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Abstract
The goal of this thesis is to implement emulation of a MIFARE Classic tag on a NFC-
A tag peripheral embedded in a microcontroller. To implement the solution, nRF52832
microcontroller from Nordic Semiconductor was used. Basic MIFARE Classic command
set was implemented (authentication, read, write). The implementation was tested against
multiple readers, using different applications. The result was compared to existing solutions,
such as Proxmark and Chameleon Mini.

Abstrakt
Cílem této práce bylo implementovat emulaci tagu MIFARE Classic na NFC-A periferii
vestavěné v mikrokontroléru. K implementaci řešení byl použit mikrokontrolér nRF52832
vyráběný firmou Nordic Semiconductor. Byla implementována základní sada příkazů MI-
FARE Classic (autentizace, čtení, zápis). Implementace byla otestována s několika čtečkami,
za pomoci různých aplikací. Výsledné řešení bylo porovnáno s existujícími, jako je Prox-
mark a Chameleon Mini.
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Rozšířený abstrakt
RFID tagy a bezkontaktní karty jsou v dnešní době velmi rychle se rozšiřující technologie,
přestože jejich princip je používán již po desítky let. RFID nepředstavuje žádný konkrétní
standard, jedná se spíše o obecný termín, který je implementován mnoha různými standardy.
Ty se dělí do třech hlavních prodů podle rádiových frekvencí, které používají ke komunikaci.
Tagy jsou dělený na nízkofrekvenční (125-134 kHz), vysokofrekvenční (13,56 MHz) a tagy
používající velmi vysoké frekvence (860 nebo 960 MHz). Tato práce se zabývá zejména
standardy pro komunikaci na vysoké frekvenci, protože karta MIFARE Classic je na nich
založená. Jsou popsány tři z nich - ISO 14443 pro komunikaci na blízké vzdálenosti (10
cm), ISO 15693 pro komunikaci na větší vzdálenosti (1 m) a také standard FeliCa, který je
alternativou k ISO 14443 a je používán téměr výhradně v Japonsku. Standard ISO 14443 se
navíc dělí na typ A a B, které se odlišují jak komunikačním protokolem, tak i antikolizním
algoritem, který používají čtecí zařízení pro výběr karty ve svém elektromagnetickém poli,
se kterou chtějí komunikovat.

Technologie NFC je standardem pro komunikaci mezi zařízeními na velmi krátké vzdálenosti.
Je dnes běžnou součástí chytrých telefonů. Tato technologie je kompatibilní se standardy
ISO 14443 a FeliCa, což umožňuje chytrým telefonům komunikovat s RFID tagy a bezkon-
taktními kartami.

MIFARE Classic je poměrně starý typ bezkontaktní karty, vyráběné firmou NXP od
roku 1995. Kommunikace s touto kartou probíhá pomocí protokolu ISO 14443 Typu A,
přičemž se nepoužívá standardní transportní protokol, ale je implementován vlastní. Karta
v sobě obsahuje paměť EEPROM o velikosti 1 KiB nebo 4 KiB. Tato paměť je rozdělena
na sektory, kdy každý sektor má několik datových bloků o velikosti 16 B. Poslední blok
sektoru v sobě uchovává dva 48bitové klíče A a B, pomocí kterých se ke kartě autentizuje
čtecí zařízení a také příznaky oprávnění, jaké operace je možné nad jednotlivými datovými
bloky provádět s těmito klíči. Komunikace se čtecím zařízením je šifrována proudovou šifrou
Crypto1, která byla pro tuto kartu speciálně navržena a její princip byl dlouho utajován.
To se změnilo v roce 2008, kdy byl šifrovací algoritmus prolomen. Bylo k tomu použito
metody zpětné rekonstrukce obvodu pomocí analýzy křemíkových vrstev použitého čipu.

Od té doby se začaly objevovat zařízení schopná emulovat tyto karty. Nejznámější z nich
jsou Proxmark a Chameleon Mini. Zatímco Proxmark využívá FPGA k modulaci a demod-
ulaci RFID signálu, v případě Chameleonu Mini je řešení kompletně softwarové, využívající
pouze mikrokontroléru a několika diskrétních součástek. Obě řešení následně implemen-
tují v mikrokontroléru vyšší vrtsvy ISO 14443 protokolu, na kterém je karta postavena, a
samotnou logiku karty MIFARE Classic, včetně šifrovacího algroritmu Crypto1.

Cílem této práce je navrhnout a implementovat emulaci RFID karty typu MIFARE Clas-
sic pomocí NFC-A periferie mikrokontroléru. K implementaci byl vybrán mikrokontrolér
typu nRF52832 od firmy Nordic Semiconductor, který disponuje touto periferií. Jedná se
o čip, který má vestavěné rádio pro technologii Bluetooth Low Energy a je velmi rozšířen
v oblastech, kde se tato technologie používá, jako jsou např. chytré hodinky.

Řešení bylo implementováno na vývojovém přípravku nRF52 DK, a to včetně řízení
oprávnění k datovým blokům. Implementace byla omezena na variantu MIFARE Classic 1K
s 1 KiB paměti, a byly implementovány pouze základní příkazy pro autentizaci, čtení a zápis.
Byl kladen důraz na čitelnost kódu a přenositelnost implementace. Proto byla rozdělena do
několika modulů, přičemž pouze jeden z nich je specifický pro konkrétní implemenaci NFC
periferie.

Výsledná implementace byla otestována se dvěma čtecími zařízeními. Jedním z nich byl
chytrý telefon s operačním systémem Android, kde byly k otestování použity dvě různé ap-



likace. Druhým čtecím zařízením byla USB čtečka připojená k počítači, s volně dostupným
softwarem. Ve všech případech byla implementace kompatibilní, vyskytly se však problémy
s autentizací k více sektorům v rámci jednoho komunikačního sezení. Tyto problémy však
nastávaly pouze při komunikaci s chytrým telefonem, nikoliv s USB čtečkou.

Implementované řešení bylo porovnáno s existující konkurencí. Není natolik všestranné,
jako vyzrálá konkurence v podobě Chameleonu Mini nebo Proxmarku, je však energeticky
úspornější, levnější a vejde se do menších fyzických rozměrů.

Na závěr bylo navrženo několik cest, kterými by se projekt dále mohl vydat. Jednou z
nich je rozšíření implementace MIFARE Classic o další příkazy a podporu verze se 4 KiB
paměti. Druhou cestou je zprovoznění Bluetooth rádia a vytvoření aplikace pro chytrý
telefon, která by umožnila pracovat s obsahem emulované karty. Poslední, třetí cestou, je
integrace řešení do nějakého existujícího zařízení, jako jsou například chytré hodinky.
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Chapter 1

Introduction

Contactless cards or tags are used in many areas of everyday life, for example, in public
transport, event tickets, building access systems or even for payments. Many of the cards
are based on the MIFARE Classic standard developed by NXP. While the cards are small
and cheap, they have only limited flexibility in terms of using one card for multiple purposes.

The goal of this thesis is to provide a solution to emulate the MIFARE Classic tag using
a microcontroller commonly used in gadgets or wearables, so it can be emulated using these
devices without added cost. When the tag is emulated by a smart gadget, many advanced
features can be implemented, such as allowing the user to switch between multiple emulated
cards, or even switching them automatically based on the location of the user.

MIFARE Classic is already quite an old standard, debuting in 1995. It is proprietary,
and no specification that would allow alternative implementation was ever released by the
manufacturer. The situation changed in 2008 when researchers reverse-engineered the chip
silicon. Since then, alternative implementations started to show up. The most famous ones
are in the Proxmark and Chameleon Mini tools for RFID analysis. In the case of Proxmark,
an FPGA is used for modulation and demodulation of the signal, which makes the device
large and expensive. In the case of Chameleon Mini, it is implemented purely in software
with just a few discrete components. In this approach, the software is responsible for the
precise timing, making integration into an existing gadget problematic.

In 2016, Nordic Semiconductor released the nRF52 microcontroller series, successor
to the very popular nRF51, featuring an ARM core and integrated Bluetooth Low Energy
radio. It quickly became popular as well, both in professional gadgets and in the open-source
world. One of the new features over the older series is that the NFC-A tag peripheral was
added to allow out-of-band Bluetooth pairing with smartphones supporting NFC. In this
thesis, the NFC peripheral will be used to implement the emulation of MIFARE Classic.

