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Abstract
In this work, we proposed a Perun-Blower framework which utilises the perfblowing
technique: injecting of noise into the functions of the tested program, followed by collecting
of runtime data of these functions from the program run and evaluating the impact of
the noise on the program performance. We build on the dynamic binary instrumentation of
the Pin framework to inject the noise into program. We then focus on finding functions with
high impact on performance as well as estimate the thread run’s potential acceleration when
optimising the particular functions. Moreover, we have extended the existing Trace collector
used in the Perun framework to collect the runtime of functions with a new so-called engine
based on the Pin framework. We tested the functionality of our implementation on two
non-trivial projects, where we were able to find functions (1) with considerable impact on
performance, (2) with the most significant optimisation benefit, and (3) whose degradation
forces the non-termination of the program after several hours of running.

Abstrakt
Táto práca predstavuje nástroj Perun-Blower, využívajúci perfblowing techniku: vklada-
nie šumu do funkcií testovaného programu a nasledovné vyhodnotnie vplyvu šumu na výkon
programu na základe zozbieraných časových údajov týchto funkcií z behu programu. Imple-
mentácia je postavená na dynamickej binárnej inštrumentácii nástroja Pin. Zameriavame
sa na hľadanie funkcií, ktoré majú vysoký vplyv na výkon a rovnako tak aj odhad poten-
ciálneho zrýchlenia behu vlákna pri optimalizácii konkrétnej funkcie. Naviac sme rozšírili
existujúci Trace collector používaný v nástroji Perun na zbieranie časových dát funkcií, o
nový tzv. engine, ktorý je založený práve na nástroji Pin. Funkčnosť implementácie sme
otestovali na dvoch netriviálnych projektoch, kde sme dokázali nájsť funkcie (1) so značným
vplyvom na výkon, (2) s najvýznamnejším optimalizačným prínosom a (3) funkcie, ktorých
degradácia spôsobí, že vykonávanie programu sa neskončí ani po niekoľkých hodinách.
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Rozšírený abstrakt
Každý softvérový projekt by si mal udržiavať nielen svoju funkčnosť, ale aj primeranú
výkonnosť. Používanie nástroja Perun [23] je jedným z riešení pre správu a pravidelnú
analýzu kvality výkonu softvérového projektu. Perun ponúka profilovanie výkonu a spája
rôzne štatistické údaje o výkone s konkrétnymi verziami projektu vďaka interakcii so sys-
témami VCS, ktoré umožňujú sledovať zmeny v projektoch počas vývoja softvéru.

Detekovať výkonnostné chyby v softvéri nie je ľahká úloha. Na rozdiel od funkcionál-
nych chýb, je hľadanie problémov s výkonom obtiažnejšie, pretože tieto chyby sa zvyčajne
prejavia iba za určitých podmienok. Pomerne často sa v rámci celého programu vyskytuje
niekoľko menších problémov s výkonom: zdanlivo neškodné výkonnostné problémy, ktoré
sa prejavujú pri veľkých alebo špecificky štruktúrovaných vstupoch, vedúcich k neschop-
nosti programu dosiahnuť očakávaný výkon. Preto je potrebné tieto nenápadné problémy
“nafúknuť” tak, aby mohli byť detekované.

Snaha nájsť problémy s výkonom, na ktoré majú veľký vplyv vstupy, je už implemen-
tovaná v jednotke Perun-fuzz v nástroji Perun, využívajúca fuzz testovanie (automatické
generovanie neočakávaných alebo náhodných dát ako vstupov, poskytované programu).
Fuzz testovanie však nemusí skrytú výkonnostnú chybu odhaliť. Táto práca sa preto neza-
meriava na zmenu vstupov programu, ale na zmenu samotného programu. Naša predstava
je, že na prejavenie výkonnostnej chyby použijeme techniku perfblowingu: umelého nafuko-
vania výkonu programu pomocou vkladania šumu. Prichádzame tak s myšlienkou opako-
vaných perfblowing experimentov s injektovaním určitého množstva šumu do programu.

Navrhovaný perfblowing algoritmus sa zameriava na množinu funkcií získaných z testo-
vaného binárneho programu, vybraných podľa určených pravidiel (napr. počet volaní
funkcie alebo priemerný čas trvania funkcie). Tieto funkcie tvoria takzvaný corpus, t.j.
množina kandidátnych funkcií pre perfblowing experimenty. Podobne ako v prípade evo-
lučných algoritmov, každá funkcia má priradené fitness skóre, ktoré určuje kvalitu funkcie
s ohľadom na cieľ perfblowingu: (1) nájdenie výkonnostne úzkych miest vložením šumu do
jednej funkcie alebo (2) odhad zrýchlenia programu (v prípade, že by sme optimalizovali
funkciu) vložením šumu do všetkých okrem vybranej funkcie.

Každý experiment vloženia šumu má určitý vplyv na výkon; na automatické vyhodnote-
nie tohto vplyvu je však potrebné zbierať údaje za behu experimentu. Zbieranie údajov za
behu a vkladanie šumu vyžadujú zásah do testovaného programu. Nástroj Pin [8] imple-
mentuje techniku vkladania kódu do existujúceho programu pomocou dynamickej binárnej
inštrumentácie (DBI). V porovnaní s nástrojmi na DBI, ktoré sú už zapojené v nástroji
Perun, Pin ponúka viac možností inštrumentácie a analýzy kódu.

Zozbierané údaje z experimentu ovplyvňujú fitness hodnotu funkcie, ktorá bola vybraná
pre experiment. Vďaka tomu dosiahneme kontrolovanejší výber funkcií v nasledujúcich
iteráciách. Výsledky každého uskutočneného experimentu sú uložené s cieľom poskytnúť
používateľovi ich interpretáciu v nasledujúcich formách: (1) tabuľka funkcií s najvyšším
skóre, (2) graf časovej osi behu najlepšie hodnoteného experimentu, (3) kauzálne profily
označujúce vplyv “nafúknutia” na celkovú dobu programu alebo jeho vlákna.

Implemetáciu sme vyhodnotili na dvoch netriviálnych prípadových štúdiách (knižnici
google/re2 pre regulárne výrazy a nástroji Z3 pre overovanie teorémov). Výsledky ukazujú,
že s našou implementáciou dokážeme nájsť: (1) potenciálne výkonnostné úzke miesta (t.j.
funkcie, ktoré majú veľký vplyv na celkovú výkonnosť programu) a (2) funkcie, ktoré pred-
stavujú príležitosť na optimalizáciu (a správne odhadli zrýchlenie v prípade ich potenciálnej
optimalizácie). Počas testovania na Z3 sme navyše našli niekoľko funkcií, pri ktorých injek-
tovaný šum viedol k uviaznutiu alebo prejavu možnej výkonnostnej chyby.
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Chapter 1

Introduction

“Any optimisation that is not about
the bottleneck is an illusion of
improvement.”

— Federico Toledo

Developers should make an effort to ship software with performance as efficient as
possible. Hence, each project should maintain not only its functionality but also adequate
performance. Using the Perun [23] tool is one of the solutions for managing and regularly
analysing the performance quality of a software project. Perun offers performance profiling
and links various performance statistics to specific versions of the project by interaction
with Version Control Systems1.

However, it is particularly tricky to detect, e.g., performance fluctuations in software. In
contrast to functional bugs, finding performance issues is often difficult because they usually
manifest only under certain conditions. Quite often, there are several minor performance
issues across the whole program: ostensibly harmless performance problems that manifest
under large or specifically structured workloads leading to the program’s inability to achieve
the expected performance. Therefore, one needs to inflate these unnoticed problems so that
they will be visible and detectable.

The effort to find such performance issues that are greatly influenced by particular
inputs is already implemented in the Perun tool leveraging the fuzz testing (a software
testing technique that involves the automated generation of invalid, unexpected, or random
data as inputs, which are provided to a computer program). However, the fuzz testing
might miss many cases of performance issues or optimisation opportunities.

Instead, this work does not focus on modification of program workloads but changing
the program itself. The idea is to enforce the manifestation of performance issues by utilising
perfblowing technique: artificial inflating of program performance based on noise injection.
We propose the idea of repeated perfblowing experiments of injecting a certain amount of
noise into a program.

The proposed perfblowing algorithm focuses on the set of program functions yielded
from the tested program binary and selected according to specified rules (e.g. the number
of function calls or the average function runtime). These functions form the so-called corpus,
i.e. function candidates for perfblowing experiments. Similar to evolutionary algorithms,
the fitness score represents each function, determining the quality of function with respect

1systems that allow keeping track of the changes in software development projects
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to the perfblowing goal: (1) finding performance bottlenecks by injecting the noise into
selected function, or (2) estimating the potential speed-up (in the case we would optimise
the function) by injecting the noise into all except selected function.

Each injection experiment has some effect on performance; however, to automatically
quantify its impact, it is necessary to collect runtime data for the run of the experiment.
Nevertheless, the runtime data collecting and the noise injection require modification of
the tested program2. Pin [8] framework implements a technique of inserting the code into
the existing program by a dynamic binary instrumentation (DBI) approach. Compared to
the frameworks for DBI that are already utilised in Perun, Pin offers more instrumentation
and code analysis options.

The collected runtime data of the experiment then affects the fitness value of functions
selected for the experiment. This approach leads to more controlled function selection
in the next iterations. The results of each performed perfblowing experiment is finally
interpreted to a user as follows: (1) as a table of the top-scored functions, (2) as a timeline
graph of the best-rated perfblowing experiment run, and (3) as causal profiles denoting
the impact of perfblowing experiment on the overall runtime of a program or a program
thread.

We evaluated the implementation on two non-trivial case studies (google/re2 library
and Z3 theorem prover). The results show that we can find: (1) potential bottleneck func-
tions (i.e. the functions that have a big impact on the overall performance of the program)
and (2) functions that represent the optimisation opportunity. Moreover, during the testing
on Z3 we found several functions where the injected noise led to a possible performance
issue or a deadlock.

Structure of the Thesis. Chapter 2 introduces the topic of enforcing the manifestation
of performance bottlenecks using (performance) fuzz testing and performance amplification.
In Chapter 3, we describe available DBI frameworks and their usability for noise injection.
We identify the functional and non-functional requirements of this work in Chapter 4.
The implementation part of the work begins in Chapter 5 with the description of extending
the Tracer by a new engine, based on Pin. Chapter 6 is the core of this work since it in-
cludes the description of the design and implementation of the Perun-Blower framework.
Chapter 7 presents the experimental evaluation results, and the final Chapter 8 summarises
the achieved results and outlines improvements that could be addressed in future work.

2this work focuses on programs in the form of executable binary files
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Chapter 2

Enforcing Manifestation of
Bottlenecks

We define the performance bottleneck as a location in the program, that significantly slows
the overall performance. Thus, considering a program with several modules, its performance
is directly related to its slowest unit’s performance. We will limit ourselves to analysing
performance of programs compilable to binary executable.

Fixing the bottleneck precedes identifying and analysing the underperforming location.
The crucial bottlenecks can then be optimised to achieve better performance. However,
the performance bottleneck can be tough to identify. In practice, we measure consequences
of bottlenecks [6]:

• CPU utilisation: the processor is so busy, it is unable to perform the tasks demanded
of it in a timely manner;

• Memory utilisation: the system does not have sufficient or fast enough memory;

• Network utilisation: the communication between two devices suffers from lack of
the necessary bandwidth or processing power to complete a task;

• Disk usage: long term storage is the slowest unit in the processing chain, often an un-
avoidable bottleneck;

• Software limitation: performance decline is caused by the software itself, e.g. ineffi-
cient use of allocated resources, poorly designed code structure, etc.

The issues on the software side are resolved by rewriting and patching certain code seg-
ments. Thus, we focus on identifying them by enforcing their manifestation. We can divide
the approaches to manifestation of bottlenecks into the two following areas.

Derivation of resource intensive workloads. The idea is to use fuzz testing to de-
tect performance deficiencies connected with the System Under Test (SUT) and a specific
workload. This principle is used by several fuzz testing tools such as PerfFuzz [31],
Badger [36], or Perun-fuzz [33].

Amplification of bottleneck effects on performance. The idea is to attempt to
highlight the consequences of the not evident performance bottlenecks. This principle
was used to find memory-related performance issues in PerfBlower [21], or to identify
candidates for virtual speedup in Coz [15].

5



2.1 Fuzz Testing
Fuzzing (fuzz testing) is a form of a fault injection stress testing, where a range of malformed
inputs are send to a software application while monitoring for potential failures [13]. Fuzzers
are cheap to deploy for projects that work with simple input interface (e.g. reading from
a file given as a command line option), do not suffer from false positives (it is highly unlikely
that discovered flaw would be a false positive), but on the other hand monitors only crashes
and fails. Typically, fuzz testers are implemented as an automated loop that repeatedly calls
SUT with random input strings as command line switches, program inputs, or environment
variables. Program crashes or hangs are reported.

Fuzzing can be considered as a particular type of dynamic testing. Fuzzers are simply
used to automate calling the SUT with particular inputs. Many people commonly associate
fuzzers with detecting buffer overflow, however, advanced and custom fuzzers can do more
than simply provide tremendous volume of input to an application. Recently, fuzzers have
been used to uncover much more complex flaws than the traditional buffer overflow.

The first fuzz testing approaches were purely based on randomly generated test data
(random fuzzing). The research has led to more advanced fuzzing techniques such as
mutation-based fuzzing, generation-based fuzzing, or grey-box fuzzing. Grey-box fuzzers
can combine previous techniques and may also utilise techniques from other program anal-
ysis fields, such as symbolic execution [35].

Random fuzzing is the simplest fuzz testing technique: a stream of random input data
is (in a black-box scenario) sent to the SUT. The input data can be sent as, e.g. command
line options, events, or protocol packets. This type of fuzzing is, in particular, useful to
test how SUT reacts on large or invalid input data. While random fuzzing can find serious
vulnerabilities, modern fuzzers use more detailed understanding of the input format that is
expected by SUT [35].

Fuzz testing typically includes the following 6 steps:

1. Identify the target: choosing the target application which will be tested (e.g.
the vim text editor);

2. Identify the inputs: determining what inputs the target application accepts (e.g.
text files or binary data);

3. Generate fuzzed data: creating new input data (e.g. by mutating input corpus or
generating new inputs from template);

4. Execute fuzzed data: feeding the target application with newly generated input
(e.g. open the generated workload with vim);

5. Monitor for exceptions: monitor the target application for interesting behaviour;
(e.g. observe that vim exited with segmentation fault);

6. Determine exploitability: analysing the behaviour and classifying the input. (e.g.
determine that the segmentation fault can lead to exploit);

Fuzzers can be divided according to how they generate new inputs. Fuzz data can be
generated using predetermined values (e.g. IPv4 address), mutating existing data starting
from some input corpus of samples (e.g. bit swaps) or generating new data from scratch
(e.g. based on some template or grammar). In particular, we will list two major categories
of fuzzers: generational and mutational.

6



Generational Fuzzer

Sometimes called grammar-based fuzzer. Generational fuzzer generates new inputs from
scratch based on a given template or grammar specification, which define the structure of
the input file that is processed by the target program.

Such template should be accurate, detailed and include all possible options for every
field of a structure. This ensures that the fuzzer generates valid data for control fields such
as checksums or challenge-response messages and thereby achieves high coverage of program
paths. The example template (Peach Pit) used by Peach framework is shown in Listing 1.
However, creating a bullet-proof template tends to be time-consuming and complex.

1 <DataModel name="Chunk">
2 <Number name="Length" size="32" >
3 <Relation type="size" of="Data" />
4 </Number>
5 <Block name="TypeData">
6 <Blob name="Type" length="4" />
7 <Blob name="Data" />
8 </Block>
9 <Number name="crc" size="32" >

10 <Fixup class="Crc32Fixup">
11 <Param name="ref" value="TypeData"/>
12 </Fixup>
13 </Number>
14 </DataModel>
15 ...
16 <DataModel name="Chunk_tRNS" ref="Chunk">
17 <Block name="TypeData">
18 <String name="Type" value="tRNS" />
19 <Blob name="Data" />
20 </Block>
21 </DataModel>
22 <DataModel name="PNG">
23 <Number name="Sig" value="89504e..." />
24 <Block name="IHDR" ref="Chunk_IHDR"/>
25 <Choice name="Chunks" maxOccurs="30000">
26 <Block name="PLTE" ref="Chunk_PLTE"/>
27 ...
28 <Block name="tRNS" ref="Chunk_tRNS"/>
29 <Block name="IDAT" ref="Chunk_IDAT"/>
30 </Choice>
31 <Block name="IEND" ref="Chunk_IEND"/>
32 </DataModel>

Listing 1: PNG input model as Peach Pit, which allows to specify PNG file format in
Peach framework. First, the model specifies the generic data chunk (lines 1-14) with data
fields all other data chunks inherit (lines 15-21). The whole PNG file is specified last, at
lines 22-32. This model was taken from [40].
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The generative method is usually used for simple models or protocols where a con-
struction of a template has no significant cost. Although many of the applications work
with defined file formats or protocols (e.g. data serialisation formats, RFC standardised
protocols, etc.), there is no given standard specification for templates. Hence, every fuzz
generator has its own design and methods for implementing the template [18].

The first representative of such a fuzzer was PROTOS [42]. Further we can list in
chronological order, e.g. SPIKE [10], PEACH [17], GWF [25], MoWF [40], or Skyfire [43],
released in 2017.

Mutational Fuzzer

Mutational fuzzer does not require any specification of input format. Instead, it is based on
a set of sample inputs (note that even one single sample file suffices). New workloads are
then generated by applying mutating strategies on these initial inputs, so called the seeds.
In Listing 2 is shown example of such mutation rule for transforming one input line.

1 def remove_ws(line):
2 '''Mutation rule: removes whitespaces of the given line
3

4 :param str line: line to be mutated
5 :return str: mutated line (without whitespaces)
6 '''
7 return ''.join(line.split())
8

9 line = "The quick brown fox."
10 print(remove_ws(line))

Listing 2: Example of mutation rule that removes all whitespaces of a given line, imple-
mented in Python. The rule returns transformed string with no whitespaces: “Thequick-
brownfox.”.

Mutational-based fuzzers are typically less sophisticated, however, they also require less
domain knowledge such as used protocols, templates, etc. Computational work substitutes
the human effort in program understanding, which makes this approach cheaper.

