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Abstract
The aim of this master’s thesis is to generate a dataset of synthetic fingerprint images that
display symptoms of skin disease. The thesis deals with damage caused by skin disease
in the fingerprint images and synthetic fingerprint generation. The diseased fingerprints
are generated using a model based on Wasserstein GAN with gradient penalty. A unique
diseased fingerprint database created at FIT BUT was used for training of the GAN model.
The model was trained on three types of skin disease: atopic eczema, psoriasis vulgaris
and dyshidrotic eczema. The generator network of the trained WGAN-GP model was used
to generate datasets of synthetic fingerprint images. The synthetic images were compared
with real fingerprint images using the NFIQ and FiQiVi quality assessment tools and by
comparing minutiae location and minutiae orientation distributions in the fingerprint im-
ages.

Abstrakt
Cieľom tejto diplomovej práce je vygenerovanie datasetu syntetických snímkov odtlačkov
prstov, ktoré vykazujú známky kožných ochorení. Práca sa zaoberá poškodením spô-
sobeným kožnými ochoreniami v odtlačkoch prstov a generovaním syntetických odtlačkov
prstov. Odtlačky prstov s prejavom kožných ochorení boli generované s využitím modelu za-
loženého na Wasserstein GAN s penalizáciou gradientu. Na trénovanie GAN modelu bola
použitá unikátna databáza odtlačkov prstov s prejavom kožných ochorení vytvorená na
FIT VUT. Daný model bol trénovaný na troch typoch kožných ochorení: atopický ekzém,
psoriáza a dyshidrotický ekzém. Sieť generátoru z natrénovaného WGAN-GP modelu bola
použitá na vygenerovanie datasetov syntetických odtlačkov prstov. Tieto syntetické od-
tlačky boli porovnané s reálnymi odtlačkami s využitím NFIQ a FiQiVi nástrojov na určenie
kvality spoločne s porovnaním rozložení lokácií a orientácii markantov v snímkoch odtlačkov
prstov.
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Rozšírený abstrakt

Odtlačky prstov sú jednou z najznámejších a najrozšírenejších biometrických vlastností
používaných na biometrickú identifikáciu osôb. Ich využitie pre rozpoznávanie jednotlivcov
sa dátuje k prelomu 19. storočia, keď odtlačky prstov nahradili antropometrické vlastnosti
ako spoľahlivejší spôsob identifikácie osôb v kriminálnych vyšetrovaniach. Odtlačky prstov
s odstupom času nachádzali čoraz širšie využitie, až sa v súčastnosti stali časťou každoden-
ného života.

Samotné odtlačky prstov sú reprezentáciou štruktúry tvorenej papilárnymi líniami na
vnútornej strane končekov prstov. Tvar a štruktúra odtlačku sú dané kombináciou gene-
tického kódu spolu s vplyvom okolnostných podmienok. Odtlačky prstov sú unikátne pre
každého jednotlivca a obvykle zostávajú nemenné v priebehu života, pokiaľ nie sú poškodené
v následku nejakého zranenia alebo vplyvom kožného ochorenia.

Kožné ochorenia, ktoré sa prejavujú v oblasti končekov prstov negatívne ovplyvňujú
proces získavania a rozpoznávania odtlačkov prstov. Existuje široká škála kožných chorôb,
ktoré takto škodlivo pôsobia na štruktúru papilárnych línií. Relatívne veľké percento ľudí je
aspoň raz počas svojho života postihnutých nejakou formou kožných chorôb. Časť populá-
cie dokonca trpí chronickými príznakmi, keďže veľa z týchto ochorení je charakterizovaných
fázami zhoršenia a zlepšenia. Takýmto ľudom môže byť na dlhšie obdobia znemožnené
používať biometrické systémy založené na odtlačkoch prstov, keďže bežné senzory od-tlačkov
prstov typicky nie sú dostatočne vybavené na to, aby si poradili s odtlačkami, ktoré pre-
javujú známky kožných chorôb. Problém s vývojom senzorov a algoritmov, ktoré by si
vedeli s týmito problémami poradiť je potreba prístupu k dostatočne veľkým databázam od-
tlačkov prstov s prejavom kožných ochorení na ich testovanie. Zozbieranie databáz bežných
odtlačkov prstov je nielen pracné a časovo náročné, ale zároveň prináša problémy ohľadom
ochrany osobných dát jednotlivcov. V prípade odtlačkov s prejavom kožných ochorení je
situácia o toľko zhoršená tým, že je potrebné odtlačky zbierať pod dozorom zdravotníckych
pracovníkov a taktiež je potrebné nájsť dostatočný počet dobrovoľníkov, ktorí trpia daným
kožným ochorením.

Táto diplomová práca sa zameriava na spôsob vygenerovania syntetických odtlačkov
prstov, ktoré budú prejavovať rovnaké známky ochorenia ako reálne odtlačky prstov. Použí-
va pri tom databázu odtlačkov prstov s prejavom kožných ochorení predošle zozbieranú na
FIT VUT. Generovanie takýchto syntetických odlačkov prstov by potom následne mohlo
buď priamo nahradiť databázy reálnych odtlačkov za účelom ochrany biometrických a zdra-
votných údajov dobrovoľníkov, alebo slúžiť ako spôsob rozšírenia existujúcich databáz pre
rozsiahlejšie testovanie senzorov a algoritmov.

Generovanie takýchto syntetických odtlačkov prstov je dosiahnuté s využitím tzv. Gen-
erative Adversarial Networks (GANs). Tieto modely strojového učenia sú inšpirované
teóriou hier a fungujú na princípe vzájomného súťaženia dvoch konvolučných neurónových
sietí nazývaných generátor a diskriminátor. Práca obsahuje návrh modelu GAN siete za-
loženej na Wasserstein GAN s penalizáciou gradientu (WGAN-GP). Model tejto siete je
vhodný na trénovanie na malých datasetoch, pretože sieť diskriminátoru využíva Wasser-
stein vzdialenosť na meranie rozdielu pravdepodobnostných rozložení reálnych a generova-
ných dát. Trénovanie takejto GAN je menej citlivé na pretrénovanie siete diskriminátoru
a vedie na stabilnejšie učenie. Model navrhnutej siete ďalej využíva techniku dropout,
aby sa dokázal naučiť robustnejšie črty. Taktiež používa spektrálnu a batch normalizáciu
v sieťach diskriminátora a generátora pre stabilizáciu učenia.



Tento model WGAN-GP siete bol následne implementovaný a trénovaný na troch datase-
toch odtlačkov prstov s prejavom kožných ochorení. Vybrané kožné choroby boli atopický
ekzém, psoriáza a dyshidrotický ekzém. Trénovanie modelu pokračovalo, kým model ne-
dosiahol rozumné výsledky alebo neprestal dosahovať viditeľné zlepšenia v generovaných
snímkoch. Natrénovaná sieť generátoru sa následne použila na vytvorenie nových synte-
ticky vygenerovaných datasetov pre jednotlivé ochorenia.

Synteticky vygenerované odtlačky prstov boli relatívne úspešné v napodobnení od-
tlačkov s prejavom atopického a dyshidrotického ekzému. V prípade psoriázi sa model
nedokázal naučiť generovať reálne vyzerajúce snímky odtlačkov. Tieto syntetické odtla-
čky prstov boli následne porovnané s reálnymi odtlačkami ovplyvnenými kožnými ochore-
niami. Porovnávalo sa rozloženie a orientácia markantov v jednotlivých obrázkoch odtlačkov
a s využitím nástrojov NFIQ a FiQiVi bola určená kvalita daných odtlačkov prstov.

V závere práce je zhodnotená úspešnosť použitej metódy generovania odtlačkov s pre-
javom kožných ochorení a ďalšie prípadné možnosti potenciálneho vylepšenia kvality gene-
rovaných snímkov.
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Chapter 1

Introduction

Fingerprints are one of the most widely deployed biometric characteristic in biometric
systems. The practice of using fingerprints for personal identification has been in use
since the 19. century. Following the work of Francis Galton [22], fingerprints started to be
used as a means of identifying people in criminal investigations. Ever since then, fingerprint
technologies have been steadily evolving and have now become commonplace in everyday
society.

Fingerprint is the representation of the structure formed by papillary lines at the tip of a
finger. It is widely accepted that an individual’s fingerprint is unique and remains relatively
unchanged throughout the course of his life. However, the structure of these papillary lines
can be changed and damaged by skin disease. Fingerprint recognition in biometric systems
heavily relies on the structure of these papillary lines to determine a person’s identity.
The influence of skin disease is an important, but oftentimes neglected factor in fingerprint
biometric systems. An individual might be prevented from using certain biometric systems
when suffering from a skin disease which affects the fingertips.

To be able to develop fingerprint technologies which are able to asses the effects of
skin disease on fingerprints and deal with the resulting damage, it is necessary to have
access to large amount of diseased fingerprint data. Collecting a database of fingerprints
influenced by skin disease is a particularly difficult task. Not only is it expensive and time-
consuming, but it also requires the assistance of medical professionals and ability to find
willing participants that suffer from a variety of skin conditions.

The goal of this thesis is to attempt to generate a dataset of synthetic diseased fingerprint
images, which could be used in place of a real dataset. Generative adversarial networks
were chosen as the means of generating these synthetic fingerprints, as they are a relatively
new and powerful tool used for image processing and computer vision tasks. Generative
adversarial networks are a type of deep generative machine learning model which rose to
prominence in the field of image synthesis ever since their introduction in Goodfellow et
al. (2014) [26].

The following Chapter 2 provides a brief introduction to the fingerprint as a biomet-
ric characteristic and its use in biometrics. It focuses on the basic structural aspects of a
fingerprint image and presents some of the already well-established methods for synthetic
fingerprint generation. Chapter 3 details the anatomy of the skin and the formation of
papillary line structure in the fingertips. This chapter also covers the manner in which the
structure of the skin is affected by certain types of skin disease and the different types of
damage observed in in the papillary line structure of afflicted fingerprints. As well as, the
overview of the diseased fingerprint database created by Faculty of Information Technology
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at Brno University of Technology. Chapter 4 contains information about convolutional neu-
ral networks, their architectural aspects and their relation to processing 2-dimensional image
data. Chapter 5 then subsequently covers how the generative adversarial networks (GAN)
utilize convolutional networks for synthetic image generation. This chapter explains the
architecture of GANs, their training and introduces a number of different types of GAN
used for image generation. The following two Chapters 6 and 7 document the design and
implementation details of a GAN model for diseased fingerprint generation, which is based
on a Wasserstein GAN with gradient penalty. Lastly, Chapter 8 describes the training
process of the proposed model, generation of datasets consisting of diseased fingerprint im-
ages and quality evaluation and assessment of the generated images in comparison to real
fingerprint images affected by skin disease.
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Chapter 2

Fingerprints in Biometrics

The ability to uniquely identify individuals and associate personal attributes (e.g. name)
with an individual has proved to be crucial in human society [30]. The practice of using
fingerprints to identify individual people has been in use for centuries. Fingerprints are one
of the most well-known and commonly used biometric characteristics of a human body for
recognizing individuals.

This chapter presents a brief overview of the use of fingerprints in biometric systems. It
details some of the important properties of biometric characteristics and their relation to
use of fingerprints in biometrics. The chapter also covers some relevant structural aspects
of the fingerprint images. And lastly, it focuses on synthetic fingerprint generation and
some possible methods of creating realistic looking synthetic fingerprint images.

2.1 Biometric Systems
Biometric recognition (or biometrics) refers to the use of distinctive anatomical and be-
havioral characteristics, called biometric characteristics for automatically recognizing indi-
viduals. Biometric systems are systems that employ these biometric characteristics (e.g.
fingerprints, palmprint, iris, retina etc.) to be able to uniquely identify individual peo-
ple. [30][41]

Biometric systems find use in large-scale identity management systems, where it is
crucial to be able to accurately determine (or verify) individuals identity. Identity of an
individual in these systems is represented by all the available information in the identity
management system associated with that particular person. A reason for trying to uniquely
distinguish individuals in such a system might be to limit the individual’s access to sensitive
resources. [31]

There are other ways of establishing a person’s identity other than using biometrics.
You can use knowledge-based (e.g. password) or token-based (e.g. keycard) mechanisms
for identifying individual people. However, these surrogate identity representations come
with certain disadvantages, they can be easily lost, stolen, shared, replicated etc. All of
these issues would allow unauthorized individuals access to the systems. [30][31]

The advantage of using biometrics is that they increase the security of the systems.
They are not forgettable, transferable or easily lost and can be very difficult to replicate.
Biometrics also discourage fraud and eliminate repudiation claims (denial of using the
system by the user). [30]
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2.1.1 Biometric Characteristics

Contents of this subsection are taken from [31][41]. Biometric characteristics (traits) are
attributes of human anatomy or behavior that can be quantified and used to determine
identity of individual people. These biometric characteristics should represent something
inherent to a human being which cannot be easily replicated or shared between individuals.
They enable the biometric systems to distinguish individuals based on “who they are”
instead of “what they posses”. There are several basic features used to determine the
suitability of a biometric characteristic:

∙ Universality: every individual attempting to access the system should be in possession
of this biometric characteristic.

∙ Uniqueness (distinctiveness): the biometric characteristic should be sufficiently differ-
ent between any two given individuals so that is is possible to identify them uniquely.

∙ Permanence: determines how well a particular characteristic resists change over time.
A biometric characteristic should sufficiently invariant with respect to the matching
criteria.

∙ Measurability (collectability): any biometric characteristic should be able to be mea-
sured quantitatively. Measurability determines how easy it is to acquire and digitize
given biometric characteristic.

∙ Performance: a set of metrics that determine suitability of a biometric characteristic.
These include recognition accuracy, speed, resource requirements and robustness.

∙ Acceptability: willingness of individual users to present a given biometric trait to the
system for measurement.

∙ Circumvention: ease with which a given biometric characteristic of an individual can
be replicated and employed by unauthorized users to circumvent the system.

Every biometric characteristic has its own strengths and weaknesses and no single char-
acteristic is expected to effectively posses all of the above given features. Some biometric
characteristics will be more suited to different applications than others. It is also possible to
utilize multiple characteristics in conjunction with one another to counteract any downsides
of a singular biometric characteristic.

2.2 Fingerprints in Biometrics
Fingerprints are one of the most widely used characteristics in biometrics, so much so
in fact that the word fingerprint has become almost synonymous with the word identity.
They have been used for personal identification for many decades. Fingerprints are the
most commonly used biometric characteristic of the hand [13].

A fingerprint is the representation of the exterior appearance of the epidermis of a
fingertip. Epidermis is the outermost layer of the skin, this skin exhibits an interleaved,
flow-like pattern of ridges and valleys (furrows) on the fingertips called papillary lines, see
Figure 2.1. Fingerprint is the pattern formed by the structure of these papillary lines. The
formation of the papillary lines is given by a combination of the genetic code of the individual
and environmental factors. The patterns formed by papillary lines are very distinctive for
a given individual, which makes this biometric characteristic rather useful. [13][31][41]
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Figure 2.1: Ridges and valleys of a fingerprint image. [41]

The fingerprint, as a biometric characteristic, has a good balance of desirable properties
mentioned in Subsection 2.1.1. Almost every human being has fingerprints, with the excep-
tion of some hand-related disabilities, missing limbs or extensive skin damage. Fingerprints
are very distinctive, patterns formed by the papillary lines are unique for each individual,
even in the case of identical twins. Properties of a fingerprint are permanent for a given
individual, even if they can change temporarily (e.g. skin disease, cuts, burns) they will
eventually heal and revert to their original appearance. As a result of extensive research and
funding, fingerprint technologies are becoming continuously more common and affordable.
Due to common occurrence of fingerprint systems (e.g. fingerprint sensors in smartphones)
the acceptance of an average user to use such systems is relatively high. Although, bear in
mind that there might be some stigma associated with fingerprints due to their prevalent
use in criminal investigations. Robust biometric systems using fingerprints in conjunction
with other security technologies can be prohibitively difficult to circumvent. [13][41]

2.2.1 Fingerprint Classification

Fingerprint classification is the act of assigning a fingerprint image into one of a number of
pre-determined classes based on the structural characteristics of the fingerprint. The aim of
classifying fingerprints is to serve as an indexing scheme for large databases of fingerprints,
where blindly searching for a fingerprint match would be unfeasable. If a fingerprint is of
a particular class then it is possible to discard all fingerprints that do not share this class
from the search. [65][41]

Fingerprint classification is based on the original Henry’s classification scheme, which
separated fingerprints into five major classes, see Figure 2.2. Fingerprints are separated
into these pre-determined classes based on the global pattern configurations of the papillary
lines at the central point of the fingerprint. These global patterns of configuration are called
singular points (regions) which can be broadly separated into two types Figure 2.3. [65][41]

The first one is the core. Cores are generally at the very center of a fingerprint, although
not necessarily at the center of a fingerprint image. The core is defined as the “north most”
point of the inner most ridge line and is usually part of the inner most loop or a whorl [41].
If a fingerprint does not contain a loop or a whorl (e.g. arch fingerprint) then the core is
defined as the region of maximal curvature in the fingerprint.