The thesis will first dive into the depths of RFID cards (chapter 2). Then, in chapter 3,
the NFC technology that allows smartphones to interact with RFID tags will be described.
Chapter 4 will introduce the proprietary MIFARE standard. The nRF52832 microcontroller
and its NFC peripheral will be presented in chapter 5. The steps behind the implementation,
its structure and features are in chapter 6. The testing process and its results are evaluated
in chapter 7. Finally, the result, its possible extensions and comparison to the existing
solutions is discussed in chapter 8.
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Chapter 2

RFID

Radio Frequency Identification (RFID) is a technology that uses an electromagnetic field to
identify and track tags that contain electronically stored information. The communication
between a reader (base station) and a tag (transponder) is done in a wireless, ”contactless“
way over short distances.

2.1 History
Although RFID is a technology that undergoes a significant expansion and integration in
concurrent applications, its key concepts are in use already for many decades. It is believed
that the first use of them was already in the 1940s during World War II with the invention
of IFF (Identification of Friend and Foe). A transmitter was put on every British plane.
Upon receiving a signal from a radar station, it transmitted the signal back to identify the
plane as friendly.

2.2 Standards
RFID is not a name of an exact technical specification; it is more of a term to describe a
family of different technical implementations. They also communicate at various frequencies
and thus offer various range and communication speed. The most important frequencies
are described in table 2.1.

Frequency 125-134 kHz 13.56 MHz 860/960 MHz
Band LF HF UHF
Read distance 10 cm 10 cm - 1 m 1 m - 12 m
Data rate upto 8 kbps upto 848 kbps upto 640 kbps

Table 2.1: RFID frequencies and their properties [20]

In this thesis, only standards operating in the HF band will be covered, as it is the band
used by MIFARE Classic and similar tags.
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2.2.1 ISO 14443

ISO 14443 (Identification cards – Contactless integrated circuit cards – Proximity cards)
[5] is the most widespread standard of HF RFID. Its application includes contactless bank
cards, public transport passes and door access system cards. The standard is divided into
four parts:

∙ Part 1: Physical characteristics

∙ Part 2: Radio frequency power and signal interface

∙ Part 3: Initialization and anticollision

∙ Part 4: Transmission protocol

Part 1 - Physical characteristics

Part 1 defines the physical properties of the card. It should be the same size as ID-1 card
defined in ISO 7810. It also defines the operating conditions of the cards, e.g. temperature
and electric field immunity. It also defines the naming of the involved devices:

∙ Proximity card (PICC) for the card

∙ Proximity coupling device (PCD) for the reader/writer

Part 2 - Radio frequency power and signal interface

The power supply to the card is provided by RF field of the reader at the frequency of 13.56
MHz. In order to receive the energy effectively, the cards have to include a proportionally
large antenna.

During the development of the standard, the involved parties were not able to agree
on one common communication interface. That led to accepting two different ways of
transmission - Type A and Type B. The difference between them will be described and is
also summarized in table 2.2. A contactless card has to implement only one of them. A
reader should implement both variants of the standard, so it is able to support all cards.
To do so, the reader has to switch between the modes periodically while waiting for a card.

Type A cards use 100% ASK modulation with modified Miller coding to transfer data
from the reader to the card. The blanking interval (the time when the RF field is turned
off to modulate the signal) is just 2-3 𝜇s. To transfer data from the card to the reader, load
modulation procedure with a subcarrier is used. Frequency of the subcarrier is defined to
847 kHz (13.56 MHz / 16). The subcarrier is modulated by on/off keying (OOK) of the
Manchester coded data stream.

Type B cards use 10% ASK modulation with simple NRZ coding to transfer from the
reader to the card. To transmit from the card to the reader, a subcarrier of frequency 847
kHz is also used, but it is modulated by 180∘ phase shift keying (BPSK) of NRZ coded
bitstream.
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Type Type A Type B
Bit rate during initialisation and anticollision 106 kbps 106 kbps
Modulation (PCD to PICC) ASK 100% ASK 10%
Data encoding (PCD to PICC) Modified Miller NRZ
Modulation (PICC to PCD) Load Modulation, OOK Load Modulation, BPSK
Data encoding (PICC to PCD) Manchester NRZ-L

Table 2.2: Card types defined in ISO 14443 Part 2

Part 3 - Initialization and anticollision

Part 3 defines how the initialization of the card is done and how the anticollision procedure
works[16]. It is a procedure that allows multiple cards to be present in the operating range
and defines an algorithm, how the reader can choose a particular card to communicate with
without being interfered from the others. The standard also defines the frame format used
and the timing requirements.

As in Part 2, this specification is also split into two card types, Type A and Type B.
When a Type A card gets into the proximity of a reader and sufficient voltage is available,
the card begins to operate. At that point, the card is in the IDLE mode. If the card
receives a valid REQA command (Request-A) in this mode, then an ATQA response (Answer
to Request A) is sent back to the reader. At this moment, the card gets into the READY
state. So, now the reader knows that there is at least one card present in its proximity
and begins the anticollision procedure. In this case, it is performed by an algorithm called
binary search tree.

The process is done by the SELECT command. It has two attributes - first is the NVB
(number of valid bits), being actually length of the selected prefix and the second is the
actual selected prefix. When the card receives this frame and the prefix of length NVB
matches its ID, it starts to transmit the rest of its ID, right after the reader has transmitted
the prefix. When the reader detects a collision in the received ID, it transmits a new SELECT
command, with NVB set to the first colliding bit and selecting a value of the bit that collided
(either 0 or 1).

In practice, the first SELECT command is sent with NVB = 0 and the process continues
until a SELECT command with NVB = 40 (the ID is 4 bytes long and there is one byte of
checksum appended, thus 40 bits). When a card receives this command with its ID, it
confirms its selection by transmitting an SAK (SELECT Acknowledge) and transfers to the
ACTIVE state.

The procedure above works for cards with 4 bytes long UID. However, there are also
cards with 7 or 10 bytes long UID. In that case, after being selected in the first round, the
card signals in the SAK response that the UID is not yet complete and the reader start next
round of anticollision with the SELECT command. To differ between the rounds, there are
actually three different SELECT commands with different bit representations.

Type B cards use a different algorithm called slotted ALOHA procedure. That is a
more complicated approach and will not be described here.

Part 4 - Transmission protocol

Part 4 defines the protocol that is used to communicate with the card after the initialization
and anticollision process. In case of a Type A card, additional configuration of the protocol
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has to be transferred (e.g. possible baud rates). In case of Type B card, this configuration
was already transferred during the anticollision phase.

The Type A card may not use this protocol and use a custom one instead, which is
the case of the MIFARE Classic card. The SAK reply contains information on whether the
standard protocol or a proprietary one is used. If the standard protocol is used, the reader
sends a RATS command (Request to Select Acknowledge). The card then answers with ATS
(Answer to Select). These messages contain the configuration of the protocol.

2.2.2 ISO 15693

ISO 15693 (Cards and security devices for personal identification — Contactless vicinity
objects) [6] is another common standard for RFID in the HF band. It specifies vicinity
cards, which are designed for longer operating distance than proximity cards – up to 1
meter.

The standard is split into 3 parts. Part 1 specifies Physical characteristics and is similar
to the first part of ISO 14443. Part 2 defines Air interface and initialization and the last
part is about Anticollision and transmission protocol.

2.2.3 FeliCa

FeliCa (Felicity Card) is another standard for contactless smart cards developed by Sony
[15]. It was proposed for ISO 14443 as Type C, but it was rejected. It complies with Japan
standard JIS X6319-4.

It is commonly used for payments and public transport in Japan and some other Asian
countries, as well as on university campuses in the United States, but it is rare in Europe.
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Chapter 3

Near Field Communication (NFC)

Near Field Communication (NFC) is a wireless data transfer technology that enables trans-
fer between two devices, similar to e.g. Bluetooth. However, some of its characteristics also
make it related to RFID systems.