The input (either seed or mutation) is valuable and is reused for further work or dis-
carded based on selected factors, e.g. achieved coverage, discovered new program paths,
triggered exceptions etc.

Unfortunately, the drawback is that the SUT may reject the mutated input at the be-
ginning of processing of the data during the validation phase since mutations can generate
invalid format. Nevertheless, even invalid inputs can sometimes lead to an interesting re-
sponses from SUT.

Over the years, many fuzzers leveraging the mutational approach arise, e.g. AFL [46],
zzuf [30], its extension CERT Basic Fuzzing Framework (BFF) [28], BuzzFuzz [24], hongg-
fuzz [26] and many others.
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2.1.1 Performance Fuzz Testing (PerfFuzz)

State-of-the-art mutational fuzzers are primarily focused on finding functional bugs. Re-
cently, a performance-oriented extension of AFL called PerfFuzz was proposed.

PerfFuzz [31] is a (i) coverage-guided, (ii) mutational, (iii) feedback-directed fuzzing
engine that uses multidimensional feedback in the AFL’s CFG (Control Flow Graph1)
method. The feedback includes code coverage information (e.g. which CFG edges were
executed) and also metrics associated with the program components of interest (e.g. how
many times each CFG edge was executed). Additionally, it creates a performance map
to improve future usability estimation of tested input: performance map is a function
𝑝𝑒𝑟𝑓𝑚𝑎𝑝 : 𝐾 → 𝑉 , where 𝐾 is a set of keys corresponding to program components (CFG
edges) and 𝑉 is a set of ordered values (execution counts of CFG edges). This enables
PerfFuzz to find inputs that exercise noticeable hot spots in a program and generate
inputs with higher total execution path length than previous approaches by escaping local
maxima. Experiments on sorting algorithm Insertion Sort, PCRE URL regular expression,
and others show the method is effective at generating inputs that demonstrate algorithmic
complexity vulnerabilities.

The comparison with AFL shows that AFL initially may find hot spots with higher
execution count, but in the end PerfFuzz always managed to find a hot spot with at least
twice higher execution count as AFL. Overall, PerfFuzz finds hot spots with over 2× -
18× higher execution counts after 6 hours of lasting experiments [31].

Summary. PerfFuzz is evaluated on four real-world C programs typically used in
the fuzzing literature2 and outperforms previous work (SlowFuzz [39]) by generating
inputs that exercise the most-hit program branch 5× to 69× times. However, we note
that more performed operations/instructions do not necessarily mean it will cause notable
performance difference. PerfFuzz uses so-called blind mutation methods (e.g. flipping
random bits, moving or deleting blocks of data, etc.), as well as the AFL on which it is
built, so despite that the goal of the fuzzing changed, the way of workload mutation remains
the same.

2.1.2 Perun Performance Fuzzer (Perun-fuzz)

Our work is intended to be a part of the Perun tool: an open source lightweight Perfor-
mance Version System for continuous performance monitoring [23]. Perun-fuzz [33] is
a fuzzer incorporated within Perun, generating malicious inputs focusing on performance
weaknesses.

Original Technique

Perun-fuzz is based on the mutation based approach, accepting the set of sample seed
inputs (or workloads), called input corpus. The seeds should be valid inputs for the target
application, so the application terminates on them and yields expected performance. To
trigger a performance change of the target system, the fuzzer systematically launch the SUT
with differently malformed inputs. The inputs are several times transformed or modified
by the sundry mutation rules.

1oriented graph, which describes the mutual caller/callee relationship of individual program subroutines
2libpng-1.6.34, libjpeg-turbo-1.5.3, zlib-1.2.11, and libxml2-2.9.7.
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Contrary to PerfFuzz, Perun-fuzz uses specific mutation rules that were inspired
by existing performance issues, dynamically analyse their efficiency, collects coverage infor-
mation, and then uses Perun to measure selected performance aspects of a program run,
using its techniques for detecting performance regressions.

One of the proposed mutation rules is doubling the size of a line. This rule duplicate
the content before end line character of the random line, e.g. the input line “The quick
brown fox.” will transform to “The quick brown fox.The quick brown fox.”. This rule focuses
on possible performance issues associated with long lines appearing in files. The inspiration
comes from the gedit3 text editor, which shows signs of performance issues when working
with too long lines even in small text files. Another potential performance issue that this
rule could force is a poorly validated regular expression that could be forced into lengthy
backtracking while trying to match the whole line [33].

Before running the target application with malformed inputs, it is necessary to first
determine the performance baseline, i.e. the expected performance of the program, to which
future testing results will be compared. Initial testing first measures code coverage (number
of executed lines of code) while executing each initial seed. After that, the median of
measured coverage data is considered as baseline for coverage testing. Second, Perun is run
on collected memory, trace, time or complexity resource records with initial seeds resulting
in baseline profiles. In essence performance baseline is a profile describing performance
of program on the given corpus. The integration of fuzzer within Perun framework is
illustrated in Figure 2.1.
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Figure 2.1: Perun-fuzz integrated within Perun framework, adopted from [23].
The fuzzer takes the seed workloads (e.g. problematic workloads for previous version
of project) and starts its loop. To evaluate new mutations, it uses the results of analy-
ses yielded from Perun performance testing. If the fuzzer generates the workload which
triggers a performance degradation (Perun detects it), the workload is stored. Thus, de-
velopers can fix the performance issue and keep the workload for future testing [33].

Every mutation file is tested with the goal to achieve the maximum possible code cov-
erage. The first testing phase consists of gathering the interesting inputs, which increase
the number of executed lines compared to input corpus. After gathering the interesting in-
puts, the fuzzer collects run-time data (memory, trace, and time), transforming the data to
a so called target profile and checks for performance changes by comparing newly generated
target profile with baseline performance profile [29].

In case that performance degradation has occurred, the responsible mutation file is
added to the corpus and therefore can be fuzzed in the future to intentionally trigger

3gedit — https://wiki.gnome.org/Apps/Gedit
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more serious performance issues. The intuition to perform coverage testing first is that
running coverage testing is faster than collecting performance data (since it introduces
certain overhead) and by collecting performance data only newly covered paths will result
in more interesting inputs. The process of manipulation with a mutation during fuzzing
can be seen in Figure 2.2.

mutations

f1 fn

covm >= thr covm < thr

parent
workloads

final results

performance testing

deg

m1 mn

user
workloads

fuzzing

Figure 2.2: Lifetime of workloads: user workloads become parents, we apply a set of
rules on them in order to create their mutations, and the ones with good coverage are
added to the parent set. These workloads may also join the final results set, if they incur
a performance degradation. Workloads that lead to performance degradation are added to
final results. Figure taken from [33].

Coverage Analysis Improvement

Unfortunately, the initial version of Perun-fuzz still had its pitfalls. One of them is choos-
ing the so-called interesting mutations in coverage testing, where significant approximation
occurs. The sum of executed LOC4 in the run is used, which is enough for smaller projects,
with a smaller number of LOC, but with more robust programs with modules containing
several thousand LOC, locations with the local maximum coverage can be lost and the de-
sired change may not be detected. Such cases are quite often in practice, since complex
programs contain more complex branching.

The original approach of Perun-fuzz works on the basis of collecting information
about code coverage, which is aggregated into one value (number of executed lines of code).
With this approximation, the analysis loses accuracy and weakens the ability to detect
a significant but local change in code coverage. The aim of the work [32] is to minimise
these shortcomings by improving the analysis of coverage when running a program with
mutated inputs.

4LOC — Lines Of Code
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The idea is to use the static call graph of the target program. Coverage data, are then
assigned to the call graph structure. In particular, it stores two types of coverage data:
inclusive and exclusive (we describe them below). In addition, the call graph is divided into
individual paths from the root node to the leaf nodes. This way the fuzzer works the vectors
of inclusive/exclusive coverage of paths, which are compared across the run of the tested
program with malformed inputs. This leads to achieving better analysis of the mutated
inputs and therefore a better decision whether a mutation is suitable for further testing by
one of the selected Perun data collectors (time, memory, and trace).

Exploiting the call graph. Call graph is an oriented graph, which describes the mutual
caller/callee relationship of individual program subroutines. Each node represents specific
subroutine, and each edge (𝑓 , 𝑔) indicates the call of subroutine 𝑔 from within subroutine 𝑓 .
We extend the static call graph with information about code coverage resulting into so
called annotated call graph, where each node does not only carry information about which
function it represents but also its inclusive and exclusive code coverage. In our case, inclusive
coverage represents how many lines were executed in a given function during the program
run, while the exclusive coverage represents the number of calls of the function only. Each
run of the program will not differ from another by the structure of the call graph, however it
coverage an change significantly. Unlike the original approach, where the coverage indicator
was a single sum, we work with multiple data stored in the graph structure, which offers
the chance to more accurately detect and locate eventual changes in code coverage.

Evaluation

The evaluation was conducted on five tests in total, each consisting of fuzzing a certain
project for 300 seconds. Each of the projects is artificial with a nested performance bug.
Detailed description of the evaluation is described in [33]. The original Perun-fuzz found
workloads that prolong the program run 7× to 1000× and increase the number of executed
LOC 8× to 5000×, approximately. In the evaluation the fuzzer which exploited the call
graph there achieve similar results. However, even when the workload triggered less ex-
ecuted lines than in original approach, the tested projects reached longer runtime, which
shows that this approach makes a better focus on the more performance-dependent code
areas.

2.2 Causal Profiling
Causal profiling was first introduced by Emery D. Berger and Charlie Curtsinger [14]. Its
main motivation was the ability to answer the question developers often would like to know:
“How much will optimising this code improve the performance?”. Most of the standard pro-
filers only observe the execution of SUT, measure the time spent in functions and how many
times functions were called. Hence, the question clearly involves causality; the profilers are
not capable to answer such a question.

Thus came the idea of novel profiling technique: causal profiling. Causal profiling
aims to indicate where programmers should focus their optimisation efforts and quantify
the potential impact of improvement. A causal profiler performs a series of performance
experiments during program execution to determine which blocks will cause performance
improvement if optimised. The profiler makes a small change to the performance of a single
block of code for each experiment. Any impact on overall program performance must be
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caused by this change. The rest of this section is based on [14]. The actual causal profiling
then selects suitable blocks and perform slowdown and speedup experiments.

Selecting Code Blocks for Experiments. Code that is scarcely executed clearly does
not have the potential to impact program performance, hence, optimising it will not have
any effect. A causal profiler can select blocks for performance experiments, e.g. using
the empirical distribution over the code. Frequently executed blocks are more likely to be
selected than infrequently executed blocks. However, frequently executed blocks do not
necessarily have to be suitable for optimisation. As an example, we can assume a simple
server, that sends a response to a client request whenever it receives one. Meanwhile,
the server periodically sends keep-alive messages to the client. Optimising the code
which produces these messages will not decrease the server’s request latency, even though
this code would be the most executed overall.

Slowdown Experiments. For each selected block, we want to know if it has signifi-
cant effect on performance. During this experiment, the profiler inserts a small delay in
the subject block each time it is executed. If it keeps the program’s performance almost
unchanged, the block does not have an performance impact. The larger the detected degra-
dation in the program’s performance (with respect to the size of the delay), the more
suitable the block can be for optimisation.

“Speedup” Experiments. Even though slowing a particular block can degrade some
performance metrics, it does not ensure that optimising the block will improve the perfor-
mance of the program. For example, if a program performs its work in two threads that
take equal amount of time, slowing just one of them will degrade performance but optimis-
ing it will not bring any improvement until we optimise both threads. To eliminate these
cases of perfectly balanced parallelism, a causal profiler also performs “speedup” experi-
ments. When the subject block is executed, the profiler pauses all other threads. The sum
of individual delays is later subtracted from the program’s wall running time to compute
the effective execution time. The resulting change in performance tells us the expected
effect of an optimisation.

2.2.1 Coz

The first causal profiler is Coz [15], the causal profiling that accurately and precisely
indicates where programmers should focus their optimisation efforts and quantifies their
potential impact. In this implementation, Coz analyses the potential impact of optimising
one code line by a specific amount. A line is virtually sped up by inserting a pause to all
other threads each time the line is executed.

Virtual speedup. To achieve the effect of the actual speedup, a virtual speedup delays
every other thread every time a code line is executed. Coz randomly chooses a code line
and the amount of speedup within each experiment. After termination of the application,
Coz uses three values in order to calculate the potential speedup of the case that the chosen
line was optimised: original runtime (𝑡𝑜), the sum of all inserted delays (

∑︀
𝑑), and runtime

with virtual speedup (𝑡𝑣). The potential speedup (𝑡𝑠) is then calculated as:

𝑡𝑠 = 𝑡𝑜 +
∑︁

𝑑− 𝑡𝑣 (2.1)
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The speedup experiment is illustrated in Figure 2.3.AHN et al. 3

(A) Original program (B) Actual speedup

(C) Virtual speedup

F I G U R E 1 Illustration of thread-level virtual speedup when to speed up code line B by 1 [Color figure can be viewed at
wileyonlinelibrary.com]

In this case, the original runtime is 14, the sum of all inserted delays is 3, runtime with virtual speedup is 16, and the
potential speedup is calculated as 1. The calculated potential speedup is equal to the actual speedup in Figure 1(B).

2.2 COZ

COZ is a causal profiler that finds bottlenecks in applications through the thread-level virtual speedup technique. It helps
programmers identify the bottlenecks of an application and calculate their respective potential speedups by virtually
optimizing each point. Implementing a thread-level virtual speedup requires the monitoring of the instructions that each
thread executes. COZ collects these data through the Linux perf subsystem.8 It collects the IP and callchain of each thread
and processes them for use in virtual speedup. However, the threads are not delayed immediately when the code line
that COZ intends to speedup is sampled. Theoretically, the virtual speedup requires the other threads to be immediately
delayed whenever each thread executes a code line to speedup; however, this results in a profiling overhead.4 To address
this problem, COZ processes the collected samples by batching them every 10 ms.

Whenever a batch of samples of a thread is ready, COZ translates each sample to a code line and checks whether the
code line is the target of virtual speedup. If so, it delays the execution of other threads. To delay the execution of threads,
COZ maintains two values local delay and global delay. The local delay is a per-thread variable and is the sum of the delays
the corresponding thread enforces to the other threads. The global delay is a shared variable and is the total amount of
delay enforced to the application. Hence, whenever to process a virtual speedup, the thread increases its local delay and
the global delay. Then, the thread sleeps for the difference between the global delay and its local delay.

COZ also considers runtime dependencies between threads and specially handles the delay during a thread wake-up
(Figure 2). When a thread (wakee) is woken up by another thread (waker), the delay enforced to the blocked thread should
be carefully handled. If a delay is charged to the two threads while the wakee is being blocked, the wakeup time is delayed
by the amount of delay (d2 in Figure 2(B)) because of the delay consumption by the waker (d1 in the figure). However, if
the wakee is woken up and consumes the same delay again (d3), the wakee thread is delayed by two times of the originally
intended delay (d2 + d3 in the figure). To avoid this problem, when a thread is blocked, COZ preserves the thread’s delay
by saving the difference between its local delay and the global delay; this operation is called pre_block(). When the
thread is woken up by another thread, the preserved difference is recovered by assigning the wakee’s local delay to the
global delay minus the saved difference value; this operation is called post_block(). To ensure that the delay during
the blocking event is correctly consumed by the waker thread (d1 in Figure 2(C)), when a thread calls a wake-up function
(e.g., unlock() or cond_signal()), the thread is enforced to consume its enforced delay; this is called catch_up().
The three operations are properly installed in pthread APIs: pre_block() and post_block() in blocking APIs such
as pthread_mutex_lock(), and catch_up() in signaling APIs such as pthread_mutex_unlock().

2.3 Limitations

Although COZ is a state-of-the-art causal profiler, it has two limitations. First, it cannot profile the case when OS ser-
vices become bottlenecks. However, many studies have revealed that the scalability problems of parallel applications

Figure 2.3: Example of virtual speedup when two threads are running and the chosen
speedup line 𝑙 is in function B. Every time line 𝑙 in B is executed, it delays other threads
by 1 time unit (tu). In this example, the original runtime is 14 tu, the sum of all inserted
delays is 3 tu, runtime with virtual speedup is 16 tu, and so the potential speedup is 1 tu,
which is equal to the actual speedup. Taken from [9].

Coz implements thread-level virtual speedup, which requires monitoring of the instruc-
tions each thread executes. In order to collect these data, Coz uses Linux perf subsystem.
Using the perf_event API, Coz obtains both the current program counter and user-space
call stack from each thread every 1ms. Ideally, the speedup requires the other threads to
sleep whenever a thread executes a code line to speedup, however, this leads to considerable
profiling overhead [15]. To keep this overhead low, Coz processes samples in batches of ten
by default (i.e. every 10ms). Coz translates each batch to a code line and checks whether
the code line is the target of virtual speedup, in which case it pauses the execution of other
threads.

Evaluation. Coz was evaluated on range of highly-tuned applications: Memcached, SQLite,
and the PARSEC benchmark suite, where it identified optimisation opportunities that have
not been known. Based on Coz’s causal profiles, performance of Memcached could be
improved by 9%, SQLite by 25%, and six PARSEC applications up to 68 %. Most of the op-
timisations consist of modification under 10 lines of code [15].

Derived profilers. A number of related tools were proposed either to improve the causal
profiling or to focus on some more specific field. SCoz tool is a system-wide causal pro-
filer that addressed two concrete limitations of Coz: the inability to profile multiprogram
applications and operating system kernel codes. Coz+ [41] is an extension of Coz for
web-browser applications. TaskProf [44], TaskProf2 [45], and OMP-WhIP [12] are
suite of causal profilers which implements causal profiling for identifying parallelism bot-
tlenecks in task parallel programs. Support for causal profiling of distributed applications
is implemented in DProf [11] tool.

Summary. Coz targets on finding optimisation opportunities, that may not be immedi-
ately obvious from the performance profile obtained by conventional performance profilers
like gprof, or perf. Evaluation on real-life projects shows that the resulting causal profile
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highlights causal relationships between hypothetical optimisations and can be more than
sufficient for identifying the low-performance point of a program. On the other hand,
the source line which will be virtually sped up, is randomly selected. Thus, it is ques-
tionable how the solution will work for large projects with millions of lines of code, since
authors do not provide any evidence of scalability of the solution. Moreover, Coz requires
access to the source code of the tested system. Despite the inevitable communication be-
tween threads, the evaluation confirm that Coz has sufficiently low overhead to be used in
practice.