The second one is the delta. Delta is a location in a fingerprint where the papillary lines
run in three directions [13]. Subsequently, the fingerprint class can be determined using the
number of these cores and deltas and the spatial relation between them.
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Figure 2.2: Examples of fingerprint images representing each of the five major fingerprint
classes. [65]

Figure 2.3: Simplified structure of the two main types of a singular point in a fingerprint
image – core and delta. [65]

2.2.2 Minutiae

The singular points mentioned in the previous subsection are typically not sufficient for
correctly identifying individuals. To properly distinguish fingerprints a set of local structural
formations called minutiae points are used. Minutia refer to the various ways in which the
ridge line of a fingerprint can be discontinuous [41].

There are a number of different basic minutiae which can appear in the structure of a
fingerprint. The two that most commonly used in automated fingerprint processing are line
ending and bifurcation. This is mostly to reduce the difficulty of accurately determining
the type of minutiae from the fingerprint image. Line ending, as the name suggests, is a
location in the fingerprint where the ridge line comes to an end. Bifurcation, on the other
hand, is a location in a fingerprint where are single ridge line splits (divides) into two ridge
lines. Other than the line ending and bifurcation, there is a wide range of basic minutiae
types, some of these are shown in Figure 2.4. [41]
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Figure 2.4: An example of seven different select types of minutiae. [41]

2.3 Synthetic Fingerprint Generation
Synthetic fingerprint generation is the process of creating synthetic fingerprint images that
imitate fingerprint images acquired by real on-line sensors. One of the reasons for using
synthetic fingerprint images in place of real fingerprint images is that the process of acquir-
ing a large enough database of fingerprints can be challenging in some cases. Collecting
a large database of fingerprints is cost-prohibitive, time-consuming, tiresome, moreover,
there are privacy concerns and legislation issues associated with the use of personal bio-
metric data [9][13][41].

Attempting to collect a database of fingerprint images influenced by skin disease is one
such case, where all of these drawbacks are amplified and is one of the main motivations
behind this work. It is difficult to collect diseased fingerprint data as you need to employ
help of medical experts as well as find willing participants with the specific skin conditions.

Generation of synthetic fingerprint images presents an alternative way to create such
collections of data quickly, without privacy issues and at minimal costs [13]. It also makes
it possible to tailor the created dataset according to specific needs.

For example, the fingerprint classes mentioned in Subsection 2.2.1 do not occur in
human individuals with equal frequency, some are more prevalent than others. There is
a possibility that when collecting fingerprint data affected by a specific disease, a few of
these fingerprint classes will be underrepresented. Such a dataset might cause issues if it
was to be used further, e.g. in machine learning applications. Generation of a synthetic
fingerprint dataset could solve this problem, as it is possible to create a dataset containing
balanced representation of fingerprint classes.

2.3.1 SFinGe Method

The synthetic fingerprint generation (SFinGe) is a state-of-the-art fingerprint synthesis
algorithm. The SFinGe method was first developed at the university of Bologna in [8] and
later improved in [9]. It is currently one of the oldest and most well known methods for
generation of realistic looking synthetic fingerprint images.

The simplified idea of the algorithm is that it “inverts” some of the operations used in
the process of fingerprint recognition, see Figure 2.5. This method separately generates a
random fingerprint area, orientation image and frequency image. These are then assembled
together to create a master-fingerprint. [41]

The SFinGe algorithm takes fingerprint class, image size, region of interest and singular
points as input. SFinGe then generates an orientation field based on modified zero-pole
model according to singular points and fingerprint type. Subsequently, Gabor filters are
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Figure 2.5: The SFinGe method of generating a master-fingerprint representation which
can be subsequently used for creation of synthetic fingerprint image versions of the master-
print. [9]

applied to a seed image to generate the master-print from based on the orientation field
and ridge frequency. [9]

The master-print is and ideal representation of the fingerprint structure. It is further
used with a combination of noise and deformities specific to fingerprint sensing to generate a
number of different versions of the same fingerprint that look as thought they are produced
by a real fingerprint sensor [9].

However, even though the fingerprint images produced by SFinGe are high-quality and
look very realistic, there are certain drawbacks associated with the method [9]. First of all,
the ridge thickness is constant throughout the entirety of the generated image. This is not
necessarily the case in real fingerprint images as the ridge thickness may differ in certain
areas of the image.

Secondly, the random noise is distributed uniformly across the generated image. Whereas,
both low and high quality regions can be present in a real fingerprint image [41].

Thirdly, the noise generated as a substitution for the intra-ridge noise is random in
different representations of the same master-fingerprint. Intra-ridge noise is a very fine
level noise caused by natural structure of the skin (e.g. finger pores) and there should be
some consistency kept in mind across multiple representations of the same finger.

Lastly, the spatial and orientational distribution of minutiae in SFinGe generated fin-
gerprint images was shown to differ from spatial and orientational distribution of minutiae
in real fingerprints [13].
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2.3.2 Synthesis based on Statistical Feature Models

The method based on statistical feature models was first introduced in [63]. In this approach
to generation of fingerprints, the goal is to synthesize a fingerprint image from a number
of prespecified features (e.g. minutiae, orientation field). This model is meant to improve
upon the SFinGe model by being able to control the number and location of minutiae in
the generated image. [63]

The basic idea of the algorithm is that it samples a number of fingerprint features from
random distributions which appear as though they belong to real fingerprints. Subsequently,
a fingerprint reconstruction algorithm Feng and Jain [21] is applied to these sampled features
to create a synthetic master-print. This master-print is then used to create a varied range
of fingerprint impressions by adding distortion and noise.

Figure 2.6: Four steps of the fingerprint synthesis method based on statistical feature
models: (𝑎) Feature sampling of minutiae, singular points and orientation field from an
appropriate feature model (b) Generating master-fingerprint. (c) Generating multiple fin-
gerprint impressions from the master-fingerprint using distortion effects. (d) Rendering
synthetic fingerprint image by simulation of finger dryness and addition of noise. [63]

To be able to randomly sample features that will appear in the finalized synthetic
fingerprint, five statistical distribution models were created. One model for each of the
five major fingerprint classes. These models contain information about the singular points,
ridge orientation field, and minutiae of the fingerprint classes. The statistical models are
used to more evenly distribute features of the generated fingerprint, to be more in line with
it’s specified fingerprint class.

One of the drawbacks of this algorithm is that some of the feature information can get
lost during the fingerprint reconstruction process. Therefore, some of the sampled features
might not be present in the final synthetic fingerprint image.
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Chapter 3

Influence of Skin Disease on
Fingerprints

A skin disease (skin condition) is a medical condition that affects the integumentary system.
Integumentary system being the skin and it’s appendages. Due to the sheer amount of
different skin conditions, it is difficult to determine the percentage of population affected
by skin disease during the course of their lives. Part of the affected population suffers from
chronic health effects, as there is a number of skin diseases last for a long time and are
characterized by periods of exacerbations and remissions. [32]

The presence of skin disease symptoms in the fingertips negatively affects the process
of fingerprint recognition and causes problems in biometric systems. Fingerprint sensors
are typically not equipped to handle fingerprints that display symptoms of a skin disease.
If the quality of fingerprint images is low due to extensive damage caused to the patterns
of papillary lines, the affected user might be prevented from using fingerprint biometric
systems altogether. [13]

This chapter covers the anatomy of the skin, symptoms of and damage caused by some
of the more common types of skin disease. It also details the collection and analysis of
the database of diseased fingerprints created by Faculty of Information Technology at Brno
University of Technology [3][13][14].

3.1 Anatomy of the Skin
The skin is the largest organ of the body, accounting for about 15% of an adult’s body
weight. It is a barrier organ that separates the body from the outside environment. It
protects the body from microorganisms, regulates body temperature, and facilitates sensory
inputs. The skin consists of three layers:

∙ The epidermis is the continually renewing outer layer of the skin. It is the thinnest
layer of the skin, it varies in thickness from 0.04 mm to 1.60 mm . The function of
the epidermis layer is to insulate and protect the rest of the body from mechanical
and environmental damage as well as prevent water loss.

The epidermis consists of four basic types of cells – keratinocytes, melanocytes,
Langerhans cells, Merkel cells. The keratinocytes produce protein keratin, protect
tissue from heat. microbes and chemicals. The melanocytes produce pigment called
melanin, which protects the skin from UV light and colors the skin. The Langerhans
cells rise to epidermis from red bone marrow and provide immune response against
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microbes in the skin. The Merkel cells are located in the deepest layer of the epidermis
and their function is to provide touch sensation

The most unique feature of the epidermis is the stratum corneum. The stratum
corneum is the outermost part of the epidermis, it consists of a layer of dead cells -
keratinocytes (or corneocytes). Keratinocytes are created in lower layer of epidermis
and slowly migrate towards the stratum corneum. These cells are periodically shed
and replaced, they provide protection to the underlying cells.

Epidermis of the hands, fingers, soles of feet and toes exhibits a flow-like pattern of
papillary lines (friction ridges). The formation of the papillary lines of the epidermis
is closely related to the structure of dermal papillae at the junction of epidermis and
dermis. [13] [37] [42]

Figure 3.1: Cross-section of the skin and subcutaneous fat layer. [67]

∙ The dermis is the middle layer of the skin located between epidermis and subcutaneous
tissue. The thickness of dermis ranges from 1 mm to 4 mm. It is 15−40 times thicker
than the epidermis, depending on the location (it is thickest on the back).

The dermis is comprised mainly of connective tissue containing collagen and elas-
tic fibers. The dermis represents the bulk of the skin structure and provides skin’s
pliability, elasticity, tensile strength and thermal regulation [37]. There are sensory
receptors located inside the dermis.

The basic cells present in the dermis include fibroblast cells, macrophages and
mastocytes. The fibroblast cells provide structural framework to tissues of the skin,
they synthesize proteins and are a critical part of healing wounds. The macrophages
are a type of white blood cells, they enter the dermis as a response of the immune
system to stimuli. The mastocytes are migrant cells of the connective tissue involved
in wound healing and immune response.

13



The papillary dermis is the uppermost part of the dermis, it a thin zone imme-
diately below the epidermis. This layer is uneven and contains fingerlike protrusions
into the epidermis called dermal papillae. These are responsible for the formation of
papillary ridges on the surface of the epidermis layer. [13][37][42]

∙ The subcutaneous layer (hypodermis) is a layer of fat cells directly below the dermis
layer. Subcutaneous layer is attached to the dermis by collagen and elastin fibers. The
function of the subcutaneous layer is to insulate the body and serve as an emergency
energy supply. Although it is not truly part of the skin (hypodermis means “beneath
the skin”), they are so closely related that the subcutaneous layer is considered part
of the skin in pathological processes. [13]

3.2 Damage Caused by Skin Disease
A skin disease is a health conditions which affects the integumentary system. Certain skin
diseases can be localized on the fingertips or affect fingertips as a part of a larger systemic
condition [13]. Such a disease can cause substantial damage to the skin structure of the
fingertip, adversely affecting the quality of fingerprint images acquired from the disease-
affected finger.

If a skin disease has affected and destroyed the structure of papillary lines in the epider-
mis and attacked the papillary dermis at the dermoepidermal junction, the papillary lines
will regrow in different patterns. In some cases the papillary lines might not regrow at all
and such damage caused by the disease is permanent. [13][14]

Common symptoms of skin disease include inflammation, dryness, fibrosis (increase of
fibrous connective tissue), atrophy, discoloration, pruritus (itching).

3.2.1 Histopathological Changes of the Epidermis and the Dermis

This type of disease causes problems for most types of fingerprint sensors. They typically
change the structure and color of the skin.

Atopic Eczema

Atopic eczema (atopic dermatitis) is a chronic, inflammatory skin disease. It is characterized
by dry, cracked, scaly skin and itching.

The cause of the disease is unknown, although it is believed that genetic defect pre-
disposes patients to the development of this disease [32]. The condition may occur at any
age, but the first symptoms typically appear in childhood. Atopic eczema has phases of
exacerbations and remissions. Atopic eczema is very similar to other types of hand eczema,
most common being irritant contact dermatitis and allergic contact dermatitis. [13][32][28]

Atopic eczema can cause medium to major damage to the fingerprint. Fingerprints from
people with atopic eczema presented with a collection of thin lines, which can cross over one
another in different directions, accompanied by a scarce amount of small white spots. [13]

Dyshidrotic Eczema

Dyshidrotic eczema (pompholyx) is a vesicular hand and foot dermatitis. Moderate to se-
vere itching precedes the appearance of vesicles. The vesicles are small, fluid-filled sacs that
appear on the palms and sides of fingers. Other symptoms include redness and perspira-
tion. [28]
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Dyshidrotic eczema usually covers the fingertip area with irregular blurred shapes, which
look like groupings of white spots on the fingerprint image. In addition to the white
spots, the fingerprint image typically exhibits a number of thick white lines in the papillary
structure. The extent of damage caused to the fingerprint images varies from medium to
major depending on the severity of the disease. [13]

(a) (b)

Figure 3.2: Diseased fingerprints of (𝑎) atopic eczema and (𝑏) dyshidrotic eczema. [3][13]

3.2.2 Histopathological Changes at the Dermoepidermal Junction

These diseases cause damage even beneath the epidermis, at the dermoepidermal junction.
This is the place, where the structure of papillary lines is formed. Damage to this area of
the finger causes issues even for ultrasonic fingerprint scanners, as this is the region of the
skin where they acquire fingerprints. [13]

Psoriasis Vulgaris

Psoriasis vulgaris is a common, chronic and recurrent inflammatory disease of the skin. It
is typically indistinguishable from a very serious form of hand eczema. Psoriasis is char-
acterized by circumscribed, dry, scaling plaques of various sizes. The lesions are typically
covered by silvery white scaly skin. [13][14][32]

This disease causes extensive damage to the fingerprints, see Figure 3.3. Most of the
fingerprint images acquired from fingertips affected by this disease are completely unus-
able. A frequent feature of this disease is a large irregular dark spot with a white border.
Additionally, dark areas, thickened papillary lines, round spots and oblong spots can be
observed. [15]

Verruca Vulgaris

Verruca vulgaris (common warts) begin as smooth, flesh colored papules and evolve into
dome-shaped, gray, hyperkeratonic growths with black dots on the surface. The hands are
the most common surface on which the warts appear. They are usually few in number, but
can become so numerous that they cover large areas of exposed skin. [28]

The extent of damage to the fingerprint image is rather minimal, see Figure 3.3. Outside
the areas obscured by warts, the papillary lines flow in the usual way. The papillary lines
are only deformed in the area immediately next to the wart. However, the warts can, in
some cases, cluster together and obscure larger areas of the fingerprint. [13][28]

15



(a) (b)

Figure 3.3: Diseased fingerprints of (𝑎) psoriasis and (𝑏) verruca vulgaris (warts). [3][13]

3.2.3 Skin Discoloration

Skin discoloration, in and of it self, does not affect the papillary structure in any way. The
discoloration of the digits may, however, cause problems for optical fingerprint sensors and
fingerprint sensors which use color or spectral analysis of the fingertip skin for antispoofing
detection. [13]

Raynaud’s Phenomenon

Raynaud’s phenomenon usually occurs in together with collagen vascular disease or sclero-
derma. The symptom of Raynaud’s phenomenon is sequential pallor, cyanosis (blueness)
and rubor (redness). The fingers may fail to regain their normal circulation and remain
permanently blue and painful. [28]

Raynaud’s phenomenon doesn’t cause structural damage to the papillary lines, therefore,
the fingerprint images appear undamaged, see Figure 3.4. However, the discoloration of the
skin may cause other problems for fingerprint sensors as mentioned above. The damage
caused is overall rather minor. [13]

Figure 3.4: Diseased fingerprints of Raynaud’s phenomenon. [3][13]

3.3 Database of Diseased Fingerprints
There exists a unique database of diseased fingerprint images created by the Faculty of
Information Technology at Brno University of Technology in cooperation with University
Hospital Olomouc, St Anne’s University Hospital in Brno and a private dermatology clinic
in Darmstadt [3][12][13]. To acquire fingerprints from patients suffering from skin disease,
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medical experts were provided with a set of fingerprint sensors, digital microscope and
dactyloscopic cards. The fingerprint sensors included a 3-D touchless and touch optical
sensors, sweep and touch capacitive sensors. [13]

A sum total of 2 165 fingerprint images from 44 patients were collected for the database.
These fingerprints were influenced by 12 different types of skin disease, see Table 3.1. The
fingerprints in the database are associated with anonymized information about the patient,
type and severity of the disease.