The transmission between the devices operates in the HF band at a frequency of 13.56
MHz. The transmission range is typically around 10 cm, hence the name near-field. The
NFC interface in the device has both a transmitter and a receiver with a shared antenna,
that is alternated between the transmitter and the receiver during operation.

During communication between two NFC devices, each device has its own function –
it is either an NFC initiator (master), or NFC target (slave). Communication is always
started by the initiator, that generates the RF field that can power a passive target. There
are also two communication modes: active mode and passive mode. They are illustrated in
figure 3.1.

3.1 Passive mode
In passive mode, the initiator provides the RF field that can power the target. The initiator
transmits by modulating data on the field. However, after transmitting its own data block,
the initiator leaves the RF field on, so that the target can transfer its data block using load
modulation, as in RFID systems.

Using this mode, the NFC device is also able to communicate with compatible transpon-
ders (e.g. according to ISO 14443), that the NFC initiator is able to supply with power, and
the target is able to communicate back using load modulation. This enables NFC-equipped
electronic devices, such as smartphones, to read and write on RFID smart cards. That is
why this option is called “reader-emulation mode”.

If an NFC-equipped device is put into the proximity of an RFID reader (e.g. ISO 14443
based), the device is also able to adopt the function of an NFC target and perform load
modulation on the RF field generated by the reader. When this is performed, the NFC
device behaves as a contactless smart card from the reader’s perspective, and thus this
option is called “card-emulation mode”.

3.2 Active mode
Unlike the passive mode, where the initiator and target functions are fixed for the whole
communication window, in passive mode, they alternate between the devices. After the
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Figure 3.1: NFC communication modes

initiator sends its data block to the target, it starts to act as a target, and the other device
starts the transfer as an initiator. That means the currently transmitting device is always
generating the RF field and no load modulation is used.

3.3 Standardization
ISO 18092 (Near Field Communication — Interface and Protocol (NFCIP-1)) [2] is the
underlying standard of NFC. It is based on ISO 14443 and extends it with the Active
Communication Mode. It also defines its own transport protocol that can be used instead
of ISO 14443-4.

The newer standard ISO 21481 (Near Field Communication Interface and Protocol -
2 (NFCIP-2)) [1] adds support for vicinity cards defined in ISO 15693, and defines new
naming of the modes:
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∙ NFC mode – device operates as specified in ISO 18092

∙ PICC mode – device operates as Type A or Type B Proximity Integrated Circuit
Card specified in ISO 14443

∙ PCD mode – device operates as a Proximity Coupling Device specified in ISO 14443

∙ VCD mode – device operates as a Vicinity Coupling Device specified in ISO 15693

The specifications of the higher-level protocols are maintained by NFC Forum. They
include a common data format called NFC Data Exchange Format (NDEF), which can be
used to exchange objects between devices or store them in a tag. Objects can range from
short data, e.g. URLs, to complete file transfers.

3.4 Tag types
NFC Forum also defines currently five different tag types that can be used to store NDEF
messages. They are compared in table 3.1.

Tag Type Type 1 Type 2 Type 3 Type 4 Type 5
NFC technology NFC-A NFC-A NFC-F NFC-A,

NFC-B
NFC-V

Example product Broadcom
Topaz

NXP MI-
FARE
Ultralight

Sony FeliCa NXP DES-
Fire

Texas In-
struments
Tag-it HF-I

Memory size 454 bytes 48 - 1904
bytes

1 - 9 KiB 2 - 144 KiB 32 - 256
bytes

Underling specifi-
cation

ISO 14443-
3A

ISO 14443-
3A

JIS 6319-4 ISO 14443-
4 A/B

ISO 15693

Table 3.1: NFC tag types

3.5 Smartphones
The first smartphone featuring an NFC interface was Samsung Nexus S in 2010. Nowadays,
most of the smartphones on the market support NFC, as it is widely used by customers for
contactless payments.

3.5.1 Google Android

Android supports NFC since version 2.3, which was released together with Samsung Nexus
S smartphone. In this version, only NFC active mode (to transfer data between NFC
devices) and “reader emulation mode” (to read/write tags) were supported.

In Android version 4.4 released in 2013, the Host-based card emulation (HCE) feature
was added to allow the “card emulation mode”. However, this feature is limited to emulation
of cards based on ISO 14443-4 Type A (support for Type B is optional) transport protocol
using ISO 7816-4 APDUs. That is sufficient for emulation of contactless bank cards, but
does not allow emulation of many common cards not using ISO 14443-4 transport protocol,
e.g. MIFARE Classic or MIFARE Ultralight.
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Another important limitation of the HCE mode is that the card UID reported to the
reader during the anticollision phase is randomly generated every time and that behavior
cannot be changed. It is a huge drawback, as many door access systems based on contactless
cards use only this UID to authorize the card, and the possibility to change or at least fix
the UID would allow usage of the smartphone for access instead of the card.

3.5.2 Apple iOS

Apple’s devices got into the NFC world much later. The first iPhone to feature NFC
hardware was iPhone 6 released in 2014, together with iOS 8. However, the only application
that could use it was Apple Pay, and there was no public API to access the NFC hardware
at all.

This changed with the release of iOS 11 in 2017. A new API called Core NFC was
introduced, and it allowed to read NDEF formatted NFC tags. It was not possible to write
the tags or get any lower level information, like UID of the tag. The API is supported on
iPhone 7 and newer.

iOS 13 released in 2019 enabled even more application by allowing to also write the
NDEF formatted tags. Furthermore, it also allowed the interaction with protocol specific
tags, such as ISO 15693, FeliCa or MIFARE. It also allows reading the UID of the tag.

Currently, there is still no public API to support Host-card emulation. That is probably
because Apple does not want to get any competitors of its own Apple Pay application.
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Chapter 4

MIFARE

MIFARE (shortcut from Mikron Fare Collection) is a proprietary contactless smart card
standard created by an Austrian company called Mikron in 1994. Mikron was later acquired
by Philips in 1995 and then spun off into NXP Semiconductors in 2006. It was originally
developed for automated fare collection in public transport, but it was later used in many
other applications.

There were more types of these card developed since the debut of MIFARE Classic.
MIFARE Ultralight[8], introduced in 2001, is based on Classic, but it has less memory

(in the range of 40-128 bytes) and does not offer any cryptographic features. They are so
inexpensive that they can be used as disposable tickets for events.

MIFARE Plus[13] was released in 2008 as drop-in replacement for Classic. It supports
ISO 14443 Part 4 transport protocol and allows AES encryption, while staying compatible
with MIFARE Classic.

MIFARE DESFire[12], introduced in 2002, is a more advanced card, containing a mi-
croprocessor and an operating system that allows for simple directory and files structure.
It included 3DES encryption from the beginning, with later variants also supporting AES.

4.1 MIFARE Classic
It is basically an EEPROM with 1 or 4 kilobytes of data storage, including the reserved
areas for the keys and configuration [7][3] based on ISO 14443 Type A up to Part 3, using
its own transport protocol on top of it (incompatible with ISO 14443 Part 4). It uses
a proprietary Crypto1 algorithm to secure the communication between the card and the
reader. Crypto1 was cracked in 2009 and it is recommended to switch to newer, safer cards
by the manufacturer.

4.1.1 Memory structure

The EEPROM memory of the card is split into sectors. Each sector contains 4 or 15 blocks,
each of 16 bytes (see figure 4.2). Every block of the sector is used for data, except the last
one. The last block of the sector is called the sector trailer and is used to store two 48-
bit access keys, key A and key B, and the access condition bits. There are three access
condition bits for every block, named C1-C3. Every bit is stored twice, in non-inverted and
inverted form (see Figure 4.1). In case the inverted and non-inverted form differ, the whole
sector is irreversibly blocked.
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151413121110987654321Byte Number

Description

0

Key A Key B (optional)Access Bits

user data

Byte 6 C23 C22 C21 C20 C13 C12 C11 C10

7Bit 6 5 4 3 2 1 0

Byte 7 C13 C12 C11 C10 C33 C32 C31 C30

Byte 8 C33 C32 C31 C30 C23 C22 C21 C20

Byte 9

Figure 4.1: Structure of the MIFARE Classic sector trailer block. Taken over from [7]

For data blocks, access conditions define which key and command combinations are
allowed on the block (table 4.1). For the sector trailer block, access conditions have different
meaning. They define which key is allowed to change the access conditions, or write the key
bits (table 4.2). In some cases, key A is allowed to read the key B from the sector trailer.
In that case, key B cannot be used for authentication. That allows the key bits to be used
to store user data.

