
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATED TESTING OF SMART CARDS
AUTOMATIZOVANÉ TESTOVÁNÍ ČIPOVÝCH KARET

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR PAVEL YADLOUSKI
AUTOR PRÁCE

SUPERVISOR Ing. IVAN HOMOLIAK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Yadlouski Pavel
Programme: Information Technology
Title: Automated Testing of Smart Cards
Category: Security
Assignment:

1. Get acquainted with principles of software and hardware testing as well as various testing
types.

2. Study the standard PKCS#11 as well as example projects implementing it, such as OpenSC
and SoftHSM.

3. Analyze the existing solutions for testing of smart cards, such as Smart Card Removinator.
4. Identify problems and limitations of existing solutions.
5. Design a new library for automated testing of smart cards, which will improve limitations of

existing solutions and provide some extensions (e.g., integration to beakerlib).
6. Implement the library and demonstrate its usage by solving a real-world problem.
7. Compare the proposed library with existing solutions in terms of functionality and

performance.
Recommended literature:

PKCS#11 standard, https://www.cryptsoft.com/pkcs11doc/
Smart Card Removinator, https://github.com/nkinder/smart-card-removinator
Beakerlib, https://github.com/beakerlib/beakerlib
OpenSC library, https://github.com/OpenSC/OpenSC
SoftHSMv2 library, https://github.com/opendnssec/SoftHSMv2

Requirements for the first semester:
Items 1 to 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Homoliak Ivan, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: November 11, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24161/2020/xyadlo00 Page 1/1

Abstract
This bachelor thesis deals with automated testing of smart cards in Red Hat Enterprise
Linux. The problem of manual testing is solved by creating a new testing library. This
library is responsible for configuring the test environment and providing a way for the
tester to interact with that environment in an automated way. As a result, we created
a new universal library for testing the support of smart cards. The primary goal is to
implement the testing library by itself, after that to transfer manual test into the code
using created library and run those automated tests in Red Hat internal pipelines.

Abstrakt
Tato bakalářská práce se zabývá automatizovaným testováním podpory Smart Karet v
RHEL. Problém manuálního testování je vyřešen vytvořením nové testovací knihovny. Tato
knihovna je zodpovědná za konfiguraci testovacího prostředí a poskytuje testerovi rozhraní
pro automatizovanou manipulaci s tímto prostředím. Jako výsledek jsme vytvořili uni-
verzální knihovnu pro testování podpory smart karet. Primárním cílem je implementace
samotné knihovny, pak následující převod existujících manuálních testů do kódu za pomoci
teto knihovny a zprovozněni těchto testů ve vnitřní pipelině Red Hat.

Keywords
Smart cards, RHEL, automation, virtualization, hardware testing, testing library, remov-
inator, virt_cacard.

Klíčová slova
Smart karty, RHEL, automatizace, virtualizace, testování hardweru, testovácí knihovna,
removinator, virt_cacard.

Reference
YADLOUSKI, Pavel. Automated Testing of Smart Cards. Brno, 2021. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Ivan
Homoliak, Ph.D.

Rozšířený abstrakt
Hlavní problém, který se snažíme vyřešit v tomto projektu je testovaní čipových karet.

Nejvíc nás zajímá zejména automatizované integrační testovaní čipových karet v Red Hat
Enterprise Linux. Do dnešního dne stav testovaní je takový, že všechno se testuje manuálně,
a to je přes 200 testů.

Pro testování čipových karet potřebujeme řadu komponent, například GNOME Desktop
Manager, smart card removinator, Kerberos server, Red Hat Certificate System server, a
další. Však v tuto chvíli neexistuje žádný prvek, který by tyto všechny komponenty svázal
a umožnil automatizaci procesu testování.

Cílem této bakalářské práce je navrhnout a implementovat takovou technologii, která
by spojila všechny potřebné prvky pro testování a umožnila uživateli jednoduchou práci s
těmito prvky.

Našim řešením je Python knihovna SCAutolib, do které jsou integrovány manipulační
prostředky pro prvky testovacího prostředí. Kromě integrace už zmíněných systémů testo-
vacího prostředí, pro usnadnění testování naše knihovna využívá knihovnu virt_cacard,
která poskytuje virtuální čipové karty. Tato knihovna používá softwarovou implementaci
Hardware Security Module – SoftHSM2. Sam o sobě SoftHSM2 neposkytuje dostaču-
jící funkcionalitu pro to, aby simuloval skutečné karty, proto je obalen pomocí knihovny
lib_cacard aby přidala vlastnosti reálné karty do SoftHSM2 tokenu. Nicméně virtuální
karta má svá omezení, a proto stále potřebujeme fyzické karty. Pro automatizaci s reál-
nými kartami využíváme speciální čítač čipových karet smart card removinator.

SCAutolib v sebe má prostředky i pro nastavení kompletního testovacího prostředí.
Testovacím prostředím se myslí potřebné servisy, a to je minimálně Kerberos server, lokální
Certifikační Autorita a Red Hat Certificate System server. Pro nastavení testovacího
prostředí se používají skripty, napsané v Bash. Zajímavou špičkou naší knihovny bude
to, že dokáže pracovat i s grafickým uživatelským rozhraním. Tato funkcionalita se plánuje
integrovat s využitím openQA frameworku pro testování GUI aplikace.

Aktuálně knihovna SCAutolib má v sebe implementované scripty pro nasazení lokál-
ního CA a následně vytvoření virtuální karty s certifikátem od lokální CA. Tyto scripty
jsou volány prostřednictvím interních funkcí knihovny, aby uživatel mohl naplno využívat
knihovnu přes python a nezabýval se přímým voláním Bash scriptu.

Pro manipulaci s virtuálními kartami je vytvořena třída se souvisejícími metodami (in-
sert, remove). Pro nastavení způsobu přihlášení v RHEL se používá authselect balíček. Ten
se v knihovně také představen třídou s odpovídajícími metodami (set, reset). Zmíněné třídy
jsou používány v rámci kontextového manažeru. V knihovně je také přípustná funkcionalita,
která přímo nepatří ani do jedné ze zmíněných skupin metod. To jsou funkce pro manipulaci
se soubory (zálohování, editace konfiguračních soborů) a celkovou manipulaci s operačním
systémem (restartovaní systémových servisů, přihlášení uživatelů).

Aktuální stav knihovny je dostačující na to, aby dokázali transformovat základní manuální
testy na automatické. Samozřejmě, že čas potřebný na spuštění automatizovaných testů je
výrazně menší v porovnání s manuální evokaci testů. I když před každým voláním auto-
matických testů nějaký čas bude využit na nastavení systému, to stále zabere méně času a
bude méně náchylné k chybám.

V planu do budoucna je rozšíření knihovny o integraci se čítačem smart card removina-
tor. Tato integrace vyžaduje vetší prozkoumání existující knihovny na bezpečnou práci s
removinatorem. Dalším bodem je integrace RCHS serveru do testovacího prostředí a propo-
jení s Kerberos serverem. Pro podporu testovaní grafického rozhráni plánujeme integrovat
i openQA framework.

Ve výsledku máme knihovnu, která poskytuje velkou sadu funkcí potřebných pro testování
čipových karet. Tato knihovna může být využita nejen v interním pipelině Red Hat, ale
i v jiných systémech na bázi RPM, kde je potřebný zásah čipových karet, jako například
testování integrace čipových karet do desktopových aplikací jako například Firefox nebo
poštovný klient.

Automated Testing of Smart Cards

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Ivan Homoliak, Ph.D.. The supplementary information
was provided by Ivan Nikolchev and Jakub Jelen. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Pavel Yadlouski

May 9, 2021

Acknowledgements
My thanks go to my supervisor Ing. Ivan Homoliak, Ph.D. for the useful comments, remarks
and engagement through the learning process of this term project. I would like to thank
also Ivan Nikolchev and Jakub Jelen for providing technical consultations and reviews.

Contents

1 Introduction 3

2 Background 5
2.1 Smart Card . 5
2.2 Common Use Cases . 6
2.3 Types of Smart Cards . 7

2.3.1 Based on a Connection . 7
2.3.2 Based on the Processing Element . 7
2.3.3 Tamper-resistant features . 8

2.4 Symmetric and Asymmetric Cryptography 8
2.5 Public Key Infrastructure . 9

2.5.1 Digital Certificate . 9
2.5.2 Certificate Authority (CA) . 10
2.5.3 Public Key Infrastructure (PKI) . 10

2.6 Standard PKCS #11 . 12
2.7 Testing of Smart Cards . 12

2.7.1 Sanity testing . 12
2.7.2 Integration testing . 12
2.7.3 Regression testing . 13
2.7.4 Black-Box testing & White-Box testing 13

3 Related Work 15
3.1 Certificate Management System server . 15
3.2 Testing technologies . 16

3.2.1 Smart Card virtualization . 16
3.2.2 Smart Card Removinator . 17
3.2.3 BeakerLib. 18

3.3 Red Hat Certificate System (RHCS) . 18
3.4 Kerberos . 18

4 Architecture 21
4.1 Logical diagram . 21
4.2 Schematic Diagram . 23

5 Implementation 25
5.1 Components . 25
5.2 Test Utilities . 26
5.3 Evaluation . 27

1

5.4 Test Metrics . 28

6 Discussion 30
6.1 Future Improvements . 30

6.1.1 Improvements . 30
6.1.2 New functionality . 31

6.2 Limitations . 32
6.2.1 Virtual smart cards . 32
6.2.2 Removinator . 33

7 Conclusion 34

Bibliography 35

A Test Output 38

2

Chapter 1

Introduction

Our modern world requires us to be more secure than ever before. In the sphere of Informa-
tion Technologies the question ”how to keep private data secure?“ is still one of the most
challenging. As time goes on, new technologies are invented to protect our information
from being stolen and our identity from being compromised. These technologies should be
reliable, secure, easy to use, and meet various standards. This bachelor thesis deals with
one of the information security technologies called Smart Card. Smart cards were invented
in the late ’60s but they remain relevant today. The idea behind smart cards is to incorpo-
rate an integrated circuit chip onto a plastic card. Smart cards are commonly used today
not only because of their technical abilities, but also because of their credit card size, so it
is very easy to carry them with us anywhere.