2.3 Performance Amplification (PerfBlower)
Performance testing framework PerfBlower [21] aims to detect memory-related issues in
Java programs by amplifying the size of allocated objects. It uses domain-specific language
ISL to describe the symptoms of observable performance problems on a JVM (Java virtual
machine) including memory leaks, inefficiently used collections, unused return values, or
loop-invariant data structures. The framework provides an automated test oracle via virtual
amplification, which evaluates the presence of memory problems. Successful detection of
memory-related performance is supplemented by a precise reference-path-based diagnostic
information accomplished by object mirroring. The target is to blow up the effect of
insignificant performance problems so that they can be captured during testing.

ISL Language. Proposed event-based language referred to as ISL (instrumentation spec-
ification language) describes symptoms of performance problems on a JVM. Since such
problems cannot be expressed using logical assertions, ISL provides a pair of commands:
amplify and deamplify. Command amplify allows to add virtual memory penalties to an ob-
ject and command deamplify is used to remove penalties when counter evidence is observed.
The symptoms, specified in ISL, are periodically checked during garbage collection.

Test oracle via virtual amplification. The amplification has per-object granularity:
virtual penalties are created by maintaining a penalty counter (PC) inside each object.
During each garbage collection, it identifies the real heap consumption (RHC) and then
computes a virtual heap consumption (VHC) by adding up the PC for each object. It
computes virtual space overhead (VSO) by comparing VHC to the RHC, which provides
an automated test oracle: their experimental results show that the overall VSOs with and
without real performance problems are 20+ times and 1.5 times, respectively.

Diagnostic information via object mirroring. To help developers find the root of
the performance problem, PerfBlower provides diagnostic information. The so called
mirror object chain of the object o reflects major reference path in the object graph, leading
to object o. The chain shows both the calling context and the data structure in which
a suspicious object is created [21].

Evaluation. The approach was evaluated on 13 real-life Java projects. In the evaluation,
they implemented three amplifiers (ISL programs) that target memory leaks, under-utilised
containers, and over-populated containers. In 5 projects they found 8 unknown problems
that have not been reported in any previous work. Moreover, all problems were exposed
under small workloads, thus the executions did not show any anomalous behaviour without
amplification.
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1 Context ArrayContext {
2 sequence = "*.main,*";
3 type = "Object[]";
4 }
5 Context TrackingContext {
6 sequence = "*.main,*";
7 path = ArrayContext;
8 type = "String";
9 }

10 History UseHistory {
11 type = "boolean";
12 size = UP; // User Parameter
13 }
14 Partition P {
15 kind = all;
16 history = UseHistory;
17 }
18 TObject MyObj{
19 include = TrackingContext;
20 partition = P;
21 instance boolean useFlag = false; // Instance Field
22 }
23 Event on_rw (Object o, Field f, Word w1, Word w2){
24 o.useFlag = true;
25 deamplify(o);
26 }
27 Event on_reachedOnce (Object o){
28 UseHistory h = getHistory(o);
29 h.update(o.useFlag);
30 if(h.isFull() && !h.contains(true)){
31 amplify(o);
32 }
33 }

Listing 3: An ISL program from [21], amplifying memory leaks caused by unnecessary
references from arrays.

Completeness. Authors also provided results of the additional experiment which exam-
ined whether PerfBlower misses bugs. This experiment includes 14 programs, which
contain known previously reported performance problems. Among them, three programs
could not be executed. From the remaining, all performance bugs were captured, except
for one. After inspection of the source code, authors concluded that this bug could not
be triggered by the given workload. In general, PerfBlower did not miss any bug that
could be triggered by a test case.
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Summary. The solution was evaluated on real projects and successfully amplified three
types of heap data-related problems, even under small workloads. It is possible to amplify
a custom heap data-related problem, but the procedure for amplifying other memory-related
problems is not fully automatic, since it is necessary to design an IPL program defining
the problem. The problem has to be expressed by logical statements over a history of heap
state updates. Among the limitations of PerfBlower we can include that it can only
find heap-related inefficiencies, the JVM needs to be rebuilt every time a new checker is
added, and because PerfBlower goes along garbage collector run, its effectiveness may
be affected by the garbage collecting frequency. Moreover, the authors do not provide any
evidence of the scalability of the approach.

Table 2.1: The summary table of all frameworks. The aim is to compare their differences
in an effort to enhance the manifestation of performance issues. PerfFuzz and Perun-
fuzz belong to the group of fuzz testers, so they provide anomalous workloads that causes
low performance. In contrast, others detect performance issues that are not workload-
based. Although PerfFuzz, Perun-fuzz and Coz involves some test amplification (ei-
ther the amplification by creating new tests as variants of existing ones, or amplification by
modifying test execution) only PerfBlower uses so-called virtual amplification. There,
PerfBlower does not change the test or execution of the test but only observes the test
execution, performs changes, and operates on its internal data according to the given speci-
fication. An essential feature of the Coz is the computation of virtual speed up, which others
do not pursue. By granularity, we mean what do framework work with as its fundamental
unit, i.e. PerfFuzz counts the number of edge executions in the CFG graph, Perun-
fuzz operates on the coverage of the paths in the callgraph, and Coz detects the impact of
the code line and estimates the possible acceleration. Last, PerfBlower works with each
object separately and perform amplification and deamplification depending on whether it
meets the specified symptoms.

PerfFuzz Perun-fuzz Coz PerfBlower
anomalous workloads 4 4 8 8

virtual amplification 8 8 8 4

virtual speed up 8 8 4 8

granularity CFG edge CG path line of code object
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Chapter 3

Noise Injection

Firstly, we will define the noise injection in the context of this work. The reader may be
familiar with the term noise injection used in the context of neural networks. However,
we define noise as a certain amount of additional redundant activity, whose injection into
the target application should not affect its functionality but can affect its performance. For
example, if we have a program that calculates a definite integral, the inserted noise should
not affect the result: the result remains correct, but its computation may take longer time.
Each noise injection framework differs in:

• its options of granularity for noise injection, i.e. where we can inject the noise, (e.g.
before and after a routine in user-space code),

• how to create the noise, i.e. whether we can simulate the noise in the given place, or
whether there are types of noise available (e.g. using nanosleep1 function),

• what are the noise parameters that can be modulated, i.e. the strength of the noise
(e.g. 10 nanoseconds), and the resolution of the noise parameters in case of sleep-type
functions (e.g. nanoseconds, microseconds, . . . ),

3.1 SystemTap
SystemTap2 is a tracing and probing framework that allows to write and reuse scripts to
deeply monitor the activities of a live Linux system. SystemTap is able to extract, filter,
and summarise the observed data, in order to allow the diagnosis of complex performance
or functional problems [19]. In particular, SystemTap framework allows developers to write
scripts for monitoring variety of kernel functions, system calls, and other events that occur
in kernel space. SystemTap provides probing of kernel-space events without having to
instrument, recompile, install, and reboot the kernel.

Scripting language. The core unit of the scripting language is the probe, which con-
sists of a probe point (the trigger event) and its handler (the associated statements) [20].
Whenever a specified event occurs, the Linux kernel runs the handler, and then resumes.
SystemTap offers several kinds of events, such as entering/exiting a function, expiration
of a timer, starting or stopping the session. Handler and its statements specify what to
do whenever the event happens. Handler code often includes extracting the context data,
storing them in the internal variables, or printing the results [19].

1nanosleep — https://man7.org/linux/man-pages//man2/nanosleep.2.html
2SystemTap home page — https://www.sourceware.org/systemtap/
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SystemTap translates the script to C and runs the system C compiler to create a binary
kernel module. When the module is loaded, it activates all probed events by hooking into
the kernel [19]. Example of SystemTap script can be found in Listing 4. After the session
is stopped, the hooks are disconnected and the module is removed. SystemTap comes with
an extensive collection of examples as well as reusable components (known as tapsets) for
inclusion in user-defined scripts [37].

1 probe kernel.function("*@net/socket.c").call {
2 printf ("%s -> %s\n", thread_indent(1), ppfunc())
3 }
4 probe kernel.function("*@net/socket.c").return {
5 printf ("%s <- %s\n", thread_indent(-1), ppfunc())
6 }

Listing 4: Tracing and timing functions in net/sockets.c. The script [19] instruments
each of the functions in the Linux kernel’s net/socket.c file and prints out trace data: (1)
time delta from the previous entry (in microseconds), (2) command name and the process
id (PID), (3) indication of function entry (“->”) or exit (“<-”), and (4) function name.

Usability for noise injection. Since Perun already uses SystemTap for its tracing col-
lector, it could be suitable for noise injection. For a general overview of the probe point
options, one can see the stapprobes3 manual pages. In short, SystemTap can hang at
the beginning and end of a SystemTap session, enter and return from a function within ker-
nel space and user space, as well as a specific statement defined by either a line in the source
code or an address in the application binary. In that case, we would have to have access to
the source code of the application, which is not always possible, or know the addresses of
the examined statements in the target binary. To simulate delays, SystemTap directly offers
C-embedded functions that insert a delay into the probe handler. Another implementation
option is to put an active waiting in the probe handler (active waiting can be implemented
as a loop bounded in number of iterations or time elapsed), but normally such an implemen-
tation is disabled, and the compilation will fail. This is because the probe handler has to
be bounded in time. The code generated by SystemTap includes checks of the total number
of statements executed, which is limited (by default to 1000). A similar limit is enforced
on the nesting depth of function calls as well. However, these limits can be suppressed
using special SystemTap option in the so-called guru mode. SystemTap script that inject
described noise to specified functions can be found in Listing 5.

Summary. SystemTap allows to instrument both kernel and user space code just by
implementing a modest and straightforward script. Moreover, there already exists an engine
for collecting the running times of target binary functions for further evaluation of noise
impact. However, there is limited usage of delay/noise functions (only mdelay4 to insert
busy delay in milliseconds, udelay5 as its microsecond twin, and noise as busy waiting )
and all of them require the guru mode.

3stapprobes — https://linux.die.net/man/5/stapprobes
4mdelay — https://sourceware.org/systemtap/tapsets/API-mdelay.html
5udelay – https://sourceware.org/systemtap/tapsets/API-udelay.html
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1 global DELAY_TIME_US = 42;
2 global REPS = 1000;
3 function tap_usleep(time_len){
4 start_t = gettimeofday_us()
5 udelay(time_len);
6 end_t = gettimeofday_us()
7 printf("%dus\n", end_t - start_t)
8 }
9 function busy_waiting(reps){

10 start_t = gettimeofday_us()
11 while(reps){
12 end_t = gettimeofday_us()
13 reps--;
14 }
15 end_t = gettimeofday_us()
16 printf("%dus\n", end_t - start_t)
17 }
18 probe process("./a.out").function("foo").call{
19 tap_usleep(DELAY_TIME_US)
20 }
21 probe process("./a.out").function("bar").call{
22 busy_waiting(REPS)
23 }
24 probe process("./a.out").function("main").return{
25 exit()
26 }

Listing 5: Example SystemTap script for noise injection. When target process calls foo
function, it ensures insertion of udelay noise, and further calling bar function triggers
injecting busy waiting noise, wherein while loop has to be some reasonable operation,
otherwise the compiler removes the loop in order to optimise the code. Moreover, the script
prints the time both types of noise take (in microseconds) and exits after catching the main
function’s return.

3.2 eBPF (extended Berkeley Packet Filter)
Let us start the description by referencing the thought of Brendan Gregg, author of the book
BPF Performance Tools [27]: “eBPF does to Linux what JavaScript does to HTML”. Basi-
cally, JavaScript makes a web page dynamically programmable and eBPF makes the Linux
kernel dynamically programmable.

The original BPF was designed for capturing and filtering network packets, where filters
are implemented as programs that run on a register-based virtual machine. Extended BPF
(eBPF) is similar to original BPF, but it extends BPF by including the ability to call a fixed
set of in-kernel helper functions and access shared data structures (eBPF maps) [2].
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Running user-space code inside the virtual machine in kernel seemed like an ideal strat-
egy for implementing observability/monitoring. Before eBPF, this was impractical since it
required to change the kernel source code or load kernel modules [3]. With eBPF, user can
run its own arbitrary code in the kernel without the necessity to write and build own kernel
modules.

On the other hand, programming in eBPF directly is extremely difficult, so one can
write eBPF programs in restricted C. In contrast to full C language, restricted C omits
the use of global variables, variadic functions, floating-point numbers, passing structures as
function arguments, etc. However, the development of tools that use eBPF is facilitated
by BPF frontends, e.g. BCC [1] (BPF Compiler Collection) with bindings for the Python
programming language, as shown in Listing 6.

1 from __future__ import print_function
2 import bcc
3 import time
4 text = """
5 #include <uapi/linux/ptrace.h>
6 BPF_HISTOGRAM(dist);
7 int count(struct pt_regs *ctx) {
8 dist.increment(bpf_log2l(PT_REGS_RC(ctx)));
9 return 0;

10 }
11 """
12 b = bcc.BPF(text=text)
13 sym = "strlen"
14 b.attach_uretprobe(name="c", sym=sym, fn_name="count")
15 dist = b["dist"]
16 try:
17 while True:
18 time.sleep(1)
19 print("%-8s\n" % time.strftime("%H:%M:%S"), end="")
20 dist.print_log2_hist(sym + " return:")
21 dist.clear()
22 except KeyboardInterrupt:
23 pass

Listing 6: Python script for tracing of strlen returns. An example of using uprobes (user-
level dynamic tracing probe) with a histogram, adopted from BCC GitHub repository [1].
After ctrl-c is pressed, it prints out the histogram of system-wide strlen return values.

The code is compiled into the eBPF bytecode using Clang compiler. The result of Clang
compilation labelled as eBPF bytecode is standard object ELF format file that defines eBPF
instructions and eBPF maps. The kernel then takes the file, and its just-in-time (JIT)
compiler translates eBPF bytecode into native machine code for better performance. This
process is depicted and described in Figure 3.1.
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Figure 3.1: Workflow of eBPF consist of compiling the code to eBPF bytecode and sending
it to the kernel using bpf() system call. When the program is loaded into the kernel, verifier
may reject it in case it is considered as unsafe. If the BPF bytecode is accepted, it can
then be attached to an event. There are different places within Linux system that can
trigger BPF programs to run, which includes kprobes, uprobes, tracepoint, network packets,
perf events, etc. Exchanging information between user-space and the kernel is provided by
eBPF maps, which represents a simple key:data structure. Taken from [4].

Verifier. Verifier has to ensure that given eBPF program is safe for the kernel to load and
run. Therefore, each eBPF program has to be safe to run until its completion. The verifier
statically determines whether the given eBPF program terminates and is safe to execute [2].
The program that fail to terminate is clearly not safe, because it could be used e.g. for DoS
attacks (exhaustion of computing resources).

Usability for noise injection. Although eBPF is a potent tool, implementing noise
injection inside it is not possible due to its high safety requirements. The eBPF program
should run for a short, limited time, and it cannot block or sleep. It is possible to import C
libraries with functions forcing to sleep, but if calling these functions occurs in the program,
the compilation fails. When trying to implement busy waiting as we did in SystemTap, we
got a compilation error again because of hitting the maximum limit (4096) of instructions
inside the program. eBPF allows only bounded loops, and user cannot suppress the checks
like in SystemTap.

Summary. The eBPF framework is state-of-the-art tool for efficient monitoring, tracing,
and manipulation of programs, even though it requires a fairly recent Linux kernel (at least
Linux kernel version 4.4 or, preferably, 4.9). Using a BCC toolkit, it is easy to write BPF
programs with front-ends in Python and Lua. eBPF is more conservative in terms of safety,
because it will only run such a code that has been assumed as completely safe to run. This
could be surely considered as an advantage, however, it makes implementing noise injection
using eBPF impossible.

3.3 Pin
Pin is a dynamic binary instrumentation (DBI) framework that allows to create tools for
dynamic code analysis of the user-space applications. The framework enables to monitor
the compiled program by embedding arbitrary C/C++ code even during the program exe-
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cution. Thus, it requires no recompiling of the source code and also supports instrumenting
dynamically generated code.

In essence, Pin works as a just-in-time (JIT) compiler. However, the input to this
compiler is a regular executable, not bytecode. Pin generates a new code for the basic
block6 beginning at the first instruction of the executable and then passes the control to
the generated code sequence. When a branch exits the sequence, Pin ensures that it regains
the control, generates more code for the branch target, and continues the execution. Pin
keeps all generated code in memory so it can be reused, and direct branching from one
sequence to another makes it efficient.

The tools implemented using Pin are called Pintools, and can be used to provide various
program analysis on Linux, Windows and macOS user-space applications. A Pintool is
a compiled binary file. For Windows systems, it is a dynamic library with a .dll extension,
systems, for Linux it is a shared library with a .so extension, and dynamic library with
.dylib extension for macOS. Technically, instrumentation inside the Pintool includes two
basic elements:

• instrumentation, i.e. a mechanism that decides where and what code is inserted,

• analysis, i.e. the code to execute at insertion points.

Both components are defined in a Pintool, which is basically a plugin that modifies
the code generation process inside Pin. Hence, the Pintool must share the same address
space as Pin and the instrumented executable, which implies that Pintool has access to all
of the executable’s data, even the file descriptors and other process information [8]. Pin
provides a rich, extensive application programming interface (API) for instrumentation at
different abstraction levels [34]:

• image: access to an entire image (i.e. analysed binary executable including loaded
shared libraries), where Pin can iterate over program sections, routines in a section,
and instructions in a routine;

• routine: access to one routine and iteration over instructions of the routine;

• trace: instrumentation of one trace at a time by starting from the current instruction
and ending with an unconditional branch (it involves also routine calls and returns);

• instruction: lowest level of instrumentation, processing one instruction at a time.

JIT & Probe Mode. Pin supports two modes of instrumentation: JIT and Probe. In
JIT mode, Pin creates a modified copy of the application on-the-fly, and the only code
that is executed is this generated code. The original code is used only for reference and
never executed. When generating the code, Pin allows the user to inject instrumentation
code. JIT mode utilises a just-in-time compiler to recompile the original code and insert
the instrumentation. On the other side, Probe mode instrumentation is based on the code
trampoline technique. In Probe mode, Pin modifies the original code with probes, where
probe is a jump instruction that overwrites instruction(s) in the application and invokes
the instrumentation. Since the application and analysis routine run natively, it improves
the performance and (dramatically) reduces overhead. However, in Probe mode, we can only
instrument on a routine level, i.e. probes can be placed only at the routine boundaries.