Access bits Access condition for

C1 C2 C3 Read Write Increment Decrement,
transfer, restore

0 0 0 key A|B key A|B key A|B key A|B
0 1 0 key A|B never never never
1 0 0 key A|B key B never never
1 1 0 key A|B key B key B key A|B
0 0 1 key A|B never never key A|B
0 1 1 key B key B never never
1 0 1 key B never never never
1 1 1 never never never never

Table 4.1: Access conditions for data blocks [7]
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Byte number within a block

Key A Key B

Manufacturer data

Access bits

User data

User data

Block 0

Block 1

Block 2

Block 3
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Key A Key B

User data

Access bits

User data

User data

Block 0

Block 1

Block 2

Block 3

Sectors 1-15 
(MIFARE Classic 1K)

Sectors 1-31 
(MIFARE Classic 4K)

Key A Key B

User data

Access bits

User data

User data

Block 0

Block 1

Block 14

Block 15

:Sectors 32-39
(MIFARE Classic 4K)

MIFARE
Classic 1K

MIFARE
Classic 4K

Figure 4.2: MIFARE Classic memory organization [7] [3]

Access bits Access condition for RemarkKey A Access bits Key B
C1 C2 C3 Read Write Read Write Read Write
0 0 0 never key A key A never key A key A Key B may be read
0 1 0 never never key A never key A never Key B may be read
1 0 0 never key B key A|B never never key B
1 1 0 never never key A|B never never never
0 0 1 never key A key A key A key A key A Key B may be read
0 1 1 never key B key A|B key B never key B
1 0 1 never never key A|B key B never never
1 1 1 never never key A|B never never never

Table 4.2: Access conditions for the sector trailer [7]
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In MIFARE Classic 1K variant, the memory is split into 16 sectors. Each sector con-
tains four 16-byte blocks, for total of 1024 bytes of storage, including the keys and access
conditions. The first data block of the first sector is used to hold manufacturer data, and
it can always be read and never written. That yields 47 blocks usable for user data, with
a total size of 752 bytes.

In MIFARE Classic 4K variant, the same memory organization as in the 1K version is
used for the first 32 sectors. Starting from sector 32, every sector has 15 data blocks and
sector trailer. To reflect this, the access condition bits have different semantics. The first
set of bits C1-C3 controls access to blocks 0-4, second set controls blocks 5-9 and the third
set controls blocks 10-14. There are 8 sectors with different organisation, so in total, the
card has 215 usable data blocks, resulting in total of 3440 bytes of memory available to the
user.

Value blocks

Value block is a specially formatted data block, designed to allow performing electronic
purse functions. Value blocks have a fixed data format that allows for error detection,
correction and backup management. To format a regular data block, a write command is
used. The value block holds a 32-bit signed integer value, that is stored twice in the block,
two times in the non-inverted form and once in the inverted form. For backup management,
one byte storing the address of the block is also stored, two times in each form (see Figure
4.3).

001aan018

151413121110987654321Byte Number 0

adradradradrvalue valuevalueDescription

Figure 4.3: Format of the value blocks in MIFARE Classic. Taken over from [7]
.

4.1.2 Crypto1 cipher

Crypto1 is an encryption algorithm created specifically for MIFARE Classic cards. The
cipher is proprietary and its design was kept secret.

It stayed secret for 14 years, despite more than a billion chips shipped. Then, in 2008,
a paper called Reverse-Engineering a Cryptographic RFID Tag [19] was published. The
authors reverse-engineered the cipher from its silicon implementation. Although it was
previously believed that such an approach would be too expensive to do, they have shown
that with enough effort, it is doable using pretty common equipment.

First, they used acetone to dissolve the plastic card and isolate the silicon chips. Then
they removed each successive layer of the chip through mechanical polishing. The chip
contains six layers, the lowest of which holds the transistors. They took pictures of the
layers using a standard optical microscope with 500× magnification.

After doing some processing of the captured images, they have found out the images
contain about 70 different types of gates. They have built a library of these gates and
implemented a template matching algorithm to find the occurrences of every gate of the
same kind in the chip. But they still had to do a lot of manual work to identify the
connections between the gates.
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As their goal was to reveal the cipher and not necessarily the whole card logic, they
focused on searching for a 48-bit register with XOR gates around. They found the compo-
nents in one of the corners of the chip along with a circuit that appeared to be a random
number generator, as it had an output but no inputs.

The map of logic gates and the connection between them provided almost enough in-
formation to reveal the cipher. But it was still necessary to find out the exact timing and
inputs to the cipher. To do so, they analyzed the communication between a MIFARE tag
and a reader.

The cipher consists of a 48-bit linear feedback shift register. Twenty state bits of the
register are passed through a non-linear filter function 𝑓 (consisting of 𝑓𝑎, 𝑓𝑏 and 𝑓𝑐) to
generate one bit of keystream. After that, the LFSR shifts to the left and uses the generating
polynomial of 𝑥48 + 𝑥43 + 𝑥39 + 𝑥38 + 𝑥36 + 𝑥34 + 𝑥33 + 𝑥31 + 𝑥29 + 𝑥24 + 𝑥23 + 𝑥21 + 𝑥19 +
𝑥13 + 𝑥9 + 𝑥7 + 𝑥6 + 𝑥5 + 1 to generate a new rightmost bit of the LFSR (function 𝐿).

0 1 122 3 4 11109875 13 14 2515 16 17 24232221201918 32313029282726 33 34 4535 36 37 44434241403938 46 47 +6

fa fb fbfafb

fc

Output

Input

Figure 4.4: Crypto1 (N)LFSR schema

𝐿(𝑥0𝑥1 . . . 𝑥47) := 𝑥0 ⊕ 𝑥5 ⊕ 𝑥9 ⊕ 𝑥10 ⊕ 𝑥12 ⊕ 𝑥14 ⊕ 𝑥15 ⊕ 𝑥17 ⊕ 𝑥19

⊕𝑥24 ⊕ 𝑥25 ⊕ 𝑥27 ⊕ 𝑥29 ⊕ 𝑥35 ⊕ 𝑥39 ⊕ 𝑥41 ⊕ 𝑥42 ⊕ 𝑥43
(4.1)

𝑓(𝑥0𝑥1 . . . 𝑥47) := 𝑓𝑐(𝑓𝑎(𝑥9, 𝑥11, 𝑥13, 𝑥15), 𝑓𝑏(𝑥17, 𝑥19, 𝑥21, 𝑥23), 𝑓𝑏(𝑥25, 𝑥27, 𝑥29, 𝑥31),

𝑓𝑎(𝑥33, 𝑥35, 𝑥37, 𝑥39), 𝑓𝑏(𝑥41, 𝑥43, 𝑥45, 𝑥47))
(4.2)

𝑓𝑎(𝑦0, 𝑦1, 𝑦2, 𝑦3) := ((𝑦0 ∨ 𝑦1)⊕ (𝑦0 ∧ 𝑦3))⊕ (𝑦2 ∧ ((𝑦0 ⊕ 𝑦1) ∨ 𝑦3)) (4.3)

𝑓𝑏(𝑦0, 𝑦1, 𝑦2, 𝑦3) := ((𝑦0 ∧ 𝑦1) ∨ 𝑦2)⊕ ((𝑦0 ⊕ 𝑦1) ∧ (𝑦2 ∨ 𝑦3)) (4.4)

𝑓𝑐(𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4) := (𝑦0∨((𝑦1∨𝑦4)∧(𝑦3⊕𝑦4)))⊕((𝑦0⊕(𝑦1∧𝑦3))∧((𝑦2⊕𝑦3)∨(𝑦1∧𝑦4))) (4.5)

4.1.3 Pseudorandom number generator

To generate a random reader and tag nonces, a pseudorandom number generator (PRNG)
is used. Although the nonces are 32-bit long, they are generated using a 16-bit LFSR with
generating polynomial 𝑥16 + 𝑥14 + 𝑥13 + 𝑥11 + 1 [17]. The register is clocked at 106 kHz
(the bit rate of the protocol). Each clock tick, the LFSR shifts left, and the feedback bit is
computed using 𝐿16. The register is reset to the initial state every time the tag is powered
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on. That makes the value in the register depend only on the time passed since the tag was
powered on. The 𝑠𝑢𝑐 function is used to calculate the next 32-bit sequence, and it will be
used later in the authentication protocol. It will be referred to as 𝑠𝑢𝑐𝑛, where 𝑛 says how
many iterations of the function is used, always using the output of the previous iteration
as input for the next one.