Like any other technology, smart cards need to be thoroughly tested before deployment
or release. For smart cards, this is true for both the hardware and software sides. This
thesis aims to design and implement a new testing library that would be able to replace
manual testing of smart cards with automated testing, and thus significantly contributes
to usability and performance of testing. Since a smart card is a hardware device that is
plugged into the computer via the physical smart card reader, this work also deals with
virtualization technologies and software representation of smart cards.

Organization

The rest of this work is divided into 6 chapters (excluding Introduction).
The first part Chapter 2 of this thesis give necessary theoretical background knowledge

about how smart cards work from the inside and some of their use cases. It also introduces
the basics of technologies Section 2.5 and cryptographic standards Section 2.6 that are
commonly used for security and smart cards.

The second part Chapter 3 presents an overview of advanced technologies related to
smart cards. The main use case this thesis tries to deal with is using smart cards to
authenticate and login into operating systems. To be able to do that we also need to get
familiar with other technologies, such as Certificate Management System in the Section 3.1,
Kerberos in the Section 3.4, and testing technologies in the Section 3.2.

As the main aim of the project is to design and implement a new python library for
automated testing of the smart cards, the third part Chapter 4 deals with the architecture
of our library and introduces it from different points of view. The next part Chapter 5
introduces how the library is implemented and discusses the most important features that

3

are included in the library. The limitations of the library are discussed in the Section 6.2
along with our plan for future development in the Section 6.1.

The last part Chapter 7 provides a summary of the whole work.

4

Chapter 2

Background

First of all, let us start with a must-have knowledge about smart cards. This chapter
provides us with the necessary background knowledge for understanding smart cards. We
introduce the basic definition of a smart card and talk about common use-cases and related
technologies.

2.1 Smart Card
Smart Card (SC) is a hardware authorization device (token) with an embedded integrated
circuit (IC) chip. Typically it is a plastic card of the credit card size. This integrated chip
can store small chunks of data (for example, certificates) and perform different types of
functionality (such as identification, authentication, etc.). Moreover, the smart card pro-
vides support for the strong single sign-on (SSO) authentication mechanism. All technical
parameters are specified by standard ISO/IEC 7816 and its parts. In the Table 2.1 you can
see parts of the ISO/IEC 7816 standard.

The motivation for using a smart card is to increase security by adding the second factor
or replacing the authentication factor of knowledge (password) with a factor of possession
(having a card). In the second case, you don’t need to type in your password to login to
unlock the required services because all the necessary information is stored on the smart
card. In some cases, a PIN might also be required.

When used for identification, a certificate issued by a certificate authority is stored on
the card. One possible smart card type is the Personal Identity Verification [11] card (PIV).
This type of card is used in US Government, for example, and also stores certificates. In
this work, we would deal also with open-source smart cards storing certificates.

The certificate is created by an authority organization using Certificate Management
System (Section 3.1). For credit cards, this organization can be VISA1 or MasterCard2.
But any organization can create its Certificate Management System server and manage
certificates by itself. In this work, for testing purposes, the Certificate Management System
server is created with the open-source implementation of Certificate System – Dogtag [5].

1https://www.visa.com/
2https://www.mastercard.com/

5

https://www.visa.com/
https://www.mastercard.com/

Standard Description
ISO/IEC 7816-1 specifies physical characteristics for cards with contacts
ISO/IEC 7816-2 specifies dimensions and location of the contacts
ISO/IEC 7816-3 specifies electrical interface and transmission protocols for asyn-

chronous cards
ISO/IEC 7816-4 specifies organization, security and commands for interchange
ISO/IEC 7816-5 specifies registration of application providers
ISO/IEC 7816-6 specifies interindustry data elements for interchange
ISO/IEC 7816-7 specifies commands for structured card query language
ISO/IEC 7816-8 specifies commands for security operations
ISO/IEC 7816-9 specifies commands for card management
ISO/IEC 7816-10 specifies electrical interface and answer to reset for synchronous

cards
ISO/IEC 7816-11 specifies personal verification through biometric methods
ISO/IEC 7816-12 specifies electrical interface and operating procedures for USB

cards
ISO/IEC 7816-13 specifies commands for handling the life cycle of applications
ISO/IEC 7816-15 specifies cryptographic information application

Table 2.1: Parts of ISO/IEC 7816 standard.

2.2 Common Use Cases
ATM Withdrawal. Smart cards are used for personal identification and authentication.
Different systems use smart cards on a daily basis. For example, a credit card as represen-
tative of a smart card is a trivial use case where the client needs to authenticate himself
against ATM to get access to his bank account. As it was mentioned, a credit card stores
personal information that is used by ATMs for user authentication. The authentication
succeeds only if the certificate on the credit card is valid and the user enters a correct PIN
code for a given card.

Physical Access Control. Another example is a situation where a user needs to get
access to the office floor. The process of granting access can be the same as the credit card
and ATM scenario (inserting the card to the card reader and then providing PIN). But some
smart cards support contactless authentication. So, when an associate comes to the office
door, the only thing he needs to do is to bring the card close enough to the appropriate
card reader and this device will get the required certificates. After that associate may need
to provide his PIN. This additional authentication check is required mostly in government
organizations with a high level of security. Without a PIN requirement, the doors would
open as soon as your certificates are validated.

Smart Card as the Second Factor. Nobody will be surprised with two-factor authen-
tication (2FA) in the modern world. 2FA increases the security of the users in a relatively
simple way for the users – adding one more security step to authentication. For example,
the application can ask the user for a smart card PIN or just to insert the card by itself. But
from the providers’ side implementation of the 2FA can be problematic at least from the
universality side – users don’t want to use different 2FA implementations for each service.

6

For standardization of 2FA Universal second factor protocol (U2F) was developed by Fast
IDentity Online (FIDO) Alliance3. The U2F protocol allows online services to augment the
security of their existing password infrastructure by requiring a physical token, called an
authenticator [29]. Smart card technology is the most capable of providing the highest level
of security for FIDO implementations. The key to this capability is that the smart card
holds the chip where FIDO implementation can be securely executed. So all cryptographic
operations (such as key pair generation) can be transferred to the smart card, where those
operations are optimized. Due to the secure elements inside the smart card, cryptographic
operations are executed securely and efficiently.

This work deals with a use case when a person needs to login into the computer system
using a smart card to get access to an organization’s private services and data. Imagine your
company has sensitive information and internal services, that must not be visible outside the
company. The smart card provides a mechanism for the user to login into the organization’s
computer system. Also, the same card can be used in applications, such as the browser and
email clients, for granting access to resources (private websites or servers through a web
browser) or for providing digital signatures and encryption (sending encrypted and signed
emails).

2.3 Types of Smart Cards
Like we mentioned before, smart cards can be used in several ways. Each use-case requires
a different type of smart card.

2.3.1 Based on a Connection

Use-case with a credit card and ATM mostly requires so-called contact smart card4. That
means that for using a card you also need to have a card reader where you can insert
that card. Opposite to this type is a contactless smart card. That type does not require
inserting a card into the card reader, just bringing it close enough to the corresponding
type of the reader (use-case with getting access to office floor).

2.3.2 Based on the Processing Element

A different classification of the smart cards is based on the type of embedded integrated
circuit inside the card. This integrated circuit can be a memory chip that stores a small
chunk of data (up to 4KB) and can be a RAM, ROM, or EEPROM. Memory cards have
no data processing power, just a simple logic for accessing memory cells.

Another type of smart card is Multifunction Card with a microprocessor (or micro-
controller) inside with volatile memory. This microprocessor can be programmed by the
user using Global Platform [8] protocol and applets written in Java, C# (.NET), or other
more exotic types. For accessing objects on the card (data on the smart card is stored
in the objects) PKCS #11 (Section 2.6) protocol is used. At this moment a smart card
becomes a pocket-size computer with strong enough data processing capabilities right on
the card. An example of such a Multifunction Card can be a debit card that is used for
paying for public transport when we enter a tram or a bus and our card is connected with
a ticket until we leave the transport (or until the last station). The chips of this category

3https://fidoalliance.org/
4Today contactless ATMs become more and more common also

7

https://fidoalliance.org/

have a variety of configurations. The chip can support Public Key Infrastructure (PKI)
functions with on-board math co-processors or JavaCard5 with virtual machine hardware
blocks (for example MIFARE6, IDEMIA7).

2.3.3 Tamper-resistant features

Like any other device with a processing unit, the smart card is also a target for attackers
that aims to steal sensitive data from the smart card. Since around 1994, almost every
type of smart card processor used in European, and later also American and Asian, pay-
TV conditional-access systems have been successfully reverse-engineered. Compromised
secrets have been sold in the form of illicit clone cards that decrypt TV channels without
revenue for the broadcaster [14]. Here is a list of the most common techniques for breaking
into smart cards:

• Microprobing techniques can be used to access the chip surface directly, thus we
can observe, manipulate, and interfere with the integrated circuit.

• Software attacks use the normal communication interface of the processor and ex-
ploit security vulnerabilities found in the protocols, cryptographic algorithms, or their
implementation.

• Eavesdropping techniques monitor, with high time resolution, the analog character-
istics of all supply and interface connections and any other electromagnetic radiation
produced by the processor during normal operation.

• Fault generation techniques use abnormal environmental conditions to generate
malfunctions in the processor that provides additional access.

To overcome these vulnerabilities, design principles for tamper-resistant smart card proces-
sors were suggested [14, p8-11].

2.4 Symmetric and Asymmetric Cryptography
The base concept that needs to be clarified first of all is the types of cryptographic keys that
are commonly used in general cryptography and smart cards. Symmetric and asymmetric
encryption differs first of all in core idea and used algorithms for implementing this idea.

