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Abstract
With the advances in e-mail spam recognition and user awareness, spammers are moving
towards less researched media. One of those is the short messaging system (SMS), which
boasts high availability and open rates. Those characteristics are also attractive to legit-
imate businesses that need to send short, bulk messages to their clients. However, while
these messages might be solicited by the end-user, they might represent a loss for the SMS
service provider, as these businesses often misuse unlimited SMS plans meant for regular
customers to avoid paying for more expensive solutions designated for them. It is there-
fore desirable to be able to recognize both unsolicited and solicited bulk messages. Bulk
messages are generally generated from a template. The goal of this work is to design a
clustering algorithm that treats a message as a sequence of lexical units (words), and eval-
uate it’s effectiveness compared to a locality sensitivity hashing method that treats the
message as a string of symbols. The work evaluates the suitability of the Smith-Waterman
alignment algorithm for this task. The work details why Smith-Waterman (and other local
alignment techniques) is unsuitable, and how it can be replaced by Needleman-Wunsch
(global alignment) to produce much better results. The resulting algorithm is able to clus-
ter real messages into campaigns satisfactorily, and performs well even in situations where
the benchmark locality sensitivity hashing method fragments campaigns.
Abstrakt
Vďaka pokroku v rozpoznávaní spamu v e-mailoch a zvyšovaní povedomia používateľov
smerujú spameri k menej preskúmaným médiám. Jedným z nich je short messaging ser-
vice (SMS). Táto služba poskytuje užívateľom možnosť reagovať na správy v krátkom čase
a v skoro ľubovolnom prostredí. Tieto vlastnosti sú atraktívne aj pre legitímne podniky,
ktoré potrebujú svojim klinetom zasielať krátke hromadné správy. Aj keď sú tieto správy z
pohladu koncového užívateľa vyžiadané, pre poskytovateľa služieb SMS môžu predstavovať
stratu, pretože tieto podniky často zneužívajú neobmedzené SMS plány určené pre bežných
zákazníkov, aby sa vyhli plateniu za pre nich určené, ale drahšie produkty. Je preto žiaduce
vedieť rozpoznať nevyžiadané aj vyžiadané hromadné správy. Hromadné správy sa zvyča-
jne generujú zo šablóny. Cieľom tejto práce je navrhnúť zhlukovací algoritmus ktorý správy
analyzuje ako sekvencie lexikálnych jednotiek (slov), a vyhodnotiť jeho efektivitu v porov-
naní s locality sensitivity hashing metódou ktorá správy analyzuje ako reťazce symbolov.
Práca vyhodnocuje vhodnosť algoritmu Smith-Waterman pre túto úlohu. Práca popisuje,
prečo je Smith-Waterman (a ďalšie lokálne zarovnávania) nevhodný, a ako je možné ho
nahradiť algoritmom Needleman-Wunsch (globálnym zarovnávaním), aby sa dosiahli oveľa
lepšie výsledky. Výsledný algoritmus dokáže uspokojivo zhlukovať skutočné správy do kam-
paní a funguje dobre aj v situáciách, kde locality sensitivity hashing kampane fragmentuje.
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cov
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Rozšírený abstrakt
Rozpoznávanie nevyžiadaných hromadných správ (spamu) v emailovej komunikácii je v
dnešnej dobe veľmi účinné. Napomáha tomu aj fakt, že užívatelia sú o nebezpečenstvách
email spamu dobre poučený. Spameri preto prechádzajú na iné médiá. Jedným z nich je
SMS (short messaging service). Na rozdiel od telefonickej a emailovej komunikácie, uží-
vatelia sú schopný interagovať s SMS v skoro ľubovolnom prostedí, a nevyrušovať pritom
ostatných. Interakcia s SMS správami je taktiež skoro instantná: 90% správ je otvorených,
a väčšina je otvorená do 15 minút. Rozpoznávanie spamu v SMS správach je menej preskú-
mané ako v emailoch. Užívatelia sú tiež menej poučený o existencii a povahe spamu v
SMS. Užívatelia tiež považujú SMS za dôverihodnú službu, čo zvyšuje mieru odozvy na
SMS spam.

SMS ako médium pre spam nabralo na popularite so zvýšenou dostupnosťou neobmedzených
predplatných SMS plánov. Toto predstavuje ďalší problém: spoločnosti ktoré potrebujú
klientom posielať krátke hromadné správy sa obracajú na SMS. Veľa z nich využíva neobmedzené
plány určené pre bežných užívateľov, namiesto pre nich určených drahších produktov.
Týmto vzniká poskytovatelom škoda, ako ušlím ziskom, tak zvýšenou záťažou na sieť. Je
teda žiadúce vedieť odhlaliť nevyžiadnané aj vyžiadané hromadné správy.

Hromadné správy sú posielané vrámci takzvaných kampaní. Správy v jednej kampani
sú väčšinou vygenerované zo šablóny s fixními aj variabilnímy prvkami. Ak sú vygenerované
správy syntakticky veľmi podobné, môžme ich zhlukovať do kampaní pomocou podobnosti
textu. Pre úspech kampane je ale skôr dôležitá sémantická podobnosť správ. Útočníci
cielene vkladajú do kampaní variabilitu v podobe synoným a šumu. Toto spôsobuje prob-
lém v zhlukovacích metódach zvaný fragmentácia: vytvorenie viacerých zhlukov z vzoriek
patriacich do rovnakého zhluku.

Jednou z metód na zhlukovanie textu je takzvaný locality sensitivity hashing (LSH)
založený na podobnosti textu. Táto metóda je rýchla, ale je náchylná na fragmentovanie
variablných kampaní. Cielom tejto práce je vytvoriť zhlukovaciu metódu založenú na spra-
covaní správy po slovách, nie po písmenách. Navrhnutý algoritmus je založený na zarovná-
vaní reťazcov, metóde využívanej v bioinformatike na vyhladávanie podobných sekcií v
proteínových reťazcoch. Navrhnutý algoritmus je schopný zhlukovať správy do kampaní,
a zároveň sa iteratívne naučiť šablónu kampane. Algoritmus sa učí z pozitívnych vzorkov,
ale je súčastne schopný odhaliť negatívne vzorky, a zamedziť ich ovplineniu šablóny (nie je
ale schopný zdokonaliť pomocou negatívnych vzorkov šablónu).

Vrámci tejto práce bola preskúmaná vhodnosť zarovnávacieho algoritmu Smith-Waterman
na učenie sa šablón. Ukázalo sa však, že tento algoritmus je nevhodný, pretože vykonáva
lokálne zarovnanie. Ďalej bol odtestovaný globálny zarovnávací algoritmus Needleman-
Wunsch. Tento prístup bol úspešný, schopný vytvoriť akceptovatelné zhluky a použitelné
šablóny. Výsledný algoritmus bol úspešný v zlúčení kampaní ktoré LSH metóda fragmen-
tovala.
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Chapter 1

Introduction

Sending unsolicited bulk messages - spamming - is an activity most associated with
email communication. Spam protection in email is relatively well researched and effective.
Users nowadays are also well educated on the dangers of email spam, and the response rate
to email spam is dropping. This is driving traditional email spammers to seek out other
avenues of distributing spam [10]. Due to the increased availability of unlimited plans, The
Short Messaging Service (SMS) is one of them. While in some countries the use of SMS is
on the decline, in others (Middle East, Africa, Asia) it is still popular.

SMS spam has received relatively small amount of attention from researchers in com-
parison to email. It presents it’s own challenges. The common content based approach of
spam filtering is ill suited for detecting SMS spam, as SMS messages are limited in length.
Private companies now also send SMS to their customers much more, which can present a
problem for mobile service operators as well, if they are not using the proper avenues. Some
bulk messages might appear legitimate based on their content, but their detection is still of
interest to providers, as their senders might be using cheaper plans designated for regular
physical customers, therefore presenting both higher operating costs and loss in revenue.

Spam is usually sent in so-called campaigns. Messages within a campaign have the same
purpose (e.g. advertisement), and also share a structure. This is because spam is usually
generated from a template: a meta description of the message, with both fixed and variable
fields. Each message is therefore personalized to the recipient, and a little different, but still
sharing a similar overall structure. If we knew a template of a spam campaign, we could
detect messages from that campaign easily by comparing them to the template. Conversely,
by grouping messages together based on what template we think they were generated from,
we can approximate the size of a campaign, and decide whether it is a spam campaign at
all.

One approach to grouping messages into campaigns is to compute their text similarity.
This is the approach that Mavenir s.r.o. currently uses. Apart from not learning a template,
this approach is prone to error when a template generates messages with variable length or
when noise is introduced to the messages. To combat this, an alternative approach based
on analyzing the message as a sequence of words (as opposed to a sequence of letters)
was proposed. The goal of this work is to implement an algorithm that can iteratively
learn templates used to generate campaigns of messages and classify those messages into
campaigns at the same time.

Chapter 2 defines some terms that will be useful in designing the algorithm.
To learn templates, we will attempt to locate similarities among sequences of words the

messages contain - aligning them. Chapter 3 defines what is alignment, and describes two
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algorithms for aligning sequences, as well as a number of parameters of these algorithms
and their meaning.

Chapter 4 explores the concepts of SMS and spamming in more detail. It also describes
the method used for grouping SMS messages into campaigns in Mavenir.

Chapter 5 contains description of the proposed classification algorithm. Chapter 6
describes how the algorithm performs on real data, and how to adjust it to ensure it groups
messages into campaigns correctly.
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Chapter 2

Strings, Languages, and Tokens

In this section we will define some common notions and notations used in the field of
formal languages. In Section 2.3 we build upon those to define new notions that will be
more useful to the algorithms described later.

2.1 Language
This section has been adopted from [16]
An alphabet Σ is a finite, non-empty set of symbols called letters.
A string 𝑥 over Σ is a finite sequence 𝑥 = 𝑎1 . . . 𝑎𝑛 of letters. Let |𝑥| denote the length of

𝑥, which is the number of letters of which the string consists (in this case |𝑥| = |𝑎1 . . . 𝑎𝑛| =
𝑛).

The empty string is denoted 𝜖. |𝜖| = 0.
A substring of a given string is a contiguous string of symbols found in the string.
Certain string operations are defined:

• Concatenation of two strings 𝑥 and 𝑦 is 𝑥 · 𝑦 = 𝑥𝑦.

• Power 𝑖 ≥ 0 of string is defined recursively as follows:

– 𝑥0 = 𝜖

– 𝑥𝑖 = 𝑥𝑥𝑖−1

A language is any set of strings. We define some language operations:

• Concatenation 𝐿1 · 𝐿2 consists of all strings 𝑣𝑤 where 𝑣 ∈ 𝐿1 and 𝑤 ∈ 𝐿2

• Kleene star 𝐿* consists of all words that are concatenations of zero or more strings
in 𝐿

therefore a language is a subset of Σ* (where * is Kleen Star operator [11]).

2.1.1 Regular Languages

A regular language is a language over an alphabet Σ defined recursively as follows:

• the empty language ∅ and the language {𝜖} are regular.

• For each 𝑎 ∈ Σ, the singleton language {𝑎} is regular.
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• If 𝐴 and 𝐵 are regular languages, then 𝐴 ∪𝐵, 𝐴 ·𝐵, and 𝐴* are regular languages.

A regular expression (or regex) over Σ denotes a regular language and is defined as
follows:

• ∅ is a regex denoting the empty language.

• 𝜖 is a regex denoting {𝜖}.

• 𝑎 is a regex denoting {𝑎}.

• Let 𝑟 and 𝑠 be regular expressions denoting languages 𝐿𝑟 and 𝐿𝑠 respectively. Then:

– (𝑟.𝑠) is a regex denoting 𝐿 = 𝐿𝑟 · 𝐿𝑠.
– (𝑟|𝑠) is a regex denoting 𝐿 = 𝐿𝑟 ∪ 𝐿𝑠.
– (𝑟*) is a regex denoting 𝐿 = 𝐿*

𝑟 .

Note that a regular expression is a string over the alphabet Σ𝑅 = Σ ∪ {|} ∪ {*} (we
simplified (𝑟.𝑠) to just 𝑟𝑠).

We say that a regular expression 𝑟 matches a string 𝑠 if and only if 𝑠 ∈ 𝐿𝑟.

𝑚𝑎𝑡𝑐ℎ(𝑟, 𝑠) = 𝑠 ∈ 𝐿𝑟

For the purposes of this paper we define several shorthands:

• [𝑠] matches any letter in string 𝑠

• . matches any letter in Σ

• ∖𝑤 matches any alphabetical character and an underscore

• ∖𝑑 matches any digit.