0 1 2 133 4 5 1211109876 14 15 +

Figure 4.5: Pseudorandom number generator LFSR schema

𝐿16(𝑥0𝑥1 . . . 𝑥15) := 𝑥0 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥5 (4.6)

𝑠𝑢𝑐(𝑥0𝑥1 . . . 𝑥31) := 𝑥1𝑥2 . . . 𝑥31𝐿16(𝑥16𝑥17 . . . 𝑥31) (4.7)

4.1.4 Communication protocol

In order to access the card memory, the card has to be initiated and the reader has to
authenticate to the card.

The initialization consists of the anticollision procedure. MIFARE Classic is following
the procedure defined in Part 3 of the ISO 14443-A standard, see chapter 2.2.1.

Authentication

After the card has been selected, the reader has to authenticate itself to the card. Command
0x60 is used to authenticate with key A, command 0x61 for key B. As an argument, the
block number is given, although the authentication is valid for the whole sector. The
authentication command is followed by CRC, the other messages of the authentication
protocol are not. The schema of the authentication protocol is in Figure 4.6.

When the authentication command is issued, the internal state of the stream cipher is
initialized with the key that is used for the authentication.

The card answers with a random generated 32-bit tag nonce, 𝑛𝑇 . This nonce is XORed
with the UID 𝑢 of the tag, that was received during the anticollision phase. The result
𝑢 ⊕ 𝑛𝑇 is fed into the result of the feedback function of the cipher, making it work as an
NLFSR. From now on, the following communication is encrypted.

In the next step, the reader answers the tag nonce with its own random generated
nonce 𝑛𝑅, together with the answer to the tag nonce 𝑎𝑅. The 𝑛𝑅 is also XORed into the
feedback function of the cipher, but since the communication is already encrypted, it has to
be decrypted first. As it is a stream cipher, the encryption of later bits of 𝑛𝑅 is influenced
by the earlier bits that got XORed into the LFSR feedback. The answer 𝑎𝑅 is generated
using the PRNG LFSR, being defined as 𝑎𝑅 = 𝑠𝑢𝑐64(𝑛𝑇 ).

To finish the authentication, the tag responds with 𝑎𝑇 = 𝑠𝑢𝑐96(𝑛𝑇 ). After that, the
reader is authenticated to the card and can issue other commands.

In case the reader wants to authenticate for a different sector now, the procedure is called
nested authentication and the protocol is a bit different. In this case, the authentication
command has to be sent encrypted (using the cipher state from the previous sector). At
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Tag Reader Crypto1 state

UID u

AUTH (block number)

Pick nT
from PRNG

nT

{nR, aR}

check aR

{aT}

Load key into the LFSR

i ∈ [0,47]ai :=  ki

Shift  nT ⊕ u into the LFSR

ai+48 := L(ai,..,ai+47) ⊕ nTi ⊕ ui i ∈ [0,31]

Shift  nR into the LFSR

ai+48 := L(ai,..,ai+47) ⊕ nRi-32 i ∈ [32,63]

From now, just the feedback is input into the LFSR

ai+48 := L(ai,..,ai+47) i ∈ [64,∞]

aR := suc64(nT)

aT := suc96(nT)

check aT

Pick nR
from PRNG

Authorized

Figure 4.6: Authentication protocol. Symbols denoted by { – } are sent encrypted.

this moment, the cipher is initiated with the key for the new sector and the tag nonce 𝑛𝑇
is sent already encrypted. The rest of the protocol stays the same.

Read command

The read command requires a block address, and returns one MIFARE Classic block (16
bytes). In case the access bits deny the read using the key that was authorized, NAK (Not
Acknowledged) is returned by the tag. The communication diagram is shown in Figure 4.7.
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Tag Reader

0x30 Addr CRC

1 byte 1 byte 2 bytes

READ :

Authorized?

0x04

4 bits

No: NAK

Data CRC

16  bytes 2  bytes

Yes:

Figure 4.7: MIFARE Classic Read command. In case the CRC or parity is incorrect, a NAK
with the value of 0x5 is transmitted.

Write command

The writing is split into two parts. First, the reader sends the write command with a block
address. After the tag acknowledges, the 16 bytes of a MIFARE Classic block to be written
are sent. They are acknowledged by the tag as well. The communication diagram is shown
in Figure 4.8.
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Tag Reader

0xA0 Addr CRC

1 byte 1 byte 2 bytes

WRITE:

Data:

Authorized?

0x4

4 bits

No: NAK

Yes: ACK

Data CRC

16  bytes 2  bytes

0xA

4 bits

0xA

4 bits

ACK:

Figure 4.8: MIFARE Classic Write command. In case the CRC or parity is incorrect, a
NAK with value of 0x5 is transmitted

Other commands

The Increment, Decrement, Restore and Transfer commands can be performed on a value
block. The Restore command reads the value from the value block into the internal Transfer
Buffer. The value from the Transfer Buffer can be written back into the value block using
the Transfer command.

The Increment and Decrement are two-phase commands. First, the command is issued
by the reader with the block address as an argument. The tag reads the value from the
block into the Transfer Buffer and acknowledges the command. Then, the 4-byte operand
is sent to the tag. The tag adds or subtracts the operand from the value in the Transfer
Buffer and the operand is acknowledged to the reader.
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Chapter 5

nRF52832 microcontroller

nRF52 is a series of microcontrollers manufactured by Nordic Semiconductor. Its main
feature is the integrated Bluetooth Low Energy (BLE) radio. It is widely used in areas
where low-power operation is required, such as wireless sensors, battery-powered computer
peripherals and similar applications.

To increase the security of the Bluetooth pairing process, some microcontrollers from
the nRF52 range contain an NFC-A tag peripheral. Its main goal is to serve as a channel
for Out-Of-Band (OOB) pairing with devices that support the feature.

nRF52832 [4] is a mid-range chip from the series. It offers one 64 MHz ARM Cortex-
M4F core with up to 256 KiB of flash memory and up to 64 KiB of RAM. It also features
the NFC-A tag peripheral.

5.1 NFC-A tag peripheral
A unique feature of this microcontroller is the NFC-A tag peripheral. Its main features are:

∙ 106 kbps bit rate

∙ can wake up the microcontroller on RF field detection

∙ frame assembler and disassembler

∙ programmable timing controller

∙ hardware automatic collision resolution

∙ hardware CRC and parity functions

The peripheral contains a 13.56 MHz AM receiver and load modulator, compatible with
the NFC-A specification. The integrated frame disassembler can automatically process the
received frame, so only the data part is transferred to the RAM. During transmission, the
frame assembler can automatically assemble the frame from the data in RAM. Parity and
CRC of the frame is automatically checked and removed by the frame disassembler, and
calculated and appended by the frame assembler. These features can be disabled.

The hardware anticollision procedure is able to automatically perform all steps until the
tag enters the ACTIVE state. The UID, ATAQ and SAK responses are configured by writing
into the corresponding registers.
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The frame timing controller can be used to maintain the exact time interval between
receiving a frame and transmitting a reply. When configured, it holds the frame that is to
be transmitted until the configured interval passes.

The detection of the RF field by the peripheral can be used to wake up the microcon-
troller, even from the deepest power-saving mode called System OFF. In this mode, with
the NFC wake-up enabled, the microcontroller consumes only 0.7 µA.