Table 3.1: Contents of the diseased fingerprints database. [13]

Disease No. of fingerprints Percentage No. of patients
Fingertip eczema 1 107 51.132% 17
Psoriasis vulgaris 326 15.058% 9
Dyshidrotic eczema 247 11.409% 4
Hyperkeratotic eczema 118 5.450% 2
Verruca vulgaris 96 4.434% 4
Scleroderma 50 2.310% 1
Acrodermatitis continua 40 1.848% 1
Colagenosis 36 1.663% 1
Raynaud’s phenomenon 9 0.416% 1
Effusion of fingers 35 1.617% 1
Cut wound 18 0.831% 2
“Unknown” disease 83 3.834% 1
Total 2 165 44

The diseased fingerprint database was used to analyze the influence of and damage
caused by these skin conditions on the papillary line structure. There exist common features
displayed in the fingerprints affected by each particular disease. During the analysis of the
database, the damage caused to the fingerprints was divided into two categories of 7 local
features and 5 global features. [13][3]

The local features are:

∙ straight lines (SL)
∙ a grid (G)
∙ small papillary lines disruptions (PLD)
∙ small “cheetah” spots (CS)
∙ large oblong spots (ROS)
∙ large irregular spots (IS)
∙ dark places (DP)

The global features include:

∙ blurriness of the image (B)
∙ significantly high contrast of

the image (HC)
∙ entire fingerprint area affected (EA)
∙ total deformation of the fingerprint

image (TD)
∙ significantly high quality and health of

the fingerprint (HQ)
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These global and local features were observed in a subset of the fingerprint image
database and each disease present in the database was associated with a percentage score
depending on the prevalence of given features in fingerprint images affected by that par-
ticular disease, see Tables 3.2 and 3.3. These tables detail the type and extent of certain
types of fingerprint damage expected to be found in the fingerprint images.

Table 3.2: Global features observed in the fingerprint damage caused by the skin disease. [13]

Disease Percentage of particular features Sum
B HC EA TD HQ

Fingertip eczema 18.01 21.50 40.38 36.36 29.02 572
Psoriasis vulgaris 34.86 27.06 61.93 58.72 18.35 218
Dyshidrotic eczema 30.33 30.33 31.97 29.51 9.84 122
Hyperkeratotic eczema 31.37 29.41 9.80 0.00 37.25 51
Verruca vulgaris 19.05 80.95 7.94 7.94 76.19 63
Scleroderma 0.00 0.00 0.00 0.00 100 23
Acrodermatitis continua 48.57 25.71 100 100 0.00 35
Colagenosis 9.38 40.63 0.00 0.00 25.00 32
Raynaud’s phenomenon 0.00 0.00 0.00 0.00 100 8
Effusion of fingers 23.33 16.67 40.00 16.67 3.33 30
Cut wound 37.50 68.75 0.00 0.00 50.00 16
“Unknown” disease 30.00 20.00 90.00 83.33 0.00 30

Table 3.3: Local features observed in the fingerprint damage caused by the skin disease. [13]

Disease Percentage of particular features Sum
SL G PLD CS ROS IS DP

Fingertip eczema 72.03 24.65 15.91 12.24 32.34 16.61 15.73 572
Psoriasis vulgaris 40.37 6.42 2.75 12.84 48.17 32.57 62.84 218
Dyshidrotic eczema 63.11 7.38 14.75 18.03 78.69 29.51 32.79 122
Hyperkeratotic eczema 3.92 0.00 66.67 15.69 74.51 3.92 5.88 51
Verruca vulgaris 3.17 0.00 14.29 12.70 74.60 0.00 25.40 63
Scleroderma 0.00 0.00 0.00 0.00 0.00 0.00 30.43 23
Acrodermatitis continua 14.29 0.00 0.00 85.71 60.00 14.29 65.71 35
Colagenosis 100 78.13 0.00 0.00 15.63 0.00 25 32
Raynaud’s phenomenon 0.00 0.00 100 0.00 0.00 0.00 0.00 8
Effusion of fingers 10.00 0.00 73.33 43.33 63.33 6.67 13.33 30
Cut wound 93.75 0.00 0.00 0.00 18.75 0.00 12.50 16
“Unknown” disease 100 86.67 0.00 0.00 76.67 30.00 73.33 30
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Chapter 4

Convolutional Neural Networks

Convolutional neural networks or CNNs, were first established by LeCun et al. (1998) [39].
Convolutional neural networks have since proven to have very successful applications in
image processing, they are designed to recognize visual patterns directly from a pixelated
image with minimal preprocessing.

Generative adversarial networks used for synthetic image generation typically consist of
a pair of deep convolutional neural networks. It is, therefore, important to understand how
convolutional networks function in order to understand how generative adversarial networks
work to produce synthetic images.

Convolutional neural network is a specialized type of an artificial neural network de-
signed for processing data that has a known, grid-like topology [25]. An obvious example
of grid-structured data is a 2-dimensional image. Image data have a strong 2-dimensional
local structure, pixels of an image that are spatially close together are highly correlated.
Therefore, neighboring pixels tend to have similar color values and are more likely to be
a part of some local structure (e.g. edges, corners, etc.). Another important property of
image data is its translation and rotation invariance [1], this means that certain parts of
the image data have the same interpretation regardless of their position or rotation in an
image.

The convolutional neural networks utilize a mathematical operation called convolution
to extract information about local features of the input. Convolution is usually subsequently
followed by application of a non-linear activation which decides whether the presence of a
feature is strong enough to warrant an activation of a neuron. This is then followed by
a pooling which combine the extracted features into a compact representation, which is
mostly invariant to moderate changes in scale, translation, pose. [34]

4.1 Convolution
In mathematics, convolution is an operation on two functions 𝑓(𝑥) and 𝑔(𝑥) with real-
valued arguments that produces a third function ℎ(𝑥). Convolution is defined as the integral
over the product of both functions 𝑓(𝑥) and 𝑔(𝑥) after one is reversed and shifted. The
convolution operation is commonly denoted by the asterisk symbol *. [25]

ℎ(𝑥) = (𝑓 * 𝑔)(𝑥)

(𝑓 * 𝑔)(𝑥) =
∫︁ ∞

−∞
𝑓(𝑦)𝑔(𝑥− 𝑦)𝑑𝑦

(1)
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The convolution operation has a wide range of applications in image processing, data
processing, probability theory, electrical engineering etc. To better understand convolution,
consider this example from probability theory. Take a simple case of rolling two fair, 6-sided
dice. Let 𝑋 and 𝑌 be two discrete random variables describing the process of rolling dice
and the possible outcomes. Let 𝑓(𝑋) and 𝑔(𝑌 ) be their discrete probability distributions.
The probability distribution function of the sum of these two dice rolls 𝑝(𝑛) can be computed
as the discrete convolution of functions 𝑓(𝑋) and 𝑔(𝑌 ) [48]. Discrete convolution is defined
as infinite sum:

(𝑓 * 𝑔)(𝑛) =
∞∑︁

𝑖=−∞
𝑓(𝑖)𝑔(𝑛− 𝑖). (2)

For functions with a finite support interval, it is possible to take a finite sum instead.

(𝑓 * 𝑔)(𝑛 = 𝑑1 + 𝑑2) =
𝑛∑︁

𝑖=1

𝑓(𝑖 = 𝑑1)𝑔(𝑛− 𝑖 = 𝑑2) 𝑛 ∈ {2, 3, .., 12} (3)

Think of this convolution as computing all different permutation of rolling a total sum
of 𝑛 = 𝑑1 + 𝑑2 on the two dice. Another way to think about it is as though dragging one
distribution function over the other and taking their product where they overlap. If you
were to compute the probability of rolling e.g. 𝑝(𝑛 = 3) it would give the result 2

36 , due to
there being two possible ways to roll the sum total of 𝑛 = 3 out of all 36 possible outcomes.

(𝑓 * 𝑔)(3) = 𝑓(1)𝑔(2) + 𝑓(2)𝑔(1) + 𝑓(3)𝑔(0)

= 𝑓(1)𝑔(2) + 𝑓(2)𝑔(1) + 𝑓(3) · 0
= 𝑓(1)𝑔(2) + 𝑓(2)𝑔(1)

=
1

6
· 1
6
+

1

6
· 1
6
=

2

36

(4)

Convolutional neural networks use 2-dimensional discrete convolution operator at each
possible position in the image. This 2-D convolution is a dot-product between a grid-
structured inputs and a grid-structured set of weights [1]. The second argument of the
convolution is often referred to as the filter (kernel) and the output of the convolution is
feature map. The equation for 2-D correlation with 2-D image 𝐼 and 2-D filter 𝐹 is defined
as follows:

(𝐼 * 𝐹 )(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑚,𝑛)𝐹 (𝑖−𝑚, 𝑗 − 𝑛). (5)

This 2-D convolution is a linear transformation that preserves the notion of ordering
in the image. It is sparse (only few input units contribute to a given output unit) and
reuses parameters (the same weights are applied to multiple locations in the input) [17].
An example of a 2-D convolution can be seen in Figure 4.1.
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Figure 4.1: Example of 2-dimensional convolution on two grid-structured inputs. The
rectangular array on the left could represent a pure black and white input image 𝐼. The
smaller blue rectangular array in the middle is the filter 𝐹 , which is being applied to region
of 𝐼 highlighted in red. Result of this step of the convolution operation is output in the
green highlighted cell of feature map on the right. This process is repeated for every step
in the 𝑥-axis and the 𝑦-axis, giving the final result [68].

4.1.1 Motivation for Using Convolution

Convolution is used in CNNs because it leverages three important ideas that can help
improve a machine learning system: sparse interaction, parameter sharing and equivariant
representation [25].

Traditional neural networks e.g. MLP (multi-layered perceptron) with one hidden layer,
which is a fully connected architecture, would have to train around 170 000 weights (param-
eters) for an image of size 244×244 with 3 color channels. In contrast, convolutional neural
networks use 2-D convolution with filter that is smaller than the input image. Repeat appli-
cations of this filter at certain strides in the input detect small, meaningful features in the
local structure of the input image. Each neuron in the next layer following the convolution
is only connected to a small number of neurons in the previous layer (given by the size of
the filter). In other words, not all neurons in a particular layer are connected indiscrimi-
nately to neurons in the previous layer. This makes it possible to store fewer parameters,
which both reduces memory requirements of the model, improves its statistical efficiency
and requires fewer operations to compute the output. [25]

Parameter sharing is used in convolutional layers of the CNN to limit the number of
free parameters in the model. This parameter sharing in CNNs means that the network
does not learn a separate set of parameters for every location in the image. Convolutional
neural networks assume that if it is useful to compute a certain feature at some position
in the input image, then it is very likely that the same feature might be useful to compute
at other locations in the image. The basic idea is that a rectangular patch of the image
corresponds to a portion of the visual field and should be interpreted in the same way no
matter where it is located [1]. Also, another big advantage of sharing parameters in the
CNN is further reduction in the number of parameters involved in the network without
hindering the networks expressive power.

This sharing of parameters in CNNs causes the convolutional layers of the network be
equivariant to translation. Equivariance of a function to translation means that if the input
to the function changes, the output changes in the same way [25]. For example, if the input
image is shifted in some way 𝑠(𝐼), the convolution of the shifted image ℎ(𝑠(𝐼)) would be
equivalent to the convolution of the original image ℎ(𝐼) after being shifting in the same
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way 𝑠(ℎ(𝐼)). Two functions 𝑠(𝐼) and ℎ(𝐼) are equivariant if 𝑠(ℎ(𝐼)) = ℎ(𝑠(𝐼)). That is to
say, if an object is moved in the input, its corresponding representation in the feature map
is moved accordingly as well.

4.1.2 Zero-Padding of the Input

Zero-padding of the inputs of convolutional layers is important in implementations of CNNs.
Without padding, the 2-D input the width and height of the image representation would
shrink after every convolutional layer. The image representation would shrink in size by
one half of the filter size around the edges, as evidenced by the example of convolution
operation in Figure 4.2 (𝑎).
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Figure 4.2: The figure shows two examples of feature maps resulting from a convolutional
layer of the network. The example (𝑎) is valid padding and the resulting feature map
shrinks by

⌊︁
𝑓
2

⌋︁
of the size 𝑓 × 𝑓 of filter 𝐹 . In the example (𝑏) padding around the edges

of the input 𝐼 equal to the
⌊︁
𝑓
2

⌋︁
is used to prevent spatial reduction in the feature map.

This type of reduction in size is not desirable when using the convolutional layers of the
network, because it tends to lose information around the edges of the image (or of the feature
map in the case of hidden layers) [1]. Without padding the inputs of the convolutional layer,
it would be either necessary to choose small filters or significantly shrink the neural network.
Both of these options would limit the expressive capabilities of the network.

There are some extreme use cases of CNNs where there is no padding used in the
convolutional layers, in this case the filter is only applied to the areas where the filter is
fully inside the input. This is referred to as valid padding (filter is only applied to ”valid“
positions). Valid padding tends to show worse experimental results and ultimately limits
the maximum number of convolutional layers in a network.

Another type of padding used in CNNs the so called same padding, shown in Fig-
ure 4.2 (𝑏). Its name is derived from keeping the size of the feature map same as the size
of the input. The edges of the input are padded by

⌊︁
𝑓
2

⌋︁
for a filter 𝐹 of size 𝑓 × 𝑓 . With

this type of padding the network can contain any number of convolutional layers without
ultimately reducing the output to size of 1× 1.

A different type of padding is referred to as full padding. In this case the input is padded
by size 𝑓 − 1, almost equal to the size of the filter 𝐹 . Therefore, at the very edges the filter
and the input would only overlap at a single single pixel. This is another extreme case, this
type of padding is sometimes used because in the case of same padding (or valid padding)
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the features around the edges of the input can be underrepresented in the output feature
map due to being result of fewer applications of the filter. However, this can mean that
learning a single filter that performs well at all positions of the input will be more difficult.

Usually, the optimal amount of zero-padding of the inputs (in terms of expressive power
of the network) lies somewhere between valid padding and same padding [25].

4.1.3 Strides

Strides represent a way in which convolution can reduce the spatial dimensions of the in-
puts. Stride in CNNs is the number of pixels (positions) by which the filter shifts during
convolution. The convolution operation mentioned so far performed the dot-product be-
tween grid-structured input and filter at every possible point (one pixel at a time). This
corresponds to convolution where stride of 𝑠 = 1 is used for both x and y axes. Different
stride values can be used for different axes if necessary.

Using higher stride values can reduce the granularity (downsample) of the convolu-
tion [1]. Higher stride values (e.g. 𝑠 = 2 or 𝑠 = 4) can be helpful in case the memory-
constraints of the CNN pose an issue or the input image is of too high a resolution and
could lead to overfitting.

The size of the feature map output by a convolutional layer with stride 𝑠, input 𝐼 with
size 𝑤 × ℎ (including padding if used) and filter 𝐹 with size 𝑓 × 𝑓 is given as:

𝑤′ =

⌊︂
𝑤 − 𝑓 + 𝑠

𝑠

⌋︂
+ 1 ℎ′ =

⌊︂
ℎ− 𝑓 + 𝑠

𝑠

⌋︂
+ 1. (6)

In practice, strides 𝑠 ≥ 4 are used rarely used, the resulting output feature map have
smaller spatial dimensions and reduce the overlap of receptive fields (regions of input space
where the filter is applied). It is possible to try different stride lengths at different convo-
lutional layers of the network to check which gives the best performance on the validation
data [45].

4.2 Transposed Convolution
Normal convolution operation used in CNNs typically reduces the spatial dimensions of the
input. In convolutional neural networks it is sometimes desirable to upsample the size of the
input (e.g. in generators of GANs). This can be achieved by using transposed convolution,
also called fractionally strided convolution or incorrectly referred to as deconvolution 1.

Transposed convolution can be computed as regular convolution on inputs with addi-
tional rows and columns of zero values inserted around the actual values of the input [34].
The convolution then outputs a feature map of larger size than the input, effectively up-
sample the input.

In practice, a faster way of computing the tranposed convolution is used. Same out-
puts can be achieved by representing the filter of the transposed convolution as a Toeplitz
matrix [58] and reshaping (unrolling) the input of the transposed convolution to a vector
of values. The result of multiplying the Toeplitz matrix and the vector of input values
will be another vector, which needs to be reshaped to matrix form. The final result of the
transposed convolution is this reshaped matrix. [34]

1The term ”deconvolution“ is sometimes used in machine learning literature to refer to the operation
of transposed convolution. However, deconvolution is defined in mathematics as the inverse operation to
convolution which is not the same thing as transposed convolution.
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Figure 4.3: An example of a tranposed convolution operation on an input of size 3× 3 that
is padded by 𝑝 = 1 number of zero values. Regular convolution is performed on the padded
input with a filter of size 3× 3 resulting in an output feature map of size 5× 5, effectively
upsampling the input. [66]

4.3 Architecture of Convolutional Neural Networks
A convolutional neural network is a sequence of layers that fulfill essential functions in
the network, CNNs are comprised of several different types of layers depending on their
function.

Typical CNN includes an input and an output layer (designed in an application specific
way) together with a sequence of multiple hidden layers. These hidden layers of a CNN are
usually comprised of a combination of convolutional layers, pooling layers and layers with
a non-linear (piece-wise linear) activation function [34]. Combined, these different types of
layers extract meaningful feature information from the input of the convolutional network.
They are usually followed by a sequence of fully connected layers, which function exactly
in the same way as a typical feed-forward neural network (e.g. MLP).