• 𝑎? = 𝜖|𝑎

• 𝑎+ = 𝑎(𝑎*)

2.2 Tuples
A tuple is a finite ordered sequence of elements. A special notation is used in this

paper for defining tuples and referring to their elements. A (named) tuple is defined by
specifying the names of each element. For example tuple 𝑡 is a pair (elem1 , elem2 ). To refer
to elements of the tuple, we use a notation reminiscent of the dotted syntax for accessing
attributes of objects in many object oriented languages. For example, to refer to the first
element of pair 𝑡, we would write t .elem1 .

2.3 Tokens and Token Alphabets
A token category 𝑐 ∈ Σ𝑇 is a triple (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) where 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is a regular ex-

pression describing a regular language over some alphabet Σ0, priority ∈ N. We say that 𝑐
is a letter of Σ𝑇 .
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A token alphabet Σ𝑇 is a directed rooted in-tree1 of token categories.
Next we define

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑠,Σ𝑇 ) = {𝑐|𝑐.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑚𝑎𝑥({𝑐′.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦|𝑐′ ∈ Σ𝑇∧𝑠 ∈ 𝐿𝑐.𝑝𝑎𝑡𝑡𝑒𝑟𝑛})∧𝑐 ∈ Σ𝑇∧𝑠 ∈ 𝐿𝑐.𝑝𝑎𝑡𝑡𝑒𝑟𝑛}

In other words, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑠,Σ𝑇 ) is a set of token categories with the highest priority among
all categories in Σ𝑇 whose patterns describe a language to which 𝑠 belongs. Note that
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑠,Σ𝑇 ) will:

• be empty if there is no category in Σ𝑇 that matches 𝑠

• have precisely one element if there is no category in Σ𝑇 that matches 𝑠, and all
categories of Σ𝑇 with the same priority have patterns that describe languages that
are mutually exclusive

A token 𝑡 is a pair (𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑣𝑎𝑙𝑢𝑒, 𝑎𝑙𝑡𝑐𝑜𝑢𝑛𝑡, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙), where 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 is a token
category, 𝑣𝑎𝑙𝑢𝑒 is a set of strings, 𝑎𝑙𝑡𝑐𝑜𝑢𝑛𝑡 ∈ N ∪ {−1} is the alternative count, and
𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 ∈ True,False is a flag describing whether the token is optional. For the pur-
poses of learning templates, we will want to describe three types of tokens based on their
alternative count:

• Concrete Tokens - altcount = 1. A fixed field in a template; 𝑎𝑙𝑡𝑐𝑜𝑢𝑛𝑡 = |value|

• Alternative Tokens - altcount >= 1. Field with a low variability; 𝑎𝑙𝑡𝑐𝑜𝑢𝑛𝑡 = |value|

• Random Tokens - altcount = −1. Field in a template that is so variable, that
keeping track of its values doesn’t provide useful increase in information.

Category priority allows us to design token alphabets that have categories with patterns
describing languages that are not mutually exclusive. For example, we can define a category
(.*, 0, 0) that matches any string, but at a low priority, as a sort of catch all category. This
allows us to design robust programs that will be able to deal with unexpected inputs.

2.4 Edit Distance
This section has been adopted from [16]
Edit distance is a way of quantifying how dissimilar two strings are, by counting the

minimum number of operations required to transform one string into the other. In other
words, given the strings 𝑎 and 𝑏 on an alphabet Σ, the edit distance 𝑑(𝑎, 𝑏) is the minimum-
weight series of edit operations that transform 𝑎 into 𝑏.

Consider the following operations over strings:

• Insertion of a single symbol. Inserting symbol 𝑥 into string 𝑎 = 𝑢𝑣 produces the
string 𝑏 = 𝑢𝑥𝑣.

• Deletion of single symbol. Deleting symbol 𝑥 from a string 𝑎 = 𝑢𝑥𝑣 produces the
string 𝑏 = 𝑢𝑣.

• Substitution of a single symbol. Substituting symbol 𝑥 for symbol 𝑦 ̸= 𝑥 in a string
𝑎 = 𝑢𝑥𝑣 produces the string 𝑏 = 𝑢𝑦𝑣.

1its edges point towards the root
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• Transposition of two adjacent characters. Transposing two symbols 𝑥 ̸= 𝑦 in string
𝑎 = 𝑢𝑥𝑦𝑣 produces the string 𝑏 = 𝑢𝑦𝑥𝑣.

Note that the weight of these operations doesn’t have to be uniform.
Different variants of edit distance can be obtained by restricting the set of edit opera-

tions:

• Hamming distance allows only substitution. It requires the compared strings to be
the same length.

• Levenshtein distance allows deletion, insertion and substitution.

• Damerau-Levenshtein distance allows insertion, deletion, substitution, and trans-
position. Compared to Levenshtein distance, Damerau-Levenshtein distance allows
for greater nuance when setting the weights of edit operations.
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Chapter 3

Alignment

In this chapter, we are going to define the concept of sequence alignment and how we
can use it to infer sequence generation patterns.

Sequence alignment is the process of identifying regions of similarity among sequences.
It is most commonly used in bioinformatics for arranging DNA, RNA, or protein sequences,
and finding similarities that may indicate functional, structural or evolutionary relationship
between the sequences. However, sequence alignment can also be used to learn different
information about the sequences, such as how similar their are, or what sequence of edit
operations would need to be performed to make them identical. The tools developed for
alignment in bioinformatics are not applicable for our purposes, as they always expect
the existence of a finite alphabet of letters (such as nucleotides or amino acids). We are,
however, dealing with an infinite alphabet of words. Many are also specifically optimized
for aligning biological sequences, and implement non modifiable scoring systems.

There are two axes on which we can categorize alignment algorithms: number of se-
quences aligned, and locality of the alignment. Pairwise alignment methods align only two
sequences, while multiple sequence alignment methods try to align all of the sequences in a
given set. In this theses we will only discuss pairwise methods. Global alignment techniques
attempt to align every letter in both all sequences. They are most useful when the sequences
being aligned are similar and close in length. Global alignments can, however, end in gaps,
and can, therefore, align sequences of different lengths. A different way of looking at global
alignments is that they find the optimal (in respect to the scoring function) sequence of
edits that have to be performed for the two sequences to match. This means that if the
sequences are very different, the alignment will contain a high number of mutations; which
is useful, as it allows us to find such sequences. Local alignment techniques attempt to
find regions of high similarity in the sequences being aligned. They are most useful when
aligning dissimilar sequences that are suspected to contain short regions of similarity that
we are interested in.

In this paper, we will also refer to the result of an alignment algorithm as to an align-
ment. Any two sequences of equal length are an alignment. However, usually we are
interested in an single optimal alignment. What is considered optimal depends on the
alignment method and the scoring function used.

3.1 Spaces and Gaps
A space is the representation of a single insertion or deletion in an alignment.
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A gap is an inserted or deleted substring in a string, i.e. it is a maximal consecutive
run of spaces in a sequence. The length of a gap is the number of spaces (indel operations)
in it [4].

Example 1. Consider the alignment:
a t t - - c a g g t t
a t c g t c a - - - t
This alignment has two gaps (denoted by the hyphen symbol), and a total of five spaces.

Gaps represent an indel operation. Whether the specific operation is a deletion or an
insertion depends on how we interpret the sequences being aligned. Usually, we consider
both sequences equivalent, and the difference in indel operations is lost.

3.2 Needleman-Wunsch
The Needleman-Wunsch algorithm [20] is dynamic programming algorithm for finding

an optimal global alignment. It was designed for use in bioinformatics to align protein an
nucleotide sequences, but can be used to align any two sequences.

In this section, the original version of the algorithm is presented. Both space and time
complexity of this algorithm is 𝑂(𝑚𝑛) where 𝑚 and 𝑛 are the lengths of the first and
second sequence respectively. The time complexity can be improved to 𝑂(𝑚𝑛/ log 𝑛) using
the Four Russians method [19].

Let 𝐴 = 𝑎1𝑎2 . . . 𝑎𝑛 and 𝐵 = 𝑏1𝑏2 . . . 𝑏𝑚 be two sequences, where 𝑛 and 𝑚 are the
lengths of the sequences to be aligned.

1. Determine the scoring system. We will discus different scoring strategies bellow, but
for now, let

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) =

{︂
𝑚𝑎𝑡𝑐ℎ𝑅𝑒𝑤𝑎𝑟𝑑 x and y match
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑃𝑒𝑛𝑎𝑙𝑡𝑦 otherwise

𝑔𝑎𝑝𝑃𝑒𝑛𝑎𝑙𝑡𝑦

where 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) is the scoring match/mismatch function and 𝑔𝑎𝑝𝑃𝑒𝑛𝑎𝑙𝑡𝑦 is indel
score, which is used when a symbol aligns to a gap in the other sequence (representing
a insertion or deletion).

2. Construct a scoring Matrix 𝑀(𝑛+ 1,𝑚+ 1). Let 𝑀(0,0) = 0

3. Fill the scoring matrix using:

𝑀𝑖,𝑗 = 𝑚𝑎𝑥

⎧⎨⎩
𝑀𝑖−1,𝑗−1 + 𝑠𝑐𝑜𝑟𝑒(𝑎𝑖, 𝑏𝑗)
𝑀𝑖−1,𝑗 + 𝑑
𝑀𝑖,𝑗−1 + 𝑑

The scoring matrix is filled iteratively, using values computed in previous steps. Val-
ues coming from the left and top represent gaps. The diagonal (top-left) neighbor
represents an alignment of those two symbols, though it can be either a match, or a
mutation.

4. Trace back the scoring matrix by starting at 𝑀𝑛+1,𝑚+1 (the bottom right corner)
and stepping through into the preceding (diagonal top left, top, or left) cell with the
highest score, stopping at the top left corner.
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Recording our path as we traceback will give us the optimal global alignment, with
diagonal steps representing match/mutation, and lateral steps representing insertions or
deletions.

A secondary traceback matrix can be computed along the scoring matrix, holding in-
formation about where each corresponding score cell got it’s value from.

3.2.1 Example

This example will demonstrate the use of Needleman-Wunsch algorithm to align two
sequences globally:

1. Let 𝑠1 = 𝑇𝐺𝑇𝐺𝐺 and 𝐵 = 𝑇𝐺𝐴𝐶𝐺 be the sequences to be aligned

2. Let 𝑚𝑎𝑡𝑐ℎ_𝑟𝑒𝑤𝑎𝑟𝑑 = 1,𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = −1, 𝑔𝑎𝑝_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = −2

3. Construct the score matrix 𝑀𝑠 and the traceback matrix 𝑀𝑡

Table 3.1: Matrices after initialization

(a) Score Matrix

T G T G G
0

T
G
A
C
G

(b) Traceback Matrix

T G T G G
x

T
G
A
C
G

4. Fill the matrices

Table 3.2: Matrices after initialization

(a) Score Matrix

T G T G G
0 -1 -2 -3 -4 -5

T -1 1 0 -1 -2 -3
G -2 0 2 1 0 -1
A -3 -1 1 1 0 -1
C -4 -2 0 0 0 1
G -5 -3 -1 -1 -1 1

(b) Traceback Matrix

T G T G G
0 ← ← ← ← ←

T ↑ ↖ ← ← ← ←
G ↑ ↑ ↖ ← ← ↖
A ↑ ↖ ↑ ↖ ↖ ↖
C ↑ ↑ ↖ ↖ ↖ ↖
G ↑ ↑ ↖ ↖ ↖ ↖

5. Traceback to get the alignment: Starting at the bottom right cell we follow arrows in
𝑀𝑡 (representing source of the score in that particular cell) until we hit the top left
cell

T G T G G
T G A C G
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3.3 Smith-Waterman
Smith-Waterman algorithm performs local sequence alignment[24]; that is it compares

segments of all possible lengths. It is a variation of the Needleman-Wunsch algorithm
(described above), the main difference being that Smith-Waterman sets negative scoring
matrix cells to zero, and that the scoring begins at the cell with the highest score, instead
of the bottom-right cell. This renders the local alignments visible. This modification allows
the Smith-Waterman algorithm to find regions with high similarities in the two sequences
being aligned.

3.3.1 Example

This example will demonstrate the use of Smith-Waterman algorithm to align two se-
quences locally:

1. Let 𝑠1 = 𝑇𝐺𝑇𝐺𝐺 and 𝐵 = 𝑇𝐺𝐴𝐶𝐺 be the sequences to be aligned

2. Let 𝑚𝑎𝑡𝑐ℎ_𝑟𝑒𝑤𝑎𝑟𝑑 = 2,𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = −2, 𝑔𝑎𝑝_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 1

3. Construct the score matrix 𝑀𝑠 and the traceback matrix 𝑀𝑡

4. Fill the matrices 𝑀𝑠 and 𝑀𝑡

Table 3.3: Filled Matrices

(a) Score Matrix

T G A G C
0 0 0 0 0 0

T 0 2 1 0 0 0
G 0 1 4 3 2 1
T 0 2 3 2 1 0
G 0 1 4 3 4 3
G 0 0 3 2 5 4

(b) Traceback Matrix

T G A G C
0 0 0 0 0 0

T 0 ↖ ← ← 0 0
G 0 ↑ ↖ ← ↖ ←
T 0 ↖ ↑ ↖ ↖ ↖
G 0 ↑ ↖ ← ↖ ←
G 0 ↑ ↖ ↖ ↖ ←

5. Traceback to get the alignment: Starting at cell with the highest score (𝑀𝑠(5,4) = 5)
we follow arrows in 𝑀𝑡 (representing source of the score in that particular cell) until
we hit 0.

