is reachable from b and b is
reachable from a. Also, if the selected subset is maximal with respect to G, implying no
vertices can be added without losing the property, the SCC is maximal (see Figure 4.1).
The last important property of an SCC is to note that there exists no path that leaves
the SCC and later returns, as this would contradict SCC’s maximality. Based on the above,
there are two possible cases for an SCC:

(1) only incoming transitions: The SCC is then called a bottom SCC (see Figure 4.1
which has two bottom SCCs, one consisting of states 𝑠5 and 𝑠6 and the other is just
state 𝑠1). Due to the fact that there is no way of leaving this SCC, the calculation of
the reachability probabilities is independent of the remaining system. In addition, if
the SCC does not contain a target state, the result is 0 for all its states.

(2) incoming & outgoing transitions: A topological ordering must be defined for these
components, as the probability of one SCC directly affects the other through the out-
going transitions. Specifically, if there is an outgoing transition from a given SCC,
the target SCC of that transition must be solved first. Looking at Figure 4.1, the order
is given by the shade of gray, where a darker SCC must be resolved before a lighter
one. Following the ordering, each SCC can be solved individually as a possibly smaller
instance.

23

Each SCC is solved as a smaller system of linear equations, which ensures a faster
convergence of this system. In order to solve them, Storm uses the GMRES1 method
implemented in the Gmm++2 library.

Algorithm 3: Topological Linear Equation Solver used by Storm. Note that for
simplicity, we present only the critical parts of the algorithm.

Input: An MC ℳ = (𝑆, 𝑠𝑖𝑛𝑖𝑡,P), target states 𝐺 ⊆ 𝑆
Output: A probability vector 𝑥(𝑠) = P[𝑠 |= ♦𝐺] for each 𝑠 ∈ 𝑆

1 sortedSCCs ← createSortedSccDecomposition(P)
2 if sortedSCCs.size() == 1 then
3 solveFullyConnectedEquationSystem(P, 𝑥)
4 else
5 foreach scc in sortedSCCs do
6 if scc.size() == 1 then
7 𝑥(scc) += P.getRow(scc) · 𝑥 // dot product

8 . . .

9 else
// solving the underlying equation system for the non-trivial SCC

10 solveSCCequationSystem(P, sccAsBitVector, 𝑥)
11 end
12 end
13 end
14 return 𝑥

4.2.2 Finding the Hotspots

As already mentioned, the benefit of the topological solver is a divide-and-conquer strategy,
where the model is divided into smaller parts and each of them is solved as a smaller instance
of the problem. Also, let us look at its implementation. It is clear that the topological solver
brings a significant advantage in cases where the model contains many trivial SCCs, as they
are solved by a simple dot product of two vectors (see Algorithm 3, line 7).

However, after trying this solver on a set of different models, we found that it does not
scale at all, while working with models that contain a large number of non-trivial SCCs.
Under these conditions, the SCC detection brings additional cost. Furthermore, each non-
trivial component will be solved as a separate system of equations, which will adversely
affect the total computation time with their large number.

For illustration in Figure 4.2, we show preliminary results comparing the topological
solver and the Jacobi method using the crowds [32] and the nand [26] models. To support
our decision of choosing the Jacobi method for comparison, we state that it is a basic
representative of iterative methods. It is also the default method of the state-of-the-art
model-checker Prism [20] and will also play a vital role in the following chapters. As we
can see in Figure 4.2a, even though the Jacobi method works with the whole state-space, it
can outperform the topological solver by more than one order of magnitude while working
with models containing a large number of non-trivial SCCs and fairly rapid convergence.

1Generalized Minimal Residual Method (GMRES) is an iterative method for the numerical solution of
a nonsymmetric system of linear equations.

2gmm++ – http://getfem.org/gmm.html

24

http://getfem.org/gmm.html

On the other side when there is no non-trivial SCC (or their number is reasonably small),
the topological solver outperforms the Jacobi method (Figure 4.2b).

Because it is not easy to identify the number of non-trivial SCCs before starting model-
checking, the user cannot tell which variant to use. So we came up with a metric that
could at least roughly estimate which variant should be used. This metric is based on
the idea that a greater number of transitions than states imply a more complex structure
and a higher probability of non-trivial SCCs. For a more detailed evaluation, see Chapter 6.

(a) crowds - many non-trivial SCCs

106 107 108 109

Transition count

100

101

102

103

104

105

T
im

e
(s

)

0.18
0.35

2.76
3.27

67.17

18.56

3713.96

97.90

80210.62

468.79

Topological Solver
Jacobi Iteration Solver

(b) nand - no non-trivial SCC

106 107 108

Transition count

100

101

102

103

T
im

e
(s

)

0.23

5.20
3.14

90.94

15.89

644.48

21.62

1012.23

66.54

4153.32Topological Solver
Jacobi Iteration Solver

Figure 4.2: Comparison of topological solver and Jacobi iteration method on models with
different number of SCCs. Notice the logarithmic scale on both axes of the graphs.

4.3 Implementation of the MDP Model Checking
For MDP model-checking, the original implementation uses the VI method. It is a straight-
forward translation of Algorithm 2 to C++. The pseudo-code of the C++ implementation can
be seen in Algorithm 4. From the algorithm, we can notice that before starting the cal-
culation, Storm makes the reduction mentioned in Chapter 2, and thus considers only
the states belonging to 𝑆? set.

4.3.1 Finding the Hotspots

In order to find limitations of the VI method, we ran it on a set of models, and, as expected,
the method did not scale with the increasing model size and the increasing number of
iterations. This means that the main problem was the loop shown in Algorithm 4.

In addition, since Storm also has a topological solver for MDP model-checking, we
tried to compare it with the currently used VI algorithm. The idea of this topological
solver is the same as described in Section 4.2.1, except that the VI algorithm is used over
the individual SCCs. Then, matrix 𝐴 in Algorithm 4 represents only one SCC. The solution
of trivial SCCs will also change, and it will no longer be just a simple dot product as with
an MDP transition matrix, more than one row of the matrix can belong to one state
(depending on the number of non-deterministic actions in that state).

This comparison showed a similar trend as for MC model-checking. Thus, if the model
contains a small number of non-trivial SCCs, the topological solver can overcome the cur-

25

Algorithm 4: Value Iteration algorithm as implemented in the STORM tool.
Input: Transition probability matrix 𝐴 over all states 𝑠 ∈ 𝑆?, static probability

vector 𝑏 ∈ [0, 1]|𝑆?|, initial state probability vector 𝑥 ∈ [0, 1]|𝑆?|,
row-grouping information 𝒢𝐴 on 𝐴, reduce operator ⊕ ∈ {𝑚𝑖𝑛,𝑚𝑎𝑥},
required precision 𝜀

Output: A probability vector 𝑥(𝑠)𝑠∈𝑆?

1 do
2 multRes ← 𝐴 · 𝑥 + 𝑏
3 foreach 𝑔𝑟𝑜𝑢𝑝 ∈ 𝒢𝐴 do
4 𝑥′(𝑔𝑟𝑜𝑢𝑝) ← ⊕{multRes(𝑖) | 𝑖 ∈ 𝑔𝑟𝑜𝑢𝑝}
5 end
6 swap(𝑥,𝑥′)

7 while max{|𝑥𝑠 − 𝑥′𝑠| | 𝑠 ∈ 𝑆?} ≤ 𝜀
8 return 𝑥

rently used VI algorithm. And again, as the number of non-trivial SCCs increases, the per-
formance of the topological solver decreases faster. For more detail see Chapter 6.

4.4 Data Structures
In the previous sections, we have introduced methods that are currently used for model-
checking. Nevertheless, we all know that not only the algorithms themselves but also
the data structures are a crucial part of the implementation. The way the data is stored
can often significantly affect the speed of the calculation. For this reason, in this section, we
will introduce how the analysed models are stored. We can already see from Figure 2.1 that
the transition matrix of a simple model simulating six-sided dice contains an great amount
of zeroes, that play no role in the calculation. This trend is the same for most stochastic
models and therefore, many ways that try to compress these sparse matrices have emerged.

The data representation in the Storm’s sparse engine (which Paynt is using) is based
on compressed sparse row (CSR) matrix format, which will be briefly introduced in the rest
of this section.

Definition 11 (The CSR Format). Let A : {0, 1, . . . ,𝑚 − 1} × {0, 1, . . . , 𝑛 − 1} → R be
a matrix with 𝑚 rows and 𝑛 columns, such that A(𝑖, 𝑗) = 𝑎𝑖,𝑗 and 0 ≤ 𝑖 < 𝑚 ∧ 0 ≤ 𝑗 < 𝑛.
Let 𝑐 = |{A(𝑖, 𝑗) | A(𝑖, 𝑗) ̸= 0}| be the number of non-zero elements of A. And let
𝑟𝑠𝑖𝑧𝑒(𝑖) = |{A(𝑖, 𝑗) | A(𝑖, 𝑗) ̸= 0}| be the number of non-zero values in the 𝑖-th row of A.
Then A can be represented by the following three arrays:

• matVal[𝑐]; matVal[i] is the i-th non-zero value of A.

• matCol[𝑐]; matCol[i] is the column of the i-th non-zero value of A.

• matRowStart[𝑚 + 1]; matRowStart[j] =
∑︀𝑖<𝑗

𝑖=0 𝑟𝑠𝑖𝑧𝑒(𝑖) and specifies the index in
the matVal array where row j begins. j then ends at the index matRowStart[j+1]-1.

26

Example 8. Consider the MDP transition probability matrix depicted below.⎛⎜⎜⎜⎝
0.7 0.3 0

0.5 0 0.5
0 1 0

1 0 0

⎞⎟⎟⎟⎠
In order to create a CSR representation, we first (line by line) extract all non-zero

values, and store them in the matVal array. Then, for each value from the matVal array, we
find its column and store it in the matCol array. The last array is simply created according
to the above formula.

matVal[] = 0.7 0.3 0.5 0.5 1 1
matCol[] = 0 1 0 2 1 0

matStartRow[] = 0 2 4 5 6

In addition, in the case of an MDP transition matrix (as in our example), Storm defines
an matGroupStart array, that groups the rows corresponding to the actions in one state.
The semantics of this array is similar to matRowStart except that mathGroupStart[j]
returns the row number on which the group j begins, and mathGroupStart[j+1]-1 is then
the last row of group j. In case of our example, this array would look like this:

matGroupStart[] = 0 1 3 4

The individual elements of matrices are of the double type, as the original sequential
implementation requires accuracy of up to 11 significant digits. It follows that our parallel
implementation presented in the next chapter will have to work with this accuracy, even
though it is more advantageous to use single-precision when working on GPU.