Unlike in traditional neural network architectures, neurons within layers of a convolu-
tional network tend to be arranged in 3-dimensional space with limited local connections to
the previous layer. Convolutional neural networks take advantage of the fact that an image
of width 𝑤, height ℎ and number of color channels 𝑐 can be thought of as a volumetric
input (tensor) of size 𝑤 × ℎ× 𝑐.

(a)

Figure 4.4: An example of a convolutional neural network architecture. This is the original
architecture of LeNet-5 network from LeCun et al. (1995) [39], one of the earliest convolu-
tional networks. The network contains a sequence of convolutional layers and subsampling
layers (replaced by pooling in more modern networks) followed by a set of fully connected
layers [39].
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4.3.1 Convolutional layer

Convolutional layers are the most fundamental part of a convolutional network, they learn
about the local features in their structured inputs. Convolutional layers are made up from
a number of filters which are connected to a local region (receptive field) in the input of the
layer. Inputs of a convolutional layer are convolved (detailed in Section 4.1) with this set of
filters to produce an output feature map. Each filter in a convolutional layer is associated
with its own bias which is added to the convolution and is learned throughout the training
of the network.

Filters in convolutional layers are separately applied to the input volume in parallel.
Outputs from filters of the same depth produce a 2-dimensional feature map, which are
stacked together producing a volumetric output for the next layer of the network.

4.3.2 ReLU Layer

Convolutional layers in CNNs are usually directly followed by application of a nonlinear (or
a piece-wise linear) activation function [1]. Although it is not explicitly displayed on the
diagrams of network architecture of CNNs, almost every CNN uses a layer of activation
functions following the convolutional layers. The application of these activation functions
is not very different from their application in traditional neural networks, it does not change
the spatial dimensions of the input as it is a one-to-one mapping.

In convolutional neural networks, the most commonly used activation function is cur-
rently the rectified linear unit (ReLU). It is a simple, fast to compute activation function
which returns 0 if the input is negative or returns the value of input if it is positive.

𝑓𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (7)

The reason for using a nonlinear activation function such as ReLU in the CNN is for the
network to be able to nonlinear mappings[34]. Not all CNNs use the basic ReLU function,
there are other variants of this activation function e.g. leaky ReLU, noisy ReLU, parametric
ReLU etc.
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Figure 4.5: Plot of the rectified linear unit or ReLU function commonly used as activation
function in CNN on the outputs of the convolutional layers of the network.

Leaky ReLU function is an improved variant of the basic ReLU function, which allows
for a small positive gradient when the unit is not active. This function is used to prevent
the “dying” ReLU problem, which is a form of the vanishing gradient problem, where the

25



weights of the ReLU neuron could update in such a way that it never becomes active again.
Such a neuron could become inactive for the remainder of the training.

𝑓𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑥) =

{︃
x if , 𝑥 > 0,

0.01x otherwise.
(8)
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Figure 4.6: Plot of the leaky ReLU function, which has a very small predetermined slope
for the negative 𝑥 values in order to provide well defined gradients.

4.3.3 Pooling layers

Pooling layers operate on the feature map that is output from the previous layers of the
CNN to simplify the information. They are typically interleaved with convolutional layers
in the network.

The pooling layer applies a pooling function to the inputs of the layer. The pooling func-
tion replaces the outputs of the previous layer with a summary statistic of nearby outputs
creating a condensed feature map [25]. Popular pooling functions are maximum (max-
pooling) and average (average-pooling).

Pooling operates at each input feature map individually to produce another feature
map with reduced spatial dimensions. Pooling does not change the number of feature
maps, meaning that the output of the pooling layer keeps the same depth as the depth of
the input. [1]

Similar to the convolutional layers, it is necessary to specify the size of a region being
pooled and stride.

4.3.4 Fully Connected Layers

Fully connected layers of the CNN are typically placed after a sequence of convolutional,
ReLU and Pooling layers towards the end of the convolutional network. However, there
are network architectures which use fully connected layers at intermediate locations of the
CNN and some that don’t use fully connected layers at all.

Each neuron in these fully connected layers is connected to every neuron in the input.
Fully connected layers in CNNs function in the exact same way as in traditional neural
networks (e.g. layer in a MLP). The operation of neurons in this layer is a simple matrix
multiplication followed by addition of the bias terms and application of a nonlinear acti-
vation function [34]. The fully connected are essentially convolutional layers that use filter
size of 1× 1.
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Figure 4.7: An example of max-pooling a feature map of size 5 × 5 with stride 1. Each
feature map from the previous layer of the network is processed in this way.

The fully connected layers provide a way of learning a combination of the high-level
features extracted from the final layers of the convolution, they aggregate information
from the final feature maps. The spatial grids of the final feature maps are flattened and
concatenated to create a high-dimensional representation of the input image which serves
as an input to the fully connected layer.
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Chapter 5

Synthetic Image Generation Using
Generative Adversarial Networks

Generating realistic looking synthetic images has been a long-standing problem in machine
learning. There have been a number of innovations made in recent years in the field of deep
generative modeling, especially pertaining to generative adversarial networks.

Generative adversarial networks are an emerging machine learning technique for gen-
erative modeling which can be used for synthetic image generation. The original design
of generative adversarial networks was proposed by Goodfellow et al. (2014) [26]. Their
idea was to use a set of two neural networks to compete against one another and itera-
tively improve each others performance, eventually being able to reproduce training data
distribution (e.g. produce images).

This chapter covers the architectural details of generative adversarial networks, their
training and variations on the original generative adversarial model which can be used for
synthetic image generation.

5.1 Generative Adversarial Networks
Generative adversarial networks (GAN) are a type of deep generative models based on dif-
ferentiable generator networks introduced by Goodfellow et al. (2014) [26]. The inspiration
behind GAN is based on game theory. The idea is to set up a game between two play-
ers. The framework of GAN consists of two simultaneously trained convolutional neural
networks models, a generator and a discriminator, that are in direct competition with one
another.

The generator of a GAN creates new samples of fake data (e.g. synthetic fingerprint
image) that are supposed to look as though they were drawn from the same probability
distribution as the training dataset (real data). The generator draws noise data from
a random probability distribution which it eventually transforms into real looking data
samples. Notably, the generator has no direct access to actual data samples, it learns solely
through interaction with the discriminator.

The discriminator then receives samples from both the real training data and fake data
created by the generator and tries to identify whether the data sample comes from the
training dataset or the generator. The discriminator learns using traditional supervised
learning methods for classification to classify its inputs into one of the two classes (real or
fake) [24].
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In this adversarial modeling framework, the goal of the generator is to generate data in
such a way that it increases the misclassification rate of the discriminator. The discrimina-
tor, on the other hand, tries to minimize its own misclassification rate on the input data it
receives. The aim of the generative adversarial network as a whole is to train both models
to the point where the discriminator cannot distinguish between real and generated images.

It is, therefore, possible to use GANs to artificially generate entire datasets of synthetic
data that mirror the distribution of a real dataset. During the course of training the
network, the generator learns a mapping from a randomized vector to a realistic looking
fake data sample. Subsequently, the generator of the GAN can be used after the training
is finished to create any number of realistic looking samples.

Training
Dataset

Discriminator

Generator

Classification
Error

Random Noise
Vector

Figure 5.1: Basic architecture of a generative adversarial network (GAN) consisting of
two convolutional neural networks: generator and discriminator. The generator takes a
randomized vector as an input and tries to create a fake data sample that captures the
characteristics of the training data set. The discriminator takes a data sample as an input
and decides whether it is drawn from the training data set or created by the generator.
Both the generator and the discriminator are then updated according to the classification
error of the discriminator.

5.1.1 Generator

The generator of a GAN is a machine learning model that represents a differentiable function
𝐺 : 𝑅|𝑧| → 𝑅|𝑥|, which maps vectors of random values (noise) 𝑧 ∈ 𝑅|𝑧| from a latent space
to an output 𝑥 = 𝐺(𝑧), 𝑥 ∈ 𝑅|𝑥| that looks like a realistic looking data sample, where |𝑥| is
the size of the created data sample. [24][10]

Generators are typically implemented as a CNN that learns this mapping function 𝐺
during the training process of the GAN. The idea is to try to mirror patterns or probability
distributions of the training dataset consisting of real data.

The first step of a generator is to sample a random vector 𝑧 from some prior probability
distribution (e.g. normal distribution) which will be used as an input to the rest of the
convolutional network to create a fake data sample 𝑥 = 𝐺(𝑧). Conceptually, the random
vector 𝑧 of size 𝑛 is drawn from an arbitrarily defined 𝑛-dimensional latent space. The
vector 𝑧 then represents latent features of the data sample created by 𝐺(𝑧). No intrinsic
meaning is assigned to these latent features explicitly, the generator learns to apply meaning
to points in the latent space throughout the training process.

The rest of the generator network then takes the random vector 𝑧 as an input and
passes it through a series of transposed convolutions. These layers upsample the vector 𝑧
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that serves as the seed for the generation of data sample 𝑥. The convolutional layers of the
generator are typically followed by application of a nonlinear activation function. Multiple
different activation functions can be used throughout the networks layers (e.g. DCGAN
uses ReLU for the inner convolutional layers and tanh for the last layer) [53].

It is worth noting that not all of the input values to function 𝐺(𝑧) must necessarily
correspond to the inputs of the first layer of the convolutional network. It is possible to
partition the vector 𝑧 into multiple vectors, e.g. 𝑧1 and 𝑧2, and then feed 𝑧1 as the input
to the first layer of the CNN and use 𝑧2 as an input at another point of the CNN.

In general, there are very few restrictions placed on the design of the generator network.
The function 𝐺 must be differentiable and the dimension of 𝑧 should be at least as large as
the dimensions of 𝑥. [25]

(a)

Figure 5.2: Generator of a deep convolutional generative adversarial network (DCGAN).
The vector 𝑧 of size 100 is first drawn from a uniform distribution and then projected
and reshaped into an input of 1024 feature maps of size 4 × 4. These feature maps are
subsequently put through a series of transposed convolutions (also known as fractional
convolutons or deconvolutions) that eventually output a data sample 𝑥 = 𝐺(𝑧) of size
64× 64. [53]

5.1.2 Discriminator

The discriminator of a GAN is a binary classification network that takes two types of data
samples as an input, real data from the training set and fake data created by the genera-
tor. The discriminator then uses traditional supervised learning techniques to separate the
inputs into one of two classes – real and fake. In generative adversarial networks, discrimi-
nator can be characterized by a function 𝐷 : 𝑅|𝑥| → [0, 1] that maps an input data samples
𝑥 ∈ 𝑅|𝑥| to the probability that the data sample is from a real dataset. [10]

The goal of a GAN is to eventually train the generator of the network to the point that
it is able to maximally fool the discriminator. A point at which the misclassification rate
is approximately 50%. The successfulness of the classification by the discriminator is used
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to provide feedback to both the discriminator and the generator during the training of the
network.

The discriminator of a GAN is typically represented by a CNN. The general structure
of the discriminator network includes a series of strided convolutional layers that reduce
the spatial dimensions of the input. Again, the convolutional layers are usually followed by
the application of an activation function (e.g. ReLU layer).

The use of fully connected layers differs from network to network. Some networks, such
as SRGAN [40] from Figure 5.3, utilize a series of fully connected layers at the end of
the network to transform the final feature map output by the last convolutional layer into
probability of input belonging to one of the two classes.

Other networks, such as DCGAN [53], advocate the elimination of most of the fully
connected layers in an attempt to increase the convergence speed of the network. The
DCGAN architecture uses a single sigmoid layer as the output of the network. This sigmoid
layer directly takes the feature map of the last convolutional layer as the input.

Figure 5.3: The convolutional network model VGG16 [56] used for classification of images.
This CNN is the basis for the discriminator of the generative adversarial network used for
image super-resolution (SRGAN) [40]. The network consists of a series of convolutional
layers with small filter size of 3× 3 followed by ReLU layers. The network also contains 5
max-pooling layers with filter size 2 × 2 and stride 2. The last layers of the convolutional
network are a series of three fully connected and ReLu layers followed by the application of
the softmax activation function. Softmax being the generalization of the logistic function
to multiple classes. [69]

5.2 Training of Generative Adversarial Networks
The process of training a GAN involves finding weights (parameters) of the discriminator
network 𝐷 that maximize its classification accuracy whilst at the same time finding weights
of the generator network 𝐺 that minimize this classification accuracy of the discriminator.
This training consists of alternately updating weights of the discriminator and generator
models using simultaneous stochaistic gradient descent (SGD) [26]. While weights of one
model are being update, the weights of the other model remain fixed.

The simplest way of describing the learning in GAN is as a zero-sum game. A zero-
sum game is a game in which gains (losses) of one player 𝐷 are directly proportional to
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the losses (gains) of the other player 𝐺. The payoff of the discriminator in this game can
be specified by a utility function 𝑈(𝐺,𝐷) = −𝐽 (𝐷), where 𝐽 (𝐷) is the discriminators cost
function (cost is minimized in discriminator when training). As it is a zero-sum game,
the payoff for the generator is defined as 𝐽 (𝐺) = −𝐽 (𝐷). Notably, the generator uses the
same cost function as the discriminator in this case. These payoffs are parametrized by the
weights (parameters) of the neural networks.

The solution for this zero-sum game problem (convergence of the model) is a Nash
equilibrium 𝑔*. A Nash equilibrium for this zero-sum game is a saddle point of function
𝑣(𝜃(𝐺), 𝜃(𝐷)). This saddle point is a local minimum with respect to the generators parame-
ters 𝜃(𝐺) and a local maximum with respect to the discriminators parameters 𝜃(𝐷). [24][25]

𝑔* = 𝑎𝑟𝑔min
𝐺

max
𝐷

𝑣(𝜃(𝐺), 𝜃(𝐷)) (9)

This approach was initially used in Goodfellow et al. (2014) [26] and they were able
to show that learning in this sort of a zero-sum game is similar to minimizing the Jensen-
Shannon divergence between the training data and the generators distribution. Jensen-
Shannon divergence being a measure of similarity between two probability distributions (real
data and generated data in this case).

5.2.1 Discriminator’s Cost Function

The default choice for the cost function of the discriminator is usually the binary cross
entropy error function [25]. The binary cross entropy function is defined as the negative
logarithm of the likelihood function. It is the standard cost function used in models with
sigmoid output Figure 5.4.
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Figure 5.4: Activation function of logistic regression - logistic sigmoid.

𝐽 (𝐷) = −
𝑛∑︁

𝑖=1

𝑡𝑖𝑙𝑜𝑔(𝐷(𝑥𝑖)) + (1− 𝑡𝑖)𝑙𝑜𝑔(1−𝐷(𝑥𝑖)) (10)

Where 𝐷(𝑥𝑛) ∈ [0, 1] is the outcome of the classification by the discriminator and 𝑡𝑛
is the correct class label for data sample 𝑥𝑛 (1 for real and 0 for fake). The discriminator
tries to minimize this cost function during the training of the model leading it to try to
classify input data samples correctly. It is easy to verify that this sum is minimal when the
generator correctly outputs 1 for real data and 0 for generated data.
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However, the goal of training a GAN model is to teach the generator to create fake data
samples which are indistinguishable from real ones. At the convergence of the model the
discriminator should therefore output 1

2 for all the samples, being unable to tell whether a
data sample was synthetically generated or not.

5.2.2 Generator’s Cost Function

Formulating the training of a GAN in the form of this zero-sum game was shown to be
useful for theoretical analysis of the model, but it does not tend to perform particularly
well in practice. The results shown in Goodfellow et al. (2014) [26] depend on convexity
and the parameter space in the case of convolutional neural networks is not necessarily
convex. [24]

Another problem with using the same cost function from Equation 10 for the generator
as for the discriminator is that this can lead to the gradient problem (gradient satura-
tion) [26]. In the zero-sum game mentioned previously, the discriminator minimizes this
cost function and the generator tries to maximize the same cross-entropy function. Unfor-
tunately, the output of this cost function saturates in extreme cases when the discriminator
is close to being optimal, meaning the discriminator is able to correctly predict classes with
utter certainty. Very high confidence of the discriminator in classifying its inputs leads to
vanishing of generator’s gradient [25]. In this case the generator is unable to learn in a
meaningful way due to the values of the gradient being too small and the training of the
model is stunted.

It is possible to use a different non-saturating cost function to solve this problem. This
proposed cost function is a subtle variation on the minimax cost function. The discrimi-
nator tries to increase the probability of misclassification in the discriminator rather than
decreasing the probability of correct classification [25].