T G - G
T G G G

3.4 Parameters of Alignment Algorithms
In this section, we will explore different parameters of the two alignment algorithms

described above.
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3.4.1 Gap Penalty

Gap penalty is a cost score that is assigned to a gap (representing an insertion or
deletion) in an alignment [13]. Gap penalty allows us to reveal insertions or deletions in an
alignment.

Two commonly used values when talking about gap penalty are gap opening penalty and
gap extension penalty, the former being the score for opening a new gap, the latter being
the score for extending an existing gap by one space. Note that these values are usually a
positive number, and alignment algorithms substract them from the final score, resulting
in a penalty (see Section 3.2 and Section 3.3).

Different gap penalty scoring strategies allow us to incentivize different kinds of gaps.

Constant Gap Penalty

The simplest choice for a gap penalty is the constant gap penalty model, where each
gap is given a constant weight of 𝑊𝑔, independent of it’s length. Each individual indel
operation is therefore free, we only score the existence of such operation [4].

Constant gap penalty can be implemented by setting gap opening penalty to a positive
number, 𝑊𝑔 and gap extension penalty to zero, and is a special case of the affine gap penalty.

This model encourages the algorithm to make fewer, larger gaps.

Linear Gap Penalty

The Linear gap penalty model considers only the length of the gap to determine it’s
overall weight. Each individual indel operation contributes the same amount to the total
penalty. For a gap of length 𝑞 it would be:

𝑊𝑔 = 𝑞𝑊𝑠

Linear gap penalty can be implemented by setting both gap opening penalty and gap
extension penalty to 𝑊𝑠, and is a special case of the affine gap penalty.

This model encourages the algorithm to make smaller, more frequent gaps.

Affine Gap Penalty

The Affine gap penalty model scores both a gap as a whole and it’s length. The weight
(the total penalty) of a gap of length 𝑞 is:

𝑊𝑔 = 𝑊𝑜𝑝𝑒𝑛 + 𝑞𝑊𝑒𝑥𝑡𝑒𝑛𝑑

(The model is called ”affine“ after this affine formula.)
Affine gap penalty can be implemented by setting both gap opening penalty to 𝑊𝑜𝑝𝑒𝑛

and gap extension penalty to 𝑊𝑒𝑥𝑡𝑒𝑛𝑑. Depending on the ratio 𝑊𝑜𝑝𝑒𝑛

𝑊𝑒𝑥𝑡𝑒𝑛𝑑
this model will either

encourage fewer, larger gaps (𝑊𝑜𝑝𝑒𝑛 ≫𝑊𝑒𝑥𝑡𝑒𝑛𝑑, very common in biology (see Section ??)))
or more frequent, small gaps (𝑊𝑜𝑝𝑒𝑛 ≪𝑊𝑒𝑥𝑡𝑒𝑛𝑑).

Absolute Value of the Gap Penalty

Often, it is not clear what the absolute values of gap opening penalty and gap extension
penalty should be, as it depends on both the purpose of the alignment and other parameters,
such as score or length of the sequence. It is obvious that higher values will result in more
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closely related matches, with fewer gaps. On the other hand, a lower gap penalty will allow
us to find matches that are more distant.

3.4.2 Substitution Scoring Function

Substitution scoring function 𝑠(𝑎, 𝑏) assigns two elements of the sequences being com-
pared a score. This score represents how likely it is those elements would be substituted for
one another. In biology, this usually means how likely one element is to mutate to another.

The simplest approach is to return a positive score when the elements match exactly,
and a (equal) negative score when they don’t.

𝑠(𝑎, 𝑏) =

{︂
1 𝑎 = 𝑏
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Another common approach is a scoring matrix, which is a matrix in which each ele-
ment represents the score of matching (replacing) one element with another [14]. Scoring
matrices are commonly used in bioinformatics for aligning protein and nucleotid sequences.
Examples of such matrices are BLOSUM62 [7] for amino acids and DNAfull [14] for nu-
cleotids. Both were computed by analyzing the frequencies of substitutions in collections
of known alignments.

Scoring matrices are used by many implementations of alignment algorithms for biolog-
ical sequences such as FASTA [12] and BLAST [6].
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Chapter 4

SMS and SMS spam

4.1 SMS
SMS, or short message service, is a text messaging service component of most telephone

systems. It uses standardized communication protocols that let mobile devices exchange
short text messages. The SMS was included in the GSM (Global System for Mobile Com-
munications) standards from the beginning. There are two types of message described:
Mobile Originated (MO), meaning the message was send from a mobile handset to another
mobile handset, and Mobile Terminated (MT), meaning the message was sent to a mobile
handset and originated from another handset or from a software application.

SMS is realised by the use of the Mobile Application Part (MAP) of the SS7 protocol,
with SMS protocol elements being transported across the network as fields within the
MAP messages [3]. Messages are sent with the MAP MO-ForwardSM and MT-ForwardSM
operations, whose payload length is limited by the constraints of the signaling protocol to
precisely 140 bytes. SMS can be encoded using three alphabets: the default GSM 7-bit
alphabet, the 8-bit data alphabet, or the 16-bit UCS-2 alphabet [1]. Choice of the alphabet
leads to the maximum individual message size of 160 7-bit characters, 140 8-bit characters,
or 70 16-bit characters. GSM 7-bit support is mandatory for GSM handsets and network
elements [1]. Longer content can be sent using multiple messages (for example with a User
Data Header [2] in the front) and then concatenated on the receiving end into a single
message. However, for the purposes of this thesis, we will only consider single messages up
to 160 characters in length.

4.2 Spamming
Spamming is the act of sending numerous unsolicited messages (spam) to a large number

of recipients, often for the purposes of advertising. Usually (and for the purposes of this
paper always) spamming refers only to the use of electronic communication systems to send
such messages.

The precise definition of spam is dubious. OECD (Organization for Economic Co-
operation and Development) aggregated several definitions and discussions of spam, and
summarized characteristic properties of spam. They split them into two categories - pri-
mary and secondary. The primary characteristics include unsolicited electronic commercial
messages, sent in bulk. The secondary characteristics are ones that are frequently associated
with spam, but perhaps not necessary [21]. Table 4.1 shows those characteristics.
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Table 4.1: Primary and secondary characteristics of spam

Primary characteristics Secondary characteristics

Electronic message Uses addresses collected without prior consent or knowledge
Sent in bulk Unwanted
Unsolicited Repetitive
Commercial Untargeted and indisciminate

Unstoppable
Anonymous and/or disguised
Illegal or offensive content
Deceptive or fraudulent content

The Spamhaus Project defines spam simply as unsolicited bulk email, considering spam
to be ”an issue about consent, not content“ [22]. This distinction is important, because when
legislators attempt to regulate the content of spam messages, they come up against free
speech issues. This makes creating anti-spam legislation difficult to implement effectively.
In fact, most spam originates in countries with lax anti-spam laws [23].

4.3 SMS Spam
With the advances in effective filtering and user awarness, email spam return is dimin-

ishing. Traditional email spammers are moving to mobile networks. The SMS service is
attractive for criminals for a number of reasons. In contrast with phone or email commu-
nication, users are able to interact with SMS services in nearly every environment, without
disrupting those around them. SMS also leads to near instantaneous interaction with the
recipients: SMS marketers claim SMS messages open rates are higher than 90% and are
opened within 15 minutes of receipt. Contrast that to the open rate in email of only 20-25%
withing 24 hours of receipt [8]. In addition, SMS is often considered a trusted service, and
users are more comfortable using it for confidential information exchange. This can result
in a higher response rate to SMS spam than to email spam [10]. It is also becoming cost
effective to target SMS because of the availability of unlimited pre-pay SMS packages.

Another issue of SMS is that actual spam is not the only troublesome form of bulk
communication, from the provider’s point of view. Private companies often use subscription
plans designed for regular customers to avoid using more expensive means designated for
commercial purposes. Such communication can be solicited and important for the recipient,
but it’s bulk nature represents an increased, uncompensated strain on the network, as well
as a loss in revenue.

4.4 Spam Campaigns
The term “spam campaign” is commonly used with varying degrees of generality to mean

anything from all spam of a certain type (e.g. pharmaceutical), through spam intended for a
specific purpose (e.g. phishing) to spam continuously generated from a single template [18].
For the purposes of this work, we will refer to spam campaign as to a set of messages which
were generated from the same template. A template is a description used to craft individual
spam messages. It is composed of both fixed text and variable fields, which are expanded to
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generate a single message. Their use allows the spam message to be personalized (it could,
for example, include the recipients name).
1 Your A/C No:{NUMBER} has been {"credited"|"debited"} Tk.{AMOUNT} on

{DATE} by {"transfer"|"cash"}. Current Balance Tk.{AMOUNT}. Thank You,
R∗∗∗∗i Bank Ltd.

2 Dear Client, TK. {AMOUNT} credited to {NUMBER} by {"Transfer"|"On−line
cash"} dated {DATE} {TIME}. Remaining balance {AMOUNT}. MTB Helpline
∗∗∗∗9

There are three interesting things to note:

1. The template is composed of three types of components:

• Fixed words, which will always appear in the same spot in each message. For
example ”Your“ or ”Balance“,

• Variable, which are a choice from a finite set. For example ”credited“|”debited“,
• Highly variable, which are generated from a very large (sometimes random)

set. For example NUMBER being one of many account numbers.

2. Some strings that might be variable or highly variable in one template might be
constant in another. For example, the word ”credited“ appears in both templates,
but it can be replaced by ”debited“ in one of them. Likewise, all numbers in the first
template are variable, but there is a constant number in the second template.

3. A single template might produce messages with different number of words. This is
important, because a simple leftmost alignment (aligning messages by words from the
first word) will perform poorly, as a single word shift will throw it off. This problem
is easily dealt with by introducing the concept of gaps (see Section 3.1).

The variable nature of spam messages makes them harder to be grouped with messages
belonging to the same campaign (generated from the same template). Grouping messages
together is important: not only does it allow us to approximate the size of the attack, but
if we can learn a template from which those messages were generated, we can use it to filter
further spam messages from the same campaign.

4.5 SMS Spam detection in Mavenir s.r.o.
Mavenir s.r.o. uses text clustering to detect SMS spam. Messages are assigned to

clusters (representing campaigns) based on text similarity.
Mavenir currently uses a combination of locality-sensitive hashing (LSH) and pre-screening

that requires a partial match, to calculate text distance and cluster messages.
LSH [17] is an algorithmic technique that assigns similar input items into the same buck-

ets (assignes them the same hash) with high probability. The number of such buckets will
be much smaller than the universe of possible input items. LSH differs from conventional
hashing techniques (such as ones used in data storage and retrieval) in that hash collisions
are maximized, not minimized. Therefore, LSH can be considered a data clustering method.

An LSH family ℱ is defined for a metric space ℳ = (𝑀,𝑑), a threshold 𝑅 > 0 and
an approximation factor 𝑐 > 1. This family ℱ is a family of functions ℎ : 𝑀 → 𝑆 which
map elements from a metric space to buckets 𝑠 ∈ 𝑆. The LSH family satisfies the following
conditions for any two points 𝑝, 𝑞 ∈ 𝑀 , using a function ℎ ∈ ℱ which is chosen uniformly
at random:
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• if 𝑑(𝑝, 𝑞) ≤ 𝑅, then ℎ(𝑝) = ℎ(𝑞) with probability at least 𝑃1

• if 𝑑(𝑝, 𝑞) ≥ 𝑐𝑅, then ℎ(𝑝) = ℎ(𝑞) with probability at most 𝑃2

A family is interesting when 𝑃1 > 𝑃2. In other words, only functions that assign two samples
with distance smaller than some threshold the same hash more often than to samples with
distance greater than the threshold are of interest to us when designing LSH.

Pre-screening is a method used to choose candidates for comparison. A set of mandatory
tokens is chosen for each existing campaign. The message being compared has to contain
a certain number of these tokens before it’s even considered for the particular campaign.
A bigger match typically hints at a better candidate. The process of choosing the mandatory
tokens is non-trivial, and beyond the scope of this work.