6a sequence of instructions terminated at a control-flow changing instruction (single entry, single exit)

23



When inserting probes, Pin copies and translates original bytes, thus replaced functions
can be called from replacement function, as can be seen in the Figure 3.2. Whilst Probe
mode can operate with a limited subset of all Pin features, JIT mode supports all Pin’s
features, making this approach more flexible and common, in contrast to less flexible but
low-overhead Probe mode [16].
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A Sample Probe

0x400113d4: push   %ebp

0x400113d5: mov    %esp,%ebp

0x400113d7: push   %edi

0x400113d8: push   %esi

0x400113d9: push   %ebx

…

…

0x41481064: … // Tool code

…

…

0x414827fe: call 0x50000004 // Call orig func

…

0x50000004: push   %ebp

0x50000005: mov    %esp,%ebp

0x50000007: push   %edi

0x50000008: push   %esi

0x50000009: jmp     0x400113d9

Foo:

Copy of Foo entry:

Tool / wrapper:

jmp    0x41481064

Figure 3.2: A sample probe on function Foo, from [16]. In this example, Pin copies
and translates original bytes of function Foo entry from address range (0x400113d4,
0x400113d8) to (0x50000004, 0x50000008) and right after the copied bytes it inserts un-
conditional jump instruction back to the function continuing (to address 0x400113d9).
Instead of the start of the original Foo entry (at address 0x400113d4) is now probe, so
a jump instruction to the Pintool code, whence the replaced function can be called.

Usability for noise injection. Pin has been successfully used in [22] for random noise
injection into the run of a concurrent program to stimulate rare (but legal) interleavings
that may yield so far undiscovered errors. Thanks to the wide levels of granularity that Pin
can work with, it is suitable for noise injection for the purposes of various analyses. The Pin
API even contains a rich suite of delay simulation, which includes thread sleeping or forcing
the thread to yield the processor. Example of Pintool that injects sleep noise can be seen
in Figure 7. Moreover, Pin does not contain any complexity controls of instrumentation
callback, which offer the possibility of implementing a delay even by busy waiting [22].
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1 # include "pin.H"
2 # include <fstream>
3 # define SLEEP_TIME_MS 42
4 # define FUNCTION "foo"
5

6 using namespace std;
7 ofstream OutputFile;
8 KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE, "pintool", "o",
9 "output", "specify output file name");

10

11 VOID Analysis(){
12 PIN_Sleep(SLEEP_TIME_MS);
13 OutputFile << PIN_GetTid() << " was sleeping for "
14 << SLEEP_TIME_MS << " ms." << endl
15 << flush;
16 }
17

18 VOID Instrumentation(IMG img, VOID *v){
19 RTN rtn = RTN_FindByName(img, FUNCTION);
20 if (RTN_Valid(rtn)){
21 RTN_Open(rtn);
22 RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)Analysis, IARG_END);
23 RTN_Close(rtn);
24 }
25 }
26

27 int main(int argc, char *argv[]){
28 if (PIN_Init(argc, argv)) return EXIT_FAILURE;
29 PIN_InitSymbols();
30 OutputFile.open(KnobOutputFile.Value().c_str());
31 IMG_AddInstrumentFunction(Instrumentation, NULL);
32 PIN_StartProgram();
33 return EXIT_SUCCESS;
34 }

Listing 7: Source code of Pintool working on image level instrumentation in JIT mode,
injecting noise in the form of calling PIN_Sleep function. The Pintool writes the information
about what thread was forced to sleep (i.e. called function foo) to the output file output.

Summary. Pin offers easy-to-use dynamic instrumentation, with rich API for instru-
mentation and analysis. Pin is capable of instrumenting multi-process and multi-threaded
applications, however, it support instrumenting only user-space code. Various types of
noise can be injected on a different instrumentation levels, on real-life applications, like
databases or web browsers [16]. Though, it is necessary to implement side runtime data
collector for evaluating the noise effects, with the existing limitation of time data obtaining
in Pin (see Section 5.2.2). Nevertheless, Pin is multiplatform instrumentation tool, that
can be possible to used in Perun for further analyses in the future.
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Table 3.1: Summary table of frameworks with respect to noise injection requirements
defined at the beginning of this chapter. Granularity property describes the framework’s
ability to inject the noise at different instrumentation levels. SystemTap and eBPF allow
to instrument concrete instruction or line of code; however, this requires knowing the in-
struction address, resp. the address corresponding to the selected line of code. Since we
encountered that eBPF disallowed noise injecting in our manner, we denote no noise op-
tions for eBPF, but SystemTap and Pin offer several options for noise simulating. With
noise options are directly linked their parameters, which are expressed by different resolu-
tion in case of sleep-based noise, by the number of iterations in busy waiting loop and by
the number of times a thread yields the processor in case of PIN_Yield.

SystemTap eBPF Pin

granularity

routine,
line of code*,
instruction*,

(user/kernel space)

routine,
line of code*,
instruction*,

(user/kernel space)

image,
routine,
trace,

instruction
(user space)

noise options
mdelay,
udelay,

busy waiting
none

PIN_Sleep,
usleep,

nanosleep,
PIN_Yield,
busy waiting

parameters
milliseconds,
microseconds.

iterations
none

milliseconds,
microseconds,
nanoseconds,
yield count,
iterations
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Chapter 4

Analysis of Requirements

In this chapter, we will specify the functionality that the resulting analyser should imple-
ment. The main aim of this specification is to outline the purpose, the capabilities and
the limitations of the developed project. In particular, we will start with short overview,
followed by list of functional and non-functional requirements.

4.1 Overall Description
The goal of this work is to build a framework that will help developers detect performance
bottlenecks or optimisation opportunities. The work is mainly based on the perfblowing
technique: artificial inflating of program performance based on noise injection. Using this
noise, the one then observes its effect on overall program performance (e.g. on the pro-
gram runtime). Depending on the goal of perfblowing, we can distinguish two modes of
the framework: slow-down and speed-up.

The noise will be injected by dynamic instrumentation framework Pin, with the following
parameters: noise location, noise type, and noise strength (e.g. we inject 1 millisecond
(strength) of PIN_Sleep (type )to function foo). Considering Pin’s capabilities, we could
inject the noise before or after any SUT binary instruction, including loaded libraries, thus
on the lowest level possible. However, such an approach can be inefficient, whereas the SUT
can consist of a huge number of instructions (we have already discussed Pin capabilities in
Section 3.3). Hence, we decided to focus on injecting noise in functions only.

Blindly injecting noise into random functions is straightforward, but most likely ineffec-
tive. Therefore, we propose to adapt the concept of fuzzing to repeatedly run perfblowing
experiments whilst collecting the runtime data of SUT.

We call the performance experiment 𝑝 the tuple (𝑓, 𝑡, 𝑠,𝑚), such that if: (1) 𝑚 =
𝑠𝑙𝑜𝑤-𝑑𝑜𝑤𝑛 the noise is injected at function 𝑓 of noise type 𝑡 and with strength 𝑠, and (2)
if the 𝑚 = 𝑠𝑝𝑒𝑒𝑑-𝑢𝑝 the noise is injected in all other functions except the 𝑓 . The gathered
runtime data will be used to refine future perfblowing experiments, e.g. modifying the noise
type and its strength.

After the perfblowing process, the developer will see the perfblowing outputs, including
all logging messages printed during the process, readable raw text results and visualised
causal profiles, all according to chosen perfblowing mode and launching options.
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4.2 Functional Requirements
The resulting Perun-Blower will provide the following functionalities:

(1) FR_PERUN (Implemented in Perun): the perfblowing framework must be
integrated into the Perun framework.

(2) FR_BTC (Built upon Tracer collector): the perfblowing loop will be built upon
the infrastructure of Tracer, and will extend its existing suite of profiling engines.

(3) FR_COMP (Compatibility with existing trace engines): the Tracer’s Pin
engine developed in this work must be compatible with other Tracer engines.

(4) FR_INIT (Initial corpus selection): the set of candidate functions for perfblow-
ing must be pre-selected by one or more selection methods (e.g. most called functions,
functions with most call-sites, input/output functions) described in Section 6.1.1.

(5) FR_CSF (Custom set of functions): the framework has to provide an option for
a user to specify a custom set of functions, which will be subjected to perfblowing.

(6) FR_FS (Selection of a function): before every iteration of the perfblowing loop,
one function has to be selected for noise injecting based on distinct strategy.

(7) FR_INOF (Inserting a noise into one function): the framework must be able
to inject a noise into one candidate function (the so-called slow-down mode).

(8) FR_INAF (Inserting a noise to all but one function): the framework must be
able to inject a noise to all but one candidate function (the so-called speed-up mode).

(9) FR_EVAL (Impact evaluation of the injected noise): depending on the mode,
the framework must automatically evaluate how injected noise impacts the SUT per-
formance and change the perfblowing state accordingly.

(10) FR_RATE (Functions rating as a candidate for noise injection): every
function in the corpus must have assigned numeric value, that represents its quality
as a perfblowing candidate.

(11) FR_PAR (Evaluation-based noise parameter refinement): the noise param-
eters must be adapted in regard to previously performed evaluations.

(12) FR_LOG (Log information about perfblowing state during run): the infor-
mation about perfblowing state must be regularly updated and presented to the user.

(13) FR_CTRL (Controlling the runtime of perfblowing): perfblowing loop has
to be bounded by specified number of perfblowing experiments or specific time, so
the user can control how long will the perfblowing loop run.

(14) FR_VIR (Readable visualisation and interpretation of perfblowing re-
sults): the framework has to present achieved results in a readable text and graphical
form.
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4.3 Non-functional Requirements
While functional requirements specify what the framework should, non-functional require-
ments describe other aspects of its development. Below we propose a list of non-functional
requirements this work should follow:

1. NFR_SCA (Scalability): the framework architecture have to be designed and
implemented so that perfblowing experiments will scale reasonably well.

2. NFR_MAIN (Maintability): the implementation should be generic enough to be
simply extended or modified in a possible future work (either as a whole project or
as a separate components).

3. NFR_REL (Reliability): the framework has to be adequately tested with the au-
tomated test suite to ensure a high level of reliability.

4. NFR_NIO (Minimised overhead of noise injection): the Pintool used as
the noise injector in the perfblowing should have low overhead.

5. NFR_DCO (Minimised overhead of time data collection): the Tracer Pintool
used for collecting data about SUT time stamps should have low overhead.

6. NFR_PCHO (Low overhead of code generation and injection): the adjusting
of noise parameters in each perfblowing loop should involve the least possible work.

7. NFR_DCA (Reasonable accuracy of data collection): the SUT runtime data
obtained by Tracer tool has to have reasonable accuracy without skewing the collecting
code effectiveness. The requirement aims at the choice of method used for data
collecting.

8. NFR_DEP (Minimised number of dependencies): the work should have as
few dependencies as possible (Python packages or another required software).

9. NFR_QUA (Quality of use): the perfblowing should be performed on SUT with
a small amount of prerequisite work, thus if the framework can automate some actions,
it should not demand this work from the user.
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Chapter 5

Extending Tracer with Pin Engine

The current version of Perun (0.20.2) uses the Tracer collector as its main profiler. Tracer
currently supports only SystemTap and eBPF instrumentation frameworks. In Chapter 3,
we have shown, however, that both frameworks do not sufficiently support noise injection.
Hence, in this chapter we show how to extend the Tracer’s engines with Pintool-based
engine to allow instrumentation using the Pin framework. First, we will briefly list the pro-
gram interface of Tracer: the so-called engines. Then, we will show how to implement
the individual functions based on the Pin framework.

5.1 Tracer
Tracer (or Trace collector) collects profiling data about running times for each of the spec-
ified functions or USDT (User Statically-Defined Tracing) probes in the code. Design
of Tracer architecture allows supporting multiple underlying instrumentation frameworks
(such as SystemTap or eBPF) using the so-called engines. Each engine must implement
the so-called Common Engines Interface that unifies communication with concrete engines.
The interface is defined as the set of functions (where →represents the returned type) [38]:

• check_dependencies: checks that all of the engine requirements are satisfied and all
of the dependencies are available.

• available_usdt → dict: extracts the USDT probes from the SUT.

• assemble_collect_program: assembles the collection program according to the spec-
ification from the user.

• engine_collect: runs the data collection program.

• transform → generator: transforms the raw output of the individual engine to
the unified Perun resources.

• cleanup: frees the set of resources that have to be cleaned up.

5.2 Pin Engine
We will now provide an overview of the newly implemented Tracer engine based on Pin. This
engine will collect functions’ runtime in individual threads and processes within the user-
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space of the target binary. The engine uses the triple of Pin, Tracer Pintool1 and SUT to
run the profiling. Tracer Pintool (detailed in Section 5.2.1) is used as the core of the Pin
Tracer Engine. It contains all the instrumentation code needed for collecting the runtime
data of the specified functions.

When invoking the perun collect command (i.e. the main command that profiles
the given SUT), the Tracer calls the selected set of functions implemented within the chosen
engine. In the Pin engine, we first check whether the path to the Pin binary is valid inside
the check_dependencies function; the user is notified in case of missing the Pin framework.
Since Pin does not support working with the USDT probes, we cannot extract them from
the SUT either. Thus the available_usdt function returns the empty Python dictionary.
Next, we generate the C++ code of the Tracer Pintool and build it with our Makefile
scheme (described in Section 5.4) inside the assemble_collect_program. When the Tracer
Pintool is successfully built, we execute it with the Pin and SUT and collect data by running
the external command in the following form: pin -t tracer_pintool.so -- SUT_binary
[args] [workload], where args and workload represent the SUT arguments and workload,
respectively. This command is run in the engine_collect function. The result is an output
file with data in raw format, specified in Section 5.2.3. We chose the same format as is
used in the SystemTap Tracer engine, and we can reuse the transform function calls from
the SystemTap engine for transforming the collected data into the Perun profile resources.
The last step is to perform the cleanup, which in our case deletes the output file(s) created
during collecting process. No other resources are required.

5.2.1 Tracer Pintool Overview

In this section, we will outline the concept of the Pintool that represents the core of Pin
Tracer engine and that implements the assemble_collect_program and engine_collect
functions. Pin instrumentation can work in two modes: JIT and Probe (we described
these modes in Section 3.3). Their main difference (in the context of Tracer) is that in
Probe mode, we can only instrument routines (at the image level, i.e. instrumentation is
performed when loading an image2). In contrast, in the JIT mode, it is possible to use
all levels of instrumentation, but with more significant overhead compared to the Probe
mode. We decided to implement trace Pintool in both modes, although we recommend
measuring with the Probe mode, as the measurements are more accurate due its lower
overhead. Below, we outline the implementation details of trace Pintool in both modes.

In order to focus on the functions that are reachable with the SUT only, we restricted
ourselves to measure the time elapsed in function calls reachable from the main function
of the binary executable. Moreover, we allow the user to define different main function so
the scope of measuring can be customised. However, further we will assume that the scope
of main function is the scope we are interested in. Hence, we register callbacks that set
the global flag during the run of SUT, denoting whether we are or are not in the main
scope.

5.2.2 Collecting Performance Data

The result of the perfblowing should be a performance and causal profile, both based on
time data of function calls. Therefore, in out Pintool we focus our interest on collecting

1We repeat that Pintools are basically tools implemented using Pin.
2In Pin, analysed binary executable including loaded shared libraries are represented as images.
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function runtimes for each call in SUT. In addition, we utilise these times when we want
to analyse whether the noise injection had an impact mainly on the total runtime of SUT
and to diagnose if we discovered a bottleneck or an opportunity for optimisation.

General trace engine idea

In order to obtain runtime of individual functions within our Pintool, we use a straightfor-
ward approach: we get the timestamps before and after the function call and subtract these
values to get the runtime. The approach is illustrated with pseudocode in Listing 8. Iden-
tical idea is used in Tracer engines that are already implemented within Perun. However,
they use SystemTap and eBPF for instrumenting the code. The tricky part is, however,
choosing the most precise handler of working with timestamps and clocks.

1 time begin = get_current_time() // instrumented code
2 call f()
3 time end = get_current_time() // instrumented code
4 // execution time = end - begin

Listing 8: Pseudocode of obtaining execution time of function f.

Measuring runtime with Pin

This section analyses the possibilities of measuring time using Pin and discuss the choice of
the function that will actually implement the function get_current_time() from Listing 8.
Generally, Pin allows us to insert code written in C/C++, so below we describe several
options we considered to acquire current time in C/C++ inside a Pintool:

(1) calling time3: returns the time from the OS since the Epoch (the Unix epoch is
the time 00:00:00 UTC on 1 January 1970), however, its resolution is in seconds.
Hence, it cannot be used to precisely measure runtimes in milliseconds, which to our
experience are quite common.

(2) calling clock_gettime4: one of the recommended functions for obtaining the exact
time with the possibility of selecting the exact clock (e.g. CLOCK_MONOTONIC), with
nanosecond resolution; however, Pin uses its own libc replacement, which does not
implement all functions of the standard libc, which is why launching the Pintool
with calling clock_gettime function raises runtime error.

(3) calling getrusage5: returns resource usage for calling process, calling process children
or calling thread with microsecond resolution; usage within a Pintool is not possible
due the same reason as with clock_gettime, the execution fails with runtime error.

(4) calling gettimeofday6: similarly to time, it returns the time since the Epoch, but in
structure with seconds and microseconds values separately and according to the spec-
ified timezone. The two-item structure brings the drawback in the situation of com-

3time — https://linux.die.net/man/2/time
4clock_gettime — https://linux.die.net/man/2/clock_gettime
5getrusage — https://linux.die.net/man/2/getrusage
6gettimeofday — https://linux.die.net/man/2/gettimeofday

32

https://linux.die.net/man/2/time
https://linux.die.net/man/2/clock_gettime
https://linux.die.net/man/2/getrusage
https://linux.die.net/man/2/gettimeofday


puting the runtime as the difference of two values, where we have to convert the both
resulting structures to pure microsecond values and then subtract them.

(5) using std::chrono7 library: available in C++11, however, a Pintool cannot be com-
piled with this library and ends with error.