𝐽 (𝐺) = −
𝑛∑︁

𝑖=1

(1− 𝑡𝑖)𝑙𝑜𝑔𝐷(𝑥𝑖) (11)

Changing this cost function no longer makes this a zero-sum game as it changes the
payoffs of the generator. This slight change in the cost function of the generator allows
for large gradients even when the discriminator confidently rejects generated samples. This
sort of a cost function provides much stronger gradients earlier in the training process when
the generator was not yet able to figure out a way to meaningfully replicate the training
data distribution, see Figure 5.5. [25]

5.2.3 Simultaneous Stochaistic Gradient Descent

Stochaistic gradient descent (SGD) is used to learn the parameters for the discriminator
and the generator. Stochaistic gradient descent is a gradient-based optimization technique
that forms the expectation of a function’s gradient based on minibatches of data. Gradient-
based optimization methods are currently the most common approach to training neural
networks. It is possible to use any gradient-based optimization method for training GAN,
e.g. Adam optimizer [35]. [1][24]

The gradient update steps in a GAN alternately update the generator 𝐺 and the dis-
criminator 𝐷. It is possible to use 1 ≤ 𝑘 ≤ 5 steps for optimizing the discriminator for
every 1 step of the generator, as was originally proposed in [26]. Currently the approach
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Figure 5.5: Graph of three variations on the cost function of the generator network proposed
in Goodfellow et al.(2014) [26]. Notice the difference in the magnitude of non-saturating
cost function’s gradient when 𝐷(𝐺(𝑧)) is close to zero, and the discriminator can confidently
classifies the sample as fake. [24]

that is thought to work best in practice is to use 𝑘 = 1 for alternate steps of both 𝐷 and
𝐺 [54]. The weights update in the estimated gradient step is defined as:

𝜃 = 𝜃 − 𝜂

𝑛

𝑛∑︁
𝑖=1

∇𝜃𝐽(𝑥𝑖, 𝑡𝑖; 𝜃) (12)

where 𝜃 are the parameters of the model (discriminator or generator), 𝜂 is the learning
rate, 𝑛 is the size of the minibatch, 𝐽(𝑥𝑖, 𝑡𝑖; 𝜃) is the cost function of the model, 𝑥𝑖 is the
input from a minibatch and 𝑡𝑖 the correct class of the input. The alternating steps of the
algorithm update 𝜃(𝐷) to reduce 𝐽 (𝐷) and 𝜃(𝐺) to reduce 𝐽 (𝐺).

5.2.4 Batch Normalization

Since the introduction of DCGAN [53], most architectures of generative adversarial net-
works have involved batch normalization in some form. Batch normalization is a technique
proposed by Ioffe and Szegedy (2015) [29] for reducing the internal covariate shift of neural
networks. They defined internal covariate shift as the change in the distribution of network
activations due to change in network parameters during training [29].

The reason for using batch normalization in deep learning is to improve training of
models that use saturating nonlinearities (e.g. sigmoid). The idea is that since a deep
neural network consists of numerous layers, small change in some of the initial layers of the
network can manifest a large change in the later layers of the network. The issue with this is
that such a small change in the parameters of the network can move many dimensions of the
layers input into the saturated region of the nonlinear activation function. This significantly
slows down the learning process and leads to the vanishing gradient problem. [29]

Batch normalization is defined as follows. Let 𝑧 = 𝑔(𝑥) be an output of a layer in the
neural network, where 𝑔(.) is a nonlinearity and 𝑥 = 𝑊𝑢+ 𝑏 is an activation. Here, 𝑊 and
𝑏 are the weights and bias of the layer in the network and 𝑢 is the input to the given layer.
Let 𝐻 be the matrix of activations 𝑥 = 𝑊𝑢 + 𝑏 of a layer for a minibatch of data. The
matrix 𝐻 is replaced by matrix 𝐻 ′ in batch normaliztion.[25][29]
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𝐻 ′ =
𝐻 − 𝜇

𝜎
(13)

Where 𝜇 is a vector containing the mean of each unit and 𝜎 is a vector containing the
standard deviation of each unit [25].

𝜇 =
1

𝑛

𝑛∑︁
𝑖=0

𝐻𝑖 (14)

𝜎 =

⎯⎸⎸⎷𝛿 +
1

𝑛

𝑛∑︁
𝑖=0

(𝐻𝑖 − 𝜇)2 (15)

Normalizing the activations may reduce the expressive power of the network. For ex-
ample, the influence of a learned bias parameter 𝑏 for a layer will be canceled out due to
the subtraction of mean. To prevent this, a set of two parameters 𝛾 and 𝛽 are learned for
each batch normalization in the network and the normalized 𝐻 ′ is scaled and shifted by
𝛾𝐻 ′ + 𝛽. [29]

For convolutional layers, the batch normalization should obey the convolutional prop-
erty. The activations are normalized jointly for the minibatch over all locations (receptive
fields) in the input feature map. [29]

However, there is a potential issue when training GAN with smaller minibatch sizes.
Smaller minibatch sizes may be used due to limited GPU memory and this may cause
increased fluctuation in the above mentioned normalization constants. Subsequently, the
model might be influenced more by the change in the normalization constants than by the
input itself. This issue was addressed by virtual batch normalization for GAN in Salimans
et al. (2016) [54]. The virtual batch normalization uses an additional reference batch at
the start of the training which remains constant. The activations are normalized by the
minibatch and the reference batch. A downside of this approach is that it is computationally
expensive, as it is needed to calculate the batch normalization twice. [24][54]

5.2.5 Spectral Normalization

Spectral normalization is a weight normalization technique first introduced in spectrally
normalized GANs (SN-GANs) [44]. The aim of spectral normalization is to stabilize the
training of GANs by imposing Lipschitz constraints on the function 𝑓 of the network.
Spectral normalization uses the spectral norm 𝜎(𝑊 ) of a weight matrix 𝑊 , which is equal
to the largest singular value of 𝑊 , to normalize the weights of the matrix 𝑊 .

𝑊 ′ =
𝑊

𝜎(𝑊 )
(16)

Spectral norm 𝜎(𝑊 ) of a matrix 𝑊 normalized in this manner satisfies the Lipschitz
constraint of 𝜎(𝑊 ) = 1. When each of the weight matrices 𝑊 𝑙 in the network satisfies this
Lipschitz constraint, the function 𝑓 of the network will be 1-Lipschitz continuous [44].

In practice, calculating the exact spectral norm 𝜎(𝑊 ) used for normalization by us-
ing singular value decomposition at every step of the algorithm is very computationally
expensive. Instead of calculating the exact value by singular value decomposition, a fast
approximation method utilizing the power iteration method [23] is used in its place. The
power iteration method has proven to be computationally cheap and effective. It relies on
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the fact that throughout the training of the network, the change in matrix 𝑊 after an up-
date step should be relatively small. Therefore, the change in the largest singular value of 𝑊
should also be relatively small. The fast approximation method for spectral normalization
relies on this fact and is able to reuse previous calculations in its estimation. [44]

5.2.6 Mode Collapse

Mode collapse is a common problem that plagues the training of GAN models. Mode
collapse is a training failure in which the generator network fails to generalize properly and
some of the modes (classes) are not well represented in the generated samples. Therefore,
some of the samples that have support in the real data distribution will not be present
in the samples taken from the generator. This problem consists of the generator learning
to map a large subset of vectors 𝑧 from the latent feature space to a small set of outputs
𝐺(𝑧) (partial mode collapse) or in the worst case to a singular output 𝐺(𝑧) (complete mode
collapse). These outputs or output are subsequently assigned a high probability of being
real by the discriminator which leaves the generator with little incentive to try and generate
sufficiently different samples. [24][38]

The causes of mode collapse are not yet fully understood. The convergence of GANs
proven in Goodfellow et al. (2014) [26] relies on the assumption that the optimization space
is convex. However, this convergence does not necessarily hold when the loss function
space is highly non-convex, as is the case in practical applications of deep convolutional
networks. It has been theorized in [18][36] that mode collapse is linked to convergence to
sharp local minima of the loss function. Whether a local minumum is considered sharp is
dependent on the loss landscape around the point of convergence. Convergence to a sharp
local minuma has been linked to worse over-all performance of GANs (lower inception
score) [18]. Gradients around these sharp local minima encourage the generator to map
multiple vectors 𝑧 to a single output or a small number of outputs 𝐺(𝑧), leading to mode
collapse.

One way of avoiding the mode collapse problem is having the ability to train the dis-
criminator to almost optimality without needing to worry about vanishing gradients and
consequently convergence failure. In this case, the discriminator will be able to eventually
reject the relatively small set of outputs that the generator stabilizes on. This approach is
taken by the Wasserstein GANs [2] (see Subsection 5.3.3), where in their experiments they
encountered no evidence of mode collapse.

Another proposed approach to mitigate the issue of mode collapse is to regularize the
discriminator in order to constrain its gradient [36]. Penalizing the gradient was shown to
result in more stable training in DRAGANs [36] and is likely one of the reasons for the
success of Wasserstein GANs with gradient penalty (WGAN-GP).

5.3 Types of Generative Adversarial Networks
Generative adversarial network are still a rather novel approach to deep generative model-
ing. They are currently an intense field of research. There exists numerous extensions and
adjustment to the GAN architecture, as well as to the methods they employ. This section
mentions some of these variations of GANs which can be used for synthetic image synthesis.
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5.3.1 Deep Convolutional Generative Adversarial Networks

Deep convolutional generative adversarial networks (DCGAN) are an expansion on the
original GAN concept proposed by Radford et al. (2016) [53]. Their goal was to improve
the stability of GAN training for higher resolution images in most settings. They were the
first GAN model to generate high resolution images in a single shot (not using multi-stage
generation process) [24].

Their approach was motivated by the all-convolutional networks [57]. They proposed a
set of constraints on the architecture of the GAN [53]:

1. Replace all pooling functions (e.g. maxpooling) in the generator and the discrimi-
nator networks with strided and fractionally strided convolutions instead, when it is
necessary to increase or decrease spatial dimensions of the input.

2. Remove all fully connected hidden layers in the networks. The discriminator still has
one fully connected sigmoid layer at the end of the convolutional network connected
to the last convolutional layer.

3. Use batch normalization in almost all layers of the networks to stabilize the learn-
ing. Last layer of the generator and first layer of the discriminator are not batch
normalized. This is supposed to improve training in cases of poor initialization of the
networks and prevent mode collapse.

4. Use LeakyReLU in the discriminator and ReLU in the generator. With the exception
of the last layer in the generator, which uses tanh instead.

5.3.2 Big Generative Adversarial Networks

Big generative adversarial networks (BigGAN) were introduced in Brock et al. (2018) [6].
The name BigGAN stems from the fact that they attempted to train GANs at a largeer
scale than ever before, this is both in terms of the model’s parameters and batch sizes
used for training purposes. BigGAN do not propose any significant modifications to the
GAN framework, they instead leverage considerable increase in computational power to
dramatically improve performance of GAN. [6]

The architecture of BigGAN is based on ResNet GAN architectures [44][62]. The model
employs batch normalization, spectral normalization [44] and class conditional informa-
tion [16]. Skip-z connections were used in the generator to split the latent input vector 𝑧
and connect parts of 𝑧 to deeper layers of the generator network. [6]

BigGANs also propose a change to the probability distribution of latent vectors 𝑧 used
in the generator. Typically, 𝑧 is either sampled from a normal distribution or a uniform
distribution. However, BigGAN experimented with a so called truncation trick. The trun-
cation trick constitutes using a normal distribution to generate 𝑧, but resampling 𝑧 if the
magnitude of 𝑧 is above a chosen threshold. This has lead to improvements in the individual
generated data sample quality at the expense of generated data sample variety. [6]

Despite dramatic improvements in generated image quality, BigGANs still faced chal-
lenges of instability in training their networks which were solved using early stopping. Early
stopping is a workaround that allows the training to collapse, but takes a snapshot of the
networks weights before the collapse happens. These weights are usually enough to produce
data samples of sufficient variety. [6]
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5.3.3 Wasserstein Generative Adversarial Networks

Wasserstein generative adversarial networks (WGAN) are a variation of GAN which use a
smoother metric for measuring distance between probability distributions. This new metric
is called Wasserstein distance, also known as Earth-Mover distance. Informally, Earth-
Mover distance can be thought of as the minimum energy cost of moving and transforming
a pile of dirt in the shape of one probability distribution into the shape of another probability
distribution. [2][61]

In WGAN they refer to the discriminator model as the “critic”. This is due to it being
used to estimate how real or fake a given data sample looks, instead of classification. The
critic acts as an aide for estimating the Wasserstein distance between real and generated
data. A function 𝑓𝑤 is learned by the critic which is used to compute the Wasserstein
distance:

𝑊 (𝐷) =
1

𝑚

𝑚∑︁
𝑖=1

𝑓𝑤(𝑥𝑖)−
1

𝑚

𝑚∑︁
1

𝑓𝑤(𝑔(𝑧𝑖)) (17)

which is the cost function for the discriminator (critic). Where 𝑥𝑖 is a real data sample,
𝑔(𝑧𝑖) is a generated data sample and 2𝑚 is the minibatch size. Similarly to the non-
saturating heuristic game, the cost function of the generator is:

𝑊 (𝐺) = − 1

𝑚

𝑚∑︁
𝑖=1

𝑓𝑤(𝑔(𝑧𝑖)). (18)

(a)

Figure 5.6: An example of the difference in the gradients of an optimal discriminator (GAN)
and an optimal critic (WGAN). The two disjoint Gaussian distributions represent a real
data distribution and a generated data distribution. [2]
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One issue in this proposed model is that the 𝑓𝑤 must be a 𝐾-Lipschitz continuous [61]
function. Weight clipping is used in the model of WGAN’s critic to enforce the Lipschitz
constraint on the function 𝑓𝑤. After every gradient update in the critic, the weights are
clamped to range [−𝑐, 𝑐], where 𝑐 is a chosen clipping parameter. The authors of WGAN
were dissatisfied with the use of weight clipping, an alternative solution to the Lipschitz
continuity of 𝑓𝑤 in the form of gradient penalty has been proposed instead [27]. [2][61]
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Chapter 6

Design of GAN for Generating
Skin Diseased Fingerprints

Despite the recent rise to prominence of generative adversarial networks as the state-of-
the-art deep generative models used for image synthesis, there are very few applications of
GAN for generating fingerprint images. These attempts were met with a varying degree of
success [5][7][20][43], but they have demonstrated the possibility of using GAN to generate
fingerprint data for biometric purposes.

The aim of this thesis is to try to apply these methods for generating fingerprints using
GAN to create realistic looking diseased fingerprint images. The design of a GAN, which will
be trained on data samples from the diseased fingerprint database mentioned in Section 3.3,
is detailed in this chapter. The chapter covers the process of data augmentation used for the
training dataset, the architectural structure of the GAN and the proposed training scheme.

6.1 Data Augmentation
Data augmentation is a method for reducing overfitting of deep learning models by increas-
ing the amount of available training data. It is a popular technique used in medical image
analysis, where acquiring more data is a difficult task [19].

Data augmentation artificially inflates the training data set by applying modifications to
the existing training data. Image data augmentation is potentially the most well-known type
of data augmentation, simpler forms rely on geometric transformations of the training image
samples. The idea is to create different appearances of the same image while preserving it’s
meaning. [55]

I propose to use downscaling and image cropping the central parts of the fingerprint
image to reduce the size of the inputs to 256 × 256. This will not only increase the size
of the dataset, but will also make the training of the GAN converge faster, as generating
smaller realistic looking images is an easier undertaking.

Additionally, rotation augmentation and horizontal flipping will be applied to the sample
image to further increase dataset size. Horizontal flipping is one of the easiest to implement,
as it consists of inverting the 𝑥 axis of the sample image. As for the rotation augmentation,
it rotates the image a random amount around an axis. I suggest using a random rotation
between 1∘ and 10∘. These transformation can be applied to the training images simul-
taneously. The combination of these methods will hopefully prove to be sufficient for the
training of the GAN as well as help reduce overfitting of the network.
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6.2 Generative Adversarial Network Architecture
The generative adversarial network model is based on a WGAN utilizing the gradient
penalty (WGAN-GP), similar to the one used in Bontrager et al.(2018) [5], where they
were able to generate fingerprint images of size 128× 128 using a NIST dataset.

The discriminator (critic) network consists of five downsampling convolutional layers
with kernel size 5×5, stride 2 and padding 2, which are followed by spectral normalization,
dropout with the rate of 0.4 and LeakyReLU activation function, see Figure 6.1. The
last downsampling convolutional layer of the network uses the same kernel size, stride and
padding as the previous layers, but differs from them by excluding dropout.

The network uses spectral normalization instead of batch normalization. The reason for
this is that batch normalization takes multiple inputs in a batch and introduces correlation
between them. This doesn’t work well with the gradient penalty which is applied with
respect to each individual input. However, the WGAN-GP method works with spectral
normalization as it doesn’t introduce correlation between training samples. [27] In fact, it
introduces another method of enforcing Lipschitz continuity of the functions learned by the
discriminator.

 Convolution

Spectral Normalization

Dropout

LeakyReLU

Figure 6.1: A single downsampling convolutional block of the discriminator (critic) network
consisting of one convolutional layer, spectral normalization and dropout with a LeakyReLU
activation function.
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Figure 6.2: Architecture of the discriminator (critic) network in the proposed WGAN-GP.
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Dropout is used in the network as a form of regularization which will force the network
to learn more robust features. Even though the use of dropout will inevitably increase the
number of iterations before the convergence of the GAN, the computational time required
necessary for each individual iteration will be lowered as a result.