4.5.1 Fragmentation and Merging

There are two problems we need to contend with when using the approach described
above to sort messages into campaigns: excessive merging and fragmentation.

Excessive merging happens when messages that were in reality generated from different
templates are merged into one campaign. This type of error is not a too common in practice,
mostly because of the pre-screening mechanism described above.

Fragmentation happens when messages that were in reality generated from one template
are classified into different campaigns. This type of error is, unlike excessive merging, very
common, and happens often in campaigns that we are interested in (spam campaigns), as
attackers are intentionally increasing variability of their campaigns by introducing noise
into their spam messages. In other words, the campaigns that are the most important to
detect are the most vulnerable to fragmentation when using the method described above.

One solution to the problem of fragmentation is to use multiple clustering methods.
Diversification is a common and effective method in combating fraud, as it is harder for an
attacker to overcome multiple simple detection methods than one perfect method. Chapters
5 and 6 of this paper focuses on describing one such method.

4.5.2 Data provided by Mavenir s.r.o.

For the purposes of developing an algorithm for inferring spam SMS generation tem-
plates Mavenir s.r.o. provided a sample dataset of SMS spam. The data consists of messages
and campaign keys assigned to them by the method described above (4.5). The dataset
contains a total of 58,450 messages.

Example 2. Four rows from the dataset:
1 4E03003630044A810020110200A0216040208072023086002000A01400821E0001188420,

"Tu codigo es 49158. Ve a Facebook e introducelo para confirmar. #fb"
2 4E03003630044A810020110200A0216040208072023086002000A01400821E0001188420,

"Tu codigo es 67814. Ve a Facebook e introducelo para confirmar. #fb"
3 4E030058208B032958B00301000E2E70121230CC800188EC4094A0C0010B4DCC00081083,

"Dear Client, TK. 20776.00 credited to ∗∗∗82520 by Transfer dated
2020−09−08 16:16. Remaining balance 177804.08. MTB Helpline ∗∗∗∗9"

4 4E030058208B032958B00301000E2E70121230CC800188EC4094A0C0010B4DCC00081083,
"Dear Client, TK. 100000.00 credited to ∗∗∗98648 by On−Line Cash
dated 2020−09−08 3:58. Remaining balance 3016218.73. MTB Helpline
∗∗∗∗9"

Rows one and two were classified to the same campaign, rows three and four likewise.
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Sensitive data, such as names, addresses, and account numbers have been replaced by
placeholders.

Example 3. A message with account number censored (campaign key omitted):
1 "Your A/C No:3251∗∗∗∗∗7543 has been DEBITED Tk.22,500.00 on

08−SEP−2020 by CASH. Current Balance Tk.596. Thank You, R∗∗∗∗i
Bank Ltd."

The data was chosen so that most prior campaigns were not significantly fragmented
or excessively merged, however, some fragmentation is present. This is good, as it provides
an opportunity to evaluate whether our algorithm manages to avoid the same mistakes the
LSH algorithm makes. It, however, also means that we can not consider the data correctly
labeled for the purposes of using automatic learning algorithms.

Example 4. Fragmented campaign - these two messages are obviously generated from the
same campaign, however, a different has been assigned to them.
1 4E0300582...0081083,"Dear Client, TK. 1.41 credited to ∗∗∗47503 by Transfer

dated 2020−09−08 16:16. Remaining balance 121.40. MTB Helpline
∗∗∗∗9"

2 4E03004D3...A082083,"Dear Client, TK. 909.06 credited to ∗∗∗20918 by
Transfer dated 2020−09−08 16:16. Remaining balance 2628.92. MTB
Helpline ∗∗∗∗9"

18



Chapter 5

Algortihm for Inferring Sequence
Generation Patterns

In this chapter, we are going to describe the proposed algorithm for iteratively inferring
sequence generation templates. In this chapter, we will describe the algorithm generally, and
define a number of hyperparameters that will control how the algorithm learns templates.
Their precise values will differ depending on the nature of the data being classified. 6
describes how we arrived at values for classifying data in Section 4.5.2.

First, we will need an algorithm that takes a string to classify, a database of campaigns,
and a number of parameters, classifies the string to a campaign (existing one, or a new
one), updates the campaigns to reflect the information learned from this new string, then
returns the ID of the campaign to which the new string was classified and a database of
the updated campaigns. The general idea as follows:

1. Tokenize the new string.

2. Pick a campaign from a database. If there are no campaigns left, create a new one
with a pattern equal to the new string.

3. Attempt to match the new string against the standing pattern of a campaign. If it
matches, assign the string to the campaign, and terminate.

4. Align the new string with the standing pattern. If the alignment doesn’t conform to
parameters (it is too short, the align score is below the threshold...), return to step 2

5. Merge the alignment with the standing pattern, to update the pattern. If the new
pattern doesn’t conform to parameters (there are too many random tokens...), return
to step 2, otherwise terminate.

We will then need to expand this algorithm to take a stream of strings and iteratively
build a database of campaigns from scratch.

5.1 Classification Algorithms
In this section, we will look at how the proposed algorithms could be implemented. Two

algorithms will be described: streamClassify, which will take a stream of strings, and sort
them into campaigns, and classify, which will take a single string, and return a campaign
to which it belongs. Note that both algorithms share a number of hyperparameters:
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• Tokenize - a function used to split a string into a sequence of tokens

• Align - a function that takes two sequences of tokens, and returns their optimal
alignment

• Score - a function to score the similarity of two tokens. Identical to the scoring
function described in Section 3.4.2

• CollapseAlignment - a function that takes two sequences of tokens (ostensibly the
result of aligning two sequences of tokens), and returns one sequence by collapsing
them.

• JudgeAlignment - a function that evaluates an alignment (two sequences of tokens
and their score), and decides whether it is satisfactory. This will be often achieved
by measuring several properties of the alignment, such as its length or its score, and
comparing them to some boundaries.

These are used to control the process of learning campaign templates. How well (or if at
all) the algorithm will perform depends greatly on the choice of these hyperparameters.
They will be described in greater detail below.

The streamClassify algorithm takes a stream of strings, and classifies them into cam-
paigns as they come. This algorithm can be used to build a campaign database from
scratch.
1 Input:
2 stream (stream of strings),
3 Tokenize (A~function to split a string into a sequence of tokens

),
4 Align (A~function to compute alignment),
5 Score (Substitution scoring function),
6 CollapseAlignment (A~function that colapses an alignment into a

regular expression),
7 JudgeAlignment (A~function that returns true if an alignment

that is passed to it is satisfactory, or to false otherwise)
8 gapOpenPenalty (Smith-Waterman gap opening penalty),

gapExtendPenalty (Smith-Waterman gap extension penalty)
9

10 Output:
11 Database of campaigns
12 =========================
13 CampaignDb campaigns
14 while there stream is not empty:
15
16 Sequence s~:= tokenize(next string)
17
18 id, campaigns := classify(s, campaigns, Align, Score,

CollapseAlignment, JudgeAlignment)
19
20 return campaigns

Algorithm 5.1: streamClassify

Algorithm classify takes a sequence of tokens, a database of campaigns, and a number
of parameters, and classifies the sequence to a campaign, i.e. it finds a campaign with a
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template that either matches the sequence, or aligns with it satisfactorily (based on the
parameters), then returns the id of this campaign and updates the database of campaigns.
If no satisfactory campaign has been found, the algorithm creates a new one.
1 Input:
2 s~(sequence of tokens),
3 db (database of campaigns),
4 Align (A~function to compute alignment),
5 Score (Substitution scoring function),
6 CollapseAlignment (A~function that collapses an alignment into a

regular expression),
7 JudgeAlignment (A~function that returns true if an alignment that is

passed to it is satisfactory, or false otherwise)
8
9 Output:

10 id (id of the campaign to which we classified the input sequence s)
11 db (updated database of campaigns)
12 =========================
13 foreach id, Campaign c in db:
14 if c.match(s):
15 return id, db
16 else:
17 alignS, alignC, score := Align(s, c, Score)
18
19 align := CollapseAlignment(alignS, alignC)
20
21 if JudgeAlignment(align, s, c, score):
22 db[id] := align
23 return id, db
24 else:
25 continue
26
27 -- create new campaign
28 db[id := nextId(db)] :=
29 s~return id, db

Algorithm 5.2: classify

5.2 Tokenization
The first step in the classification algorithm is to tokenize the string being classified,

meaning to transform it into a sequence of tokens.
We define function 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒(split ,Σ𝑇 , 𝑠), where 𝑠 is the string to tokenize, 𝑠𝑝𝑙𝑖𝑡 is a

unary function that takes a string and returns a sequence of strings, and Σ𝑇 is a token
alphabet(2.3): 1

𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑠𝑝𝑙𝑖𝑡,Σ𝑇 , 𝑠) = [(ℎ𝑒𝑎𝑑(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑠′,Σ𝑇 )), {𝑠′}, 1, 𝐹𝑎𝑙𝑠𝑒)|𝑠′ ∈ 𝑠𝑝𝑙𝑖𝑡(𝑠)]

Function 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 takes a string, splits it into a sequence of strings using function 𝑠𝑝𝑙𝑖𝑡
and constructs a sequence of tokens. Each token will be initially very similar. The value of

1𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑠′,Σ𝑇 ) is a set, not a collection, therefore operation ℎ𝑒𝑎𝑑 doesn’t, in theory, make much sense,
however, in practice, most implementations will be working with a collection. Those that won’t, will have
to define an operation that chooses a member of the set uniformly at random in place of ℎ𝑒𝑎𝑑
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a new token will be composed of only 𝑠′. Its category will be one with the highest priority
that matches 𝑠′. Its alternative count will always be equal to zero, and it will never be
optional.

Note that if there exists a 𝑠′ that isn’t matched by any category in Σ𝑇 , the result of
𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 is not defined, and should be treated as an error. Barring that, the behavior of
𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 will depend mostly on the value of 𝑠𝑝𝑙𝑖𝑡. The token alphabet Σ𝑇 doesn’t affect
the shape of the resulting sequence, nor the values of tokens in the sequence. The trivial
alphabet Σ𝑇0 = {(.*, 0)} can always be used, if categorization of tokens is not desirable. As
we will see later, however, categories give us a great deal of power over how sequences will
be aligned.

There are two ways of thinking about the 𝑠𝑝𝑙𝑖𝑡 function: it defines what is a token
looks like; it defines what text doesn’t provide useful information for classification. In other
words, 𝑠𝑝𝑙𝑖𝑡 can be defined either in terms of what text forms tokens, or in terms of what
text separates tokens. However, not all 𝑠𝑝𝑙𝑖𝑡 functions will be describable in both ways.

In most cases, the 𝑠𝑝𝑙𝑖𝑡 function and token alphabet Σ𝑇 will be the same for every
invocation of 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 during one run of classifications, therefore, it might be a good idea
to partially apply the function 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 and produce a function 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒′(𝑠).

5.2.1 Token Types

As described in Section 2.3, tokens are divided into three types based on their alternative
count: concrete tokens, alternative tokens, and random tokens. In this section we will take
a closer look on what these types mean and how they can be used in learning templates.

Concrete tokens represent fixed spots in a template. Their values are always literals.
All tokens in the sequence 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 returns will be concrete tokens.

Alternative tokens represent variable parts of a template: spots that can have several
different values. Those can be, for example, places where the attacker used synonyms, such
as ”install“ and download”, to introduce variability into their spam campaign to throw
off spam detectors, without losing semantic meaning for the human recipient. Alternative
tokens are created when two concrete tokens are aligned. When being joined, the alter-
native count of the resulting token is automatically incremented (see Section 5.5 for more
information on how alternative tokens are joined).

Random tokens represent spots where the template is so variable that keeping track
of the concrete values provides only a marginal increase in information gained (quality of
alignment) over accepting any value. Those can be names, telephone numbers, verification
codes, addresses... We can see that while concrete telephone number is not of much interest
to us when learning a template, the fact that a telephone number appears in a specific spot
is very important. We can therefore augment random tokens with token categories, to allow
us to retain such information.

Example 5. Consider the following messages from the same prior campaign:
1 G−2∗∗∗63 is your Google verification code.
2 7∗∗∗21 is your Skrill authentication code.
3 4∗∗∗12 is your NETELLER authentication code.

an example of template that could generate such messages could be:
1 (("\w∗)?\d+", 0), .∗, −1), (("w+", 1), is, 1), (("w+", 1), your, 1),

(("w+",1),Google|Skrill|NETELLER, 3), (("w+", 1),
verification|authentication, 2) (("w+", 1), code, 1)
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Notice that the words Google, Skrill, and NETELLER appear in all of them in the
same spot, and so do the words verification and authentication, so those are a good
candidates for alternative tokens. At the beginning of the message is a number. We can
conclude that this number will be different for every message (in this case by interpreting
the semantics of the message, but during automatic classification by the fact that the
alternative count of the token in that spot increases too much), so we declare it random.
We can, however still assign it a category, so that it won’t match messages that begin with
the word hello for example. The other spots always contain the same words, so we declare
them concrete.