27

Chapter 5

Parallelisation

In the last few years, the current trends in hardware development favour multicore and
manycore architectures such as GPUs. To address the limitations mentioned in the previous
chapters, this chapter will focus on finding those parts of synthesis algorithm that may
be executed efficiently on GPU and take advantage of their highly parallel architecture.
The aim is to increase the scalability of the presented synthesis method for both large and
small models (if there are many). At the beginning of this chapter, we will describe which
specific parts of the synthesis algorithm we have parallelized. Then we will say a few words
about choosing the used GPU framework, and the last, the most crucial part of this chapter
will be the introduction of our parallel methods.

5.1 Problem Decomposition
For a better idea of the computational distribution within the synthesis, Figure 5.1 shows
the overall architecture of the Paynt tool. As mentioned in Chapter 4, the most significant
part of the calculation is occupied by model-checking when working with large models (see
the green parts of Figure 5.1). Therefore, we decided to target this problem and we present
a parallelisation on the state level of a given stochastic model. It is actually a parallelisation
of the model-checking methods presented in the previous chapters, while all these methods
work with one model (see Section 5.3). However, this parallelisation is not suitable for
small models, as the overhead associated with GPU execution is higher than useful work.

Figure 5.1: The Paynt tool architecture.

28

For this reason, we have proposed the so-called family-based parallelisation, where we try
to increase the amount of work done on GPU by analysing several smaller models simulta-
neously. This situation is illustrated in Figure 5.1 by red arrows, which indicate that either
multiple subfamilies (AR loop) or multiple realisations of a single family (CEGIS loop) are
analysed in a single iteration. This approach is discussed in more detail in section 5.4.

5.2 Analysis CUDA/OpenCL
Ever since the field of general-purpose computing on graphics processing units (GPGPU)
took off, the two main contenders on the market are AMD1 and NVIDIA2. Both of them
have been trying to attract as many customers as possible, not only in terms of the hard-
ware offered, but also in terms of the tools and particular languages that allow optimal
performance on their devices. Furthermore, since we directly influence the target hardware
by choosing the framework, we present a list of advantages and disadvantages.

5.2.1 OpenCL

Open Computing Language (OpenCL) [25] serves as an independent, open standard for
cross-platform parallel programming. OpenCL is not just for GPUs (like CUDA) but also
for CPUs, FPGAs, and DSPs. It is maintained by a non-profit organization, and has been
adopted by several large companies such as AMD, Intel, and NVIDIA. However, the het-
erogeneity of platforms brings the most significant disadvantage, which is that OpenCL
cannot be very device-specific. This means that it is not possible to use the full poten-
tial of highly specialized hardware and low-level programming. The fact that OpenCL
applications can run even on Android devices is irrelevant to the goals of this thesis.

5.2.2 CUDA

Compute Unified Device Architecture (CUDA) [24] serves as a platform for parallel com-
puting, as well as a programming model. It was developed by NVIDIA for general-purpose
computing on NVIDIA’s GPU hardware. As a programming model, it is very similar to
OpenCL, though the hardware abstraction layers differ in terminology and coarseness.
In contrast to OpenCL, CUDA is specifically GPU-aimed, allowing it to focus more on
available resources, which results in a better performance. Another advantage is that
NVIDIA targets mainly the scientific community, and therefore there are many ready-made
optimized libraries for different types of scientific computations. Based on these facts, we’ve
decided on the CUDA programming model.

5.3 State-Based Parallelisation
The first goal of our work is to use a large number of GPU threads to speed up the model-
checking on huge models. To this end, we want to implement existing, sequential model-
checking algorithms in CUDA, while the resulting implementation is parallel on the state
level of a stochastic model.

1https://www.amd.com/en
2https://www.nvidia.com/en-us/

29

https://www.amd.com/en
https://www.nvidia.com/en-us/

5.3.1 Matrix-Vector Multiplication

As shown in Chapter 2, matrix-vector multiplication plays a crucial part in the model-
checking of stochastic models, and therefore it was the first step of our parallelisation.
Despite the fact that it is a very well-known problem addressed by the vast commu-
nity, we decided to parallelize it (ignoring the existing approaches) to better understand
the CUDA programming model, and possibly improve the situation in this area.

Assume the matrix in Figure 5.2 and its CSR representation as presented in Section 4.4.
For simplicity, let us also consider that one warp contains only four threads. The simplest,
most straightforward variant of how to parallelize this calculation is to have each thread
compute one element of the resulting vector. Thus, one row of an input matrix belongs to
one thread (see Figure 5.2). The implementation of such an approach then looks like in
Algorithm 5.

⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

𝑡0 ; 0.2 0 0.1 0 0.4 0 0.3 0
𝑡1 ; 0 0.1 0 0.5 0 0.2 0 0.2
𝑡2 ; 0 1 0 0 0 0 0 0
𝑡3 ; 0 0.4 0 0.2 0 0.4 0 0

...
𝑡𝑛 ; . . .

matVal[] = 0.2 0.1 0.4 0.3 0.1 0.5 0.2 0.2 1 . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

𝑡0
0 𝑡0

1 𝑡0
2 𝑡0

3 𝑡1
0 𝑡1

1 𝑡1
2 𝑡1

3 𝑡2
0

Figure 5.2: CSR thread per row - memory access pattern.

Algorithm 5: CSR Naive (thread per row) matrix-vector multiplication kernel.
1 row = blockIdx.x * blockDim.x + threadIdx.x; // thread’s global ID

2 sum = 0.0;
3 foreach i = matStartRow[row]; i < matStartRow[row+1]; i++ do
4 sum += matVal[i] * x[matCol[i]];
5 end
6 result[row] = sum;

But let’s go back to Figure 5.2 showing also the biggest problem with this implemen-
tation, which is non coalesced memory access. We see that threads in the same warp read
values with a (row size) stride. Can we improve it somehow? The answer to the pre-
vious question is shown in Figure 5.3. We see that, unlike the first approach, one line
is now processed by the threads of one warp. Each thread then performs matVal[tid]
* x[matCol[tid]], and stores the result in its local register. The resulting reduction is
performed using warp-level primitives (working directly with the registers, and therefore
no additional memory is required). This approach solved the problem of non coalesced
memory access, but if we look at the picture below, we see that a third row contains only

30

one non-zero value, which results in unwanted divergence of threads within one warp (all
threads except first are idle).

matVal[] = 0.2 0.1 0.4 0.3 0.1 0.5 0.2 0.2 1 − − − . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

𝑡0
0 𝑡1

0 𝑡2
0 𝑡3

0 𝑡4
0 𝑡5

0 𝑡6
0 𝑡7

0 𝑡8
0 𝑡9

0 𝑡10
0 𝑡11

0

Figure 5.3: CSR warp per row - memory access pattern.

In order to eliminate this problem as well, we present our final method. In this approach,
we also used the matGroupStart array, which Storm uses to define MDPs. However, we
have slightly changed its semantics. Instead of grouping rows belonging to non-deterministic
actions in one state, we will now group rows to ensure enough work for all threads in one
block. Assume the matrix in Figure 5.2 and the condition of four non-zero elements per
block NNZ_PER_BLOCK = 4. Then the matGroupStart array will look like: [0, 1, 2, 4,
..., n]. We see that the third and fourth row have merged into one group, remov-
ing the divergence problem from the previous approach (see Figure 5.4). The value of
NNZ_PER_BLOCK is optional and also specifies the size of one thread block. Each thread
block then gets a maximum of NNZ_PER_BLOCK non-zero elements, which are processed by
NNZ_PER_BLOCK threads. Blocks are created in groups of rows, so the block either contains
the entire row or no row element at all (if the NNZ_PER_BLOCK value would be exceeded by
adding the row). Therefore, it is clear that our modification can also lead to a situation
where some threads in the block will be idle. However, their number will be significantly
smaller than in the previous approach.

The last thing that remains is the reduction of the resulting values. There is no longer
a situation where one thread or one warp processes the entire row. There may be situations
where multiple warps can process one row, and even threads in one warp do not have
to process the same row (as in Figure 5.4). It follows that the reduction can no longer
be done by the only one thread or warp. More precisely, it can, but we can do better.
Therefore, our approach decides at run-time which method will be chosen based on the size
of the individual rows in the block (hence the name adaptable). Specific situations that
may occur:

• One block processes only one row of a matrix. It is exactly the case with the first
two rows of our example, and we reduce it using one or more warps, depending
on the number of non-zero values in the row. If one row contains more than 2
* warpSize values, we cannot simply reduce them using the mentioned warp level

matVal[] = 0.2 0.1 0.4 0.3 0.1 0.5 0.2 0.2 1 0.4 0.2 0.4 . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

𝑡0
0 𝑡1

0 𝑡2
0 𝑡3

0 𝑡4
0 𝑡5

0 𝑡6
0 𝑡7

0 𝑡8
0 𝑡9

0 𝑡10
0 𝑡11

0

Figure 5.4: CSR adaptable - memory access pattern.

31

Figure 5.5: An example of parallel reduction using the pyramid-summation scheme. Gray
squares represent memory cells, and a ⊕ represents a commutative binary operation per-
formed by a single thread. Note that with GPU, we must use the memory access pattern
as shown; otherwise, thread divergence will occur in a single warp.

primitives and so more warps will be used for reduction. Each of them reduces
an assigned part of a row, and the results are reduced in shared memory applying
the pyramid-summation scheme (see Figure 5.5).