(6) calling OS_Time8: function is included in the PinCRT library (Pin’s set of functions
that provides a generic way to interact with the OS) and retrieves current time in
microseconds since the Epoch. In contrast to gettimeofday, which returns a structure
with the items containing seconds and microseconds, OS_Time returns the result as
an unsigned 64-bit integer directly in microseconds, thus no additional computation
has to be performed when trying to calculate the difference between two time values
(e.g. before and after the function call). In addition, custom experiments showed
that OS_Time consumes less or equal computation time than gettimeofday.

(7) using IARG_TSC value: Pin offers to pass the Time Stamp Counter (TSC) value at
the point of entering the analysis call; however, TSC clock frequency actually varies
depending on the hardware and may vary during runtime.

As a best solution for acquiring the current time was generally recommended PinCRT li-
brary function OS_Time which gives the current time since Epoch in microseconds. The sum-
mary of the described time obtaining approaches can be found in Table 5.1.

Table 5.1: Summary table comparing various time obtaining methods within a Pintool.
Column direct value denotes whether an approach returns the time value in such format
that the difference between two values can be computed by subtraction, without additional
post-computing. We consider an approach applicable if its usage does not trigger any error,
has at least microsecond resolution and retrieves real-time value, not just the number of
cycles elapsed like TSC.

resolution direct value applicable
time seconds 4 8

clock_gettime nanoseconds 8 8

getrusage microseconds 8 8

gettimeofday microseconds 8 4

chrono nanoseconds 4 8

OS_Time microseconds 4 4

IARG_TSC - 8 8

5.2.3 Tracer Pintool Output

When the engine_collect function successfully profile the SUT, Pin Tracer engine pro-
duces the output file with the collected data. We record each collected information in
the output file as soon as we obtain it. To be compatible with existing Tracer engines,
the output file is in so-called raw format based on the four types of records: THREAD_BEGIN,
THREAD_END, FUNC_BEGIN, FUNC_END. THe output is then processed using the transform
method. The format of the records is shown in Listing 9 below.

7std::chrono library — https://en.cppreference.com/w/cpp/chrono
8OS_Time — https://software.intel.com/sites/landingpage/pintool/docs/97503/PinCRT/html/

group__OS__APIS__TIME.html
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1 // thread-specific record
2 {THREAD_BEGIN_ID | THREAD_END_ID} tid pid ppid timestamp;SUT_Name
3 // function-specific record
4 {FUNC_BEGIN_ID | FUNC_END_ID} tid timestamp;Function_Name

Listing 9: Format of the raw output file from Pin Tracer engine. Each line contains one
record related to some thread or function boundary event (begin or end).

In the case of thread-specific records, there is a difference in obtaining the timestamp in
Probe and JIT mode. While in JIT we are allowed to use callbacks to handle these thread
events9; Probe mode does not support it. Thus, we record the THREAD_BEGIN of the thread
𝑥 when the first function call within thread 𝑥 is observed. Symmetrically we work with
the record THREAD_END. The record carries the timestamp of the last function call within
the thread. However, during the collecting, we do not know if the currently processed
function return is the last within the thread; therefore, we need to record all of them.
These records are written to a separate output file, which is processed after the collection,
and the THREAD_END records are added to the main output file.

The raw format also allows other types of records (e.g. PROCESS_BEGIN and PROCESS_END
for handling the process events or USDT_BEGIN, USDT_END, and USDT_SINGLE specific for
USDT probes). However, Pin does not support acquiring these. An example of raw output
file is in Listing 10.

1 5 16709 16709 16369 1621677683676663;APP
2 0 16709 1621677683892141;bar
3 1 16709 1621677683892165;bar
4 5 16712 16712 16709 1621677683903436;APP
5 0 16709 1621677683905363;foo
6 5 16713 16712 16709 1621677683920351;APP
7 0 16713 1621677683923642;foo
8 1 16709 1621677683935433;foo
9 1 16713 1621677683962950;foo

10 6 16713 16712 16709 1621677683972490;APP
11 0 16712 1621677683986758;foo
12 1 16712 1621677684013197;foo
13 0 16712 1621677684015543;foo
14 1 16712 1621677684042267;foo
15 6 16712 16712 16709 1621677684072705;APP
16 6 16709 16709 16369 1621677684099036;APP

Listing 10: An example of raw output file, with record types: THREAD_BEGIN(5),
THREAD_END(6), FUNC_BEGIN(0), and FUNC_END(1). Output contains runtime data of two
functions (foo, bar) within the three threads in total (16709, 16712, 16713).

9by registering the callbacks with PIN_AddThreadStartFunction and PIN_AddThreadFiniFunction

34



5.3 Designing a Pintool
In this work, we will use several Pintools, each with a different aim: (1) Tracer Pintool that
collects runtime data of the functions, (2) Pintool for noise injection, used for our perf-
blowing approach and (3) function selection Pintool that analyses the given SUT function
calls (serves as preparation for noise injecting). In the following sections, we will outline
the key components of these Pintools, their configuration, and the building process. Pin
and Pintools can be used for multiple dynamic analysis purposes. In general, Pintools may
include code for one or more analyses (usually when these analyses do not affect each other;
when one analysis requires results from the other, they must be divided into separate Pin-
tools). Pintool then runs the Pin and the target binary for analysis. We use Pin for several
different dynamic analyses and one of them is the time data collection of binary’s functions,
in order to satisfy FR_BTC (Built upon Tracer collector) requirement.

As we mentioned in Section 3.3, Pintool code mainly consist of instrumentation and
analysis. However, Pintool also includes notification callbacks which are invoked when
an event like thread creation or forking occurs. These callbacks are generally used to gather
data, initialisation or clean-up [8]. The notification callbacks as well as instrumentation
callbacks must be registered within Pintool main function before running the target binary.

First we designed an universal interface for generating Pintool in Perun, which can
be extended for any dynamic binary analysis. We divide the code of generic Pintool into
several basic blocks (which together forms the so-called Pintool skeleton) in order to make
the code more understandable and maintainable. The skeleton of the general Pintool then
consists of the following blocks:

• includes: code with included libraries and header files,

• globals: declaration and definition of global variables,

• helpers: inlined helper functions,

• analysis: code of analysis routines,

• instrumentation: instrumentation callbacks,

• parallelism management: notification callbacks around forks, thread starts and
ends,

• fini: callback for fini function, which is called when the target application exits,

• main: the main function of the Pintool, which generally consist of initialisation, open-
ing of the output files, registration of the callbacks and executing the target applica-
tion.

In addition to Pintool itself, there is also a configuration header config.h which can be used
to group all optional Pintool configuration settings. For example, we use the C Preprocessor
directive define to define the constant PROBE, and together with conditional compiling, we
can compile the code of Pintool for either Probe or JIT mode just by setting the value
of this constant. It is also an appropriate place to define Pintool-specific global variables.
The whole scheme of building Pintool in Perun is shown and described in the following
section.
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5.4 Pin’s Makefile Infrastructure
In general, Pintools are built using gnu make10 on all target platforms. The directory
source/tools/Config inside the Pin holds the common make configuration files, which
may serve as a basis for user’s makefile. In our scenario, we use as a template two files:

• makefile.config: the first file to be included in the make include chain, holds doc-
umentation of all the relevant flags and variables available to users; and

• makefile.default.rules: the default make targets, test recipes and build rules.
We use the modified copies of these listed files in order to improve the build process of
the Pintool and to allow the built of the Pintool in case that its code is divided into more
files (e.g. config.h in our case). The scheme of build and run of a Pintool is depicted in
Figure 5.1. Below the scheme, we list the concrete changes that had been made in order to
compile Pintools according to this scheme.

Figure 5.1: The scheme of building the Pintool and running it with Pin. The file
pintool.cpp contains the source code of the Pintool, i.e. the Pintool skeleton. The ad-
ditional information for the Pintool should be included within config.h header file.
Makefile, is a general makefile, suitable for all Pintools in Perun, invoked when running
make. By running make we obtain pintool.so library (in Linux) which can be then passed
to Pin along with SUT binary. The output of running Pin can one or more output files
(depending on the implementation of Pintool) with information collected during the run.

Changing default make target in makefile.config. By default, with unmodified
config, the make builds not only the Pintool but also tries to make other targets (e.g.
objects, libs, dlls). These builds are not necessary in our case, so skipping them reduces
the overhead of building the Pintool.

10gnu make — https://www.gnu.org/software/make/
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Adding config.h as a prerequisite to the Pintool build rule. Pintool’s behaviour
must depend on its current configuration in the config.h file, so its compilation must be
based on the current version of this file. By adding a prerequisite to its build rule, Pintool
has to be re-builded every time this file is modified too.
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Chapter 6

Design and Implementation

In the Chapter 4, we outlined the overall idea behind the Perun-Blower. Here, we will
elaborate the details of the tool design, and show how we will tackle particular issues.
The main loop is depicted in the pseudocode in Listing 14. In the following, we discuss
the individual parts of the algorithm:

(1) initial function selection: how to analyse SUT functions in order to define the set
of functions that will be measured and used as a corpus (i.e. initial set of functions
for perfblowing experiments),

(2) obtaining baseline runtime data: how to utilise the Pin Tracer engine (in particu-
lar, implementation of methods: assemble_collect_program and engine_collect)
to collect the baseline runtime data of the SUT functions

(3) corpus refinement: how to enrich of the corpus with other functions, based on
the measured runtime data,

(4) building the Pintool for noise injection: how to generate the code of the Pintool
for noise injection and build it,

(5) selecting a candidate: how to select the function from the corpus as a subject for
the perfblowing experiment,

(6) defining the remaining noise parameters: how to determine the used noise type
and its noise strength,

(7) running the perfblowing experiment: how to run the SUT with the injected
noise

(8) handling the perfblowing experiment outcome: how to process the output data
from the perfblowing experiment,

(9) results interpretation: how to present the results to a user as text or graphical
interpretation.

Steps (1)-(4) forms the initialisation phase, which we describe in Section 6.1. The perf-
blowing loop then includes the iterative repeating of the steps from (5)-(8). Section 6.2
contains the detailed description of these steps. Last step (8) is described in Section 6.3,
together with the examples of the outputs.
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6.1 The Initialisation Phase of Perfblowing Experiments
Perfblowing algorithm starts with the so-called initialisation phase that serves as a necessary
preparation before the actual perfblowing loop. This phase consists of four steps, which we
will explain in the following sections, outlined by the pseudocode in Listing 13.

6.1.1 Initial Function Selection

First, we create a corpus, i.e. set of SUT’s functions to which we will inject the noise during
single iteration of the perfblowing loop. The selection is performed by running the Pintool
(so-called FunctionSelector), which analyses all the function calls during the SUT run
with user defined arguments and workload, and returns two kinds of results:

• functions to measure: list of functions called from the SUT main function; or
the user can define its own main replacement using the --main option, and

• functions’ calls statistics: data about function calls and call-sites1 during the SUT
run with user specified arguments and workload, from which we derive number of
functions’ calls and call-sites (for more information see Function Selector Pintool
description below)

To form the corpus, we parse the output file of the FunctionSelector Pintool and select
the functions that met the predefined criteria. Function 𝑓 is added to the corpus if 𝑓 meets
at least one of the criteria:

(1) 𝑐𝑎𝑙𝑙𝑒𝑑(𝑓) >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑎𝑙𝑙𝑒𝑑: function 𝑓 is called at least 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑎𝑙𝑙𝑒𝑑 times (the
threshold can by specified using the -called-threshold option; the value is set to 2
by default, which we assume is a mild condition for addition to corpus);

(2) 𝑐𝑎𝑙𝑙_𝑠𝑖𝑡𝑒𝑠(𝑓) >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑎𝑙𝑙_𝑠𝑖𝑡𝑒𝑠: function 𝑓 is called from at least 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑎𝑙𝑙_𝑠𝑖𝑡𝑒𝑠

call sites (value of the threshold can by specified using the -call-sites-threshold,
the value is again set to 2 by default);

(3) 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑓) > 𝑂(1): the estimated time complexity of function 𝑓 , inferred by
the Perun bounds collector, is higher than constant complexity;

(4) 𝑖𝑜(𝑓): function 𝑓 is an input/output function (we consider the function to be in-
put/output if its name has prefix ’_IO’); note that this criterion is optional and is
disabled by default and it can be enabled by using --io-functions option,

(5) 𝑙𝑜𝑐𝑘𝑖𝑛𝑔(𝑓): function 𝑓 includes locking functions (here we limit ourselves to the set
of pthread functions2); this criteria is also disabled by default and can be enabled by
using --locks option.

We proposed these criteria to focus on functions that are more likely to affect the perfor-
mance. Forming the corpus based on the criteria listed above is suitable for slow-down
mode of perfblowing, i.e. finding the bottlenecks. In case of speed-up mode, we have to
primarily take into account the average runtime of the functions, which we obtain later in
the initialisation phase (see Section 6.1.3).

1locations where the function is called
2pthread_mutex_lock, pthread_mutex_trylock, and pthread_mutex_unlock
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User can also use our perfblowing framework with --show-functions option to just
print the all_f and corpus sets of functions. Moreover, we use c++filt3 to demangle
(decode) function names (in case that compiler used name mangling4), so all the functions
are interpreted to user in both mangled and demangled form. An example of the framework
output with using --show-functions option is shown in Listing 11. On the other hand,
user can define custom corpus by specifying the path to the file, where the functions of
corpus should be listed (one row for each function name). However, since Pin works with
the function name in the mangled form, the function names in the corpus file has to be in
mangled form.

1 ALL FUNCTIONS (204):
2 _ZN3re211FilteredRE2C1Ev <==> re2::FilteredRE2::FilteredRE2()
3 _Znwm <==> operator new(unsigned long)
4 __tls_get_addr <==> __tls_get_addr
5 _ZN3re26Regexp7DestroyEv <==> re2::Regexp::Destroy()
6 _ZN3re24ProgC2Ev <==> re2::Prog::Prog()
7 ...
8 CORPUS (154):
9 _Znwm <==> operator new(unsigned long)

10 _ZN3re26Regexp7DestroyEv <==> re2::Regexp::Destroy()
11 ...

Listing 11: Example output of using --show-functions option.

Function Selector Pintool. The code of this Pintool is generated every time a perfblow-
ing is launched to analyse the SUT binary and provides the information about the function
calls. This Pintool can work in both Pin modes: JIT and Probe, with JIT mode set by
default. This is because, unlike in the Probe mode, where when registering instrumentation
callbacks we have to iterate over all functions in each loaded image and instrument them, in
JIT mode, we utilise the Routine level instrumentation instead. Thus the instrumentation
is performed dynamically whenever a new function is called. In all other Pintools used in
the perfblowing, we prefer to use the Probe mode since there we can count on the already
specified list of all functions; therefore, the iteration over all functions in each image is not
necessary. However, we allow the user to switch to the Probe mode for FunctionSelector
Pintool with the --probe-fs option. The FuntionSelector Pintool has two output files:
(1) file with the all called functions in the main scope and (2) file with the records of
all functions’ calls in the main scope with the return address for each function call (see
IARG_RETURN_IP5 instrumentation argument), so we can then derive how many calls and
call-sites does the function have. The final result of this analysis is: (1) list of the functions
called in the main scope (all_f), and (2) the corpus, i.e. the list of the functions that
meets the specified criteria.

3c++filt — https://linux.die.net/man/1/c++filt
4name mangling — https://en.wikipedia.org/wiki/Name_mangling
5Pin instrumentation arguments — https://software.intel.com/sites/landingpage/pintool/docs/

98314/Pin/html/group__INST__ARGS.html
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6.1.2 Obtaining Baseline Runtime Data

After every perfblowing experiment we need to compare the runtime data with the noise
injected to some baseline data, to evaluate the effect of injecting the noise. Hence, we need
to obtain them in the initialisation phase. In our case, the baseline data are derived from
the functions’ runtimes data. For this purpose, we need to generate the code of the Tracer
Pintool, build it and run with the specified list of functions to measure (all_f).

We already described the Tracer Pintool output file and its format in Section 5.2.3.
The baseline data are based on this output file and contains the following this types of
information:

• 𝑓_𝑡𝑖𝑚𝑒𝑠: the sum of all function calls’ runtimes for each measured function;

• 𝑒𝑥𝑒𝑐_𝑑𝑎𝑡𝑎: data for each function execution (tuple begin, end) divided by the thread
id (tid) of the execution (necessary for the visualisation showed in Section 6.3.2);

• 𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑡𝑖𝑚𝑒: number of microseconds elapsed from the first to the last recorded
timestamp;

• 𝑓_𝑐𝑎𝑙𝑙𝑠: total number of calls of each function;

• 𝑚𝑖𝑛_𝑏𝑒𝑔𝑖𝑛: the value of the lowest timestamp recorded.

The speed-up mode of the perfblowing needs the following additional information, which
will be used for estimation of the potential speed-up.

• 𝑓_𝑐𝑎𝑙𝑙𝑠_𝑖𝑛(𝑡): number of calls of 𝑓 in thread 𝑡 (identification by tid);

• 𝑛𝑜𝑡_𝑓_𝑐𝑎𝑙𝑙𝑠_𝑖𝑛(𝑡): number of calls of other functions than 𝑓 in thread 𝑡 (identifica-
tion by tid);

• 𝑡_𝑡𝑖𝑚𝑒𝑠: the total runtime of the threads (identification by tid);

However, in case of the data stored in 𝑡_𝑡𝑖𝑚𝑒𝑠, 𝑓_𝑐𝑎𝑙𝑙𝑠_𝑖𝑛_𝑡, and 𝑛𝑜𝑡_𝑓_𝑐𝑎𝑙𝑙𝑠_𝑖𝑛_𝑡
structures, we cannot identify the information only by the tid, because in the each individual
run, the tids will be different. Thus, we would not be able to compare two runs, since
the threads would not be numbered equally. Hence, we rename the tids w.r.t. definition
order. An example of renaming is shown in Figure 6.1. We assume that the order of
creating the threads in each run of the SUT will be deterministic. The better matching of
the threads in two separate runs is part of the future work.