Symmetric encryption uses one key (symmetric key) both for data encryption and
decryption. Symmetric encryption use algorithms such as Advanced Encryption Standard
(AES) [17], International Data Encryption Algorithm (IDEA) [10], and others. The usual
key length for the symmetric key is 128, 192, 256 bits (e.g for the AES algorithm). Sym-
metric encryption is faster than asymmetric one, but one drawback is that the secret key
needs to be securely shared between the involved parties.

Asymmetric encryption on other hand uses two keys - private and public key (key
pair). The idea behind those two keys is that data encrypted by one of those keys can be
decrypted on with a second key, e.g message encrypted with a public key can be decrypted
only with a corresponding private key. So, for establishing secure communication, all hosts
should share their public keys. When sharing a public key we also need to present proof of

5https://www.oracle.com/java/technologies/java-card-tech.html
6https://www.mifare.net/en/
7https://www.idemia.com/smart-onecard

8

https://www.oracle.com/java/technologies/java-card-tech.html
https://www.mifare.net/en/
https://www.idemia.com/smart-onecard

ownership of that public key. This proof is done by presenting a digital certificate. We talk
more about digital certificates in the Section 2.5.1. Asymmetric encryption uses asymmetric
key algorithms such as Rivest–Shamir–Adleman (RSA) [28], Digital Signature Algorithm
(DSA) [30], elliptic curve algorithms such as Elliptic Curve Digital Signature Algorithm
(ECDSA) [23], and others. In asymmetric encryption generated keys are much bigger than
symmetric ones (from 1536 to 4096 bits for RSA algorithm), and an algorithm by itself is
very complex. Due to the size of the key, secure operations with asymmetric keys are slower
than with symmetric ones.

In reality combination of both concepts is used. Asymmetric cryptography is used to
establish a secure channel which is then used to share the symmetric key for further data
encryption.

2.5 Public Key Infrastructure
To unleash the full power of smart cards, we need to explain core technologies that are
used in the real world with relation to smart cards. On the top we have the Public Key
Infrastructure (PKI) which includes a lot of subsystems. For understanding what PKI is, we
need to mention main building blocks of PKI: Digital Certificate and Certificate Authority.
Besides, we emphasize that PKI should meet a few security goals [6]:

• Accurate Registration: The user must be unable to register an identity that he
does not own.

• Identity Retention: The user must be unable to impersonate an identity already
registered.

• Censorship Resistance: The user must be able to register any identity that he
owns.

Traditional approaches to PKI are Certificate Authorities (CAs) and decentralized peer-to-
peer networks called Webs of Trust [6].

2.5.1 Digital Certificate

A digital certificate, also known as a public key certificate or identity certificate, is a kind
of electronic ”passport“ for a person, organization, particular machine, or even a service.
The certificate is usually represented by a file with .crt or .pem extension (e.g example.crt,
exmaple.pem). A digital certificate allows users to prove their identity and the target service
can check the user’s identity using Public Key Infrastructure.

What makes the certificates secure? How is this security implemented? The main point
of a digital certificate is that it binds the assymetric key pair to a user. User or host
represents a subject of a certificate. Why do we trust such kind of binding? Because this
binding is provided by a third party we trust - Certificate Authority (Section 2.5.2). As it
was mentioned, Certificate Authority is an issuer of the certificate. So, if someone would
use a public key from a given certificate to encrypt data, he can be sure, that only the
subject of this certificate would be able to decrypt an encrypted message. The information
about a subject and an issuer is stored as a distinguished name.

Obviously, a digital certificate contains more information than just a subject, public
key, and issuer. X.509 is a common standard that defines the format of digital certificates.
In our work, we will be working with X.509 certificates as this standard is used with smart

9

cards. In addition to the Distinguished Name (DN) of a subject and issuer (in ASN.1
notation), X.509 certificate contains the following fields:

• version – version of a certificate. Currently, three versions of X.509 certificate are
defined (v1, v2, v3).

• serialNumber – unique serial number per certificate. It useful for auditing purposes
to make sure the CA created particular certificate and not created some other

• signature – issuing authority’s signature.

• validity – contains two dates: the date when the certificate becomes valid (start of
certificate validity) and the data certificate is expired (certificate expiration).

• extensions – this field is present only in v3 of X.509 certificate. For example, here
can be defined extended key usage.

X.509 standard is defined by RFC5280[4].
In practice, there are two types of digital certificates based on their signature: self-

signed and CA signed.

• self-signed – the certificate (in our context is an X.509 certificate) is signed by the
same entity for which this certificate was issued (subject and issuer fields are the
same).

• CA signed – the certificate is signed by Certificate Authority, different from the
subject for which the given certificate is issued.

2.5.2 Certificate Authority (CA)

Certificate Authority is a trusted entity that provides digital certificates to users which in
turn prove the ownership of a public key. In communication between hosts (for example,
user and public webserver), CA is an entity that proves the identity of a server to the user.
Users can also prove their identity to the server in the same way. In other words, the digital
certificate is bound to the user or host (subject of the certificate) with a public key.

To obtain the digital certificate, the user or host has to generate their asymmetric key
pair (public and private key). The next step is to generate Certificate Signing Request
(CSR) for the CA. This CSR contains information about the subject of a certificate and
the public key of a subject. CSR is an X.509 certificate signed with a subject private key8.
After composing the CSR, it is sent to the CA. As CSR is signed with a subject private
key, CA doesn’t need to know the actual value of the private key to validate the public
key from the certificate. After validation of a signature and other fields in the CSR, CA
signes the CSR with its private key and sends back to the user the digital certificate with
a trusted signature.

2.5.3 Public Key Infrastructure (PKI)

Public Key Infrastructure (PKI) [1] is a set of roles, policies, hardware, software, and pro-
cedures needed to create, manage, distribute, use, store and revoke digital certificates and

8The CSR may be accompanied by other credentials or proofs of identity required by the certificate
authority.

10

manage public-key encryption. In other words, PKI is a system that defines a way for
providing secure operations using digital certificates and public keys. Minimal PKI envi-
ronment requires at least a Certificate Authority. Top level overview of the PKI workflow
is show on the Figure 2.1.

A PKI involves the participation of trusted third parties who verify the identity of the
parties wishing to engage in secure communication through the issuing of digital certificates.
A real-world analogy might involve customs and immigration. When a person arrives at an
airport to board an international flight they have to pass through customs. If an arriving
passenger simply verbally claims to be John Smith there is no way for the customs officer
to verify his identity. It is entirely possible that he really is John Smith, but because the
customs office doesn’t know the person he has no way of knowing whether he is trustworthy.
Instead, the customs officer relies on a trusted third party in the form of a government pass-
port issuing office. The passport office goes through the process of confirming a person’s
identity before issuing a passport. The passenger then uses this passport to confirm to the
customs officer that they are who they say they are. Because the person has a passport,
and the customs officer trusts the passport office the person is permitted into the country.
Public key infrastructures work in a very similar way. A trusted third party called a Regis-
tration Authority verifies the identity of a person or entity and instructs another body, the
Certificate Authority to issue a digital certificate which also contains that entities public
key. This certificate (and the public key contained therein) may subsequently be used to
prove identity and enable secure transactions with other parties [32].

As we already mentioned in the Section 2.5.2, to obtain a digital certificate the user
has to compose a CSR. In the PKI environment, the CSR is sent to the Registration
Authority (RA). RA assists the PKI cycle by verifying that the body requesting a certificate
is legitimate. Once the verification is complete, it carries out the request by allowing the
request to reach the CA, who uses a certificate server to execute it.

Sender

Registration
Authority

Verification
Authority

Certificate
Authority

Recipient

Certificate
Signing
Request

Request
approval

Signed Data

SignatureSignature
approval

Certificate Public Key

Certificate
Private

Key

Figure 2.1: Public Key Infrastructure [3].

11

The public key of the user is shared with Verification Authority (VR). When someone
(e.g webserver) would need to verify the certificate of the user, VR would provide such kind
of verification. For user verification signature from the digital certificate would be used.
This signature is made by the CA and added to the certificate. A service can take this
signature from the user’s certificate and send it to the VR for validation. If a signature
is valid and the certificate is not in the Certificate Revocation List (CRL), a signature is
approved and the service can trust the user’s certificate. These operations are specified in
Online Certificate Status Protocol [16].

2.6 Standard PKCS #11
PKCS #11 – is the Public-Key Cryptography standard that defines the platform-independent
application programming interface (API) for hardware tokens [7]. These tokens can be
Hardware Security Module (HSM) or smart cards. The API for PKCS #11 is also called
Cryptoki (”cryptographic token interface“ and pronounced as ”crypto-key“). Cryptoki API
provides common functions for cryptography and follows a simple object-based approach.
The goal of Cryptoki is to provide independent API, so it can be used on any device, and to
provide resource sharing (multiple applications accessing multiple devices). These two goals
lead to a smart card (generally, cryptographic token) to be presented to the application in
a common and logical view.

2.7 Testing of Smart Cards
Historically, smart cards were tested manually. These tests have been developed for about
10 years. Testing of smart cards was done in a way that is closest to the way how our
customers are using smart cards and related software. Another reason why smart cards are
tested manually during all this time is that there was no technology for automated testing
that could provide smart card virtualization. This negatively influences the performance
of smart card testing as well as it is prone to human errors, which in turn increase overall
costs of testing.

Over the years, technologies took a big step forward and now we have virtualization
technologies that provide the ability to process most test cases automatically without any
or just little need of a smart card as a hardware device by itself.

Before we deep dive into the issues with smart card testing, we need to introduce the
testing techniques which are used.

2.7.1 Sanity testing

This technique provides quick stability validation of the new functionality or code changes
in the new build. Sanity testing determines whether the build is eligible for further rounds
of testing or not. This decision is made based on whether essential functionality is working
or not. If critical parts of a new build are working correctly, this particular build can be
transferred to the next stage of testing.