The peripheral is internally controlled by a state machine. The state transfers occur
when specific events happen and they can trigger interrupts. Some of them can also be
triggered manually by the user. The state machine is described in Figure 5.1.

Activated

ACTIVATE

NFC (ALL_REQ)

/ AUTOCOLRESSTARTED

SENSE

NFC (SENS_REQ)

/ AUTOCOLRESSTARTED

STARTTX

/RXFRAMEEND

/TXFRAMEEND

DISABLE

/SELECTED
/ READY

NFC (OTHER) (See activity)

/COLLISION

ENABLERXDATA

ACTIVATE

DISABLE

SENSE

NFC (ALL_REQ)

/ AUTOCOLRESSTARTED

NFC (SLP_REQ)

STARTTX

/ RXERROR

GOIDLE

GOSLEEP

READY_A

DISABLE

SENSE_FIELD

ACTIVE_A

SLEEP_A

IDLERU IDLE

RECEIVE TRANSMIT

Figure 5.1: State diagram of the NFC-A tag peripheral. The transitions prefixed with /
can trigger interrupts. Taken over from [4]

.

5.2 SDK
The nRF5 SDK[10] supplied by Nordic Semiconductor offers a broad selection of drivers,
libraries and code examples. Most of it is distributed in the form of source code.

To enable the NFC peripheral, users can choose to emulate either NFC Type 2 or
Type 4 tag. However, in both cases, the actual tag implementation is only supplied as a
precompiled library. The libraries offer high-level APIs, e.g. for setting the tag memory
content, but all the tag logic is hidden in the library.

The only source code related to the NFC peripheral are the wrapper functions. These
functions allow the use of the peripheral without accessing the hardware registers directly.
They also offer workarounds for some hardware bugs.

The wrapper functions are called internally from the tag emulation libraries, but there
are no code examples for using them separately.

22



5.3 Developer kits
Many developer kits that allow prototyping with the nRF52 series microcontrollers with-
out the need of designing a PCB are available. Two of them, both using the nRF52832
microcontroller, will be described.

5.3.1 nRF52 DK

The nRF52 DK [14] is a versatile single board development kit for the nRF52 microcontroller
series. There are multiple variants available with different microcontrollers from the series.
For this project, the most interesting one is the one with nRF52832 microcontroller, as it
is the smallest one with the NFC tag peripheral. This variant of the kit is also marked as
PCA10040.

For debugging, SEGGER J-Link debugger is integrated on the board. It can also be
used to debug external chips through a pin header. The kit comes with an external NFC
antenna that can be connected to the board.

Figure 5.2: nRF52 DK kit contents

5.3.2 Thingy:52

The Nordic Thingy:52 [9] is a compact prototyping platform. Instead of a plain PCB, it is a
small plastic box with one push button and an RGB LED. It includes a rechargeable Li-Po
battery that can be charged via microUSB connector. NFC antenna is integrated inside
the box. There is no debugger included in the kit, but after the removal of the black plastic
cover, a pin header to connect with the debugger integrated in nRF52 DK is revealed.

To explore the capabilities of the platform, a smartphone application called Nordic
Thingy is distributed. It allows to connect to the device over Bluetooth and see the mea-
surements from the sensors integrated into the kit. The integrated sensors include:

∙ gas sensor
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∙ color sensor

∙ pressure, altitude and temperature sensor

∙ motion tracking device

∙ low power accelerometer

∙ digital microphone

Figure 5.3: Thingy:52 kit contents
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Chapter 6

Implementation

To implement the MIFARE Classic tag emulation, it was decided to use the nRF52832
microcontroller, as it is the smallest one from the nRF52 series featuring the NFC peripheral
and also the most common one in the development kits. For development, the nRF52 DK
development kit was chosen, as it contains an integrated debug probe that makes the
development easier. The software should be easily portable to other boards as well.

In the following sections, the modules of the implementation will be described in the
order they evolved. The block diagram of the modules is shown in Figure 6.1.

main.c nfca.cmfc.c

crypto1.c
mfc_eeprom.c

EEPROM 
contents

NFC callback

Initialization

Crypto1 cipher

PRNG successor

MIFARE Classic
command handling

Parity

CRC

nrfx_nfct.c

NFC interrupt

NFC initialization

nRF5 SDK

NFC send

Figure 6.1: Block diagram of the implementation modules. The arrows represent the order
the functions are called.

6.1 Main module and NFC peripheral handling
The main module (main.c) is the entry point of the code and is responsible for initializing
the NFC peripheral and receiving the callback from the NFC driver. It is the only module
that makes calls specific to the hardware platform used.
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6.1.1 NFC peripheral initialization

The first goal of the implementation was to initialize the NFC tag peripheral, so that the
hardware anticollision procedure can send artificial UID, ATQA and SAK responses to the
reader. That would allow the emulated tag to be detected as MIFARE Classic and with
the changeable UID, it would already allow to spoof some door access systems, that only
use the UID they get from the anticollision phase to authenticate the tag.

While there is a driver for the NFC peripheral in the SDK, it is only used by the pro-
prietary protocol implementations, that are only available as precompiled libraries. There
is no code example on using the peripheral alone, nor any documentation on this topic.
The only documentation available are the Doxygen comments of the driver code that gave
some hints and in conjunction with the reference of the peripheral registers, it was possible
to initialize the peripheral.

With the peripheral initialized, it was possible to configure the UID of the emulated
tag using the functions of the driver. The tag was then properly detected by a reader. But
there are no functions in the driver for setting the ATQA and SAK responses, so they had
to be set by writing directly into the registers of the peripheral. The values kept changing
to default after the first anticollision. It was revealed that the driver is resetting the NFC
peripheral every time the field from the reader is lost, as a workaround for some hardware
bug. So it is necessary to set the register value every time the field lost callback from the
driver is called.

6.1.2 NFC send and receive

To figure out how to send and receive data using the NFC peripheral, it was decided to start
with a simple MIFARE Ultralight implementation, as the protocol is similar to MIFARE
Classic, but there is no authorization or encryption involved. It was found out that it is
necessary to enable the reception and set the receive buffer every time the tag is selected,
or a frame transmission is finished. A simple READ command that returns a constant value
was implemented, and it was verified that a reader reads the data properly.

6.2 NFC-A: software CRC and parity calculation
The NFC-A module (nfca.c) implements the calculation of the CRC for ISO 14443-A
frames and also the packing and unpacking of the parity bits from the frames and their
calculation and verification.

As written in chapter 5.1, the NFC peripheral contains a hardware frame assembler and
disassembler that can, among other, verify the parity bits and the CRC of the received
frames and remove them from the frame on-the-fly as it gets copied to the memory. This
was useful for implementing the MIFARE Ultralight tag, as every valid frame of the protocol
(except of ACK/NACK, whose are shorter than one byte and thus do not follow the Standard
frame specification) has a CRC appended.

But for MIFARE Classic, the hardware CRC cannot be used, as the nonces sent during
the authentication process have no CRC appended. That means the CRC checking and
removal in software had to be implemented.

The other characteristic of MIFARE Classic is that when the communication is en-
crypted, the parity of the frames is not calculated from the ciphertext, but from the plain-
text. That makes it impossible to decode or encode the parity of the frames in the hardware,
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as only the ciphertext is passed to the peripheral. So the parity function had to be also
implemented in software.

However, when those operations were moved into the software, the communication
started to hang up with the first commands received. It was found out that when the
CRC and the parity were removed in hardware, receiving a HALT command put the NFC
peripheral into the SLEEP_A state, as stated in the specification. But without the hardware
removal of parity bits and CRC, this does not happen and it is not even mentioned in the
specification. The issue was solved by forcing the SLEEP_A state manually when receiving
a HALT command.

6.3 Crypto1 and PRNG
The Crypto1 module (crypto1.c) implements the cipher and the successor function of the
pseudorandom number generator.

During the implementation, the formulas from chapter 4.1.2 were used. As the micro-
controller used is fast enough, code readability was the main focus. The 48-bit LFSR of the
cipher is simply stored in an uint64_t integer and no manual optimizations of the output
or feedback functions were made.