Figure 6.1: An example of mapping the real tids to their substitutes, in order to allow
the comparison of the threads in two separate runs.
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6.1.3 Extending the Corpus

The corpus can be further extended by other functions, based on the baseline runtime data
from the previous section. First, we compute the average runtime 𝑡𝑓 of each measured
function 𝑓 as follows:

𝑡𝑓 =
𝑓_𝑡𝑖𝑚𝑒𝑠(𝑓)

𝑓_𝑐𝑎𝑙𝑙𝑠(𝑓)
(6.1)

Then, we are able to filter the functions according to the minimal function runtime value
(1000 microseconds by default), which can also be specified by user using the option
--min-func-time. Note that in the speed-up mode, we form the corpus just with re-
spect to this criteria (and also user-specified corpus). We assume that the longer running
functions are better candidates for speed-up simulation and in the case of shortly running
functions, only a small amount of noise is then injected into other functions, which can be
actually smaller noise than the instrumentation overhead of noise injecting (thus the results
are skewed). The user can print the information about functions and the average runtime
of the functions (by using --show-functions-w-time). An example of such output is
depicted in Listing 12.

1 ALL FUNCTIONS (204):
2 _ZN3re211FilteredRE2C1Ev <==> re2::FilteredRE2::FilteredRE2() ==> 71.21
3 _Znwm <==> operator new(unsigned long) ==> 1878.12
4 __tls_get_addr <==> __tls_get_addr ==> 799.67
5 _ZN3re26Regexp7DestroyEv <==> re2::Regexp::Destroy() ==> 2049.71
6 _ZN3re24ProgC2Ev <==> re2::Prog::Prog() ==> 136.51
7 ...
8 CORPUS (168):
9 _Znwm <==> operator new(unsigned long) ==> 1878.12

10 _ZN3re26Regexp7DestroyEv <==> re2::Regexp::Destroy() ==> 2049.71
11 ...

Listing 12: Example output of using --show-functions-w-time option.

6.1.4 Building the Pintool for Noise Injection

The Pintool we implemented for the noise injection (the so-called NoiseInjector Pintool) is
based on the Tracer Pintool. Hence, it includes collecting the runtime data and injecting
the noise. We repeat that noise has these three parameters in total: the noise location,
the noise type, and the noise strength. These parameters could be defined in the config.h
file, but we want to repeatedly modify the parameters in each perfblowing loop, which would
requires building the NoiseInjector Pintool in each iteration. Since the Pin allows us to
pass the arguments to a Pintool, we decided that the noise parameters will be passed as
the NoiseInjector Pintool arguments. At the beginning of this Pintool, it parses the given
arguments and sets them to the global variables, so they are globally accessible during
the analyses. This approach allows us to build the NoiseInjector Pintool in advance, and
skip compiling before every perfblowing experiment. In conclusion, we show a pseudocode
of the perfblowing initialisation phase in Listing 13.

42



1 # yield functions from SUT binary
2 f_selector = FunctionSelector(pin_mode_fs)
3 all_f, corpus = f_selector.run(binary)
4 # yield baseline data using Tracer Pintool
5 tracer = TracerPintool(pin_mode, all_f)
6 baseline_data = tracer.run(binary)
7 # extend the corpus
8 corpus_addition = filter_functions(all_f, baseline_data, min_func_time)
9 corpus.extend(corpus_addition)

10 # build the Pintool for noise injection
11 noise_injector = NoiseInjector(pin_mode, all_f)

Listing 13: Pseudocode of the perfblowing initialisation phase. The algorithm first builds
and executes the FunctionSelector Pintool, which analyses binaries and returns all func-
tions that are executed within SUT’s main function (all_f) and information about the func-
tions’ calls. These are necessary to decide whether a function met selection criteria con-
ditions and be added to the so-called corpus. The next step is to collect the baseline
data which are further necessary for evaluating the noise injection. Baseline data are de-
rived from the Tracer Pintool result, i.e. time elapsed within every function called from
the SUT’s binary main. Before starting the perfblowing loop, we build the NoiseInjector
Pintool, which is based on Tracer Pintool extended by a noise injection. The build is
performed only once, before the loop, and the noise parameters are passed to it at startup
as its arguments. The initialisation phase also contains other minor steps (e.g. generating
the configuration of the Pintools, creating a noise database for slow-down mode, or insert-
ing initialisation values for graphical visualisation), which we did not mention, but we will
return to them in the following sections.

6.2 Perfblowing loop
After the initialisation, we can start the loop of the perfblowing experiments. We defined
the perfblowing experiment as a tuple (𝑓, 𝑡, 𝑠,𝑚), such that if: (1) 𝑚 = 𝑠𝑙𝑜𝑤-𝑑𝑜𝑤𝑛 the noise
is injected at function 𝑓 of noise type 𝑡 and with strength 𝑠, and (2) if the 𝑚 = 𝑠𝑝𝑒𝑒𝑑-𝑢𝑝
the noise is injected in all other functions except the 𝑓 . The perfblowing loop consists of
choosing the values of the experiment tuple by running the experiment itself and evaluating
the results. The pseudocode of the perfblowing loop with its components is depicted in
Listing 14.

6.2.1 Selecting a Candidate

In each iteration we select a candidate 𝑓 , i.e. the function that we want to inject noise
into (slow-down mode), or a function that will not be noised, but all the others will (speed-
up mode). Each function is scored by its fitness value, initialised to 0 at the beginning.
During the perfblowing, fitness value of the function is refined according to the results of
the perfblowing experiments. We calculate the fitness value equally in both slow-down and
speed-up modes, but based on different indicators: (1) the influence in the slow-down and
(2) the opportunity in the speed-up mode.
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The influence of the perfblowing experiment 𝑝 = (𝑓, 𝑡, 𝑠,𝑚) denotes a ratio between
the so-called 𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝) and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝). The 𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝)
is the rate between the 𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 from the results of 𝑝 and 𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 from
the baseline data:

𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝) =
𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑝
𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑏

(6.2)

The function_degradation value is then defined similarly, as the rate between the time spent
in the function 𝑓 within the 𝑝 and baseline SUT run.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝) =
𝑓_𝑡𝑖𝑚𝑒𝑠𝑝(𝑓)

𝑓_𝑡𝑖𝑚𝑒𝑠𝑏(𝑓)
(6.3)

Therefore, the influence value of the 𝑝 is defined as follows:

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑝) =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝)
(6.4)

In the speed-up mode, the perfblowing experiment 𝑝 = (𝑓, 𝑡, 𝑠,𝑚) has the indicator
opportunity computed as the sum of the opt_score for each thread, where opt_score of
a thread denotes the ratio between a thread runtime optimisation and function optimisation
in 𝑝. Although each experiment has a specified noise strength, we cannot say how much
of the noise we have actually injected into the SUT (in microseconds)6. However, we can
approximate the injected amount of noise using the following calculation:

𝑛𝑜𝑖𝑠𝑒_𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑_𝑢𝑠(𝑡) =
𝑡_𝑡𝑖𝑚𝑒𝑠𝑝(𝑡)− 𝑡_𝑡𝑖𝑚𝑒𝑠𝑏(𝑡)

𝑛𝑜𝑡_𝑓_𝑐𝑎𝑙𝑙𝑠_𝑖𝑛(𝑡)
(6.5)

The approximation is based on the difference between baseline thread runtime and noised
thread runtime to estimate the total injected noise in microseconds. When we divide
the total amount of noise injected in the thread 𝑡 by the calls of other functions than
𝑓 within this thread, we can approximate the average amount of noise injected into one
function in thread 𝑡. For clarity, we will also define the all_calls(t) as the number of all
function calls within the thread 𝑡:

𝑎𝑙𝑙_𝑐𝑎𝑙𝑙𝑠(𝑡) = 𝑓_𝑐𝑎𝑙𝑙𝑠_𝑖𝑛(𝑡) + 𝑛𝑜𝑡_𝑓_𝑐𝑎𝑙𝑙𝑠_𝑖𝑛(𝑡) (6.6)

Now we can calculate the estimated speed-up of thread 𝑡 (in microseconds) as subtraction
of two elements: (1) simulation that all called functions were blown-up, i.e. sum of base-
line thread runtime and noise in each function call and (2) the runtime of the thread in
the experiment 𝑝 (where 𝑓 was not blown-up):

𝑠𝑝𝑒𝑒𝑑𝑢𝑝(𝑡) = (𝑡_𝑡𝑖𝑚𝑒𝑠𝑏(𝑡) + 𝑎𝑙𝑙_𝑐𝑎𝑙𝑙𝑠(𝑡) * 𝑛𝑜𝑖𝑠𝑒_𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑_𝑢𝑠(𝑡))− 𝑡_𝑡𝑖𝑚𝑒𝑠𝑝(𝑡) (6.7)

Finally, the opt_score of a thread 𝑡 in perfblowing experiment 𝑝 is computed as the ratio
between the runtime_optimisation(p,t) and function_optimisation(p,t):

𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑡) =
𝑠𝑝𝑒𝑒𝑑𝑢𝑝(𝑡)

𝑡_𝑡𝑖𝑚𝑒𝑠𝑏(𝑡)
(6.8)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑡) =
𝑛𝑜𝑖𝑠𝑒_𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑_𝑢𝑠(𝑡)

𝑡𝑓
(6.9)

6functions that are used for timed noise guarantees the lower time limit of how long will be the thread
suspended, and other noise types implementations do not even have time parameters
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𝑜𝑝𝑡_𝑠𝑐𝑜𝑟𝑒(𝑝, 𝑡) =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑡)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑡)
(6.10)

Let 𝑡𝑖𝑑𝑠 be the set of the all thread ids observed during the SUT execution. We can define
the opportunity value of the experiment 𝑝 as follows:

𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦(𝑝) =
∑︁

𝑡∈ 𝑡𝑖𝑑𝑠

𝑜𝑝𝑡_𝑠𝑐𝑜𝑟𝑒(𝑡) (6.11)

When we characterise the indicators of the perfblowing experiment, which serves as its
evaluation value, we can define the fitness value of the function 𝑓 . Let 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝑝) be
the indicator value of the perfblowing experiment 𝑝 (according to the selected perfblowing
mode), and 𝑃𝑓 be the set of the perfblowing experiments on function 𝑓 . The fitness value
of the function 𝑓 is computed as the average indicator value of the performed perfblowing
experiments on the 𝑓 :

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑓) =

∑︀
𝑝∈𝑃𝑓

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝑝)

|𝑃𝑓 |
(6.12)

After each perfblowing experiment, the fitness value of the selected function is recom-
puted. When selecting a candidate function for the next perfblowing experiment, we take
the fitness values into account. In particular, we divide the sorted corpus functions with
respect to their fitness and divide them into five intervals. We derive the number of intervals
from [33], because five intervals seem to be appropriate, since with fewer intervals functions
are in too big groups and in case of more intervals, functions with similar score are point-
lessly scattered. Each interval has assigned a weight 𝑤, which is linearly decrementing with
the interval index, i.e. the weight of the first interval is the highest: 𝑤 = 5, the weight of
the second interval is 𝑤 = 4 and so on. Then we perform a weighted interval selection and
randomly select a function from this interval. The intention behind this idea is to select
a function with a lower fitness value, so we will do more perfblowing experiments with them
if the impact on performance has not been sufficiently enforced yet. The function selection
is also depicted in the Figure 6.2.

Figure 6.2: An example of selecting a function from the corpus. First we assign weights to
the intervals of the sorted corpus, and then select an interval with the respect to the weights
(in this example, interval with weight 𝑤 = 4). Finally, we select randomly from the previ-
ously selected interval.
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6.2.2 Defining the Remaining Noise Parameters

In the previous section, we showed how to select where to inject the noise (i.e. the noise
location parameter). For this location we now have to determine the noise type and noise
strength. This section describes how we infer those parameters inside the perfblowing loop.

As we discussed in Section 3.3, Pin offers several noise types. The strength of each of
these types is represented as follows:

• nanosleep: number of nanoseconds of sleep,

• usleep: number of microseconds of sleep,

• PIN_Sleep: number of milliseconds of sleep,

• PIN_Yield: number of subsequent yields of the processor,

• busy waiting: number of iterations in busy waiting loop.

The implementation of selecting the noise type and noise strength varies on the selected
perfblowing mode. We generate an ordered list of the noise instances7 within the slow-down
mode, which we previously referred to as noise database. The list begins with the nanosleep
noise type and strength defined by minimal timed noise converted to nanoseconds. In
each iteration we multiply this strength by growth index constant. If the strength ex-
ceeds the value defined as maximum timed noise, the noise type changes to usleep and
the strength is again set to minimal timed noise in microseconds. We continue to iterate
over all combinations of noise type and strength. The values minimal timed noise and
maximal timed noise are used for the noise types: nanosleep, microsleep, PIN_Sleep;
while for the noise type we instead use PIN_Yield it is minimal yield noise and maximum
yield noise constants, and for the noise type busy waiting we use minimal busy noise and
maximal busy noise. All these boundaries, as well as the growth index, can be set using
the framework options. In conclusion, the order of the combination of type and strength of
noise is as follows:

(1) (nanosleep, minimal timed noise[ns]), . . . , (nanosleep, 𝑥1[ns]),
where 𝑥1* growth index > maximal timed noise [ns],

(2) (usleep, minimal timed noise[us]), . . . , (usleep, 𝑥2[us]),
where 𝑥2* growth index > maximal timed noise [us],

(3) (PIN_Sleep, minimal timed noise[ms]), . . . , (PIN_Sleep, 𝑥3[ms]),
where 𝑥3* growth index > maximal timed noise [ms],

(4) (PIN_Yield, minimal yield noise), . . . , (PIN_Yield, 𝑥4),
where 𝑥4* growth index > maximal yield noise, and

(5) (busy waiting, minimal busy noise), . . . , (busy waiting, 𝑥5),
where 𝑥5* growth index > maximal busy noise.

However, in slow-down perfblowing mode, we want to simulate the speed-up of the func-
tion 𝑓 by 𝑥 microseconds by injecting the noise of amount 𝑥 in all other functions. The speed-
up, i.e. the injected noise, must be a portion of the 𝑡𝑓 since 𝑓 can be actually sped-up at

7a noise instance is one combination of noise type and strength, e.g. (usleep, 1000)
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most by 0 − 100%. Thus, we are limited to timed types of noise. We decided to use
nanosleep because it has the smallest resolution, and we assume it should inject the most
accurate amount of desired noise.

After injecting the noise, we approximate the injected noise, w.r.t. the Equation 6.5.
The portion of the 𝑡𝑓 which will be injected is incremented according to the sampling value,
which can also be customised using --sampling option (10% is default). For example, if
the we want to examine function 𝑓 and we use 10% sampling, first we inject the noise with
strength equal to 𝑡𝑓 * 0.1, in next iteration the noise with strength 𝑡𝑓 * 0.2 and so on until
we get to 100%, i.e. strength equal to 𝑡𝑓 .

The framework also offers to use the –full-analysis option, which forces that each
function in the corpus will be subjected to a perfblowing experiment with each noise type
and noise strength.

6.2.3 Perfblowing Experiment

This section covers the core of the perfblowing: running the perfblowing experiment
and analysing the perfblowing experiment outcome. The NoiseInjector Pintool is
built and all the noise parameters are selected, therefore we are ready to conduct perfblowing
experiment. In this part, we execute an external command: pin -t noise_injector.so
-s {strength} -t {type} -l {location} -- SUT_binary [args] [workload], where
strength, type, and location denote the noise parameters, and args, workload denote
SUT arguments and workload defined by user. Since the NoiseInjector Pintool is built
upon the Tracer Pintool, the output file has the same format. We gather the same in-
formation about the perfblowing experiment as in the step obtaining baseline runtime
data.

Depending on the perfblowing mode, we distinguish two experiment indicators: influ-
ence and opportunity. The influence of the perfblowing experiment 𝑝 is defined (Equa-
tion 6.4) as a ratio between the runtime_degradation(p) and function_degradation(p).
The intuition behind is that the experiment is scored higher if it triggers greater runtime
degradation compared to the function blow-up.

Let us suppose that 𝑝1 = (𝑓1, 𝑡1, 𝑠1,𝑚) and 𝑝2 = (𝑓2, 𝑡2, 𝑠2,𝑚) are perfblowing exper-
iments, where 𝑝1 blows 𝑓1 so 𝑓1 takes 2× more time and the SUT runtime degrades by
30%, and 𝑝2 blows 𝑓2 to 𝑓2 takes 4× more time and the SUT runtime degrades by 20%.
Intuitively we can say, that 𝑝1 shows that 𝑓1 has bigger influence, since:

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑝1) =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝1)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝1)
=

1.3

2
= 0.65

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑝2) =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝2)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑝2)
=

1.2

4
= 0.3

The example is also illustrated in Figure 6.3, where the influence value denotes the slope
of the line, i.e. how fast does the line grow. The intuition is that the steeper the slope
the greater influence the function has on program runtime performance. The runtime_deg
denotes overall degradation of runtime and function_deg denotes degradation of function
runtime.
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Figure 6.3: An illustration of the example with two experiments and their influence values.

Analogously, using the speed-up perfblowing mode, we compute opportunity as an indi-
cator of perfblowing experiment 𝑝. The opportunity is defined as a sum of opt_score of each
SUT’s thread, where opt_score(p,t) denotes the ratio between runtime_optimisation(p,t)
and function_optimisation(p,t) (Equation 6.10). Again, let us suppose that 𝑝1 = (𝑓1, 𝑡1, 𝑠1,𝑚)
and 𝑝2 = (𝑓2, 𝑡2, 𝑠2,𝑚) are perfblowing experiments, where 𝑝1 simulate speed-up of 𝑓1 by
20%, 𝑝2 simulate speed-up of 𝑓2 by 40%, and that SUT run consist of only one thread 𝑡, for
simplicity. We can intuitively say, that the 𝑝1 represents better optimisation opportunity,
since:

𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦(𝑝1) = 𝑜𝑝𝑡_𝑠𝑐𝑜𝑟𝑒(𝑝1, 𝑡) =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝1, 𝑡)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝1, 𝑡)
=

0.1

0.2
= 0.5

𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦(𝑝2) = 𝑜𝑝𝑡_𝑠𝑐𝑜𝑟𝑒(𝑝2, 𝑡) =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝2, 𝑡)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑝2, 𝑡)
=

0.05

0.4
= 0.125

The particular opt_score of the experiments 𝑝1, 𝑝2 (as the slopes of lines) within
the thread 𝑡 is depicted in the Figure 6.4. The greater line slope determines an experi-
ment with the better opt_score, i.e. 𝑝1 represents better optimisation opportunity.

Figure 6.4: An illustration of the example with two experiments and their opportunity
values.
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Once we compute the indicator values of the perfblowing experiment, the fitness value
of the selected function is refined according to Equation 6.12. As last, we store the data
of the performed experiment for the purposes of further interpretation. The summary of
the perfblowing loop is written in pseudocode in Listing 14.