• The second case is that one block contains several rows (see the third block in our ex-
ample). Here the reduction is more complicated as one block computes several values
of the resulting vector. Based on the number of rows in the block, we decide how many
threads will be used to reduce one row: prevPowerOf2(blockSize/rowsInBlock).
For a better understanding, let us show it again with an example. This time consider
the situation shown in Figure 5.6. The figure shows one block consisting of 4 rows,
and the colours of the threads correspond to the warp membership (this time, eight
threads per warp). The first line shows the situation just after multiplication. Each
thread in a block writes the calculated value to shared memory on an index corre-
sponding to its threadId.x. In the second step, the role of the threads changes. From
the above formula, we get that up to 4 threads will reduce one row. If the given row
has more than four values, it is necessary that the threads first process all values of
the given row locally (in the registers). Threads with nothing to do in this step will
write 0 (neutral element for sum operation) to their register. After this operation,
each thread writes the value of its register to the shared memory, and there will be
precisely four values for each row. Finally, we use the pyramid scheme over the shared
memory, as shown in Figure 5.5. In the end, the threads 0, 4, 8, 12 write the results
to the global memory. If prevPowerOf2(blockSize/rowsInBlock)=1, each row is
assigned one thread, and the situation is pretty straightforward. We see that with
this approach, an inevitable divergence occurs in the reduction, but a significantly
larger part of the threads does valuable work.

32

Figure 5.6: Example of reduction used in matrix-vector multiplication. This example
demonstrates a situation where one thread block reduces multiple rows of the input matrix.
The colours represent the association of the thread to the warp.

In order to evaluate the performance of our implementation, we compared it with the im-
plementation from the CUSPARSE3 library. Specifically, it was the implementation from
the CUDA Toolkit ver. 11 [24]. For evaluation, we used a set of sparse matrices from
the benchmark used in Chapter 6, and the comparison can be seen in Figure 5.7. From
the results, we can see that we were able to outperform the CUSPARSE library on most
selected matrices. However, despite the favourable results of our implementation, we used
the CUSPARSE library to continue our work. The overhead associated with rows grouping
unnecessarily brings more sequential work to the algorithm, as the CUSPARSE library does
not need this information, and it was this overhead that caused smaller speed-ups when
verifying large models using our multiplication.

106 107

Non-zero count

8

9

10

11

12

13

14

sp
ee

d-
up

 fa
ct

or

CUSPARSE kernel
ADAPTABLE kernel

Figure 5.7: Comparison of our implementation of matrix vector multiplication with
the CUSPARSE library.

3CUSPARSE is the CUDA sparse matrix library. It contains a set of basic linear algebra subroutines
used for handling sparse matrices.

33

5.3.2 Model Checking MCs in parallel

In previous chapters, we have shown that MC model-checking is an essential part of the syn-
thesis algorithm, and we have also introduced ways to solve this problem. In order to paral-
lelize this problem, let us take a brief look at the individually presented methods, focusing
on their parallel potential:

(1) Topological Solver : First, we will look at probably the most sophisticated approach,
which is also set as Storm’s default – the topological solver. The first idea that might
strike someone is that it solves each SCC separately; couldn’t it do it in parallel?
However, this idea is rejected by the fact that the individual SCCs must be solved
in the order given by the topological ordering (see Section 4.2.1). The possibility of
parallelism is thus represented only by SCCs, which do not affect each other in any
way. However, the identification of such SCCs would bring additional overhead to
the calculation, which is not the biggest problem. Much more significant obstacles
are their different properties and the fact that they are not stored contiguously in
memory. In addition, if the number of these independent components is small, much of
the calculation will still be serialized. These problems would result in unwanted thread
divergence and poor memory access from the GPU’s perspective. From the above, we
can say that GPU parallelisation of this solver is not very suitable, as with GPU, we
benefit from the fact that many threads do the same job.

(2) Gauss-Seidel Method: The second, much better known, is the Gauss-Seidel method. If
we compare it with the previous approach, this method will no longer have a problem
with memory access, as it works with the whole state-space at once. And as we have
shown in the previous section, we can ensure that adjacent threads read from adjacent
locations. This approach can even converge quite quickly. So, where is the problem?
The problem, or rather the difficulty of parallelisation, of this method, is due to
the data dependency. If we look at the update scheme of this method, we see that
it already uses the currently calculated values in the current iteration. As a result,
this method converges relatively quickly, but in a parallel environment, it will result
in unwanted synchronization of threads.

(3) Jacobi Method: The last one and at the same time the one we have decided to
parallelize is the Jacobi method. We chose this method even though it is one of
the slowest in a sequential environment. However, unlike the Gauss-Seidel method, it
has no data dependencies within a single iteration and is therefore very suitable for
parallelisation.

Jacobi Iterations. Each iteration in the Jacobi method involves a matrix-vector multi-
plication. Let 𝑠 be the size of the state-space, implying the dimension 𝑠 × 𝑠 of matrix 𝐴
to be iterated. Now let us recall the update scheme of the Jacobi method, and identify
the parts that can be done in parallel. For simplicity, we will adjust it a bit compared to
the version given in Chapter 2. Specifically, we extract the diagonal elements of matrix 𝐴
and store their inverted values in array 𝐷𝑖 = 1/𝐴(𝑖,𝑖), for 𝑖 ∈ {0, . . . , 𝑠− 1} before applying
the update scheme. The modification then yields:

𝑥(𝑘)(𝑖) = 𝐷𝑖 ·

⎛⎝𝑏(𝑖)−
∑︁
𝑗 ̸=𝑖

𝐴(𝑖, 𝑗) · 𝑥(𝑘−1)(𝑗)

⎞⎠
34

The pseudo code of the Storm’s sequential implementation, which already uses the de-
composition given above is shown in Algorithm 6. This algorithm already gives us a nice
guide to our parallelisation. Let us look at the first step of the iterative calculation (line 3).
We see that this is exactly the problem presented in the previous section, namely the mul-
tiplication of the sparse matrix and a dense vector. As already mentioned, our implemen-
tation uses the CUSPARSE library for this. Lines 4 and 5 of the sequential algorithm
essentially do the operation:

𝑥′
𝑖 = (𝑏𝑖 − 𝑥′

𝑖) *𝐷𝑖

In order to perform this operation, we created a kernel containing 𝑠 threads. Each thread
then calculates one entry of the resulting vector 𝑥′ based on its tid. The final part of
Algorithm 6 is checking convergence, which can be also done in parallel. In order to do
so, we have defined a custom CUDA binary transformation operator for both relative and
absolute comparison. It takes two arguments and returns a single positive value. This
transformation is then applied to each pair (𝑥𝑖,𝑥

′
𝑖) for 𝑖 ∈ {0, . . . , 𝑠}. Now, it remains to

find the maximum difference in the resulting vector. In the case of a simple vector-wide
reduction, there is a possibility to use the Thrust library [15], implementing an optimized
version of pyramid-scheme reduction mentioned earlier. Computed maximum is compared
against the given precision value, and either the algorithm terminates or the next iteration
begins.

The satisfactory condition for the Jacobi method to converge is that the magnitude
of spectral radius (the largest eigenvalue) of matrix 𝐷−1(𝐴 − 𝐷) is bounded by value
one. Luckily, the Perron-Frobenius theorem declares that spectral radius of a stochastic
matrix is equal to 1, and all other eigenvalues are smaller than one, so that 𝑙𝑖𝑚𝑘→∞𝐴𝑘

exists. The worst case scenario is that the number of iterations is exponential in the size
of the state-space, but in practice the number of iterations 𝑘 is often moderate for some
sufficiently small 𝜀 [34].

Algorithm 6: Jacobi method as implemented in the STORM tool.
Input: CSR representation of transition probability matrix 𝐴 over all states

𝑠 ∈ 𝑆?, static probability vector 𝑏 ∈ [0, 1]|𝑆?|, initial state probability vector
𝑥 ∈ [0, 1]|𝑆?|

Output: A probability vector 𝑥(𝑠)𝑠∈𝑆?

// 𝐿𝑈 represents matrix 𝐴 without diagonal component.

1 𝐷,𝐿𝑈 ← getJacobiDecompostion(𝐴)
2 do
3 𝑥′ ← multiply(𝐿𝑈,𝑥)
4 𝑥′ ← subtractVectors(𝑥′, 𝑏)
5 𝑥′ ← multiplyVectorsPointwise(𝑥′, 𝐷)
6 swap(𝑥,𝑥′)

7 while max{|𝑥𝑠 − 𝑥′𝑠| | 𝑠 ∈ 𝑆?} ≤ 𝜀
8 return 𝑥

5.3.3 Model Checking MDPs in parallel

Another building block of the synthesis algorithm that has a problem with large models
is MDP model-checking. In previous chapters, we have introduced two approaches to this
model-checking. One was the VI algorithm used by the current version of Paynt. The sec-

35

ond was a more sophisticated topological approach used as the default of the Storm tool.
When deciding which approach is more suitable for parallelisation, we came to the same con-
clusions as in MC model-checking. The disadvantages of the topological approach remain
precisely the same. On the other hand, an iterative calculation using matrix multiplication,
which we have already successfully parallelized, has proved to be a clear choice. Therefore,
we paralleled the value iteration algorithm.

Value Iterations. We have already introduced a sequential variant of the VI algorithm
earlier in Algorithm 4. If we compare it with the algorithm of the Jacobi method, we
see that the iterative parts of the algorithms do not differ so much from each other. In
the beginning, we do a multiplication operation between a sparse matrix and a vector. We
will use the CUSPARSE library again. Another part is the addition of the vector 𝑏. Since
this is a simple vector operation, we will use the Thrust library again (vector operation
with plus operator).

The implementation up to this point was more or less the same. So far, we have
found the probability value for each action in each state. The next step is to select an ac-
tion that maximizes or minimizes the value in each state based on the verified property
(see Algorithm 4 lines 3-5). We will refer to this operation as segmented reduce, where
one segment will represent actions in one state. First, we tried to find existing solutions.
While searching, we came across the CUB library [28]. Specifically, it was a function
cub::DeviceSegmentedReduce, whose interface exactly corresponded to our needs, and
therefore we did not have to modify the used data structures. However, in our case, the seg-
ments representing non-deterministic choices are quite small, and the function just men-
tioned is not optimized for such cases. Using this function even led to an overall slowdown
compared to the sequential variant, so we proposed our solution to target this problem.