As debugging of the cipher together with the rest of the tag logic would be tricky, the
cipher was developed alone and it was verified on traces of the authentication procedure,
where the nonces and keys were known. It is worth noting that the nonces are transmitted
in little endian byte order, although they are commonly formatted as hexadecimal numbers
in big endian byte order by the tools and in the literature.

6.4 MIFARE Classic implementation
The MIFARE Classic module mfc.c implements the actual tag logic, including the authen-
tication procedure and access conditions enforcement.

Most of the logic is hidden in a function that is called from the RX frame end callback
in the main module. It is given the receive/transmit buffer pointer and a state structure of
the MIFARE Classic. This structure contains the current state of the tag, the cipher and
PRNG LFSR. The number of bits to be sent from the same buffer is returned to the main
module. The function is implementing the state machine shown in Figure 6.2.
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Reader nonce nR + reader answer aRAUTHENTICATING

AUTH command

ACTIVE

WRITE command

AUTH command (nested)

AUTHENTICATED

WRITE data

WRITE

READ command

Figure 6.2: State diagram of the MIFARE Classic implementation.

It is able to handle the authentication, read and write commands, and the HALT com-
mand, that is sent encrypted when the reader is authorized to the tag. The nested authen-
tication procedure is also supported. There is no support for the bigger sectors that are
present in MIFARE Classic 4K, so only the 1K version can be emulated.

The access conditions enforcement is done by returning a NAK (Not Acknowledge) for
the data blocks during read or write. When the sector trailer block is read, the bytes that
are not readable are replaced with zeros. During the write into the sector trailer, only the
bytes that are allowed to be written are changed in the memory, with the others keeping
the original content. This write is always acknowledged, even when no bytes of the block
are changed.
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Chapter 7

Testing

For testing purposes, the memory of the tag was filled with contents that allow testing as
many features as possible. Every data block was filled with ascending sequence of bytes.
The value of the first byte of the block was the block number and every following byte of
the block had the value increased by one. That would allow to see clearly if the the data
got corrupted or a wrong block was read. The pattern can be seen in Figure 7.2.

To test the access condition mechanism, each sector had the key A set to the default
value of 0xFFFFFFFFFFFF and key B to the value of 0xAAAAAAAAAAAA. Then, various access
condition bits were set to the sectors. For compatibility reasons (will be described later),
the same access condition bits settings was always used for two succeeding sectors. The
settings are described in table 7.1.

Sectors Block Access conditions when using the key
Key A Key B

2,3

0 read/write -
1 read -
2 - -
3 write Key A, r/w ACs, r/w Key B -

4,5

0 - read/write
1 - read
2 - -
3 read ACs write Key A, r/w ACs, write Key B

6,7

0 read/write read/write
1 read read
2 - -
3 read ACs write Key A, r/w ACs, write Key B

Others

0 read/write -
1 read/write -
2 read/write -
3 write Key A, r/w ACs, r/w Key B -

Table 7.1: Access conditions configuration of the tag emulated during testing

To test the implementation, three different readers were used. A Chameleon Mini, an
Android phone with two different applications and an USB reader.
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7.1 Chameleon Mini
While Chameleon Mini can be used to emulate MIFARE Classic by itself, it does not have
support for MIFARE Classic in the reader mode. But it is still able to do the anticollision
procedure and retrieve the type of the card and its UID. It also allows to send arbitrary
commands to the card and that could be used to work with the MIFARE Classic card,
but it would require implementing the Crypto1 cipher and the authentication procedure in
software. To run the anticollision procedure and retrieve the transmitted data, there are
two commands. IDENTIFY that outputs ATQA, SAK and UID of the card. The other one is
GETUID that prints only the UID of the card. Below is the terminal output of these two
commands:

IDENTIFY
101:OK WITH TEXT
MIFARE Classic 1k
ATQA: 0400
UID: 6A1346E6
SAK: 08
GETUID
101:OK WITH TEXT
6A1346E6

7.2 Android
On Android, two different applications were used. The first was TagInfo1. That is a simple
proprietary application developed by NXP that is able to show basic info about a tag that
was scanned. It can also show the memory contents of a MIFARE Classic tag, if the tag is
using the factory default key, or if they key was added to the application by the user. It
does not have any tag writing abilities.

The application reads out the contents of the tag, using the default key A. However,
there is no option to force it to use key B. So even though the key used as key B was added
to the user keys store of the applications, it does not use it when the authentication with
key A was successful, even though no data blocks are readable using key A (sectors 4-5 of
the testing tag).

However, TagInfo has an issue in dealing with read-protected blocks. In block 3 of
sector 5, it reads out invalid data (see Figure 7.1). This kind of issue started to happen
during the development, after the access control enforcement was implemented. But it does
not happen on block 3 of sector 4, which has the same access conditions. The issue is not
present when using a genuine MIFARE Classic tag nor when using any other application
or reader with the emulated tag.

The second was an open-source application called MIFARE Classic Tool 2. It is a more
feature-wise application designed specifically to operate with MIFARE Classic tags. It
allows defining key files, which are text files containing one key per line. Then, it allows
performing a read operation on the tag, where it can try all the keys on each block, to get
the most possible data from the tag. The application also allows to write data to a tag,
or even clone the tag. It can even clone block 0 containing the manufacturer data such as

1https://play.google.com/store/apps/details?id=com.nxp.taginfolite
2https://play.google.com/store/apps/details?id=de.syss.MifareClassicTool
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Figure 7.1: Cut from a screenshot of NXP TagInfo application after a ”Full scan“ of the
emulated tag. Note that in block 0x16, invalid data is read, even though the block is not
readable. In sector 0x12 with the same access conditions, this was not happening.

UID, in case it is written to a non-genuine tag that allows UID cloning. The application
also offers many useful tools, such as a decoder/encoder for the access condition bits of the
tag.

When the emulated tag is read by the application, it is never able to read the odd
sectors from the tag (see Figure 7.2). By analyzing the logs from the microcontroller, it was
found out that the issue is related to the nested authentication procedure. The application
authenticates to the sector 0 using a regular (non-nested) authentication procedure. When
it is done with reading the sector, it tries to authenticate to the sector 1 using the nested
authentication procedure. But then, after the encrypted nonce 𝑛𝑇 is sent from the tag,
no answer from the reader is received. Instead, the anticollision procedure on the tag is
repeated and a regular authentication command is issued, but already on the sector 2. So
the sector 1 gets skipped and the same is happening for every other odd sector.

During the analysis of the logs from the microcontroller, it was revealed that TagInfo is
also trying and failing to do nested authentication, but unlike MIFARE Classic Tool, it tries
again using the regular authentication procedure and succeeds. But the nfc-mfclassic
tool used with the USB reader in the next section is using nested authentication for every
sector following the first one and does not have a problem authenticating to the tag. So it
seems that the issue is somehow related to Android, but no details were figured out.

7.2.1 Write tests

As the MIFARE Classic tool is the only application used during the testing that allows
writing into single blocks of the tag, instead of just writing the whole tag memory, it was
used to test the behavior of the write command. Several tests were performed, to test the
access conditions enforcement as well.

31



To test writes into the data blocks, blocks that cover all combination of access condi-
tions were chosen. During every subsequent test, the write command was issued with all
16 data bytes set to 0xCC. The tag response was checked to be an acknowledge when the
operation is permitted and a non-acknowledge when it is not. Then, the whole tag contents
were read and it was verified that the block value is the one that is expected. This verifi-
cation was skipped for the blocks that are not readable with key A nor key B. In the end,
the microcontroller was restarted, to reset the memory of the emulated tag before issuing
another test. The test results are in table 7.2.

Sector Block Key Expected result Result
2 0 A Pass Pass
2 1 A Fail Fail
2 2 A Fail Fail
2 0 B Fail Fail
4 0 B Pass Pass
4 1 B Fail Fail
4 2 B Fail Fail
4 0 A Fail Fail
6 0 A Pass Pass
6 1 A Fail Fail
6 2 A Fail Fail
6 0 B Pass Pass
6 1 B Fail Fail
6 2 B Fail Fail

Table 7.2: Test protocol of writes into the data blocks

To test the writes into the sector trailer, a sector trailer with the keys A and B swapped
and the ACs set to default was used. This modified trailer was written to sectors 2 and 4
using both keys A and B. Then, the whole tag was read using the swapped keys and it was
verified that the contents are as expected.