5.3 Campaigns
A campaign 𝑐 is a pair (𝑖𝑑, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) where 𝑖𝑑 is a identification of the campaign (for

example, a natural number), and 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 is a sequence of tokens.
To decide whether a message belong to a campaign, we need to be able to determine

whether the campaigns template could generate it. To do so, we will construct a regular
expression out of the template in the following manner:

1. Construct a regular expression out of each token 𝑡 in the template

(a) If 𝑡 is concrete or variable
• if 𝑡 is optional → ((

⋃︀
𝑡.𝑣𝑎𝑙𝑢𝑒)?) 2

• else → (
⋃︀
𝑡.𝑣𝑎𝑙𝑢𝑒)

(b) If 𝑡 is random → (.*?)

2. Join groups constructed in the previous step by a sequence (by a single space, for
example)

During tokenization, characters that were present in the original string are lost. It is not
possible to compare match a raw message with the regular expression constructed from a
campaign’s template. It first has to be tokenized, and the values of the tokens (which will
all be concrete) have to be joined by the same sequence that was used to join the campaign.
Now, the message is ready to be matched with the campaign. A string is said to belong to
a campaign if it belongs to the language that the regular expression describes.

5.4 Scoring
To perform an alignment, we need a way to calculate how likely one token is to be

substituted for another in an alignment. For this, we need a substitution scoring function
(see Section 3.4.2). The substitution score in biological sequence alignment represents the
likelihood of a mutation. The substitution score in our algorithm represents how likely it
is that two tokens were generated by a single field in a template. This needs to be taken
into consideration when constructing a scoring function

We define a binary function 𝑠𝑐𝑜𝑟𝑒 that takes two tokens, and returns a real number.
More formally: Let Σ𝑇 be a token alphabet and 𝐿𝑐 a language denoted by the pattern of

2⋃︀𝑆, where 𝑆 is a set of regular expressions, denotes a regular expression that describes a language that
is a union of all languages described by all regular expressions in 𝑆
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category 𝑐 ∈ Σ𝑇 . Then 𝑡𝑜𝑘𝑒𝑛𝑠(𝑐) = {(𝑐, 𝑠)|𝑠 ∈ 𝐿𝑐}3 is a set of all tokens that could match
category 𝑐, and TΣ𝑇

= {𝑡𝑜𝑘𝑒𝑛𝑠(𝑐)|𝑐 ∈ Σ𝑇 } is a set of all tokens matching a category in Σ𝑇 .
Then we define function 𝑠𝑐𝑜𝑟𝑒 as

𝑠𝑐𝑜𝑟𝑒 : T2
Σ𝑇
→ R

The precise behavior of this function can vary greatly based on the types of sequences
being aligned. However, one universally useful attribute is the ability of 𝑠𝑐𝑜𝑟𝑒 to return
high values when tokens are likely to have been aligned, and low values when they are
unlikely to be aligned.

Now we will explore some possibilities for function 𝑠𝑐𝑜𝑟𝑒. These techniques are not
mutually exclusive, and multiple off them can be used when construction the 𝑠𝑐𝑜𝑟𝑒 function
For conciseness, we define the following constants:

• 𝑐0 = (.*, 0),

• 𝑤𝑜𝑟𝑑 = (∖𝑤+, 1),

• 𝑛𝑢𝑚 = (∖𝑑+, 1),

5.4.1 Match/Mismatch

The simplest way to implement function 𝑠𝑐𝑜𝑟𝑒 is to assign it a positive value 𝑛 if the
values of tokens match, and a negative value −𝑚 if they don’t

𝑠𝑐𝑜𝑟𝑒(𝑡1, 𝑡2) =

{︂
𝑛 𝑡1.𝑣𝑎𝑙𝑢𝑒 = 𝑡2.𝑣𝑎𝑙𝑢𝑒
−𝑚 otherwise

The biggest disadvantage of this approach is that it is susceptible to being “easily fooled”by noise. Consider the following alignment:

(𝑐0, Quick) (𝑐0, brown) (𝑐0, fox) (𝑐0, jumps) (𝑐0, over) (𝑐0, dog)
(𝑐0, Quickk) (𝑐0, brownn) (𝑐0, foxx) (𝑐0, jumpss) (𝑐0, overr) (𝑐0, dogg)

Corresponding tokens in this alignment differ only in one letter. Under the Match/Mis-
match scoring strategy, this alignment would have a score of −6𝑚, even though we can see
the sentences are identical semantically, barring a small amount of noise.

5.4.2 Edit distance

A more complicated approach is to score substitutions based on their text similarity.
This way, small changes will have a small impact, making the alignment more resistant to
noise. This will naturally come at a cost to speed.

Example 6. Let 𝑛 be a match reward, and 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠1, 𝑠2) a function that calculates
the edit distance of two strings (see Section 2.4). Then

𝑠𝑐𝑜𝑟𝑒(𝑡1, 𝑡2) = 𝑛− 𝑛
|𝑡1.𝑣𝑎𝑙𝑢𝑒|+|𝑡2.𝑣𝑎𝑙𝑢𝑒|

4

· 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡1.𝑣𝑎𝑙𝑢𝑒, 𝑡2.𝑣𝑎𝑙𝑢𝑒)

By including length of the strings in the calculation, we ensure the score is moves linearly
from 𝑛 to −𝑛, regardless of how long the string are.In this example, when the sequences

3Alternative count and optionality of a token are omitted for conciseness, as they will not be important
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are identical (have an edit distance of 0), they have the highest score (𝑛), when their edit
distance is equal to the mean average of their lengths, the score is equal to −𝑛, and when
it is even higher, the score is even lower. This allows us to better predict the score, and
also ensures that longer words will not outperform shorter ones.

𝑠𝑐𝑜𝑟𝑒(𝑡1, 𝑡2) =

⎧⎪⎨⎪⎩
𝑛 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡1.𝑣𝑎𝑙𝑢𝑒, 𝑡2.𝑣𝑎𝑙𝑢𝑒) = 0

−𝑛 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡1.𝑣𝑎𝑙𝑢𝑒, 𝑡2.𝑣𝑎𝑙𝑢𝑒) = |𝑡1.𝑣𝑎𝑙𝑢𝑒|+|𝑡2.𝑣𝑎𝑙𝑢𝑒|
2

< −𝑛 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡1.𝑣𝑎𝑙𝑢𝑒, 𝑡2.𝑣𝑎𝑙𝑢𝑒) > |𝑡1.𝑣𝑎𝑙𝑢𝑒|+|𝑡2.𝑣𝑎𝑙𝑢𝑒|
2

5.4.3 Substitution Matrix

Substitution matrix 𝑀 is a matrix of shape (TΣ𝑇
× TΣ𝑇

). Each element of matrix 𝑀
represents the substitution score of two tokens. Let T′

Σ𝑇
be an indexable sequence created

by arranging elements of TΣ𝑇
in arbitrary order. Then 𝑀 [𝑖, 𝑗] is the substitution score of

elements TΣ𝑇
[𝑖] and TΣ𝑇

[𝑗]

𝑠𝑐𝑜𝑟𝑒(𝑡1, 𝑡2) = 𝑀 [𝑖𝑛𝑑𝑒𝑥(𝑡1,TΣ𝑇
), 𝑖𝑛𝑑𝑒𝑥(𝑡2,TΣ𝑇

)]

Where 𝑖𝑛𝑑𝑒𝑥(𝑡, 𝑠) is the index of element 𝑡 in sequence 𝑠.

Example 7. Let Σ𝑇 = (𝑎, 0), (𝑏, 0), (𝑐, 0). Then obviouslyT′
Σ𝑇

= [((𝑎, 0), 𝑎), ((𝑏, 0), 𝑏), ((𝑐, 0), 𝑐)].
We can define substitution matrix 𝑀 as

𝑀 =

⎡⎣ 1 −1 −1
−1 1 −1
−1 −1 1

⎤⎦
Note that a 𝑠𝑐𝑜𝑟𝑒 function defined using this matrix will be identical with the function

defined in Section 5.4.1 for 𝑛 = 𝑚 = 1.

Substitution matrix is a very fast implementation of scoring function, as it has a 𝑂(1)
complexity, and it’s speed depends only on the speed of accessing the array elements.
However, it requires a known and finite alphabet of tokens. This method is therefore not
well suited for our purposes, it is, however, a very popular method in bioinformatics.

5.4.4 Categories

In dna or protein sequence alignment, substitution score of different bases/acids repre-
sents the likelihood of those elements to be substituted for one another. We can implement
a similar approach using token categories, since their number will be finite and they will be
known in advance.

Example 8. Function 𝑠𝑐𝑜𝑟𝑒 that penalizes alignment of tokens with different categories

𝑠𝑐𝑜𝑟𝑒(𝑡1, 𝑡2) =

⎧⎨⎩
𝑛 𝑡1.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝑡2.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∧ 𝑡1.𝑣𝑎𝑙𝑢𝑒 = 𝑡2.𝑣𝑎𝑙𝑢𝑒
−𝑚 𝑡1.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝑡2.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∧ 𝑡1.𝑣𝑎𝑙𝑢𝑒 ̸= 𝑡2.𝑣𝑎𝑙𝑢𝑒
−2𝑚 otherwise

Example 9. Function 𝑠𝑐𝑜𝑟𝑒 that does not take into account the values of tokens of certain
categories Let Σ𝑇 = 𝑐0, 𝑤𝑜𝑟𝑑, 𝑛𝑢𝑚. Then:

𝑠𝑐𝑜𝑟𝑒(𝑡1, 𝑡2) =

⎧⎨⎩
𝑛 𝑡1.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝑡2.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∧ 𝑡1.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝑛𝑢𝑚
𝑛 𝑡1.𝑣𝑎𝑙𝑢𝑒 = 𝑡2.𝑣𝑎𝑙𝑢𝑒
−𝑚 otherwise
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This approach is useful when dealing with token categories that we expect to be highly
variable, such as phone numbers.

5.5 Alignment Collapsing
An alignment is a pair of sequences of equal length. To construct a template from

them, we first need to collapse them. Let 𝐴 = (𝐴𝑠, 𝐴𝑐, 𝑠𝑐𝑜𝑟𝑒) be and alignment. 𝐴𝑠 is the
part of the alignment extracted from the message being classified, and 𝐴𝑐 is the part of
the alignment extracted from the campaign we are attempting to classify the message into.
Algorithm 5.3 collapses alignment into a template
1 Input: 𝐴𝑠, 𝐴𝑐, maximumAlternatives
2 Output: A~sequence of tokens
3
4 result := an empty sequence
5 for 𝑡𝑠, 𝑡𝑐 in zip(𝐴𝑠, 𝐴𝑐):
6 if 𝑡𝑠 is a gap ∨ 𝑡𝑐 is a gap:
7 𝑡 := 𝑡𝑠 ∪ 𝑡𝑐
8 make 𝑡 optional
9 else

10 if 𝑡𝑠 and 𝑡𝑐 don’t have the same category:
11 𝑡 := 𝑡𝑠 ∪ 𝑡𝑐
12 set 𝑡.𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 to the closest common upstream node

of both categories
13 else:
14 𝑡 := 𝑡𝑠 ∪ 𝑡𝑐
15
16 if alternatives in 𝑡 > maximumAlternatives:
17 make 𝑡 random
18
19 append 𝑡 to result
20
21 return result

Algorithm 5.3: Collapse Alignment

5.6 Alignment Judging
Not all alignments are suitable to be templates. The alignment algorithm finds the

optimal alignment of two sequences, but sometimes, if the sequences are too different, even
that is not usable as a template. Alignment judging is the process of deciding whether the
optimal alignment can be considered a template. This step makes our algorithm truly a
classification algorithm. Without it, all messages would be classified into the same cam-
paign.

The first step to construction an alignment judging function is to decide what an ac-
ceptable campaign template looks like. This was discussed in Section 4.4. By exploring
available datasets, we determined, than the number of fixed (constant) fields is significantly
higher that the number of variable and highly variable (random) fields. We also determined,
that if a gaps were to occur in an alignment, i.e. a variable field in a template generated
more than one token, they would be short, only one or two tokens long.
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The precise form the alignment judging function will take also depends on the alignment
algorithm and substitution scoring, and we will propose various alternatives in 6.

5.7 Metrics
In this section we will describe metrics for measuring the performance of our algorithm.

The goal of the algorithm is to classify messages into campaigns, without introducing a
significant amount of fragmentation (classifying messages from the same campaign into
multiple) or excessive merging (classifying messages from different campaigns into one cam-
paign). To evaluate how well our algorithm performs these tasks, we can compare its results
to a reference classification. In this section, we will refer to campaigns from which messages
were generated as prior campaigns and to campaigns to which we classified messages as
learned campaigns.