To illustrate our approach, we will use the example in Figure 5.8. For simplicity,
consider that the size of a thread block is 16 threads and that one warp consists of 8
threads (the condition is blockSize % warpSize == 0). In the example, we see the sit-
uation after the first two steps of the algorithm when we have calculated the probabil-
ities for each action in each state. The first step is to decide how many threads will
reduce the values belonging to one state. We determine this number using the formula:
n = prevPowerOf2(numEntries/numGroups). However, the condition is that the number
of threads processing the actions of one state never exceeds the warpSize value (in our
case warpSize = 8), and at the same time, it will never be less than 2. The next step is
the calculation itself. Let us go back to our figure. If the number of elements in a segment
is greater than the number of its threads, each thread first reduces the remaining values
locally to its register in the manner shown in the figure. In our example, the max operation
is used for reduction. The last step is the resulting reduction. We can use fast warp-level
primitives for this reduction, as one state will never reduce more than warpSize threads.
As we can see, warp level primitives also use the pyramid scheme from Figure 5.5, but their
advantage is that they work directly with registers. Threads that have the resulting values
in their registers will eventually write them to global memory. To summarize, based on
the finding that one state rarely has more than warpSize actions (warp size is typically
32 or 64), we have proposed a segmented reduction method that can effectively utilize fast
warp-level primitives.

The last part of the VI algorithm is the convergence detection. However, this part has
not changed compared to one used in the Jacobi method, and thus the implementation of
this part is exactly the same.

36

Figure 5.8: Example of segmented reduction used in the Value Iteration algorithm. 𝑠𝑖
represents one state of an analysed MDP, and the colours again represent the association
of the thread to the warp.

5.4 Family-Based Parallelisation
So far, we have talked about parallelisation at the state level of the stochastic model, which
has brought acceleration when working with large models. The second part of our work
deals with the idea of whether we cannot take advantage of a large number of threads even
when working with small models (small matrices). Specifically, is there a way to analyse
multiple smaller models at once?

5.4.1 Model Checking Multiple MDPs in parallel

First, we take a look at the possibility of analysing multiple MDPs simultaneously and
for this purpose, let us recall Example 7. In this example, we have shown the operation
of the AR synthesis method, which initially creates an abstraction of the whole family in
the form of a quotient MDP and gradually refines this MDP during the synthesis. We also
present an intuition that family refinement is actually omitting rows from a super-family
transition matrix. And since we can describe all subfamilies with one transition matrix,
this is why the idea arose to analyse several such families at the same time. The intention
is to select as many MDPs from the quotients queue (see Figure 3.4) as can fit on the GPU
and analyse them at once.

Consider the situation of Example 7, after the first refinement of the super-family, we
have created two families, one of which omitted the first row of the original matrix and
the other omitted the second row. Let us now look at how our method will analyse these
families simultaneously. If you remember, when analysing one MDP, it was possible to
reduce the state-space by considering only 𝑆? states. For this purpose, we then encoded
the information about the states 𝑆1 into vector 𝑏. However, in the case of the analysis of
several families simultaneously, there may be a situation where a state that is not relevant
for one family may be a relevant for another. Therefore this reduction is not possible in
our approach. However, this is what comes in handy as we can use the vector 𝑏 to encodes
information about rows of the original matrix that are irrelevant for a given subfamily. For
our two subfamilies, the vectors 𝑏 will then look like this:

()𝑏subfamily1 ±∞ 0 0 0 0 0 0 0
()𝑏subfamily2 0 ±∞ 0 0 0 0 0 0

37

Specifically, we set the infinity value to the locations of irrelevant rows of the matrix
for the given subfamily, which will play a vital role in the resulting reduction. However,
by changing the semantics of vector 𝑏, we lost information about the target states. Thus,
according to the original approach presented in Chapter 2, we encode this information into
vector 𝑥. Recall the property of Example 7: 𝜙 ≡ P≤0.3[♦{𝑡}]. So the initialization vectors
𝑥 for our families will be:

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

0 0
0 0
0 0
1 1
0 0

After the introduction of these data structures, the VI algorithm itself will not re-
quire any significant changes. The first change is that the matrix vector multiplication
changes to the multiplication of a sparse matrix and a dense matrix. The dense matrix
will represent vectors 𝑥 for individual families (the more families analysed simultaneously,
the more columns this matrix will have). To implement this operation, we again used
the CUSPARSE library and specifically the cusparseSpMM method. The result of this mul-
tiplication is a dense matrix, the columns of which represent the result for each family.
This matrix is then stored in memory using the column-major order (since we are working
with the GPU), which means that results of individual families are stored in memory as
successive vectors, creating one long vector. As a result, the second step of algorithm VI
remains the same, except that the added vector 𝑏 represents the concatenation of vectors
𝑏 for all families. The calculation for the families from our example would look like this
(suppose we are looking for the maximum probability):

𝑠0 𝑠1 𝑠2 𝑡 𝑓⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑠0 0 1 0 0 0
0 0 1 0 0

𝑠1 0 0 0 0.8 0.2
0 0 0 0.6 0.4

𝑠2 0 0 0 0.4 0.6
0 0 0 0.2 0.8

𝑡 0 0 0 1 0
𝑓 0 0 0 0 1

·

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

0 0
0 0
0 0
1 1
0 0

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0
0 0

0.8 0.8
0.6 0.4
0.4 0.6
0.2 0.8
1 1
0 0

()mulRes 0 0 0.8 0.6 0.4 0.2 1 0 0 0 0.8 0.6 0.4 0.2 1 0
+

()𝑏 −∞ 0 0 0 0 0 0 0 0 −∞ 0 0 0 0 0 0

()−∞ 0 0.8 0.6 0.4 0.2 1 0 0 −∞ 0.8 0.6 0.4 0.2 1 0

We can now apply a segmented reduction algorithm to the resulting vector. Note that
as we look for maximum probability, setting irrelevant lines to minus infinity will ensure

38

that they are always ”ignored“ during reduction. The resulting vector is actually a matrix
of vectors 𝑥, serving as input for the next iteration. The last step is to check convergence.
Here again, we benefit from the situation that the results for all families are in one ”vector“,
and so we can use exactly the same way as in the previous algorithms. This will check
the convergence of all families at once, and the calculation will continue until all analysed
families converge.

5.4.2 Model Checking Multiple MCs in parallel

It follows from Definition 10 that the MDP in the previous section over-approximates
the behaviour of all members of the analysed family. It means that by omitting the correct
rows of the transition matrix of this MDP, we can get all the correct members of this family.
Thus, we could analyse multiple MCs simultaneously using a similar approach. However,
as we will show in Chapter 6, this approach does not prove to be very advantageous, so we
no longer tried to apply it to MC model-checking.

39

Chapter 6

Experimental Evaluation

All of the presented methods discussed in Chapter 5 were implemented in the Storm tool.
Afterwards, they were made available through the Storm Python API and subsequently
integrated into the Paynt tool. In the following set of experiments, we will demonstrate
a comparison of our GPU aided implementation with the approaches used so far. We will
also investigate the impact of the new methods on the overall performance of the synthesis.
All of the experiments were run on a machine running Ubuntu 20.04 with an Intel XeonE5-
2620 processor (6 cores up to 3.20 GHz) and using up to 64 GB RAM. Parallel model-
checking was run on the NVIDIA GeForce GTX 1080 graphics card with 8 GB video
memory.

6.1 Model Checking MCs
First, let us evaluate the MC model-checking. Here we will investigate how our GPU-aided
implementation performed against the originally used topological solver, and also against
the sequential version of the Jacobi method, as it is the method we’ve been accelerating,
and in some cases, it is able to outperform the currently used topological solver (see Sec-
tion 4.2.2). For each benchmark, we present two tables giving an overview over states and
transitions count, average measured time of a CPU solver and our GPU based implemen-
tation and the factor between the two aforementioned times. In addition, if we compare
our solver against the Jacobi method, the table also contains the number of iterations re-
quired for the method to converge. In comparison with the topological solver, we also state
the number of non-trivial SCCs, as their number significantly affects the resulting factor.
We also present a plot of the speed-up factor and the percentage of time spent in the GPU
solver against the number of transitions to illustrate better the relationship between the size
of the model and possible speed-up. A speed-up factor >1 means that our implementation
performs better than a sequential one. This boundary is then shown in plots by a red line.

crowds case study. Firstly we used the crowds protocol by Reiter and Rubin [32]. From
our perspective, we are not so interested in the semantics of the investigated model, as in its
structural properties. We found out, that these are the ones that have a significant impact
on the overall performance of model-checking for different types of solvers. Thus, the crowds
model is representative of models with a large number of non-trivial SCCs. The results for
the crowds protocol are presented in Tables 6.1 and 6.2 and also in Figure 6.1.

40

Table 6.1: Experimental results using the crowds models, comparing our implementation
against the sequential Jacobi algorithm.

states transitions iterations CPU time GPU time factor
321 k 762 k 242 0.575 s 0.764 s 0.75
2.3 M 6.9 M 243 4.414 s 1.915 s 2.31
10 M 37 M 243 18.563 s 5.952 s 3.12
45 M 164 M 263 1.6 min 27.001 s 3.63

178 M 647 M 282 7.8 h 112.594 s 4.16

Table 6.2: Experimental results using the crowds models, comparing our implementation
against the sequential topological algorithm.

states transitions SCCs* 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝑠𝑡𝑎𝑡𝑒𝑠 CPU time GPU time factor

321 k 762 k 2.0 k 2.37 0.564 s 0.764 s 0.73
2.3 M 6.9 M 7.6 k 2.98 7.982 s 1.915 s 4.17
10 M 37 M 21 k 3.60 67.172 s 5.952 s 11.29
45 M 164 M 106 k 3.62 1 h 27.001 s 137.54

178 M 647 M 460 k 3.64 22.3 h 112.594 s 716.16
* Indicates the number of non-trivial SCCs.

(a) factor against topological solver

106 107 108

Transition count

100

101

102

103

sp
ee

d-
up

 fa
ct

or

0.00

0.05

0.10

0.15

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

(b) factor against seq. Jacobi

106 107 108

Transition count

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
ee

d-
up

 fa
ct

or

0.00

0.05

0.10

0.15

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l
Factor between CPU/GPU ver.
% of time spend in GPU solver

Figure 6.1: Speed-up factor and the time spent within the GPU solver plotted against
the transition count of the crowds model.