2.7.2 Integration testing

Following the article ”Integration testing techniques“ [21], integration testing is a logical
extension of unit testing. In its simplest form, two units that have already been tested are

12

combined into a component and the interface between them is tested. A component, in this
sense, refers to an integrated aggregate of more than one unit. In a realistic scenario, many
units are combined into components, which are in turn aggregated into even larger parts of
the program. The idea is to test combinations of pieces and eventually expand the process
to test your modules with those of other groups. Eventually all the modules making up
a process are tested together. Beyond that, if the program is composed of more than one
process, they should be tested in pairs rather than all at once.

Integration testing identifies problems that occur when units are combined. By using
a test plan that requires you to test each unit and ensure the viability of each before
combining units, you know that any errors discovered when combining units are likely
related to the interface between units. This method reduces the number of possibilities to
a far simpler level of analysis.

2.7.3 Regression testing

After a new build is sanity tested and marked as ready for the next step of testing, regression
tests cames to play. The regression testing technique aims to check if bug fixes are done and
the code changes did not break other parts of the software. Also, regression testing checks
not only internal functionality, but also other affected areas. So, regression testing is a part
of integration testing. All these test scenarios have to be executed to verify bug fixes and
code changes. Because the support of smart card is required in Red Hat Enterprise Linux
(RHEL) distribution9, this support should be fully tested with every new release of RHEL.

2.7.4 Black-Box testing & White-Box testing

There are a lot of vendors for smart cards and each vendor chooses his own way of developing
the smart cards. Some of the implementations are open-sourced, others are proprietary.
But customers don’t care so much about the implementation and license for the source code
of the smart card, they just use the card. At this point, we come to the following two types
of testing: black box testing and white box testing. Schematically the idea behind
these two types is shown on the Figure 2.2.

White box testing is a software testing technique in which internal structure, design,
and coding of software are tested to verify the flow of input-output and to improve design,
usability, and security. In white box testing, code is visible to testers so it is also called
Clear box testing, Open box testing, Transparent box testing, Code-based testing, and
Glass box testing [9]. This technique applies to open-source smart cards, so we can test
each aspect we are interested in.

Black box testing [22, p.55] (sometimes referred to an functional or behavioral testing)
is a testing technique in which the internal structure of the system or the code is not
known. Tests in this technique are made based on the specifications or requirements of the
tested system. Smart cards have an open-source implementation of applets like CoolKey10

cards (implemented in Java) with drivers implemented in OpenSC [19] and we also have
commercial implementations. Both of the implementations have to be supported. So, with
the commercial implementation, we don’t have another choice for testing technique than
black box testing. The scope of tests that can be applied to the proprietary implementation

9https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
10https://www.dogtagpki.org/wiki/CoolKey

13

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.dogtagpki.org/wiki/CoolKey

Input Output

White box testing

Input Output

Black box testing

Figure 2.2: Difference between white box and black box testing.

of the smart card is limited because we don’t have access to the source code that runs on
the card, so we can only run tests based on technical specifications.

14

Chapter 3

Related Work

This chapter introduces the principle of how system authentication with smart cards works.
Enterprise authentication with smart cards requires other services such as Kerberos, LDAP,
and Certificate System server. For the configuration of these services, System Security Ser-
vices Daemon1 (sssd) is used2. This chapter also covers technologies that are used for smart
card testing, such as smart card virtualization (Section 3.2.1), BeakerLib (Section 3.2.3)
Smart Card Removinator (Section 3.2.2).

3.1 Certificate Management System server
As it was mentioned in previous sections, smart cards can store certificates. These certifi-
cates should be obtained from somewhere. For this purpose, there is a Certificate Authority
(described in the Section 2.5.2) that issues and manages certificates. Manipulations with
certificates are held on the Certificate Management System server (CMS) in Public Key
Infrastructure (PKI). Because the CMS server needs to validate the user’s personal infor-
mation, an LDAP server is used. After validation of the necessary information, the CMS
server generates certificates that are used for Kerberos authentication. Responsibilities of
the CMS server are show on the Figure 3.1.

Monitoring

Certificate
Managment
System

Supervision

Analyzes

Generation

Discovery

Revocation

Validation

Figure 3.1: Certificate Management System responsibilities.

1https://sssd.io/
2sssd is used from RHEL 8 release. Before RHEL 8 pam_pkcs11 was used for login configuration

15

https://sssd.io/

3.2 Testing technologies
As it was mentioned, the support of smart cards is tested manually at this moment. These
tests include over 200 test cases for different scenarios that have to be executed for each
new release. The problem with automated testing is that standard readers can’t be used for
automation due to their architecture – they have physical contact that detects the smart
card insertion or removal. Moreover, some test cases can be destructive for the real cards,
and if one of those tests fails, then the card could be blocked. From this side virtualization
technologies are essential for the automated testing of smart cards.

3.2.1 Smart Card virtualization

Virtualization of smart cards can be implemented using SoftHSM 3. This is part of the
OpenDNSSEC project4. SoftHSM is a software implementation of the real Hardware Secu-
rity Module (HSM) that can be used for cryptographic operations. SoftHSM implements
a store that can be accessed with the PKCS#11 interface. But as the real HSM is an
expensive hardware for small businesses, the software representation provides wide enough
functionality for handling necessary cryptographic operations. We will use this module to
emulate smart cards with stored certificates in our project.

Unfortunately, SoftHSM as it is can’t be used directly for simulation of the smart card
behavior because the SoftHSM token can’t be removed or inserted, it just presents static
token in the system. Moreover, using SoftHSM token as it is would abstract too many
layers of the smart card testing, such as OpenSC and pcsc-lite layers. To overcome this
limitation of SoftHSM virt_cacard [20] library is used for smart card virtualization. The
architecture of the virt_cacard library is shown on the Figure 3.2 The virt_cacard acts like
a glue between SoftHSM and plugin for pcscd daemon. The virt_cacard is using libcacard
[15] library, that takes the SoftHSM token and wraps it with functionality that provides
abstraction from SoftHSM token and makes it similar to the simple smart card. In the
end, the SoftHSM token acts as a simple real card with corresponding functionality: it
can be inserted and removed from the virtual smart card reader visible in the system.. To
enroll in such kind of a virtual smart card, the user would need to upload a certificate

Figure 3.2: virt_cacard scheme [20].

3https://www.opendnssec.org/softhsm/
4https://www.opendnssec.org/

16

https://www.opendnssec.org/softhsm/
https://www.opendnssec.org/

on the SoftHSM token and then use virt_cacard. VPCD plugin creates virtual slots so
virtual cards can be plugged in and accessed through a Personal Computer/Smart Card
(PC/SC) standard5. As soon virtual smart card is recognized on the PC/SC level, the user
can manipulate with a virtual smart card same as with a real card through the OpenSC
middlware.

As virtualization technologies are just a simulation of the smart card, they have some
limitations as any simulator might have. One of such limitations that virtualization has is
that there is no well-known way to connect the virtual smart card with the CMS server
so we can dynamically request and upload new certificates to the virtual smart card. It is
one of the challenges for the future testing library – how to connect these two technologies
(virtual smart card and CMS) so they can cooperate automatically. Another limitation of
a virtual smart card is that such kind of a smart card is very generic and can’t simulate
closed source smart cards. At this point, we have to return to the physical cards, but we
still need to automate the testing of those cards. This problem was partially resolved with
a special hardware card reader – the so-called Smart Card Removinator.

3.2.2 Smart Card Removinator

The smart card Removinator [13] is a card reader that can switch up to eight smart cards.
Switching is controlled by RS-323 interface [31]. The smart card Removinator provides
functionality such as simulating the removal of the smart card to trigger the corresponding
signal for example for locking the PC screen. Additionally, the important thing for the
test automation is that on each of eight smart cards different applets and certificates can
be used. Smart cards that can’t be taken out of some country can be accessed remotely
with Removinator. This functionality brings more flexibility in testing support of the smart
cards because those cards can be used for a variety of use cases, and each of them may
require a different driver in OpenSC. You can see how smart card removinator looks like
on the Figure 3.3.

With virtualization technologies and smart card removinator the risk of system damage
comes into play. This problem can be solved by executing tests on the virtual machine as
well as with carefully backing up and restoring configuration and system files needed for
the particular test.

Figure 3.3: Smart Card Removinator [13].

5https://pcscworkgroup.com/

17

https://pcscworkgroup.com/

3.2.3 BeakerLib.

BeakerLib [24] is a shell-level integration testing library, providing convenience functions
that simplify writing, running, and analysis of integration and black-box tests. Beakerlib
wraps around a lot of system utilities and other tools that are used for testing and it makes
it really easy to write good, easily readable tests with good structure. Other than Beakerlib
we are also exploring the Avocado framework. [27]. We will decide which library fits better
our needs during the implementation process for integrating tests into the existing QA
pipeline.

3.3 Red Hat Certificate System (RHCS)
Red Hat Certificate System (RHCS) is a certificate management system from Red Hat.
RHCS is shipped as a web server Apache Tomcat [2]. The core of RHCS is Dogtag [5]
Certificate Management System (Section 3.1) which provides complete certificate lifecycle
management and management of PKI (Section 2.5.3).

For our test library, we need to communicate with the RHCS server to use the PKI
environment inside it. There are two main ways to choose. The first option is to use its
PKI REST API6 directly. PKI provides REST [34] interface to allow clients to access
services on the server. The REST interface uses regular HTTP request methods:

• GET: Fetch data, no side effects

• POST: Create new entries in the namespace

• PUT: Update entires in the namespace.

In general, the POST request will not create active entries but will require a further PUT
request to approve. One exception is when the user creates and approves certificates in one
call. If we continue this approach, we will have to revise the security mechanisms around it,
as currently it requires disabling nonces. All HTTP calls should have return codes defined
for expected success and error cases. The Dogtag has bindings on Tomcat URL.

The second option is PKI Client CLI7 calls provided by the PKI client package. CLI
calls can provide the same functionality as using REST API, but with more user-friendly
interface. With CLI the user can use simple command line calls to create a CSR and to
obtain the certificate. All other work would be handled on the background.

The third options is to use PKI Client Python API8. This variant seems to be the
most suitable from the implementation point of view, because PKI Client Python API has
direct bindings on the REST interface. Also, with PKI Client Python API we wouldn’t
need to wrap PKI Client CLI with python code or to integrate poor REST interface into
our library.