1 while conditions_to_exit_not_met:
2 # select function from the corpus
3 function = select_candidate(corpus)
4 # get remaining noise parameters
5 noise = function.get_noise(perfblowing_mode)
6 # run noise injector with SUT binary
7 data = NoiseInjector.run(binary, function, noise, perfblowing_mode)
8 # handle theresults
9 results = parse_data(data, perfblowing_mode)

10 indicator = evaluate(results, baseline_results, perfblowing_mode)
11 # recompute the fitness value of the function
12 function.refine_fitness(indicator, perfblowing_mode)
13 # add results to stats
14 stats.add(results)

Listing 14: Pseudocode of the perfblowing loop. The conditions of leaving the perfblowing
loop are either: (1) the specified timeout has been exceeded, or (2) the specified number
of the loop iterations has been executed, or (3) all corpus functions were fully analysed,
i.e. with each noise type and each noise strength. At the beginning, we select a function
which will be subjected to the perfblowing experiment (based on their fitness value), and
select the remaining noise parameters. Then we run the NoiseInjector Pintool together
with the SUT binary and specified noise, which will be injected. Resulting output file is
parsed and experiment results are compared to the baseline results, in order to evaluate
the perfblowing experiment using indicator value. At last, the indicator value is used for
fitness refinement of selected function and the results are added to the stats so at the end
we will be able to interpret them.

6.3 Interpretation of Results
This section will describe the last step of the interpretation of the collected data from
the perfblowing loop. The result of each perfblowing experiment is recorded to the stats so
we can interpret them at the end.

6.3.1 Tabular Interpretation

The first type of interpretation is a textual overview of the achieved results. We provide
a table with the top 50 functions sorted by their fitness value (i.e. the average influence
or opportunity value of experiments conducted on the function). Moreover, we include
the number of experiments conducted on the function, the portion of the time that SUT
spent in the function, and the number of function calls (both values are from the baseline
SUT run). An example of the tabular interpretation of the perfblowing can be seen in
Listing 15.
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1 id Function Fitness Exp Time % Calls
2 --- --------------------------------- --------- --- -------- -----
3 1 setlocale 0.87232 2 64.7929 1
4 2 fclose 0.16963 4 10.4438 2
5 3 __sysconf 0.10954 3 9.4378 12
6 4 _IO_file_close_it 0.08945 6 6.0059 2
7 5 getenv 0.07531 2 6.7455 29
8 6 __default_morecore 0.05112 4 2.7514 2
9 7 __strdup 0.03892 3 3.2248 15

10 8 __libc_free 0.03885 6 3.0473 5
11 9 __cxa_atexit 0.03516 5 2.1301 2
12 10 __getpagesize 0.03188 5 2.7218 13
13 ...
14 41 __fxstat64 0.00988 8 0.7396 3
15 42 read 0.00966 6 0.5918 2
16 43 mmap64 0.00908 15 0.5917 2
17 44 fileno 0.00838 3 0.4142 2
18 45 _IO_unsave_markers 0.00673 7 0.4437 2
19 46 _IO_file_sync 0.00642 12 0.4437 2
20 47 __fpending 0.00629 15 0.4142 2
21 48 brk 0.00598 11 0.4437 2
22 49 _IO_setb 0.00589 17 0.4142 2
23 50 _IO_default_finish 0.00575 9 0.4142 2

Listing 15: Example tabular interpretation of perfblowing results.

6.3.2 Timeline Graphs

The second interpretation of our framework is the graphical representation of the executions
of functions during a SUT run. We choose the perfblowing experiment with the highest
indicator value, and plot the data from the run in the form of Gantt chart. The x-axis
represents microseconds elapsed from the start of the measuring and the y-axis represents
the runs of individual threads. An example timeline graph is in Figure 6.5. All generated
graphs are created using the plotly8 package. Moreover, the graphs are interactive (e.g.
allows zoom in/out or shows data on hovering on particular data).

6.3.3 Causal Profiles

The other graphical interpretation of perfblowing results is causal profile. In this work,
we distinguish two types of causal profiles: (1) influence causal profile: illustration of
how the SUT runtime will degrade if we blow-up a function by a certain amount, and (2)
optimisation causal profile: demonstration of how much we would optimise the SUT runtime
if we optimise a function by a certain amount. The influence causal profile corresponds
with the Figure 6.3, only groups the experiments of one function together. Analogously,
optimisation causal profile (or profiles, depends on how much thread a SUT run involves)
is outlined in Figure 6.4, where we also group all the experiments on a function together.
Examples of causal profiles are shown in Figures 6.6 and 6.7.

8plotly — https://plotly.com/python/
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Figure 6.5: An example of a timeline graph from one of the perfblowing results. Each
rectangle represents a function call within a certain thread. The orange rectangles denotes
the function we blow-up and the functions represented by blue and purple rectangles are
waiting for other thread to finish their job. The legend of the graph listing all the functions
is omitted from this picture.

Figure 6.6: An example of an influence causal profile. The graph demonstrates the depen-
dence of degradation of overall runtime on degradation of particular functions for various
perfblowing experiments. The more rapidly the dependence grows, the more likely the func-
tion is a bottleneck.
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Figure 6.7: An example of an optimisation causal profile. The graph describes how
optimisation of a function improves the runtime of a thread (with tid mapping to 0 in
this case). Based on this causal profile, the user may observe the effect of the eventual
optimisation of the functions.
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Chapter 7

Experimental Evaluation

We evaluated the proposed Perun-Blower on two case studies and used it for locating
performance bottlenecks as well as for estimating the speed-up of possible optimisations.
This chapter analyses the degradation and optimisation impact of functions in two selected
projects: google/re2 library for regular expressions and Z3 theorem prover.

Machine Specification. We conducted the experiments on a reference machine with
the following specification:

Machine Dell Precision 5510
OS Ubuntu 19.10 64-bit
Arch x86_64
Cache 128KiB L1, 1MiB L2, 8MiB L3
CPU Intel Core i7-6820HQ CPU @ 2.70GHz × 8
RAM 16 GiB @ 2133 MHz
SSD 256 GiB SATA 6Gb/s

7.1 google/re2
Our first case study is the perfblowing of the regular expression library google/re21. This
library is based on finite-state machine and automata theory, in contrast to almost all other
regular expression libraries, leveraging the backtracking approach. Google uses the library
in its products like Gmail, Google Documents or Google Sheets [5].

The library Wiki2 lists two basic operators in the library’s API: (1) RE2::FullMatch
that requires the regular expression to match the entire input text, and (2) RE2::Partial
Match that matches a substring of the input text, returning the leftmost-longest match. We
used as a subject of the perfblowing the file testinstall.cc from the library repository,
that is purposed for testing the library installation. The file’s code contains calling both of
the main operators and other functions from the library (code is available in Listing 23).

1google/re2 — https://github.com/google/re2
2re2 Wiki — https://github.com/google/re2/wiki/CplusplusAPI
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Slow-down Evaluation

The first experiment is the slow-down perfblowing with the following configuration:

Options
perfblowing mode slow-down
iterations 1500
Pin mode Probe
main function main
function selection criteria calls, call-sites
minimal function runtime [us] 1 000
timed_noise_min [us] 1 000
timed_noise_max [us] 1 000 000
yield_noise_min 1 000
yield_noise_max 1 000 000
busy_waiting_noise_min 100 000
busy_waiting_noise_max 100 000 000
noise_growth_index 2
Derived properties
| all_f | 204
| corpus | 168

Figure 7.1: Influence causal profile of the experiment on google/re2. The graph’s leg-
end is not included since there were up to 154 functions in a corpus; each experiment is
represented by dot. The long lines which grow at a small angle represent the functions
with small influence. The perfblowing algorithm tries to do more experiments with these
functions to enforce the manifestation of the possible bottlenecks However, we are more
functions represented by steep lines (i.e. the functions with the greater fitness from the re-
sults in Listing 21), that denotes that small relative function degradation led to significant
runtime degradation.
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The tabular output of the perfblowin in Listing 21 lists top 50 functions according to
the fitness value. Figure 7.1 presents the influence causal profile from this testing, which
express how a relative function degradation impact the program runtime.

However, we were more interested in the functions that grow most rapidly along with
the ratio of their blown-up. From the experiment output (Listing 21), we selected top
19 functions (with fitness value higher than 0.3) and performed full analysis, i.e. each
function was blown up with each noise type and strength. The configuration is the same
as in previous measurement, with exception of the corpus (top functions from the previous
experiment). The results are in Listing 16 and in Figure 7.2.

1 id Function Fitness Exp Time % Calls
2 --- --------------------------------- --------- --- -------- -----
3 1 re2::RE2::Init(re2::StringPiec... 0.74046 55 54.7954 3
4 2 re2::Compiler::Compile(re2::Re... 0.64937 55 44.6896 4
5 3 re2::Regexp::CompileToProg(long) 0.62105 55 38.5375 3
6 4 re2::RE2::RE2(char const*) 0.59843 55 32.0122 2
7 5 re2::RE2::DoMatch(re2::StringP... 0.50262 55 25.2343 3
8 6 re2::RE2::PartialMatchN(re2::S... 0.49060 55 20.4527 2
9 7 re2::Compiler::Finish(re2::Reg... 0.45397 55 22.9657 4

10 8 re2::Prog::Flatten() 0.38251 55 16.7598 4
11 9 re2::Regexp::Parse(re2::String... 0.29232 55 9.3870 3
12 10 re2::DFA::SearchFFT(re2::DFA::... 0.28342 55 6.7746 2
13 11 re2::Regexp::Walker<re2::Frag>... 0.28323 55 10.0455 4
14 12 bool re2::DFA::InlinedSearchLo... 0.28024 55 6.7159 2
15 13 re2::RE2::~RE2() 0.27904 55 8.7205 3
16 14 re2::Regexp::Simplify() 0.25068 55 9.4620 5
17 15 __once_proxy 0.22033 55 8.4076 6
18 16 pthread_once 0.21551 55 9.2045 8
19 17 re2::Prog::MarkSuccessors(re2:... 0.17423 55 4.6821 4
20 18 re2::DFA::~DFA() 0.16128 55 4.4539 4
21 19 re2::Prog::IsOnePass() 0.14701 55 3.0736 3

Listing 16: Text output from the second experiment on the google/re2 library where we
focused on the top 19 functions from the previous experiment. With the full analysis type of
the perfblowing, we injected noise of each type and strength to each corpus function. There-
fore, we performed 55 perfblowing experiments with each listed function. Value in Time and
Calls columns denote how much of the program runtime the function took and how much
was the function called in the baseline testing. As one can notice, the highest influence
value has the re2::RE2::Init function, in which the program spent over 54% of its time.
This initialisation function includes parsing and compiling the regular expression, which is,
indeed, a time-consuming task. In this case, fitness value 0.74046 says that if this function
took 10× more time, the program runtime would degrade approximately 7.4×. Moreover,
in this Listing, we can see other interesting functions, e.g. re2::DFA::SearchFFT, which
does not take much time resources (~6.77%), but its influence value is relatively high (over
0.28). This function is a specialised version of function DFA::InlinedSearchLoop (where
the FFT denotes the true/false values used as the DFA::InlinedSearchLoop parameters),
which represents the generic search loop, that searches text for a match.
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Figure 7.2: Visualisation of the second slow-down experiment with the google/re2 li-
brary. More growing functions have greater influence, as listed in the results of this exper-
iment in Listing 16. Note that we blow up a function maximally by ~1600×, compared to
the first experiment with this library, where the blown up exceeded 140 thousand. The rea-
son is that we focus on the smaller amount of functions, and these functions take more
portion of the program runtime (in comparison to the functions of the first experiment);
thus, their relative degradation (function_deg) is smaller, but the impact on the total
runtime is significant.

Speed-up Evaluation

Next, we evaluated the speed-up mode of Perun-Blower on this SUT and workload. We
empirically set the minimal function runtime to 5000 microseconds to focus on the top 10
longest-running functions and thus skip perfblowing of short=running functions. The con-
figuration of this experiment is the following:

Options
perfblowing mode speed-up
Pin mode Probe
main function main
minimal function runtime [us] 5000
sampling [%] 10
Derived properties
| all_f | 204
| corpus | 10

The results of this experiment are available in Listing 17. This results show that the im-
plementation should be correct since, in this case, only one thread was started, so the opti-
misation potential (i.e. fitness value) should directly depend on how much time SUT spent
in a given function.
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1 id Function Fitness Exp Time % Calls
2 --- --------------------------------- --------- --- -------- -----
3 1 re2::RE2::Init(re2::StringPiec... 0.54941 10 54.9414 3
4 2 re2::Compiler::Compile(re2::Re... 0.52840 10 52.8404 4
5 3 re2::Regexp::CompileToProg(lon... 0.40913 10 40.9131 3
6 4 re2::RE2::RE2(char const*) 0.32281 10 32.2814 2
7 5 re2::RE2::DoMatch(re2::StringP... 0.28968 10 28.968 3
8 6 re2::RE2::PartialMatchN(re2::S... 0.24766 10 24.766 2
9 7 re2::FilteredRE2::Add(re2::Str... 0.22868 10 22.8682 1

10 8 re2::RE2::RE2(re2::StringPiece... 0.22773 10 22.7738 1
11 9 re2::FilteredRE2::Compile(std:... 0.06703 10 6.7034 1
12 10 re2::Prefilter::FromRE2(re2::R... 0.06048 10 6.0483 1

Listing 17: Tabular results of the speed-up perfblowing of google/re2 functions. The fit-
ness value correlates with the time portion that SUT spent in the function, which was
exactly what we expected. For example, in the extreme case if we optimised the function
re2::RE2::Init by 100% (i.e. we would skip the function) we should save the ~54% of
the SUT runtime: based on Equation 6.10 we can compute the 𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 as
𝑜𝑝𝑡_𝑠𝑐𝑜𝑟𝑒*𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛, which gives us 0.54941*100 = 54.941. (notice that we
can treat 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 as the 𝑜𝑝𝑡_𝑠𝑐𝑜𝑟𝑒, because each experiment with function 𝑓 should have
approximately the same 𝑜𝑝𝑡_𝑠𝑐𝑜𝑟𝑒 in one-threaded SUT.)

Figure 7.3: Optimisation causal profile from the experiment on google/re2 library.
The more growing lines represent functions with higher optimisation impact on the to-
tal runtime of the SUT. The individual lines correspond to the resulting order in List-
ing 17, thus, for example, the two steepest lines represent experiments on functions
re2::RE2::Init and re2::Compiler::Compile, while experiments with a pair of the last
functions re2::FilteredRE2::Compile and re2::Prefilter::FromRE2, are the least in-
creasing lines. Based on this profile, the user can consider attempts of optimising a function.
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7.2 Z3 Theorem Prover
Z33 is a state-of-the art theorem prover developed by Microsoft Research. The prover can
be used to check the satisfiability of logical formulas over one or more theories. Z3 supports
arithmetic, fixed-size bit-vectors, extensional arrays, data types, uninterpreted functions,
and quantifiers. It can be applied, e.g., for static checking, test case generation, or predicate
abstraction [7].

To evaluate perfblowing with Z3, we have to provide an input (workload), i.e. the
so-called Z3 script. Z3 script is a sequence of commands (e.g. command declare-const
that declares a constant of a given type). We chose a simple Z3 script from the Microsoft
Research tutorial4, shown in Listing 18.

1 (set-logic QF_LIA)
2 (declare-const x Int)
3 (declare-const y Int)
4 (assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))
5 (check-sat)

Listing 18: Z3 script used for evaluation.

Moreover, we tested the Z3 in parallel solving mode. By setting parallel.enable=true
as an argument, we force Z3 to spawn a number of worker threads proportional to the num-
ber of available CPU cores (8 according to the machine specification).

Slow-down Evaluation

Compared to evaluation of google/re2, the run of Z3 with the specified argument for
parallel solving and listed Z3 script as its workload, includes much more function calls.
Therefore, the output file of each perfblowing experiment is quite large5 and parsing it is
more time consuming.

Hence, we limit ourselves to 500 iterations of the perfblowing loop and just one cri-
terion (call-sites) for the function selection to reduce the size of the corpus. Also, we
slightly modified the experiment configuration in order to reduce the experiment runtime.
The maximal noise values were set to lower values, and we also increased the growth index
so the noise strength could rise more quickly. We measure the data of the Z3 functions in
the scope of function __libc_start_main, since the tested binary does not involve default
main function. The complete configuration of the first evaluation on Z3 theorem prover is
as follows:

3Z3 Theorem Prover — https://github.com/Z3Prover/z3
4Programming Z3 — https://theory.stanford.edu/~nikolaj/programmingz3.html
5output file contains ~32k records with Z3 case study, compared to ~6.3k records with google/re2 case

study
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Options
perfblowing mode slow-down
iterations 500
Pin mode Probe
main function _ _libc_start_main
minimal function runtime [us] 1 000
function selection criteria call-sites
timed_noise_min [us] 1 000
timed_noise_max [us] 50 000
yield_noise_min 1 000
yield_noise_max 50 000
busy_waiting_noise_min 100 000
busy_waiting_noise_max 5 000 000
noise_growth_index 3
Derived properties
| all_f | 260
| corpus | 97

The tabular interpretation of the perfblowing results containing a list of top 50 functions
is in Listing 22, while the graphical form of results, i.e. influence causal profile, in Figure 7.4.

Figure 7.4: Influence causal profile from the first evaluation of Z3. Most functions have low
influence, and with the growing function blow-up, the runtime does not degrade much. Some
functions grew more quickly, but they were selected only in a few perfblowing experiments.
These functions are represented by short lines which rise under a greater angle. The most
outstanding representative of these functions is __libc_free (the long steep line).

Similarly to evaluation on google/re2, we performed follow-up full analysis experiment,
with smaller set of functions. Here we selected top 13 functions (with the influence value
higher than 0.2) from the previous experiment.
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However, during the perfblowing we observe that program hangs6 when the certain
amount of noise is injected into one of these three functions: wait*7, __lll_lock_wait,
and pthread_cond_wait. We present the noise type and strength which triggered the hangs
in Table 7.1.

Table 7.1: Table of Z3 problematic functions with the detail about the injected noise
which led the program to hang. We also provide additional information about how much
time portion of total runtime the function took and how many times the function was
called. These data are from the baseline run from the first evaluation results, included in
Listing 22.