The obtained results directly reveal several conclusions. Firstly, it is clear that a more
preferred sequential variant, in this case, is the Jacobi iteration solver. The reason is that
the convergence problem, that the topological solver targets, is not found in this model,
and even in large instances, the Jacobi solver can converge up to hundreds of iterations.
Furthermore, we can notice that the time of the topological solver snowballs with an in-
creasing number of non-trivial SCCs, and thus our implementation is up to 700 times faster.
The rapid convergence that caused this significant acceleration, damaged the acceleration
compared to the sequential version of the Jacobi method. The small number of iterations

41

meant that the time spent in our solver was only ≈10 % of the total computational time,
which results in a maximum quadruple acceleration, although the parallel Jacobi method
was much faster than the sequential one (see Amdhals’ law1).

maze case study. The second representative in our benchmark is the maze model [23].
In terms of structural properties, this model is representative of models with no or very
few non-trivial SCCs. The results for the maze protocol are presented in Tables 6.3 and 6.4
and also in Figure 6.2.

At first, we want to point out the significantly higher number of iterations compared to
the crowds model, which corresponds to the increase of time spent in our solver up to 95%.
Under these conditions, we can notice that our implementation outperform its sequential
variant up to twenty times. However, if we look at the comparison with the topological
solver, we see a significant slowdown. From the topological solver’s point of view, the model-
checking is more or less a one matrix-vector multiplication, as the model contains only one
non-trivial component (see Algorithm 3). Compared to the 20,000 multiplications (albeit
performed in parallel) and the overhead associated with executing on the GPU, it has
brought a significant speed-up against our implementation.

These results show that in cases where the model does not contain any non-trivial com-
ponents (or their number is reasonably small), the most advantageous variant is the topo-
logical solver. We can identify this with our metric (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑠𝑡𝑎𝑡𝑒𝑠), the value of which implies
that the number of transitions and states is close, and thus the formation of non-trivial
SCCs is less likely.

Table 6.3: Experimental results using the maze models, comparing our implementation
against the sequential Jacobi algorithm.

states transitions iterations CPU time GPU time factor
809 1.2 k 18 k 0.227 s 1.279 s 0.18

7.4 k 11.1 k 19 k 1.630 s 1.353 s 1.20
74 k 110 k 19 k 16.084 s 1.958 s 8.21

740 k 1.1 M 20 k 3 min 13.451 s 13.19
7.4 M 11 M 20 k 30.2 min 80.675 s 22.49

Table 6.4: Experimental results using the maze models, comparing our implementation
against the sequential topological algorithm.

states transitions SCCs* 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝑠𝑡𝑎𝑡𝑒𝑠 CPU time GPU time factor

809 1.2 k 1 0.66 0.001 s 1.279 s 7.8e−4
7.4 k 11.1 k 1 1.48 0.004 s 1.353 s 2.9e−3
74 k 110 k 1 1.48 0.044 s 1.958 s 0.022

740 k 1.1 M 1 1.48 0.400 s 13.451 s 0.033
7.4 M 11 M 1 1.48 3.920 s 80.675 s 0.049

* Indicates the number of non-trivial SCCs.

1Amdhal’s law – https://en.wikipedia.org/wiki/Amdahl%27s_law

42

https://en.wikipedia.org/wiki/Amdahl%27s_law

(a) factor against topological solver

103 104 105 106 107

Transition count

0.0

0.2

0.4

0.6

0.8

1.0

sp
ee

d-
up

 fa
ct

or

0.55

0.65

0.75

0.85

0.95

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

(b) factor against seq. Jacobi

103 104 105 106 107

Transition count

0

5

10

15

20

sp
ee

d-
up

 fa
ct

or

0.55

0.65

0.75

0.85

0.95

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

Figure 6.2: Speed-up factor and the time spent within the GPU solver plotted against
the transition count of the maze model.

dpm case study. The last of this set of benchmarks is the dpm model [27]. At the be-
ginning, we would like to point out that during the evaluation of this model, we used
the Jacobi method as an underlying solver for the topological approach. The reason is,
that the originally used GMRES method was not able to converge for large instances of
this model. It is representative of models where a topological solver addresses the problem
of slow convergence. The results for the dpm protocol are presented in Tables 6.5 and 6.6
and also in Figure 6.3.

We can notice that Jacobi’s method, in this case, needed about 90k iterations. The re-
sults show that the division into SCC brought its advantages, and thus the topological
solver was faster than the Jacobi method. Another important observation is that with
increasing model size (which also implies an increase in the number of non-trivial SCCs),
the computational time for a topological solver increases much faster than with the Jacobi
method (see Figure 6.3). Due to many iterations, we were able to outperform the sequential
variant of our implementation as about 90% of the computational time was spent in our
solver. At the same time, slow convergence has not prevented our approach from acceler-
ating over a topological solver, and the speedup over this solver is increasing rapidly with
an increasing number of non-trivial SCCs.

Table 6.5: Experimental results using the dpm models, comparing our implementation
against the sequential Jacobi algorithm.

states transitions iterations CPU time GPU time factor
127 k 450 k 92 k 2.5 min 9.926 s 14.99
491 k 1.7 M 93 k 10 min 55.561 s 10.82
1.9 M 6.7 M 93 k 40 min 2.2 min 19.00
7.6 M 27 M 94 k 2.7 h 6.5 min 24.80
17 M 62 M 95 k 6 h 12.3 min 29.68

43

Table 6.6: Experimental results using the dpm models, comparing our implementation
against the sequential topological algorithm.

states transitions SCCs* 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝑠𝑡𝑎𝑡𝑒𝑠 CPU time GPU time factor

127 k 450 k 3.9 k 3.53 5.614 s 9.926 s 0.56
491 k 1.7 M 16 k 3.59 1.4 min 55.561 s 1.51
1.9 M 6.9 M 63 k 3.61 8.1 min 2.2 min 3.78
7.6 M 27 M 252 k 3.62 1.4 h 6.5 min 12.51
17 M 62 M 568 k 3.63 5.9 h 12.3 min 28.57

* Indicates the number of non-trivial SCCs.

(a) factor against topological solver

106 107

Transition count

0

5

10

15

20

25

30

sp
ee

d-
up

 fa
ct

or

0.93

0.95

0.97

0.99

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

(b) factor against seq. Jacobi

106 107

Transition count

0

5

10

15

20

25

30

sp
ee

d-
up

 fa
ct

or

0.93

0.95

0.97

0.99

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

Figure 6.3: Speed-up factor and the time spent within the GPU solver plotted against
the transition count of the dpm model.

6.2 Model Checking MDPs

6.2.1 Single MDP Model Checking

In this section, we will evaluate the second part of our parallel implementation. Tables and
graphs in this section will have the same format as those in the previous one, as the num-
ber of SCCs and the number of iterations still have a crucial impact on the performance of
compared algorithms. We will again compare our GPU-aided implementation with the or-
ganically used VI algorithm and the topological solver, which is used as Storm’s default
algorithm.

wlan case study. In order to demonstrate performance on models with a small number
of non-trivial SCCs, we selected a case study wlan by Kwatkowska et al [21]. If we compare
the two sequential versions, we see that, as expected, a topological solver is a more preferred
variant. Now let’s take a look at how our implementation performed against these sequential
versions. It is important to note that despite the small number of non-trivial SCCs, we
were able to overcome the topological solver. Although the acceleration is not significant,
we see that with the growing size of the model and the growing time spent in our solver,

44

the factor gradually increases. The presented acceleration was mainly due to the fact that
the solution of trivial SCCs is no longer as trivial as in MC model-checking. Another thing
we want to point out with this model is the value of the presented metric. We can see that
under the same conditions (SCCs = 1), its value was smaller for MCs. However, this is not
unexpected as the structure of MDP is more complex due to non-determinism.

In comparison with the VI algorithm, we can see that with increasing time spent in our
solver, the acceleration also increases proportionally. For this particular benchmark, we
overcame the time of sequential solution up to 11 times.

Table 6.7: Experimental results using the wlan models, comparing our implementation
against the sequential topological algorithm.

states transitions SCCs* 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝑠𝑡𝑎𝑡𝑒𝑠 CPU time GPU time factor

28 k 57 k 1 2.01 0.046 s 0.749 s 0.061
96 k 205 k 1 2.12 0.231 s 0.748 s 0.31

345 k 762 k 1 2.21 0.911 s 1.357 s 0.671
1.3 M 2.9 M 1 2.26 4.423 s 3.862 s 1.145
5.0 M 11 M 1 2.29 26.745 s 19.738 s 1.355

* Indicates the number of non-trivial SCCs.

Table 6.8: Experimental results using the wlan models, comparing our implementation
against the sequential value iteration algorithm.

states transitions iterations CPU time GPU time factor
28 k 57 k 163 0.092 s 0.749 s 0.123
96 k 205 k 384 0.558 s 0.748 s 0.745

345 k 762 k 696 3.704 s 1.357 s 2.73
1.3 M 2.9 M 1 470 35.819 s 3.862 s 9.28
5.0 M 11 M 2 001 3.6 min 19.738 s 11.08

(a) factor against topological solver

105 106 107

Transition count

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sp
ee

d-
up

 fa
ct

or

0.0

0.2

0.4

0.6

0.8

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

(b) factor against seq. value iteration

105 106 107

Transition count

0

2

4

6

8

10

sp
ee

d-
up

 fa
ct

or

0.0

0.2

0.4

0.6

0.8

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

Figure 6.4: Speed-up factor and the time spent within the GPU solver plotted against
the transition count of the wlan model.

45

dpm case study. To show a comparison of solvers on models with a large number of
non-trivial SCCs, we used a sketch of the dpm model and let the Paynt tool to make
a family out of it. We then analysed the quotient MDP of this family.

In this case, it is interesting to observe that both sequential variants had approximately
the same performance. Let us compare this with the dpm case study in the previous
section. We can notice that in MC, the number of iterations was more or less constant,
and the number of non-trivial SCCs increased much more significantly with the growing
model size. Nevertheless, in the latter case, we see that VI surpasses the topological solver.
However, the most important thing is the fact that our solver was able to overcome both
variants, and with the increasing time spent on a GPU, the acceleration also increases
proportionally.