5.7.1 Fragmentation rate

Fragmentation is the assignment of two strings that were generated from the same prior
campaign into two different learned campaigns. Let 𝑐 be a learned campaign, 𝑆 a set of
strings, 𝑃 a set of prior campaigns, 𝑝(𝑠) a prior campaign from which the string 𝑠 ∈ 𝑆
was generated. Learned campaign 𝑐 is fragmented with respect to a set of strings 𝑆 if
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑(𝑐, 𝑆) is true:

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑(𝑐, 𝑆) = ∃𝑠 ∈ 𝑆, 𝑝(𝑠) ̸= 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦′(𝑠)

We define a function 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 that will show us all learned campaigns to which mes-
sages from each prior campaign were classified: a set of fragments of each prior campaign.

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ) = {(𝑐𝑝, {𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑠) | 𝑠 ∈ 𝑆 ∧ 𝑝(𝑠) = 𝑐𝑝})|𝑐𝑝 ∈ 𝑃}

or, in other words, 𝑓𝑟𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑠(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ) is a set of sets of campaigns to which strings
𝑠 ∈ 𝑆 which were generated from prior campaigns 𝑐𝑝 were classified for each prior campaign
𝑐𝑝 ∈ 𝑃 .

We can now calculate how much algorithm 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 fragments. 4

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑎𝑛(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ) = 𝑚𝑒𝑎𝑛({|𝐴| | (_, 𝐴) ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 )})

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑑({|𝐴| | (_, 𝐴) ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 )})

These values give us a high level idea of how the algorithm performs. 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑎𝑛
is the average number of fragments a campaign is broken into. Ideally, it would be equal to
1, however, in cases where this is not the case, 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑎𝑛 alone doesn’t provide
any information about how to improve the algorithm. 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 likewise
is not very helpful: it can only hint on whether a high 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑎𝑛 is caused by
an outlier.

To diagnose the algorithm, we will have to look at the data at a less aggregate level.
Additionally, we will require additional piece of information: “how much” of the prior
campaign is part of the campaigns to which it was fragmented.

𝐴(𝑡) = [𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑠) | 𝑠 ∈ 𝑆 ∧ 𝑐𝑝 = 𝑝(𝑠)]

4A colon is used for set comprehension notation in this case, to distinguish it from the set cardinality
operator
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𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠′(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ) =

[(𝑐𝑝, 𝑐, |{𝑐′ | 𝑐′ ∈ 𝐴(𝑐𝑝) ∧ 𝑐′ = 𝑐}|) | (𝑐𝑝, 𝑐) ∈ 𝑃 × {𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑠) | 𝑠 ∈ 𝑆}]

Function 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠′(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ) constructs a sequence of elements (𝑐𝑝, 𝑐, 𝑐𝑜𝑢𝑛𝑡),
where 𝑐𝑝 is a prior campaign, 𝑐 is a learned campaign and 𝑐𝑜𝑢𝑛𝑡 ∈ N0 is the number
of strings 𝑠, 𝑃 (𝑠) = 𝑐𝑝 (strings that were generated from a prior campaign 𝑐𝑝) that were
classified into learned campaign 𝑐.

Let 𝑠𝑜𝑟𝑡(𝐴, 𝑘𝑒𝑦) be a function that returns a sequence which has the same elements
that a set 𝐴 has, but sorted descending by values of function 𝑘𝑒𝑦 : 𝑎 ∈ 𝐴→ Z. Then:

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠_𝑏𝑦_𝑠𝑖𝑧𝑒(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ) = 𝑠𝑜𝑟𝑡(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ), 𝜆(_, 𝑎).|𝑎|)

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠_𝑏𝑦_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 ) = 𝑠𝑜𝑟𝑡(

[(𝑡, 𝑠𝑡𝑑([𝑐𝑜𝑢𝑛𝑡 | (𝑐′𝑝,_, 𝑐𝑜𝑢𝑛𝑡) ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠′(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦, 𝑆, 𝑃 )∧𝑐′𝑝 = 𝑐𝑝]) | 𝑐𝑝 ∈ 𝑃 ], 𝜆(_, 𝑎).𝑎)

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠_𝑏𝑦_𝑠𝑖𝑧𝑒 shows us prior campaigns that are fragmented into many different
campaigns.

Example 10. Prior campaign 𝑐𝑝1 is fragmented into many campaigns:

(𝑐𝑝1, {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5})

Prior campaign 𝑐𝑝2 is fragmented into few campaigns:

(𝑐𝑝2, {𝑐1, 𝑐2})

Note that 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠_𝑏𝑦_𝑠𝑖𝑧𝑒 loses information about what “size” (how many strings
were classified into which campaign) the fragments are; it only cares about how many
campaigns the prior campaign is fragmented into.

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠_𝑏𝑦_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 shows us prior campaigns that may or may not be fragmented
into many campaigns, but whose fragments are close to equal in size.

Example 11. Fragments of Prior campaign 𝑐𝑝1 are roughly equal in size:

(𝑐𝑝1, [5, 4, 5])

One fragment of Prior campaign 𝑐𝑝2 dominates the others in size:

(𝑐𝑝2, [8, 1, 1, 2])

The important thing about 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠_𝑏𝑦_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 is that it allows us to ignore cases
where one fragment is dominant.

5.7.2 Merging rate

Merging is the assignments of two strings that were generated from different prior cam-
paigns to one campaign.

Let 𝑃 be a set of prior campaigns, 𝑆 a set of strings, 𝑝(𝑠) a prior campaigns from which
the string 𝑠 ∈ 𝑆 was generated, and 𝐶 a set of campaigns.
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We define 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠(𝑝𝑐, 𝑐, 𝑆), which tells us if strings generated from a prior campaign
𝑝𝑐 ∈ 𝑃 were classified into campaign 𝑐 ∈ 𝐶 (were used to construct it):

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠(𝑝𝑐, 𝑐, 𝑆) = ∃𝑠 ∈ 𝑆 : 𝑝(𝑠) = 𝑝𝑐 ∧ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑠) = 𝑐

Prior campaign 𝑝𝑐1, 𝑝𝑐2 ∈ 𝑃 have been (partially) merged into campaign 𝑐 ∈ 𝐶 in
respect to a set of strings 𝑆 if 𝑚𝑒𝑟𝑔𝑒𝑑(𝑝𝑐1, 𝑝𝑐2, 𝑐, 𝑆) is true:

𝑚𝑒𝑟𝑔𝑒𝑑(𝑝𝑐1, 𝑝𝑐2, 𝑐, 𝑆) = 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠(𝑝𝑐1, 𝑐, 𝑆) ∧ 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠(𝑝𝑐2, 𝑐, 𝑆)

How many prior campaigns were merged to create a campaign 𝑐 can be calculated as
follows:

𝑚𝑒𝑟𝑔𝑖𝑛𝑔_𝑟𝑎𝑡𝑒(𝑐, 𝑃, 𝑆) = |{𝑝𝑐 : 𝑝𝑐 ∈ 𝑃 ∧ 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠(𝑝𝑐, 𝑐, 𝑆)}|

Campaigns with merging rate higher than one are of interest to us, because they could
represent either a successful merging of fragmented campaigns, or, in case when we trust
set 𝑃 to be true (meaning that it is the set of campaigns from which strings in 𝑆 were truly
generated), an excessive merging.
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Chapter 6

Optimizing the Algorithm

In the previous chapter, we described an algorithm for classifying spam SMS messages
into campaigns. The algorithm depended on several hyperparameters. We described how
they affect the classification algorithm, and alluded to what form they can take. In this
chapter, we will propose various values of these hyperparameters, to produce what we will
call an instance of the algorithm, which is a complete program that can classify a stream
of strings into campaigns. We will then discuss what challenges the classification algorithm
must overcome to classify messages into campaigns correctly.

6.1 Implementation
While the goal of this work is not to create software - but to design, test, and prototype

an algorithm - an implementation of the designed algorithm is necessary to demonstrate
it’s usability on real data. Python3 (version 3.8) was chosen for implementation, as it
allows for rapid development and prototyping, supports both object oriented and functional
programming, and speed of execution wasn’t critical 1. The implementation depends on
the NumPy package [15], but only for ease of implementing matrix operations - it is not used
to speed up the program, in fact it might be detrimental to performance. The program
consists of several modules:

• sequence - Implements the concepts of token, token alphabet, token category, tok-
enization and joining sequences. Sequences themselves are implemented as python
lists.

• alignment - Implements the Smith-Waterman and Needleman-Wunsch algorithms.

• classify - Implements the classify and streamClassify algorithms.

• testbench - Implements a command line tool for testing the streamClassify algorithm
on a sample of messages and computing metrics.

Another script is necessary for the program to function, which is the implementation
of hyperparameters of the classification algorithm. The testbench loads this script as a
module, reads and samples a set of campaigns with LSH hashes (representing the prior cam-
paigns) from a provided file, runs the streamClassify algorithm, computes metrics described
in Section 5.7 and outputs four files (where output is the output name):

1When developing this solution for practice, speed will be naturally of utmost importance
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• output.log - contains general information about the test, such as input filename,
hyperparameters, number of samples, and aggregate metrics, such as fragmentation
mean.

• ouptut_campaigns.csv - contains templates and campaign keys of all created cam-
paigns.

• output_campaigns_by_merging_rate.csv - contains the top x campaigns sorted by
merging rate

• output_fragments_by_size.csv - contains the top x fragmented prior campaigns
sorted by fragment size (how many campaigns were messages from this prior campaign
classified to)

• output_fragments_by_deviation.csv - contains the top x fragmented prior cam-
paigns sorted by fragment deviation (the most evenly balanced fragments)

6.2 Naive Approach
In this section, we will consider a simple instance (values of hyperparameters) of algo-

rithm classify, to demonstrate why a more sophisticated approach will be necessary.
The simplest possible parameters were chosen. Tokens are delimited by sequences of

whitespaces.
1 Σ𝑇 := {(r’.*’, 0)}
2 split := 𝜆 str : split str on whitespace characters
3 Tokenize’ := 𝜆 str : tokenize(split, Σ𝑇 , str)

Function 6.1: Naive Tokenize

Substitutions are scored by a strict match/mismatch strategy.
1 Score := 𝜆 t1, t2 :
2 if match(t1, t2):
3 return matchReward
4 else
5 return -mismatchPenalty

Function 6.2: Naive Score

Alignment is performed using the Smith-Waterman alignment algorithm. Alignments
are collapsed by performing a union of tokens and counting how many tokens were merged:
if the number of alternatives is higher than a threshold, the token is marked as random.
1 Collapse = 𝜆 𝐴𝑠, 𝐴𝑐 : CollapseAlignment(𝐴𝑠, 𝐴𝑐, maxAlternatives)

Function 6.3: Naive Collapse

Alignment is deemed acceptable, if it’s score is higher than a threshold and it’s length
is higher than a threshold.
1 Judge := 𝜆 align, score:
2 if score ≥ minScore ∧ len(align) ≥ minLen:
3 return True
4 else:
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5 return False

Function 6.4: Naive Judge

Note that there is a number of named values that are not specified. Those are called
hyperparameters of second degree, and they are discussed in more detail in Section 6.4.
In Section 6.3 we will discuss what challenges the algorithm needs to overcome in order to
successfully classify messages. We will do so by fixing those hyperparameters and analyzing
the result of the algorithm.

6.3 Challenges
This section describes challenges that need to be overcome to transform the naive ap-

proach described above into a successful classification algorithm.

6.3.1 Universal Campaign

The universal campaign is the campaign 𝑐𝑢 = (𝑖𝑑, [((.*, 0), .*,−1)]). Any string can be
said to belong to this campaign - this campaign will match any string. Once campaign
𝑐𝑢 is present in a database of campaigns that we are learning, any new strings are auto-
matically assigned to it, without changing its template. This behavior is an example of
over-generalization and it will cause excessive merging(see Section 4.5.1), as all prior spam
campaigns, however unrelated, will be classified into 𝑐𝑢.

The emergence of a universal campaign is caused by the alignment judging and scoring
functions. The 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 algorithm will inevitably produce an alignment with a random
token - this behavior is expected of it for reasons explained in Section 4.4 and Section
5.2.1. Let 𝑐𝑟 be a campaign with a template containing a single random token. Under the
match/mismatch scoring strategy, any string that is aligned against 𝑐𝑟 will have a score at
least equal to 𝑚𝑎𝑡𝑐ℎ𝑅𝑒𝑤𝑎𝑟𝑑. If the minimal score of an alignment is lower than or equal
to the match reward, 𝑐𝑟 will inevitably transform into 𝑐𝑢.