Function pthread_cond_wait __lll_lock_wait wait*
Noise type nanosleep nanosleep nanosleep
Noise strength 27× 106 (27 ms) 27× 106 (27 ms) 81× 106 (81 ms)
Time [%] 62.711 3.6833 63.1441
Calls 7 21 7

Hence, we performed the full analysis experiment omitting these functions. Other than
that, the experiment has the same configuration as was stated in the first attempt. We
present the results of the second perfblowing evaluation on Z3 in Listing 19 and Figure 7.5.

1 id Function Fitness Exp Time % Calls
2 --- --------------------------------- --------- --- -------- -----
3 1 std::locale::_Impl::_Impl(unsi... 0.61394 25 3.9184 1
4 2 std::ctype<wchar_t>::ctype(uns... 0.49758 25 2.5799 1
5 3 std::ctype<wchar_t>::_M_initia... 0.48877 25 2.5620 1
6 4 __GI___pthread_timedjoin_ex 0.44234 25 8.6937 8
7 5 __pthread_once_slow 0.43283 25 4.0150 3
8 6 pthread_join 0.43196 25 8.7295 8
9 7 std::thread::join() 0.42156 25 8.7663 8

10 8 __libc_free 0.20948 25 20.3869 8216
11 9 std::basic_ios<char, std::char... 0.20843 25 5.4144 41
12 10 std::condition_variable::notif... 0.05250 25 0.0734 2

Listing 19: Output from the second experiment on the z3: top 10 functions,
sorted by the fitness value. We observe many functions with low time percent-
age of the program runtime have quite a but big influence. For example function
std::locale::_Impl::_Impl(unsigned long) is the best scored function with fitness say-
ing that if this function will take 10× more time, the program runtime will be slowed down
~6.139× in average. The function is followed by two functions from std::ctype class, with
quite big performance impact considering their time-consumption. The rest of the functions
have smaller fitness value in spite that they consumed quite much time. However, these
functions were also more called, and the fitness value is computed concerning the relative
function degradation; thus, we regard the average function runtime.

6The program does not exit within several hours (e.g. we keep running the SUT for 3 hours without
the program exit).

7We replaced function std::condition_variable::wait(std::unique_lock&) with wait* to save space.
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Figure 7.5: Influence causal profile of the second experiment on Z3. The three longest
lines represent experiments with the functions std::condition_variable::notify_all,
std::basic_ios<char, std::char_traits<char> >::init, and __libc_free, from
the evaluation Table 19. The lines outstand because, compared to others, one execu-
tion of such function took a small amount of time. The blue line represents perfblowing
experiments with the __libc_free function, which, however, does not have the best fit-
ness. Higher scored functions achieved higher overall runtime degradation while inject-
ing less noise; thus, the influence of these experiments was greater than in the case of
the __libc_free function. In the graph, we do not present the results of performance
experiments with function degradation value over 100 for the sake of presentation.

Speed-up Evaluation

To test the speed-up perfblowing on Z3, we had to lower the value of the minimal func-
tion runtime to 1000 microseconds in order to obtain a corpus with nine longest-running
functions within the SUT. We list the results in Listing 20.

Options
perfblowing mode speed-up
Pin mode Probe
main function _ _libc_start_main
minimal function runtime [us] 1000
sampling [%] 20
Derived properties
| all_f | 260
| corpus | 9

Examining the timeline graph of the best perfblowing experiment observed (which is
one of the results interpretation), we found that the program run starts with the main
thread (mapping to the tid 0), which later spawns eight more threads (which corresponds
with the number of CPU cores of the reference machine).
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In addition, from this graph, we extract the data about which of the corpus functions
are called in which threads to understand the perfblowing results better. This information
is included in Table 7.2.

Table 7.2: Function calls within the program threads. The table cells mark whether
the function represented by its id from Listing 20 is called from within the program thread.
One can observe that functions with id 1-3 were called in threads 2-8, functions 4-10 were
only called within the main thread, and thread 1 did not call any corpus functions.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑑∖𝑡𝑖𝑑 0 1 2 3 4 5 6 7 8
1 8 8 4 4 4 4 4 4 4

2 8 8 4 4 4 4 4 4 4

3 8 8 4 4 4 4 4 4 4

4 4 8 8 8 8 8 8 8 8

5 4 8 8 8 8 8 8 8 8

6 4 8 8 8 8 8 8 8 8

7 4 8 8 8 8 8 8 8 8

8 4 8 8 8 8 8 8 8 8

9 4 8 8 8 8 8 8 8 8

10 4 8 8 8 8 8 8 8 8

1 id Function Fitness Exp Time % Calls
2 --- --------------------------------- --------- --- -------- -----
3 1 std::condition_variable::wait(... 6.03911 5 50.4574 7
4 2 pthread_cond_wait 6.01527 5 50.2582 7
5 3 __pthread_mutex_cond_lock 0.26516 5 2.2154 7
6 4 std::thread::join() 0.11902 5 11.9027 8
7 5 pthread_join 0.11851 5 11.8518 8
8 6 __GI___pthread_timedjoin_ex 0.11804 5 11.8045 8
9 7 __pthread_once_slow 0.03974 5 3.9740 3

10 8 std::locale::_Impl::_Impl(unsi... 0.03897 5 3.8977 1
11 9 std::ctype<wchar_t>::ctype(uns... 0.03004 5 3.0043 1
12 10 std::ctype<wchar_t>::_M_initia... 0.02987 5 2.9873 1

Listing 20: Results table of the speed-up experiments with Z3. The first two functions
(used to block the current thread on a condition variable) with the highest fitness value
are marked as the best opportunities for optimisation, since their fitness is refined in each
perfblowing experiment based on opt_score from seven threads in total. This fitness score
should tell the user that the optimisation of these functions reduces most of the compu-
tational time. In these seven threads, the function __pthread_mutex_cond_lock is also
called, but it does not take as much time, and so its optimisation will not bring as much
benefit as the optimisation of the first two functions. The other functions (4-10) are called
only from the main thread, and so their fitness function correlates with the portion of time
spent in this them, compared to the total runtime of the main thread.

The second part of the results is a set of optimisation causal profiles, one profile for
each thread. However, thread 1 does not involve calling any of the tested functions, and so
its causal profile does not give any useful information.
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Moreover, the causal profiles of threads 2-8 have almost identical results. Hence, we
decided to present a causal profile of the main thread, i.e. thread 0 (see Figure 7.6) and
one of the threads 2-8 (specifically thread 2, see Figure 7.7).

Figure 7.6: Optimisation causal profile of the main thread. The triple of the most
growing lines represent the speed-up experiments of the functions std::thread::join(),
pthread_join, and __GI___pthread_timedjoin_ex, i.e. the top 3 scored functions called
from this thread. We can say from the graph that if we improved any of these functions by
~70 %, we would achieve thread acceleration by~8%. Other lines correspond with the perf-
blowing experiments on functions 7-10.

Figure 7.7: Optimisation causal profile of thread 2. Two functions have big optimisation
potential, i.e. functions wait* and pthread_cond_wait. The slope of this line is ~0.85
which means that if we optimise these functions by, for example, 100%, we would save up
~85% of the computational time of the thread. There is also a line representing perfblow-
ing experiments on function __pthread_mutex_cond_lock, but with the low increasing,
represented by the slope equal to ~0.03.
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Chapter 8

Conclusion

In this work, we proposed an algorithm that automatically injects noise into SUT functions
and analyses the effect of the noise injection. Noise injection is performed repeatedly: one
perfblowing experiment in each iteration of the perfblowing loop. The algorithm is built
on the idea of evolutionary algorithms since each of the tested functions is evaluated by its
fitness score.

The proposed Perun-Blower framework can work in two modes: (1) slow-down,
where noise is injected into the selected function, and (2) speed-up, where we inject noise
into all but the selected function. In the slow-down mode, we examine how the degradation
of a function (caused by noise injection) affects the performance, while in the speed-up
mode, we try to estimate how much the performance of individual SUT threads improves
if the selected function were optimised. Basically, we simulate the theoretical optimisation
of a function by slowing down all other functions.

The proposed algorithm was integrated within the Perun framework and evaluated on
two case studies: google/re2 regular expression library and Z3 theorem prover. The eval-
uation results show that this framework can find SUT functions that significantly impact
overall program runtime. During the evaluation on the project Z3 we even found three
functions, which, when blown up, caused SUT to hang, i.e. the SUT did not exit even after
a few hours.

Future Work. One of the improvements could be a more sophisticated refinement of
the noise type and strength in the perfblowing loop. Another work is to improve the frame-
work to gradually remove functions from the corpus in slow-down mode, which do not affect
performance much. Finally, we could implement better mapping of threads from the two
runs of SUT in speed-up mode, where we would not have to assume that the thread creation
is deterministic.
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Appendix A

Evaluation Resutls

1 id Function Fitness Exp Time % Calls
2 --- --------------------------------- --------- --- -------- -----
3 1 re2::RE2::DoMatch(re2::StringP... 0.89799 1 25.703 3
4 2 re2::Compiler::Compile(re2::Re... 0.82535 4 44.4231 4
5 3 re2::RE2::Init(re2::StringPiec... 0.81112 6 54.2497 3
6 4 re2::Regexp::CompileToProg(long) 0.80452 4 38.4734 3
7 5 re2::RE2::PartialMatchN(re2::S... 0.76469 4 20.7086 2
8 6 re2::RE2::RE2(char const*) 0.72266 6 31.5303 2
9 7 re2::Compiler::Finish(re2::Reg... 0.70685 3 22.9833 4

10 8 bool re2::DFA::InlinedSearchLo... 0.58147 3 7.0099 2
11 9 re2::Prog::Flatten() 0.51893 5 16.6187 4
12 10 re2::Regexp::Simplify() 0.51793 2 9.577 5
13 11 re2::DFA::SearchFFT(re2::DFA::... 0.50007 4 7.0734 2
14 12 re2::RE2::~RE2() 0.40320 5 8.9491 3
15 13 re2::Regexp::Parse(re2::String... 0.39603 5 8.9300 3
16 14 re2::Regexp::Walker<re2::Frag>... 0.37468 5 9.9299 4
17 15 __once_proxy 0.36957 3 8.4452 6
18 16 pthread_once 0.34251 3 9.2877 8
19 17 re2::Prog::IsOnePass() 0.33457 2 3.3698 3
20 18 re2::Prog::MarkSuccessors(re2:... 0.31026 3 4.8211 4
21 19 re2::DFA::~DFA() 0.30818 3 4.7177 4
22 20 __pthread_once_slow 0.27612 6 9.0079 6
23 21 re2::Regexp::ParseState::PushR... 0.25144 1 2.7276 5
24 22 re2::Regexp::Walker<int>::Walk... 0.24269 1 1.5482 3
25 23 re2::Regexp::Walker<re2::Regex... 0.23051 3 6.7396 10
26 24 re2::Prog::ComputeByteMap() 0.22521 5 4.7527 4
27 25 re2::Regexp::NumCaptures() 0.21784 3 2.3477 3
28 26 re2::Prog::~Prog() 0.21255 7 5.9019 4
29 27 re2::Compiler::AddRuneRange(in... 0.20184 4 6.1499 10
30 28 operator delete(void*) 0.19341 8 18.5262 427
31 29 re2::Prog::DeleteDFA(re2::DFA*) 0.19233 4 5.1882 8
32 30 re2::DFA::RunStateOnByte(re2::... 0.18831 8 11.7293 22
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33 id Function Fitness Exp Time % Calls
34 --- --------------------------------- --------- --- -------- -----
35 31 re2::Compiler::Add_80_10ffff() 0.17267 6 3.6718 4
36 32 re2::Prog::GetDFA(re2::Prog::M... 0.13522 6 2.7276 4
37 33 re2::DFA::WorkqToCachedState(r... 0.13165 12 8.6026 26
38 34 re2::Compiler::AddRuneRangeUTF... 0.12804 8 10.4608 18
39 35 re2::Regexp::ParseState::PushD... 0.12690 4 1.855 4
40 36 re2::Prefilter::Info::Walker::... 0.11426 7 4.2297 8
41 37 re2::DFA::AnalyzeSearchHelper(... 0.11048 6 2.1490 4
42 38 re2::DFA::CachedState(int*, in... 0.10099 5 5.2296 24
43 39 re2::Regexp::Destroy() 0.08909 7 2.8580 7
44 40 re2::DFA::AnalyzeSearch(re2::D... 0.08737 9 2.2714 4
45 41 re2::Regexp::ParseState::DoVer... 0.08033 4 1.1110 4
46 42 re2::Regexp::ParseState::DoFin... 0.07478 9 1.5768 3
47 43 std::pair<std::__detail::_Node... 0.06131 7 3.0869 18
48 44 std::call_once<re2::Prog::GetD... 0.05970 9 1.2017 3
49 45 re2::DFA::DFA(re2::Prog*, re2:... 0.05729 10 1.4782 4
50 46 operator new(unsigned long) 0.05714 7 5.3726 430
51 47 __libc_free 0.05485 7 5.1342 427
52 48 re2::Prefilter::OrStrings(std... 0.05000 10 1.1079 3
53 49 re2::Regexp::Decref() 0.04743 9 3.6003 53
54 50 re2::Prefilter::Info::Literal... 0.04289 6 0.5913 3

Listing 21: Output from the first experiment on the google/re2 library. Top 50 functions,
sorted by the fitness value.

1 id Function Fitness Exp Time % Calls
2 --- --------------------------------- --------- --- -------- -----
3 1 pthread_cond_wait 1.40775 2 62.711 7
4 2 std::condition_variable::wait(... 1.39078 3 63.1441 7
5 3 std::ctype<wchar_t>::_M_initia... 0.92424 2 3.0967 1
6 4 pthread_join 0.78475 2 13.6565 8
7 5 std::locale::_Impl::_Impl(unsi... 0.76970 2 4.0254 1
8 6 std::ctype<wchar_t>::ctype(uns... 0.67172 4 3.1135 1
9 7 __GI___pthread_timedjoin_ex 0.63037 4 13.6096 8

10 8 __lll_lock_wait 0.60616 2 3.6833 21
11 9 std::thread::join() 0.55777 5 13.7039 8
12 10 __pthread_once_slow 0.52287 3 4.0940 3
13 11 std::condition_variable::notif... 0.32617 1 0.2383 2
14 12 std::basic_ios<char, std::char... 0.22476 3 5.8507 41
15 13 __libc_free 0.20798 4 20.3355 8216
16 14 __pthread_disable_asynccancel 0.19898 1 0.5229 8
17 15 std::basic_ostream<char, std::... 0.17278 5 0.4764 2
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18 id Function Fitness Exp Time % Calls
19 --- --------------------------------- --------- --- -------- -----
20 16 std::basic_ios<wchar_t, std::c... 0.16661 3 0.5612 4
21 17 std::locale::locale() 0.114765 4 4.8401 95
22 18 pthread_once 0.110318 2 4.4105 130
23 19 std::basic_ostream<char, std:... 0.107283 5 0.5073 4
24 20 std::basic_ostream<char, std:... 0.099200 5 1.3568 12
25 21 std::ios_base::Init::Init() 0.087345 3 6.8115 624
26 22 std::basic_ostream<char, std:... 0.078411 1 0.4437 19
27 23 std::__basic_file<char>::close() 0.066223 3 0.0895 2
28 24 __gxx_personality_v0 0.05952 3 1.4449 59
29 25 std::basic_istream<char, std:... 0.059355 2 0.6829 26
30 26 operator delete(void*) 0.056713 5 1.9753 50
31 27 fwrite 0.055185 3 0.5842 18
32 28 __pthread_mutex_lock 0.054083 3 3.5298 263
33 29 std::ios_base::~ios_base() 0.052852 2 0.3621 18
34 30 __gnu_cxx::stdio_sync_filebuf... 0.046559 5 0.6974 18
35 31 std::ios_base::_M_init() 0.046383 6 1.1482 45
36 32 std::basic_ostream<char, std:... 0.043437 4 0.6225 19
37 33 __gnu_cxx::stdio_sync_filebuf... 0.034160 2 0.5477 38
38 34 __cxa_end_catch 0.031138 5 0.2416 8
39 35 clock 0.028089 2 0.0279 2
40 36 std::ctype<char> const& std::... 0.027608 3 0.5863 43
41 37 __call_tls_dtors 0.026908 6 0.1820 9
42 38 _pthread_cleanup_pop 0.025447 9 0.3727 18
43 39 std::basic_ostream<char, std:... 0.025194 5 0.4478 21
44 40 std::ios_base::ios_base() 0.023970 4 0.3739 26
45 41 _setjmp 0.023928 9 0.1994 9
46 42 mmap64 0.022618 3 0.2345 16
47 43 std::basic_ostream<wchar_t, s... 0.022557 9 0.0562 3
48 44 _IO_un_link 0.021870 2 0.0159 2
49 45 __getpagesize 0.021781 8 0.1918 16
50 46 __cxa_begin_catch 0.021284 3 0.1063 8
51 47 std::basic_streambuf<char, st... 0.018628 6 0.2165 17
52 48 _Unwind_DeleteException 0.018588 6 0.1054 8
53 49 __sigsetjmp 0.018318 2 0.0780 9
54 50 __cxa_atexit 0.016739 5 1.4349 646

Listing 22: Output from the first experiment on the z3. Top 50 functions, sorted by the
fitness value.
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Appendix B

Source Code for Evaluation

1 // Copyright 2008 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4

5 # include <stdio.h>
6 # include <re2/filtered_re2.h>
7 # include <re2/re2.h>
8

9 int main() {
10 re2::FilteredRE2 f;
11 int id;
12 f.Add("a.*b.*c", RE2::DefaultOptions, &id);
13 std::vector<std::string> v;
14 f.Compile(&v);
15 std::vector<int> ids;
16 f.FirstMatch("abbccc", ids);
17

18 int n;
19 if (RE2::FullMatch("axbyc", "a.*b.*c") &&
20 RE2::PartialMatch("foo123bar", "(\\d+)", &n) && n == 123) {
21 printf("PASS\n");
22 return 0;
23 }
24

25 printf("FAIL\n");
26 return 2;
27 }

Listing 23: Testing file testinstall.cc, on which we conducted perfblowing within
evaluation on google/re2 library.
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Appendix C

Storage Medium

/perun/* — source code of Perun containing Perun-Blower

/README.txt — useful information about the storage medium content

/text/* — source code of this thesis

/xlisci02.pdf — final version of this thesis
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