Table 6.9: Experimental results using the dpm models, comparing our implementation
against the sequential topological algorithm.

states transitions SCCs* 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝑠𝑡𝑎𝑡𝑒𝑠 CPU time GPU time factor

18 k 70 k 9 3.82 0.453 s 0.671 s 0.68
39 k 155 k 19 3.98 1.547 s 0.795 s 1.95
99 k 407 k 67 4.08 9.041 s 1.387 s 6.52

371 k 1.5 M 337 4.17 3.5 min 13.660 s 15.26
5.7 M 24 M 5842 4.24 5.3 h 18.8 min 16.81

* Indicates the number of non-trivial SCCs.

Table 6.10: Experimental results using the dpm models, comparing our implementation
against the sequential value iteration algorithm.

states transitions iterations CPU time GPU time factor
18 k 70 k 2.3 k 0.454 s 0.671 s 0.68
39 k 155 k 3.5 k 1.530 s 0.795 s 1.92
99 k 407 k 7.9 k 8.814 s 1.387 s 6.35

371 k 1.5 M 47 k 3.5 min 13.660 s 15.55
5.7 M 24 M 278 k 5 h 18.8 min 16.21

6.2.2 Multiple MDPs Model Checking

In order to evaluate the model-checking of several MDPs at once, we used a synthesis loop
with the difference that only the AR method was used. Subsequently, we selected existing
families from the queue, and first analysed each of them separately using a sequential VI
algorithm and then all at once by using our GPU implementation. For evaluation, we select
two separate benchmarks. For each of them, we present a table containing the number of
currently analysed families, the average number of states and transitions of these families,
the percentage of profitable work on the GPU2, average measured time of CPU solver and
our GPU-aided implementation, and the factor between the two times. Also, to better

2As follows from the explanation of the method, not all the work done is useful and for some families,
which, e.g. need fewer iterations to converge, the calculation is unnecessarily prolonged.

46

(a) factor against topological solver

105 106 107

Transition count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

sp
ee

d-
up

 fa
ct

or

0.2

0.4

0.6

0.8

1.0

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

(b) factor against seq. value iteration

105 106 107

Transition count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

sp
ee

d-
up

 fa
ct

or

0.2

0.4

0.6

0.8

1.0

tim
e-

sh
ar

e
of

 G
P

U
 k

er
ne

l

Factor between CPU/GPU ver.
% of time spend in GPU solver

Figure 6.5: Speed-up factor and the time spent within the GPU solver plotted against
the transition count of the dpm model.

illustrate the differences in the number of iterations and sizes across the groups of families
analysed simultaneously, we present box plots showing these differences.

dpm case study. The first model in our set is the dpm. From the first row of Table 6.11,
we see that the analysis of relatively small models on the GPU is not advantageous, which
resulted in the motivation to analyse several smaller models simultaneously. One would
expect that the more families we process simultaneously, the higher the speedup will be.
However, from the results, we see the exact opposite behaviour. The reason is that with
the growing number of families, the amount of profitable work is decreasing. To find
the causes, let us take a look at Figure 6.6. From the left part showing the variation
of iterations across families, we see that the more families we combine into one group,
the more their characteristics are different, and thus the variability of needed iterations
in these groups is more significant. Since we still have to consider the highest number of
iterations (to get the correct result even for the slowest converging family), the further away
from the others, the more unnecessary work will be done. It reflects significantly in the last
two groups, where we can already see the so-called outliers3 in the number of iterations.

Another factor that adversely affects the performance of the evaluated method is the vari-
ability of the sizes of individual families. The synthesis process implies that the deeper we
are, the smaller the size of families will be. Furthermore, as we showed in Chapter 2, if we
analyse each family separately, we can further reduce its state-space by considering only
the 𝑆? states (see the first line of Table 6.11). However, since our implementation does not
further examine the analysed group of families, it cannot afford to reduce the state-space
(as the omitted state for one family can be 𝑆? state for the other) and, therefore, still works
with the quotient MDP. The fact that we analyse several families at the same time is thus
overshadowed by the above-mentioned disadvantages, which make most of the done work
unnecessary.

3An outlier is an observation that lies an abnormal distance from other values in a random sample from
a population.

47

Table 6.11: Experimental results of multi-level parallelisation using the dpm model, com-
paring our implementation against the sequential VI algorithm.

#families states transitions profitable CPU time GPU time factor
1* 11730 38197 100 % 0.454 s 0.671 s 0.68
16 10021 30127 22.11 % 14.921 s 4.645 s 3.21
32 9743 28750 17.46 % 29.092 s 16.084 s 1.81
64 9460 27325 12.14 % 57.679 s 80.482 s 0.72

256 6089 16397 1.39 % 2.4 min 11.3 min 0.21
508 5670 14825 1.09 % 4.7 min 1.3 h 0.06

* The family (quotient MDP) size before reduction was 18 k states and 70 k transitions.

16 32 64 256 508
Number of Families

104

105

It
er

at
io

ns

16 32 64 256 508
Number of Families

2

4

6

T
ra

ns
iti

on
 c

ou
nt

1e4

quotient MDP size

Figure 6.6: Box plots for the dpm model, showing the variability of iterations and sizes
in groups of families analysed simultaneously.

maze case study. Another model on which we want to demonstrate the multilevel par-
allelisation is the maze. Here we would like to point out that an outlier cannot necessarily
be found only within a large group of families. In this case, we can see it already in the first
group (see Figure 6.7). This fact brought a slowdown compared to the sequential variant
even in the first group. Then the speedup increases for a while, but with the growing size
of the group, the amount of profitable work declines due to the reasons given above, and
the speedup starts to decrease again.

Table 6.12: Experimental results of multi-level parallelisation using the maze model,
comparing our implementation against the sequential VI algorithm.

#families states transitions profitable CPU time GPU time factor
1* 147 333 100 % 0.818 ms 0.543 s 1.5e−3
64 140 274 17.90 % 1.187 s 3.919 s 0.30

164 139 268 23.36 % 4.246 s 4.389 s 0.97
328 136 247 22.63 % 8.261 s 5.619 s 1.47
656 135 244 18.32 % 16.852 s 9.648 s 1.75

1264 135 243 13.66 % 32.217 s 40.307 s 0.80
* The family (quotient MDP) size before reduction was 169 states and 377 transitions.

48

64 164 328 656 1264
Number of Families

102

103

104

105
It

er
at

io
ns

64 164 328 656 1264
Number of Families

225

250

275

300

325

350

375

T
ra

ns
iti

on
 c

ou
nt

quotient MDP size

Figure 6.7: Box plots for the maze model, showing the variability of iterations and sizes
in groups of families analysed simultaneously.

So to summarize, in cases where the number of iterations within the group did not differ
much, we were able to speed up the calculation up to three times. However, there is still
the problem of over-sizing associated with using the quotient MDP of a super-family (i.e.
describing all input realisations). Due to the above, the current version does not apply to
the synthesis process as it does not bring the expected benefits.

6.3 Synthesis of Probabilistic Programs
Finally, let us look at how the acceleration of the model-checking affects the overall synthesis
process. In the previous sections, we have shown that our model-checking is not a general
solution, i.e. that in some cases, a sequential topological solver is more advantageous. For
this reason, we will examine the influence of our methods on synthesis only in cases where
we can accelerate model-checking. Obviously, in cases where the model-checking cannot be
accelerated, the total synthesis time would not change (or would be worse) compared to
the sequential version.

To that end, we selected a case study dpm, as we showed that our methods could
overcome all the presented sequential variants in the case of this model. From this model, we
have created four groups of families in which the size of their members gradually increases.
A more detailed description of these families is shown in Table 6.13. For each family,
this table shows the average size of its members (MCs) as well as the average size of
the analysed subfamilies (MDPs) in the AR phase of the synthesis process. We then also
present the average factor between sequential and parallel model-checking performed during
the synthesis for each type of model. It is important to note that as the size of models
describing family members or the family itself increases, the number of family members
decreases. The reason for this is quite simple. In order to be able to get the most out
of our parallel model-checking, we want to work with the largest possible models (as this
is where the benefit of parallelisation shows the most). However, with the increasing size
of individual members, the size of respective MDP describing the family is also rapidly
increasing. Because of this, we had to keep the number of members to a minimum for
large models; otherwise, we would run out of memory when building the MDP. It is partly
due to the building of support structures for efficient work with the family, but we assume

49

a potential error in implementation, which has not yet been detected. To give a better
idea, building the MDP, which describes the family in test case 4, took up to 16 GB of
RAM. While using the same sketch and family size 81, it was up to 25 GB, and this trend
gradually continued. However, the above is not an obstacle for us, as the problem of growing
family size is addressed by the synthesis method itself, and we focus on the problem of large
family members. During the evaluation of the synthesis, we observed that the speed-ups
of our methods were more or less the same across the iterations. Thus with the increasing
number of iterations (resulting from bigger families), the amount of work would increase
proportionally, but the benefit of our implementation should remain the same. We can also
see from the table that the first two families contained relatively small models. Therefore
in these cases, we could not accelerate MC model-checking. However, since these families
contained enough members, the abstraction of these families was already large enough to
accelerate MDP model-checking up to 14 times.

Table 6.13: Characteristics of families created from the dpm model used to evaluate our
methods in conjunction with the synthesis loop. The results of the synthesis for these
families can be found in Table 6.14.

MCs MDPs
test
case

family
size

average
states

average
transitions

average
factor

average
states

average
transitions

average
factor

1 729 13 k 19 k 0.04 28 k 114 k 4.56
2 729 114 k 319 k 0.37 205 k 829 k 14.78
3 81 1.6 M 5.7 M 1.81 3.0 M 9.6 M 14.11
4 9 4.1 M 14.6 M 4.99 5.5 M 23.2 M 12.39

We will now present the results for individual families from our benchmark, which we
can see in Table 6.14. The first part provides information about synthesis using sequential
model-checking (CPU), and the second part shows information about synthesis using our
methods (GPU). For each variant, we show the number of performed CEGIS and AR
iterations and the time of the synthesis itself. The last, most crucial part of this table is
the resulting acceleration of the whole synthesis process. In addition to this information,
we also present the maximum possible speedup resulting from Amdahl’s law. It is derived
from the amount of parallelizable part of an algorithm; thus, in our case, from the total

Table 6.14: Experimental results using the families from Table 6.13, comparing the syn-
thesis using sequential model-checking with the synthesis using our parallel model-checking.
In the experiments, we looked for the optimal solution to the synthesis problem, and specif-
ically, it was a minimal synthesis problem.