Table 6.1 shows the creation of an universal campaign. All prior campaigns have been
merged into a single campaign.

Table 6.1: creation of a universal campaign

(a) Parameters

matchReward 1
mismatchPenalty 1
gapOpenPenalty 1

gapExtendPenalty 1
maxAlternatives 1

minScore 1
minLen 1

(b) Metrics

prior campaigns 50
created campaigns 1

fragmentation mean 1.0
merging mean 50.0

A seemingly simple solution is to increase the minimal length of the alignment. This will,
however, only delay the problem. Using the process described above to create a universal
campaign with a single random token, universal campaigns with templates of any length
can be constructed. This in turn makes increasing minimal alignment score an insufficient
solution, as a universal campaign 𝑐𝑛𝑢 with 𝑛 random tokens, will always align with a score
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of 𝑚𝑎𝑡𝑐ℎ𝑅𝑒𝑤𝑎𝑟𝑑 · 𝑛, which is the highest possible score alignments of minimal length can
achieve. Increasing the required minimal alignment score above 𝑚𝑎𝑡𝑐ℎ𝑅𝑒𝑤𝑎𝑟𝑑 · 𝑛 would
make alignments of minimal length impossible. Adjusting the judging function to accept
alignments based on their score and length dynamically in respect to the length of the
sequences being classified (as discussed in Section 6.4) likewise only delays the problem.
Table 6.3 shows metrics collected from a test with such a judging function. Notice that the
merging deviation is quite high. This is caused by the creation of an universal campaign.
1 def judgeAlignment(align:list, score:float, s:"list[Token]", c:"list[

Token]")->bool:
2 if (len(align) >= len(s)*minLenFrac and len(align) >= len(c)*

minLenFrac) and score >= len(s)*minScoreFrac:
3 return True
4 else:
5 return False

Function 6.5: Dynamic Length and Score Thresholds

Table 6.2: Creation of universal campaign with dynamic length and score thresholds

(a) Parameters

matchReward 1
mismatchPenalty 1
gapOpenPenalty 1

gapExtendPenalty 1
maxAlternatives 1

minScoreFrac 0.25
minLenFrac 0.5

(b) Metrics

prior campaigns 50
created campaigns 31

fragmentation mean 1.14
fragmentation deviation 0.40

merging mean 1.84
merging deviation 3.06

Universal campaigns are particularly troublesome, because, as explained above, they
will always align with the highest score for an alignment of a given length.

We will now propose three methods for dealing with universal campaigns: limiting the
number of random tokens in a template, discouraging the creation of random tokens, and
retaining information about random tokens.

The simplest approach is to limit the number of random tokens in a template. To do
this, we simply update the judging function to count the number of random tokens in an
alignment and the alignment if the count is higher than some threshold.
1 --Judging
2 minScore := 1
3 minLen := 1
4 maxRandomTokens := 1
5 Judge := 𝜆 align, score:
6 if score ≥ minScore ∧ len(align) ≥ minLen ∧ countRandomTokens(

align) ≤ maxRandomTokens:
7 return True
8 else:
9 return False

Function 6.6: Judging function limiting the number of random tokens
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This approach introduces a new hyperparameter to optimize: maximum number of random
tokens in a template. It is clear, however, that it must be strictly lower than the minimum
alignment length to have any effect.

A more complicated approach is to discourage the creation of random tokens during
alignment. To do this, we update the scoring function to detect when we are about to
create a random token, and assign such substitution a lower score.
1 --Scoring
2 matchReward := 1
3 mismatchPenalty := 0
4 maxAlternatives := 1
5 randomTokenPenalty := 1
6 Score := 𝜆 t1, t2 :
7 if t1 = t2:
8 return matchReward
9 else:

10 if countTotalAlternatives(t1,t2) > maxAlternatives:
11 return -mismatchPenalty-randomTokenPenalty
12 else:
13 return -mismatchPenalty

Function 6.7: Scoring function discouraging the creation of random tokens

This approach introduces a new hyperparameter to optimize: the random token creation
penalty. The problem with this approach is, that while it does discourage the creation of
universal campaigns, it also discourages the creation of random tokens, which is something
that the algorithm is supposed to do, to a certain degree - we expect some spots in most
campaigns’ templates to be highly variable. A slight modification to this approach that
would satisfy both the need to create random tokens to describe high variability and to
discourage the creation of universal campaigns is be to discourage the creation of too many
random tokens. As discussed in Section 4.4, most campaigns will consist of more fixed
tokens than random. The penalty for creating a random token might start small, and
gradually increase with each random token created.

The third approach is to gather information about random tokens. This can be done by
employing token categories. When we referred to a random token above, we meant token
𝑡𝑟 = ((.*, 0), .*,−1), which matches any string. However, in Section 2.3 we defined random
token to be any token with alternative count equal to -1. Therefore, random tokens can
have any category. By using a token alphabet with categories that don’t accept all strings,
we can avoid creating universal campaigns by removing their prerequisite: an universal
token.

Consider the following strings as an example of a spam campaign:
1 G−244763 is your Google verification code.
2 720621 is your Skrill authentication code.
3 427612 is your NETELLER authentication code.

We can see that the first word in the template of this campaign (the verification code)
is highly variable, and will likely become a random token. If we use the trivial alphabet
Σ𝑇0 = {(′.*′, 0)}, we run a risk of learning a universal campaign. Instead, we can use
a slightly more complicated alphabet Σ𝑇1 = {(′(∖𝑤*)?𝑑+′, 0)), (′∖𝑤+′, 1))}. Now, even
though the generated template starts with a random token, it will not accept all string -
only ones that start with a verification code.

34



To make this approach work, we will need to adjust tokenization. The precise form
the used token alphabet will take depends solely on the data being classified, however, the
union of patterns of all categories in the alphabet should be a superset of the language of
the data, otherwise, the algorithm will be unable to tokenize some strings. The problem
of a universal campaign has already been solved by this, as random tokens will no longer
match everything, however, the use of categories allows us to improve the algorithm further,
mainly by using categories in scoring substitutions.

6.3.2 Low Scoring Short Message

The score of an alignment is the sum of all substitution scores plus the sum of all gap
scores. Consider an alignment of length 𝑛. The highest possible score for this alignment is
𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒)×𝑛, where 𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒) is the maximum possible substitution score. Therefore,
the highest score a short messages can achieve is lower than that of longer messages. This
presents a problem, because it means that if we expect messages of different lengths, short
messages might never reach our fixed score threshold, even when aligned against themselves.
However, setting the score too low will make it useless.

Note that this does not have to do with the quality of the alignment, in respect to the
ratio of matching and mismatching tokens. Consider the following instance of the naive
algorithm:

Table 6.3: Creation of universal campaign with dynamic length and score thresholds

(a) Parameters

matchReward 1
mismatchPenalty 1
gapOpenPenalty 1

gapExtendPenalty 1
maxAlternatives 1

minScore 3
minLen 1

(b) Metrics

prior campaigns 50
created campaigns 48

fragmentation mean 1.14
fragmentation deviation 2.69

merging mean 1.48
merging deviation 0.85

Note the high value of fragmentation deviation, that is caused by messages from a prior
campaign with a short template being unable to merge, due to the high score threshold.

Example 12. Template: Telegram code <NUMBER>
Messages in sample: 20
Number of campaigns: 20

The highest alignment score this messages from this campaign could have achieved is 1
(two fixed tokens(1+1), one variable(-1)), which is lower than the threshold, and therefore
even the best alignment possible was not judged to be an acceptable template.

6.3.3 Forgotten Extremes

1 Dear New Rail Sheba User, You are opening a new account at Rail Sheba App.
Please activate your user account using this OTP: 214423 Thank you

2 Dear User, Please activate your user account using this OTP: 624080 Thank you.
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These messages belong to different prior campaigns. However, the alignment algorithm
might align them with a sufficient score to be merged into the same campaign by cutting
of their heads.

Template: Please activate your user account using this OTP: <.*> Thank you.
The same issue might arise when two messages have different tails, or even when the

matching part is in the middle.
A slightly less problematic instance of this problem is when extremes are forgotten when

classifying messages that do belong to the same campaign. Consider:
1 Dear Client, TK. 20776.00 credited to ∗∗∗82520 by Transfer dated 2020−09−08

16:16. Remaining balance 177804.08. MTB Helpline ∗∗∗∗9
2 Dear Client, TK. 100000.00 credited to ∗∗∗98648 by On−Line Cash dated

2020−09−08 3:58. Remaining balance 3016218.73. MTB Helpline ∗∗∗∗9

Template: dated 2020-09-08 <.*> Remaining balance <.*> MTB Helpline ****9
The alignment algorithm decided that the head of the messages is too variable to be

worth hassling with, even though there are some exact matches.
These are examples of over-generalization, and are caused by the local nature of the

Smith-Waterman alignment algorithm. One way to fix this problem is to use a global
alignment algorithm, like Needleman-Wunsch. That way, the entire message is considered,
and differences in lengths are correctly classified as gaps.
6.3.4 Rejecting Suboptimal Alignments

The alignment algorithm in our algorithm returns a single alignment: the optimal one.
However, the judging function that decides whether this alignment is suitable for a template
might depend on more metrics than just the alignment score. Therefore, it is possible that
the optimal alignment might not pass the judging process, while a sub-optimal alignment
might.

One solution to this problem is to return all alignments and then loop over them,
until we find one that passes the judging function, or we run out of alignments. This,
however, raises the time complexity of our algorithm considerably. Firstly, while the smith-
waterman algorithm can be optimized to run in 𝑂(𝑛) time (where 𝑛 is the length of the
shorter sequence) for situations when only the optimal alignment is of interest to us, it will
run in 𝑂(𝑛𝑚) time when we want all alignments. Secondly, the rest of the algorithm will
slow down as well. The alignment joining and alignment judging will have to run 𝑥 times
in worst case (where 𝑥 is the number of alignments).

6.3.5 Good enough match

The streamClassify algorithm compares messages with campaigns sequentially, but it
does not specify what order the campaigns are in. This might result in a situation where a
message is classified into a campaign with which it aligns sub-optimally.

One solution to this problem would be to compare the message with all camapigns, then
select the optimal match. However, this would only be feasible if the campaign space was
small enough.

6.4 Hyperparameters of Second Degree
In chapter 5 we described the hyperparameters of the classification algorithm. In Sec-

tion 6.2, we fixed those parameters to obtain an instance of the algorithm. However, to
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do so, we used named constants such as minScore or minLen. These constants are the
hyperparameters of this particular instance - the algorithm will behave differently when we
change their values. We refer to these as to hyperparameters of second degree, and they can
be different for different instances of the classification algorithm.

6.4.1 Substitution Score

In biology, substitution score of two proteins represents the likelihood they are to mutate
into one another. In our algorithm, the substitution score represents the likelihood of two
tokens being generated from the same field in a template. We say that a score for two
matching strings (two tokens that were likely generated from a fixed field in a template) is
1, and two tokens that do not match have score of -1. This means, that an alignment with
score 0 has an equal number of matching and mismatching tokens.

6.4.2 Minimal Alignment Score

The minimal alignment score an alignment must achieve to be considered acceptable
depends on what positive score is assigned for. In the algorithm instance proposed in Section
6.2, score increased by 1 for each matching token, and decreased by an equal amount for
each mismatching token and each unit of a gap. The alignment score, therefore, represents
the amount of matching tokens compared to the the amount of mismatching tokens and
gaps. The minimal alignment score represents how many more matches than mismatches
and gaps are required in an alignment to be considered a template.

The alignment score is not unbound. The highest scoring possible alignment would
be an alignment of two identical sequences of length 𝑛 ∈ N, and this score would be 𝑛.
Conversely, the lowest score an alignment could achieve is 0 - this is due to the nature of
the Smith-Waterman alignment algorithm. An alignment with such score would be optimal
(i.e. returned by the alignment algorithm) only if the two sequences being aligned didn’t
share a single matching token, regardless of their lengths.

Let 𝑛 be the length of the shortest possible sequence that could be constructed from all
messages being classified. If the minimal alignment score is a fixed number 𝑚 ∈ N it must
be lower than 𝑛, otherwise, some messages will be unable to form campaigns at all. This
problem can be mitigated by making mismatches lowering the alignment score (as opposed
to just not increasing it). This allows us to keep the minimal score close to zero; if a match
increases the score, and a mismatch decreases it by the same amount, then a score of zero
means the same number of matches and mismatches are present in the alignment.

The actual value depends on the data being classified, and has to be chosen through
experiment.

6.4.3 Minimal Alignment Length

The minimal length an alignment must achieve to be considered acceptable as a template
is a parameter that is only applicable if the alignment method used is local - when aligning
sequences globally, the alignment will always have the length of the longer sequence.