7.3 USB reader
The USB reader used is ACR122U by Advanced Card Systems Ltd. To work with the tag,
the nfc-mfclassic tool from the libnfc library 3 was used. The tool is only able to read
and write the whole memory of the tag, it does not have options to work with individual
sectors or blocks. To test the compatibility, the option to read the whole card memory into
a dump file was used. It was done using the default key A.

The resulting dump named test.mfd contains the binary contents of the card and it
was read properly. The tool has printed errors during the reading of the blocks that are
not readable using key A and the blocks are replaced by zeros in the dump. Interesting
behavior is that the key B contained in the sector trailers is always zeroed in the dump.
Even when the key is readable and the sector trailer was read from the tag, as the access
conditions are present in the dump. The key A is present in the dump. That means its
appended by the tool, as it is never readable. In overall, the behavior is the same when

3http://www.nfc-tools.org/index.php/Libnfc
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reading a genuine MIFARE Classic tag. The command line of the tool and the output is
below:

$ nfc-mfclassic r A u test.mfd
NFC reader: ACS / ACR122U PICC Interface opened
Found MIFARE Classic card:
ISO/IEC 14443A (106 kbps) target:

ATQA (SENS_RES): 00 04
UID (NFCID1): 6a 13 46 e6

SAK (SEL_RES): 08
RATS support: no
Guessing size: seems to be a 1024-byte card
Reading out 64 blocks |.................................!
Error: unable to read block 0x1e
xxx.!
Error: unable to read block 0x1a
xxx.!
Error: unable to read block 0x16
xxx.!
Error: unable to read block 0x12
xxx.!
Error: unable to read block 0x0e
xxx.!
Error: unable to read block 0x0a
xxx........|
Done, 46 of 64 blocks read.
Writing data to file: test.mfd ...Done.
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Figure 7.2: Screenshot of MIFARE Classic Tool after reading the emulated tag. Note it is
not able to read the odd sectors, although they all have the default keys used.
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Chapter 8

Discussion

In this chapter, the implemented solution will be evaluated and compared to the existing
alternatives. In the last section, its future extension and possible usages will be discussed.

8.1 Evaluation
The basic command set (authentication, read, write) of MIFARE Classic 1K was imple-
mented. During the read and write operations, the access condition bit settings are evalu-
ated and the access control is enforced. The implementation consists of multiple modules,
where most of them are hardware independent, with only one of them being specific to the
nRF52832 microcontroller used.

The solution was tested against an Android phone with two different applications and a
USB reader connected to a laptop. Testing has shown that the solution is usable in practise,
but there is an issue when Android application performs nested authentication on the tag.
That happens when the reader is already authenticated to a sector and sends encrypted
authentication command to authenticate for another sector. The consequences of the issue
depend on how the application handles the authentication. If the application handles the
situation correctly, it will reset the tag by toggling the RF field, perform the anticollision
procedure again and authenticate using a non-encrypted authentication command. Then,
the only visible impact is that the transmission will be slowed down. If the application does
not handle the situation properly, some sectors may appear unreadable. The issue was not
present when using the USB reader with a laptop. In that case, the nested authentications
worked flawlessly.

8.2 Existing alternatives
During the research, two existing solutions for emulating a MIFARE Classic card were
found, excluding those based on chips that do the emulation in hardware.

Chameleon Mini[18] is an open-source versatile tool for security analysis of contactless
cards. It allows to emulate, clone, read and sniff various types of HF cards with focus on
MIFARE. Both the hardware schematics and layout files and the firmware source codes are
publicly available in a GitHub repository. It is built on top of Atmel ATXMega128A4U
microcontroller and there is no special hardware to handle the NFC protocol - there is
just a PCB antenna with a bunch of discrete components connected to the pins of the
microcontroller. The modulation, demodulation and all protocol encoding and decoding is
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done in software. That is an advantage in the terms of hackability, but also a disadvantage
in terms of code readability – as the microcontroller is quite slow in today terms, some of
the code is highly optimized using inline assembly or precomputed tables. It is sold for
about 100 euros.

Proxmark[11] is believed to be today’s industry standard tool for RFID Analysis. It
uses an FPGA for modulation and demodulation of the signal and supports both LF and
HF cards. Protocol encoding and decoding is done in a microcontroller. It is the most
capable solution, with support for many different tag types. It is also more expensive – is
sells for about 300 euros.

The nRF52-based solution described in this thesis uses a hardware NFC peripheral.
The peripheral does not allow reader emulation or sniffing, and it is limited to the NFC-A
standard at bit rate of 106 kbps. It is also less hackable, as the lower layers of the protocol
are fixed in the hardware and the configuration options are limited. The advantage is that
the microcontroller is quite powerful and the precise timing is handled by the hardware, so
there is enough power for the actual card logic that can be written in clean, straight-forward
way with no optimization. It also features an embedded Bluetooth Low Energy radio that
could be used to configure the emulated tag. The possibility to use the RF field detection
of the NFC peripheral to wake up the microcontroller could allow the solution to work for
months on a single coin-sized battery, if used seldom. Another advantage is the price - both
nRF52 DK or Thingy:52 kits sell for about 50 euros.

8.3 Possible extension
The implementation could be extended in multiple ways. The first way is to broaden
the range of tags that can be emulated. Any ISO 14443-A tag could be emulated with
proper software support. That includes the whole range of MIFARE products. The only
limitation of the peripheral in nRF52832 is the bit rate of 106 kbps. At least MIFARE Plus
and DESFire support higher bitrates in their current chip revisions. To make the MIFARE
Classic support complete, the support for value blocks and the related command set could
be implemented, as well as support for the large sectors of MIFARE 4K.

The second way is to enable the Bluetooth Low Energy radio in the microcontroller and
design a smartphone application that would be able to communicate with the tag emulation
software. The application could alter the memory of the emulated tag, making it possible
to switch the tag that is emulated either on user request, or automatically, depending e.g.
on the location of the user.

The third way the project could be extended is to port the implementation into an ex-
isting device, or create its own PCB. The most interesting device would be a smartwatch or
other wearable. It seems that the nRF52832 chip is popular in cheap Chinese smartwatches
and fitness trackers. There is a project on GitHub by Curt White1 that provides support
for writing custom software for these smartwatches. However, it seems that none of them
contain an NFC antenna. Another interesting device is the open-source rayBeacon2 device,
a coin-sized (25 mmm diameter) development board based on nRF52, featuring a connector
for an NFC antenna.

1https://github.com/curtpw/nRF5x-device-reverse-engineering
2https://bitbucket.org/raytrails/raybeacon/src/master/
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Chapter 9

Conclusion

The goal of this thesis was to study the MIFARE Classic smartcards and their relation
and compliance with NFC and RFID standards. Then, propose a way to implement the
emulation of a MIFARE Classic tag on the NFC-A tag peripheral of a microcontroller and
implement the solution.

The solution was successfully implemented on the nRF52 DK development kit, based
on the nRF52832 microcontroller from Nordic Semiconductor. The emulation of the card
with 1 kilobyte of memory (MIFARE Classic 1K), supporting the basic command set (Au-
thentication, Read, Write) was implemented. The implementation is split into multiple
modules, where the hardware-specific code is in its own module, so that the rest of the
implementation is portable.

The result was tested against multiple readers, using different applications. It has been
proven that it is compatible with all of them and it was verified that the access condition
rules of the data blocks are enforced. The capabilities of the implementation were compared
to the existing alternatives. It is not as versatile as the more mature competition, but it
has advantages in terms of price, form factor and power consumption. Thus, all the goals
of the assignment were fulfilled.

The possible extensions were discussed and three ways of future development were pro-
posed. The solution could be extended to support more ISO 14443-A compatible card types,
such as the rest of the NXP MIFARE family. The Bluetooth Low Energy radio embedded
in the microcontroller could be used to allow communication with a smartphone. This way,
the tag emulation could be controlled by an application running on the smartphone. The
solution could also be ported to a gadget based on a compatible microcontroller, so that
the tag emulation feature could be embedded into a smartwatch or other wearable.
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