CPU GPU
test
case CEGIS AR time CEGIS AR time factor max

factor
1 211 3 9.4 min 43 11 11.2 min 0.84 4,57
2 379 5 3.1 h 274 65 3.2 h 0.95 3,05
3 54 3 20.2 h 49 21 11.4 h 1.78 2,45
4 5 1 9.4 h 11 7 7.4 h 1.28 3,92

50

time taken by model-checking (e.g., if the algorithm contains 75% of the work that can be
parallelized, regardless of the number of threads, the acceleration will never be more than

1
1−0.75 = 4).

The results show that we could not speed up the overall synthesis process in cases where
we were not able to speed up the MC model-checking (test case 1 and 2). In the other two
families, we see that if we accelerated all the model-checkings, we managed to speed up
the synthesis as well. However, let us compare the ratio of CEGIS and AR iterations of
individual approaches. We see that the parallel variant did more work than sequential
one and still managed to be faster. The reason is the already mentioned non-deterministic
oracle, used by the hybrid method. It uses different metrics to switch between the CEGIS
and the AR loops, one of which is the time spent in each of them. Its prolonged duration
and the fact that it did not significantly contribute to the pruning of the state-space of
families caused the oracle to prefer the CEGIS loop, which proved to be the better of
the two variants for the verified model. Up to 14-fold acceleration of MDP model-checking
caused a more balanced number of CEGIS and AR iterations, and thus CEGIS was given
less time than with the sequential variant. Paradoxically, the acceleration brought more or
less unnecessary work into the calculation.

Therefore, in order to be able to compare both approaches under the same conditions,
we adapted the oracle to prefer the CEGIS loop more. By doing so, we were able to get
the same amount of work for both variants. Under these conditions, we tested the synthesis
on families where we could accelerate all model-checkings (test cases 3 and 4), and the results
can be seen in Table 6.15. We see that in this case, we are already significantly closer
to the theoretical limit of acceleration and thus that our parallelisation has successfully
contributed to the process of synthesis on huge models.

Table 6.15: Synthesis results with adjusted work distribution, compared to the results in
Table 6.14.

test
case CEGIS AR CPU time GPU time factor max

factor
3 25 1 8.4 h 4.0 h 2.07 2,45
4 5 1 9.4 h 2.5 h 3.80 3,92

The last thing we would like to demonstrate when evaluating the synthesis is to use
a combined approach to model-checking. We find this in situations where family mem-
bers are small, but many of them will cause the MDP describing this family to be large.
We see exactly this situation in test cases 1 and 2, and in such a situation, we would
like to use a parallel version of MDP model-checking. However, on MC model-checking,
we would like to use a more advantageous topological solver. It is in this situation that
our metrics presented in the previous sections will come in handy. Based on experiments
over the benchmark presented in this work as well as employing several other models from
the Quantitative Verification Benchmark Set4, we determined the threshold values, indicat-
ing whether in a given situation it is more appropriate to use a sequential or parallel version
of model-checking. The results of our observations are shown in Figure 6.8. Specifically, we
show how the value of our metric affects the resulting acceleration compared to the topo-
logical solvers of both variants of model-checking. The topological approach was chosen
because, under certain conditions, it can bring significant benefits, as shown in the previ-

4Quantitative Verification Benchmark Set - https://qcomp.org/benchmarks/

51

https://qcomp.org/benchmarks/

ous sections. It is nice to see from the figures that both with MC model-checking and with
MDP model-checking, there is a limit value above which our approach is still faster than
the topological one. Measurement inaccuracies can cause slight fluctuations, but as we want
to be conservative, for both approaches, we have chosen a value above which our approach
is always faster. As expected, the threshold value for MC model-checking is lower, and we
specifically chose 3.6. For MDP model-checking, we have set the value to 4. The higher
value is caused by the fact that MDP has more transitions related to non-determinism in
its states. Before performing the model-checking, we then compare the current value with
the corresponding threshold and choose the ”right“ approach accordingly.

1.0 1.5 2.0 2.5 3.0 3.5
transitions

states

10−1

100

101

102

103

sp
ee

d-
up

 fa
ct

or

2 3 4 5 6
transitions

states

0

5

10

15

sp
ee

d-
up

 fa
ct

or

Figure 6.8: Comparing the 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝑠𝑡𝑎𝑡𝑒𝑠 metric against the achieved acceleration with respect

to Storm’s topological solver, for both MC (left) and MDP (right) model-checking.

After applying the metric, we tried to run test case 2 from our benchmark again. Based
on our metric, a more advantageous topological solver was used for MC model-checking, and
since parallel MDP model-checking was up to 14 times faster than the sequential variant,
our metric correctly preferred this approach. With this combined approach, we were able to
speed up the original, purely sequential approach by one hour, representing a factor of 1.47
out of a possible 1.75 (since MDP model-checking took up 43 % of the total calculation).

52

Chapter 7

Conclusion

In this thesis, we examined the problem of synthesis of probabilistic programs. After iden-
tifying the key shortcomings: the explosion of the underlying state-space and subsequent
verification of these huge models, we solved this problem by parallelizing the original im-
plementation of model-checking methods.

Specifically, we have speeded up the existing implementations of MC and MDP model-
checking. With a sufficiently large number of iterations, we were able to accelerate sequen-
tial iteration methods by a factor of up to 30 in the Jacobi method and by a factor of more
than 16 in the case of the VI method. In cases when the number of iterations is small,
we have found that the preprocessing steps and other parts of the calculation performed
by Storm do not scale as well as our GPU implementation. Furthermore, in cases when
model contains a large number of non-trivial SCCs, we were able to significantly overcome
the Storm’s default topological approach for both MC and MDP model-checking. In terms
of speed-up, we have accelerated MDP model-checking up to 16 times, and in MC model-
checking, we reached a maximum value of 716-fold acceleration. On the other hand, if
the number of non-trivial SCCs is too small, our implementation got the shorter end of
the stick. A common finding in both comparisons is that when verifying small models,
the overhead associated with execution on GPU exceeds the effective computation time.
Therefore, we infer that while obtained gains are promising, the use of our GPU-aided
implementation is no universal approach for performance problems but rather a promising
addition to the available model-checking tools, each tailored for particular fields of appli-
cation. Fortunately, we have found a possible solution to identify these situations, and
the metric that was evaluated in Figure 6.8. The last thing we have done was to compare
the possible peak performance of the GPU device with the achieved performance results,
and we fall short of expectations. The main reason for this gap is the lack of hardware
concerning the usage of (required) double precision. Current GPU devices suffer a signif-
icant drop in performance while working with doubles instead of floats, as they contain
fewer double precision units (see Ryoo et al. [30]). Specifically, in the case of our GPU,
the double precision instruction throughput is 1/32 the rate of single precision one.

By involving all parallel methods, we have reached in some cases, almost theoretical
limit of accelerating the overall synthesis process, but only in the case of working with
sufficiently large models. Specifically, it was a factor of up to 3.8 if model-checking took
≈74% of the total synthesis time and thus, according to Amdahl’s law, it was possible to
achieve a maximum speed-up factor of 3.92. In order to use GPUs even on small models, we
have proposed family-based parallelisation. The aim was to analyse several smaller families
simultaneously, but the different characteristics of these families sentenced this approach

53

to failure. The more subfamilies we tried to analyse simultaneously, the less benefit our
method brought, which directly conflicted with the original idea. The maximum speed-up
we were able to achieve was a factor of 3, compared to a sequential CPU implementation.
However, since it was not a permanent trend but only one case on one specific benchmark,
in the end, we did not include our method in the synthesis process implementation.

Future work Despite the rather favourable results of parallel model-checking, there is
still space for an improvement in this area. One possibility is the parallelisation of the graph
algorithms used to calculate the sets 𝑆0 and 𝑆1 as the time spent in this calculation increases
with the increasing size of the model. In addition, if the number of required iterations is
small, this calculation makes up a significant part of the total time, which worsens the overall
acceleration. Another possibility is the parallelisation of the topological approach, but
based on the reasons explained in this thesis, it would rather make sense to consider CPU
parallelisation.

Acceleration of the topological approach is also directly related to the second-largest
bottleneck of the synthesis process, which is the construction of counterexamples (for more
details, we refer to [3]). One of the steps in this process is also MC model-checking.
The topological approach has shown to be the most suitable for this model-checking and
therefore we would be able to directly influence the speed of creating counterexamples by
accelerating it.

Another thing worth trying is to return to the proposed family-based parallelisation.
The results show that this approach could become applicable by reducing the amount of
unnecessary work. Intuitively, if we look at Figures 6.6 and 6.7, we want to move the red
line as close as possible to the maximum size of the model in a given group. This can be
achieved by modifying the splitting algorithm; as with the current algorithm, we cannot be
sure which parameter will be splitted. Therefore, we cannot omit any row from the matrix
of the original quotient MDP of a super-family without further analysis. Such splitting
could potentially reduce differences in the number of iterations, as the resulting groups of
subfamilies could share more of their state-space.

Last but not least, we want to examine the problem revealed at a later stage of our
work. Specifically, it is excessive memory consumption when compiling quotient MDPs
describing the whole family.

54

Bibliography

[1] Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K., Raghothaman, M. et al.
Syntax-guided synthesis. In: 2013 Formal Methods in Computer-Aided Design. 2013,
p. 1–8. DOI: 10.1109/FMCAD.2013.6679385.

[2] Andriushchenko, R. Computer-Aided Synthesis of Probabilistic Models. Brno, CZ,
2020. Master’s thesis. Vysoké učení technické v Brně, Fakulta informačních
technologií. Available at: https://www.fit.vut.cz/study/thesis/22997/.

[3] Andriushchenko, R., Ceska, M., Junges, S. and Katoen, J. Inductive Synthesis
for Probabilistic Programs Reaches New Horizons. CoRR. 2021, abs/2101.12683.
Available at: https://arxiv.org/abs/2101.12683.