The feature map output by the last convolutional layer of the discriminator network
is flattened and used as an input to a fully connected layer which is not followed by an
activation function. The input 𝑥 of the discriminator network is a 256 × 256 sized real or
generated image. The output of the discriminator 𝐷(𝑥) is a single scalar used to estimate
the Wasserstein metric.

The generator network takes as an input 𝑧 a vector of 256 randomly sampled values
from a normal distribution 𝒩 (0, 1) and transforms it into the output 𝐺(𝑧), a 256×256 sized
greyscale image. This vector of latent variables is first reshaped by the fully connected layer
of the generator, which uses batch normalization and is followed by the application of ReLu
activation function.

Resize Convolution

Batch Normalization

Dropout

ReLU

Figure 6.3: A single upsampling convolutional block of the generator network consisting of
one convolutional layer, spectral normalization and dropout with a LeakyReLU activation
function.
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Figure 6.4: Architecture of the generator network in the proposed WGAN-GP.
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The result of this first reshape layer is then used as an input to the sequence of five
upsampling convolutional blocks, see Figure 6.4. Each upsampling convolutional block
consists of resize convolution[46] layer followed by batch normalization, dropout with prob-
ability of 0.4 and application of the ReLU activation function. The resize convolution is
an alternative to transposed convolution that helps to reduce checkerboard artifacting in
the generated images. Resize convolution layers consists of nearest neighbor upsampling
followed by regular convolution with kernel size of 5× 5, stride 1 and padding 2.

Each fully connected and upsampling convolutional layer of the generator network is fol-
lowed by batch normalization and ReLU activation function, with the exception of the last
layer. Directly applying batch normalization can lead to model instability and sample oscil-
lation as was shown in DCGAN [53]. This can be avoided by excluding batch normalization
from the output layer. The last layer, therefore, does not include batch normalization and
uses hyperbolic tangent (Tanh) as an activation function instead.

6.3 Proposed Training Scheme
Algorithm 1 details the training of the proposed WGAN-GP. In this training scheme, the
discriminator 𝐷 network uses the modified Wasserstein loss function with gradient penalty:

𝑊 (𝐷) = −𝐷(𝑥) +𝐷(𝑥̃) + 𝜆(‖∇𝑥̂𝐷(𝑥̂)‖2 − 1)2

𝑥̂ = 𝜖𝑥+ (1− 𝜖)𝑥̃ 𝜖 ∼ 𝑈 [0, 1]
(19)

where 𝑥 is a real data sample, 𝑥̃ is a generated data sample, 𝜆 is a gradient penalty
coefficient and 𝑥̂ is a point drawn uniformly from lines between 𝑥 and 𝑥̃. This gradient
penalty is used instead of weight clipping as a soft constraint on the Lipschitz continuity
of the functions learned by the generator, which is a requirement for training WGAN. [27]

The non-saturating cost function mentioned in Subsection 5.2.2 is used for updating the
weights of the generator network:

𝐽 (𝐺) = −𝐷(𝐺(𝑧)). (20)

Before the start of the GAN training, it is necessary to initialize the weights of the
discriminator 𝜃(𝐷) and the weights of the generator 𝜃(𝐷). These weights are randomly
initialized using a normal distribution 𝒩 (0, 0.02).

The total number of training epochs will be decided by monitoring and assessing the
intermediate results produced by the GAN. The number of update steps of the discriminator
for each generator update is set to 𝑘 = 3 as a compromise between recommendations from
WGAN-GP [27] and Goodfellow (2016)[24]. The minibatch size is set to 𝑚 = 64 data
samples, this means that for the training of discriminator a total of 128 data samples are
used.

The penalty coefficient is set to 𝜆 = 10, in accordance with the recommendations
put forward by WGAN-GP [27]. They found this value worked well across a variety of
architectures and datasets.

The hyperparameter values used for the Adam optimizer were the ones recommended
by WGAN-GP [27], namely learning rate 𝛼 = 0.0001, exponential decay rate for the first
moment estimates 𝛽1 = 0 and exponential decay rate for the second moment estimates
𝛽2 = 0.9.
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Algorithm 1: Training WGAN-GP
Require: 𝑘,𝑚, 𝜆, 𝛼, 𝛽1, 𝛽2

1 Initialize 𝜃(𝐷) and 𝜃(𝐺)

2 for number of training epochs do
3 for k steps do
4 for i = 1,...,m do
5 Sample a noise vector 𝑧 from 𝒩 (0, 1)
6 Sample a random number 𝜖 from 𝑈 [0, 1]
7 Sample a noise vector 𝑧 from 𝒩 (0, 1)
8 𝑥̃← 𝐺(𝑧)
9 𝑥̂← 𝜖𝑥+ (1− 𝜖)𝑥̃

10 𝑊
(𝐷)
𝑖 ← −𝐷(𝑥) +𝐷(𝑥̃) + 𝜆(‖∇𝑥̂𝐷(𝑥̂)‖2 − 1)2

11 𝜃(𝐷) ← 𝐴𝑑𝑎𝑚(∇𝜃(𝐷)
1
𝑚

∑︀𝑚
𝑖=1𝑊

(𝐷)
𝑖 )

12 for i = 1,...,m do
13 Sample a noise vector 𝑧 from 𝒩 (0, 1)

14 𝐽
(𝐺)
𝑖 ← −𝐷(𝐺(𝑧))

15 𝜃(𝐺) ← 𝐴𝑑𝑎𝑚(∇𝜃(𝐷)) 1
𝑚

∑︀𝑚
𝑖=1 𝐽

(𝐺)
𝑖
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Chapter 7

Implementation of the Proposed
GAN

The following chapter deals with the implementation details of the generative adversarial
neural network model for skin diseased fingerprint generation proposed in the previous
Chapter 6. The chapter first introduces all of the technologies and frameworks used in
the implementation of the neural network models. Then it subsequently mentions the
implementation details of the discriminator and generator network modules as well as the
GAN as a whole.

7.1 Technologies Used in the Implementation
The following sections details the technologies utilized in the implementation of the GAN
model. The programming language of choice is Python v3.7.10. I chose to implement the
GAN in Jupyter Notebook v5.2.2 in order to be able to utilize the free cloud computing
platform of Google Colab for the training of the network. Google Colab provides users with
access to K80, T4, P4 and P100 GPUs, which were used for hardware acceleration of the
computations via NVIDIA’s CUDA v11.0. The GAN network itself is implemented using
the TorchGAN library v0.0.4 and the PyTorch framework v1.8.1, which has cuDNN v10.1
support.

7.1.1 Python

Python is an interpreted, interactive, object-oriented, high-level programming language. It
features dynamic typing, high-level data types, late binding, reference counting and cycle
detecting garbage collector. Python also supports other programing paradigms other than
object-oriented in the form of procedural and functional programming. The programming
language is focused on readability and flexibility, making it suitable for rapid prototyping
and development.

Python features an extensive and powerful standard library providing a range of stan-
dardized solutions to a wide variety of programming problems. In addition to the standard
library, the Python ecosystem provides a range of easy-to-use packages and modules for
numerical analysis, statistics, data analysis and visualization. All of the above-mentioned
properties of the Python language make it well suited for development of machine learning
tools and applications.
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7.1.2 Project Jupyter

Project Jupyter [52] is an open-source software for interactive scientific computing, research
and data science across a variety of programming languages. Jupyter started as a spin-off
from the IPython project in 2014, after IPython evolved into a generic architecture for
interactive computing in any programming language [52]. The language-agnostic parts of
IPython (protocol, qtconsole, web application etc.) moved under the new name of Jupyter,
while IPython stayed as the Python shell and kernel for the Jupyter projects.

7.1.3 Jupyter Notebook

Jupyter Notebook [33] is a language-agnostic HTML notebook application for Project Jupyter.
It is a free, open-source, web-based computing platform for authoring and executing Jupyter
Notebook documents. Jupyter Notebook documents combine code with narrative text,
mathematical equations, interactive user interfaces, images, videos etc., which integrate
together to create an interactive document. These documents are structured data that
represent content, code, inputs, outputs and metadata and they are represented as JSON
files with the ‘.ipynb’ extension. The Jupyter Notebook documents consist of a sequence of
three different types of cells:

1. Code cells are the primary content of the Jupyter Notebook documents, they allow
the user to write and edit code with full syntax highlighting. The programming
language used in these code cells is dependent on the choice of Jupyter kernel. The
default kernel is IPython kernel and Python programming language and there is a
large number of kernels for other supported languages. During the execution of a
code cell, the code contained in the cell is sent to the kernel of the Jupyter Notebook.
The results of the execution are displayed in the code cell as the cell’s output.

2. Markdown cells are used to render formatted, stylized text as defined by the Mark-
down markup language. The Markdown cells can also include attachments, mathe-
matical equations and embedded code. The execution of a Markdown cell results in
the corresponding formatted rich text as defined by the cell’s contents.

3. Raw cells are not evaluated by the Jupyter kernel and the notebook does not
render them. Their main purpose is to be included unmodified in the output of
Jupyter’s NBConvert tool, which is used to convert the notebook to other static
formats (HTML, LATEX, PDF).

User

Browser Notebook
Server

Language
Kernel

HTTP &
Websockets ZeroMQ

Notebook File

Figure 7.1: Interface of the Jupyter Notebook. Notebook server is responsible for saving
loading and editing of the notebook files. The Kernel runs independently and interacts
with the server, it gets send cells of code for execution.
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7.1.4 Google Colaboratory

Google Colaboratory (or Google Colab) [4] is a product from Google Research that provides
hosted Jupyter Notebook service without requiring any additional setup to use. Google
Colab stores the Jupyter Notebooks stored in Google Drive and can execute them by con-
necting to a cloud-based or a local runtime.

The Google Colab is well suited testing and development of machine learning and deep
learning applications since the service provides free accelerated computing environments
with GPUs and TPUs. Access to the resources provided by Google Colab varies over time,
as the service prioritizes users who have used fewer resources in the recent time frame to
prevent monopolization of Colab’s resources by its users. However, the paid subscription
in the form of Colab Pro offers consistent high-priority access to the resources for extended
periods of time without limits on the maximum lifetimes of VMs.

7.1.5 PyTorch

PyTorch [51] is an open-source machine learning framework developed by Facebook’s AI
Research. PyTorch provides imperative, Pythonic programming style with maximum flex-
ibility and speed. The flexibility and ease of use of PyTorch, in comparison to other
machine learning libraries, have presently made it the most widely used machine learning
framework [64].

PyTorch is based on the Lua machine learning library named Torch. PyTorch is a
Python package, but even though the main focus of the project is the Python interface,
there are C/C++, Lua and Java APIs available to the users as an alternative.

PyTorch is a dynamic, define-by-run framework. The function to be differentiated in
PyTorch is defined by forward pass of the desired computation, as opposed to specifying
a static graph structure [50]. This means that PyTorch relies on dynamic computational
graphs, which can vary in subsequent iterations.

Pytorch utilizes immediate, eager execution. It never records a so called “forward com-
putation graph”. Pytorch only ever runs tensor computations as it encounters them and
records solely the information necessary to differentiate the computation. This facilitates
the automatic differentiation in PyTorch via the built-in engine called torch.autograd,
which enables automatic calculation of gradient necessary for back propagation. One disad-
vantage of not having a forward computation graph is that PyTorch gives up whole-network
optimization and batching. [50]

Another feature of PyTorch is its support for GPU-accelerated computation and recently
also Cloud TPU computation. To utilize PyTorch with GPU it is necessary to have the
GPU version of the framework along with a CUDA-enabled GPU or a GPU that supports
ROCm. TPU acceleration is achieved through PyTorch/XLA, which is an integration of
the XLA (Accelerated Linear Algebra) with PyTorch that allows users to connect the deep
learning framework with Cloud TPUs.

7.1.6 CUDA Toolkit

Compute Unified Device Architecture (CUDA) is a parallel computing platform and pro-
gramming model developed by NVIDIA. It is used for general computing acceleration
through the use of GPUs. In order to utilize CUDA it is necessary to have access to
an NVIDIA GPU that is CUDA-enabled. The CUDA platform allows its users to offload
computationally intensive computations to a single or potentially multiple GPUs.
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Many of the deep learning frameworks, PyTorch included, rely on CUDA for their
GPU support. Most of these frameworks utilize NVIDIA’s cuDNN deep neural network
library, which provides highly optimized implementations of standard computations that
are commonly used in deep neural networks (e.g. convolution, normalization, activation
functions).

Utilizing GPU-acceleration through use of CUDA is implemented in very straightfor-
ward manner in PyTorch. They allow the users to check whether CUDA and a CUDA-
enabled GPU are available through torch.cuda.is_available(). If at least one is avail-
able, it is possible to get an object representing a given GPU device through command
torch .device(’cuda:n’), where 𝑛 is the GPU ID. Afterwards, it is easy to move the
model or data to the GPU by .to(device) command. Once the model or data are on a
GPU you can do operations on them, which are by default asynchronous and the results
are placed on the same device.

7.1.7 TorchGAN

TorchGAN [49] is Python machine learning framework based on PyTorch for designing,
implementing and evaluating GANs. The aim of the TorchGAN project is to develop an
easy mechanism to combine a variety of techniques from a number of different GAN papers
in order to help with quick experimentation and rapid prototyping. TorchGAN provides
built-in support for a number of popular GAN building blocks, models, loss functions and
evaluation metrics which allow for easy extensibility and customization. Additionally, the
framework incurs little to no overhead compared to vanilla PyTorch and can be integrated
with it seamlessly.

7.1.8 TensorBoard

TensorBoard is a free open-source visualization and measurement toolkit for machine learn-
ing experimentation and development. TensorBoard is intrinsically meant for the Tensor-
Flow library, but it can be integrated with other machine learning frameworks. The vi-
sualization toolkit allows tracking of metrics (e.g. loss, performance), model visualization,
displaying images and histograms.

To facilitate sharing of the tracked metrics the TensoBoard team launched Tensor-
board.dev service. TensorBoard.dev is a managed service that provides interactive web-
based dashboard for the data logged over the course of training the machine learning model.
TensorBoard.dev runs on App Engine and reads data that users have uploaded to the hosted
service, which are subsequently visualized for the users.

7.1.9 TensorBoardX

TensorBoardX enables integration of the TensorBoard visualization tool with the PyTorch
framework. This package allows users to utilize simple interface for logging events and
metrics of PyTorch machine learning models. TensorBoardX provides a high-level API for
creation and asynchronous update of summaries and event log files through its Summa-
ryWriter class. The SummaryWriter creates log files in the TensorBoard log file format,
which can be subsequently visualized using TensorBoard.dev web server or TensorBoard.
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Figure 7.2: Visualizing metrics of a PyTorch model logged using the TensorBoardX package
during the training.

7.2 Data Preprocessing and Preparation
The preparation of the training dataset, its preprocessing and augmentation are done using
the torch.utils.data package. To get the images of the training dataset into the Google
Colab runtime, they can be either uploaded to the directly from a local machine, copied
from an existing Google Drive location or cloned from a Git repository.

Once the training dataset is in the Google Drive of the Colab runtime, the root di-
rectory of the dataset is passed to the torchvision.datasets.ImageFolder, which is a
generic dataset representation provided by the PyTorch library. It internally organizes
the images in the dataset according to the structure of subdirectories of the root dataset
directory. The ImageFolder provides samples from the training dataset when they are
requested and applies any and all necessary transformations that are specified using the
torchvision.transforms package. The transformation can be composed together and
applied in sequence. In addition to the data augmentation transformations mentioned in
Subsection 6.1, grayscale transformation, conversion to a PyTorch tensor and normalization
of values to a range of < −1, 1 > are applied to the images of the dataset.

The region of interest in the real fingerprint images from the training dataset varied a
fair amount, due to variance in surface contact area, friction and pressure during fingerprint
deposition. To facilitate easier training and faster convergence of the GAN network, the
real sample images of the training dataset were cropped to only contain the central region
of the fingerprint.

The torch.utils.data.DataLoader is then used to actually sample the images from
the training dataset and organize them into batches of size 64. The DataLoader acts as
a wrapper around the dataset object an iterable over the training dataset. It runs on the
CPU with 2 workers preparing and loading the data in parallel. It should be noted that it
was necessary to provide the workers with a random seed that is different for each worker,
which they can used to initialize their random number generator. Their default behavior
in PyTorch would be that both workers would generate identical random transformations
(e.g random crop) instead. The DataLoader is then subsequently provided to the WGAN-
GP which uses it to sample and load batches of data necessary for training iterations.
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(a) Original Images (b) Transformed Images

Figure 7.3: Comparison of a sample fingerprint image taken from the training dataset before
and after application of transformations used for preprocessing and augmentation of the
dataset.

7.3 Wasserstein GAN with Gradient Penalty
The Wasserstein generative adversarial network with gradient penalty which was proposed
in Section 6.2 is implemented in class WGANGP. The WGANGP class facilitates the training of
the GAN and logging of the necessary summary information.

The WGANGP constructor takes a large number of arguments. Firstly, it takes instances of
Discriminator and Generator classes along with a pair of torch.optim.Adam optimizers,
one for the parameters of each respective convolutional neural network. Secondly, size of
latent dimensions 𝑧 for the generator, number of training steps of the Discriminator for
each training step of the Generator and the type of device on which the GAN training
should run. Lastly, name of the training dataset, log file location, save file location for the
checkpoints of the two network models along with the number of training epochs elapsed
before their states should be saved again.