Similar to minimal score, if the minimal length were to be a fixed number, it would need
to be lower then the length of the shortest message. However, unlike the minimal score,
which only represents the required ratio of matches and mismatches and isn’t actually
connected to the length of the message (and it is acceptable to set it to a low fixed number,
as explained above), we expect messages of different lengths to appear in the data being
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classified. The minimal length should therefore be set dynamically, in respect of the lengths
of the messages being aligned.

The first explored approach is to set the minimal length to an average of the two
sequences being aligned. This approach is simple, and eliminates a optimizable hyperpa-
rameter, however the change of length a campaigns template undertakes is unpredictable,
and it is influenced by the length of a message that might not even belong to that campaign.
The second approach is to instead set a number of tokens that a campaign can lose. This
produces a more predictable change in the length of the template. Unfortunately, neither
of these approaches solves the problem of a campaign continuously shrinking, until it is
only one token long. To solve this, a length change limit can be introduced: a campaign
can not become shorter than its starting length minus this number.

The maximum token loss exposes a problem in our approach to classification. Quite
obviously, we do not want to lose any tokens, because that means loosing information about
the campaign’s generation template. This encourages excessive merging. We would much
rather the campaign gained random or optional tokens.

6.5 Improved Classification Algorithm
Drawing on the insights presented in Section 6.3 and Section 6.4, we improve the clas-

sification algorithm. The simple tokenization used in Section 6.2 performed well enough,
however, it failed in certain situations, for example when the message lacked a space between
what we would consider tokens.
1 Your A/C No:5637∗∗∗∗∗0631 has been CREDITED Tk.24,432.00 on 08−SEP−2020

by Transfer. Current Balance Tk.26900. Thank You, R∗∗∗∗i Bank Ltd.

We would like to separate the word “No:” from the account number, or the currency symbol
“Tk.” from the amount, so we can recognize and treat them as numbers. To do so, we
switched from splitting the message by a pattern, to extracting substrings that match a
pattern from the message. The precise form this pattern takes depends on the data being
analyzed. For this experiment, we chose to extract time (not that many formats), dates
(only a subset of formats that appears in the testing data, as there are too many possible
formats), emails, numbers, words with internal dashes, dots, hyphens, and apostrophes, and
a subset of special symbols. We also decided to throw away punctuation marks, as these
were often missing (increase in noise) and didn’t contribute to the alignment significantly,
as we analyze neither the semantics nor the syntax of the messages.
1 #Token Alphabet (the third element creates the tree structure: points

to a parent)
2 Σ𝑇 := {
3 wordCategory := (’(?P<word>\w+(?:[-.\\/\’]\w+)*’?)’, 0, None),
4 dateCategory :=
5 (’([0-3]?[0-9]
6 (?P<date_sep1>[/.-])
7 (?:[0-3]?[0-9]|Jan|Feb|Mar|Apr|Aug|Sep|Oct|Nov|Dec)
8 (?P=date_sep1)
9 (?:[0-9]{2})?[0-9][0-9]

10 |(?:[0-9]{2})?[0-9][0-9](?P<date_sep2>[/.-])
11 (?:[0-3]?[0-9]|Jan|Feb|Mar|Apr|Aug|Sep|Oct|Nov|Dec)
12 (?P=date_sep2)
13 [0-3]?[0-9])’, 1, wordCategory),
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14 timeCategory := (’(((?:2[0-3])|(?:[01]?[0-9])):([0-5]?[0-9])
(?::[0-5]?[0-9])?)’, 1, wordCategory),

15 emailCategory := (’(?P<email>\S+@\S+)’, 1, wordCategory),
16 numberCategory := (’(?P<number>[\d*]+(?:[,-][\d*]+)*(?:\.[\d*]+)

?)’, 1, wordCategory),
17 specialCategory := (’(?P<special>[^\w\d\s,.?!]+)’, 1,

wordCategory),
18 }
19
20 #tokenize
21 split := 𝜆
22 #pattern is a regular expression created by performing a union of all

patterns of all categories in Σ𝑇

23 pattern := reduce(𝜆 x, y : x.pattern + ’|’ + y.pattern, Σ𝑇 )
24 split = 𝜆 s~: find all nonoverlaping substrings of s~that match pattern
25 Tokenize = lambda s~: tokenize(split, alphabet, s)

Function 6.8: Improved Tokenization

We categorized tokens into categories roughly corresponding to the tokenization groups.
Certain types of tokens are more likely to have been generated from highly variable fields
in the template than others: numbers, dates, and times. We consider tokens in these
categories to “always match” - we don’t penalize them for their values not matching. We
also consider tokens with different categories to be highly unlikely to align, so we penalize
them more.
1 matchScore = 1
2 mismatchPenalty = 1
3 categoryMismatchPenalty = 2
4 highlyVariableCategories = {dateCategory, timeCategory, numberCategory}
5
6 Score = 𝜆 t1, t2:
7 if t1[0] == t2[0]: #categories match
8 if t1[0] ∈ highlyVariableCategories:
9 return matchScore

10 else:
11 if t2.match(t1):
12 return matchScore
13 else:
14 return -mismatchPenalty
15 else:
16 return -categoryMismatchPenalty

Function 6.9: Improved Score

We collapse the alignment in the same way we did in 6.2. We judge an alignment
acceptable, if it has a score higher than 0, or in other words, the number of matches is
greater than the number of mismatches and gaps. This constant worked well in testing.
1 #collapse
2 maxAlternatives=5
3 Collapse = 𝜆 𝐴𝑠, 𝐴𝑐 : collapseAlignment(𝐴𝑠, 𝐴𝑐, maxAlternatives)
4
5 #judge
6 minScore = 0
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7 Judge = 𝜆 score : return score >= minScore

Function 6.10: Improved Collapse and Judge

Most importantly, we abandon Smith-Waterman algorithm in favor of Needleman-
Wunsch. This change makes the algorithm significantly better. Local alignment is useful
when we are interested in finding similar substrings in very long strings, while ignoring
regions that are very different. However, we are interested in these regions, as they provide
valuable information, namely the fact that the compared strings might have a similar (lo-
cal) part, but overall (globally), they are very different. In other words, Smith-Waterman
is lossy in a way that we can not afford.

We also implement some simple ways to combat noise. Consider these two messages:
1 Your Apple ID Verification Code is: 255253
2 Your Fiverr verification code is: 7895

They obviously belong to the same campaign. However, the algorithm described in Section
6.2 would fragment this campaign, because of the subtle difference in word capitalization.
We can implement a very simple fix to this problem: convert all text to lowercase characters
during tokenization.

Table 6.4 shows how the improved algorithm performs on smaller subsets (that are
easy to analyze by hand). This behavior seems to be consistent over different samples of
similar size. Table 6.5 shows how the algorithm performs on a large dataset, namely the
one described in Section 4.5.2. The performance is consistent with the smaller tests. The
increase in merging rate is due to the fact, that some campaigns in the dataset are more
fragmented than others by LSH.

Table 6.4: Improved Algorithm Performance on a Small Sample

(a) Parameters

matchReward 1
mismatchPenalty 1

categoryMismatchPenalty 2
gapOpenPenalty 1

gapExtendPenalty 1
maxAlternatives 5

minScore 0

(b) Metrics

sample size 1000
prior campaigns 50

created campaigns 34
fragmentation mean 1.06

fragmentation deviation 0.24
merging mean 1.56

merging deviation 0.82

Table 6.5: Improved Algorithm Performance on a Large Sample

(a) Parameters

matchReward 1
mismatchPenalty 1

categoryMismatchPenalty 2
gapOpenPenalty 1

gapExtendPenalty 1
maxAlternatives 5

minScore 0

(b) Metrics

sample size 58450
prior campaigns 267

created campaigns 83
fragmentation mean 1.06

fragmentation deviation 0.29
merging mean 3.4

merging deviation 13.9
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Some prior campaigns still get fragmented. Consider the following messages: 2

Messages 1 and 2 are correctly classified into the same campaign (they actually get
correctly merged in respect to LSH clustering, see lower). Message 3 is incorrectly separated
into it’s own campaign. This is caused by the tokenization mishandling bengali alphabet
and incorrectly splitting the last word of this message into 9 tokens. Message 4 is an example
of correct fragmentation; our algorithm corrected excessive merging of the LSH algorithm
used to classify this dataset. Message 4 was classified into the same prior campaign by the
LSH algorithm as messages 1 and 2, even though we can see they were not generated from
the same template.

The merging rate of the algorithm remains high, however, not all the merges are incor-
rect. Consider the following messages:
1 Dear Client, TK. 90000.00 debited from ∗∗∗44957 by Cash dated 2020−09−08 3:51.

Remaining balance 1811.00. MTB Helpline ∗∗∗∗9
2 Dear Client, TK. 50.00 debited from ∗∗∗88227 by Transfer dated 2020−09−08 4:11.

Remaining balance 29818.00. MTB Helpline ∗∗∗∗9
3 Dear Client, TK. 18.21 credited to ∗∗∗00386 by Transfer dated 2020−09−08 16:16.

Remaining balance 1244.43. MTB Helpline ∗∗∗∗9

These messages were clearly generated from the same template. However, the LSH algo-
rithm classified them into three different campaigns: it fragmented the campaign. Our
algorithm correctly classified all three messages into the same campaign: it corrected the
LSH fragmentation problem.

6.5.1 Edit Distance Scoring

In Section 5.4 we discussed the use of edit distance for substitution scoring as a means
to deal with noise in the messages. However, in the course of testing, this approach turned
out to be ill suited for template extraction. It provided no noticeable improvement, while
decreasing the classification speed significantly. This is caused by the fact that data on
which this algorithm was evaluated does not contain random noise in the form of extra
letters interspersed in the message.

6.6 Generated Tempaltes
An important thing to note is that the templates our algorithm generates are very

different than the templates we describe in Section 4.4. Consider the following messages:

1 Dear Client, TK. 50.00 debited from ∗∗∗88227 by Transfer dated 2020−09−08 4:11.
2 Dear Client, TK. 90000.00 credited from ∗∗∗44957 by Online Cash dated

2020−09−08 3:51.
2At this point an image is included instead of text, as LATEX, not unlike our program, can’t handle the

bengali script
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The template that might generate these messages might look something like this:

1 Dear Client, TK. {AMOUNT} {"debited"|"credited"} from {ACCOUNT} by
{"Transfer"|"Online Cash"} date {DATE} {TIME}.

However, the template our algorithm generates looks like this:
1 [(dear), (client), (tk), (.∗, NUMBER), (debited|credited), (from), (.∗, NUMBER),

(by), (online|𝜖), (cash|transfer), (dated), (.∗, DATE), (.∗, TIME), (remaining)]

For one, the template loses certain characters, such as a comma after client, and even
the text that was converted into tokens is transformed during tokenization - in this case, it
was converted to lowercase. More importantly, however, notice how the algorithm handles
the {”transfer”|”online cash”} field. While the prior template contains this as a single
field, that can generate a variable amount of words, our algorithm is forced to treat one of
the words as optional (a gap in the alignment), and the other as variable (a mutation).

6.7 Merging Campaigns
The algorithm is designed in such a way, that it can be used for aligning two campaigns.

This can be useful when we already have messages grouped into campaigns by some other
method, for exmaple LSH, but we are worried that they might be fragmented. The classi-
fication algorithm can be used as a second layer over the LSH method, to merged possible
fragments.

This attribute can also be useful for reducing templates created in a distributed manner,
for example some kind of MapReduce model [9].
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Chapter 7

Conclusion

While email is still the most popular medium for sending electronic spam, it’s popularity
has been waning due to advances in combating it. Both spammers and legitimate companies
are taking more and more interest in sending bulk messages through SMS. In this paper,
we designed an algorithm for performing one essential task in spam detection: grouping
messages into campaigns.

We made a brief summary of what spam is, focusing on SMS communication. We
described what is a campaign and how messages from a campaign are generated using a
template.

We designed and implemented an algorithm for classifying messages into campaigns,
while simultaneously learning the generation templates of those campaigns. We based the
algorithm on aligning two sequences of words, as opposed to sequences of letters. The idea
of alignment was adopted from bioinformatics, where it is used to find similar regions in
protein or DNA strings. We focused on adapting the Smith-Waterman algorithm for local
alignment, but discovered that local alignment is ill suited for this task. We hypothesized
that global alignment is a better suited for our purposes, and confirmed this hypotheses by
replacing Smith-Waterman with Needleman-Wunsch alignment algorithm. The algorithm
was designed to work iteratively, incrementally generalizing the campaign templates it was
learning. The more time consuming operations are only performed when new messages do
not match the template already. We confirmed that the final product performs acceptably
well on the data provided, even correcting fragmentation errors that the older LSH method
made. However, we also learned that parameters will have to be tweaked by hand depending
on the use case and the data being classified.
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