[4] Andriushchenko, R. and Stupinsky, S. PAYNT. GitHub, February 2021.
Available at: https://github.com/gargantophob/synthesis/commit/
af79ef08690008c5c9e783e4cc6e717ac00406d2.

[5] Bellman, R. A Markovian decision process. Journal of Mathematics and Mechanics.
1957, vol. 6, no. 5, p. 679–684. Available at: http://www.jstor.org/stable/24900506.

[6] Bosnacki, D., Edelkamp, S., Sulewski, D. and Wijs, A. Parallel probabilistic
model checking on general purpose graphics processors. International Journal on
Software Tools for Technology Transfer. january 2011, vol. 13, p. 21–35. DOI:
10.1007/s10009-010-0176-4.

[7] Ceska, M., Hensel, C., Junges, S. and Katoen, J. Counterexample-Driven
Synthesis for Probabilistic Program Sketches. CoRR. 2019, abs/1904.12371.
Available at: http://arxiv.org/abs/1904.12371.

[8] Ceska, M., Jansen, N., Junges, S. and Katoen, J. Shepherding Hordes of Markov
Chains. CoRR. 2019, abs/1902.05727. Available at:
http://arxiv.org/abs/1902.05727.

[9] Chrszon, P., Dubslaff, C., Klüppelholz, S. and Baier, C. ProFeat:
feature-oriented engineering for family-based probabilistic model checking. Formal
Aspects of Computing. august 2017, vol. 30. DOI: 10.1007/s00165-017-0432-4.

[10] Classen, A., Cordy, M., Heymans, P., Legay, A. and Schobbens, P. Y. Model
Checking for Software Product Lines with SNIP. International Journal on Software
Tools for Technology Transfer. october 2012, vol. 14. DOI:
10.1007/s10009-012-0234-1.

55

https://www.fit.vut.cz/study/thesis/22997/
https://arxiv.org/abs/2101.12683
https://github.com/gargantophob/synthesis/commit/af79ef08690008c5c9e783e4cc6e717ac00406d2
https://github.com/gargantophob/synthesis/commit/af79ef08690008c5c9e783e4cc6e717ac00406d2
http://www.jstor.org/stable/24900506
http://arxiv.org/abs/1904.12371
http://arxiv.org/abs/1902.05727

[11] Duflot, M., Kwiatkowska, M., Norman, G. and Parker, D. A Formal Analysis
of Bluetooth Device Discovery. In: Proc. 1st International Symposium on Leveraging
Applications of Formal Methods (ISOLA’04). 2004.

[12] Forejt, V., Kwiatkowska, M., Norman, G. and Parker, D. Automated
Verification Techniques for Probabilistic Systems. In:. January 2011, p. 53–113. DOI:
10.1007/978-3-642-21455-3. ISBN 978-3-642-21454-7.

[13] Hartmanns, A., Klauck, M., Parker, D., Quatmann, T. and Ruijters, E. The
Quantitative Verification Benchmark Set. In: Vojnar, T. and Zhang, L., ed. Tools
and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part I. Springer, 2019, vol. 11427, p. 344–350. Lecture Notes in
Computer Science. DOI: 10.1007/978-3-030-17462-0_20. Available at:
https://doi.org/10.1007/978-3-030-17462-0_20.

[14] Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T. and Volk, M. The
Probabilistic Model Checker Storm. ArXiv e-prints. february 2020,
p. arXiv:2002.07080.

[15] Hoberock, J. and Bell, N. Thrust: A Parallel Template Library. 2010.
Http://code.google.com/p/thrust/. Available at: http://code.google.com/p/thrust/.

[16] Katoen, J.-P. Model Checking Meets Probability: A Gentle Introduction. In:. June
2013. DOI: 10.3233/978-1-61499-207-3-177.

[17] Klapka, O. and Slaby, A. NVidia CUDA Platform in Graph Visualization. In:
Kunifuji, S., Papadopoulos, G. A., Skulimowski, A. M. and Kacprzyk, J.,
ed. Knowledge, Information and Creativity Support Systems. Cham: Springer
International Publishing, 2016, p. 511–520.

[18] Knuth, D. and Yao, A. Algorithms and Complexity: New Directions and Recent
Results. In:. Academic Press, 1976, chap. The complexity of nonuniform random
number generation.

[19] Kwiatkowska, M., Norman, G. and Parker, D. Stochastic Model Checking. In:.
May 2007, 4486 of LNCS, p. 220–270. DOI: 10.1007/978-3-540-72522-0-6. ISBN
9783540724827.

[20] Kwiatkowska, M., Norman, G. and Parker, D. PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In: Gopalakrishnan, G. and Qadeer, S.,
ed. Computer Aided Verification. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, p. 585–591. ISBN 978-3-642-22110-1.

[21] Kwiatkowska, M., Norman, G. and Sproston, J. Probabilistic Model Checking
of the IEEE 802.11 Wireless Local Area Network Protocol. november 2003, vol. 2399.
DOI: 10.1007/3-540-45605-8-11.

[22] Lee, D. PL00, Parallel computing. Accessed: 2021-04-29. Available at:
https://userdyk-github.github.io/pl00/PL00-Parallel-computing.html.

56

https://doi.org/10.1007/978-3-030-17462-0_20
http://code.google.com/p/thrust/
https://userdyk-github.github.io/pl00/PL00-Parallel-computing.html

[23] Littman, M. L., Cassandra, A. R. and Kaelbling, L. P. Learning policies for
partially observable environments: Scaling up. 1995.

[24] Merrill, D. CUDA UnBound (CUB) Library. 2011. Available at:
https://nvlabs.github.io/cub/.

[25] Munshi, A., Gaster, B., Mattson, T. G., Fung, J. and Ginsburg, D. OpenCL
Programming Guide. 1stth ed. Addison-Wesley Professional, 2011. ISBN 0321749642.

[26] Norman, G., Parker, D., Kwiatkowska, M. and Shukla, S. Evaluating the
Reliability of NAND Multiplexing with PRISM. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 2005, vol. 24, no. 10,
p. 1629–1637.

[27] Norman, G., Parker, D., Kwiatkowska, M., Shukla, S. and Gupta, R. Formal
Analysis and Validation of Continuous Time Markov Chain Based System Level
Power Management Strategies. In: Rosenstiel, W., ed. Proc. 7th Annual IEEE
International Workshop on High Level Design Validation and Test (HLDVT’02).
IEEE Computer Society Press, 2002, p. 45–50.

[28] NVIDIA, Vingelmann, P. and Fitzek, F. H. CUDA, release: 11.3. 2020. Available
at: https://developer.nvidia.com/cuda-toolkit.

[29] Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. 1stth ed. USA: John Wiley & Sons, Inc., 1994. ISBN 0471619779.

[30] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B. et al.
Optimization Principles and Application Performance Evaluation of a Multithreaded
GPU Using CUDA. In: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. New York, NY, USA: Association
for Computing Machinery, 2008, p. 73–82. PPoPP ’08. DOI:
10.1145/1345206.1345220. ISBN 9781595937957. Available at:
https://doi.org/10.1145/1345206.1345220.

[31] Sapio, A., Bhattacharyya, S. S. and Wolf, M. Efficient Model Solving for
Markov Decision Processes. In: 2020 IEEE Symposium on Computers and
Communications (ISCC). 2020, p. 1–5. DOI: 10.1109/ISCC50000.2020.9219668.

[32] Shmatikov, V. Probabilistic Analysis of Anonymity. In: Proc. 15th IEEE Computer
Security Foundations Workshop (CSFW’02). IEEE Computer Society Press, 2002,
p. 119–128.

[33] Solar Lezama, A. Program Synthesis by Sketching. USA, 2008. Dissertation. ISBN
9781109097450. AAI3353225.

[34] Stewart, W. Introduction to the numerical solution of Markov chains. Princeton,
NJ: Princeton Univ. Press, 1994. ISBN 0691036993. Available at:
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=
ppn+152880593&sourceid=fbw_bibsonomy.

[35] Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M. and Brim, L.
Precise Parameter Synthesis for Stochastic Biochemical Systems. Acta Inf. Berlin,

57

https://nvlabs.github.io/cub/
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1145/1345206.1345220
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+152880593&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+152880593&sourceid=fbw_bibsonomy

Heidelberg: Springer-Verlag. september 2017, vol. 54, no. 6, p. 589–623. DOI:
10.1007/s00236-016-0265-2. ISSN 0001-5903. Available at:
https://doi.org/10.1007/s00236-016-0265-2.

[36] Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.-P. and Becker, B. DTMC
model checking by SCC reduction. In:. September 2010. DOI:
10.1109/QEST.2010.13.

58

https://doi.org/10.1007/s00236-016-0265-2

Appendix A

Storage Medium

/synthesis/* — source code of Paynt (containing our parallel methods) from date
May 25, 2021

/README.txt — useful information about the storage medium content

/text/* — source code of this thesis

/xmarci10.pdf — final version of this thesis

59

	Introduction
	Preliminaries
	Discrete–Time Markov Chains
	Model Checking MCs
	Iterative Methods

	Markov Decision Processes
	Model Checking MDPs
	Value Iteration.

	General-Purpose Computing on GPUs
	Programming and Memory Model.
	GPU Architecture and Execution Model.

	Synthesis of Probabilistic Programs
	Families of Markov Chains
	Counterexample-Guided Inductive Synthesis
	Abstraction Refinement
	Hybrid Dual-Oracle Synthesis

	Original Sequential Implementation of Paynt
	Bottlenecks of Synthesis Process
	Implementation of the MC Model Checking
	Topological Solver
	Finding the Hotspots

	Implementation of the MDP Model Checking
	Finding the Hotspots

	Data Structures

	Parallelisation
	Problem Decomposition
	Analysis CUDA/OpenCL
	OpenCL
	CUDA

	State-Based Parallelisation
	Matrix-Vector Multiplication
	Model Checking MCs in parallel
	Model Checking MDPs in parallel

	Family-Based Parallelisation
	Model Checking Multiple MDPs in parallel
	Model Checking Multiple MCs in parallel

	Experimental Evaluation
	Model Checking MCs
	Model Checking MDPs
	Single MDP Model Checking
	Multiple MDPs Model Checking

	Synthesis of Probabilistic Programs

	Conclusion
	Bibliography
	Storage Medium