The training of the GAN model is implemented in the method train, which takes a Py-
Torch DataLoader and number of training epochs as arguments. The DataLoader prepares
batches of training images and uses them to alternately train the models of Discriminator
and Generator network, as detailed in Algorithm 1. A single training epoch consists of
3 training steps of the Discriminator and a single training step of the and Generator.
The parameters of both these models are updated using the pair of torch.optim.Adam
optimizers provided to the constructor. The states of both models are saved periodically
using, after a sufficient number of epochs were completed. The trainable parameters of
the model are serialized using the torch.save function into a ‘.𝑝𝑡’ file. The expected total
size of both models is approximately 110 𝑀𝐵. These models should be ideally saved to a
Google Drive location or downloaded to a local machine to prevent the loss of the save files
when the Google Colab VM session is terminated.
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In addition to GAN training, the WGANGP class is also responsible for logging informa-
tion about the training process of the WGAN-GP model. This is accomplished using the
SummaryWriter from torch.utils.tensorboard package. The SummaryWriter allows log-
ging of data which can be later visualized using the TensorBoard tool. The scalar values of
generator’s loss function, discriminator’s loss function and discriminator’s gradient penalty
are recorded and saved to the log directory location so that they can be plotted in the form
of line plots and histograms. A grid consisting of sample images created by the Generator
are also saved at each checkpoint of the GAN’s training.

7.3.1 Pytorch Module

The PyTorch class torch.nn.Module, not to be confused with a Python module, is the base
class for all neural network models in this machine learning framework. All models imple-
mented in PyTorch should typically inherit from the nn.Module class as it provides a number
of attributes and methods essential for the machine learning model, e.g. .parameters(),
.zero_grad() All instances of the Module class in PyTorch can be contained within other
instances of the Module allowing them to act as submodules.

The state_dict attribute of the Module class contains all of the learnable parameters
and persistent buffers of the machine learning model allowing for simple checkpointing and
loading of the model. The state_dict is simply a Python dictionary that maps each of
the layers in the Module to their respective parameter tensors.

7.3.2 Discriminator Network

The convolutional neural network of the discriminator is implemented in the Discriminator
class. It is a subclass of the torch.nn.Module and DropoutModule classes. The first class
torch.nn.Module is responsible for keeping the current state of the discriminator module
as well as backwards hooks necessary for the computation of gradient of the function 𝐷(𝑥)
represented by the discriminator network used in backpropagation. The DropoutModule
class facilitates addition of dropout layers to the module and keeping tracks of dropout
layers already present within the module in order to be able to enable/disable them as
necessary during the training and evaluation of the discriminator model.

The model itself is implemented as outlined in Figure 6.2. Internally, the discriminator
network consists of two torch.nn.Sequential containers named main_module and output.
The main_module contains a sequence of PyTorch Conv2D convolutional layers followed by
TorchGAN’s implementation of spectral normalization SpectralNorm2D and application of
torch.nn.Dropout and torch.nn.LeakyReLU activation function.

While the output, which is appended at the end of the sequence of convolution layers,
contains a View module and a fully connected torch.nn.Linear layer. The View module
first flattens the multidimensional feature map data from the convolutional layers and feeds
them to the fully connected layer which approximates the Wasserstein distance. The hyper-
parameters of the above-mentioned modules are set in accordance with the hyperparameter
settings proposed in Section 6.2.

The Discriminator class also implements the forward() method, which calculates the
output of the discriminator network for a batch of data samples. The method takes as
an input a 4-dimensional tensor of size (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ, 𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡),
where 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 is 64, number of channels in the input image is 1 and both height and
width of the image are 256. The output of the forward() method is the result of passing
the input tensor through the sequences of nn.Modules inside the main_module and output
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containers. The result is a 4-dimensional tensor of size (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 1, 1, 1) containing 𝐷(𝑥)
computed for each of the samples in the input batch of data.

For reference regarding the layer structure, expected feature map input/output size,
total number of model parameters and size of the discriminator model see Figure 7.4.

Figure 7.4: Summary of the discriminator’s model architecture detailing the expected input
and output tensor shapes at each layer of the convolutional neural network alongside the
total number of trainable parameters of the model.
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7.3.3 Generator Network

The convolutional neural network of the generator is implemented in the Generator class.
Similarly to the Discriminator class, Generator inherits from the torch.nn.Module
and DropoutModule classes which fulfill functions identical to the ones outlined in the
previous section. The internal structure of the generator model is implemented as out-
lined in Figure 6.4. The convolutional neural network of the generator consists of three
torch.nn.Sequential module containers named reshape, main_module and output.

The reshape container consists of the first fully connected layer of the network which
is implemented using torch.nn.Linear module. The output of this fully connected layer
is subsequently reshaped into a 4-dimensional feature map of size (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 1024, 4, 4)
so that it can be passed onto the rest of the network. This is followed by the application
of batch normalization torch.nn.BatchNorm2d and activation function torch.nn.ReLU.

The main_module consists of a sequence of upsampling convolutional layers which use
nearest neighbor torch.nn.Upsample by the factor of 2 followed immediately by regular
torch.nn.Conv2d. This sequence of upsampling layers uses both torch.nn.BatchNorm2d
and torch.nn.Dropout as well as application of the torch.nn.ReLU activation function.

The output sequential contains a single resize convolution upsampling layer that uses
torch.nn.BatchNorm2d, but does not use torch.nn.Dropout, which reduces the high num-
ber of feature maps in its input to a single feature map of size 256 × 256 representing the
generated grayscale image.

The Generator class implements the forward() method for generation of fake sample
images from random vectors of latent variables. The forward() method takes as an input a
single 4-dimensional tensor of size (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 1, 1, 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚) containing all vectors of
latent variables that are to be used for generating images in a given batch. The 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
being 64 and the number of 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚, number of dimensions in vectors of latent variables,
being at least 256.

The summary of the model’s internal layer structure, feature map inputs and outputs,
sum total of model’s parameters and total model size is shown in Figure 7.5.

7.3.4 Model Checkpointing

Training the model of the WGAN until it starts producing reasonable results usually takes
a number of hours, if not days. Google Colab, and other similar cloud computing services,
typically limit the maximum lifespan of VMs that they provide for computation. This
means that if a run of the network was to stop unexpectedly due to these constraints, all
of the model’s training would be lost.

Checkpointing is a fault tolerance technique for long running processes. It allows the
model to be trained over a number of sessions and prevents loss of progress in case of
an abrupt stop. All that is necessary is to save the trainable parameters (weights) of
the discriminator and generator networks along with running averages of their respective
Adam optimizers. Every torch.nn.Module in PyTorch has a state_dict dictionary object
mapping each network layer to its respective tensor of trainable parameters. Similarly, the
state_dict of the optimizers contains their hyperparameters and current running averages.

These objects are serialized using the torch.save() function, which uses the pickle util-
ity, and stores them in files with ‘.pt’ or ‘.pth’ file extension. These stored checkpoints
can be subsequently used to restore the model to its previous state and resume training of
the model by deserializing the pickled files using torch.load() and load_state_dict().
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Figure 7.5: Summary of the generator’s model architecture detailing the expected input
and output tensor shapes at each layer of the convolutional neural network alongside the
total number of trainable parameters of the model.
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Chapter 8

Results Evaluation

This chapter details the results achieved by the implemented WGAN-GP model with re-
gard to the quality of the synthetically generated fingerprint images. The decisions taken
with regards to selection of training datasets and training samples and an overview of the
training process is discussed in the following chapter. The resulting datasets of syntheti-
cally generated fingerprints are showcased and compared with real fingerprints influenced
by skin diseases using a number of different fingerprint quality assessment metrics.

8.1 Model Training and Dataset Generation
Individual run of the model’s training process was conducted for each type of selected
skin disease. The training was focused on three different types of skin disease with most
numerous representation in the diseased fingerprint database: atopic eczema, psoriasis
and dyshidrotic eczema. Because of the highly varied nature of fingerprint images in the
database, the model was trained on manually selected subsets of diseased fingerprints. The
quality of fingerprint samples fluctuates due to both quality of fingerprint acquisition and
the extent of damage cause by the skin disease. The selected samples consisted of some of
the less damaged images with similarly shaped regions of interest. The goal of using such
a selection of training samples is to slightly reduce sample diversity and allow the model
to more easily reproduce a semblance of papillary line structure in the generated images.
However, this approach does come with the disadvantage of further shrinking an already
small training dataset.

The WGAN-GP models were trained over the course of thousands of epochs for extended
periods of time. The progress was monitored manually through the loss of the generator and
discriminator networks along with periodic generation of sample images every 100 training
epochs. If the quality of the generated images stopped improving or the model didn’t seem
to make any meaningful progress over a number of epochs, the training was stopped.

The models were trained using the Google Colaboratory cloud computing service. Ma-
jority of the training took place on VMs with two Intel Xeon 2.20 GHz processors, 25 GiB
of RAM and an NVIDIA Tesla P100 PCIe GPU with 16 GiB of memory. Google Colab
also offers access to TPUs, e.g. the Cloud TPUv2 with 64 GiB of high bandwidth memory,
but using the TPUs did not appear to bring any benefits in terms of performance increase.
The TPUs take advantage of larger batch sizes, e.g. 1024+, where their performance is
comparable, if not straight up better than that of available GPUs. However, such large
batch sizes are not able to be used in this case due to the total size of the training datasets.
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8.1.1 Training Datasets

The models were trained on subsets of real fingerprint image samples from the diseased
fingerprint database detailed in Section 3.3. The samples contained fingerprint images of
varying type and quality depending on the severity of the disease and the manner in which
the fingerprint was acquired. The fingerprint images were acquired with a range of sensors,
but the highest number of samples were obtained from optical sensors and from inked
fingerprints by optical sensors.

(a) inked and optical (b) optical

Figure 8.1: Samples of two most prevalent types of fingerprint images obtained by two
different fingerprint acquisition methods.

The training of the WGAN model was mainly focused on the fingerprint images from
inked samples. I have chosen to forgo training the network on the optical images as train-
ing a higher resolution network is significantly more computationally expensive and com-
plicated. These optical images do not lend them selves well to smaller resolutions, as the
minuscule details of the papillary lines are not very easily differentiable in smaller image
sizes. Additionally, these fingerprint images were acquired with a varying degree of lighting,
with multiple different finger positions and rotations. All of the above-mentioned reasons
pose serious difficulty in generating synthetic fingerprint images of sufficient quality when
trying to train GAN on datasets of limited size.

The diseased fingerprint database also includes fingerprints gathered by a capacitative
fingerprint sensor and sweep fingerprint sensor. These sample images represent a much
smaller portion of the diseased fingerprint database. These types of images were not used
for training of the GAN as it is difficult to achieve any sort of reasonable results on such
a highly varied dataset with really small training datasets. The capacitative sweep sensor
images are particularly unsuitable for model training as the captured images are of highly
varied image size. The height of these images is particularly varied due to the manner in
which they were acquired.

8.1.2 Model Training Summary

With the primary focus of the training being inked fingerprint images, I have first attempted
to train the proposed WGAN model on these fingerprint images in their entirety. The
training dataset consisted of less damaged fingerprint images influenced by atopic eczema
where the papillary line structure was still visible for the most part. These images were
uncropped, downscaled to size 256×256 with fingerprint image background included. While
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the model was able to learn to generate images that contained the general shape of a
fingerprint image similar the ones in the training dataset. It did not learn to produce any
semblance of a well-formed papillary line structure. The training of the model was stopped
after 3500 epochs as the model was not making any meaningful progress. To see a set of
images sampled during the training process refer to Figure 8.3.

Having found that using the fingerprint images in their entirety lead to difficulties
when training the proposed WGAN model, I have subsequently attempted to minimize the
amount of fingerprint image background in the training datasets. The model was trained
on less damaged fingerprint images from the atopic eczema dataset with central crops from
the fingerprint region of interest. The general idea was to help improve convergence of the
WGAN model by simply having the model focus on successfully replicating the papillary
line structure and any damage caused to it without needing to accurately generate the
general shape of the fingerprint image. The WGAN was then trained on these 256 × 256
images which contained the core parts of the sample fingerprint image. It can seen in
Figure 8.4 that the convergence of the model has improved and that the generated images
were starting to form a coherent papillary line structure.

Figure 8.2: Examples of some of the samples excluded from the training datasets. Elimi-
nating these types of highly diverse outliers promotes faster convergence of the model and
helps the model form a more rigid papillary line structure.

Another issue that plagued the training process was the fact that images generated by
the model often times did not have continuous ridge line directions around heavily damaged
areas. If a papillary line was interrupted by a large straight line or a large irregular dark
spot, there was no guarantee that it would continue in a similar direction. Some of the
generated fingerprint did not even have a well formed core and the papillary lines would
run in all sorts of direction from the center. Evidence of this can be seen in Figure 8.5.

What seemed to help immensely was excluding heavily damaged fingerprint samples
from the training dataset during early stages of the training process, see Figure 8.2. These
fingerprints that carried little to no information about papillary line structure hindered the
model’s ability to successfully recreate undamaged parts of the fingerprint. These heavily
damaged fingerprints can be readded to the training dataset at later stages of the training
process, when the model learned to generate adequately structured fingerprint, to let the
model learn to replicate this extensive damage caused by the skin disease.
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Figure 8.3: Failure to converge during training of the WGAN when using uncropped finger-
print images influenced by atopic eczema. The first samples are taken from 100-th epoch and
the rest of the samples are taken at intervals of 500 epochs starting at 1000, 1500, ..., 3500.
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Figure 8.4: Improved convergence of the WGAN model during the training process when
using training dataset of cropped fingerprint images influenced by atopic eczema. Images
were sampled from training epoch 1000 up to epoch 4000 at intervals of 500.
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8.1.3 Generated Diseased Fingerprint Datasets

The datasets of generated fingerprint images were sampled from the WGAN-GP models
trained on their respective training datasets. The training was stopped once the model
learned to generate fingerprint images of sufficient quality or the training deteriorated and
the model did not seem to make any meaningful progress. The atopic eczema fingerprints
were sampled after 13000 training epochs, the psoriasis fingerprints were sampled after
12500 training epochs and the dyshidrotic eczema fingerprints were sampled after 10000
training epochs.

The most successful results, in terms of creating a realistic looking fingerprint image,
were achieved by the model trained on atopic eczema fingerprints. The WGAN model
was also moderately successful in generating dyshidrotic eczema fingerprints. However, the
model trained on psoriasis fingerprints was unable to replicate fingerprints damage caused
by psoriasis and did not manage to achieve any meaningful results in this regard.

The fingerprints for the generated datasets were chosen manually from a larger sample
size of created images. This was due to the fact that even after this many training itera-
tions, the model would occasionally generate unnatural looking fingerprints. Some of the
generated samples had poorly formed papillary line structure, see Figure 8.5. The direction
of papillary lines around areas of heavy damage (dark places, large white spots) changes
sporadically and runs in a number of different diretions from the center of the fingerprint.
Other unsuitably generated images had multiple fingerprint cores in the image next to each
other warping the surrounding ridge lines. These types of fingerprint images were excluded
from the finalized datasets.

The resulting datasets contained 256 × 256 single channel grayscale images of each
simulated disease. Total number of 300 images were selected for atopic eczema, 250 for
psoriasis and 200 for dyshidrotic eczema datasets. To see large sample size of the generated
images refer to Appendices B, C and D.

Figure 8.5: Examples of synthetic fingerprints with poorly formed papillary line structure.
The direction of ridge lines in these images changes drastically and does not form a flow-like
pattern. Some of the images even contain multiple cores.
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Atopic Eczema

The training dataset for the atopic eczema was the most numerous from among the three
chosen types of skin disease and contained some of the least damaged fingerprint images.
The WGAN model trained on these images achieved the best overall results in terms of
generating a consistent pattern of papillary lines in areas not damaged by the skin disease,
see Figure 8.6. Majority of the generated images display at least moderate damage to
the papillary line structure. Even though the model managed generate some fingerprint
images that resembled atopic eczema with severe symptoms, it was not quite as successful
at generating images with little to no symptoms.

The damage present in the synthetic images mirrors symptoms of the real disease in
many ways. The images contain a lot of thin straight and jagged white lines crossing
the papillary lines. Long straight lines were less common in the generated samples, but
nevertheless still present. The images also exhibit a lot of dark places blurring the ridge
lines and collections of small white spots which is consistent with atopic eczema. One thing
that is not truly present in any of the images is an interlocking grid-like pattern of lines as
the generated straight lines do not tend to be very long.

(a) real (b) generated

Figure 8.6: Samples of real and synthetically generated fingerprint images affected by atopic
eczema.

Psoriasis

Generation of fingerprints influenced by psoriasis was the least successful. The training
dataset consists of a wide range of heavily damaged fingerprints. Large percentage of these
fingerprints show little signs of papillary line structure and present a wide range different
types of damage. The model did not manage to create images that resemble real psoriasis
fingerprints, most likely due to relatively small number of training samples and their high
diversity with heavy ridge line disruptions.