3.4 Kerberos
When using smart cards it is essential to provide a secure channel for the user’s data
(credentials, certificates). When the user logs into the system, sensitive data is sent via

6https://github.com/dogtagpki/pki/wiki/PKI-REST-API
7https://github.com/dogtagpki/pki/wiki/PKI-Client-CLI
8https://github.com/dogtagpki/pki/wiki/PKI-Client-Python-API

18

https://github.com/dogtagpki/pki/wiki/PKI-REST-API
https://github.com/dogtagpki/pki/wiki/PKI-Client-CLI
https://github.com/dogtagpki/pki/wiki/PKI-Client-Python-API

some kind of network to the server where users’ credentials can be checked. In this client -
server communication, the network is the ”Achilles heel“ because of network vulnerabilities.

To minimize the influence of network weaknesses, the Kerberos9[12] protocol is used.
Kerberos is a network authentication protocol that provides strong authentication for client
- server applications by using symmetric cryptography. In our work Kerberos server addi-
tionally provides a Single Sign-On (SSO) mechanism[26]. This mechanism provides a uni-
versal way to use one credential for different independent services. Credentials can be
a standard pair login + password or it equally can be the certificate from the smart card.
The key to this universality is that the user needs to provide credentials only while obtaining
a ticket that would be automatically used for signing on to supported services. And here
this universal ticket is obtained from the Key Distribution Center (KDC) on the Kerberos
server.

Imagine that a user wants to login into an account as a work user and for this he needs
a smart card. Before getting the certificates on the smart card we need to prepare the card
by itself. As the aim of the smart card is to identify the owner of the card, we need to
format the card to be sure that there are no certificates that do not belong to this particular
user. After formatting, we need to enroll the smart card. Enrolment of the smart card tells
the CMS server that this particular smart card now belongs to that user. This user has to
be an LDAP user. The enrolment of the smart card is done when there is a need to change
the user or certificates on the smart card. After enrolment, we can request the necessary
certificates from the CMS server. This is made under any local user and also can be made
on another PC configured with the same CMS server. The user provides his credentials and
the CMS server validates them on an LDAP server. If credentials are valid, then the CMS
server generates requested certificates and sends them to the user. Typically, it is not only
one certificate, but a few of them. Those certificates can be for a different purposes:

Figure 3.4: Communication between elements.

9https://web.mit.edu/kerberos/

19

https://web.mit.edu/kerberos/

• signature – provides digital signature

• authentication – used for authentication to the system/services

• encryption – used for encrypting user data

• and etc.

After receiving the certificates, they are uploaded to the smart card. If a corresponding rule
for authentication exists in the system configuration (in sssd match rules [33]), then the
corresponding authentication certificate would be used for authentication with the Kerberos
server. If the Kerberos server accepts the certificate for this user, then the KDC issues
a Ticket Granting Ticket (TGT) encrypted with a private key from Ticket Granting Service
(TGS) to this particular user. The user can login with this ticket into the system and use
services, that are allowed by this ticket. The whole communication schematically is shown
on the Figure 3.4.

20

Chapter 4

Architecture

In this chapter, we will talk about the architecture and design of the library and what
is the library responsible for. After that, we will discuss the current implementation in
the Chapter 5. Current limitations of the library are discussed in Section 6.2.

SCAutolib is designed to be a standalone library and it does not depend on any internal
Red Hat services. This makes the library available to be used by anyone who wants to test
smart card functionality. The library uses a combination of Bash and Python1 languages to
provide the necessary functionality. Bash scripts are used for the deployment of the testing
environment. The library is responsible for the following aspects:

• deploying the environment

– creating local Certificate Authority (CA)
– deploying remote Red Hat Certificate System (Section 3.3)
– deploying Kerberos server (Section 3.4) with an LDAP instance connected
– creating virtual smart cards

• providing API for manipulations with smart cards (virtual or real cards connected
through removinator)

– removing and inserting
– formatting
– uploading certificates issued from the local CA or the RHCS server on the smart

card

• providing an interface for communicating with the necessary subsystems in Public
Key Infrastructure (Section 2.5.3) environment

– Certificate Authority (CA) (both on localhost and RHCS server) for issuing
certificates and revoking them

– Online Certificate Status Protocol (OCSP)

4.1 Logical diagram
Let’s look at how our library fits into the test environment and how the library will manage
all of the environment components. The logical diagram is shown on the Figure 4.1.

1Python version ≥ 3

21

Additional services

Test host

PLACEMENT GUIDE
delete after placement

Test environment

RHCS server

Red Hat Certificate
System

Host with connected removinator

Removinator

Library with required functionality

SCAutoLib

systemd service

Virtual smart card

In any testing framework using SCAutoLib

Automated tests

Server for user authentication

Kerberos server

Directory with certificates and other
configuration files

Local CA

Figure 4.1: Components of a test environment.

A testing environment consists of two main parts – tested host and additional ser-
vices.

Test host

Test host is a machine that we are testing. We will assume that this machine is using
RHEL 8 as an operating system. This machine contains a virtual smart card which is
represented as a systemd service. Starting this service simulates insertion of the card and
stopping simulates removal. For testing, we would need to have two virtual cards. The first
card would contain a certificate from the local CA that is created by the library before the
virtual card is set and the second card would contain certificates from the RHCS server.
The test host contains the automated test cases which use SCAutolib to create, configure
and manage services. The test cases can be written in any framework. In our case, the
tests are written in the Avocado framework.

Additional services

Additional services in our case are a set of additional technologies that can be used to more
thoroughly test smart cards. It is not required to have these services on the separated ma-
chines, so for testing, purposes we can deploy them on the same host. The most important
part of additional services is a Kerberos server in combination with an RHCS server. Ob-
viously, Kerberos is an important part because it enables smart card login with non-local

22

users and enables Single Sign-On for such users. All information about the Kerberos users
is stored in an LDAP instance. We don’t do any LDAP manipulation from the library, so
there is no connection point between SCAutolib and an LDAP instance. In the diagram, we
assume that an LDAP instance is deployed on the same host where the Kerberos server is.
Removinator is an intermediary between code and real cards. As Removinator is a physical
card reader that is connected to some remote host, the real smart cards inserted into the
removinator are tested on the remote host (check Section 6.2.2). The user would be able
to access cards in removinator through the library.

4.2 Schematic Diagram
In this section, we will talk about how SCAutoLib communicates with each component in
the test environment. The schematic diagram is presented on the Figure 4.2

First, let’s look at the left side of the diagram - tested (local) host. On this side, we
have a virtual card(s) and local CA along with the SCAutolib library. As we mentioned
before, a virtual card is represented by a systemd service, so SCAutoLib manages the vir-
tual cards using the system service manager (e.g systemctl start virt_cacard.service
for inserting the card). In reality, local CA is represented by a set of directories (for
generated certificates, certificate revocation list (CRL)) and files (root private key and
self-signed root certificate, issued certificates). This directory structure is generated us-
ing a bash script and the certificates are generated using OpenSSL. The library con-

Additional servicesTested host

SCAutoLib

Python library

Virtual card

systemd service

Certificates

Local CA

Local Certificate
Authority

System calls

User certificate

Removinator

Host with connected
Removinator

RHCS

Apache TomCat server
with DogTag PKI

Kerberos

Kerberos server with
connected LDAP
instance

root certificate

root certificate

SSH

User certificate

Python API

Figure 4.2: Schematic diagram of SCAutoLib library.

23

tains a Bash script2 for deploying local CA on the test host. This script creates all
the necessary directories and generates the certificates which we then upload on the vir-
tual smart card using another script3. After all the preparation steps are done, the li-
brary can manage the local certificates using the OpenSSL command-line utilities (e.g
openssl ca -keyfile rootCA.key -in user.csr -out user.crt)4

On the right side, we have additional services. Each of the hosts is deployed through
the library by a Bash script. For communicating with removinator host a special library
is used. But in reality, this library connects to removinator host via SSH. Removinator
requires a special library because it is unique hardware that is not manufactured by any
company but is handmade. So, manipulations with Removinator have to be as much secure
and non-damaging as possible. This special library acts as a fuse as it provides safe wrappers
to user commands.

Kerberos server is deployed with LDAP instance connected to it as we have to store user
information there. For communication with the Kerberos server SCAutoLib also uses an
SSH connection. There is no need for a direct communication channel between an LDAP
instance and SCAutoLib because LDAP is required by the Kerberos server and not the
library by itself. The library would be responsible for the deployment and configuration of
an LDAP instance. Also, for enabling Kerberos login to the system, local CA and RHCS
have to share their root certificates with the Kerberos server. With these certificates, the
Kerberos server would be able to validate the user certificate and successfully authenticate
the user.

Last but not least is the RHCS server. RHCS server is Apache TomCat web server
with running instance of Dogtag PKI. The library communicates with the RHCS server via
client python API that Dogtag PKI provides to the client.

As you can see, the testing environment for the smart cards contains a lot of services
and hosts. But to have each service on the separated host is very unpractical from the
maintainer’s point of view. Moreover, the more real separated hosts are involved in the
environment, the more the test environment is prone to problems that are not necessarily
related to smart cards. As a result, the real problem of test failure might be shadowed by
other errors. To eliminate such kind of situation, from a practical point of view it would be
better to run all services on the same host. In other words, to have Kerberos server with
LDAP instance and RHCS server on the same machine would be less error-prone.

2https://github.com/x00Pavel/SCAutoLib/blob/master/src/env/setup_ca.sh
3https://github.com/x00Pavel/SCAutoLib/blob/master/src/env/setup_virt_card.sh
4Another opportunity is to use python cryptography module (https://pypi.org/project/

cryptography/) for such kind of operations.

24

https://github.com/x00Pavel/SCAutoLib/blob/master/src/env/setup_ca.sh
https://github.com/x00Pavel/SCAutoLib/blob/master/src/env/setup_virt_card.sh
https://pypi.org/project/cryptography/
https://pypi.org/project/cryptography/

Chapter 5

Implementation

In this chapter, we will look at how our library is implemented and how we deal with
configuring and managing the main components. As we mentioned before, the main part
of the library is written in Python with the addition of some Bash scripts that handle the
deploying and cleanup of the test environment. We will introduce how the library handles
main components, such as virtual smart cards, sssd, etc. The setup of removinator host is
shown on the Figure 5.1. The whole library implementation at this moment takes around
450 lines of Python code along with 250 lines of code in Bash scripts that are used in the
testing process at this moment.

5.1 Components
Each component in the library is represented as a class with corresponding methods. Tests
have a common structure such as

Figure 5.1: Smart card removinator connected to the host.

25

1. system configuration

2. card manipulations

3. command execution

4. restore card state

5. restore system state

These steps can be implemented with try: ... except: ... block, but it would be a fre-
quent repetition of the code. Python contains the solution for such kinds of tasks. The
scenario of a kind setup ⇒ action ⇒ cleanup is implemented with a context manager
(with block). To use the object in the context manager, the class of the object has to
implement the magic methods __enter__ and __exit__. Method __enter__ is triggered
on entering the context, so the setup step is implemented in this method. And __exit__
method triggered on exiting from the context. A simple example for a class handling system
configuration with authselect can be implemented in the following way:

1 def __enter__(self):
2 self._set()
3 return self
4

5 def __exit__(self, ext_type, ext_value, ext_traceback):
6 if ext_type is not None:
7 log.error("Exception in authselect context")
8 log.error(f"Exception type: {ext_type}")
9 log.error(f"Exception value: {ext_value}")

10 log.error(f"Exception traceback: {ext_traceback}")
11 self._reset()

As you can see, in __enter__ method there is a call of a class method that configures
authselect. In this method, authslect is configured to use sssd profile with a smart card.
Options for the smart card such as enforcing the smart card for authentication, lock the
screen on smart card removal, etc., are passed to the constructor and then are used in the
_set() method.

In __exit__ method we check if any exception was raised during the context usage. If
any kind of exception would be raised, the corresponding parameters would be logged. In
any case, at the end the system is restored to its original state. In the end, a simple test
cases that checks su login with a smart card that uses local certificates can look like this:

1 def test_su_login(self):
2 with Authselect(required=True, lock_on_removal=True, mk_homedir=False):
3 with VirtCard(insert=True) as sc:
4 sc.run_cmd(
5 cmd=’su - localuser -c "su - localuser -c whoami"’,
6 pin=True,
7 passwd=’123456’
8 expect=’localuser’)

5.2 Test Utilities
Some test cases require specific configuration of some services, generation of additional
temporary files or certificates, and other common operations with the system. Such kind

26

of functionality is common for the virtual card, physical card, and also can be used in
Authselect class. Auxiliary functionality is implemented in the separated file utils.py.
There are the functions for editing specific configuration files of services, that correspond
to the smart cards (e.g sssd), for file backup, service restart, etc. Some of the functions are
implemented as decorators that users can use to wrap the test case.

It is worth paying attention to how we edit those configuration files. To enable such
kind of functionality, unique placeholders in form of comments were added to the default
configuration files that are copied to the corresponding location in the system during the
setup phase. Usage of such decorator is shown below

1 @utils.edit_config(service="sssd", string="some string", holder="pam", section=True)
2 det test(self):
3 ...

As you can see, the first parameter is the name of the service for which the user wants to
change the configuration file. Then we have a string that is the actual line we want to add
to the configuration file. holder can be used to add the line in a specific section or it can
be a substring in the file content that would be changed. The parameter section specifies
the meaning of the holder, whether it a section or just a substring. Before editing any file,
we do a backup of those files and after the test execution, we restore the original files so we
don’t cause any problems to the next test case that will be executed. After every update
of the configuration file, the corresponding service is restarted.

5.3 Evaluation
Now we have the library with minimal functionality and we have written tests using SCAu-
tolib. In this section, we will discuss how test cases are executed and how we can analyze
the output of those tests.

We assume that we already have up and running host with RHEL distribution on it.
Smart Card Support module also has to be installed on the system. In the directory /root
we create the following directory structure:

/root/
tests/

SCAutolib/ ...Library source code
test_certs.py
test_login.py
test_sssd_conf.py

CA/
conf/Directory with default configuration files

Before actual test execution, we need to setup the target host. As we already mentioned,
setup phase contains two steps: configuring the local CA and deploying the virtual smart
card. This two steps are done with following commands:

1 python3 SCAutolib/src/env.py setup-ca --work-dir /root/CA/ --conf-dir /root/CA/conf/
2 python3 SCAutolib/src/env.py setup-virt-card --work-dir /root/CA/ --conf-dir /root/CA/conf

As you can see, we need to specify the working directory and the configuration files directory
for both the local CA and the virtual card deployment. The directory with configuration
files contains default configuration files that would be changed and copied to correspond-
ing places during the deployment process. Working directory after deployment is finished
contains following file structure:

27

/root/
CA/

conf/Directory with default configuration files
crl/ ... Certifcate Revocation List
db/ ..NSS Database
localuser1.crt
localuser1.key
rootCA.crt
rootCA.key
tokens/ ..SoftHSM tokens

You can see that the directory contains necessary files and directories for local CA (root
certificate rootCA.crt, root private key rootCA.key, user certificate localuser1.crt and
private key localuser1.key, Certificate Revocation List crl/) along with directories for
SoftHSM tokes (tokens/) and NSS database (db/).

For the execution of test cases, we would show relatively to /root/tests/ directory
(test directory). As we mentioned above, tests are written in Avocado framework. In the
test director, we use a command

1 avocado --show base,app run test_sssd_conf.py

to execute tests with library logger base and built-in Avocado logger app. The output of
the test execution you can see in the Appendix A.

5.4 Test Metrics
Now we can build some expectations regarding the time that would be needed to run all test
cases one by one. The original test plan contains 248 test cases for 3 main components:
authselect, OpenSC, and p11-kit. For evaluation of this test plan experienced full-time QA
engineer spends around 8 working days (8 days * 8 hours = 64 hours) without maintaining
the test environment. Test results in the Appendix A shows one of the worst cases we need
to count with: editing the configuration files followed by service restart. So, even if we
would map 1:1 manual test cases to automated ones, then overall time to run 248 test cases
would take (248 tests * 17 sec)/3600 = 1.17 hour without counting time for the setup
phase. Time consumed for the execution of automated tests is 54 times less than the time
consumed by manual test evaluation!

Unfortunately, in reality, we can’t map manual test cases to automated in 1:1. The
reason is that some tests require specific cards that can’t be inserted into removinator
(YubiKey USB token) or special card readers that also can’t be automated in the pipeline.
Test of this kind takes around 5% of all test cases. Another special type of test includes
manipulations with the desktop application such as mail clients and browser. These test
cases are not a part of integration testing, so we can skip them. Again, tests with desktop
applications involved make around 5% of all test plan. So, we have 248 - 10% = 223
test cases that theoretically can be implemented with mentioned technologies and library
improvements. This amount of test cases will take approximately (223 tests * 17 sec)/3600
= 1 hour without setup phase and special test cases with real hardware, which is 64 times
faster, than manual testing.

This calculations are made based on current state of the implemented test cases and
the library. In future we would be able to implement more complex test cases that might

28

took more time for execution. But it still would be significantly faster than executing test
cases manually.

29

Chapter 6

Discussion

In this section, we will discuss the limitations of our work as well as possible extensions and
improvements followed by limitations of the library.

6.1 Future Improvements
Currently, the library is not fully equipped with all the necessary functionality. There are
still a lot of things that needed to be added. In this section, we would talk about possible
improvements that can be added to the current implementation of the library. Also, we
would mention a possible way for the implementation of these features. Upgrading library
functionality is a plan for future development.

6.1.1 Improvements

The first thing that we can improve is to get rid of the Bash scripts for deploying the
environment. Bash scripts can be replaced with a more modern solution for the deployment
tasks – Ansible [25]. The advantage of this solution is that Ansible is very flexible technology
in sense of configuration and writing the specifications in the YAML format. For example,
Ansible provides distributive-independent way to install required packages to the system1.
Moreover, Ansible is also implemented in Python language, so it is a very easy to integrate
Ansible calls into the Python code.

At this moment the library is very hardcoded in a sense of system configuration during
environment deployment. That means that the user (aka tester) can’t specify for example
passwords and PIN that he would like to have in the system user and for the smart card. Or
the configuration files are also stored in the library and the user can’t specify his files and
the only way how those files can be edited by the user is through the decorators as shown in
the example in Section 5.2. To solve this problem, those parameters such as root password,
user password, the path to configuration files, etc. can be specified in the separated file
with the given format. Before environment deployment, the user would create such kind
of a file and give it as a parameter for the corresponding scripts. This file can be in JSON
or YAML format, as they are easily serializable. For example, such kind of a file in YAML
format might look in the following way

1 variables:
2 root: rootpassword

1https://docs.ansible.com/ansible/latest/collections/ansible/builtin/package_module.html

30

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/package_module.html

3 users:
4 - name: localuser
5 passwd: userpassword
6 - name: kerberos-user
7 passed: kerberospassword
8 smartcards:
9 - name: localuser

10 pin: Secret.123
11 service_name: virt_card_localuser.service
12 - name: kerberos-user
13 pin: RealCard.321
14 configs:
15 files:
16 - dir: /home/test/other_configs/
17 - sssd: /home/test/config/sssd.conf
18 - kerberos: /home/test/config/krb.conf
19 local_ca_path: /root/ca/

In the variables section, the user specifies root password, credentials for two users on
the test host, information for smart card instances that are needed for correct usage and
deployment. If given credentials are used for virtual smart cards, there is a service name
for the corresponding virtual smart card. Also, this service name would be used during the
deployment on the setup phase. If there is no service name, the given credential is used for
the real card in removinator. In a section configs, the user specifies the directory where all
default configuration files are located. The user can override the location of configuration
files for some service if it would be needed. Another useful parameter that the user would
be able to use with such kind of parameterization is the configuration of local CA deployed
before test execution. For example, the user can define where the folder that is required
for creating local CA would be created.