None of the generated fingerprints had properly formed papillary line structure and all
of them were almost completely damaged, see Figure 8.7. The most prominent observable
features in the generated samples are extensive dark places and small white spots, which
are symptoms of psoriasis. However, as the rest of the fingerprint image is not properly
formed, the created samples are most likely not exceedingly useful. Other types of damage,
e.g. irregular dark spots bounded by white border and straight white lines, are not present
at all.
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(a) real (b) generated

Figure 8.7: Samples of real and synthetically generated fingerprint images affected by pso-
riasis.

Dyshidrotic Eczema

Recreating images with symptoms of dyshidrotic eczema was met with moderate success.
The training dataset for dyshidrosis was the smallest of the three and contained a mixture of
heavily damaged and relatively undamaged fingerprints. The relatively undamaged samples
had well-formed ridge lines with “missing” portions replaced by white areas and dark spots.
These undamaged images helped the model learn recreate papillary lines, the model was
close to forming a proper papillary line structure. As it stands, due to extensive damage
in a lot of the training images, the generated images contain a lot of bifurcations, lakes,
independent ridges, islands and crossovers, see Figure 8.8.

Almost all of the generated images are heavily damaged and the papillary line structure
in between the damaged areas is of relatively poor quality. Nevertheless, the generated
images do contain some of the symptoms of dyshidrotic eczema. The most prevalent symp-
toms are large irregular white spots and large dark places. Small irregular white spots are
also present, but they are less clearly defined and tend to be grouped differently than in the
real samples. Long white lines do not appear in the generated images. They are somewhat
replaced by collections of small white areas forming jagged lines.

(a) real (b) generated

Figure 8.8: Samples of real and synthetically generated fingerprint images affected by
dyshidrotic eczema.
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8.2 NIST Finger Image Quality
NIST Finger Image Quality (NFIQ) [59] algorithm is one of the standard methods for assess-
ing quality of fingerprint images. National Institute of Standards and Technology (NIST)
released the algorithm in 2004 as a part of the NIST Biometric Image Software (NBIS).
NFIQ is an open-source tool for quantifying the quality of fingerprint images, it is designed
to be able to predict performance of minutiae-based fingerprint matching systems.

Feature Extraction Neural Network Quality Class
{1, 2, 3, 4, 5}

Figure 8.9: Predicting quality level of the fingerprint image using NFIQ.

The NFIQ algorithm is based on an artificial neural network that assigns input finger-
print images to one of 5 classes (NFIQ levels of quality). Each respective class of the NFIQ
algorithm represents specific quality of fingerprint images ranging from “excellent” quality
images in class one to “poor” quality images in class five. For an example of fingerprint
images and their respective NFIQ class see Figure 8.10.

The assignment to each of the classes is based on computing visual characteristics of
the fingerprint image in the form of 11-dimensional feature vector, see Equation 21. Firstly,
the minutia of the sample fingerprint are found using the MINDTCT program detailed in
Section 8.3. The detection of minutia using MINDTCT can be somewhat unreliable, even
though it implements procedures for mitigation of false positive detections. The NFIQ
algorithm assigns a numeric value to each minutia depending on the likelihood of it being
real bifurcation or line ending. Minutia that are more likely to be real are assigned a higher
value. The algorithm subsequently counts the total number of detected minutia along with
the number of minutia that have quality value higher than a certain threshold 𝑞𝑚 > 𝑡,
where 𝑡 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. [59]

𝑓 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑢𝑛𝑡
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑢𝑡𝑖𝑎
𝑚𝑖𝑛𝑢𝑡𝑖𝑎 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 0.5 𝑐𝑜𝑢𝑛𝑡
𝑚𝑖𝑛𝑢𝑡𝑖𝑎 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 0.6 𝑐𝑜𝑢𝑛𝑡
𝑚𝑖𝑛𝑢𝑡𝑖𝑎 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 0.7 𝑐𝑜𝑢𝑛𝑡
𝑚𝑖𝑛𝑢𝑡𝑖𝑎 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 0.8 𝑐𝑜𝑢𝑛𝑡
𝑚𝑖𝑛𝑢𝑡𝑖𝑎 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 0.9 𝑐𝑜𝑢𝑛𝑡

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 1 𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑢𝑛𝑡
𝑞𝑢𝑎𝑙𝑖𝑡𝑦 2 𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑢𝑛𝑡
𝑞𝑢𝑎𝑙𝑖𝑡𝑦 3 𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑢𝑛𝑡
𝑞𝑢𝑎𝑙𝑖𝑡𝑦 4 𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑢𝑛𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

The NFIQ algorithm also splits the input image into blocks of equal size and computes
their respective quality measure and assigns them one of 5 values. Every pixel that is part
of a single block is assigned the same value. The first value 0 stands for background blocks
of the image. These blocks are typically low-contrast parts of the image which don’t contain

63



any part of the papillary line structure. The other values 1−4 are assigned to blocks, of poor,
fair, good, excellent quality respectively. Quality of these small local regions is determined
using direction map, low contrast map, low flow map and high curve map. The direction map
is computed using Discrete Fourier Transforms (DFT) and represents areas with sufficient
ridge structure, with well formed and visible ridges and valleys. The low contrast map
specifies lightly inked areas or areas containing smudges, this map is determined using
pixel intensity. The low flow map marks areas that don’t contain a dominant ridge flow.
And the high curve map represents areas with high papillary line curvature. Detection of
minutia is not exceedingly reliable in low flow and high curvature areas, meaning that these
areas contribute negatively to the quality score of the local blocks. [59][59]

(a) Class 1 - excellent (b) Class 3 - good (c) Class 5 - poor

Figure 8.10: Comparison of sample fingerprint images from three different NFIQ classes
from the real atopic eczema dataset.

(a) Class 1 - excellent (b) Class 3 - good (c) Class 5 - poor

Figure 8.11: Comparison of sample fingerprint images from three different NFIQ classes
from the generated atopic eczema dataset.

The aim of comparing real and generated images using the NFIQ assessment is to find
out if the datasets have similar distributions of NFIQ classes. If the real dataset contains
fingerprints with relatively minor damage caused by the disease as well as extensively dam-
aged fingerprints, similarly damaged fingerprints should also be present in the generated
dataset. The Figures 8.10 and 8.11 display fingerprint images from three different NFIQ
classes as an example of how much damage to the papillary line structure is typically present
in the respective NFIQ class.
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(a) real (b) generated

Figure 8.12: Histograms of NFIQ classes in the real and generated atopic eczema datasets.

(a) real (b) generated

Figure 8.13: Histograms of NFIQ classes in the real and generated psoriasis datasets.

(a) real (b) generated

Figure 8.14: Histograms of NFIQ classes in the real and generated dyshidrotic eczema
datasets.
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As previously stated in Subsection 8.1.3, the generated images typically show signs of
moderate to extensive fingerprint damage. The Figures 8.12, 8.13 and 8.14 show that the
majority of the images in training datasets are of “poor” quality and belong to NFIQ class 5.
The models had difficulty successfully reproducing the minority of real fingerprint images
that display little to no damage, as the generated images typically contained multiple
different symptoms of the simulated skin disease. The only model that has learned to
generate images of better quality was the one replicating atopic eczema, as this is the
model that has best learned to reproduce coherent papillary line structure. However, even
in this case the fingerprints of better quality were few and far between.

8.3 Minutia Count and Distribution Comparison
The synthetically generated fingerprints were compared with real diseased fingerprint im-
ages by comparing distributions of the number of minutiae and their orientations. The
main idea was to find out whether these distributions closely mirror real datasets. [13]

The total counts of minutiae and their location and orientations were extracted from
the sample fingerprint images using the minutia detector MINDTCT [60]. MINDTCT is
an open-source software developed as a part of the NBIS. It is used to automatically detect
minutiae of the fingerprint image along with their relative location, orientation, closest
neighboring minutia and ridge count between detected minutia and it’s closest neighbor.
The minutiae orientation is represented in degrees, with zero degrees pointing horizontally
to the right. The orientation is assigned a value from < 0, 31 >, where each value represents
a 11.25∘ increment from 0. Each of the detected minutia is also assigned a reliability
score depending on the quality assessment of its surrounding region. The quality of the
surrounding region is determined in the same way as in Section 8.2.
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Figure 8.15: Process of minutiae detection in the MINDTCT software.

These metrics were only used to compare the atopic eczema and dyshidrotic eczema
image, as these were the only generated samples that had relatively well-formed papillary
line structure. Since the ridge lines in generated psoriaris images are just a collection of
blurred, tightly packed crossovers, lakes etc., they were not considered in this instance.

The distribution of minutiae count in generated atopic eczema images is on average
higher than in real samples, see Figure 8.16. This is to be somewhat expected as the
proportion of NFIQ class 3 images is greater in the synthetic samples, see Figure 8.12.
Nonetheless, this minutiae count distribution does not quite mirror the real distribution.
It is more narrow and skewed towards higher counts, which most likely due to the fact
that the model struggled to replicate the more extreme cases of fingerprint damage in the
generated images.

66



The minutiae orientation distribution also differs from the real fingerprints. The ori-
entation directions in the synthetic images are less diverse. A likely cause of this is that
the model generated “good” quality images of whorl fingerprint class more frequently than
other fingerprint classes. Therefore, they most likely represent larger than normal portion
of the generated dataset.

Figure 8.16: Distributions of minutiae count and orientation in atopic eczema datasets.

In the case of dyshidrotic eczema, the minutia counts are again often more numerous
than in the real dataset. The papillary structure did not quite form a flow-like pattern of
parallel running lines and contained a lot of ridge crossovers, which might account for why
the minutia numbers are more numerous. Another reason might be that a proportion of
the real dataset consists of images with total damage and indistinguishable papillary lines.

Figure 8.17: Distributions of minutiae count and orientation in dyshidrotic eczema datasets.
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The generated samples did not manage to replicate this type of extensive damage, portions
of the ridge lines are visible even in very heavily damaged synthetic samples. In terms
of distribution of minutia orientations, the generated samples differ from the real ones.
Interestingly, the distribution of minutia orientations somewhat mirrors the distribution of
synthetic atopic eczema fingerprint images, even though the generated samples do not look
similar to synthetic dyshidrotic eczema fingerprints.

8.4 Fingerprint Quality Visualizer
Fingerprint Quality Visualizer (FiQiVi) [11][47] is a fingerprint quality estimation software
developed at FIT BUT. This software was developed in order to improve upon the NFIQ
quality assessment algorithm and its weaknesses. The deficiencies of NFIQ being that
the visual quality within a single quality class can be highly varied and its lack of proper
techniques for mitigating influence of fingerprint damage on quality assesment. One of the
aims of the FiQiVi tool was to be able to more accurately evaluate quality of diseased
fingerprint images.

The FiViQi quality measurement takes into account the local and global properties of
the sample image. It outputs a value in range of < 0, 100 > with 0 signifying the worst
possible fingerprint quality and 100 the best possible fingerprint quality. The algorithms
splits the input image into smaller blocks of size 12×12 and larger blocks of size 28×28. The
larger blocks are centered around the smaller blocks and 8 of its bits overlap into neighboring
blocks. The algorithm computes quality measure for the large block and assigns this value
to all pixels in the smaller 12× 12 block. [47]

The blocks from the region of interest of the fingerprint image are first separated from the
background depending on the contrast of grayscale values within the block. Low contrast
regions are much more likely to be background. The quality of a particular block 𝑄𝐵 is
computed as the minimum of six quality characteristics

𝑄𝐵 = 𝑚𝑖𝑛(𝑄𝑜, 𝑄𝑟, 𝑄𝑐𝑏, 𝑄𝑐𝑛, 𝑄𝑐, 𝑄𝑎). (22)

where 𝑄𝑜 is orientation certainty, 𝑄𝑟 is ridge to valley ratio, 𝑄𝑐𝑏 is structural continuity
within a block, 𝑄𝑐𝑛 is orientation continuity with regard to neighboring blocks, 𝑄𝑐 is level
of contrast and 𝑄𝑎 is the average of the aforementioned quality values. The overall quality
of the fingerprint image 𝑄𝐹 is the average quality value of the foreground blocks of the
fingerprint.

The FiQiVi quality was computed for all of the real and synthetically generated finger-
prints, see Figure 8.18. It is noticeable that quality values for the generated images are a
lot less diverse than their real counterparts. The interquartile range is a lot smaller for each
of the generated datasets. This further proves that the trained WGAN models lacked the
ability to generate very diverse fingerprints in terms of fingerprint damage variety. A lot of
the successfully created synthetic samples could be considered as “moderately” damaged.
They typically present with a lot of the diseas’ symptoms all at once, obscuring a lot of the
fingerprint but leaving papillary lines in other parts still readable.

The median quality value in all of the synthetic datasets is higher than in the respective
real datasets. The cause of this is decidedly the fact that the training datasets consisted of
some of the less damaged samples in order to help models recreate a well-formed papillary
line structure in undamaged parts of the generated images. What is very surprising is
that even the unsuccessfully generated psoriasis fingerprints ranked higher than extensively
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damaged real psoriasis images. It could be that the quality assessment algorithm assigned
higher quality value to the malformed ridge lines that appear in parts of the synthetic
images.

The generated atopic eczema samples were not only the most successful in recreating
proper ridge line structure, but they also had the highest diversity in terms of extent of
fingerprint damage. The reason for this was very likely that the atopic eczema model was
trained on the largest dataset with a lot of fingerprint images of relatively good quality.

Figure 8.18: Fingerprint Quality Visualizer quality values for real and generated diseased
fingerprint datasets.
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Chapter 9

Conclusion

The main goal of this master’s thesis was to generate datasets of synthetic fingerprint
images influenced by skin disease, where the generated fingerprints would display symptoms
analogous to the symptoms of the simulated disease. The fingerprint generation was done
using a machine learning model based on Wasserstein GAN with gradient penalty. This
GAN model was trained separately on three different datasets from the diseased fingerprint
database: atopic eczema, psoriasis and dyshidrotic eczema. The generator network of the
trained model was subsequently used to create three synthetic fingerprint datasets, one for
each of the simulated disease.

The generated fingerprint images are usually at least moderately damaged. They tend
to present with multitude of the skin disease symptoms all at once and less damaged
fingerprint images are created only rarely. This is most likely caused by the fact that the
real datasets contain only a small amount of relatively undamaged fingerprint samples.
The generation of fingerprints influenced by atopic eczema was the most successful as the
generated images had well-formed papillary line structure disrupted by damage typical
to atopic eczema (e.g. dark places, straight white lines). Simulating effects of dyshidrotic
eczema was met with moderate success. The papillary line structure in the generated images
was of poor quality, but the images showed some symptoms of the skin disease. The WGAN
model was unable to replicate psoriasis images. This failure to generate psoriasis images can
most likely be attributed to the extent and highly diverse nature of the damage caused by
the disease. Overall, the models had issues with generating fingerprint images at extreme
ends of the spectrum – almost undamaged or completely damaged with unrecognizable
ridge line structure.

Even though the trained WGAN models were partially successful in generating synthetic
fingerprints influenced by skin disease, the overall diversity of the generated datasets was
smaller than that of the real diseased datasets. This is evidenced by computation of NFIQ
and FiQiVi quality assessment metrics as well as comparison of minutiae characteristics for
each pair of diseased datasets. None of the trained WGAN models were able to recreate
samples that spanned quite the same range as the real data.

Nevertheless, this thesis proved that generating a quality, realistic-looking dataset of
diseased fingerprint images might be possible with further improvements. The GAN models
were promising even though training them to a point of convergence proved to be a difficult
task with such small, highly varied datasets. The most successful model was the one trained
on the largest, most diverse dataset. Any increase in terms of the number of training samples
would very likely further improve performance of the models. This increase in training data
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could come either from gathering further samples of diseased fingerprints or employing more
sophisticated methods of data augmentation.

For future work, a GAN training technique that might warrant further exploration is
transfer learning. Transfer learning was already employed to a small extent during the
pretraining of the model on less damaged samples. It is a machine learning technique
where the model is tuned to adapt from a source domain to a target domain. In this case,
it would be possible to train a model on entirely undamaged fingerprints until it learns
to recreate proper structure of the fingerprints. Then take this model and then train it
on very similar-looking damaged fingerprint images acquired in the same manner until the
model learns to introduce elements of skin disease. However, one downside of this approach
would be that the final model would most likely not be able to produce heavily damaged
samples.
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Appendix A

Contents of the Included Storage
Media

∙ Electronic version of this master’s thesis in PDF format.

∙ LATEX source code for this document.

∙ Datasets of synthetically generated fingerprint images.

∙ Pretrained WGAN-GP models usable for synthetic fingerprint generation

∙ Source code of the WGAN-GP

∙ Source code and executables for fingerprint image quality assessment
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Appendix B

Sample of Generated Fingerprint
Images - Atopic Eczema
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Appendix C

Sample of Generated Fingerprint
Images - Psoriasis
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Appendix D

Sample of Generated Fingerprint
Images - Dyshidrotic Eczema
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