Currently, the library requires the system to have authselect for setting up the authen-
tication method and configuring sssd. One of the possible improvements can be adding
other tools for configuring authentication methods, such as authconfig. As authselect is
a replacement for authconfig, but adding this support will allow users to use the library
even on older operating systems, such as RHEL 7.

The way of distributing our library can be also improved. Currently, the SCAutolib
library can be downloaded from the public GitHub repository [35]. The problem with such
kind of distribution is that the source code of the library has to be placed near test files (or
has to be placed into the system directory manually). Also, the user would need to install all
required package by themselves. A possible solution for this problem is to compose a Python
package based on best practices for packaging and then to upload this package to the public
Python Package Index2 (PyPI). This way of distribution would require creating setup.cfg
file where package specification and metadata would be placed. Required packages can be
included in the package metadata and would be installed during the library installation
process as library dependencies.

6.1.2 New functionality

One of the required features that are not implemented yet in the library is communication
with removinator host. Ability to communicate with removinator and use it is essential
for smart card testing. The reason for this is a big variety of smart cards that have to
be tested at least on the detection level. And the virtual smart card can’t simulate all of

2https://pypi.org/

31

https://pypi.org/

those cards, because some of them are read-only and customer-provided. After fixing minor
problems in the existing code, we will focus on this functionality of the library. Removintor
has a python module that provides API for manipulations with the smart card inserted in
it. This module needs more research to be integrated into our library.

Another important feature of the library that is not implemented yet is the ability to
deploy the RHCS server and communicate with the PKI environment in it. Here commu-
nication means issuing the certificates from the PKI and managing the PKI environment
through the library. As it was mentioned, communication with the RHCS server can be
implemented through client CLI calls. But as with removinator python module, the CLI
API needs more research before integrating it into the SCAutolib.

To provide more flexibility to the user regarding the certificates on the virtual smart
card, we need not only to issue certificates through our library but also have the ability
to upload issued certificates on the smart card. Uploading certificates on the smart card
in technical terminology is called smart card enrollment. Enrollment of the virtual smart
card is processed through the SoftHSM token (Section 3.2.1).

After this functionality is added to the library, corresponding fields can be added to
the configuration file. Credentials from the RHCS or LDAP root user can be stored under
root section for example in the following way:

1 variables:
2 root:
3 - system: sysRootPasswd
4 - rhcs: rhcsRootPasswd
5 - kerberos:
6 name: krbRoot
7 passwd: krbRootPasswd

Storing credentials in this way in the production environment would cause vulnerabilities,
but in our case, these are the credentials for hosts in the internal testing environment.
Hosts in the testing environment don’t contain any real sensitive data. Moreover, all hosts
that are used during the testing would be destroyed after test execution.

There are a lot of test scenarios where the user might want to test smart cards with
Graphical User Interface. For example, testing that GNOME Desktop Manager (GDM)
is recognizing the inserted smart card and prompts to insert the smart card pin require
such kind of GUI testing framework. This requirement leads to integrating the GUI testing
framework into our library. One of the possibilities is to use OpenQA [18]. This framework
is used in automated GUI testing in Fedora release validation testing process, and testing
updates3. With using OpenQA we could be able to automate most of the test cases that
require graphical interface.

6.2 Limitations
Even with possible improvements and must-have new functionality, SCAutolib might have
limitations regarding the technologies the library is using.

6.2.1 Virtual smart cards

At this moment our solution has some specific limitations regarding the virtual smart cards.

3https://fedoraproject.org/wiki/OpenQA

32

https://fedoraproject.org/wiki/OpenQA

• virt_cacard can’t have two instances running on the same machine at the same time.
The codebase of virt_cacard is not designed for such use-case at this moment4.

• The user typically has two and more certificates on the card (at least a signing cer-
tificate and encryption certificate), but a virtual smart card is not correctly working
with more than one certificate on it.

The support of two running services with virt_cacard and correct handling of two and more
certificates on one virtual card depends on the library developers.

6.2.2 Removinator

Another bottleneck of our library is removinator. Smart card testing requires real hardware
(real cards and card reader) for testing and verifying some specific cards, functionality, and
bugs. And the fact that execution of test with removinator is provided against the host
where Removinator is connected, brings more responsibilities, such as maintaining this
host, maintaining Removinator by itself, and risks such as blocking the real card under
unexpected circumstances, e.g wrong PIN for the smart card has been entered more than
three times due to some external bug in the system. Currently, there is no way to simulate
inserting the smart card into the local machine through the Removinator connected to the
remote host.

4We already created the issue for adding this functionality https://github.com/Jakuje/virt_cacard/
issues/1

33

https://github.com/Jakuje/virt_cacard/issues/1
https://github.com/Jakuje/virt_cacard/issues/1

Chapter 7

Conclusion

The main purpose of this work was to design and try to implement a new tool for automated
testing of the smart cards. The smart card by itself is a plastic card with an integrated
circuit that can store and/or process a small amount of data. In our case, the data is digital
X.509 certificates. This tool is needed because there is no other solution that provides all
the functionality that we need for testing. Due to the lack of clear similar technologies, this
project is developed from scratch.

Our tool is a Python library with functionality for low-level operations from the library
perspective, such as inserting a smart card or restarting the required system service. With
this low-level functionality, more high-level features, such as editing the configuration files
or checking su login, can be implemented. Most of the testing can be implemented with
virtual smart cards instead of real smart cards. Virtualization of the smart cards is imple-
mented using libcacard library that wraps SoftHSM token with similar functionality and
properties as Common Access Card has. For testing specific cards, that can’t be simulated
or for testing smart card functionality that virtual smart card can simulate at this moment,
a special real hardware reader (Smart Card Removinator) is used. Smart Card Removina-
tor has its library to operate with it and this library could be used in our project. The
library is also responsible for the deployment required testing environment. Deployment
scripts are implemented in Bash. The testing environment contains a virtual smart card,
local Certificate Authority (CA), Kerberos server, and Red Hat Certificate System (RHCS)
server. Some test cases require GUI interaction(such as GDM login). Currently the library
doesn’t support this functionality, but we plan to integrate the OpenQA framework into
our library and that would make writing such test cases possible. The library is designed
to be self-contained and publicly available.

Currently, the library contains implemented scripts for the deployment of the virtual
card and local CA. For manipulating the virtual cards and system service, the library
already has implemented basic low-level functionality alone with higher functions such as
file backup or editing the configuration files. Future work would include adding support for
Removinator and integrating OpenQA framework.

34

Bibliography

[1] Adams, C. and Lloyd, S. Understanding PKI: Concepts, standards, and
deployment considerations. 2nd ed. Boston, MA: Addison-Wesley Educational, 2002.

[2] Apache Tomcat Project. Apache Tomcat [online]. [cit. 2020-12-22]. Available at:
http://tomcat.apache.org/.

[3] appviewx. What is Public Key Infrastructure (PKI)? [online]. August 2019 [cit.
202-4-27]. Available at: https://www.appviewx.com/education-center/pki/.

[4] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R. et al. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile [Internet Requests for Comments]. RFC 5280. RFC Editor, May 2008.
Available at: http://www.rfc-editor.org/rfc/rfc5280.txt.

[5] Dogtag Certificate System Team. Dogtag [online]. [cit. 2020-12-22]. Available
at: https://www.dogtagpki.org/wiki/PKI_Main_Page.

[6] Fromknecht, C., Velicanu, D. and Yakoubov, S. A Decentralized Public Key
Infrastructure with Identity Retention. IACR Cryptology ePrint Archive. 2014,
vol. 2014, p. 803.

[7] Gleeson, S. and Zimman, C. PKCS #11 Cryptographic Token Interface Base
Specificatio Version 2.40 [online], 14. april 2015 [cit. 2020-12-15]. Available at: http:
//docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html.

[8] GlobalPlatform Technology, Inc.. Card Specification [online].
globalplatform.org. Available at: https://globalplatform.org/wp-content/uploads/
2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf.

[9] guru99. What is WHITE Box Testing? Techniques, Example & Types [online]. [cit.
2020-12-03]. Available at: https://www.guru99.com/white-box-testing.html.

[10] Hogffman, N. A SIMPLIFIED IDEA ALGORITHM [online]. Available at:
https://www.nku.edu/~christensen/simplified%20IDEA%20algorithm.pdf.

[11] IDManagement. Personal Identity Verification Guide Introduction [online]. [cit.
2020-11-03]. Available at: https://playbooks.idmanagement.gov/piv/.

[12] Itoi, N. and Honeyman, P. Smartcard Integration with Kerberos V5.
In: Smartcard. 1999.

[13] Kinder, N. Smart Card Removinator. October 2016 [cit. 2020-12-20]. Available at:
https://github.com/nkinder/smart-card-removinator.

35

http://tomcat.apache.org/
https://www.appviewx.com/education-center/pki/
http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.dogtagpki.org/wiki/PKI_Main_Page
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
https://www.guru99.com/white-box-testing.html
https://www.nku.edu/~christensen/simplified%20IDEA%20algorithm.pdf
https://playbooks.idmanagement.gov/piv/
https://github.com/nkinder/smart-card-removinator

[14] Kommerling, O. and Kuhn, M. G. Design Principles for Tamper-Resistant
Smartcard Processors. Available at:
https://www.cl.cam.ac.uk/~mgk25/sc99-tamper.pdf.

[15] Levy, A., Relyea, R. and Jelen, J. Libcacard. [cit. 2020-12-20]. Available at:
https://gitlab.freedesktop.org/spice/libcacard.

[16] Myers, M., Ankney, R., Malpani, A., Galperin, S. and Adams, C. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP
[Internet Requests for Comments]. RFC 2560. RFC Editor, June 1999. Available at:
http://www.rfc-editor.org/rfc/rfc2560.txt.

[17] National Institute of Standards and Technology. Specification for the
ADVANCED ENCRYPTION STANDARD (AES) [online]. U.S. Department of
Commerce, november 2001. Available at:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[18] openQA Team. Automated tests for operating systems. [cit. 2020-4-24]. Available at:
http://open.qa/.

[19] OpenSC Community.

[20] Palant, P.-L. Virt_cacard. March 2019 [cit. 2020-12-12]. Available at:
https://github.com/Jakuje/virt_cacard/.

[21] Parmar, K. Integration testing techniques. SAP AG. Available at:
https://archive.sap.com/kmuuid2/c03b0790-6d3b-3210-dcb4-848320a3d9e4/
Integration%20Testing%20Techniques.pdf.

[22] Patton, R. Software Testing. 2nd ed. Indianapolis, IN: Sams Publishing, 2005.

[23] Pornin, T. Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA) [Internet Requests for
Comments]. RFC 6979. RFC Editor, August 2013. Available at:
http://www.rfc-editor.org/rfc/rfc6979.txt.

[24] Pospíšil, D. and Šplícha, P. BeakerLib. March 2017 [cit. 2020-12-21]. Available at:
https://github.com/beakerlib/beakerlib.

[25] Red Hat, Inc.. Ansible Documentation [online]. [cit. 2021-04-14]. Available at:
https://docs.ansible.com/ansible/latest/index.html.

[26] Red Hat, Inc.. Red Hat Enterprise Linux 6 Managing Single Sign-On and Smart
Cards [online]. April 2019. Available at: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/pdf/managing_smart_cards/
Red_Hat_Enterprise_Linux-6-Managing_Smart_Cards-en-US.pdf.

[27] Red Hat, Inc. and Avocado Community Contributors. Avocado Framework
[online]. [cit. 2020-12-21]. Available at: https://avocado-framework.github.io/.

[28] Rivest, R., Shamir, A. and Adleman, L. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems [online]. Available at:
https://people.csail.mit.edu/rivest/Rsapaper.pdf.

36

https://www.cl.cam.ac.uk/~mgk25/sc99-tamper.pdf
https://gitlab.freedesktop.org/spice/libcacard
http://www.rfc-editor.org/rfc/rfc2560.txt
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://open.qa/
https://github.com/Jakuje/virt_cacard/
https://archive.sap.com/kmuuid2/c03b0790-6d3b-3210-dcb4-848320a3d9e4/Integration%20Testing%20Techniques.pdf
https://archive.sap.com/kmuuid2/c03b0790-6d3b-3210-dcb4-848320a3d9e4/Integration%20Testing%20Techniques.pdf
http://www.rfc-editor.org/rfc/rfc6979.txt
https://github.com/beakerlib/beakerlib
https://docs.ansible.com/ansible/latest/index.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/pdf/managing_smart_cards/Red_Hat_Enterprise_Linux-6-Managing_Smart_Cards-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/pdf/managing_smart_cards/Red_Hat_Enterprise_Linux-6-Managing_Smart_Cards-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/pdf/managing_smart_cards/Red_Hat_Enterprise_Linux-6-Managing_Smart_Cards-en-US.pdf
https://avocado-framework.github.io/
https://people.csail.mit.edu/rivest/Rsapaper.pdf

[29] Smart Card Alliance. Smart Card Technology and the FIDO Protocols [online].
Princeton Junction, NJ: securetechalliance.org [cit. 2020-11-04]. Available at:
https://www.securetechalliance.org/wp-content/uploads/FIDO-and-Smart-Card-
Technology-FINAL-April-2016.pdf.

[30] Standards, N. I. of and Technology. Digital Signature Standard (DSS). U.S.
Department of Commerce, june 2013.

[31] Strangio, C. E. RS232 standard [online]. [cit. 2020-12-21]. Available at:
https://www.camiresearch.com/Data_Com_Basics/RS232_standard.html.

[32] Techotopia. An Overview of Public Key Infrastructures (PKI) [online]. [cit.
2021-01-18]. Available at: https:
//www.techotopia.com/index.php/An_Overview_of_Public_Key_Infrastructures_(PKI).

[33] The SSSD upstream. Sss-certmap: SSSD certificate matching and mapping rules -
Linux man pages (5) [online]. [cit. 2020-11-27]. Available at:
https://www.systutorials.com/docs/linux/man/5-sss-certmap/.

[34] Thomas, F. R. Architectural Styles and the Design of Network-based Software
Architectures. Irvine, California, 2000. Doctoral dissertation. University of
California.

[35] Yadlouski, P. SCAutolib - Library for automation of smart card testing. April 2021
[cit. 2021-04-23]. Available at: https://github.com/x00Pavel/SCAutolib.

37

https://www.securetechalliance.org/wp-content/uploads/FIDO-and-Smart-Card-Technology-FINAL-April-2016.pdf
https://www.securetechalliance.org/wp-content/uploads/FIDO-and-Smart-Card-Technology-FINAL-April-2016.pdf
https://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
https://www.techotopia.com/index.php/An_Overview_of_Public_Key_Infrastructures_(PKI)
https://www.techotopia.com/index.php/An_Overview_of_Public_Key_Infrastructures_(PKI)
https://www.systutorials.com/docs/linux/man/5-sss-certmap/
https://github.com/x00Pavel/SCAutolib

Appendix A

Test Output

1 [root@localhost tests]# avocado --show base,app run test_sssd_conf.py
2 JOB ID : fcb9fbd4bb150e4d1ca6eb9593b4832d576bde07
3 JOB LOG : /root/avocado/job-results/job-2021-04-29T05.57-fcb9fbd/job.log
4 (1/4) test_sssd_conf.py:TestSssdConf.test_su_login_p11_uri_slot_description: base: File

from /etc/sssd/sssd.conf is copied to /root/sc/Sanity/basics/SCAutolib/src/tmp/backup/
sssd.conf

5 base: Section pam in config file /etc/sssd/sssd.conf is updated
6 -base: Service sssd is restarted
7 base: SSSD is set to: authselect select sssd --backup tmp.backup with-smartcard --force
8 base: Backupfile: tmp.backup
9 base: Smart card initialized

10 |base: Smart card is inserted
11 /base: Smart card removed
12 base: Authselect backup file is restored
13 base: File from /root/sc/Sanity/basics/SCAutolib/src/tmp/backup/sssd.conf is restored to /

etc/sssd/sssd.conf
14 -base: Service sssd is restarted
15 PASS (17.72 s)
16 (2/4) test_sssd_conf.py:TestSssdConf.test_su_login_p11_uri_wrong_slot_description: base:

File from /etc/sssd/sssd.conf is copied to /root/sc/Sanity/basics/SCAutolib/src/tmp/
backup/sssd.conf

17 base: Section pam in config file /etc/sssd/sssd.conf is updated
18 |base: Service sssd is restarted
19 base: SSSD is set to: authselect select sssd --backup tmp.backup with-smartcard --force
20 base: Backupfile: tmp.backup
21 base: Smart card initialized
22 -base: Smart card is inserted
23 -base: Smart card removed
24 base: Authselect backup file is restored
25 base: File from /root/sc/Sanity/basics/SCAutolib/src/tmp/backup/sssd.conf is restored to /

etc/sssd/sssd.conf
26 \base: Service sssd is restarted
27 PASS (17.08 s)
28 (3/4) test_sssd_conf.py:TestSssdConf.test_user_mismatch: base: File from /etc/sssd/sssd.

conf is copied to /root/sc/Sanity/basics/SCAutolib/src/tmp/backup/sssd.conf
29 base: Substring localuser1 in config file /etc/sssd/sssd.conf is updated
30 /base: Service sssd is restarted
31 base: SSSD is set to: authselect select sssd --backup tmp.backup with-smartcard --force
32 base: Backupfile: tmp.backup
33 base: Smart card initialized
34 \base: Smart card is inserted
35 \base: Smart card removed

38

36 base: Authselect backup file is restored
37 base: File from /root/sc/Sanity/basics/SCAutolib/src/tmp/backup/sssd.conf is restored to /

etc/sssd/sssd.conf
38 /base: Service sssd is restarted
39 PASS (17.24 s)
40 (4/4) test_sssd_conf.py:TestSssdConf.test_wrong_subject_in_matchrule: base: File from /

etc/sssd/sssd.conf is copied to /root/sc/Sanity/basics/SCAutolib/src/tmp/backup/sssd.
conf

41 base: Substring CN=localuser1 in config file /etc/sssd/sssd.conf is updated
42 \base: Service sssd is restarted
43 base: SSSD is set to: authselect select sssd --backup tmp.backup with-smartcard --force
44 base: Backupfile: tmp.backup
45 base: Smart card initialized
46 /base: Smart card is inserted
47 /base: Smart card removed
48 base: Authselect backup file is restored
49 base: File from /root/sc/Sanity/basics/SCAutolib/src/tmp/backup/sssd.conf is restored to /

etc/sssd/sssd.conf
50 \base: Service sssd is restarted
51 PASS (17.18 s)
52 RESULTS : PASS 4 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
53 JOB TIME : 69.88
54 s~

39

	Introduction
	Background
	Smart Card
	Common Use Cases
	Types of Smart Cards
	Based on a Connection
	Based on the Processing Element
	Tamper-resistant features

	Symmetric and Asymmetric Cryptography
	Public Key Infrastructure
	Digital Certificate
	Certificate Authority (CA)
	Public Key Infrastructure (PKI)

	Standard PKCS #11
	Testing of Smart Cards
	Sanity testing
	Integration testing
	Regression testing
	Black-Box testing & White-Box testing

	Related Work
	Certificate Management System server
	Testing technologies
	Smart Card virtualization
	Smart Card Removinator
	BeakerLib.

	Red Hat Certificate System (RHCS)
	Kerberos

	Architecture
	Logical diagram
	Schematic Diagram

	Implementation
	Components
	Test Utilities
	Evaluation
	Test Metrics

	Discussion
	Future Improvements
	Improvements
	New functionality

	Limitations
	Virtual smart cards
	Removinator

	Conclusion
	Bibliography
	Test Output

